Appendix

Fig. 6: Final tagging algorithm.
Input: Some Text ¢, NLTK Brown Corpus Trained Tagger, T
Output: A list of tags extracted from ¢ as extractedlags

g = A list of regular expressions for grouping part of speech tags;
blacklist = A list of characters to remove;

segmenters = A list of sentence breaking characters;
tokenisedSet = Tokenise t by white space;

textSegments, segmentBuf fer, extractedTags = (;

foreach word w in tokenisedSet do
foreach character c in w do
if If ¢ € blacklist then
‘ Remove ¢ from w;
end
else if If c € segmenters then
Remove ¢ from w;
if If segqmentBuf fer is not empty then
Append segmentBuf fer as an element to textSegments;
segmentBuf fer = ;
end
end
else
‘ break loop;
end
end
Repeat above for characters of w in reverse from right to left;
Append w to segmentBuf fer;
end
Append segmentBuf fer as an element to textSegments;
foreach segment s in textSegments do
Tag each member of s with a part of speech classification using T
parsedT'ree = Parse each tagged member of s against grammar ¢ to create a tree;
traverse node n in parsedI'ree
if Levenshtein edit-distance of n against all current members of extractedT ags >2 then
‘ Append n to extractedT ags;
end
end
Return extractedT ags;

1029310

Fig. 7: Finalised external APIs for related semantic content.

API Media Type Content Retrieved Quota
Flickr Images Public photos from flickr.photos.search|3600 requests per hour
(Yahoo! 2013) endpoint
Youtube Videos Public videos from youtube/v3/search|5,000,000 units per day
(Google, Inc 2013d) endpoint
Yahoo Pipes News Aggregated News from: 200 requests per 10
(Yantsiou 2013) « Google Blog Search minutes

e Google News

e MSN News

e Yahoo News

e Yahoo Search

Through pipe 'News Aggregator'.

Freebase
(Google, Inc 2013a)

Entity Descriptions

Public titles, alias’, descriptions and no-{100,000
table types of entities (e.g. people, ob-|day
jects, events etc) through the Search
Overview and Topic APl endpoints.

requests per

Fig. 8: JavaScript libraries used for the experiment applications

Library Use in the project

jQuery Used as the framework for the experiment environment and independent appli-
cation logic for facilitating faster and more stable development over traditional
JavaScript.

jQuery Ul Used to facilitate 'draggable’ sorting for time lines in the time line application

Hammer.js Used to enable touch-gesture support in experiment applications.

jQuery Masonry

Used in tile wall application for aesthetics in placing tiles in appripriate positions
according to their dynamic height.

spin.js

Used to replace an image based loading indicator for AJAX requests for speed
optimisation.

jQuery Nicescroll

Used to replace minor aesthetic changes in the individual scrollbars of time
linesin the time line application.

1029310

32

Fig. 9: Python libraries used for the experiment API platform and tagging algorithm implementation

Library

Use in the project

Python Twitter Tools

Used as a lightweight wrapper to the Twitter API for authentication calls and

content calls.

Django Used as the model-view-controller framework for integrating Python with a
HTTP web server.
TastyPie Used as an additional framework on top of Django for enable the creation of a

REST web service as well as traditional HTTP web pages.

Natural Language Toolkit

Used as a framework to implement various generic natural language processing
methods that are used in parts of the tagging algorithm.

Fig. 10: API platform authentication endpoints.

Endpoint

Input Parameters

Output

Purpose

/auth/login

'via' - The service to
retrieve authentication
request for e.g.
Twitter.

'format’ - The output
format to return the
content in e.g. XML
or JSON.

For 'via=twitter' the
output will be a URL
to Twitter's OAuth
authenticate URL with
a unique token.

To facilitate a one-click sign-
in to an authenticated service
e.g Twitter.

/auth /validate

'type’ - A reference
to the service the
credentials are being
registered for.

Relevant authen-
tication variables
given a service. For
twitter these are
'oauth_token’ and
'oauth_verifier’

The API key the cre-
dentials were regis-
tered to and a boolean
field indicating a suc-
cess or failure to do so.

A callback function to regis-
ter a services authentication
credentials (including finish-
ing of OAuth dance if applica-
ble) for a user with that user’s
API platform key.

/auth /authorise

'type' - A reference
to the service the
credentials are being
registered for.

'apikey’ - A user
specific APl key to
register authentica-

tion credentials for a
service to.

The APl key of the
user and the URL
to finish authentica-
tion of a service for.

An endpoint to register cre-
dentials additional services
for a user which already has
an APl key. e.g. retrieved an
APl key from /auth/login/
but did not finish registering
or wants to register a service
different other than Twitter
(beyond project scope).

1029310

33

Fig. 19: Details of the personalised tile wall experiment application.

Item

Description

Design

The main element of this application is to provide Twitter connection influenced
content in the form of tile blocks that are positioned for tightest fit. The content
of these tile blocks include. Tweets from the authenticated user's home time
line which have at least 5% keyword precision against the keywords of the
authenticated user’s personal time line. Additionally, any URL links and images
in the authenticated user's home time line and news stories found from each
Tweet's keywords that have at least 10% keyword precision in the title and
description.

Libraries Used

jQuery
jQuery Masonry

API
Used

Platform Endpoints

/experimental /extended Tweets/
/toolkit/substring Tree/
/semantics/news/

Pre-requisities for Use

Twitter account and authenticated API platform for use with account.

Fig. 20: Experiment details to supplement details in report

Item Description
Environment Equality|To reduce the possibility for debatable bias, all experiments were performed on
Measures the same device, the reasoning being that the graphical user interface adapts

for different screen resolutions (for a better mobile experience).

Task Equality Measures

Additionally, for the time line application, the user was prevented with the same
time line initially, the home time line with keywords from their personal time
line affecting the ranking. For both applications, the tiles were generated from
the same number of home time line and personal time tweets.

1029310

42

Fig. 11: API platform keyword and entity extraction endpoints.

Endpoint

Input Parameters

Output

Purpose

/toolkit/keywordExtraction

'q" - A query ei-
ther containing text
to tag or format-
ted in the form of
service : endpoint :
parameters to re-
trieve the text to
be tagged from the
endpoint of a source
such as Twitter given
a set of parameters.
'apikey’ - A user
specific APl key to
lookup Twitter cre-
dentials for.

'format’ - The output
format to return the
content in e.g. XML
or JSON.

A list of tags.

To facilitate calling of the en-
tire tagging operation.

/toolkit/entityExtraction

'q - A query ei-
ther containing text
to tag or format-
ted in the form of
service : endpoint
parameters to re-
trieve the text to
be tagged from the
endpoint of a source
such as Twitter given
a set fo parameters.
'apikey’ - A user
specific APl key to
lookup Twitter cre-
dentials for.

'format’ - The output
format to return the
content in e.g. XML
or JSON.

'output’ - A Freebase
APl field to return
entity information if

available.

A list of keywords and
closest matched Free-
base entity details if
available for that key-

:lword.

To facilitate retrieving addi-
tional semantic details such
as alias’ and descriptions
about extracted keywords.
Could also be described as
applicable as a /semantics/
endpoint.

1029310

Fig. 12: API platform keyword and entity extraction endpoints. (Continued)

Endpoint

Input Parameters

Output

Purpose

/toolkit/substring Tree

'q" - A query ei-
ther containing text
to tag or format-
ted in the form of
service : endpoint
parameters to re
trieve the text to
be tagged from the
endpoint of a source
such as Twitter given

a set of parameters.

'apikey’ - A user
specific APl key to
lookup Twitter cre-

dentials for.

'format’ - The output
format to return the
content in e.g. XML

A tree structure of
keywords where the

roots are entities
and sub-branches
:lare keywords which

are sub-strings of its
parent.

e.g.
{'Cardiff
Student’}
{'Cardiff
'Student'}
{'Student'}

University

University’,

To reduce the number of re-
quests that would need to
be called to cover all re-
lated semantics in the con-
tent; i.e. may not need to
query 'Student’ if content for
'Cardiff University Student’
was found.

or JSON.
/toolkit/stringClean 'q" - A piece of text|A list of segments with|A sub-operation of the tag-
to clean blacklisted|blacklisted characters|ging algorithm.

characters from.

'blacklist’ A list
of characters wishing
to be removed from
the text. (Optional).

Default {\/[(" #

'segmenters’ A list
of characters which
cause the piece of text
to be split into pieces.

(Optional). Default
@, 5)17

'format’ - The output
format to return the
content in e.g. XML
or JSON.

removed.

1029310

35

Fig. 13: API platform keyword and entity extraction endpoints. (Continued 2)

Endpoint Input Parameters |Output Purpose
/toolkit/posTag 'q" - A comma sep-|A list of tags and their|A sub-operation of the tag-
arated or JSON|part of speech classifi-|ging algorithm
encoded list of strings.|cations
'format’ - The output
format to return the
content in e.g. XML
or JSON.
/toolkit/posChunk 'q" - A JSON encoded|A list of tags either|A sub-operation of the tag-

list of ordered key-
words and their part of
speech classifications.

'type' - If set to
'chunks’ (not by de-
fault) it will return
keywords which con-
tain more than one
word, if omitted will
return all keywords
including those un-
chunked.

'format’ - The output
format to return the
content in e.g. XML
or JSON.

only containing multi-
ple words or all tags.

ging algorithm

1029310

36

Fig. 14: API platform semantic content endpoints.

Endpoint Input Parameters |Output Purpose
/semantics/youtube 'q" - A query to re-/A list of public|To facilitate the ability to find
trieve YouTube videos|YouTube video details|relevant semantic video con-

(e.g. related to a set
of comma separated

tags).

'format’ - The output
format to return the
content in e.g. XML
or JSON.

including the title,
thumbnail url, video
url, description and
publish timestamp of
each.

tent to a given set of tags.

/semantics/news

'q" - A query to
retrieve aggregated
news articles (e.g.
related to a set of
comma separated
tags).

'format’ - The output
format to return the
content in e.g. XML
or JSON.

A list of news article
details including the ti-
tle, source url, descrip-
tion and publish times-
tamp of each.

To facilitate the ability to find
relevant semantic news con-
tent to a given set of tags.

/semantics /flickr

[l

q - A query to re-
trieve Flickr images
(e.g. related to a set
of comma separated

tags).

'format’ - The output
format to return the
content in e.g. XML
or JSON.

A list of public Flickr
image details includ-
ing the title, thumbnail
url, image url, descrip-
tion, Flickr tags, au-
thor and publish times-
tamp of each.

To facilitate the ability to find
relevant semantic image con-
tent to a given set of tags.

1029310

37

Fig. 15: API platform Twitter-specific endpoints.

Endpoint Input Parameters |Output Purpose
/extended Tweets 'source’ - The Twitter|/A list of tweets split|To facilitate the ability to
endpoint to retrieve|between a Tweet's|calculate values for ranking

Tweets from.

'apikey’ - A user
specific APl key to
lookup Twitter cre-
dentials for.

'precisionSets’ - A
list of either sources
to retrieve tags
from and/or lists of
tags. Either comma
separated or JSON
encoded. (Optional)

‘rank’ A boolean
value stating whether
to rank the source
Tweets or not. (Op-
tional) Default is true.

'format’ - The output
format to return the
content in e.g. XML
or JSON.

original Twitter con-
tent and extended
values derived from it
in accordance to the
input parameters sent.

Tweets.

/twittertools

'function’ - The Twit-
ter endpoint to call
using the Twitter
Tools Library.

'apikey’ - A user
specific APl key to
lookup Twitter cre-
dentials for.

'format’ - The output
format to return the
content in e.g. XML
or JSON.

The response from
Twitter wrapped
around the content
structure of the API
Platform.

To facilitate the ability to call
Twitter endpoints that do not
return Tweet or authentica-
tion content e.g. user details.

1029310

38

Fig. 16: Linking personal account of other services to the API platform.

Future Service 2
Credentials

1029310

Future Service 1
Credentials

API Platform
API Key

Twitter OAuth Credentials

Future Service X
Credentials

39

Fig. 17: Details of the application wrapper.

Item Description

Purpose The purpose of the application wrapper was to encompass both experiment
applications together for ease of usability for the experiment participants.-

Concept The application wrapper would have a 'landing page’ showing details of the

experiment environment and its applications. The second page would have
a header for navigation back to the landing page, as well as a 'Sign in with
Twitter' button for a single authentication process. This authentication would
apply for both experiment applications so that the user did not have to
authenticate for each. The body of the page would consist of a menu to
the left hand side serving as navigation through the experiment applications
and a window on the right which would hold the selected experiment application.

Additional design features are the ability to toggle the experiment appli-
cation window between full screen and the default window mode. The wrapper
also has the capability to adapt its design appropriately based upon screen
width, applicable from ’'standard’ 480px landscape smart phone through to
tablets and netbooks through to 1920px desktop displays. Screenshots of the
implementation can be found in the Appendix Figure 32, Weekly Supervisor
Notes for Week 16/17.

Libraries Used

e jQuery
® spin.js
API Platform Endpoints
Used o auth/validate/
e auth/login/
Pre-requisities for Use None

1029310

40

Fig. 18: Details of the Twitter timeline based experiment application.

Item

Description

Design

Main element of the app being adding Twitter time lines as columns, based
on a particular Twitter endpoint as the source of the Tweets. The content is
then ranked by interest, then by integrity, then by time by default, although
this is changeable on a per time line basis. The size of the times are the full
height of the window they are in, with the time line being scrollable for hidden
information. Tweet entities that are links are made into hyperlinks.

Clicking on a tweet will expand the area below it and provide the user
with a drop-down menu consisting of: Entities, Images, Videos and News.
Clicking on a tweet with an expanded area will toggle the expanded area
so that it can be shown or hidden freely. Selecting an option will load that
particular content into the space below the drop-down menu in the expanded
area. As multiple items of content for a particular medium is expected to be
returned, the space is occupied by one of these items at a time. Performing a
swipe gesture left-to-right or right-to-left on the area will then show next or
previous items of content according to the gesture.

Libraries Used

jQuery

spin.js
Hammer.js
jQuery Nicescroll

APl Platform Endpoints
Used

/toolkit/substring Tree
/extended Tweets/
/semantics/youtube
/semantics/news
/semantics/flickr

Pre-requisities for Use

Twitter account and authenticated API platform for use with account.

1029310

41

hen the Freebase API performs

Incorrect context wi

n

f a word can result

initions o

le def

Ip
th an entry.

here mult

Instance wi

An example i

Fig. 21

it a tag wi

generalisation to best f

<pIomAa) />UBWIBYS T J<piomhay>
<aseqaaly/>
<uoT31dTIdS3p/>
<eTpadTyTM/>
<an|eAn/>
*awtysed |euoTieasdas e osie ST burysTy usspow ‘pooy ButprAosd 03 UOTITPPE U suwiey
YsT4 wouy paisanley swesbo1TY p'/ 1BUOTITPPE UE YITM ‘SwelbolTy p'pT SEM SITIBYST4 P1TM wody painided
ysT4 4o uotidunsuod ejtded uad SpTMPlIOM Byl ‘GEEZ UI ‘a1doad uOT]1TW @S J43A0 01 judwAoldwad 3I34TPUT
pue 1234Tp apTAoad aini|ndenbe pue SITIBYST4 °UOT]|TW 8 3q 0} PIIBWTISD ST SISWIEY YST4 PUE UBWIBYSTY
1BTOJ3WWOD 4O J3qunu 183103} 3yl ‘SOTISTIEIS Ov4 03 Burpioddy ‘ajerudosdde ssow ST Burieym wiay ayy
213ym ‘sajeym se yons ‘s)ewwew dTienbe 03 4o ‘ysty pawsey buryojed o3 patidde Ayjewiou jou ST wid AYL
"SWIdpouTydad pue ‘sueadelsnsd ‘spodojeydsd ‘sdsnyjow Sse yons sjewtue d>Tienbe uayjo Butydied o3 patidde
aq Aew Bbutysty widl syl -burddesy pue butibue ‘Butiiasu ‘butieads ‘Butisyieb puey apn1duT ysty Butyoied
404 sanbTtuydayl *p1TM a3yl uT ybned Ayjewiou due ysT4 ‘ysTy ysied o3 buthil jo A3TATIOE Byl ST BuTysT4
<anieA>a
<,35T],=2dA] eTpadTyTm>a
<.ysey,=adA} uoT3dTidSIp>A
<adAy/>24ua9 AL<adAl>
<0} pasTiesauab/>butyst4<0) pastiesauab>
<21025 ADUBA3134/>6LE9ET " E¥<,1€014,=3dA1 21005 Aduenaiai>
<.ysey,=adA] aseqasii>a

<pJomAay />eTpuI<plomAay>
<aseqaaly/>

<uot1dTidS3p/>
<eTpadTyTM/>
<dn\BeA/>
*Typuey ewjeye Aq pa) 2oUEISTSIJ 1UI|OTA-uou Aq payJew sem eyl aduspuadaput soy a166ni3s
e J131je [p6T UT uOTIeu juapuadapuT ue awedaq eTpul ‘Ainjuad yYleT-pTW 2yl woiy wopbuTy paitun ayl Aq
A13221Tp pauaisTuTwpe pue Ainjuad yigl A1Jes 3yl wouy Auedwo) eTpuI 3Ise3 YsSTITJE Syl 4O UOTIEIISTUTWPE
a3yl Japun 3ybnouq pue Aq paxauue Ay1enpesg *3in31nd 3SISATP S,uotbas ay3 adeys padisy osye
pue 3) WNTUUS|TW 3ST Yl UT PaATJiie we)SI pue ‘AJTUBTISTIY) ‘WSTUBTIISEOIOZ SBIIaYM ‘9u3y pajeutbrio
—WSTYYTS pue ‘WwSTuTel ‘wSTYppng ‘WSTNPUTH-suoT6T1a1 pldom unog *A101sTy Buo) SIT jo yonw Joy yijesm
184N11ND pue 1eTOJ3WWOd SIT YITM PIT4TIUSPT SEM 1UsUTIUODQNS UBTPUI 3yl ‘saiTdwd 1SeA pue $31N0J dpesl
JTJ01STY 40 uothas e pue UOTIESTITAT) A311BA SNPUI JUSTOUE 3Yy] 0} SWOH ‘BTSIUOPUI pue puelTeyl YiTm
19pJ10q SWTITJEw e 3Jeys SpuelsI JeqodTN Pue UBWEpUY S,eTPUl ‘UOTITPPE UT !SIATPEW 3y} Pue ejue] TJS JO
AITUTOTA 3yl UT ST eTpPUl ‘ueadQ UBTPUI 3yl uI "31sea ayl o} ysape)bueg pue ewing pue !3sea-yiiou ayl o1
uelnyg pue ‘1edaN ‘euTy) 31S3M 3yl 01 UEISTHEd YITM SI3pJI0Q pue) Saieys 1T ‘1sea-yinos ayl uo 1ebuag jo
Aeg 3yl pue ‘1S3M-yinos 3yl UO B3S UBTQEJY Yl ‘YiNos 3yl uo ueadQ ueTpul ayl Aq papunog ‘plioMm 3yl UT
Aoeadowsp snoyjndod 3sow ayy pue ‘sydoad uoT11Tq Z°T J8A0 yiTm Aijunod snoindod 1sow-puodas ayy ‘ease Aq
Ki13junod> 3sabie)-yjuanas 8yl ST 3T "BTSY yinos uT Aijunod e ST ‘eTpul jo dT1qnday a8yl A11BTOT440 ‘eTpul
<anieA>a
<,35T1,=2dA} etpadTyTm>a

<,ysey,=adA1 uotidridsap>a

<adA3}/>A13uno)<adAy>
<0} pastiesauab/>eTpur<0} pastiesauabs>
<2100s ADUBAD\34/>ppbZr6 TET<.1B0]4,=adA] 81005 Adueasai>

<.ysey,=adA] aseqasii>a

[[IM USULISYSTY UeTpu] Sul[[Df JO PasnIdk sautiew skes Afe)],

. * ONDIVIYE

.
.
4

S13 m,\.,f.m & Ive

.
BN 12 INd TS

Aep11q uo eIpuj 0} WINaI

Bunyeaigogg®
0 SMaN mc_xmwhm o4g4

SM3N
2aE i

*
.
.
.
s
*
.
.
.
.
.
.
.
.
.
.
I‘
Mmojjo4 48 . *
‘I
.
.
.
.
.
.
.
.
.
.
<pJomAay/>SauTJew<piomiay>
<3seqaaly/>
<uoT3dTi0S3p/>
<etpadTyTmM/>
<anlea/>

*A>110d ubT3104 UEDTIBWY 4O UOTINIAXS pue
uoTiejuswadwt 3yl ut 3104 HBuouls e 3T saATh sasTud AseuoTiTpadxe 03 @dTIou 3u0ys uo puodsas Ayprdes o3
A111Tqe s3I -auejsem snotqrydwe jo J3uoTITIdEJd pue 3STI09Y]l JUBUTWOP 3y} SW0d3q pey sdio) auTiel 3yl
‘Kin1uad y1ez-pTw 3yl Ag "II Jem pliom jo ubTedwed DT4TIed 8yl 1O 3U0}SIAUI0D 3yl pawioy A131ewTi|n pue
juatosald panoid aiepiem snotqrydwe jo sadTIdeud pue s3TI08Yl SIT uaym Ainjuad yiez 3yl ut adusutwoud
pauTelle pue 15T1ju0d pawie uedTiawy AI9A3 UT panlas sey sdio) autiel ayl AdTiod ubTaioy uedTiauy
pue autaidop AueyT|Tw Hutbuey> yiTm panjons sey sdio) SuTiel dY} O UOTSSTW 3yl ‘udyl aduts “Aijuejut
1eAeu se etydape)Tyd UT G//T J2QWSAON QT UO SIUTJE} 1BIUSUTIUO) JO SUOT1BI1Eq OM) Pawlo) SELOYdTN
12nwes uteide) -youeuq ajesedas e ST sdio) auTiel ayl ‘JaAsmoy !sd>TIsTboy pue ‘uoriejsodsuesy ‘Bututesy
10} $33104 1BABU Y1TM A135012 BuTyiom usljo ‘AAeN 3yl jo juswisedag $31€1S PIITUN Byl 1O jusuodwod e ST
sd10) suTJeEl 3yl "S31E1S PIITUN BY] JO SIOTAISS PAWIOLTUN USASS 4O BUO ST I °S3IU04 HSE] SWIe-pauTquod
1aaT18p Aptdes o3 Aaey saiels paitun ayl jo A3T\Tqow 3y} Hutsn ‘eas ayy wouy uotidalosd samod
butptAoid 1oy 31qTSuodsas $33104 pawly S31E1S PalTun Byl JO ydueiq e ST sdio) auTiel SIIEIS PalTun BYL
<an1eA>a
<,35T1,=2dA1 eTpadTyTm>a
<,ysey,=adA1 uoT1dTidSap>A

<adA1/>uotiezruebig<adAl>

<01 pastiesauab/>sautiel SN<01 pasTiesauab>

<21025 AduBA3134/>SHZPOE " 16<.18014,=2dA1 21005 Aduenaal>

<.ysey,=adA] aseqasii>a

<uot3idridsap/>
<etpadTyTmM/>
<anea/>
*21Tdwd 1eTU010D e passassod A1e1I ‘II Jem pliom 01 pue ‘I Jem pliom ybnoiyy ‘Ainjuad yiel a31el
3yl UI "T98T UT PaTiTun sem 1nq ‘salels leuotbas pue A1Td> snosswnu ojuT pajuswbesy sem Ajeir ‘Aioisty
uewoy-1sod 1T jo yonw ybnouyl ‘duessTeusy ayl pue sdT1gndas BWTITJIEl Jo 2de1dYyliTq Byl Bwedaq
A1e11 ‘191e] saTuniua) "siaylo buowe ‘suewsoy ayl ‘ialel pue sauTiuezAg syl o1 ‘syloboilsp pue spiequo
3yl se yons saqT4l dTuewssy woiy ‘saydoad ubTasoy Ag SUOTSEAUT snosswnu painpus A1ell ‘aiTdw3 uewoy
3yl 40 auT123p 3yl Ja14v "935 A10H 3yl jo 91Ts pue aiTdw3 uewoy ayl 4o 1e1Tded aYyl Se UOTIBST|TATD
u131S3M 10 343uad snotbTias pue 1e>TiTi0od B US3Q S3TINIUD Jo) sey ‘A1ell jo jeitded syl ‘swoy
*p14om ayy ut snoindod 1sow pigcz @yl pue ‘adoin3 ut Aijunod> snoindod 1sow YiiTy 8yl ST 1T ‘sjuelTqeyut
UOT]1TW 8°09 YITM "31ewT]d> |euoseas ajeiadwsal e AQ paduanyjut ST pue Wy 8EE€‘TOE awWOs Sianod A1elr
40 A101TJ13] Byl °puUB|ISZITMS UT 9AB|IX3 UBTIElI UE ST eT1ell,p auoTdwe) 31TyMm ‘A1BII UTYITM S3ABIDUS
aie A1T) uedTieA 9yl pue OuTJely UBS JO S31e1S JudpuadspuT ayl "SPue|ST 131]1ews Jayio Auew pue-eas
ueauUelIa1TPal Byl UT spuelsT 1sabie] oMl ayl-eTutpies ‘A1TOTS ‘elnsuTuad ueT|elI ayl jo A1aiTius ayl jo
$1STSUOD 1T ‘yinos ayl ol ‘sdly ayl Buole ETUSAOYS pue ‘BTIiSNy ‘pueliaziTMS ‘3duely Siapiog 1T ‘yliou
ay1 oy -adoun3 uiayinos ut d>T1qndas Asejuswerited AueiTun e ST ‘O>TIgnday uetiell ayy A11eToTiio ‘Ajelr
<an|eA>a
<,15T].,=2dA]1 etpadTyTm>a

<adA1/>A13uno)<adAy>
<0} past|esauab/>A1e11<01 pastiesauab>
<2102s ADUBA3134/>STHZI6 P1Z<.1B014,=2dA] 21005 Adueaaias>

<p1omAay />A B3 T<piomAa)>
<3d5eQqaaly/>

<.ysey,=adA1 uoT31dTidSap>A

<.ysey,=adAy aseqaaii>a

43

1029310

Fig. 22: Weekly Supervisor Notes for Week 12 - Page 1

Project Meeting Notes - Week 12

Progress Summary:

e Prototype implementation has been isolated to its own Git branch.

e Two new Git branches have been created for full implementation; one for unstable code builds and one
for stable builds (as per the interim report).

e Creation of system infrastructure has begun with:
o Local hosted PostGreSQL database created and synced into the locally hosted Django project.
o A single Django ‘App’ for the api has been instantiated within the Django project.
o A simple model used for initial testing with outputting instances of that model from the database
with JSON.
o (For full build notes see p3).
e The default setup for tastypie assumes the following:
o Data is static and contained within object-relational mappings (ORM) between Django models
and PostGreSQL tables.
o The intention of the APl is to output the data in a formatted paginated way.

Output («—— Endpoint j[«—— Model e+— nge <+—— Data

e The project requirements are the following:
o Data is not stored as instances of models in the database tables (with exception to user
authentication details). I.e. The data used will be Non-ORM.
o External Data does not equal desired output and is processed in real-time before output.

External
Data

Qutput |= Endpoint | Objects = Process |«

e Fortunately TastyPie allows for flexibility with non-ORM data sources and the above requirements
should be implementable, although with a deeper and more conclusive understanding of the syntax and
documentation than previously envisaged. Many automatic configurations such as fetching and filtering
have to completed manually which increases flexibility but increases unstableness of code. A very basic
mock up was implemented using Python dictionaries (which is what json is decoded to using most
Twitter Python libraries). See build notes 0.0.5.

e The extra layer in the system model (i.e. the API) is likely to cause challenges regarding authentication
with Twitter, particularly with the API only outputting formatted text (e.g. JSON). The internal processes
should be able to be developed relatively independently until a solution is finalised.

e TastyPie by default allows output to be returned in JSON, XML and YAML, satisfying the desired feature
stated in the interim report. Other outputs can be manually added if necessary, but this seems
unnecessary given the project scope.

e Brief research into implementing backbone.js for a client beyond the interim report, predominantly being
that the application could either be independent and therefore hosted remotely or could be tied into a
Django App which would import backbone.js for internal functionality, hosted with the api.

1029310

44

Fig. 23: Weekly Supervisor Notes for Week 12 - Page 2

Focus Summary:

[Immediate Proposed Focus]

e On reflection of API tree structure defined in the interim report, the method produces redundant
endpoints; where the same result could be achieved through different URIs. Changing the tree structure
to be two clusters of endpoints would resolve this, as well as suit the TastyPie resource framework
better and bring benefits such as increased simplicity and looser coupling. An example of this change

would be:
o Basic endpoint cluster - ../api
/toolkit
/stringfunctions
/keyword_extraction
/social
ftwitter
ltweets
lusers
o Complex endpoint cluster - ../api
/discover
ltweets
/semantics

e Establishing a concrete, albeit barebone, API infrastructure by:
o Establishing a basic template for custom TastyPie resources (APl endpoints)
e Override schema defaults regarding meta-data such as pagination, offsets etc.
e Override schema defaults regarding all object meta-data such as individual URIs.
e Set schema defaults such as response type unless overridden (JSON)
o Create initial resources/endpoints from the template.

e Create Python classes for representing Tweets and Semantic Objects utilising Object-oriented
modelling inheritance to ensure flexibility in additions/modifications.

[Further Focus]
e Draw up a plan for user authentication with initial focus on determining where authentication will be
conducted either:

o On the client with OAuth credentials finally passed to the client:
m Increases flexibility and loose coupling.
m Computational complexity affecting API server load is decreased.
m However OAuth credentials would have be validated if 3rd party applications were made

possible as the integrity of data would not be able to be determined.

o On the server using Twitter’s pin authentication:
m Increased complexity between API and client for user authentication.

Potential hindrance on one-click login feature (interim report).

More complex to implement given implementation time.

Integrity of OAuth credentials would be ensured.

Allow for simpler authentication for clients that do not have easy to use libraries for

Twitter OAuth (although there are few).

o Both approaches after OAuth dance was completed would issue the client with a unique API key
for that user (stored server-side) which would remain for whatever client the user was on, so
whatever throttling measure was put in place would persist across all potential clients. APl Key
would be sent to distinguish user requests for each method call (either in header, by GET or by

POST request).

1029310 45

Fig. 24: Weekly Supervisor Notes for Week 12 - Page 3

Build Notes: (Most recent first)
[Unstable Branch]

Author: 1199399 <1029310@gmail.com>
Date: Mon Dec 24 14:28:46 2012 +0000

Build: 0.0.5

- Initial experimentation with a non-ORM API resource implemented, using 3 instances of a basic 2
attribute data structure.

- Assigning a value to the key 'b' in a HTTP GET request to the resource endpoint will form the value of
the attribute 'name' of the 3rd instance object, if specified.

Author: 1199399 <1029310@gmail.com>
Date: Thu Dec 20 17:44:02 2012 +0000

Build: 0.0.4

- Fixed an issue where the basic APl model for initial implementation was not imported correctly in
urls.py.

- Database connection parameters in settings.py updated following configuration changes for stable
performance.

- Basic APl access implemented with 2 instances of a basic model.

Author: 1199399 <1029310@gmail.com>
Date: Wed Dec 19 16:32:29 2012 +0000

Build: 0.0.3
- Basic APl model created for initial structure implementation.
- Unrequired files removed from project directory.

- Project url and view files cleaned from initial test implementations as further implementation will take
place with files in the 'api' application.

Author: 1199399 <1029310@gmail.com>
Date: Wed Dec 19 14:17:57 2012 +0000

Build: 0.0.2
- Django app 'api' created.

Author: 1199399 <1029310@gmail.com>
Date: Mon Dec 17 14:57:38 2012 +0000

Build: 0.0.1
- PostGreSQL Database Created and Synced.

1029310

46

Fig. 25: Weekly Supervisor Notes for Week 13 - Page 1

Project Meeting Notes - Week 1 (13)

Progress Summary:

e Relatively slow due to exam period, but nothing outside of what was allocated in the timeplan.

e Created a ‘template’ API endpoint supporting read only operations through HTTP GET on entire
collections of data only (lists).

e Response meta-data section of the section has been remodelled to remove references to redundant
pagination.

e Created a ‘known issues’ template for early demonstration of the API using a dynamic non-ORM data
source (comma-delimited CSV file) and using the template. Output below (manual indentations for

readability):
{
"content": [
{
"detail": "Pagination parameters are still active after removal from response meta
element”,
"priority": 2
b
{
"detail": "Responses formatted in XML have content elements labeled as object
regardless of contents",
"priority": 2
3
{
"detail": "Responses formatted in JSON are not indented",
"priority™: 1
b
{
"detail": "Responses formatted in YAML are forces a download file always named
'download",
"priority": 1
}
I
"meta": {
"http™: 200,
"results_count™: 4,
"timestamp": "Wed Jan 30 20:57:34 +0000 2013"
}
}

Focus Summary:

[Review]

e Having taken time to reflect on the system implementation, | believe that as it stands it would be better
to make the APl endpoints more abstract and flexible. Therefore | propose that the client specific cluster
of endpoints ‘discover’ be removed and the functionality merged with the more generic endpoints. With
the right parameters the same result could be achieved.

e Inregards to the client, the current designed nature uses the front-end client as merely a wrapper to
display the JSON; merely anything more than just applying navigation and CSS. | propose that with the
above point, that the demonstration nature of the client should be brought out more. This would be
achieved by implementing prototypes of dissimilar individual applications; using different combinations
of the APlIs functionality to emphasise the APIs use as a platform.

1029310

47

Fig. 26: Weekly Supervisor Notes for Week 13 - Page 2

This may give the impression that this would increase the workload a great amount but all demo
prototypes would use the same end-points; just with slightly different parameters to achieve potentially
large differentiations between combinations. Some example ‘demos’ could include:

o A simple traditional Twitter home timeline ranked by the NSGA-II prototype (both interest and
integrity focused), rather than time exclusively.

o A global tweet and relevant semantic mashup focusing on content with high calculated interest
to the user. Could be displayed in a visual focused manner, similar to Flipboard’s tiles of varying
sizes.

o A Twitter feed taking aggregated user and home timeline keywords as a base for searching for
most recent related news stories. The content of these news stories would then be used in a
global tweet search, the results of which would form the stream; ranked by integrity.

o A search function that would return a formatted wikipedia style semantically focused content, the
content would only be shown if similar information was being tweeted globally.

o An ‘endless’ global tweet stream ranked by NSGA-II. Firstly based on API provided values for
keywords (based on timelines or global/local trends); interactions with the tweets would
manipulate the keyword set in an attempt to provide a very basic mutation feature, purely client
side. When new tweets are loaded, the mutated keyword set is sent and used for new global
tweets, still ranked by NSGA-II. This would show that any keyword set can be used for endpoint
flexibility. Clicking on a tweet could also ‘expand’ the area below to a certain length containing
related semantic information.

o A photo stream based on interesting images (tag based) that were similar to keywords extracted
from a user's timeline and home timeline. Viewing a thumbnail to a full size image would also
show brief semantic snippets of information related to the tags.

The first stable implementation would aim to use my personal Twitter OAuth credentials so that API
functionality is complete before, integration of individual user based access.

Propose that each API response contain two blocks of elements, response meta-data (timestamp, http
response code, amount of content data entries etc) and content data (e.g. tweets, semantic content
links).

In regards to the building and filtering of relevant semantic content, | propose that open linked data is
utilised to minimise unrelated content being combined together (although it would not stop the issue of
potentially incorrect context in the initial starting point selection). Potential services to use include
Dbpedia, arguably one of the biggest sources of RDF content and links to other repositories; a REST
API is available, but may require use of additional technologies such as SPARQL and heavy XML
parsing. Another is the ‘Freebase’ API collection which in addition to RDF endpoints, also provides a
percentage relevancy lookup to aid in getting the correct context and entity recognition and a lightweight
API for getting a single short paragraph definition of an entity. 100,000 API calls allowed a day, the only
potential negative is getting semantics for an entity requires knowing their unique id for an entity;
however if the entity lookup is to be used then this information can be grabbed for the second call.

[Decisions]

1029310

Should basic tweet interaction functionality be client side (like intended authorisation) or pass through
the server through wrapper end-points?

In regards the API endpoints, should a library be used to wrap endpoint urls around more user-friendly

set of blackbox javascript functions for sending requests and parsing results into a fully compatible
backbone.js dictionary format?

48

Fig. 27: Weekly Supervisor Notes for Week 13 - Page 3

Build Notes: (Most recent first)
[Unstable Branch]

Author: 1199399 <1029310@gmail.com>
Date: Wed Jan 30 21:04:10 2013 +0000

Build: 0.0.7
- First demonstration prototype using the template developed, which will serve as the experimental
endpoint for any future endpoint functionality upgrades, such as POST, PUT implementations.
Involves:
- Shows the known issues with the APl in its current state, using two attributes one for detail of
an issue and one for current priority in addressing.
- Demonstrates use of API with a dynamic non-ORM data source, an external .csv file.
- Contents of .csv file are processed after import in a Python class and directly passed through
the API without any further hydration or dehydration TastyPie functions implemented.

Author: 1199399 <1029310@gmail.com>
Date: Fri Jan 25 16:55:29 2013 +0000

Build: 0.0.6
- Template custom resource created for 'read' operations, incomplete but provides:
- The 'objects’ sub-element of 'response' has been renamed to 'content'.

- Object sub-elements within 'content' no longer have the redundant 'resource_uri' sub-element.

- Redundant sub-elements under the 'meta' element relating to pagination have been removed.

- A timestamp sub-element has been added under the 'meta’ element.

- A placeholder sub-element for the HTTP response code has been added under the 'meta’
element.

- The sub-element of 'meta’ denoting the number of objects within the 'content' element has
been renamed to 'results_count'.

1029310

49

Fig. 28: Weekly Supervisor Notes for Week 14 - Page 1

Project Meeting Notes - Week 2 (14)

Progress Summary:

Implemented keyword extractor as a functioning API HTTP GET end-point. Minor code optimisation

performed, however primarily regarding Python syntax; rather than runtime complexity in the algorithms.

Processes have been split into several libraries and using object-oriented methodologies for modularity.

Integration of a demo client using backbone.js will need further research, due to complexities in the
non-ORM nature of the API response data.

Felt that it would be better to have continual reading for integrating JS frameworks (such as backbone)
and non-ORM TastyPie; and so continued on API endpoint functionality.

Implemented further API endpoints surrounding keyword extraction, by allowing each notable action in
the process being accessibly standalone; i.e. string cleaning, part-of-speech tagging, part-of-speech
chunking etc. These endpoints are designed to be as flexible as possible to promote loose coupling,
allowing for greater customisation in keyword extraction or in actions that make it. For example,
character ‘blacklists’ can be overridden, segmentation can be overridden or removed; grammars can be
overridden etc.

It is noted that the practical use of each of these ‘sub’ endpoints varies greatly; however this is just to
illustrate the ‘platform’ nature of the project.

Focus Summary:

[Immediate]

Integrating prototype tweet ranking end-point.
Experiment with freebase API for semantics.

Perform brief testing on keyword extraction endpoints and push to first stable build (v0.1)

[On-Going]

1029310

Continue to gain the knowledge for client implementation.

Attempt to improve run-time complexities in libraries powering the currently implemented endpoints.

50

Fig. 29: Weekly Supervisor Notes for Week 14 - Page 2

Build Notes: (Most recent first)
[Unstable Branch]

Author: 1199399 <1029310@gmail.com>
Date: Wed Feb 6 15:15:17 2013 +0000

Build: 0.0.9
- Implemented object-oriented approach to the keyword extraction API. Keywords are returned if

request contains a HTTP GET variable named 'q' with a string for keyword extraction.
- Minor code optimisation implemented from prototype of keyword extraction.

Author: 1199399 <1029310@gmail.com>
Date: Mon Feb 4 22:24:35 2013 +0000

Build: 0.0.8
- Prototype keyword extractor (using part-of-speech chunking) implemented as ready-only HTTP GET

endpoint. Only response format parameter currently implemented.

1029310

51

Fig. 30: Weekly Supervisor Notes for Week 15 - Page 1

Project Meeting Notes - Week 3 (15)

Progress Summary:

1029310

Converted prototype libraries for extended tweet stats, interest/integrity scoring and NSGA-II ranking for
similar modularity to the libraries for previous endpoint implementations. Some modules still contain
prototype code for the time being, such as calculating string cosine similarity with numpy; but working

as intended.

The strict rules of non-ORM TastyPie data dehydration slowed progress towards implementing all
endpoints and possible component endpoints for the extended tweet stats and ranking; due to poor
documentation. However, issues regarding dynamic attributes and the datatypes of nested object
attributes were resolved; a tidy up of the code will be necessary, potentially during stress testing of the
endpoint in the near future.

Investigated into individual user logins for Twitter specific endpoints and confident in the eventual ease
of integration.

Attempted implementation of a client for the keyword extraction endpoint using backbone.js. The
non-ORM nature of data coupled with the redundancy of create, update and delete operations caused
significant problems. Attempted to implement in a micro-MVC JavaScript framework instead, with the
implementation being relatively successful, however with one particularly unavoidable drawbacks of
being unable to work with nested JSON responses. Cannot be conclusive that it would not be possible
as | do not have full competence in Backbone.js; but given time constraints and the push for novelty
features, this was but on the back-burner for this week.

Therefore, reflecting on the heavy nature of a JavaScript MVC framework, given the nature of its use
being to display a collection of non-ORM models; this initial basic demo was implemented with an AJAX
call using jQuery:

Keyword Extraction Demo

Only Didier Drogba has scored more headed goals in the Champions League (8) than Cristiano Ronaldo (7) since 2003/04. #bbcfootball Fetch

Didier Drogba
Didier

Drogba

goals

Champions League 8
Champions

League 8

Cristiano Ronaldo 7
Cristiano Ronaldo
Cristiano

Ronaldo

2003/04

The speed of the response after inputting a Tweet and clicking fetch was instantaneous. It would be
very flexible to implement all clients in this manner, given that interaction with the server is only a GET
request. However management of all clients in this manner (many of which will be more complex in
parsing responses) while simple, could get messy.

52

Fig. 31: Weekly Supervisor Notes for Week 15 - Page 2

Focus Summary:

[Immediate]

e Create the barebones of the client, following agreed focus for JavaScript MVC implementation or not.

e Create libraries for gathering, processing and mashing up data for relevant semantics endpoints.
e Extend granularity of endpoints with all potential overridable parameters.

[Near Future]
e Tidy up endpoint resources that use libraries for extended tweet data.

e Optimise of various implemented libraries methods taken straight from the prototypes.

1029310

53

Fig. 32: Weekly Supervisor Notes for Week 16/17 - Page 1

Project Meeting Notes - Week 4,5 (16,17)

Progress Summary:

1029310

Endpoints and libraries for YouTube videos, Flickr photos implemented.

Endpoint for aggregated news implemented using a Yahoo ‘Pipe’ which searches through Google and
Yahoo news among others to return unique results about a set of keywords (AND, OR seemingly
available).

Endpoint for semantics of an entity has been implemented a combination of endpoints part of the
Freebase API. At the moment values returned are fields available for all results e.g name, alias’,
description, most recent image etc. The names of hierarchical branches the entity (if found) is classed
under are extracted if they are not generalised terms for all entries. A sort of ‘pre-extraction’ keyword
set. Currently, the API performs a search based on the input and the result with the highest relevancy
score is chosen (this can be easily changed). API has the major limitation of only allowing ‘AND’ query
parameters, but does perform some minor generalisation at nameand alias level. e.g. swim ->
swimming, Anakin Skywalker -> Darth Vader.

A new inheritance based model for APl endpoints and data containers was created and all endpoints
converted over too for better testing, maintainability, code redundancy minimisation and expandability of
classes easier due to looser coupling.

The extended tweet info/ranking APl now accepts specially formatted string input that represents
external APIs and their methods (and parameters) to call to retrieve information, in the form of:

o [Prefix]:[Method]:.[Parameters]
o Where Prefix is the name of the service (e.g. Twitter), Method is the API endpoint of that service,
and parameters are the parameters of that method to pass when called.

These formatted strings are decoded, a OO ‘factory’ like class creates the relevant instance of a
connection class (e.g. Twitter), the method is then checked against a list of ‘shortcuts’ (e.g. ‘trends’
instead of the actual path ‘trends/place.json’) and the request sent with the parameters. Relevant
decoding is then performed depending on whether its getting tweets for the source or keyword
extraction for the comparable precision sets.

The Twitter APl is now accessible through its own endpoint, by passing parameters in a similar manner
to the above specially formatted strings. Any response is returned as an attribute of this APls schema
for conformity. This will allow for any read or write operation to be sent to twitter. (The process uses the
TwitterTools library, the manner in which it works is a simple wrapper of creating relevant URLs, making
it future proof to any changes; a similar method of doing this could be implemented for services without
implemented APIs e.g. Flickr if time allows). Any parameters that are passed to the endpoint will also be
passed with the twitter api call (this API specific parameters such as ‘format’ are removed) allowing for
any optional Twitter parameter to be passed easily.

Other endpoints such as the modular keyword extraction endpoints (just clean, just tag, just chunk etc)
have been updated with additional optional parameters which override defaults such as: which
characters to remove; which causes segmentations; a different regex grammar etc.

A demonstration client has been implemented, with scalable/mutatable CSS based on screen pixel
width, 480px and above supported (typical smartphone landscape or small tablet portrait). Consists of a

54

Fig. 33: Weekly Supervisor Notes for Week 16/17 - Page 2

launch page and an apps list page based on the interim report designs. All graphical elements (e.g.
backgrounds and icons) are done in pure CSS(3), no images or sprites exist, which removes full
compatibility for older browsers but achieves much lower overhead in filesize. An app has been started
which currently takes a term and aggregates semantic information and tweets into a dynamic single
page (wikipedia inspired). Currently no personalisation exists, but could once semantic ranking has
been finalised, could also implement localisation in wording if possible (e.g. pants, chips, football) if the
user’s country of residence could be determined.

MyTimelines

Didier Drogba Submit
Tweetipedia
Fotoinfo
NewsFuse 3l Trends ‘ end's Likes
Playground Placeholder A thing

Another Another Thing

One More some tag

This one too #tag

#Placeholder Something

Holding of a place Some other

Promoted Tag Thing

Trending Trend That a friend

Hello talks

World about

umentation Sign In

Didier Drogba Submit

Didier Yves Drogba Tébily is an Ivorian footballer who plays as a forward for Galatasaray in the Siper Lig. He is the
captain and all-time rer of the Cote d'lvoire national football team. He is best known for his career at Chelsea, for
whom he scored more goals than any other foreign player and is currently the club's fourth highest goal scorer of all
time. In October 2012, he was voted by Chelsea supporters as the club's greatest ever player. His key atiributes include
his physical strength. ability in the air. and his ability to retain possession of the ball. After playing in youth teams,
Drogba made his professional debut aged 18 for Ligue 2 club Le Mans. A late bloomer, he signed his first professional
contract aged 21; it was not until the 2002-03 season that he realised his potential. scoring 17 goals in 34 appearances
in Ligue 1 for Guingamp. He moved to Olympique de Marseille in 2003 for £3.3 million. His scoring success at
Olympique de Marseille continued, finishing as the third highest scorer in Ligue 1 with 19 goals and helped the club to
reach the 2004 UEFA Cup Final. In the summer of 2004 Drogba moved to Chelsea for a club record £24 million fee
making him the most expensive Ivorian player in history. In his debut season he helped the club win their first league
title in 50 years, and a year later he won another Premier League title. In 2006-07 Drogba scored 33 goals, won the
Premier League Golden Boot and scored the winning goals in both the League Cup and FA Cup finals. He won the FA
Cup for a second time in 2009, scoring the equaliser in the final, and in 2009-10 was instrumental in Chelsea clinching
their first double, winning his second Golden Boot and scoring the only goal in the 2010 FA Cup Final. In March 2012
Drogba scored his 100th Premier League goal, the first African player to reach the milestone. He then became the only
player in history to score in four separate FA Cup finals, when he scored in Chelsea’'s win over Liverpool in the 2012
final. He made his appearance for Chelsea in the 2012 UEFA Champions League Final, in which he scored an 88th
minute equaliser and the winning penalty in the deciding shoot-out against Bayern Munich

Playground

5

127.0.0.1:8000/client/ -

1029310

1029310

Fig. 34: Weekly Supervisor Notes for Week 16/17 - Page 3

Documentation About Legal

A set of dynamic tools intended
for maximum flexibility in
extracting and ranking semantic

Build.

A robust platform for
development across applications

D is cove r. and devices.

API built for flexibility in
expansion and longitudinal

P ersona I i se. devolopment of feabures.

Sign In

56

Fig. 35: Weekly Supervisor Notes for Week 16/17 - Page 4

Focus Summary:

[Immediate]
e Create solid focus for applications based upon those currently proposed.
o ‘DiscoverySocial’ - An infographic single page application with interactive elements such as
‘Show me X', showing statistics based upon the user’s Twitter.

o ‘My Timelines’ - A traditional simple Twitter application with tweets ranked by NSGA-II rather
than time, tweets could be ‘expandable’ to show brief semantic information
based on the contents. An additional list of ‘current interests’ could be formed
based on tweets the user interacts with the most, on refresh this is either added
to the comparable precision sets or becomes parameters for a twitter public
search to the ‘source’ tweets for the next list.

o ‘Tweetipedia’ - An aggregation of tweets and semantic content for either a searchable topic or
selectable current global trends /keywords from the user’s friends most recent
posts.

o ‘Fotolnfo’ - An image wall created from keywords derived from user’s timeline, favorites and
recent friend tweets. Clicking on the thumbnail would enlarge the image and provide
brief semantic information relevant to the tags.

o ‘News Fuse’ - A news wall ‘Flipboard’ style but aggregated for simplicity, based on keywords
extracted from user timeline, ranked by relevance to friends recent posts and
local trends. Related video, images and any links found in recent friends tweets
which could be relevant would be shown on expansion of a news story.

o ‘Playground’ - Similar to Google’s data visualisation playground for their graph/chart API, will
contain a list of all accessible API endpoints in a pane, upon selecting one
another pane will show all relevant and optional parameters to pass (like
YouTube and Flickr endpoint experimentation) and a pane for the output.

e Need to decide on objectives for ranking different semantic data, the objectives should be generic but
with potentially different calculations based upon the type of data e.g. videos, news etc.

[Near Future]

e The OO ‘factory’ class which creates instances of connections to external API services could be an
appropriate way to handle authorisation. For example, if a user of the APl was given a unique API key,
such user could register oauth credentials of any number of external APIs including but not limited to
Twitter. Upon detection of one of the specially formatted string as highlighted above in an endpoint,
before creation of an instance, the API key could be looked up with the ‘prefix’ and if the user has
registered their OAuth credentials then an instance could be created, otherwise not. This could allow for
a move away from a solid Twitter backbone to any external API (if appropriate classes and methods
were implemented), focuses on the notion of a platform. Other APIs would probably be out of scope, but
the facilitation of this at the moment is not too far off.

1029310

Fig. 36: Weekly Supervisor Notes for Week 16/17 - Page 5

Build Notes: (Most recent first)
[Unstable Branch]

Author: 1199399 <1029310@gmail.com>
Date: Wed Feb 27 19:34:46 2013 +0000

Build: 0.1.7
- Integrated extended tweet information and tweet ranking endpoint with new inheritance structure to be
more in line with the semantic and keyword endpoints.
- Tweet extended info/ranking endpoint now has the following features:
- Some parameters now accept string input in the form of:
- [prefix]:[method]:[parameters (optional)]
- Where prefix is a string representation of an external service e.g. twitter, method is the api
method string and parameters is the set of parameters for that api method.
- The string is decoded by a 'factory’ class creating an instance of a connection to the relevant
API, the method call and parameters are then formatted and sent.
- The required 'source' parameter now takes the string input above in addition to a json encoded
document of tweets.
- The optional 'comparableSets' parameter now accepts a json encoded string containing a single list
of either/a mix of:
- Dynamic string input (as above).
- A comma delimited string
- The endpoint now takes an optional parameter:
- 'ranking’, a boolean parameter which when set to true (by default) performs NSGA2 ranking on
a currently pre-defined set of objectives.
- The Twitter connection library class now allows for any Twitter APl endpoint to be accessed through an
API endpoint, with the response formatted back into this API's schema.
- The demonstration client Ul has been updated, including the introduction of a informative launch screen.
- The demonstration client will now dynamically scale/alter for screen pixel widths of 480px and higher.
- An app for the demonstration client has been started "Tweetipedia', which takes input keyword(s) and
returns aggregated semantic information, currently unranked.
- Formatting of keyword extraction library to TastyPie compatible objects now takes place in the endpoint,
to allow for lower overhead in the parsing of comparable sets in the extended tweet information API.
Author: 1199399 <1029310@gmail.com>
Date: Sat Feb 23 14:11:28 2013 +0000

Build: 0.1.6
- Implemented a library and endpoint for entity information using the Freebase API.
Author: 1199399 <1029310@gmail.com>
Date: FriFeb 22 13:48:15 2013 +0000

Build: 0.1.5
- Part-of-speech chunker library method now accepts an additional parameter:
- 'grammar’ - converts a list of regular expressions into a grammar for the nltk regular expression
chunk parser.
- The demonstration client homepage now has updated CSS.

1029310 58

Fig. 37: Weekly Supervisor Notes for Week 16/17 - Page 6

Author: 1199399 <1029310@gmail.com>
Date: Thu Feb 21 14:06:13 2013 +0000

Build: 0.1.4
- Keyword extraction endpoint library now follows new standardised object structure.
- String cleaning, keyword part-of-speech tagging and part-of-speech chunking endpoints now follows
new standardised object structure.
- String cleaning endpoint now accepts additional optional parameters:
- 'blacklist’ - a string containing a list of characters to remove at the prefix or suffix of each word in
the string; must be specified to override default. Declaring but not giving a value will r
- 'segmenters’ - a string containing a list of characters to cause a segmentation break; must be
specified to override default. Declaring but not giving a value will remove segmentation.
- Part-of-speech chunking endpoint now accepts an additional optional parameter:
- 'type' - When declared and set to 'chunks' will return only strings containing multiple words, any
other value will default to return all strings considered 'keywords' by the grammar.
Author: 1199399 <1029310@gmail.com>
Date: Wed Feb 20 14:11:49 2013 +0000

Build: 0.1.3
- Bare-bones client implemented using Django template inheritance, smartphone friendly for CSS3
compatible browsers.
- New libraries and endpoints added for retrievable of related: YouTube, Flickr and aggregated news
articles to a set of comma-delimited, or JSON encode list of, keywords.
- New python object structure for APl implemented for better code management and standardisation
across endpoint types, new endpoints currently using it only.

1029310

59

Fig. 38: Weekly Supervisor Notes for Week 18/19 - Page 1

Project Meeting Notes - Week 6,7 (18,19)

Progress Summary:

e Progress somewhat slow due to heavy coursework load, however the final pieces of the project have
been implemented to some degree.

e API ‘Playground’ app implemented, full API endpoint list not available at the moment but framework is in
place, only need to specify the text boxes to draw for each parameter.

o

Output currently only available in indented JSSON, need to look into a lightweight XML indent JS
library (or create one if time is available).

e Django models created for user account and extended models for service specific credentials (e.g.
Twitter OAuth token and secret).

e APl endpoints added for creating a user account (retrieving an API key), registering credentials from a
service with that AP| Key and logging in via those credentials . The structure is so that you would be
able to authenticate with any service once and then get access to all services you have registered
credentials for.

Focus Summary:

[Immediate]

e Final semester week before break focused on tying up loose ends and beginning testing.

e Propose to change scope regarding client apps to include less, but more substantial and diverse apps,
current proposal:

o

o

1029310

Traditional Twitter client with extended features such as ranking and semantic snippets on tweet
‘expansion’.

API Playground, already implemented and would facilitate demos of any endpoints not covered
by the other apps.

TweetCategoriser: Would aim to provide similar functionality as ‘TweetDeck’ i.e. tweets
organised by category. However, would use keyword extraction and ‘type-of terms from entity
extraction to group tweets autonomously. E.g. Tweets about ‘Didier Drogba’ and ‘Cristiano
Ronaldo’ would be under a ‘Football’ section and a ‘Sports’ and an ‘Athletes’ section. Tweets
could then be ranked within their own sections to integrity or interest or both.

GraphSearch: Ambitious final client and would require definite scope, but would essentially
provide some similar functionality to Facebook graph search, but using this API as a platform.
Would extend the already implemented content aggregator for a particular entity. Would involve
simple queries that would encourage experimentations with. E.g. Focusing on all or a subset of:
What, Why, Where and Who

m ‘Why could this be trending?’ -> News stories

m ‘Whatis the Harlem Shake?’ -> Content aggregator (e.g. text, images, videos, news).

m ‘What are the current trends amongst my friends?’ -> Terms most commonly talked
about in home timeline.

m ‘What topics are my friends talking about that / would like?’ -> keywords and ‘type of
classes for these keywords e.g. ‘Drogba’ -> Footballer therefore talking about Football or
Sports.

m ‘What news would interest me, based upon what my friends are talking about? - News
stories based upon extracted keywords of home timeline.

60

Fig. 39: Weekly Supervisor Notes for Week 18/19 - Page 2

m ‘What can me and this person talk about? -> ‘Classic’ Google Glasses example - List of
topics containing both extracted keywords and ‘type of classes from those keywords, as
well as news and videos relating to them.

[Near Future]
e Final report writing slated for the first two weeks of the Easter break, allowing the final weeks for further
evaluation to bulk the report; any bug fixes and implementing more features to the client apps if time
allows.

1029310

61

Fig. 40: Weekly Supervisor Notes for Week 18/19 - Page 3

Build Notes: (Most recent first)
[Unstable Branch]

Author: 1t99399 <1029310@gmail.com>
Date: Thu Mar 14 20:04:48 2013 +0000

Build: Chassk 0.1.10

- Demonstration client now has a 'playground' app implemented , which provides a three pane interface
for: choosing an endpoint; adding parameters to a query of that endpoint and getting the response when
- Django models have been added for user accounts, which follows a inheritance tree architecture for user
credentials for external user services and subsequently for authorisation to endpoints using those
- An API endpoint has been added for registering as a user and recieving an API Key.
- An API endpoint has been added for signing in and authenticating to external services (currently only
Twitter implemented). Returns a user-specific APIl-key to be sent as a parameter for access to other e
Author: 1t99399 <1029310@gmail.com>
Date: Fri Mar 1 15:49:56 2013 +0000

Build: 0.1.9
- Entities parsed from the Freebase API are now given the notable type 'Unknown' if not provided in the
response.
- The most notable type attribute has been added to the entity_information API endpoint response
(previously not added to output).
- The most notable type attribute has been added to the semantic section of the "Tweetipedia' app
response.
- Alias' of an entity now appear next to the default name on the semantic section of the "Tweetipedia' app
response.
Author: 1t99399 <1029310@gmail.com>
Date: Fri Mar 1 15:25:35 2013 +0000

Build: 0.1.8
- Updated Tweetipedia 'app' to include YouTube, News and Flickr endpoints, loading performed with
asynchronously with AJAX.
- jQuery plugin for a CSS3 powered loading spinner implemented to show loading for AJAX calls.
- Flickr library updated to include a new attribute 'thumbnail' as well as the full size image 'url'.
- News Yahoo pipe library updated to also remove any HTML tags found in article titles.

For the final weeks, written meeting notes was replaced by either: emails following supervisor availability clashes or visual updates
through demonstrations of the implementations.

1029310 62

