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Abstract
The purpose of this project was to design and implement Web Protocol (WP); a modern replacement for                
HTTP, which makes use of request multiplexing to reduce the number of TCP sessions used to one (§2.2),                 
binary framing, and a fixed frame structure to accelerate and simplify parsing (§2.4). This also provides data                
streaming and server push facilities. Drawing inspiration from Google’s SPDY protocol, WP is designed to be               
simple, consistent and quick. To test, measure, and improve WP, a library has been written in the Go                 
programming language, since one of Go’s design goals was to write high-performance web servers.

Using the WP library and Go’s HTTP library, simple web servers and clients were developed for each                
protocol. These were then used to serve and fetch the average website, on the average network               
connection, according to data from the HTTP Archive and Google (§4.1.1). Where HTTP fetched a typical               
website in an average of 14.6 seconds, and HTTPS in 20.4 seconds, WP took just 4.1 seconds; averaging 3.7                  
times faster than HTTP and 5.1 times faster than HTTPS.

The future work for the project is to add the last details to the WP library in Go, to perform a restructuring to                      
enable more appropriate handling of the protocol, and to connect it into the HTTP library, enabling a single                 
server to handle both protocols simply (§5.1).
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1: Introduction

1.1: The Problem
The Web Protocol (WP) was designed to address the two main problems with HTTP in the modern web.                 
These are its inadequate support for connection parallelism, and the difficulties and inefficiency in parsing              
a text-based protocol. In addition to this, WP provides further features missing from HTTP, such as server                
push, connection testing (pinging), and full streaming data support. WP also takes the opportunity of a               
completely new protocol to use a structure more appropriate to the modern web; standardising user agent               
identifiers, resource caching, and response codes to a coherent structure, rather than one developed by              
implementation over several years. Where HTTP provides named methods for controlling documents (like            
GET, PUT, and DELETE) and debugging the connection (like CONNECT AND TRACE), WP uses a simple               
request/response approach, where requests may optionally become ‘Upload’ requests and contain data.

With the web now experiencing an enormous change as a result of the huge popularity of smart phones                 
and the mobile web, large, complex websites are seeing increasing traffic from high-latency mobile internet              
connections. Most phone users have network latency of 400 ms and over[1]; meaning that sites with a large                 
number of unique domains induce many simultaneous TCP connections, reducing performance          
enormously. With the average website using 16 different domains[2], and most web browsers supporting up              
to six simultaneous connections per domain[3], a huge number of TCP handshakes has to be performed,               
each requiring a full round-trip of around 800 ms for mobile internet (assuming the 400 ms latency). This                 
serious performance issue is addressed directly by WP, which uses just one connection per domain. This               
would (like SPDY) encourage the abolition of dummy subdomains used to enable more simultaneous             
connections for HTTP parallelism, thereby reducing the number of different domains per page.

1.2: Goals, Requirements, and Deliverables
The key goals of the project were:

1. To design the Web Protocol.
2. To develop this design in a reference implementation.
3. To test and evaluate the implementation with a comparison against HTTP.
4. To write a protocol specification to standardise WP.

Although my initial plan suggested implementing WP in an open source web browser, such as Firefox or                
Chromium, to provide more effective testing, I soon realised that to gain full advantage of the protocol, the                 
browser’s entire network stack would need to be modified; a truly enormous task. With only eight months in                 
which to complete the project, I decided that this was not achievable, so it was removed from my goals.
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The most important requirements were:

1. The protocol must be able to perform any web-related task for which HTTP can be used. As                
a protocol intended to replace HTTP for the modern web, it would not fulfil its role very well if it                   
could not do everything that HTTP can.

2. WP must have higher performance than HTTP in the most important cases. Although WP’s             
additional features are useful, its main feature is its performance, so this needs to be superior to                
HTTP for most web browsing.

3. WP should outperform HTTP on every relevant use. Although it would be acceptable for WP to               
be slower than HTTP in some edge cases, provided it was faster in the most common uses, ideally it                  
would always be faster. While initial versions of WP used more control frames per request, and               
were thus slower than HTTP when serving very small resources, changes to combine frames into              
the current structure mean that WP is at least as quick as HTTP in every case.

4. WP must remain solely in the application layer. The internet’s development as a completely             
distributed network has resulted in all manner of different kinds of proxy server and switch              
forming the many backbones of the core networks. These already interfere to some extent with              
application-layer protocols, such as performing various levels of caching, and in many cases,            
modifying HTTP headers. The developers of both SPDY and WebSockets advise the use of SSL/TLS              
when using these application-layer protocols, since some proxies silently drop packets they cannot            
understand[4]. With even application-layer protocols suffering this kind of unpredictability with          
internet proxies, WP could not expect reliable performance if it depended on changes to the              
transport layer or below. Accordingly WP uses TCP at the transport layer and TLS at the session                
layer.

The main deliverables of the project are:

1. A library implementing WP in the Go programming language.
2. The WP protocol specification.

The library is called net/wp, in Go’s package notation, and was written in its entirety in this project. Although                  
a lot of the code was inspired by, and some copied from, Go’s standard library package net/http, I modified                  
and adapted most of the code for WP. Similarly, although some inspiration was drawn from the SPDY                
protocol, I designed WP as a standalone protocol to replace HTTP. The library can be used for three main                  
tasks. It provides parsing capabilities for analysing WP frames, from any io.Reader, including network             
connections, files, and file archives. The library also provides application programming interfaces (APIs)            
with which WP clients and servers can be written. Although a simple interface for making individual               
requests is available, both the client and server APIs provide a more advanced system for handling multiple                
connections to multiple domains, or from multiple clients, respectively.

The server API provided by net/wp works by giving the wp.ResponseWriterinterface, which extends the              
http.ResponseWriterinterface by adding methods specific to the features new to WP, like data streaming              
and server push. Functions and data structures which satisfy the HandlerFuncand Handlerinterfaces             
respectively are registered to specific request paths. When a request arrives at the server, the handler               
registered to the path being requested is called, and provided with a structure containing the request and                
an implementation of wp.ResponseWriter. The response writer’s methods are then used to construct the             
response, which is sent to the client. This allows the server-writer to construct a potentially very advanced                
server, without requiring any knowledge of the underlying protocol. In net/http, this structure and interface              
forms one of the big selling points of the Go language, by fulfilling its design goal of aiding and simplifying                   
the creation of high-performance web servers.
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The so-called “new client API” I designed provides a web browser-like interface for making long-term              
sessions similar to a single browser tab. This can include connections to multiple different servers              
simultaneously. The mechanics of the API are covered in more detail in Top-Level Client Changes (§3.4), but                
by writing a data structure which satisfies the wp.ResponseHandlerinterface, the client can have complete              
control over a client session, without needing to implement any WP-specific code. This was used extensively               
in my testing and evaluation of WP, since it simplified the design of the testing clients considerably, and                 
completely decoupled the semantics of the test from the specifics of the protocol implementation. While the               
structure of the server API is the same as that of Go’s net/http, I designed and implemented the new client                   
API myself.
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2: Protocol Design

2.1: Starting Point
Network protocols are highly complex systems to consider; many (such as TCP) have been in active               
development for almost forty years. Accordingly, it would have been unwise to start from nothing with WP.                
With the next iteration of HTTP using SPDY draft 2 as a starting point, it seemed appropriate to do the same,                    
although WP actually started from SPDY draft 3. SPDY aims to increase performance by multiplexing many               
request/response streams onto a single TCP session, and by giving a regular binary structure to aid parsing                
and validation. These were the two main factors driving WP, so SPDY seemed an excellent starting point.                
The most immediate differences between the two protocols are that SPDY forms a framing layer beneath               
regular HTTP, which changes how the same data is written to the network, whereas WP is a completely                 
separate protocol intended to replace HTTP, and that WP focuses very specifically on streaming data, rather               
than the traditional single request/single response mechanism in HTTP, which SPDY continues.

2.2: Request Parallelism
HTTP functions by sending a single request, and receiving a single response. If multiple requests must be                
sent, the only two options for performing them in parallel, are multiple connections and pipelining. While               
using multiple TCP connections can give true parallelism, it incurs the overhead discussed in the interim               
report. Furthermore, it has other limits. The HTTP/1.1 specification states[5] that a user agent should not               
have more than two simultaneous connections to a particular host. In spite of this, most modern browsers                
allow up to six connections to the same host[3], purely to improve performance. Even this is not enough for                  
many large websites, though. A common practice in high-performance websites is so-called domain            
sharding, where extra subdomains are created to enable more simultaneous connections to the same             
server. This gives greater parallelism, but increases the inefficiency produced by so many TCP connections.

Another common technique, introduced in HTTP/1.1, is request pipelining, where multiple requests are            
sent in sequence on the same connection, without waiting for responses. The server then replies to the                
requests on a first-in-first-out (FIFO) basis. Although this does not incur the same inefficiencies as multiple               
connections, it is not commonly used by modern browsers, since a slow response to the first request will                 
hold up subsequent responses. This is particularly common in cases where the first response requires              
database queries or high volumes of I/O. The unpredictability this causes generally leaves pipelining             
avoided by clients.

Both SPDY and WP parallelise their requests by multiplexing requests onto a single TCP connection with an                
abstract stream model. Each request/response stream is assigned a stream ID unique within that             
connection. This allows data packets to be interleaved as necessary, while still being unambiguous. This              
avoids the overhead of opening multiple TCP sessions, saving both data and time. Since a TCP handshake                
requires one RTT to the server, and SSL/TLS requires a further two, the time savings on high-latency                
networks can be quite substantial, particularly on mobile devices, where average latency can reach 400              
ms[1]. This is covered in more detail in the interim report.
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2.3: Streaming Data
Although SPDY’s structure enables streaming data, its current use as a session-layer protocol to support              
HTTP, leaves it with a more atomic behaviour. At least in the public domain, SPDY has only been used for                   
improving performance in systems that would otherwise have used HTTP. By comparison, WP puts a strong               
focus on streaming data, where data can be used as soon as it is received, and isn’t considered a single                   
block. Since the web is used for more than just exchanging documents, as was originally intended, other                
protocols and techniques have emerged to perform tasks for which HTTP isn’t well suited. One of the most                 
popular examples of this is streaming video content, on sites like YouTube and Netflix. Both of these use                 
proprietary media frameworks added to web browsers via plugins (Adobe Flash and Microsoft Silverlight,             
respectively). To truly earn its title as the Web Protocol, WP must be able to perform these roles as well as                    
the duties fulfilled currently by HTTP/SPDY.

WP’s request/response model differs from HTTP in that it completely separates the response header from              
the response data. Accordingly, a single response header is always sent to inform the client whether the                
request was successful, the kind of data being sent in response, and so on. Optionally, a data stream then                  
follows, but this stream may arrive a while after the response header, and may continue for some time. This                  
works perfectly well for transferring documents and other atomic transactions, but is also highly             
appropriate for streaming media. The only problem WP would encounter in this role is that, since it relies                 
on TCP, it cannot provide quite as high a bandwidth as traditional streaming media protocols like RTP, due                 
to the overhead of TCP framing and ACKs, and its performance will be worse on unstable networks, where                 
packets may be lost and have to be retransmitted. This is the typical problem when using TCP over UDP for                   
real-time content.

This streaming data structure is fairly simple in design; data packets all contain a flags region, and one flag is                   
defined as the 'Finish' flag. A data packet received with the 'Finish' flag enabled concludes that data stream.                 
This may be the first (and thus only) packet in the stream. Until a finishing packet is received, the client                   
should assume that more data is yet to come. If the server does not plan to send any data (for example, the                     
client may have requested a resource that does not exist), the 'Finish' flag is enabled in the response                 
header.

This design is sufficient for most use cases, but there may be some situations where it is useful for the                   
response to consist of discrete segments, which might need to be larger than a single data packet. For these                  
cases, the ‘ready’ flag can be used to indicate that this packet completes the segment, but that more data                  
may follow.

2.4: Simplification
Several features and dedicated frames in SPDY have been combined into other components in WP. Where               
SPDY has a specific frame for preventing new connections (GOAWAY), in addition to a general error frame,                
WP uses a single, unified error packet. Similarly, the functionality provided by SPDY’s SETTINGS frame is just                
one component in WP’s hello packet, and SPDY’s WINDOW_UPDATE and CREDENTIALS frames are left to              
lower-level protocols (TCP and TLS, respectively) in WP. These changes were made to try to reduce the                
number of different frames to simplify parsing slightly, and to make the protocol more simple as a whole.

Finally, SPDY uses special frames for HTTP headers and for name/value pairs for its SETTINGS frame. Both                
of these were assimilated into the relevant packets as part of the packet’s structure, rather than as                
self-describing components. This tied the data to a specific purpose, and ensured that it did not become                
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separated during transmission.

2.5: Security
Some of the most common uses of the web require user privacy and security. Online banking and social                 
media are two examples where authentication, integrity, and confidentiality are crucial. In HTTP, these are              
provided by HTTPS; using SSL or TLS to add cryptography and MACs. These have become the foundation of                 
web security, but are not without issue. The thin barrier between HTTP and HTTPS mean that incomplete or                 
inconsistent use of HTTPS can lose its security benefits. Without use of the Secureattribute, cookies are                
shared in both protocols’ requests, meaning that HTTP requests which are intercepted by a MiTM attack can                
be read, or even modified, at will. Furthermore, HTTPS sessions can silently be downgraded to insecure               
HTTP connections, in so-called SSL Stripping attacks[6]. Although these issues, and others, have been solved              
to some extent through techniques like HSTS, these solutions have not been universally adopted by              
servers, or even browsers.

To address this issue, the WP specification mandates that all WP connections must use TLS to provide                
session-layer security. TLS is specified to avoid legacy attacks on the older SSL protocol. Utilising TLS does                
not magically provide good security, but web browsers are already becoming fairly good at demonstrating              
poor use of the protocol when it is in use.

As discussed in the interim report, use of TLS also helps circumvent malicious or poorly-designed web               
proxies, gateways, and switches which often manipulate or discard protocol traffic they do not understand.              
For these reasons, WebSockets and SPDY also recommend the use of session-layer security protocols.

2.6: Frame Structure
In addition to saving space, a key reason behind using a fixed binary structure in WP’s framing is to simplify                   
and accelerate parsing. The regular structure means that most fields can be accessed with constant offsets,               
without needing to parse other content. To simplify this further, all WP frames share a common first byte                 
structure, so when a packet is received, its type can be identified from just this first byte. This then gives the                    
minimum size of the buffer to be allocated for the next segment of the frame, which contains the size of any                    
variable-length data in the packet. As a result, pulling the raw data into a data structure is both quick and                   
efficient, where many HTTP libraries allocate up to a kilobyte for initial HTTP headers to look for the                 
Content-Length field.

For a more thorough analysis of the protocol’s structure, a description of each frame type follows, complete                
with packet diagrams. Note that in these diagrams, any blank space indicates a gap left solely for aesthetic                 
reasons, such as to avoid splitting a field over multiple lines. These blanks are not included in the actual                  
data streams.

2.6.1: Hello
Hello frames are typically sent once, at the beginning of the connection. Every WP session must begin with                 
the connection initiator (generally the client) sending a Hello frame, which must contain the initiator’s              
protocol version, and should also have the user-agent, target host name, and other details. The client is                
free to begin sending requests and other data immediately after sending the initial Hello, but this Hello                
must be the first frame sent. If the recipient (normally the server) supports the proposed protocol version,                
the connection continues as normal. However, if the server only supports older versions of the protocol, it                
must reply with an UnsupportedVersion error, containing the latest supported version. The connection is             
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then terminated and another established by the client to avoid any confusion over stream IDs.

The data sent in the Hello is intended to be data which will not change over the course of the connection.                    
In some cases, subsequent Hello frames may be sent to update these details, but this is unusual. These                 
subsequent frames cannot change the user-agent, protocol version, or hostname, and these fields should             
be ignored by the recipient. The later frames are most likely to be caused by the client being referred to the                    
host from another page, and thus updating the host to the new referral.

Hello frames consist of at least 8 bytes and have the following structure:

 0               1               2               3
 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  0  |  Flags  |    Version    | Language size | Hostname size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|User-Agent size| Referrer size |      Header size (16 bits)    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       =================                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Data      |                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Flags:           None defined. Must be 0.
Version:         WP version number. (8 bits)

                             - Must not be 0.
Language size:   See languages in the WP specification (8 bits).

                             - 0 means accept all.
Hostname size:   Number of bytes in hostname (8 bits).
User-Agent size: Number of bytes in the user agent.
Referrer size:   Number of bytes in the referrer URI.
Header size:     Number of bytes in any remaining headers.
Data:            Length-specified fields and headers named above.

2.6.2: Stream Error
The Stream Error frame is used to communicate both protocol and application errors, and can also be used                 
to close streams safely. Although it has a stream ID, the Stream Error is the only frame allowed to send a 0                     
stream ID, since some errors, such as Application_Error apply to the entire session, rather than just one                
stream. In addition to the stream ID, Stream Errors have status code and status data fields, with the                 
one-byte code illustrating which error has occurred, and the status data providing optional extra             
information, such as the expected value for a protocol version or stream ID.

The full details for stream IDs are covered in the WP specification and have been discussed in the interim                  
report. If an endpoint receives a Data Request frame, and that ID is odd when it should be even, or vice                    
versa, then it must reply with a Stream Error with the Invalid_Stream status code. Similarly, if the ID is too                   
large, it should evoke a Refused_Stream code, and if the ID is too small, a Stream_In_Use code. In all three                   
cases, the Stream Error’s stream ID should be set to the requested stream ID, and the status data should                  
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contain the valid stream ID for such a request. If any frame is received containing a stream ID set to 0, other                     
than a Stream Error, it must evoke a Stream Error with the Stream_ID_Missing status code. Finally, a Data                 
Content frame sent to a stream which has already been closed must evoke a Stream Error with the                 
Stream_Closed code. These responses are intended to give the recipient as precise information on the              
error as possible. In all cases, the offending frame must be ignored. In high-latency connections, it’s quite                
plausible that many frames may be sent with an invalid stream ID before a Stream Error is received. In this                   
case, the recipient of the invalid frames must still issue a separate Stream Error for each one, so that the                   
sender knows that none has been processed.

If the recipient of a frame fails to parse it for whatever reason, such as invalid field values, other than those                    
mentioned above, it must reply with a single Stream Error with the Protocol_Error status code, and close the                 
connection. This is because parsing errors are unlikely to be recoverable, since there may be an               
inconsistency between endpoints on the frame boundaries. As mentioned previously,         
Unsupported_Version Stream Errors also close the current session. If either endpoint suffers an internal             
error, such as an inconsistency of state, it must attempt to send a Stream Error with the Internal_Error code,                  
before closing the connection. Finally, the Finish_Stream status code may be used to close a stream in the                 
same manner as using the finish flag in a Data Response or Data Content frame.

As discussed here, the status codes Invalid_Stream, Refused_Stream, Stream_Closed, Stream_In_Use, and          
Finish_Stream all require accompanying stream IDs. If any of these Stream Errors is received with a stream                
ID set to 0, or any other Stream Error is received with a stream ID not set to 0, a Protocol_Error Stream Error                      
must be sent and the connection closed.

Stream Error frames consist of 6 bytes and have the following structure:

 0               1               2
 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  1  |  Flags  |       Stream ID (16 bits)     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Status    |      Status Data (16 bits)    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Flags: No flags currently defined. Must be 0.
Stream ID: See streams (WP specification) (16 bits).
Status:     List of codes:

                        1: Protocol error (ends session).
                        2: Unsupported version (send version, end session).
                        3: Invalid stream (send expected stream ID).
                        4: Refused stream (send expected stream ID).
                        5: Stream closed.
                        6: Stream in use (send expected stream ID).
                        7: Stream ID missing.
                        8: Internal error (ends session).
                        9: Finish stream.

2.6.3: Data Request
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Transactions from the server to the client are initiated with a Data Request, which performs the same role                 
as HTTP’s GET and POST methods. Though Data Requests are normally used for simple request/response              
tasks, by using the Upload flag, Data Content frames may follow to mimic a HTTP POST request. If the                  
sender has a cached version of the resource being requested, it should include the modified time of that                 
resource in the request, so that the recipient can determine whether the cached version is up-to-date. Any                
other data, such as HTTP cookies, are included in the Headers field.

Data Request frames consist of at least 17 bytes and have the following structure:

 0               1               2               3
 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  2  |  Flags  |       Stream ID (16 bits)     |               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Resource size (16 bits)    |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      Header size (32 bits)                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        Cache Timestamp                        |
|                           (64 bits)                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       =================                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Res (0-65535) | Headers (cookies etc)                         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Flags:
Finish:    See streams (WP specification).
Upload:    Indicates an upload request.

Stream ID:       See streams (WP specification).
Resource size:   Number of bytes in the resource name.

                             - 0 is invalid and triggers Protocol_Error.
Header size:     Number of bytes in the request header.
Cache Timestamp: Timestamp of cached resource.

                             - 0 means not cached.
Res:             Resource URI.
Headers:         Header content.
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2.6.4: Data Response
Data Request frames should normally receive a reply with either a Stream Error or a Data Response. As                 
discussed in Streaming Data (§2.3), there is a very specific separation between Data Response frames and               
actual data, in order to provide consistent support for streaming data. The most immediate and important               
field in a Data Response is the Response Code, which indicates the status of the requested resource. The                 
code is split into two parts; a 2-bit response type, and a 6-bit response subtype. These are as follows:

Response types:
0 - Success
1 - Redirection
2 - Client error
3 - Server error

Response subtypes:
0/0 - Success (cacheable)
0/1 - Cached
0/2 - Partial (cacheable)

1/0 - Moved temporarily (cacheable)
1/1 - Moved permanently (cacheable)

2/0 - Bad request
2/1 - Forbidden (cacheable)
2/2 - Not found
2/3 - Removed (cacheable)

3/0 - Server error
3/1 - Service unavailable
3/2 - Service timeout

These types and subtypes perform similarly to their HTTP counterparts. The main differences to note are               
the 0/1, 3/1, and 3/2 responses. A 0/1 response indicates that the Data Request’s cache timestamp is equal                 
to the most recent version of the resource, and thus that the cached version should be used. A 3/1                  
response shows that the response depended on an external service which is unavailable. Similarly, a 3/2               
status indicates that the external service request timed out. Ideally, servers should avoid 3/1 and 3/2               
responses and instead redirect to an HTML (or other) page explaining the situation to the user, or using an                  
alternative.

If a response is marked cacheable above, the Data Response’s cache timestamp field should be used to                
communicate the time until when the response can be assumed cached. While this time (in Unix               
nanosecond format) remains in the future, the user agent should consider the response up-to-date. After              
this point, the timestamp should be presented in the next Data Request to check whether the the current                 
version is still correct. If the Data Response’s cache timestamp is set to 0, then the response must not be                   
cached.

As in a Data Request, Data Response frames may contain variable-length text fields (such as new cookies,                
and content encoding declarations), which are stored in the Headers field. Furthermore, as discussed in              
Streaming Data (§2.3), the Finished flag can be used to indicate that a stream is complete. All 2/* and 3/*                   
responses must set the Finished flag, since these should never be followed by data. Any 1/* responses                
must leave the Finished flag unset and follow with Data Content frame(s) containing the URL to which the                 
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client should be redirected. Cache responses, such as 0/1 may contain no data and thus set the Finished                 
flag, but most 0/* responses will be followed by data and as a result should not set the flag.

Data Response frames consist of at least 18 bytes and have the following structure:

 0               1               2               3
 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  3  |  Flags  |       Stream ID (16 bits)     | Response code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      Header size (32 bits)                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        Cache Timestamp                        |
|                           (64 bits)                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       =================                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Headers    |                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Flags:
Finish:  See streams (WP specification).

Stream ID:     See streams (WP specification).
Response code: 2-bit response type, 6-bit subtype.
Header size:   Number of bytes in the response header.
Cache:         Time of when resource becomes invalid.

                           - 0 means do not cache.

2.6.5: Data Push
A very common use case in the web is the situation where a user agent has requested a resource and the                    
server responds, knowing that the client will have to request related files immediately after (such as CSS and                 
JavaScript files), but the subsequent requests cannot be issued until the user agent has parsed the initial                
resource. To solve this problem, SPDY introduced the concept of the server push. In this situation, the                
server would be able to send the secondary resources to the client directly, rather than waiting for the user                  
agent to parse the initial resource and send a latency-dependant request. The concept works well, and was                
implemented in SPDY draft 2, which will form the starting point for HTTP 2.0[7]. Nevertheless, there are                
situations where the client may already have a cached form of the secondary resource(s). To address this                
problem, WP introduces the concept of server suggest.

While WP Data Push frames default to similar behaviour to SPDY server pushes, by enabling the Suggest                
flag, the frame changes from a data stream to a reverse request. The Suggest contains the URI of the                  
resource being suggested, along with its cache timestamp. This prompts the user agent to check their               
cached version of the named resource. If their timestamp is older than the timestamp attached to the                
suggestion, then the user agent should immediately submit a request for the resource. Otherwise, they do               
not need to perform any action, although reading the cached resource into memory may be a useful move.                 
Data Push suggestions will never be followed by data and thus close the stream they use. Whether using a                  
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Data Push for a server push or a suggestion, any variable-length data may be stored in the Headers field,                  
and the Source Stream ID field must be used to indicate which request caused the Data Push, since the                  
user agent may keep different resource sets in separate threads or processes. As mentioned in the interim                
report and the WP specification, Data Push frames must use an even stream ID, to highlight that it is a                   
server-initiated stream.

If not using the Suggest flag, Data Push frames contain the URI and cache timestamp for the resource being                  
pushed, so that the user agent is aware of which resource it is receiving. The Finished flag must not be sent,                    
since the resource’s content must follow. When sending the resource, the data may follow the Data Push                
immediately, although the client may choose to refuse the push. To do so, the user agent should send a                  
Stream Error with the Finish_Stream status code upon receiving the unwanted Data Push. Note that after               
this point, the user agent should endeavour not to send Stream Error frames with the Stream_Closed status                
in response to Data Content frames sending the push data, since the Data Content frames will be being                 
sent for some time before the Stream Error arrives. Similarly, the server should attempt to cease sending                
data upon receiving the Finish_Stream Stream Error. The server may wish to default to Data Push               
suggestions, rather than server pushes, if it receives the Finish_Stream code, or to send the Data Push but                 
wait a while before sending any data, in case the user agent refuses all pushes.

The key distinction between Data Push suggestions and pushes is that a push should be used in situations                 
where the chances of the client having a cached version of the resource are very slim. Common examples                 
of this are resources with a far-future cache date, dynamic responses which are never cached, and               
resources for a situation when caching would be unlikely, such as for new user pages. In cases where the                  
user may well have a cached version of a resource already, a Suggest is preferred, since it does not waste                   
bandwidth with unnecessary data. It is the responsibility of the web application writer to determine which               
resources should be pushed and which should be suggested.

Data Push frames consist of at least 19 bytes and have the following structure:

 0               1               2               3
 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  4  |  Flags  |       Stream ID (16 bits)     |               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Source stream ID (16 bits)   |    Resource size (16 bits)    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      Header size (32 bits)                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        Cache Timestamp                        |
|                           (64 bits)                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       =================                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Res (0-65535) |    Headers    |                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Flags:
Suggest: This is just a suggestion.
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Stream ID: See streams (WP specification).
Source stream: The request which triggered this push.
Resource size: Number of bytes in the URI.
Header size:      Number of bytes in the push header.
Cache timestamp: Timestamp of when file was last changed.

                              - 0 means do not cache (non-suggest only).
Res: Resource URI.

2.6.6: Data Content
Several WP frames are followed by data: Data Request frames with the Upload flag set, most Data Response                 
frames, and Data Push frames with the Suggest flag unset. For all of these purposes, the Data Content                 
frame is used. Having a dedicated frame for transferring context-agnostic data is one of the reasons behind                
the separation between a Data Response and its data, allowing the same structure to be reused for other                 
purposes. Accordingly, the Data Content frame contains only the structure needed to send data: the stream               
ID on which data is being sent, and the number of bytes being sent. The purpose and use of the Ready and                     
Finish flags is discussed in detail in the WP specification and in Streaming Data (§2.3), but it is an error to                    
send more than one Data Content frame on the same stream with the Finish flag set, since the first closes                   
that stream. As with all WP data, the content is assumed to have UTF-8 encoding, unless it has been                  
declared otherwise in the control frames for the stream, such as in the Header field of a Data Response.

Data Content frames consist of at least 7 bytes and have the following structure:

 0               1               2               3
 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  5  |  Flags  |       Stream ID (16 bits)     |               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         Size (32 bits)                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       =================                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             Data                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Flags:
Finish: See streams (WP specification).
Ready:  Data is ready to be processed.

Stream ID:    See streams (WP specification).
Size:         Number of bytes in the whole packet.
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2.6.7: Ping Request and Ping Response
In many web applications, it is useful to be able to know whether the server is reachable, such as cloud                   
applications which also have an offline mode. Currently, the only way to perform this is to make an HTTP                  
request to a dedicated URL, which will respond with 204 No Data, since this will inform the user agent that                   
the request succeeded, without expecting any data. Like SPDY, WP provides a dedicated mechanism for this               
capability, although with a slightly different implementation. While SPDY has a single PING frame, WP uses               
separate request and response frames, to give clearer semantics and simpler parsing. Both frames consist              
solely of the standard first byte structure of all WP frames; using the 5-bit flags space for a ping ID. These                    
ping IDs should be used consecutively, starting at 1. When a Ping Request is received, a Ping Response                 
should be sent with maximum priority and the same ping ID. Since the frames are directional, ping IDs do                  
not have separate semantics for odd or even numbers as stream IDs do. If a new Ping Request is to be sent                     
and the most recently-used ping ID is the maximum ping ID (31), the ping ID 1 should be used. 0 is never a                      
valid ping ID, and evokes a Protocol_Error Stream Error.

It’s important to note that although SPDY supports a ping mechanism, and that SPDY is implemented in the                 
Google Chrome and FireFox browsers, there is no way yet to make use of this mechanism through the                 
browsers’ JavaScript APIs.

Ping Request frames consist of 1 byte and have the following structure:

 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|  6  | Ping ID |
+-+-+-+-+-+-+-+-+

Ping ID: Number identifying this request (5 bits).

Ping Response frames consist of 1 byte and have the following structure:

 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|  7  | Ping ID |
+-+-+-+-+-+-+-+-+

Ping ID: Number identifying the request (5 bits).
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3: Implementation

3.1: Adaptation of “net/http”

The WP library for the Go language[8] was written both as a proof of concept, and to enable testing of the                    
protocol and comparison with HTTP. The full reasons for picking Go are discussed in the initial report, but                 
one reason was its strong HTTP library, “net/http”. Having a well-written library meant both that I had a                 
starting point for the WP library, and that the experimentation comparing the two protocols would not rely                
on my ability to implement HTTP; removing a potential element of bias.

Given the quality of the HTTP library and the relevance of its interface, it made an excellent starting point for                   
my own library. The first addition was a file providing an interface to the various WP packets, vastly                 
simplifying data decoding within the actual library. Although these can be useful for the user, as much as                 
possible was abstracted to higher levels. The transmission code was then modified to include the stream               
handling and state processing, and to add the further error handling required by the different structure,               
such as errors in stream creation and data sent to closed or invalid streams.

This process was not too challenging, since the existing structure gave clear points where the additions               
would be made. With similar request/response handling, a lot of the code remained the same, particularly               
the structure of Handler functions, which are the most common method for the server writer to interact                
with the protocol.

3.2: Frame Parsing
To simplify the parsing of WP’s binary frames, the first part of the WP library was a file defining data                   
structures for each frame type. Each of these was then given a ‘getter’ and ‘setter’ method for each field to                   
abstract the specifics of each field’s offset and size to a single implementation. Making use of Go’s type                 
declarations (not to be confused with C’stypedefstatements), these data structures were defined as being               
of type byte slice (similar to a byte array), allowing raw data received from network connections to be cast                  
into the relevant WP frame type. Most of these parsing operations were performed with binary shifts, using                
binary ‘and’ and ‘or’ operators to isolate individual bits where necessary. In addition to this, a further data                 
structure was provided to isolate the first byte of a data stream and to identify which WP frame is being                   
received. This frame is then extracted into the appropriate data structure.

Although the change to Go gave good object orientation and stricter structure, the functional code for               
extracting individual fields is largely similar to the original C code. To give further abstraction and               
simplification of the parsing process, the WP library makes good use of Go’s interfaces in providing a data                 
structure which can automate the parsing of WP frames from any data source wrapped by abufio.Reader                
(a buffered data reader). In turn, a buffered reader can be wrapped around any io.Reader; any data                
structure with a method to read data, which could be a network connection, a file, or even a raw array of                    
bytes. This abstraction allows the WP library to read and parse data from any of these input streams,                 
without needing to know the origin type.
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3.3: Top-Level Server Changes

3.3.1: Handler Interface
While the use of Handler functions still remains the main interaction with the average server-writer, the               
initial implementation could not provide features added by WP, such as streaming responses and server              
pushes. Implementing these with as little change to the API was a rewarding challenge. The biggest change                
was to modify the behaviour ofwp.ResponseWriterso that callingWritewould send the data immediately,               
rather than adding to a buffer and sending in a single chunk when the handler returned. This was more in                   
keeping with WP’s principle of streaming data, and enabled the sending of very large files which could not                 
fit into a single buffer, as Go’s arrays are currently limited to a length of 232-1 (a maximum-length byte array                   
could hold up to 4 GB). This also improves performance slightly when sending files, as the data can be sent                   
as it’s read from disk, since writing to the connection will often be quicker than reading from disk. Finally,                  
this enables some web-serving optimisations like sending HTML headers before expensive operations like            
database queries are performed.

The other changes to wp.ResponseWriterwere the addition of theSendmethod, which is used to indicate                
the end of a streaming data segment, and methods to push and suggest content. These were slightly tricky                 
to implement, since they crossed the stream boundary, which meant that the caller would not have access                
to the same connection and state object as they do for their own stream. The proposed solution to this is to                    
have a centralised stream management object, and for each stream to interact through that. Unfortunately,              
this would require a substantial rewrite of most of the library, for which there was not enough time. This is                   
covered in more detail in Future Work (§5.1). As an interim measure, a method was made available to                 
suggest a particular resource, and another two for pushing either raw data or a named file. These methods                 
each construct the Data Push frames and any additional Data Content frames, and send them in one go,                 
adjusting the connection state accordingly. However, due to the limitations given above, error handling is              
largely a case of success or failure; if the Data Push is sent successfully, but the Data Content frames fail to                    
send, the library has little alternative to sending a Protocol_Error and ending the connection altogether.

As discussed in the streaming data test (§4.2), it became apparent that the initial implementation for               
sending Data Content frames was inefficient. Originally, a DataContent structure was created, encapsulating            
the data to be sent. Once this was ready, the structure would be sent, meaning that it was considered a                   
single TCP segment. However, this resulted in copying the data into the structure. Although this was fine for                 
other frames, Data Content frames can hold up to 4 GB of data, and copying this much takes a noticeable                   
time. As a result, the library was modified to store just a reference to the data, and to send the frame and its                      
data separately, meaning that the data did not need to be copied. Though difficult to quantify, this was                 
noticeably quicker, and left less work for Go’s garbage collector.

3.4: Top-Level Client Changes
Although the existing structure for writing WP servers was fairly satisfactory, the differences between an              
HTTP client and a WP client are quite substantial, so significant changes had to be made to handle                 
streaming responses. Where the HTTP library’s client methods centre around optionally configuring a client             
and then using an HTTP method like Get to fetch a Response object, which contains the response body, a                  
WP client may want to interact with the data as it arrives. Accordingly, in addition to atomic functions like                  
http.Get, the WP library provides the ‘new client API’, designed to provide streaming interactivity.
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Making use of Go’s interfaces, the functions wp.Fetchand wp.FetchJust take aResponseHandler, which             1

contains the methods used to interact with incoming data. When WP packets are received by Fetch, they are                 
parsed and the data presented to the relevantResponseHandlermethod, where the client can make use of                
them, including correct error handling and notifications. To simplify its use, the new client API provides two                
basic ResponseHandlers; DownloadTo and DownloadAllTo, which write the responses to disk. The           2

advantages of these combined functions are that they give a very streamlined way to make full use of the                  
protocol, without requiring understanding of the implementation details. To demonstrate, here is the full             
code required to download a web page and any required CSS and JavaScript files, assuming the host used                 
WP:

package main

import (
“net/wp”

)

func main() {
err := wp.Fetch(“wp://example.com/”, nil, wp.DownloadAllTo(“.”))
if err != nil {

panic(err)
}

}

By comparison, here is the code required to download the same page with HTTP, without automatically               
fetching the render-required resources:

1 wp.FetchJustwill submit the request provided to it.wp.Fetchwill also present any server suggestions to                
the ResponseHandler and accept server pushes.
2 wp.DownloadTo will store any requested and pushed resources but will refuse any suggestions.             
wp.DownloadAllTowill accept suggestions and will also parse received HTML and CSS resources and will              
automatically request any resources a browser would fetch in order to render the page.
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package main

import (
“io”
“net/http”
“os”

)

func main() {
response, err := http.Get(“http://example.com/”)
if err != nil {

panic(err)
}

file, err := os.Create(“./index.html”)
if err != nil {

panic(err)
}

_, err = io.Copy(file, response.Body)
if err != nil {

panic(err)
}
file.Close()
response.Body.Close()

}

This streamlined API makes it quicker to perform common tasks with the protocol. As the testing framework                
used in the experimentation shows, implementing a new ResponseHandleris fairly simple, and requires             
minimal knowledge of the underlying protocol.

3.5: Networking Structure

3.5.1: Server Structure
The overall network structure of net/wp is essentially identical to that of net/http, as I had no reason to                  
change it when I first adapted the package to WP. When a new TCP connection is received, aconnstructure                   
is initialised with the connection (to which data is written), a pointer to the server which serves the                 
connection, a mutex for state synchronisation, and a simple session state structure. Once the connection is               
fully initialised, its serve method is called, entering a loop which receives a packet, parses it with                
connection.readRequest, performs the appropriate error checking, and if all is well, it constructsRequest             
and responsestructures, and passes them to the registered handler for the path being served. Once this                
handler returns, the response is completed, any additional data is sent, and the loop begins again.

3.5.2: Structure Deficiencies
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While this structure is perfectly adequate for HTTP, where all requests on a single connection must be                
sequential, it is not particularly appropriate for a concurrent protocol like WP. Having discovered this issue,               
I tried to rectify it by allowing multiple responses to be active at the same time, but synchronisation issues                  
continued to occur until it was clear that I would be wasting time if I continued, so I moved to other tasks. If                      
given time for further development and testing, I would restructure the networking code altogether to              
create a connection structure to manage reading from and writing to the network, to manage the state of                 
the connection as a whole, and to provide interactions between streams. Separately, I would also make a                
stream structure to cater for the needs of each individual stream; deferring to the connection where               
communication between streams was necessary. The connection would then be able to spawn streams             
independently and to coordinate between them. This would provide a structure far more representative of              
WP’s protocol structure, and far more effective for its implementation. However, this would require at least a                
month’s work, and time constraints on the project did not allow this.

3.5.3: Parsing
Server-side frame parsing is performed by the ReadRequest function, which makes good use of the              
DataStreammechanism provided in wp.go. This takes a buffered input stream (which is normally a network               
connection, but could be a file or even an array of bytes, thanks to Go’s interface model), scans the first byte                    
to determine its type, and then extracts the frame, reading any variable-size fields’ lengths and extracting               
them too, until the entire frame has been read. This is then returned toReadRequestto be processed. If the                   
received frame is not of an appropriate type, such as when a server receives a server push, then                 
ReadRequest returns an error. Otherwise, a Request structure is created and populated.

While this is generally adequate, it does place some restrictions on the parsing process. SinceReadRequest               
is called by connection.readRequest in the context of a single stream, it can only be called once per                 
stream. This means that upload requests using multiple Data Content frames cannot interleave with other              
frames without breaking the parsing model. To remedy this, the rewrite discussed above would move all               
parsing into the connection structure, so that interleaved frames can be sent to the appropriate streams.               
This separation of the connection management layer and the streams is crucial to effective and efficient               
implementation of WP.

3.5.4: Illustration
To give a clearer indication of how the library functions in practice, the following annotated code snippets                
follow the creation of a new connection, starting a stream, reaching the server-writer’s handler, a response               
being formed, and that being sent to the client. In most of the code samples some of the implementation                  
details have been removed to give clearer indication of the main code path, without fine details getting in                 
the way. Each snippet from the WP library begins with a comment, giving its source file and line number, so                   
that the unmodified version can be read if desired.

3.5.4.1: Creation of a Listener
The server-writer starts to listen on the network through one of two ways. They can create a Server                 
explicitly and call its ListenAndServemethod, or simply call wp.ListenAndServe, which will instantiate a             
generic Server implicitly. This server then creates a TCP network listener and initialises the TLS state if                
necessary. This then calls Server.Serve to enter the connection loop, as shown below:
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// server.go:1078
func (srv *Server) Serve(l net.Listener) error {

for {
rw, err := l.Accept()
if err != nil {

// Handle error.
}

// Handle timeouts.

conn, err := srv.newConn(rw)
if err != nil {

continue
}
go conn.serve()

}
}

Here, an unconditional for loop iterates through accepting a new connection, handling any error if              
necessary, enforcing timeouts set by the server-writer, creating a new WP connection structure, and starting              
the new connection in a new goroutine.

3.5.4.2: Serving a Connection
Once the connection has been created, moving from the transport and session layer into the application               
layer, WP frame parsing begins. Here follows a simplified version of the conn.servemethod spawned              
above.
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// server.go:554
func (c *conn) serve() {

defer func() {
// Set up critical error handling.

}()

if tlsConn, ok := c.rwc.(*tls.Conn); ok {
// Complete TLS handshake.

}

for {
w, err := c.readRequest() // returns *response, error
if err != nil {

// Handle error.
}

// Handle packets other than data requests.
if w.req.Type == IsHello {

// Process Hello frame.
continue

}

if w.req.Type == IsPingRequest {
// Reply to Ping.
continue

}

// Validate Stream ID.

// Update connection state.

handler.ServeWP(w, w.req)
w.finishRequest(false)

}
}

Although most of the details have been abstracted in this snippet, the important factors are clear. serve                
loops indefinitely, using conn.readRequest to fetch the next request, performs various stages of error             
handling and validation on the request, deals with special frames like PingRequest frames as appropriate,              
and checks and updates the connection state (like the Stream ID, which must follow strict rules described in                 
section 2.3.2 of the WP specification). Once all this has happened, the server-writer’s handler is called;               
enabling them to process the request as they choose. Once their handler returns, the stream is concluded                
with response.finishRequest, which is shown in Stream Conclusion (§3.5.4.7).
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3.5.4.3: Parsing Received Data
The main role performed by conn.readRequestis parsing arbitrary data into a WP frame, which can then                
be handled with protocol logic. To do this, readRequestturns to the public net/wp functionReadRequest,               
which uses the DataStreamstructure designed for net/wp. As this example follows a DataRequest arriving              
on the new connection, an abridged version of ReadRequestis shown here, processing the DataRequest              
received:

// request.go:138
func ReadRequest(b *bufio.Reader) (req *Request, err error) {

// Create the Request to be returned.

data := NewDataStream(b) // Create a DataStream.

// Get the first byte, which identifies the frame type.
firstByte, err := data.FirstByte()
if err != nil {

return nil, err
}

// Find the matching type.
switch firstByte.PacketType() {

case IsDataRequest:
// Parse the DataRequest with DataStream.DataRequest()
// Populate the Request structure.
return req, nil

// ... Handle other frame types with other case statements.

}
}

ReadRequestbegins by creating the Responsestructure to return, and making aDataStream(a specialised              
buffered input reader which reads data from the network connection), parses it, and provides a parsed               
version of the received frame. Once the DataStreamhas been created from the network connection, the               
first byte of the received data is extracted. As discussed in Frame Structure (§2.6), all WP frames share a                  
common first byte, which includes the frame’s type, so from this first byte, the DataStream is able to                 
determine which frame’s parsing method should be used.

ReadRequestuses a switchcontrol structure on the first byte, using acasestatement for each frame type.                 
When acasestatement triggers, as above, the appropriate method is called on theDataStream, parsing the                
frame and returning it. The details of this structure are then used to fill in the fields of theRequest, which is                     
returned.

3.5.4.4: Parsing a Frame
The actual parsing of a frame is performed in stages. Once the DataStreamhas extracted the first byte, it                  
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uses binary operations to isolate the type number. Then, once ReadRequesthas used the switch to               
identify the type, it calls the appropriate parsing method on DataStream. This performs the raw data               
parsing, and returns the populated frame. Continuing the example, the following code snippets show the              
extraction of the first byte, the isolation of the frame type, and the DataStream.DataRequest method.

// wp.go:182
func (reader *DataStream) FirstByte() (FirstByte, error) {

first, err := reader.Peek(1)
if err != nil {

return nil, err
}
return FirstByte(first), nil

}

// wp.go:237
func (packet FirstByte) PacketType() int {

return int((packet[0] & 0xe0) >> 5)
}

// wp.go:551
func (reader DataStream) DataRequest() (DataRequest, error) {

buffer := make([]byte, DataRequestSize)

// Fetch packet header.
if _, err := reader.Read(buffer); err != nil {

return nil, err
}

// Resize the buffer to take the headers.

// Read in the remaining data.
if _, err := reader.Read(buffer[start:]); err != nil {

return nil, err
}

return DataRequest(buffer), nil
}
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Here, DataStream.FirstByte uses the buffered reader package (bufio) to read the first byte on the              
connection without removing it from the buffer. This means that later calls to Readwill fetch all the data,                  
without needing to reconstruct the first byte. Next, FirstByte.PacketTypeuses a binary AND to zero the               
byte, except the bits of the type information. This is then right-shifted until the least significant bit is the                  
rightmost bit. Then, by casting from a byte to an int, the type number is returned.

When DataStream.DataRequestis called, a simple buffer (a slice of bytes, functionally similar to an array of                
bytes) is created, with its size set to the minimum length of a DataRequest frame. The connection then reads                  
that many bytes into the buffer. The frame is then inspected to parse relevant fields like the size of any                   
variable-length headers, so that the total number of bytes of variable-length data is known. The buffer is                
then extended to the appropriate size, and the remaining data read into the buffer. Finally, this is cast into a                   
DataRequest frame, and is returned to ReadRequest, which finishes initialising the Request structure.

3.5.4.5: Sample Handler
Once the data has been parsed and the Requestconstructed, it is passed to a Handler. Handlers are                 
registered to a particular request path, or a subtree thereof. A small demonstration of this is shown below                 
in an example server application, which has been annotated with comments.

package main

import (
"net/wp"

)

// Handler.
func Web(writer wp.ResponseWriter, reader *wp.Request) {

// Add HTTP Strict Transport Security.
name := "Strict-Transport-Security"
value := "max-age=31536000; includeSubDomains"
w.Header().Add(name, value)

wp.ServeFile(writer, reader, "." + reader.RequestURI)
}

func main() {
// Register the Web handler function to
// the path subtree "/".
wp.HandleFunc("/", Web)

// This actually starts the listening.
wp.ListenAndServe(":99", "cert.pem", "key.pem", nil)

}
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This simple application starts a server on port 99 (the default port for WP), where all requests are handled                  
by the Webfunction, as this is registered for the root path, and no other handlers have been registered. The                   
handler provided adds an HSTS[9] header to the response, and then serves the requested resource from               
the local disk, where the root path (“/”) is the current working directory for the server. The wp.ServeFile                 
function takes care of the specifics of file serving, like giving 2/2 responses for requested resources which                
could not be found. Although the current implementation does not have content type detection, it is part of                 
the future work for the library and should not require much extra work, thanks to helper functions in the                  
net/http library.

3.5.4.6: Writing Data
Although it has not been called explicitly in this particular handler, data is written to the response by calling                  
writer.Write. Since the handler shown here has used wp.ServeFile, we cannot see writer.Writein             
action, but it is used by wp.ServeFileto send the resource’s contents to the client. The actual method                 
implementation is illustrated here:

// server.go:180
func (w *response) Write(data []byte) (n int, err error) {

// Ensure the DataResponse has been prepared.

// Do nothing if data is empty.

// Handle content-length.

// Calculate frame sizes.

// Create data buffer.
buffer := make([]byte, responseSize + contentSize)

if !w.responseSent {
// Create DataResponse frame.
w.responseSent = true

}

// Create DataContent frame.

// Send data down the wire.
w.conn.rwc.Write(buffer)
w.conn.rwc.Write(data)

return size, nil
}
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As can be seen, the process is fairly simple, with the relevant frames being created, initialised, and then                 
written to the network. The responseSentvariable is simply used to ensure that only one DataResponse is                
sent for each request. Where net/http simply stores data given toresponse.Writein a buffer and sends it                 
atomically in request.finishRequest, net/wp sends data immediately; making use of WP’s streaming data            
semantics to accelerate transmission, since the total amount of data being sent does not need to be known                 
when the DataResponse is sent.

By comparison, an HTTP server must either know the full response length for the Content-Length header,               
or use chunked Transfer-Encoding to provide basic data streaming capabilities, although this introduces            
the complexity of deciding whether to send immediately or simply buffer. If chunked Transfer-Encoding is              
used, then any compression must be performed on the chunks individually; not on the data as a whole.                 
Thus, when sending pre-compressed data, chunked Transfer-Encoding may not be possible.

3.5.4.7: Stream Conclusion
Once the handler function for a particular request returns, we can assume that the handling of that stream                 
is finished, since there is no longer any way for the server-writer to send or receive data on that stream. As a                     
result, execution continues to request.finishRequest, which is illustrated below:

// server.go:423
func (w *response) finishRequest(streaming bool) {

// Ensure headers are prepared.

var buffer []byte

if !w.responseSent {
buffer = make([]byte, DataResponseSize + len(headers))

// Construct a DataResponse frame.

w.responseSent = true
} else {

buffer = make([]byte, DataContentSize)

// Prepare an empty DataContent frame.
}

// Send data down the wire.
w.conn.rwc.Write(buffer)

}

To conclude the stream, the ‘Finish’ flag is used. If, for whatever reason, a DataResponse has not yet been                  
sent, then one is constructed, the flag set, and the frame sent. If any data has been sent, however, a                   
DataResponse will already have been sent, so an empty DataContent frame is initialised instead, and the               
‘Finish’ flag set. Alternatively, a StreamError frame could be sent with the FinishStream status code.
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4: Results and Evaluation

4.1: Atomic Resource Testing

4.1.1: Preface
With WP’s focus on the web, the most important evaluation of the protocol would compare it with the                 
existing web protocols in transmitting web content. Although websites vary enormously in size and             
composition, there are some common trends that can be seen over time. Since November 2010, the HTTP                
Archive[2] has performed similar work to a search engine, but rather than indexing the sites’ content, the                
content is analysed for its properties. This data is then made public and available for further analysis. Using                 
this data, it is easy to see that popular websites have grown in many respects. Not only is more data being                    
sent, but each page is using more resources, due to rising integration with social media and other                
third-party services. This rise in the number of resources, and particularly the number of different              
hostnames, means that request parallelisation becomes more important for high-performance web          
networking.

As of mid-March 2013, the average number of resources on a page is 90, totalling 1,311 kB. These resources                  
are spread over an average of 15 different domains. This large number of domains is likely due both to                  
rising use of third-party services and to the use of so-called domain sharding: the process of using multiple                 
subdomains for secondary resource serving, such as images and stylesheets. This has been used             
enormously to supplement request parallelisation, since most mainstream web browsers only allow up to             
seven simultaneous connections to a single domain. By sharding domains into multiple subdomains, the             
number of connections available is increased substantially. However, this large number of parallel            
connections each requires a full TCP (and possibly SSL/TLS) handshake, costing between one and three              
RTTs.

The advent and gradual uptake of SPDY, and the comparable design of HTTP 2.0, is hoped to herald a great                   
‘unsharding’ process, where resources are moved back into a single domain, so that request multiplexing              
can have its greatest effect, since although SPDY and WP can multiplex all the requests on a particular                 
domain, a separate connection is required for each subdomain. For the average website, this brings the               
number of connections from a possible 90 down to 15, but even fewer would be preferable.

Another crucial factor in performing relevant experiments on web performance, is the network latency             
between the user agent and the server. According to data from Google[10], the average RTT experienced by                
Google Search in the United States is 50-60 ms; giving a latency of 25-30 ms. Assuming that this gives a fairly                    
good indication of the average or median latency for the broadband web as a whole, a latency of 30 ms                   
was used in my experimentation.

It should be noted that these figures solely represent the latency for broadband internet connections;              
cable or faster. The latency experienced on DSL connections, and on mobile internet services, tends to be                
larger, according to further data from Google[10]. With US telecoms providers Sprint and Verizon claiming a               
latency of around 100 ms in their terms of service[11] for LTE (often marketed as 4G), and latency ranging                  
from 200-450 ms for 3G services[12], it’s clear that any differences established between multiplexing             
protocols like WP and SPDY, and parallel connection protocols like HTTP, would be magnified when used               
on mobile internet services.
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4.1.2: Experiment
With the great diversity shown across the web; from simple, largely text-based websites like Wikipedia to               
full-blown web applications like Google Docs (with which this report was written) and media-rich pages like               
YouTube, the testing required to fully evaluate a new web protocol is worthy of a final year project in itself.                   
The key network characteristics like latency, bandwidth, data frequency, data rate, and data volume often              
vary substantially on a single page, let alone across a website, or the web as a whole. As a result, my priority                     
was to evaluate the improvements provided by WP in the average case for a modern website, and to                 
extrapolate likely trends for other kinds of web resource, depending on its differences from the average               
case.

The main website experiment used HTTP Archive data from 1st March 2013 and Google’s latency data for                
the Google Search page in 2012 as sources for the average web site structure and network latency                
respectively. I generated 89 text files containing “ipsum lorem” text (since the data content is not               
particularly relevant), and a single HTML document referencing the other files. I was careful to ensure that                
the total volume of all 90 resources was 1,311 kB; the average total resource size given by HTTP Archive.                  
Similarly, these resources were split across 15 different ‘domains’, although this was actually achieved with              
different port numbers, since this still triggers a separate TCP connection for each, but requires less setup.                
The site was served separately (but simultaneously) with HTTP, HTTPS, SPDY, and WP, using the applications               
provided in the appendix. Each protocol used a separate port range, with the HTTP test using ports                
1200-1214, HTTPS using 1300-1314, SPDY using 1500-1514, and WP using 1400-1414.

Since the Unix loopback interface exhibits far lower latency than the 30 ms average seen in the web, an                  
artificial latency was induced. This was performed[13] with the IP Firewall tool present in most Unix-like               
kernels. I was careful to add 30 ms latency on both inward and outward connections for each port used,                  
and to test that the net effect was accurate, by using the Wireshark[14] application to examine a dummy test.

The tests were performed sequentially by a testing framework written in Go. The framework is optionally               
provided with the number of times to perform each test; defaulting to one. For each protocol, the                
framework requests the page, storing the resulting data into a simple buffer. If multiple iterations have               
been requested, they are performed successively. Once all iterations have been performed, the total             
volume of data and number of resources received is checked and printed to screen, and the next protocol                 
is started. In each case, a single request is performed first, in case there is a noticeable delay on the first                    
request. The data from this request is dropped on receipt. To illustrate the structure of the test more clearly,                  
a simplified version of the actual framework is presented here. The full version of the framework is attached                 
in appendix 2. The servers are also in the appendices, but were essentially identical, so did not warrant                 
repeating.
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// test.go
package main

import (
"bytes"
"crypto/sha1"
"crypto/tls"
"errors"
"flag"
"fmt"
"io"
"log"
"net/browser"
"net/http"
"net/spdy"
"net/wp"
"os"
"strings"
"time"

)

func main() {

// Initialise.

// Run the tests.
t1 := HTTP()
t2 := HTTPS()
t3 := SPDY()
t4 := WP()

}

func HTTP() time.Duration {
// Warm up the connection with a dummy first test.
// Use Http() to run the actual tests.
// Display results.

}
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func HTTPS() time.Duration {
// Warm up the connection with a dummy first test.
// Use Http() to run the tests, but with encryption enabled.
// Display results.

}

func SPDY() time.Duration {
// Warm up the connection with a dummy first test.
// Use Spdy() to run the actual tests.
// Display results.

}

func WP() time.Duration {
// Warm up the connection with a dummy first test.

results := make([]*TestHandler, *times)

// Loop through the number of tests requested.
for i := 0; i < *times; i++ {

// Prepare the results structure.
results[i] = &TestHandler{

files: make([]*bytes.Buffer, 0, 1),
filenames: make([]string, 0, 1),
follow: true,

}

// Perform the tests.
start := "wp://localhost:1400/web/index_wp.html"
wp.Fetch(start, config, results[i])

}

// Display results.
}
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// TestHandler is created to use WP’s "new client API", as seen
// in the line wp.Fetch(start, config, results[i]) above.
// It stores the file names and their content in the parallel
// slices filenames and files. It also uses the init bool to
// record the start time exactly once, and updates the finish
// every time close is called, so the last call will overwrite
// the previous with the most up-to-date time.
type TestHandler struct {

filenames []string
files     []*bytes.Buffer
follow    bool
init      bool
id        int
start     time.Time
finish    time.Duration
size      int64
number    int

}

// Fetch uses Init to tell the client that a resource has been
// requested, and provides a unique ID for that resource. This
// makes it easy for the client to store the data in an array.
func (t *TestHandler) Init(s string, id int) error {

// Setup.
if !t.init {

t.start = time.Now()
t.init = true

}

t.filenames = append(t.filenames, s)
t.files = append(t.files, new(bytes.Buffer))
t.id++

return nil
}
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// Fetch uses Suggest to ask the client whether they wish to request
// a resource suggested by the server. Its cache timestamp is also
// provided. This TestHandler has the follow boolean set to whether
// it should follow links and suggestions, so we use that to decide.
// It assigns the arguments to _ to ignore them, since they do not
// influence the decision. This means that they do not get added to
// the stack frame.
func (t *TestHandler) Suggest(_ string, _ uint64) (bool, error) {

return t.follow, nil
}
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// This is the main function of the handler. Fetch calls Handle
// whenever data arrives on the connection; providing the client
// with a Response structure and the unique ID of the resource.
// The TestHandler pulls the content of the Response into its
// data buffer.
// The Close boolean on the Response is set to true if the stream
// that delivered it is now closed. This informs the client that
// if there is any further processing they wish to perform on the
// data, now is a good time to do it.
// We update the finish timer, number of resources fetched, total
// amount of data fetched, and check for any links in the document.
// By returning a slice of strings, with each giving a URL, Fetch
// Automatically handles the creation of new requests, and the
// resulting calls to Init.
func (t *TestHandler) Handle(r *wp.Response, id int) ([]string, error) {

// Error checking.

// Write the response data to the buffer.
io.Copy(t.files[id], r.Body)

// This was the final packet; the file is now complete.
if r.Close {

// Update stats.
t.finish = time.Since(t.start)
t.number++
t.size += int64(t.files[id].Len())

// If we're not just downloading one file.
if t.follow {

// Fetch the links.
links, err := browser.Links(t.files[id].String())
return links, nil

}
}

return nil, nil
}

// Fetch calls Close if ever an error occurs, so that
// the client may try to handle the error. It is also
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// called when all requested resources have been
// received and their streams closed. In this case,
// the supplied error will be nil.
func (t *TestHandler) Close(err error) error {

// We do not handle errors here, so
// we simply return it. It will then
// be returned by Fetch.
if err != nil {

return err
}

// Loop through files.
for i, file := range t.files {

// For each file, we open the original file, and calculate
// its SHA1 cryptographic hash, before getting the hash of
// the version received and stored in the files buffer.
// If the hashes do not match, we return an error.

}

return nil
}

// The HTTP/HTTPS/SPDY results structure is more simple,
// since there is less direct involvement with the API.
type HttpResults struct {

number int
size   int64
start  time.Time
finish time.Duration

}
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// Http is called once per test being performed.
func Http(s string, follow bool, results *HttpResults) {

// Initialise the test.

// Fetch the starting resource.
r, err := client.Get(s)

// Store the data into a buffer.
n, err := io.Copy(buf, r.Body)

if follow {
links, err := browser.Links(buf.String())

for len(links) != 0 {
// Initialise the request.

r, err = client.Get(links[0])
n, err := io.Copy(buf, r.Body)
l, err := browser.Links(buf.String())
links = append(links, l...)
links = links[1:]

}
}

results.finish = time.Since(results.start)

// Check the resources were received correctly.
}

func Spdy(s string, follow bool, results *HttpResults) {
// Spdy functions identically to Http, but with
// spdy.Transport, rather than http.Transport.

}

For the main test, the framework was run with ten iterations, since preparatory tests had indicated that                
more than this began to cause errors in Wireshark’s packet capturing functionality. This is likely due to the                 
large data throughput (over 1 MB per test, with ten tests per protocol and four protocols, in addition to TCP                   
and TLS traffic). I would have prefered to have gathered more data than this, but the reliability of the data                   
was more important than its volume.
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4.1.3: Results
The full data set is available in the packet capture, which contains the entire set of data transmitted during                  
the test. From this, I extracted the key data for each iteration. This consisted of the number of packets                  
transmitted, the total number of bytes this comprised, the total time taken to transmit all data, and the                 
average number of bytes sent per packet. These statistics were generally found using Wireshark’s filters to               
isolate a single TCP connection and analyse its characteristics. The one exception is the total time statistic.                
Since Go’s net/http library (and thus my net/wp library) leaves TCP connections open until they are explicitly                
closed in order to reuse connections, the statistics provided by Wireshark for the duration of the               
connection bore little relationship to the amount of time sent to transmit the data. To account for this, the                  
amount of time between the final data packet and the first FIN packet of the TCP termination handshake                 
was subtracted from the total time. This adjustment was made to all connections, even in cases where the                 
gap was very small, to ensure consistency.

Since the first connection on each protocol was used to ‘warm up’ the connection, its results often varied                 
noticeably from the rest of the data, and was thus ignored. For example, the first test on HTTP had 60%                   
fewer bytes per packet than the other ten tests, whereas SPDY used 74% fewer packets in its first test.                  
Without these extraneous results, the data was fairly consistent within each protocol, so the low number of                
tests would appear not to have had a drastic effect.

4.1.4: Analysis
4.1.4.1: SPDY
Before discussing the results as a whole, the results shown for SPDY should be explained. Whereas the Go                 
standard library was used for HTTP and HTTPS, and I wrote the WP library, finding Go support for SPDY was                   
challenging. I was only able to find two libraries; jmckaskill’s gospdy[15], and shykes’ spdy-go[16]. Since spdy-go               
is still under active development and is not complete (tests with the Chrome web browser gave errors), I                 
opted to use gospdy. This package contained some minor bugs, which I fixed (and later pushed upstream),                
but functioned correctly; providing a SPDY v3 client and server, which I tested with Chrome. As can be seen                  
in the data, however, this library performed worse than every other protocol on all four metrics.

I haven’t been able to gain a full understanding of the code, since it uses a fundamentally different                 
application structure from the other three libraries, so I cannot give a reliable explanation for its results, but                 
it would appear to be sending a large volume of additional data. The reason for this is unclear, since the                   
data received at the application level is identical to the other protocols.

I suspect that the problem may be due to an architectural fault, since the package serves both SPDY and                  
HTTPS, depending on the Next Protocol Navigation (NPN) choices received. It is possible that this additional               
complexity may have caused the data problem.

Since completing the tests, I have begun my own implementation of SPDY in Go[17], although unfortunately,               
it will not be in a state suitable for performance evaluation until after the completion of the project. If the                   
project was allowed to continue for another two to three months, I would be able to continue the                 
development of this SPDY library to the same extent as the project’s WP library, and could implement the                 
library rewrite discussed in Structure Deficiencies (§3.5.2). A further series of tests could then be performed               
on comparable implementations of SPDY and WP, which would give a realistic comparison of their              
respective performance capabilities.

Development of WP has provided a far deeper understanding of protocol structure and the             
implementation of different kinds of protocol. The result of this experience is that the development of my                
SPDY library has been far quicker than my implementation of WP, particularly when compared to the initial                
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development in C, and then Go, at the beginning of the project. Using the structure intended for the WP                  
rewrite in SPDY has given particular improvements in reduced coupling and greater cohesion within the              
library. Although the SPDY library is currently under private development, it will be released publicly under a                
revised BSD license in the next two months[17].

4.1.4.2: Number of Packets Sent
The first metric used is a simple count of the number of packets sent by each protocol. The results                  
immediately show that something is very wrong in the SPDY implementation, as discussed above. A              
comparison between HTTP and HTTPS shows that encrypted sessions use an average of 20 packets more               
per domain, which are probably used to complete the TLS connection; such as sending the server’s               
certificate. WP uses slightly fewer packets than HTTPS, which is perhaps due to the reduced data volume                
requiring fewer TCP packets. WP still requires more packets than HTTP, due to the overhead caused by TLS.

4.1.4.3: Data Transmitted
Since the application-layer data being sent was identical between protocols, the total data volume is an               
indication of each protocol’s sum overhead. Unsurprisingly, this gives very similar data to the number of               
packets sent, since the results will largely be affected by TLS overhead. WP’s slightly lower overhead than                
HTTPS (and HTTP, once TLS is taken into account) will mostly be due to using fewer TCP sessions, and thus                   
having less overhead from additional handshakes. The savings in header size is unlikely to have reached a                
single kilobyte, since these requests were not sending many HTTP headers, so its effect on the overall data                 
transmission volume will be minimal.
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4.1.4.4: Data per Packet
Showing much the same results as the previous two metrics, the number of bytes per packet remained                
fairly consistent between tests, with WP giving the most variation. SPDY’s very poor data per packet rate                
would suggest that it was sending a huge number of very small packets, since this would reduce the                 
average packet size, while still sending a large data volume, as the previous graphs would suggest. Note                
that the difference between SPDY and the other protocols is greatest in the packet count results, which                
would corroborate this further.
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4.1.4.5: Time
This graph shows the total amount of time taken to complete the transmission, as explained in section 4.3.                 
The results clearly favour WP over the other protocols, with SPDY performing far better (in comparison to                
the other protocols) than previously. This would indicate that had SPDY not sent so many small packets, it                 
would likely have had a significantly reduced transmission time. Given its structure, I would expect a time                
performance somewhere between HTTP and WP, since although it has the same TCP gains as WP, it has a                  
more verbose structure, so is unlikely to be quite as quick as WP.
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WP’s results are quite staggering: performing between 2.68x and 4.39x as quickly as HTTP, and between               
3.66x and 5.95x as quickly as HTTPS. According to the packet capture, the HTTP library decided not to use                  
chunked Transfer-Encoding, so each resource was read into a buffer, then sent as a whole, once the data’s                 
length had been read to set the content-length header. It’s possible that this will have been slower than                 
WP’s streaming approach, where the data will have been sent in a stream of chunks (32 kB in size, due to                    
the use of the io.Copy function). If the I/O from disk was slow, sending the data as it is read may have been                      
quicker, since less work would be done once the I/O was finished. Furthermore, the use of fewer TCP                 
sessions, and the resulting drop in the number of TCP handshakes which have to take place (each costing a                  
full 60 ms round-trip), will have accelerated the processing, since the request can be sent sooner, so the                 
response will be processed sooner.

The main factor in WP’s temporal performance, I suspect, is WP’s circumvention of TCP’s Slow-Start              
mechanism. As mentioned in the interim report, TCP uses a congestion window (CWND) to avoid network               
congestion. This CWND specifies the number of segments which can be sent between acknowledgements             
(ACKs) from the recipient. Since each ACK takes a whole round-trip (RTT), the CWND has a large effect on                  
the data transmission rate in high-latency connections. This window is grown gradually with each             
successful ACK, but this takes time. Since HTTP and HTTPS will be using many more TCP connections, they                 
will spend more time in the early phases of Slow-Start when the CWND is small. While Slow-Start does not                  
have an appreciable effect on overall efficiency in long-term connections, it has a dramatic effect on brief                
connections which transmit small files, as is often the case in the modern web. According to data from HTTP                  
Archive, the average non-image resource takes up just 15.86 kB, while the initial CWND is between one and                 
six segments (depending on kernel), with each segment containing up to 1,460 bytes[18]. This gives an initial                
limit of 8.55 kB per RTT. In recent versions of the Linux kernel, the initial CWND (initcwnd) has been                  
increased to 10 segments (14.26 kB per RTT).

With even the Linux kernel’s generous initial CWND of 10, the average resource will be split into multiple                 
windows, taking at least 2 RTTs to send. However, if we can use the same TCP session for multiple requests,                   
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as in SPDY and WP, then only the first resource will suffer the effects of Slow-Start, since by the time                   
subsequent requests are made, the CWND will have grown larger, meaning that a large proportion of               
resources will fit into a single window, taking a single RTT. In high-latency connections, this can have a huge                  
effect on the connection’s performance. In the tests run for this experiment, this reduces the time taken to                 
transmit a resource by at least 60 ms, in addition to the extra RTTs used to initiate the TCP handshake.                   
Assuming a single RTT for each, this leaves HTTP taking 120 ms longer than WP to send the same data,                   
without the other improvements provided by frame interleaving and the avoidance of head-of-line issues.

4.1.5: Extrapolation
Since the main savings made over HTTP depend on avoiding the effects of TCP handshakes and slow-start,                
the performance improvements provided by WP will be at their greatest when requesting many resources              
from the same domain. Single requests to additional domains will give almost identical performance, since              
WP will still have to use a new TCP connection. With single-resource requests, the improvements will be                
limited to the size reductions provided by binary framing. Although this will give slightly higher performance               
than HTTPS, the overhead induced by TLS means that pages with a single resource per domain will be                 
quicker in unencrypted HTTP. In contrast, pages with many resources per domain will yield large              
performance benefits, as shown in the test above.

The above applies to ‘generic’ cases with no server-writer optimisations. Just as time has seen servers ‘shard’                
their domains by creating additional subdomains to allow web browsers to make more simultaneous             
parallel connections, server-writers aiming to improve their websites’ performance with WP or SPDY would             
need to conduct a process described as ‘unsharding’, where the subdomains are coalesced into a single               
domain, to minimise the number of domains used. Furthermore, careful and thorough use of server              
push/suggest would give additional performance gains, by sending resources without waiting for their            
request; thus saving another RTT.

4.2: Streaming Resource Testing

4.2.1: Preface
Since the web is now used for far more than serving documents, WP needed to be tested in other ways too.                    
Although a comparison between WP and the Real-time Transport Protocol (RTP) would have been very              
informative for its effectiveness in true streaming media situations, there is no current support for RTP in                
Go, and time constraints prevented me from writing my own library for it. However, one streaming data                
situation for which HTTP is used, and in which it could be compared against WP, is the use of AJAX for                    
continuous data delivery in web pages.

AJAX, Asynchronous JavaScript And XML, is a technology where web application JavaScript can use the              
browser’s networking API to make asynchronous requests over HTTP. These requests are asynchronous in             
that the application registers a callback function with the request, which is run on the response’s arrival (or                 
lack thereof). In the meantime, execution of the application continues. This has had an enormous influence               
on the web culture, since web pages can keep themselves up-to-date with global change. Where previously               
pages would need to be refreshed occasionally, we now have rich applications like Twitter and Facebook,               
which keep up to date constantly, like a traditional desktop application. However, in this circumstance, only               
HTTP (or HTTPS, where appropriate) is available. Even though the browser’s network engine can make use               
of many other protocols like RTP and WebSockets, these are not made available to the JavaScript API.
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4.2.2: Experiment
To demonstrate the difference made by switching to WP, I created a sample application modelled on               
Twitter’s page, where there is a continuous stream of incoming data, arriving at a varying interval. While                
HTTP’s transactional nature can work in this kind of use, WP’s streaming responses thrive in it. The structure                 
of the application was fairly simple, and is shown in Figure 1 below. On the server, data becomes available                  
at a random interval, between 1 ms and an upper bound set from a command-line argument. This upper                 
limit was set to 100 ms, 200 ms, 300 ms, 400 ms, 500 ms, 600 ms, 700 ms, 800 ms, 900 ms, 1 s, 2 s, and 5 s,                            
over the course of the tests. Each time, a random amount of data was produced, ranging from 1 B to 1 MB,                     
to simulate the fact that the amount of data available to Twitter users will vary over time. Whenever this data                   
was made available, it was immediately given to an HTTP server and a WP server, simultaneously. Each                
server then had to give the data to a single client as quickly as possible.

Figure 1: A diagram of the Streaming Resource Test[19].

Since any good HTTP client in this situation would keep the TCP connection open, and make successive                
requests, there seemed little point in measuring the number and size of the packets being sent, as they                 
would be fairly similar between the two protocols. Accordingly, the main measurement was of time, since a                
protocol that brings back the AJAX data sooner will give a more responsive feel to the web application. As                  
the data was made available to both servers simultaneously, the main factor of comparison was the arrival                
time. As a result, both clients stored the number of bytes received, and the receipt time, for each iteration.                  
The data itself was not stored, to save time and memory use. Once the experiment was complete (after a                  
fixed number of iterations provided by the command-line), the results of each protocol were compared;              
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making sure that both clients had received the same amount of data each time. All this data (the iteration                  
number, data creation interval, data size, and arrival time for each protocol) was then collected and written                
to a Comma-Separated Value (CSV) file provided at the command-line.

The WP client was fairly simple to design; the client makes a single request, and the server provides a                  
streaming response until the experiment ends, at which point it sends a final Data Content frame with the                 
‘Finish’ flag set. My initial idea for the HTTP client was to use simple polling, where the client would make                   
requests at a set interval, and hope to find the interval with the greatest efficiency. However, it immediately                 
became clear that this would be neither effective nor fair. In the situation of server-initiated data streams                
with continuous delivery, real-world web applications use Comet, which is a family of technologies used to               
enable stream-like data in HTTP. The most common and simple form of Comet is a technique called long                 
polling, where the client makes a single request and the server simply doesn’t respond until data becomes                
available. When the client receives the response, it starts to process the data and immediately makes               
another request. This is fairly efficient and makes best use of HTTP in the situation.

Accordingly, the HTTP client in this experiment used long polling, with the server returning a 204 No                
Content response at the end of the experiment, to signal the finish. This was very simple to implement, and                  
provided all the functionality needed. As with the previous experiment, a flat latency of 30 ms was induced                 
in the network; giving a web-average RTT of 60 ms. Although encrypted WP was compared against               
unencrypted HTTP, this did not have a noticeable effect on the experiment, since the additional two RTTs                
required by the TLS handshake take place only once, and symmetric-key encryption has become incredibly              
quick.

To illustrate the structure of the test from an implementation perspective, a simplified form of the actual                
application is included below. The unmodified version is included in the appendices. Where the atomic              
resource testing used multiple servers in separate applications, to enable testing with many ports per              
protocol and four protocols, this test only required one port per protocol and two protocols. As a result,                 
the entire test is performed in a single application using six goroutines across four threads on four                
processors. These six goroutines were the main function, the two clients, two servers, and the data               
generation function, SpawnData.

package main

import (
"bytes"
"crypto/tls"
"flag"
"fmt"
"io"
"io/ioutil"
"math/rand"
"net/http"
"net/wp"
"os"
"sync"
"time"

)
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func Random(out []byte) {
// Random fills 'out' with pseudorandom data.

}

func SpawnData(a, b chan []byte, n int, t time.Duration) {

// Wait for both servers to connect.

for i := 0; i < n; i++ {
// Introduce random wait between 0.001 and t seconds.
time.Sleep(wait)

// Generate random amount of random data up to 1 MB.
data := make([]byte, size)
Random(data)

// Send data to both.
}

// Signal the end of data.
close(a)
close(b)

}

type HTTPServer struct {
c chan []byte
s chan struct{}
o *sync.Once
f func()

}
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// ServeHTTP is called once per data burst, when the client sends
// its long poll.
func (s *HTTPServer) ServeHTTP(w http.ResponseWriter, r *http.Request) {

// Communicate the connection to SpawnData.

// Receive data.
data, ok := <-s.c
if !ok {

// Data generation has ended.
w.WriteHeader(204)
return

}

// Send data back to the client
_, err := w.Write(data)
if err != nil {

// Handle the error.
}

}

type WPServer struct {
c chan []byte
s chan struct{}
o *sync.Once
f func()

}
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// ServeWP is called once when the connection is initiated.
func (s *WPServer) ServeWP(w wp.ResponseWriter, r *wp.Request) {

// Communicate the connection to SpawnData.

// Receive data.
for {

data, ok := <-s.c
if !ok {

// Data generation has ended, so the
// connection ends.
return

}

// Send data back to the client.
_, err := w.Write(data)
if err != nil {

// Handle the error.
}

}
}

type Event struct {
Received time.Time
Size     int

}

type Results struct {
Events   []*Event
Protocol string

}

func (r *Results) Add(e *Event) {
r.Events = append(r.Events, e)

}
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func (r1 *Results) Compare(r2 *Results) string {
// Create and initialise the results file.

for i, ev1 := range r1.Events {
// Compare the results and write them to the file.

}
}

type HTTPClient struct {
done    chan<- struct{}
client  *http.Client
Results *Results

}

func (c *HTTPClient) Run() {
for {

// Start the long polling.
res, err := c.client.Get("http://localhost:1337/")
if err != nil {

// Handle the error.
}

// End when the 204 response is received.
if res.StatusCode == 204 {

break
}

// Store the amount of data received.
_, err = io.Copy(counter, res.Body)
if err != nil {

// Handle the error.
}

// Store the results.
}

// Inform main that the HTTP client has finished.
c.done <- struct{}{}

}

// The WP client uses the new client API, as
// discussed in the code in section 4.1.2.
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type WPClient struct {
done    chan<- struct{}
counter *Counter
Results *Results

}

// Init, Suggest, and Close do nothing, since we are
// merely storing the amount of data collected from
// one stream, so they are not shown here.

// Handle is called once per data burst.
func (c *WPClient) Handle(res *wp.Response, _ int) ([]string, error) {

// Make sure the request was successful.
if res.StatusCode != 0 {

// Handle the error.
}

// Count the number of bytes received.
_, err := io.Copy(c.counter, res.Body)
if err != nil {

// Handle the error.
}

// Store the results

return nil, nil
}

func (c *WPClient) Run() {
wp.FetchJust("wp://localhost:1338/", new(tls.Config), c)

}

// These command-line flags are used to set the test parameters.
var n = flag.Int("iterations", 10, "number of times to send data")
var t = flag.Duration("time", 2, "max time between data")
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func main() {

flag.Parse()

// Initialise and start data creation.
go SpawnData(httpc, wpc, starthttp, startwp, *n, *t)

// Create the HTTP server.

// Create the WP server.

// Start both servers.
go http.ListenAndServe(":1337", httpServer)
go wp.ListenAndServe(":1338", "cert.pem", "key.pem", wpServer)

// Create the HTTP client.

// Create the WP client.

// Start both clients.
go httpClient.Run()
go wpClient.Run()

// Wait for both clients to finish.
<-done
<-done

// Print and write results.
}

4.2.3: Results
The full data set is provided in the appendix zip folder in a series of CSV files. For each test, the arrival time                      
at the WP client was subtracted from the time of the HTTP client for each piece of data. This gave a time                     
difference between the protocols, where faster responses by WP gave a positive difference, and faster              
responses by HTTP gave a negative difference. By averaging this delta, an overall estimation of the               
protocols’ difference can be seen. With fluctuations in the network, and with the varying data payload, the                
deltas varied by a reasonable amount, but this was mitigated by taking the average over a large data set. For                   
the final experiments, 500 iterations were used for each presentation interval.
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As the data shows, once the maximum interval between data presentation reaches about 1.3 seconds, the               
performance of HTTP and WP become roughly equal. Beyond this point, the improvement provided by WP               
will likely be little more than the effect of the random interval, since the HTTP request to begin the next long                    
poll will almost always have arrived before data becomes available. As the interval grows, the probability of                
data being presented before the request arrives drops off to negligible levels. With a network latency of 30                 
ms, data arriving less than 60 ms after the previous presentation will do so before the request arrives, since                  
the next request will not be sent until the previous response has taken 30 ms to return to the client, and it                     
will then take another 30 ms to reach the server.

When the maximum interval between data presentation is less than about one second, a very clear               
difference between the two protocols can be seen. While HTTP needs to execute a full request/response               
cycle for every set of data, WP can simply send the data as quickly as it is presented, allowing very quick                    
response times. Not only does this give great performance, but it was also very easy to implement, with the                  
WP server simply receiving the data, and writing it to the ResponseWriterin a loop. This simplicity means                 
that if the server wished to do some additional processing on the data, it would be very clear how to make                    
the additions, particularly if a consistent state needed to be kept, such as compression headers, since the                
entire process takes place in a single long-running function. By comparison, each iteration in HTTP takes               
place in a separate call to the function, so any required state must be stored elsewhere.
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4.2.4: Analysis
Somewhat unsurprisingly, the driving factor in the difference in performance between the two protocols in              
this experiment, is the relationship between the average data presentation interval and the latency of the               
connection. Where HTTP requires at least one full RTT between data bursts, WP requires at most half that,                 
since the TCP connection is likely to be fully-open (where TCP Slow-Start has concluded, and CWND has                
reached the advertised maximum segment size (MSS)). This will often allow multiple data bursts to be sent                
within a single ACK window, meaning that successive transmissions can be sent before the previous frame               
has reached the client. In cases like Twitter, and various other social media (particularly global searches               
within those media), the intention will be to send almost limitless data as quickly as possible. In situations                 
like these, streaming protocols like WP provide a very clear advantage over transactional protocols like              
HTTP.
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5: Future Work

5.1: Implementation Development
As with the net/http package, each TCP connection received by a WP server is handled in a separate                 
goroutine; a concurrent processing unit far more lightweight than a thread. This allows a server to maintain                
tens, or even hundreds of thousands of simultaneous connections. One of the early goals of the WP                
package was to provide further concurrency, to run each separate stream in its own goroutine. This would                
enable long-running streaming responses to run concurrently with more conventional         
requests/responses. However, while using net/http as a starting point had allowed a quick development             
process for the initial implementation, it left substantial complexity and structure appropriate for HTTP, but              
excessive for WP. This complexity confounded my efforts to implement the inter-stream independence            
necessary for concurrent handling of each stream, as discussed in section 3.5.2.

To rectify this issue, a substantial rewrite of the library is required. This would involve restructuring the                
connection object into two separate objects; a single connection construct to manage the coordination of              
streams and writing to the network, and an additional structure for each stream, which keeps track of the                 
details of that stream and defers to the connection for other tasks. This would allow each stream to run                  
independently and to leave the race-prone managing of the interrelation between streams to the             
connection object.

Although the library is sufficiently complete for testing and evaluation, further work is required to add final                
details like caching support, content-type detection, and proper handling of Data Requests with the             
‘Upload’ flag set. None of this is particularly lengthy or challenging work, but it too depends upon the                 
rewrite above, since upload requests and server pushes do not fit neatly into the current structure of                
single-requests/single-responses created to control HTTP.

The library is publicly available under a revised BSD license at https://github.com/SlyMarbo/wp, although            
further documentation and refinement are scheduled in the coming months to encourage use and             
development. One particular planned improvement discovered in the development of my SPDY library            
(discussed in §4.1.4.1) is the use of Google’s Next Protocol Negotiation (NPN) extension to TLS, which very                
simply allows a single application to serve both HTTPS and other protocols like SPDY and WP, with clients                 
announcing other supported protocols, and the server defaulting to HTTPS if no other protocols are              
declared. This allows the use of advanced protocols with those clients that support them, without              
abandoning those that do not.

5.2: Adoption Requirements
The first factor in enabling widespread adoption of the protocol is to add the Next Protocol Negotiation TLS                 
extension to the implementation, so that clients which support WP may use it, but those that do not are                  
served by other protocols, such as SPDY or HTTPS. By adding this into the WP package directly, it becomes                  
more useful without requiring additional work by the server-writer. If an efficient SPDY library was added to                
the Go standard library, then the three protocols (SPDY, HTTPS, WP) could add a mechanism to theirinit()                 
functions to allow registering of the protocols to affect a protocol-agnostic server infrastructure, as is the               
case with the Imagepackage. With this package, the software developer can use a ‘null import’ of various                 
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image format packages (such as gif, png, and jpeg) to add their decoding/encoding capabilities to the base                
Imagepackage, so that the Image.Decode function can decode a wide range of image types. A similar                
infrastructure for web protocols would simplify the server-writer’s job substantially, while keeping the            
implementation of each protocol separate and leaving protocol choice up to the user.

The other main effort required for adoption is the adding of WP to at least one popular web browser. This                   
was outlined in the initial plan as a deliverable for the project, but it quickly became clear that such an effort                    
would be far beyond the scale of a final year project, given the enormous complexity of modern browsers’                 
network engines. Although this was not possible in this project, it is an absolute requirement for the                
success of the protocol. With SPDY supported in Google Chrome/Chromium, Mozilla Firefox, and Opera,             
and support rumoured to be coming in Microsoft Internet Explorer 11, SPDY is still only used by a very                  
small proportion of web servers. According to W3Techs, SPDY is supported by roughly 1% of web servers[20].                
WP would require equal support in web browsers, and further support in implementation support to reach               
the same level of adoption in servers.
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6: Conclusions
Both the theory and the experimentation clearly show that multiplexing requests onto a single TCP session               
provides a substantial performance benefit, with little extra complexity required. The use of streaming data              
transmission makes packet interleaving more effective, and makes better use of limited-bandwidth           
connections. With the HTTPbis working group developing HTTP 2.0, using SPDY v2 as the starting point[7],               
this kind of protocol will probably underpin the web of the coming years.

There are two main obstacles to the adoption of HTTP 2.0, SPDY, and WP over HTTP 1.1 and 1.0. The first is                     
protocol support in web servers. With SPDY already supported in Apache httpd through mod_spdy[21], and              
Nginx with the spdy patch[22], it is quickly gaining traction in the packaged web server world. Although less                 
ground has been made in programming language web frameworks, like Django, support in Node.js[23] and              
Jetty (Java)[24] have increased server support substantially. Bringing support to Ruby on Rails, Microsoft’s IIS,              
Go, and Django (Python) would result in a large majority of web servers supporting SPDY, once updated to                 
the latest version.

Implementing client support is the second big task, and arguably the more difficult. While web servers are                
generally managed by the technologically-adept, web browsers have a long history of problems with             
updates. While reliable statistics are difficult to find, some data suggests that as much as 6.8% of internet                 
users are browsing with Internet Explorer 6[25], which was released in 2001. Although some browsers now               
provide an automatic update system, this doesn’t solve the problem caused by older versions, with the data                
suggesting that only 32.85% of users have the most recent version of their chosen browser[27]. This means                
that even bringing support for new protocols (like HTTP 2.0 and WP) to all modern browsers (no small task                  
in itself) would only actually reach roughly a third of web users.

This is a well-known problem for development of the web platform, since new technologies like HTML5 and                
CSS3 have struggled for widespread adoption when the majority of web users’ browsers do not support               
these new features. While the issue is best-known for its effect on the client-side features provided to the                 
web developer, it has a similar effect on high-performance protocols like WP and SPDY. However, while new                
additions to the web platform require the developer to modify their application or website to gain their                
advantages, making use of a new protocol is generally easier. With the use of packages like net/wp and                 
mod_spdy, the benefits of the protocol can be gained with minimal effort, even if the full advantages made                 
available aren’t harnessed.
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7: Reflection
This project has taught me a great deal about computer networks; particularly web browser networking.              
There is an enormous difference between knowing the theory of network protocols and gaining the              
practical experience of designing and implementing them. Creating WP has bridged that gap for me and               
has also enabled me to solidify my experience with the Go language. Furthermore, as discussed in the                
analysis of SPDY’s test performance (§4.1.4.1), the process of developing net/wp has given me a far better                
understanding of protocol implementation structure and the execution styles of different protocols. My            
own SPDY library has already made use of this understanding by using the sort of structure I envisage for                  
the rewrite of net/wp, which has resulted in a far better implementation of SPDY, with considerably reduced                
coupling.

This sort of broad experience in protocol implementation is very valuable and has improved my networking               
skills enormously. It has also taught me that before implementing a network protocol, great care must be                
taken to identify the fundamental structure of the protocol and to design the implementation structure              
accordingly. Had I done this at the beginning of the project, I would probably have designed net/wp more                 
effectively, as I have done in the SPDY library I have since started.

In addition to this practical experience, the project has given me the opportunity to improve my efficiency                
and time management skills. Whereas university assignments are designed to be achievable, research is not              
always so simple. Often a research project turns out not to be possible, or not to provide definitive results.                  
In research it is important to be able to accept that something may not be feasible within a sensible time                   
frame, and to move on to other work before spending too much time on an unproductive task. Though                 
many students may come across this for the first time in the workplace, this project gave me the opportunity                  
to experience a true research project in a controlled environment, and when progress was declining in the                
development of stream-level concurrency, I was able to recognise the situation and move on to important               
testing and evaluation, instead of wasting time trying to add one feature.
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Table of Abbreviations
Note: Many terms used in this report are written in block caps, but are not abbreviations, such as SPDY,                  
PING, and C. Accordingly, any terms found in the report which are not listed here should not be considered                  
abbreviations. Furthermore, some units, such as megabyte and gigabyte use full caps to differentiate from              
other units (like the prefix milli- and the unit bit) which use the lowercase form of the same letter.

ACK Acknowledgement, used in TCP MAC Message Authentication Code

AJAX Asynchronous JavaScript And XML MitM Man in the Middle attack

API Application Programming Interface NPN Next Protocol Negotiation

BSD Berkeley Software Distribution RTP Real-time Transport Protocol

CSS Cascading Style Sheets RTT Round-Trip Time

CSV Comma Separated Values SSL Secure Socket Layer

CWND Congestion Window TCP Transmission Control Protocol

FIFO First-In, First-Out TLS Transport Layer Security

HSTS HTTP Strict Transport Security UDP User Datagram Protocol

HTML HyperText Markup Language URI Uniform Resource Identifier

HTTP HyperText Transfer Protocol URL Uniform Resource Locator

HTTPS HyperText Transfer Protocol Secure UTF-8 UCS Transformation Format - 8-bit

IIS Internet Information Services WP Web Protocol

I/O Input/Output XML Extensible Markup Language

LTE Long Term Evolution
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Appendices

Appendix 1: WP Specification.pdf
● The definitive specification for WP.

Appendix 2: c1031815.zip
● Zip folder containing:

○ README.txt, which explains the contents further.
○ Atomic test (test 1)
○ Streaming test (test 2)
○ Go libraries
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