

Activity Monitoring App
Module Code: CM3203

Student Number: C1519696

Author: Nathan Melly

Supervisor: Dr A I Abdelmoty

Moderator: Dr C Perera

Word Count: 24758

2

Abstract

Millions of people use wearable activity tracking devices to monitor their activity and

maintain a healthy lifestyle. As a result, a wealth of data is gathered in these devices that can

be used to learn about the user that recorded it. This project explores the creation of a mobile

application to be used in conjunction with a Fitbit activity tracker, in order to build a user

profile based on data gleaned from the device. Furthermore, the application will alert the user

when they deviate from this profile.

3

Acknowledgements

I would like to express my gratitude to Dr Alia Abdelmoty for her guidance and support

throughout this project.

4

Table of Contents

Abstract .. 2

Acknowledgements ... 3

Table of Contents .. 4

Table of Figures ... 6

Introduction .. 8

Project Aims .. 8

Personal Aims .. 8

Project Scope ... 8

Approach ... 9

Assumptions .. 9

Summary of Outcomes .. 10

Background ... 11

The Problem .. 11

Fitbit Fitness Trackers .. 11

Related Existing Software .. 11

Methods and Tools .. 14

Personas and Requirements .. 16

Personas .. 16

Requirements .. 18

Specification and Design ... 30

Use Cases .. 30

Data Mining and the Dynamic User Profile .. 34

User Interface Design .. 39

Heuristic Evaluation ... 44

Implementation .. 59

Software Architecture Diagram ... 59

Data Flow Diagram .. 60

Class Diagram .. 61

UI Code .. 62

Profile Building Code ... 64

Data Mining Code .. 71

Fitbit Communication .. 84

5

Database ... 85

Other Notable Code ... 85

Packages Used ... 86

User Interface .. 87

Results and Evaluation .. 92

Testing and Evaluation of Data Mining Approaches ... 92

Evaluation Against Requirements .. 94

Future Work .. 99

Network Errors .. 99

Changing Classifier ... 99

Adjusting Decision Tree Classifier Grouping Method.. 99

Remove Sleep Datasets ... 99

Classifying Days ... 99

Authentication Bug .. 99

Further Testing .. 100

Manual User Input ... 100

Conclusions ... 101

Reflection on Learning .. 102

Appendices ... 103

Appendix A .. 103

References .. 109

6

Table of Figures

Figure 1 Use Case Diagram .. 34

Figure 2 Colour scheme ... 39

Figure 3 Profile Page Design .. 40

Figure 4 Activity Page Design ... 41

Figure 5 Exercises Page Design .. 42

Figure 6 Exercise Page Design.. 43

Figure 7 Alerts Page Design ... 44

Figure 8 Software Architecture Diagram.. 59

Figure 9 Diagram of data flow within system ... 60

Figure 10 Class Diagram .. 61

Figure 11 Navigation ... 64

Figure 12 Getting a Profile ready to update ... 65

Figure 13 Requesting data ... 65

Figure 14 Creating profile activity values ... 66

Figure 15 Building profile activity values ... 67

Figure 16 Decision Tree creation ... 68

Figure 17 Creation of deviations after classification .. 68

Figure 18 Creation of deviations (detail) .. 69

Figure 19 Creation and use of graph-based classifiers ... 70

Figure 20 Retrieval of intraday data .. 72

Figure 21 Processing of minute datasets into hourly datasets for decision tree 74

Figure 22 Decision tree hourly datasets stored in database ... 75

Figure 23 Decision tree classification ... 76

Figure 24 Example of a decision tree classifier... 77

Figure 25 Initial retrieval and processing of data for graph-based classifier 78

Figure 26 Creation, formatting and storage of hourly datasets .. 79

Figure 27 Removing datasets from when the user was not wearing their device 81

Figure 28 Simulating a graph reading .. 82

Figure 29 Graph-based classifier boundaries ... 83

Figure 30 Profile Page Design .. 87

Figure 31 Profile Page Screenshot ... 87

Figure 32 Profile Page Screenshot (no profile) ... 87

file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300556
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300557
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300558
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300559
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300560
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300561
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300562
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300563
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300565
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300566
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300579
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300585
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300586
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300587

7

Figure 33 Activity Page Design ... 88

Figure 34 Activity Page Screenshot .. 88

Figure 35 Exercises Page Design .. 89

Figure 36 Exercises Page Screenshot ... 89

Figure 37 Exercise Page Design .. 90

Figure 38 Exercise Page Screenshot ... 90

Figure 39 Alerts Page Design ... 91

Figure 40 Alerts Page Screenshot .. 91

Figure 41 Test results for both classifiers ... 93

file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300588
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300589
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300590
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300591
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300592
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300593
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300594
file:///C:/Users/natha/Documents/_Uni/_Computer%20Science/YEAR%204/CM3203%20INDIVIDUAL%20PROJECT/Final%20Report/report_first_draft.docx%23_Toc8300595

8

Introduction

Devices such as smartphones, smart watches, and activity trackers have become ubiquitous

in recent years. Users willingly give their personal information, such as location, health,

activity, and sleep data, to these devices, and many people use them to track their fitness and

daily activity. This data allows people to quantify how active they are, and users are likely to

be motivated to do more exercise and track their progress as a result.

The aim of this project is to see how a user can be profiled based on data extracted from a

Fitbit activity tracker, and what insights can be gained about a user regarding their lifestyle. I

will create a mobile application that stores and analyses the extracted data. The data will be

mined in order to build a profile for a user which will be displayed within the application. This

profile will provide the user with information about their daily activity.

The appliĐatioŶ ǁill ďe aďle to tell the useƌ ǁheŶ theǇ aƌe deǀiatiŶg fƌoŵ theiƌ ͞Ŷoƌŵal͟
behaviour (i.e. if they are less active than usual). This will be useful for users as they will be

able to see clearly how they are deviating from their regular activity, allowing them to rectify

the deviation by being more active, thus maintaining (or improving) their profile.

This project will see two approaches to mining the user data used to build a model of the user,

which can subsequently be used to classify new datasets. These approaches are a decision

tree-based approach and a cumulative graph-based approach. Both classifiers will be outlined

in this report before being compared to each other in the Results and Evaluation section of

the report.

Project Aims

I aim to design and develop an android application that analyses data gathered from Fitbit

devices and generates a user profile based on this data. The application should be able to

alert the user when they are deviating from their profile. I aim to develop functionality within

the appliĐatioŶ that ǀisualizes hoǁ the ǀalues iŶ the useƌ͛s pƌofile have changed over time

and allows the user to see how their daily statistics compare to these historic values.

Personal Aims

Before this project, I had some experience with JavaScript and no mobile application

development experience, so I wanted to use this project as an opportunity to learn a new

JavaScript framework and gain some experience in developing mobile applications.

Project Scope

The project scope evolved as the project progressed. The main aim of the project was

originally to design and implement a mobile application that could build a user profile from a

useƌ͛s data aŶd alert the user when they deviated from this profile. This core aspect of the

project did not change and remained the main focus of the throughout, but other aspects of

the application planned at the start of the project eventually lost precedence to new ideas

that were developed when creating the application, due to understanding different ways that

a useƌ͛s Fitďit data Đould ďe utilised. Thƌoughout this ƌepoƌt, I ǁill eŶdeaǀouƌ to highlight areas

where plans were changed and provide insights as to why these decisions were taken.

9

The final scope of the project was the creation of an application that could build a user profile

fƌoŵ a useƌ͛s data that ĐoŶtaiŶed ͚siŵple͛ iŶfoƌŵatioŶ aďout the useƌ, suĐh as the number of

steps, calories, floors etc. the user completes/burns/climbs in a day, whilst also using more

advanced data mining techniques to build, test and update various models that could be used

to fiŶd liŶks ďetǁeeŶ the useƌ͛s aĐtiǀitǇ data and their activity level, as defined by Fitbit (this

Đould ďe oŶe of fouƌ leǀels: ͚sedeŶtaƌǇ͛/͛Ŷot aĐtiǀe͛, ͚lightlǇ aĐtiǀe͛, ͚faiƌlǇ aĐtiǀe͛, aŶd ͚ǀeƌǇ
aĐtiǀe͛Ϳ. This project assesses the capabilities of two data mining approaches in the context

of this activity tracking application.

Approach

At the start of the project, some research was carried out to identify how well existing mobile

applications solve the problem. Following this, user personas and initial requirements were

defined in order to gain an insight into how the application should ideally behave once the

project is complete. This was followed by the development of use cases and user interface

designs to gain a deeper understanding about what the application should be like in its final

state.

Once an overall design for the application was created, the implementation began with the

user interface and navigation, which are core aspects of the application. When these were

working, the Fitbit authentication and request functionality was added. Next, the simple

profile building was done, which involved requesting and processing the data in order to

create the cards for steps, calories, etc. on the profile page. Once complete, the functionality

to display the data in the activity and exercise pages was added, before the most challenging

aspect was tackled: the model building and data classification.

Finally, the application was evaluated based on how well it met the requirements and the

data classification aspects of the project were tested on real data in order to gain an

understanding of how effective they are at modelling user activity.

Assumptions

The main assumption for this project is that users synchronise their Fitbit device with Fitbit

before refreshing their profile. Based on this assumption, the application creates the user

profile based on data from the date that the user got their Fitbit device to the day before they

build the profile for the first time. Any subsequent profile builds on following days combine

the original data from the first build with new data from between (and including) the last

build date, and the day before the current day.

Another assumption is that the mobile device has a working, stable connection to either Wi-

Fi or mobile data, and that the Fitbit API [1] is fully functional. Accounting for network errors

is something that could be done in the future if the project were to be continued, however

given the short timeframe of this module, this was deemed unnecessary.

This project assumes that the user has a specific Fitbit device, namely the Charge 3. This is

ďeĐause Ŷot all of Fitďit͛s tƌaĐkeƌs measure the same types of activity, so there is a question

around whether this application would work with other devices in the Fitbit range. Future

work could include ensuring that the application adapts to the useƌ͛s Fitbit device, requesting

only data that is available on that specific device.

10

Summary of Outcomes
This project finds that data mining techniques can be used to create classifiers based on the

useƌ͛s data. These classifiers can classify new user data using existing data. This is one way

that the application can tell when the user has deviated from their profile. Other simple data

analysis is done on user activity data to create average values for the user activities that can

be compared to new data, in order to see how the user deviates from their usual activity. All

the useƌ͛s data aŶd deǀiatioŶs aƌe stored and displayed within an Android application.

The project evaluates the effectiveness of two data mining techniques within the context of

the application, to decide which is more appropriate for use within the application in future.

It is found that a graph-based method is more accurate than a decision tree method.

11

Background

The Problem

Activity trackers are becoming increasingly popular and users can record more data and learn

more about their health and fitness as a result. Vast amounts of data have become readily

available to users of activity trackers, which leads to the intriguing question of what can be

done with this data. The overall problem that this project explores concerns how users can

be profiled based on their activity, and ways in which they deviate from this profile. This data

mining will be built in to a mobile application that allows users to view their data, and any

deviations that the system finds. Within this problem however, some smaller, subproblems

exist, including the following research questions:

• Hoǁ ĐaŶ a useƌ͛s data ďe used to ŵodel the useƌ?
• What iŶfoƌŵatioŶ ĐaŶ ďe deƌiǀed aďout the useƌ͛s aĐtiǀitǇ?

• In what ways can a user deviate from their profile?

• How can deviations be detected?

Fitbit Fitness Trackers

Fitbit [2] produce a range of activity trackers, fƌoŵ sŵall ǁƌistďaŶds that ŵeasuƌe ͚siŵple͛
user activity such as steps, heart rate etc., to fully fledged smart watches that have the same

core functionality of the activity trackers, whilst also having the capability to run more

complex applications. The device used throughout this project was my personal Fitbit Charge

3, which can measure the ͚siŵple͛ useƌ aĐtiǀitǇ as desĐƌiďed aďoǀe, as ǁell as ďeing able to

automatically detect exercise sessions and track sleep. The specific data used throughout this

project consists of the following:

• Steps

• Calories

• Distance

• Heartrate

• Floors

• Active Minutes

• Activities (exercise)

Throughout this project, steps, calories, distance, heartrate, and floors data is referred to as

͞aĐtiǀitǇ data͟, aŶd ͞aĐtiǀities͟ are referred to as ͞eǆeƌĐise data͟, uŶless speĐified otheƌǁise.

The Fitbit data is accessible via Fitbit͛s Web API [1]. This allows applications to access users͛
data, enabling them to read, create, and modify it.

Related Existing Software

At the start of the project, other applications related to tracking user activity and exercise

data were investigated. Given that the aim of this project was to create an Android

application, research was focused on applications that are available on the Google Play Store,

however this was not exclusive. Notes on the main features of each application were made,

before evaluating how well the applications perform in the context of this pƌojeĐt͛s ƌeseaƌĐh
questions.

12

Application 1: Fitbit

NatuƌallǇ, the fiƌst appliĐatioŶ eǆploƌed ǁas Fitďit͛s oǁŶ offeƌiŶg to the ŵoďile appliĐatioŶ
market [2]. This application is used to setup Fitbit devices and synchronize data from the

device with the Fitďit seƌǀeƌs, aŶd ǁould likelǇ ďe pƌeseŶt oŶ ŵost useƌs͛ ŵoďile phoŶes as a
result, regardless of how usable the application is. Therefore, this application cannot be

classed as a competitor to this project, however it is still a good reference point for what

existing applications can do.

By default, the main screen of the Fitbit application shows the activity data listed above

(steps, calories, distance, heartrate, and floors) at the top of the application screen. Below

this are other sections concerning exercises, sleep, live heart rate, hourly activity, and

food/drink tracking. Pressing on any of these buttons takes the user to a screen containing

more detail about the chosen statistic.

Application 2: Strava

Strava [3] is a freemium application that allows users to record themselves running,

swimming, or cycling. It places a focus on the social aspect of fitness and allows users to add

fƌieŶds, ǀieǁ eaĐh otheƌ͛s aĐtiǀitǇ, aŶd Đoŵpete ǁith oŶe aŶotheƌ, pƌoǀidiŶg ŵotiǀatioŶ to
work out more.

Application 3: MyFitnessPal

MyFitnessPal [4] is a freemium application that allows users to manually enter food, drink,

and exercise data in order to achieve weight, nutrition, and exercise goals. It uses user food

and exercise data to calculate how many calories the user should consume to achieve their

daily goal, and ultimately their overall weight goal.

Application 4: Rbitfit/Fitcoach

Fitcoach [5] is aŶ ‘ paĐkage that loads a useƌ͛s Fitďit data aŶd alloǁs useƌs to aŶalǇse the data
with the aim of helping the user reach their fitness goals. It analyses which activity variables

(steps, calories, distance etc.) have the greatest effect on the user reaching their goals and

plots the performance of the user relative to these variables.

User Profiles and Modelling User Data

FitĐoaĐh is the oŶlǇ appliĐatioŶ of the fouƌ that Đƌeates a ŵodel usiŶg the useƌ͛s data. This
model is created to find links between variables in the user data and a specific goal variable,

set by the user. A user selects a goal variable and Fitcoach analyses data taken from Fitbit to

tell the user which of the other variables are having the greatest impact in optimising their

goal variable. This is a contrast to the other three applications, which do not seem to create

models using the useƌ͛s data. FitĐoaĐh is also the oŶlǇ appliĐatioŶ that does Ŷot ŵaiŶtaiŶ a
user profile; it simply analyses user data when provided some.

Fitďit͛s ŵaiŶ sĐƌeeŶ alloǁs useƌs to ǀieǁ the data ƌeĐoƌded ďǇ theiƌ deǀiĐe. Fitďit also Đƌeates
7-day summaries for the user that allow them to see how well they are achieving their goals.

The Fitbit profile does not focus on analysing usual behaviour and is instead more focused on

simply displaying the raw data from the device instead and telling the user whether they

reached target values on a given day.

13

“tƌaǀa͛s pƌofile is oŶe aƌea ǁithiŶ the appliĐatioŶ ǁheƌe useƌ eǆeƌĐise sessioŶs aƌe fouŶd. The
profile keeps track of how much exercise the user has recorded in each week and month and

compares this monthly data to previous months. For running, swimming, and cycling data,

“tƌaǀa pƌeseŶts the useƌ ǁith ͚Aǀeƌage WeeklǇ AĐtiǀitǇ͛, ͚Yeaƌ-To-Date͛, aŶd ͚All Tiŵe͛
summaries of their data within the profile area of the application.

MyFitnessPal is focused on nutrition more than activity. Users still log exercise within this

application however, and this information is used in conjunction with their food logs to tell

the user how close they are to reaching a weight goal. This data is not used to create any

information that one may expect to find in a profile though. The profile section of this

appliĐatioŶ siŵplǇ displaǇs the useƌ͛s goal aŶd theiƌ pƌogƌess toǁaƌds ƌeaĐhiŶg it.

Information Derived from User Activity

Fitcoach uses user data to analyse which variables are most useful in helping the user achieve

a given goal. Furthermore, this model can be used to predict a value for the goal variable,

giǀeŶ a saŵple of the useƌ͛s data. This is the ŵost iŶteƌestiŶg iŶfoƌŵatioŶ gaiŶed fƌoŵ aŶǇ of
the four applications. The other three applications only provide the user with averages of

values that the user inputs. Averages are a very useful way to give users an indication of their

usual behaviour, so these applications are all good in this respect, however it is surprising

more analysis is not done given the amount of data the applications gather.

Profile Deviations

Fitbit provides users with a 7-daǇ suŵŵaƌǇ of theiƌ data. This Đoŵpaƌes the useƌ͛s data to
their goals and tells the user which days they did not meet their goals in the last 7 days. This

is good, however it tells the user how they deviate from goal values, not their usual behaviour.

Strava, however, compares the amount of activity done by the user in the current month to

their values from the previous month, highlighting whether the user has maintained the same

amount of activity as in the previous month. MyFitnessPal does not tell the user when they

deviate from their profile, as no values or model seem to be created within the profile to

compare to. As mentioned previously, Fitcoach does not maintain a profile, and so is not

capable of finding deviations within the user data.

Conclusions

A common theme throughout the applications that have user profiles is that the profile is

primarily a place for users to view their data. Given the vast amount of data gathered in these

applications however, it is surprising that more is not done with the data to learn about the

useƌ͛s ďehaǀiouƌ. It ǁas deĐided that this pƌojeĐt ǁould theƌefoƌe foĐus oŶ Ŷot oŶlǇ displaǇiŶg
data to users, but also using this data to provide the user with information about the way they

behave. The user should be presented with a summary of values that describe how active

they are on average in a day and tell the user ways in which their data is inconsistent with

their usual behaviour when this is the case. The way that Fitcoach explores links between

different variables within user data is interesting, however more could be done than simply

finding links between types of data. This project will focus on using user data to classify user

activity. This will allow the application to compare classifiers for different data in order to find

deǀiatioŶs ǁithiŶ the useƌ͛s ďehaǀiouƌ.

14

Methods and Tools

Methods

Potential Methods

Waterfall Method

The waterfall method is a linear approach that tackles each aspect of the software

development lifecycle in order. This method would be good for this project as it would provide

a clear structure to the project. This method may be unsuitable however as I have no

experience with React Native, and designs and implementation are likely to change

throughout the project as a result, and this method is too rigid to allow for these changes.

Agile Method

The agile method involves adding to the application one piece at a time. This approach

involves planning and designing parts of the application as they are required. This method is

very flexible and would be good for the project as it would allow for changing requirements

and design regularly.

This approach may not work for this project as it would involve little planning at the start of

the project. This means that the goal state of the application would be unclear throughout

the project. This does not seem like a good idea considering the lack of experience with React

Native. Ideally, as much as possible should be planned at the start of the project, however

this should be flexible for changes to designs and requirements, should this be necessary.

Incremental Method

The incremental method of software development involves incrementally designing and

developing parts of the application, adding more each time. This method would be good for

this project as it does not require a full understanding of how each part will be implemented

early in the project. This means that there is some flexibility in terms of changing

requirements, which is likely for this project.

Using this method means that the most important aspects of the application can be

implemented first, such as the user interface, before adding more functionality in stages until

the application is complete. Furthermore, after each increment, there is a working

application. This is ideal for this project as there are potentially many challenges that will not

be planned. Using this method ensures that there will always be a working application with

some core functionality, so there is some fallback if more challenging functionality causes

problems.

Chosen Method

For this project, the incremental development method was adopted. This is largely because

this method enables the application to be implemented in stages, allowing for flexibility with

designs. I will endeavour to implement the simplest aspects of the application first, such as

the user interface, before incrementally adding parts of the application until the application

is finished. As the implementation progresses and becomes more challenging throughout the

project, there will always be a working application from the previous increment if something

goes wrong.

15

Tools

React Native

React Native [6] is a framework created by Facebook that allows for simultaneous

development of Android and iOS applications using a single codebase. The framework uses

JavaScript and React (also created by Facebook), and despite being a relatively young

framework, is used in a range of popular mobile applications including Facebook, Skype, and

Uber. I wanted to work with a new tool during this project, so I chose React Native for the

reasons mentioned above.

Third-Party Packages

Third-party React Native packages and code will be discussed in the implementation section

of this report.

Fitbit Charge 3 HR Tracker

Data for this project was gathered throughout the duration of the project from my personal

Fitbit [2] activity tracking device. This data used in the project from this device is the steps,

calories, heartrate, distance, floors, and active minute data. Data was accessed through the

Fitbit Web API [1].

MongoDB

The Fitbit API [1] serves data in a JSON (JavaScript Object Notation) format and MongoDB [7]

is a doĐuŵeŶt dataďase that stoƌes data iŶ ͞fleǆiďle, J“ON-like doĐuŵeŶts͟ [8]. For this

reason, and the fact that the application was built using a JavaScript-based framework, I

decided that MongoDB would be a natural choice of database. The actual implementation

used was a third-paƌtǇ ‘eaĐt Natiǀe paĐkage Đalled ͚ƌeaĐt-native-local-ŵoŶgodď͛ [9].

MongoDB was preferred over an SQL-based database as data would have to be processed

more in order to be stored in an SQL database, however it could be stored in a format close

to its original format in a JSON-based database such as MongoDB.

GitHub (Git)

GitHub [10] is a website that provides version control using Git [11]. I decided to use Git to

track changes to the application and revert any changes that I did not want to keep.

Furthermore, the commit messages used throughout the implementation stage of the project

provide some commentary on how the application changed over time.

Trello

Trello [12] is a project management tool that alloǁs useƌs to Đƌeate ͚ďoaƌds͛ iŶ oƌdeƌ to
manage tasks. Each board contains lists, which contain cards. Each card relates to a task. Lists

used iŶ this pƌojeĐt iŶĐlude ͚BaĐklog͛, ͚OpeŶ͛, ͚IŶ Pƌogƌess͛, aŶd ͚DoŶe͛.

Balsamiq

Balsamiq [13] is the tool used for creating the design mock-ups in the Specification and Design

section of this project.

16

Personas and Requirements

Personas

User Classes

The application was designed with a variety of users in mind. The users that the application

was designed for can be broadly divided into four groups:

1. Novice fitness enthusiast with a good level of technical experience

2. Experienced fitness enthusiast with a good level of technological experience

3. Novice fitness enthusiast with minimal technological experience

4. Experienced fitness enthusiast with minimal technological experience

The application is aimed at fitness enthusiasts of varying experience levels. Novice fitness

enthusiasts may only be interested in viewing statistics such as the number of steps they do

or the number of calories they burn in a day, whereas more experienced users may be

interested in actively tracking statistics and comparing how they have performed. Some users

will also be more versed in technology and the use of mobile applications than others. Core

aspects of the application should be intuitive and easily accessible by all users.

User Personas

Persona 1 – Primary Persona

Name: Clive Brown

Image source: https://www.pexels.com/photo/old-man-6110/

Based on: Group 1

Quote: ͞I Ŷeed to ŵake suƌe I keep aĐtiǀe so I ĐaŶ staǇ healthǇ thƌoughout ŵǇ ƌetiƌeŵeŶt͟

Description: Clive Brown is a 65-year-old semi-retired driving instructor. Until recently, Clive

lived a sedentary lifestyle and his main hobby was fishing with his friends. When he gets home

from a stressful day in the car, Clive regularly enjoys a bottle of wine after dinner with his

wife. His wife suggested that he started being more active to ensure that he maintains good

health when he retires; Clive has started going on morning walks with his wife before his first

driving lesson each day as a result.

Goals:

• View how many steps he has done each day

• View his total distance covered each day

• View how many calories he burns each day

17

• Be alerted when he is not on track to do his usual number of steps

• Be alerted when he is not on track to move his usual distance

• Be alerted when he is not on track to burn his usual number of calories

Persona 2 – Secondary Persona

Name: Jane Bolton

Image source: https://www.pexels.com/photo/three-women-s-doing-exercises-863977/

Based on: Group 2

Quote: ͞I loǀe usiŶg teĐh to tƌaĐk ŵǇ dailǇ aĐtiǀitǇ ďeĐause I ĐaŶ see hoǁ ŵuĐh fitteƌ I aŵ
gettiŶg͟

Description: Jane Bolton is a 25-year-old accountant. When she is not working or spending

time with her friends, Jane enjoys working out at her local gym. She loves participating in

fitness classes and has met many of her friends this way. Jane is aiming to run the London

marathon soon and trains at least four times per week in preparation for it. This intense

training means that Jane wants the ability to track how her performance improves over time

to ensure that her training regime is working effectively.

Goals:

• Monitor how far she can run and the time it takes each day

• Train regularly and be notified if her performance levels drop

Conclusions

Based on the personas, it was decided that the application should provide simple information

to the user, such as how many steps and calories they do on average each day. This

information should be easy for the user to locate within the application as it is functionality

that is likely to be used by most users.

Based on persona 2, the application should also have a dedicated section for the tracking of

exercise sessions. This is something that is not as likely to be used by as many people, and so

could be placed deeper within the application. This exercise section should display statistics

from different exercise sessions to the user, such as the distance they travelled during a run.

Furthermore, the application was already intended to create a model of the user and let them

know how well the model classified their data, however based on the personas, it would also

be nice to alert the user as to how they deviated from the simple statistics such as average

18

steps and calories from day to day, as well as how their average values change after they

update their profile with new data.

Requirements

Functional Requirements

Must

Requirement 1:

The system must build a profile from user activity data.

Acceptance Criteria

When data is uploaded to the application for the first time, the system begins building the

profile and informs the user that the profile is being built. Once complete, the system tells

the user that the profile building has finished, and the profile is displayed.

Justification

This will allow users to view a summary of their activity.

Requirement 2:

The system must alert the user when they are less active than their profile.

Acceptance Criteria

When the user refreshes their profile, deviations are displaǇed oŶ the ͚Aleƌts͛ sĐƌeeŶ, telliŶg
the user if/how they were less active than their usual profile.

Preconditions

• A user profile already exists.

Justification

This will encourage the user to be more active.

Requirement 3:

The system must allow the user to refresh their profile once per day

Acceptance Criteria

The user pulls the profile page down to initiate a refresh. The system provides feedback that

a profile build has started. Once complete, the values in the profile change as appropriate and

the user is alerted by the system that the profile build has finished.

Preconditions

• A user profile already exists.

Justification

This will allow users to compare new data to their profile to find deviations and rebuild their

profile to include the new data.

Requirement 4:

The system must provide feedback to the user when a profile refresh has started and finished.

19

Acceptance Criteria

After the user has initiated a refresh, the system provides feedback that a profile build has

started. Once complete, the user is alerted by the system that the profile build has finished.

Preconditions

• A profile refresh has been initiated by the user.

Justification

This is so that the state of the system is clear to the user.

Requirement 5:

The application must remain responsive whilst the profile is being built.

Acceptance Criteria

When a profile build or refresh is in progress, the user can still navigate around the application

and view their data.

Preconditions

• A profile build or refresh has been initiated.

Justification

This is so that the application always remains usable.

Requirement 6:

The sǇsteŵ ŵust ďuild a ŵodel of the useƌ͛s aĐtiǀitǇ leǀel ďased oŶ the aĐtiǀitǇ ǀalues iŶ theiƌ
profile.

Acceptance Criteria

When data is imported into the application, a model is built based on the data. When more

data is imported later, the model is used to classify the new data. Any deviation between the

predictions and the classifications are highlighted in the Alerts tab.

Justification

This ǁill alloǁ the sǇsteŵ to ĐlassifǇ Ŷeǁ data, iŶ oƌdeƌ to fiŶd aƌeas of the useƌ͛s aĐtiǀitǇ that
deviate from the norm.

Requirement 7:

The system must allow the user to view historical activity data in a graphical format.

Acceptance Criteria

When the user presses on any of the activity statistics on their profile page, they are directed

to a page containing a list of daily values for the chosen activity and a graph containing the

values.

Justification

This is so that the user can easily compare how their activity data from one day compares to

others.

20

Requirement 8:

The system must allow the user to view historical activity data in a list format.

Acceptance Criteria

When the user presses on any of the activity statistics on their profile page, they are directed

to a page containing a list of daily values for the chosen activity and a graph containing the

values.

Justification

This is so that the user can efficiently read their data, meaning that they can learn about their

activity.

Requirement 9:

The system must allow the user to view the durations of historical exercise sessions in a

graphical format.

Acceptance Criteria

When the user presses on any of the cards on the exercise page, they are directed to a page

containing a list of values for each session of the chosen exercise, as well as a graph of the

values and a picker that allows the user to choose which statistics they would like to view.

The useƌ seleĐts ͚Tiŵe͛ fƌoŵ this piĐkeƌ aŶd the duƌatioŶ of all eǆeƌĐise sessioŶs of the ĐhoseŶ
type are displayed in the graph and list.

Justification

This is so that the user can easily compare how their exercise time from one session compares

to others.

Requirement 10:

The system must allow the user to view the durations of historical exercise sessions in a list

format.

Acceptance Criteria

Same as requirement 9.

Justification

This is so that the user can efficiently read their data in a structured and organised way.

Requirement 11:

The system must allow the user to view the calories burned during historical exercise sessions

in a graphical format.

Acceptance Criteria

When the user presses on any of the exercise types on the exercise page, they are directed

to a page containing a list of values for each session of the chosen exercise, as well as a graph

of the values and a picker that allows the user to choose which statistics they would like to

ǀieǁ. The useƌ seleĐts ͚Caloƌies͛ fƌoŵ this piĐkeƌ aŶd the Đaloƌies ďuƌŶed duƌiŶg all eǆeƌĐise
sessions of the chosen type are displayed in the graph and list.

21

Justification

This is so that the user can easily compare how the number of calories burned in one session

to others.

Requirement 12:

The system must allow the user to view the calories burned during historical exercise sessions

in a list format.

Acceptance Criteria

Same as requirement 11.

Justification

This is so that the user can efficiently read their data in a structured and organised way.

Requirement 13:

The system must allow the user to view the distance covered during historical exercise

sessions in a graphical format.

Acceptance Criteria

When the user presses on any of the cards on the exercise page, they are directed to a page

containing a list of values for each session of the chosen exercise, as well as a graph of the

values and a picker that allows the user to choose which statistics they would like to view.

The useƌ seleĐts ͚DistaŶĐe͛ fƌoŵ this piĐkeƌ aŶd the distaŶĐe Đoǀeƌed duƌiŶg all eǆeƌĐise
sessions of the chosen type are displayed in the graph and list.

Justification

This is so that the user can easily compare the distance covered in one session to others.

Requirement 14:

The system must allow the user to view the distance covered during historical exercise

sessions in a list format.

Acceptance Criteria

Same as requirement 13.

Justification

This is so that the user can efficiently read their data in a structured and organised way.

Requirement 15:

The system must display the number of steps the user does on average in a day on the profile

page.

Acceptance Criteria

When the user opens the profile page, a card containing the number of steps the user does

on average is displayed.

22

Preconditions

• A user profile has been built.

Justification

This is so that the user can gain an understanding of how many steps they usually do.

Requirement 16:

The system must display the number of calories the user burns on average in a day on the

profile page.

Acceptance Criteria

When the user opens the profile page, a card containing the number of calories the user burns

on average is displayed.

Preconditions

• A user profile has been built.

Justification

This is so that the user can gain an understanding of how many calories they usually burn.

Requirement 17:

The system must display the distance the user covers on average in a day on the profile page.

Acceptance Criteria

When the user opens the profile page, a card containing the distance the user covers on

average is displayed.

Preconditions

• A user profile has been built.

Justification

This is so that the user can gain an understanding of how much distance they usually cover.

Requirement 18:

The system must display the number of floors the user does on average in a day on the profile

page.

Acceptance Criteria

When the user opens the profile page, a card containing the number of floors the user does

on average is displayed.

Preconditions

• A user profile has been built.

Justification

This is so that the user can gain an understanding of how many floors they usually climb.

23

Requirement 19:

The system must display average resting heart rate of the user on the profile page.

Acceptance Criteria

WheŶ the useƌ opeŶs the pƌofile page, a Đaƌd ĐoŶtaiŶiŶg the useƌ͛s aǀeƌage ƌestiŶg heaƌt ƌate
is displayed.

Preconditions

• A user profile has been built.

Justification

This is so that the user can learn how fast or slow their usual resting heart rate is.

Requirement 20:

The system must display the number of active minutes the user completes on average in a

day on the profile page.

Acceptance Criteria

When the user opens the profile page, a card containing the number of active minutes the

user does on average is displayed.

Preconditions

• A user profile has been built.

Justification

This is so that the user can gain an understanding of how many minutes they are usually active

for in a day.

Requirement 21:

The sǇsteŵ ŵust stoƌe the useƌ͛s data.

Acceptance Criteria

The user closes the application and then opens it again to find the same data present that

was there before the application was closed.

Preconditions

• Data has been imported from Fitbit.

Justification

This is so that the user does not need to keep importing their data whenever they wish to use

the application.

Requirement 22:

The system must rebuild a profile from user datasets when new data is entered or imported.

24

Acceptance Criteria

Once data has finished importing, a refresh is initiated. The system provides feedback stating

that a build is in progress. Once complete, the values in the profile change where appropriate

and the user is alerted that the build has finished by the system.

Justification

This is so that the profile is as up-to-date as possible. This also helps maintain consistency, as

the user can safely assume that the profile that they are presented is up-to-date and uses all

available data.

Should

Requirement 23:

The system should allow the user to manually log data for an activity.

Acceptance Criteria

OŶ the page foƌ a giǀeŶ aĐtiǀitǇ, the useƌ pƌesses a ͚+͛ ďuttoŶ. TheǇ theŶ iŶput aŶd suďŵit a
value for the given activity before being returned to the screen for the activity. The newly

added dataset is displayed in the list and on the graph.

Justification

This is so that the user could use aspects of the application without the need for a Fitbit

device. This is also beneficial for users who own a Fitbit but were not wearing it for some time.

Requirement 24:

The system should allow the user to edit basic profile information.

Acceptance Criteria

The useƌ ĐaŶ pƌess a ďuttoŶ oŶ the pƌofile page that Ŷaǀigates theŵ to aŶ ͚Edit Pƌofile͛ page
where the user can edit basic information such as name and age.

Justification

This is so that the user can ensure that their details are up-to-date within the application.

Requirement 25:

The system should allow the user to manually log the date, time, duration, distance, and type

of an exercise session.

Acceptance Criteria

On the eǆeƌĐises page, the useƌ ĐliĐks a ͚+͛ iĐoŶ that opeŶs a ͚Log EǆeƌĐise͛ foƌŵ. The useƌ
must input the relevant values before submitting the form. When opening the exercise page

for the given exercise type that they created, the newly added values appear in the list and

gƌaph oŶ the ƌeleǀaŶt ǀieǁ oŶ the page ;foƌ eǆaŵple, duƌatioŶ ǁould appeaƌ oŶ the ͚Tiŵe͛
view).

Justification

This is so that the user could use aspects of the application without the need for a Fitbit

device. This is also beneficial for users who own a Fitbit but were not wearing it for some time.

25

Requirement 26:

The system should highlight the average value of an activity on the graph for that activity.

Acceptance Criteria

On the graph for any activity, a line is displayed across the graph that shows the average value

for the activity.

Justification

This is so that the user can easily compare their data with their profile value (the average).

Requirement 27:

The sǇsteŵ should deƌiǀe the useƌ͛s ŵost ĐoŵŵoŶ eǆeƌĐise tǇpe aŶd displaǇ this in the profile

page.

Acceptance Criteria

OŶ the pƌofile page, theƌe should ďe a ͞Most ĐoŵŵoŶ eǆeƌĐise͟ Đaƌd that tells the useƌ ǁhat
their most common exercise is.

Justification

This is so that the user is aware of what exercise they spend the most time doing.

Requirement 28:

The sǇsteŵ should oƌdeƌ the eǆeƌĐise tǇpes oŶ the eǆeƌĐise page ďased upoŶ the useƌ͛s data,
with their most frequently done exercise types at the top of the list.

Acceptance Criteria

On the exercise page, the exercises are listed in order of how much time the user spends

doing each one. This order can be verified by checking the total amount of time spent doing

each exercise type within the Fitbit application.

Preconditions

• The user has logged at least two exercise sessions of different types.

Justification

This is because the amount of time spent doing an exercise is an indication of how interested

the user is in that exercise. The user is likely to want to view data for exercises that they are

most interested in, and so these should be easy to locate.

Requirement 29:

The system should alert the user when they have not recorded as many sessions of their most

common exercise as usual.

Acceptance Criteria

On a weekly basis, the system should send the user a notification if they have not recorded

as many sessions as usual during the previous week.

26

Preconditions

• The user has logged exercise sessions.

Justification

This is so that the user is aware that they are not on track to keep up with their usual

behaviour.

Requirement 30:

The system should oŶlǇ displaǇ eǆeƌĐise tǇpes oŶ the eǆeƌĐise page if the useƌ͛s data ĐoŶtaiŶs
at least one session of that exercise type.

Acceptance Criteria

All types of exercises present within the Fitbit application should be checked. All types logged

within the Fitbit application should be present within this application.

Justification

This is so that the user does not need to waste time looking through a list of exercise types

that they have never done to find one that they have and want to view the data for.

Could

Requirement 31:

The sǇsteŵ Đould ďase deǀiatioŶ aleƌt tiŵes oŶ the useƌ͛s usual ǁake up aŶd sleep tiŵes
where this data is available

Acceptance Criteria

If the useƌ͛s ǁake up tiŵe is 9aŵ aŶd sleep tiŵe is ϭϭpŵ, theǇ aƌe aǁake foƌ ϭϰ houƌs. If theǇ
set the application to give them notifications after every 25% of the day (excluding sleep

time), then the application should generate alerts at 12:30pm, 4pm, and 7:30pm.

Justification

This is so that the user is reminded about exercise at times that are suitable for them.

Requirement 32:

The system could create challenges for the user based on data in their profile.

Acceptance Criteria

When the user opens the application or the first time on a given day, challenges appear in the

͚Aleƌts͛ page.

Justification

This is so that the user has targets to meet so that they stay active. The fact that they are

ďased off the useƌ͛s data makes the challenges more achievable. The application could set a

target for all users of some random value such as 10,000 steps per day, however this may

seem like a lot to some people. If someone walks 5,000 steps in a day, then a challenge of

5,500 or 6,000 steps would much more achievable. If the user maintained this level of activity,

eventually their profile average would increase, and so the challenges would get harder.

27

Requirement 33:

The sǇsteŵ Đould pƌoǀide iŶsights ďased oŶ the useƌ͛s sleep data ;suĐh as the aŵouŶt of tiŵe
the user usually spends in each stage of sleep).

Acceptance Criteria

The useƌ opeŶs a ͚“leep͛ page within the application where they are presented with cards

containing information derived from their Fitbit sleep data, or a message stating that there is

no sleep data in the database if that is the case.

Justification

It would be beneficial for users to learn how much sleep they are getting, as well as the quality

of the sleep that they are getting.

Requirement 34:

The system could allow the user to import data directly from their Fitbit profile.

Assessment Criteria

When building the profile, the user is redirected by the application to a Fitbit authentication

page where they must enter their Fitbit credentials in order to allow the application to access

their Fitbit data. Once the build has finished, data visible in the application matches relevant

data within the Fitbit application.

Justification

This is so that the user does not need to manually input data.

Requirement 35:

The system could allow the user to import new data in a file.

Acceptance Criteria

The user presses a button that opens a folder containing data files. The user selects the file

theǇ ǁish to iŵpoƌt iŶto the appliĐatioŶ aŶd the sǇsteŵ paƌses the file aŶd updates the useƌ͛s
profile as appropriate.

Preconditions

• The file must be present on the device.

Justification

This is so that the user does not need to manually input data.

Requirement 36:

The system could allow the user to manually set exercise reminders.

Acceptance Criteria

OŶ the eǆeƌĐises page, the useƌ pƌesses aŶ iĐoŶ that opeŶs a ͚“et ‘eŵiŶdeƌ͛ dialog. The useƌ
must input a name for the reminder and a time. Once the reminder has been confirmed, the

user must be notified about the reminder by the system at the correct time.

28

Justification

This is so that the user can ensure that they are keeping active and healthy.

Requirement 37:

The default start time for exercise reminders could be derived by the system from the start

times of previous exercises.

Acceptance Criteria

OŶ the eǆeƌĐises page, the useƌ pƌesses aŶ iĐoŶ that opeŶs a ͚“et ‘eŵiŶdeƌ͛ dialog. The useƌ
must input a name for the reminder. The time for the reminder has been automatically

populated by the system with a value derived from start times of previous exercise sessions.

Preconditions

• The user has logged previous exercise sessions.

Justification

This is so that the user can be reminded to exercise at around the same time of day each time.

Will Not

Requirement 38:

The sǇsteŵ ǁill Ŷot alloǁ useƌs to ǀieǁ otheƌ useƌs͛ pƌofiles.

Acceptance Criteria

There is no sequence of events within the system that allows one user to view the profile of

another user.

Justification

Due to the personal and private nature of the data, it would be inappropriate to allow other

useƌs to ƌead a useƌ͛s data.

Non-Functional Requirements

Requirement 39:

The profile should take no longer than n * 20 seconds to rebuild after an import of n days of

data.

Acceptance Criteria

A timer should begin at the start of the build process of n days and stopped once the build

has completed. If the timer reads a value less than n * 20 seconds, then the requirement is

met.

Justification

This is so that the user does not have to wait for a long time when a profile is being built.

Requirement 40:

The application should be intuitive and easy to use.

Acceptance Criteria

The application should be reviewed against NielseŶ͛s UsaďilitǇ HeuƌistiĐs.

29

Justification

This is so that the user has a good experience when using the application.

30

Specification and Design

Use Cases

This section of the report outlines the main use cases for the application. For other use cases,

see Appendix A.

Actors

Fitbit Owner

A person that owns a Fitbit and wishes to use their device in conjunction with the application.

Database

The database within the application.

Fitbit Web API

The API [1] that provides data, gathered by the Fitbit device, that will be stored in the

database for future use.

Original Use Cases

Create Profile (and import data)

Preconditions

• The application is already running.

Main Flow

1. Press the Profile icon

This use case starts when the user presses the profile icon on the main tab bar at the

bottom of the application screen. The profile page is displayed. A message is displayed

that tells the user to pull the screen down to build a profile.

2. Pull the screen down

The user presses on the screen and drags their finger down the screen to initiate a

refresh.

3. Sign in to Fitbit

The user is presented with a Fitbit login screen. The user must sign in using their Fitbit

credentials and then confirm that they allow the application to access data from their

Fitbit profile.

4. Contact Fitbit Web API

The system starts requesting the data from the Fitbit Web API. The data returned in

the response is stored in the local database.

5. Build Profile

The system uses the newly stored data to build a profile for the user. Once complete,

the user receives an alert stating that profile building is complete. Note: Deviations

are created at this stage of the use case.

Alternative Flows

3A. Sign in to Fitbit (system)

31

The user has already authenticated the application with Fitbit recently, so the

application can use refresh tokens created from the initial authentication to

reauthorize the user without them having to input their Fitbit credentials again.

View Profile

This use case allows the user to view their profile within the application. The profile is the

main page within the application and is opened by default when the application is opened.

The profile page is accessible within the application from the profile icon on the main

application tab bar.

Preconditions

• The application is already running.

Main Flow

1. Press the Profile icon

This use case starts when the user presses the profile icon on the main tab bar at the

bottom of the application screen. The profile page is displayed.

Refresh Profile (and import new data)

Preconditions

• The application is already running.

• The user has created a profile.

Main Flow

1. Press the Profile icon

This use case starts when the user presses the profile icon on the main tab bar at the

bottom of the application screen. The profile page is displayed.

2. Pull the screen down

The user presses on the screen and drags their finger down the screen to initiate a

refresh.

3. Sign in to Fitbit

The user is presented with a Fitbit login screen. The user must sign in using their Fitbit

credentials and then confirm that they allow the application to access data from their

Fitbit profile.

4. Contact Fitbit Web API

The system starts requesting the data from the Fitbit Web API. The data returned in

the response is stored in the local database.

5. Build Profile

The system uses the newly stored data combined with the data that was already in

the system to build a new version of the profile for the user. Once complete, the user

receives an alert stating that profile building is complete. Note: Deviations are created

at this stage of the use case.

Alternative Flows

3A. Sign in to Fitbit (system)

32

The user has already authenticated the application with Fitbit recently, so the

application can use refresh tokens created from the initial authentication to

reauthorize the user without them having to input their Fitbit credentials again.

View Activity Data

This use case allows the user to view their activity data for any given activity. The activity page

can be reached by pressing on any of the activities on the profile page.

Preconditions

• The application is already running.

• The user has synchronised the application with Fitbit.

• The user has tracked activity with their Fitbit device.

Main Flow

1. Press the Profile icon

This use case starts when the user presses the profile icon on the main tab bar at the

bottom of the application screen. The profile page is displayed.

2. Press an activity card

The user presses a card on the profile page and is taken to a page that contains more

detailed data for that activity.

View Profile Deviations

This use case allows the user to see the ways that they have deviated from their usual profile.

Preconditions

• The application is already running.

• The user has created a profile prior to the current day.

• The user has refreshed their profile on a day after the initial profile creation date, thus

creating deviations.

Main Flow

1. Press the Alerts icon

This use case starts when the user presses the alerts icon on the main tab bar at the

bottom of the application screen. The alerts page is displayed, containing the profile

activity deviations, activity level deviations, and profile updates.

Updated Use Cases

As the project progressed, the use cases evolved with it. Some use cases were added, whilst

some original use cases were deemed unnecessary. This section highlights these changes.

New Use Case: Edit Settings

This use case allows users to edit any settings within the application, such as the name of the

user, or perform tasks such as clearing the database. Originally, the application was going to

have separate settings pages for the Profile, Exercises, and Alerts areas of the application,

hoǁeǀeƌ this ǁas deeŵed uŶŶeĐessaƌǇ ǁithiŶ the sĐope of the pƌojeĐt aŶd a siŶgle ͚“ettiŶgs͛
page was created. This Ŷeǁ ͚“ettiŶgs͛ page also ƌeplaĐes the ͚Edit Pƌofile͛ page.

33

Preconditions

• The application is already running.

Main Flow

1. Press the Profile icon

This use case starts when the user presses the profile icon on the main tab bar at the

bottom of the application screen. The profile page is displayed.

2. Press the Settings icon

The user presses the gear-shaped iĐoŶ to opeŶ the ͚“ettiŶgs͛ sĐƌeeŶ.
3. Edit settings

The user makes whatever changes they wish to their settings.

Alternative Flows

3A. Cancel the edit

The useƌ pƌesses the ͚BaĐk͛ ďuttoŶ aŶd if the useƌ ŵade ĐhaŶges, theǇ aƌe asked to
confirm that they do not want to submit the changes before cancelling. The user is

returned to the profile page.

New Use Case: Clear database

This use case allows users to delete all data within the application. This means that users can

then create a fresh profile if there are any issues in their current profile.

Preconditions

• The application is already running.

Main Flow

1. Press the Profile icon

This use case starts when the use presses the profile icon on the main tab bar at the

bottom of the application screen. The profile page is displayed.

2. Press the ͚SettiŶgs͛ icoŶ

The user presses the gear-shaped icon to opeŶ the ͚“ettiŶgs͛ sĐƌeeŶ.
3. Press ͚Clear All Data͛

The useƌ pƌesses the ͚Cleaƌ All Data͛ ďuttoŶ. OŶĐe the data is Đleaƌed, aŶ aleƌt pops up
to notify the user that the database has been cleared.

Removed: Edit Profile Information

‘eplaĐed ďǇ Ŷeǁ ͚Edit “ettiŶgs͛ use Đase defiŶed eaƌlieƌ iŶ this ƌepoƌt seĐtioŶ.

Removed: Edit Profile Settings

‘eplaĐed ďǇ Ŷeǁ ͚Edit “ettiŶgs͛ use Đase defiŶed eaƌlieƌ iŶ this ƌepoƌt seĐtioŶ.

Removed: Edit Exercise Settings

‘eplaĐed ďǇ Ŷeǁ ͚Edit “ettiŶgs͛ use Đase defined earlier in this report section.

Removed: Edit Alert Settings

‘eplaĐed ďǇ Ŷeǁ ͚Edit “ettiŶgs͛ use Đase defiŶed eaƌlieƌ iŶ this ƌepoƌt seĐtioŶ.

34

Use Case Diagram

Above is a use case diagram that shows which use cases the user and parts of the system are

involved in.

Data Mining and the Dynamic User Profile

One of the aims of this project is to see how users can be profiled using their data. This led to

the idea of creating a dynamic user profile. This is a profile that changes over time in

accordance with the user data. This profile consists of average values for activities such as

steps and calories, but the application is capable of more than this. This section of the report

defines how the application creates models based on the user data, which enable the

application to classify new user data based on data that is already stored in the application.

Every time data is imported, classifiers are created from existing data. These models classify

the new data and deviations are created as a result. Next time data is imported, the data from

the previous import is included when creating the models, so in theory, the models should

get more accurate with time.

Data Types

Decision Tree Data Mining

When looking for appropriate data mining algorithms to use for the project, it was decided

that a decision tree algorithm would potentially be useful in the context of this project. A

tutorial from a Google developer was found at

https://www.youtube.com/watch?v=LDRbO9a6XPU. Code to accompany this tutorial was

found at https://github.com/random-forests/tutorials/blob/master/decision_tree.ipynb

Figure 1 Use Case Diagram

https://www.youtube.com/watch?v=LDRbO9a6XPU
https://github.com/random-forests/tutorials/blob/master/decision_tree.ipynb

35

[14]. This tutorial used Python to implement a decision tree and its component parts. This

code was rewritten in JavaScript for this project, and it contains three data types: Question,

LeafNode, and DecisionNode. Descriptions of these data types below are heavily based from

the descriptions by the author of the original Python code [14].

Question

This data tǇpe ƌepƌeseŶts a ƋuestioŶ iŶ the foƌŵ of "is ǆ >= Ǉ͟ if ǆ aŶd Ǉ aƌe ŶuŵeƌiĐal, oƌ ͞is ǆ
== Ǉ͟ otheƌǁise. QuestioŶs aƌe used to paƌtitioŶ a dataset [14] into smaller datasets of rows

that are true or false for the question.

DecisionNode

A decision node is used to ask a question [14] and store a reference to the two children nodes,

created from the true and false datasets for the question.

LeafNode

A leaf node is used to classify the data [14]. It maps the class to the number of times the class

appears in the rows from the training data that reached the leaf [14].

Deviation

This data type was implemented to represent profile deviations. Deviations are created for

incorrect classifications of hourly data or data from a six-hour window (one of 00:00-05:59,

06:00-11:59, 12:00-17:59 and 18:00-11:59). It consists of six pieces of information:

1. Date – the date that this deviation applies to.

2. Time of day – the time of day that this deviation applies to. If the deviation is hourly,

then this value is from the range 0-23, each representing an hour from the day (e.g. 0

would represent 00:00-00:59). If the deviation is six-hourly, then the value is from the

range 0-3, where each value represents one of the four possible windows throughout

the day (e.g. 2 would represent 12:00-17:59).

3. Time type – this defines whether the deviation is hourly or six-hourly.

4. Category – this defines what part of the user profile has deviated from the norm, e.g.

͚“teps͛, oƌ ͚AĐtiǀitǇ Leǀel͛.
5. Expected value – the value that was expected based on data or the model from the

user profile.

6. Actual value – the aĐtual ǀalue. IŶ the Đase of ͚AĐtiǀitǇ Leǀel͛ deǀiatioŶs, this ǀalue
represents what the data mining model classified the dataset as. For other values,

suĐh as ͚“teps͛, this ǀalue is siŵplǇ hoǁ ŵaŶǇ steps the useƌ did iŶ the tiŵefƌaŵe
defined in part 2 of this list.

Algorithms

Decision Tree Data Mining Approach

Decision Tree

A decision tree was adapted from one written in Python by J Gordon which can be found at

https://github.com/random-forests/tutorials/blob/master/decision_tree.ipynb [14] as

ŵeŶtioŶed iŶ the ͚Data TǇpes͛ seĐtioŶ. This deĐisioŶ tƌee ĐoŶsists of a ƌeĐuƌsiǀe algoƌithŵ to
build the tree, which makes use of other, smaller algorithms. The noteworthy algorithms are

explained in this section of the report.

https://github.com/random-forests/tutorials/blob/master/decision_tree.ipynb

36

Build Tree

Algorithm:

1. Find the question that gives the most information gain.

2. If the information for the question is 0, return a leaf node containing a reference to

the dataset.

3. Otherwise, partition the dataset into two datasets, one for data points that provide

aŶ aŶsǁeƌ of ͚tƌue͛ to the ƋuestioŶ, aŶd aŶotheƌ foƌ ͚false͛ data poiŶts.
4. ‘eĐuƌsiǀelǇ ƌuŶ ͚Build Tƌee͛ oŶ the ͚tƌue͛ dataset.
5. ‘eĐuƌsiǀelǇ ƌuŶ ͚Build Tƌee͛ oŶ the ͚false͛ dataset.

Find Best Split

Algorithm:

1. Initialise the following variables to these values:

a. Current best gain = 0

b. Current best question = null

c. Current uncertainty = gini(dataset)

2. For each column of the dataset (steps, calories, etc.) excluding the classifier column

(final column):

a. For each distinct value in this column:

i. Create a question for the value

ii. Partition the dataset into true and false datasets.

iii. Calculate the information gain from this split.

iv. If the ĐalĐulated gaiŶ is ďetteƌ thaŶ ͚ĐuƌƌeŶt ďest gaiŶ͛, theŶ set ͚ ĐuƌƌeŶt
ďest gaiŶ͛ to the ĐalĐulated gaiŶ aŶd set the ͚ĐuƌƌeŶt ďest ƋuestioŶ͛ to
the question.

b. Return the best gain and question.

Partition

Algorithm:

1. IŶitialise tǁo eŵptǇ aƌƌaǇs, oŶe foƌ the ͚tƌue͛ data poiŶts, aŶd oŶe foƌ the ͚false͛ data
points.

2. For every data point in the dataset to be split:

a. If the data point satisfies the question used for the split, then add the data

poiŶt to the ͚tƌue͛ aƌƌaǇ, otheƌǁise add the data poiŶt to the ͚false͛ aƌƌaǇ.
3. Return the arrays.

Classify

Algorithm:

1. If the node is a leaf, return the predictions associated with the node.

2. Otherwise (the node is a decision), if the data point to be classified satisfies the

question associated with this node, then recursively call Classify on the data point and

the ͚tƌue͛ ďƌaŶĐh of the Ŷode. If the data poiŶt does Ŷot satisfǇ the ƋuestioŶ, Đall
ClassifǇ oŶ the data poiŶt aŶd the ͚false͛ ďƌaŶĐh of the node.

37

Gini

Input: A set of data points.

Algorithm:

1. Count the number of instances of each class within the dataset.

2. Initialise impurity to 1.

3. For each class in the dataset:

a. Calculate the probability of the class within the dataset (number of instances

of class / total number of data points)

b. Impurity = impurity – (probability)2

4. Return impurity

Data pre-processing

Before the algorithms above can be used, the dataset must be in a certain format. This format

is an array of arrays. Each inner array represents a data point of the form [steps, calories,

flooƌs, distaŶĐe, heaƌtƌate, Đlass], ǁheƌe the fiŶal iteŵ, ͚Đlass͛, is the aĐtiǀitǇ leǀel assoĐiated
with the data point.

Furthermore, there are other issues to tackle at this stage, namely missing datasets and

grouping datasets.

Missing Datasets

Fitbit automatically populates fields like steps and calories with a default value, even when

the user is not wearing their device. Of all the fields that are used within this application, the

only one that does not contain this guessed data is heart rate. Therefore, it was necessary to

design an algorithm to match the other datasets to the heart rate dataset.

Input: An object containing daily data for all types (in the form of objects)

Algorithm:

1. Create an empty array containing empty array for each type of data (steps, calories,

floors, distance, heart rate).

2. For each type of data

a. If we are not looking heart rate currently, iterate over the length of the heart

rate dataset:

i. Get the minute-by-minute data for heart rate and the current data

type.

ii. Iterate over the minute-by-minute heart rate data:

1. Get the time of the current minute.

2. Iterate over the other type of minute-by-minute data from the

current index of the heart rate data to the final index of the

other data tǇpe͛s data.
a. If the current minute of the other data type matches the

heart rate minute, then a matching dataset has been

found. Push this data point to the relevant array created

in step 1.

38

b. Otherwise, iterate over the heart rate dataset and add each point into the

heart rate array created in step 1.

3. Return the 2D array created in step 1, which is now populated.

Grouping Datasets

Fitďit pƌoǀides aŶ aĐtiǀitǇ leǀel foƌ the useƌ at aŶǇ giǀeŶ ŵiŶute. This is oŶe of: ͚sedeŶtaƌǇ͛
;ƌefeƌƌed to as ͚Ŷot aĐtiǀe͛Ϳ, ͚lightlǇ aĐtiǀe͛, ͚faiƌlǇ aĐtiǀe͛ aŶd ͚ǀeƌǇ aĐtiǀe͛. This is useful as this
aĐtiǀitǇ leǀel is used as a Đlassifieƌ foƌ the useƌ͛s data, hoǁeǀeƌ theƌe is aŶ issue iŶ that ǁheŶ
the useƌ͛s data is gƌouped iŶto hourly groups, there is no classifier for data at this granularity.

The workaround for this was to process the minute-by-minute data into the desired format

and create a decision tree for each hour. A dataset containing the average values for this hour

can then be created and classified using this decision tree to create a classifier for the grouped

dataset.

Algorithm:

1. For every hour of data:

a. Create a decision tree from the minute data in the hour

b. Create a set of average values for the hour

c. Classify the average dataset using the decision tree, in order to provide a

classification for the hour

Graph Data Mining

This method was used to group minute-by-minute datasets into hourly datasets and create a

model based on these. The approach is as follows:

1. Calculate the frequency of all the activity levels within the minute datasets.

2. Calculate an average value for each activity per hour, so that there is a value for each

hour of the dataset.

3. Plot a graph of average hour reading against the number of hours where the average

is less than the average we are looking at (maximum y value on the graph would be

the number of hours in the dataset minus 1).

4. This graph is used to define the values needed to reach the four activity levels classes.

Foƌ eǆaŵple, if ϰϬ% of ǀalues aƌe ͚Ŷot aĐtiǀe͛, theŶ oŶe ŵust fiŶd the ϰϬ% mark on the

y axis and then read the corresponding x axis. Any values between this x value and 0

ǁould ďe Đlassed as ͚Ŷot aĐtiǀe͛. If the Ŷeǆt Đlass Đoǀeƌed ϭϬ% of ŵiŶute ǀalues, theŶ
the x values related to y values between 40% and 50% would be in this class, and so

on.

5. Once complete, there is a set of values for each activity. This set of values defines the

boundaries between the activity classes.

6. The values in the hourly datasets should be compared to these boundaries, to find a

set of potential classes for the hourly dataset. The highest class from these is taken as

the class of the hourly dataset.

To classify new hourly datasets against the model (boundaries), the following approach was

used:

1. Combine new minute datasets into hours, as before.

39

2. Predict a classification for the new hourly datasets using the boundaries created using

the old data.

3. Create a new model (set of boundaries) from a combination of the old and new data.

This model should be more accurate than the previous model.

4. Use this new model to find a classification for each new hourly dataset. These

classifications can be compared against the predictions to test the accuracy of the

model.

Data Pre-processing

Missing Datasets

The same principles applied to missing datasets as with the decision tree mining method.

Datasets for all activities other than heart rate had to be processed so that they matched the

heart rate dataset.

User Interface Design

This section of the report describes the way the application looks and the reasons behind the

choices made.

Colour Usage

The figure above shows the main colours used in the application. Material DesigŶ͛s Đolouƌ
tool [15] was used to create the colour scheme. This scheme can be found at

https://material.io/tools/color/#!/?view.left=0&view.right=0&primary.color=64FFDA&secon

dary.color=FFB74D. The primary colour is used for the navigation bar, the light primary colour

is used for buttons, and the dark primary colour is used for the Android status bar and icons

throughout the application. The secondary colour is used for the profile icon and all graphs in

the application.

Figure 2 Colour scheme

https://material.io/tools/color/#!/?view.left=0&view.right=0&primary.color=64FFDA&secondary.color=FFB74D
https://material.io/tools/color/#!/?view.left=0&view.right=0&primary.color=64FFDA&secondary.color=FFB74D

40

The ͚AĐĐessiďilitǇ͛ taď oŶ the Đolouƌ tool ǁeďsite showed that each of the six colours above

are appropriate to have black text on them.

Screen Designs

Profile Page

Notable Features

Feature Description and Justification

Profile icon This is to inform the user that they are on the profile page.

Profile value

cards

These cards provide a summary of data to the user. They exist in pairs

on each row and are centrally aligned so that the user͛s eǇe progresses

down the screen, as opposed to any other direction. The font size of the

ǀalue oŶ eaĐh Đaƌd is laƌgeƌ thaŶ the title of the Đaƌd so that the useƌ͛s
eye is drawn to the value.

Navigation bar This is the main navigation bar of the application. This allows the user to

switch between the Profile, Exercises, and Alerts tabs. This is on every

page of the application and so it uses the primary application colour to

ensure that this main colour is on every page of the application. When

the user is currently in one of the three sections of the application, the

corresponding icon on the navigation bar is dark, so that it is clear to the

user where they are in the application.

Edit button This button navigates the useƌ to aŶ ͚ Edit Pƌofile͛ page. It is Ŷot a pƌiŵaƌǇ
function of the application, so it is coloured grey to ensure that it does

Figure 3 Profile Page Design

41

not attract attention, however the grey is dark to create enough

contrast with the background so that the button is easy to find, should

the user need it.

Settings button This ďuttoŶ Ŷaǀigates the useƌ to the ͚“ettiŶgs͛ page. It is Ŷot a pƌiŵaƌǇ
function of the application, so it is coloured grey to ensure that it does

not attract attention, however the grey is dark enough that the button

is easy to find, should the user need it. The icon is a gear, which is

commonly used to indicate settings within an application, so the

functionality of the button is clear to the user.

Activity Page

Notable Features

Feature Description and Justification

Title This tells the user what activity they are currently viewing.

Graph The graph shows how the user data changes over time. The horizontal

line shows the average value of the activity for the user, allowing easy

comparison between this and their daily values.

Back button This button returns the user to the Profile page. The arrow is a common

symbol for a back button, so the function of this button is obvious to the

useƌ. The ďuttoŶ is gƌeǇ ďeĐause the ďuttoŶ͛s fuŶĐtioŶ is Ŷot a keǇ
fuŶĐtioŶ of the appliĐatioŶ, so it does Ŷot Ŷeed to ĐatĐh the useƌ͛s eǇe.

Figure 4 Activity Page Design

42

List This lists the date and value for each of the data points relating to the

activity. This list is ordered in reverse-chronological order so that the

most recent dates are at the top of the list. This is because the user is

likely to be most interested in their recent activity, so this should be the

first thing that they see.

Exercises Page

Notable Features

Feature Description and Justification

Title This tells the user what page they are currently viewing.

Exercise Cards These cards show the user what exercise types are available for them to

view. They are large and easy to press. Their simple style means that it

is clear to the user that pressing on any of the cards will allow them to

view more detail about the selected exercise type.

Figure 5 Exercises Page Design

43

Exercise Page

Notable Features

Feature Description and Justification

Title This tells the user what exercise type they are currently viewing.

Graph The graph shows how the user data changes over time. The horizontal

line shows the average value of the chosen data category for the user,

allowing easy comparison between this and their other sessions.

Back button This button returns the user to the Exercises page. The arrow is a

common symbol for a back button, so the function of this button is

oďǀious to the useƌ. The ďuttoŶ is gƌeǇ ďeĐause the ďuttoŶ͛s fuŶĐtioŶ is
not a key function of the application, so it does not need to catch the

useƌ͛s eǇe.

List This lists the date and value for each of the data points relating to the

exercise type. This list is ordered in reverse-chronological order so that

the most recent dates are at the top of the list. This is because the user

is likely to be most interested in their recent exercise sessions, so this

should be the first thing that they see.

Figure 6 Exercise Page Design

44

Alerts Page

Notable Features

Feature Description and Justification

Title This tells the user what page they are currently viewing.

Cards The cards show the user information about their behaviour. The cards

can show the user how their profile has changed as new data has been

imported into the application. The cards could also show whether the

user has achieved certain goals they aimed to meet.

The icons on the cards are used so that the user can tell what kind of

information is on the card at a glance.

Heuristic Evaluation

One of the main aims of this project was to create an application that is intuitive and usable.

This seĐtioŶ of the ƌepoƌt is aŶ eǀaluatioŶ of the sĐƌeeŶs agaiŶst NielseŶ͛s ͛ϭϬ UsaďilitǇ
HeuƌistiĐs foƌ Useƌ IŶteƌfaĐe DesigŶ͛ [16]. The heuristics are as follows:

1. Visibility of system status

2. Match between system and the real world

3. User control and freedom

4. Consistency and standards

5. Error prevention

6. Recognition rather than recall

Figure 7 Alerts Page Design

45

7. Flexibility and efficiency of use

8. Aesthetic and minimalist design

9. Help users recognise, diagnose, and recover from errors

10. Help and documentation

Each screen will be evaluated on how well or poorly the heuristic has been used, if at all.

46

Profile Page

Principle Comments

1. Good:

• The navigation bar clearly shows which section of the application the

user is in.

• The red icon on navigation bar alerts the user to the fact that there are

new alerts in the alerts tab.

2. Good:

• A unit is displayed for all values that require one. This will be familiar to

the user and aid in their understanding of the value.

• The phrasing on the cards aligns with words used by Fitbit, so these

should be familiar to the user.

3. Good:

• The user is free to navigate to whichever part of the application they

wish.

4. Good:

• The button for the ͚edit pƌofile͛ page is a pencil, which is commonly

associated with editing information in applications and websites.

• The button for the settings page is a gear symbol, which is commonly

associated with settings, so this would be familiar to the user.

Bad:

47

• The functionality of the orange profile icon is unclear.

• The cards are different colours, which could cause the user to think that

they have different functionality.

5.

6. Good:

• A range of actions are clearly available to the user in the form of buttons.

• The cards have a title which gives the user an indication of the

information they would find if they pressed the card.

7. Bad:

• There is nothing to suggest that the user must pull the screen down to

refresh the profile.

8. Good:

• The page is well-structured and symmetrical.

• The cards contain the minimum amount of information possible to fulfil

their task, reducing clutter on the screen, and making important

information easily visible.

Bad:

• The orange icon takes up almost half the screen.

• The layout of the cards makes it unclear where the user should be

looking.

9.

10.

Problem: The purpose of the orange profile icon is unclear

Heuristic Violated 4

Severity 2

Description The orange icon takes up a large portion of the page, and it

coloured in a way that draws attention to it, however the only

functionality it has is that it shows that the user is on the profile

page.

Alternative Solutions Replace the icon with a page title that ƌeads ͚Pƌofile͛.
Replace the icon with a profile picture (this could be taken from

the useƌ͛s Fitďit pƌofileͿ.

48

Evidence

Problem: The cards are different colours

Heuristic Violated 4

Severity 3

Description The cards are different colours, which could cause the user to

think that they have different functionality.

Alternative Solutions Make all cards the same colour.

Evidence

Problem: Refresh action unclear

Heuristic Violated 7

Severity 4

Description There is nothing to suggest that the user must pull the screen

down to refresh the profile. This may leave the user confused

about how to complete this vital task.

Alternative Solutions Add some text to tell the user to pull the screen down.

Use the pƌofile iĐoŶ͛s Đolouƌ to indicate when data has been

loaded. This would also solve the first problem.

49

Evidence

Problem: The profile icon is too large

Heuristic Violated 8

Severity 2

Description The orange icon takes up almost half the screen. The size is

unnecessary and causes space on the page to be wasted.

Alternative Solutions Reduce the size of the icon.

Evidence

Problem: Card layout unclear

Heuristic Violated 8

Severity 3

50

Description Having two cards per row makes it unclear where the user should

be looking.

Alternative Solutions Put oŶlǇ oŶe Đaƌd oŶ eaĐh ƌoǁ to eŶsuƌe that the useƌ͛s eǇe ŵoǀes
down the page.

Evidence

51

Activity Page

Principle Comments

1. Good:

• The title at the top of the screen is clear and tells the user what data they

are looking at.

2. Good:

• The date is in a format that is easy to understand.

• The information appears in a logical order (newest to oldest)

3. Good:

• There is a back button in the top left corner so that the user can leave

this page at any time.

• The user can press any of the buttons on the main navigation bar in order

to return to one of the three main application pages.

4. Good:

• The title matches the title of the corresponding card on the profile page.

Bad:

• The cards are different colours, which could cause the user to think that

they mean different things.

5.

6. Good:

52

• The title of the page reminds the user which card they pressed on the

profile page

• The functionality of the back button in the top left is clear to the user as

they would be familiar with pressing an arrow to go back.

Bad:

• As there are no labels on the graph, the user is required to compare the

graph to the list to find out which point on the graph corresponds to

which value in the list.

7. Good:

• As the main navigation bar is still present, the user can access the

exercises tab and alerts tab directly from here, instead of having to go

back to the profile page first.

8. Good:

• There are only two main sections on the page, and there is nothing that

does not need to be here.

9.

10.

Problem: No labels on graph

Heuristic Violated 6

Severity 3

Description There are no labels on the graph. This means that the user is

required to compare the graph to the list to find out which point

on the graph corresponds to which value.

Alternative Solutions • Add labels.

• Display the value and date when the user presses on the

bar. This is preferred as the value will only be displayed

temporarily, meaning that the minimalist design of the

screen remains intact.

Evidence

The problem of cards being different colours and potential solutions were described in the

Profile Page evaluation.

53

Exercises Page

Principle Comments

1. Good:

• The title at the top of the screen is clear and tells the user which section

of the application they are in.

2. Good:

• The icons on the cards attempt to make the meaning of the cards clearer.

Bad:

• The icons on the cards do not fit the title particularly well (although this

is because of a limited range of icons on Balsamiq).

3. Good:

• The user can press any of the buttons on the main navigation bar in order

to go to any of the three main application pages.

• The user can press any of the cards to view exercise data.

4. Bad:

• The cards are different colours, which could cause the user to think that

they mean different things.

5. Good:

54

• There is nothing on this page that could lead to an erroneous state.

6.

7.

8. Good:

• There are only cards on this page, so the design is simple and clear.

9.

10.

Problem: The icons do not match the titles well

Heuristic Violated 2

Severity 4

Description The icons do not match the titles of the cards particularly well, so

they are not fulfilling their purpose of making the meaning of the

cards clearer.

Alternative Solutions Change the icons.

Evidence

The problem of cards being different colours and potential solutions were described in the

Profile Page evaluation.

55

Exercise Page

Principle Comments

1. Good:

• The title at the top of the screen is clear and tells the user what data they

are looking at.

2. Good:

• The date is in a format that is easy to understand.

• The information appears in a logical order (newest to oldest)

3. Good:

• There is a back button in the top left corner so that the user can leave

this page at any time.

• The user can press any of the buttons on the main navigation bar in order

to return to one of the three main application pages.

4. Good:

• The title matches the title of the corresponding card on the exercises

page.

Bad:

56

• The cards are different colours, which could cause the user to think that

they mean different things.

5.

6. Good:

• The title of the page reminds the user which card they pressed on the

exercises page

• The functionality of the back button in the top left is clear to the user as

they would be familiar with pressing an arrow to go back.

Bad:

• As there are no labels on the graph, the user is required to compare the

graph to the list to find out which point on the graph corresponds to

which value in the list.

7. Good:

• As the main navigation bar is still present, the user can access the

exercises tab and alerts tab directly from here, instead of having to go

back to the profile page first.

8. Good:

• There are only two main sections on the page, and there is nothing that

does not need to be here.

9.

10.

The problem of cards being different colours and potential solutions were described in the

Profile Page evaluation.

The problem concerning the lack of labels on the graph has been discussed in the Activity

Page evaluation.

57

Alerts Page

Principle Comments

1. Good:

• The navigation bar clearly shows which section of the application the

user is in.

• There is no red circle on the Alerts tab icon anymore as the tab has been

opened.

2. Good:

• The language used on the cards clearly tells the user how their profile

has changed.

• The date is in a common format that is familiar to the user.

• The time is in 24hr format, which removes confusion as to whether the

time displayed is morning or afternoon.

• Green is used for profile improvements (good) and red is used for profile

deteriorations (bad).

3. Good:

• The user can press any of the buttons on the main navigation bar in order

to go to any of the three main application pages.

4. Bad:

58

• The cards are different colours, which could cause the user to think that

some are more important than others.

5. Good:

• There is nothing on this page that could lead to an erroneous state.

6. Good:

• The ǁoƌds used oŶ the Đaƌds ;suĐh as ͚steps͛Ϳ ŵatĐh those used iŶ other

areas of the system.

7.

8. Good:

• There is nothing on this page that does not need to be here.

• The Đaƌds aƌe aƌƌaŶged iŶ a ǁaǇ that ŵakes the useƌ͛s eǇe ŵoǀe doǁŶ
the page in a logical way.

9.

10.

The problem of cards being different colours and potential solutions were described in the

Profile Page evaluation.

59

Implementation

Software Architecture Diagram

The software architecture diagram above shows the technology used for each part of the

application, as well as how these parts interact with each other.

The user interacts with the user interface, written in React Native. The UI requests some data

from the backend, written in JavaScript. The backend interacts with the Fitbit Web API via a

HTTP request when requesting user data, before receiving the data in JSON format and storing

it in the database. The raw data is then retrieved from the database for processing before

being passed to the user interface to be presented to the user.

Figure 8 Software Architecture Diagram

60

Data Flow Diagram

Figure 9 Diagram of data flow within system

Figure 9 shows how data moves within the system from when it is requested until it is

displayed in the application. First, a request is sent to the Fitbit Web API, and the relevant

values are taken from the response and stored in the database. Next, the minute data is

processed into hours. Before this can happen, ͚ŵissiŶg͛ (auto-populated) values must be

removed as they correspond to times when the user was not wearing their Fitbit device. After

this, the minute values are aggregated into hourly average datasets in order to build the

models and classify the data. The newly imported data is classified on a model created on the

existing data, and deviations are created from these and stored in the database. Daily total

values for data types such as steps etc. are then used to create the profile values, which are

stored in the database. Finally, the deviations and profile values are retrieved by and

displayed in the Alerts tab and Profile tab, respectively.

61

Class Diagram

The diagram above shows how each class within the application interacts with each other.

The ͚‘eaĐt.CoŵpoŶeŶt͛ Đlass oŶ the left side of the diagƌaŵ is fƌoŵ the ‘eaĐt paĐkage that
comes with React Native. Only the fields and methods from this class that have been used in

the application have been added to the class diagram to prevent unnecessary information

being added.

Figure 10 Class Diagram

62

UI Code

Main Tabs

The application is split into three main areas, each consisting of a tab that is accessible from

the main navigation bar within the application. These areas/tabs are the Profile, Exercises,

and Alerts tabs.

The files for these taďs ĐoŶtaiŶ aŶ oďjeĐt Đalled ͚ĐaƌdMap͛, which contains information about

how certain predefined cards should be displayed (such as what icon to use, and what unit to

use if the card displays a value).

Profile Tab

The largest file out of the three tabs is ProfileTab.js. This page within the application has a

͚‘efƌeshCoŶtƌol͛ oďjeĐt that alloǁs the useƌ to pull the sĐƌeeŶ doǁŶ to ƌefƌesh. This Đalls the
_onRefresh method, which in turn calls methods from other files that request new data from

Fitbit and build the profile.

This file also ĐoŶtaiŶs a ŵethod Đalled ͚getPƌofileFƌoŵDď͛ ǁhiĐh is used to load the pƌofile
from the database (if it exists) when the application is opened.

Information stored in the profile is displayed on the screen in the form of cards. These cards

aƌe Đƌeated fƌoŵ this iŶfoƌŵatioŶ iŶ the ͚ĐƌeateCaƌds͛ ŵethod.

This file ĐoŶtaiŶs a ͚ƌeŶdeƌ͛ ŵethod ǁhiĐh is iŶheƌited fƌoŵ ‘eaĐt.CoŵpoŶeŶt. This ƌetuƌŶs
markup that is used to display items on the page.

Exercises Tab

When this tab gains focus, exercise data is loaded from the database. Exercise types are

gleaned from this data, and a card is displayed for each one. Pressing on these cards will take

the user to a page that shows the data for that specific exercise type.

This page is designed so that a user can only attempt to view data for exercises that they have

Đoŵpleted. IŶitiallǇ, aŶ optioŶ foƌ ĐoŵŵoŶ eǆeƌĐises suĐh as ͚‘uŶ͛, ͚Walk͛, aŶd ͚“poƌt͛ were

going to be included, however the solution that only shows cards for exercise types that the

user has done is better as the application is more tailored to the user, and there is no way

that the user can view a page containing no data.

Alerts Tab

OŶ foĐus, this page ƌetƌieǀes data fƌoŵ the ͚deǀiatioŶs͛ datastoƌe. This data is split into three

categories: activity level deviations, profile deviations, and profile updates. Activity level

deviations are deviations that were created based on classifications using the decision tree

data mining model. Profile deviations are created when the user has not matched a value in

their profile for a given activity. Profile updates tell the user how values in their profile have

changed since the last profile build.

This file also ĐoŶtaiŶs a ͚ĐƌeateCaƌds͛ ŵethod, which is called in the render method, just like

in the other two ͚taď͛ files. Unlike in the other two files, this method also adds a picker to the

page, that allows the user to filter what they see on the page between the three categories

listed eaƌlieƌ, aŶd ͚all͛.

63

Activity and Exercise Pages

The activity page is where the user is taken when they press any of the cards in the activity

section of the profile page. On navigation, the activity page accepts parameters consisting of

the title of the page (usually the activity name correctly formatted with capital letters), the

͚keǇ͛ ;usuallǇ just the aĐtiǀitǇ Ŷaŵe. This diĐtates ǁhiĐh data stoƌe the DataďaseCoŶtƌolleƌ file
should query when providing data for the page), and a value (which is the value related to the

activity that shows on the card on the profile page for the user). These parameters allow the

page to show different data, meaning that it is necessary to only create this one dynamic page

for all activities, instead of one for each.

The page consists of a graph showing how the useƌ͛s data has changed over time, followed by

a list of values related to the current activity. A keǇ ŵethod iŶ this file is ͚getDataPaiƌs͛. This
uses the key parameter that was passed to the page to retrieve data from the relevant part

of the database, sorted by date in reverse chronological order, to be displayed in the list. This

method returns pairs consisting of a date and the value for the activity on that date. It is

ordered ďǇ usiŶg the ͚fetĐhAŶd“oƌt͛ ŵethod fƌoŵ the DataďaseCoŶtƌolleƌ.js file and

specifying sort conditions, so that the ŵost ƌeĐeŶt daǇ͛s data is displaǇed fiƌst in the list.

The exercise page is like the activity page in that it can show data for various exercises and is

not specific to any exercise. The page has an almost identical layout to the activity page, and

the only notable difference is that there is a picker at the top of the exercise page. The

exercise page is accessed by pressing any of the cards on the exercises tab. The exercises page

displays data from sessions of the selected exercise type. As each exercise session has values

relating to the duration and calories burned during the exercise, the picker at the top of the

screen allows the user to choose which of these values they wish to see displayed in the graph

aŶd list oŶ this page. Foƌ the eǆeƌĐise tǇpes ͚Tƌeadŵill͛ aŶd ͚‘uŶ͛, the useƌ ĐaŶ also Đhoose to
view the distance covered during exercise sessions.

Cards

Cards appear in three places within the application: the profile tab, the exercises tab, and the

alerts tab. There are three types of card (͚PƌofileCaƌd͛, ͚DeǀiatioŶCaƌd͛, and

͚PƌofileUpdateCaƌd͛Ϳ aŶd theiƌ iŵpleŵeŶtatioŶ is siŵple. Each card simply extends

React.Component and has a render method that returns JSX code that defines how the card

should ďe ƌeŶdeƌed. The iŶfoƌŵatioŶ to ďe displaǇed ďǇ the Đaƌd is passed iŶ ǀia ͚ pƌops͛, ǁhiĐh
is standard in React Native. These props are combined with the JSX markup to display the

cards that are seen in the application.

Other Pages

Help Page

This page is a simple page that contains only a render method, used to display text that

provides guidance to the user on aspects of the application.

Settings Page

The settings page contains two buttons, with very simple tasks. The first button clears all the

data within the database. The other button initiates a rebuild of the user profile.

64

Navigation

Navigation.js

This is where the navigation for the appliĐatioŶ is defiŶed. The ŵaiŶ ͚taď͛ ŶaǀigatioŶ ďaƌ at
the bottom of the application is split into three sections, which correspond to the three tabs

within the application. Within the navigation file, each of these buttons corresponds to a

sepaƌate ͚staĐk͛ Ŷaǀigatoƌ foƌ eaĐh of the thƌee appliĐatioŶ paƌts. The ͚Pƌofile“taĐk͛ staĐk
navigator contains all the pages that are reachable from the profile tab. The ͚EǆeƌĐise“taĐk͛
stack navigator contains all the pages that are reachable from the exercises tab. The

͚Aleƌt“taĐk͛ staĐk Ŷaǀigatoƌ ĐoŶtaiŶs all the pages that aƌe ƌeaĐhaďle fƌoŵ the aleƌts taď. A

diagram showing how the navigators are combined is shown below.

Profile Building Code

ProfileBuilder.js

This file is where all profile-related activities happen, from requesting data, to calculating the

values that are seen on the profile page, to building a model based on the user and calculating

deviations. The method that is called to start all the aďoǀe is ͚ďuildPƌofile͛.

The first thing that happens in this method is the creation of an object called

͚ŶeǁPƌofileValues͛. This oďjeĐt stoƌes all the information that will be added to the profile in

the ͚pƌofile͛ ĐolleĐtioŶ of the dataďase.

The method then checks if this is the first time a profile has been built. If so, an entry is created

iŶ the dataďase ǁithiŶ the Đall to ͚PƌofileBuildeƌ.ĐƌeateIŶitialPƌofile;Ϳ͛. The profile is the

retrieved from the database, ready for updating later. Figure 12 below shows the profile being

readied.

Figure 11 Navigation

65

 //Check if a profile exists already

 let isFirstBuild = await ProfileBuilder.checkIfFirstBuild();

 //Create an intial profile object if this is the first build

 if (isFirstBuild) {

 await ProfileBuilder.createInitialProfile();

 }

 //Get the profile object from the db

 let profiles = await DatabaseController.fetch("profile", {}, {});

 let profile = profiles[0];

Figure 12 Getting a Profile ready to update

The code then requests new data from Fitbit if the user is refreshing the profile. Figure 13

ďeloǁ shoǁs this Đall ;Ŷote, the ͚ƌeďuild͛ ǀaƌiaďle is tƌue if the useƌ is oŶlǇ ƌeďuildiŶg the
profile from the existing data, and false if the profile is being refreshed, thus new data is

required). There are also calls to methods here that process the minute data into hourly

datasets to be used by the two classifiers, however this code will be discussed in the data

mining section.

if (!rebuild) {

 //Requests the data from Fitbit and stores it

 await ProfileBuilder.requestAndStoreData();

 //Convert to hourly datasets in correct format for DT

 await ProfileBuilder.processToDTHours();

 //Convert to hourly datasets in correct format for CG

 await ProfileBuilder.processToCGHours();

}

Figure 13 Requesting data

The next snippet of note iterates through all the activity types and creates the profile value

foƌ eaĐh tǇpe. These ǀalues aƌe added to the ͚ŶeǁPƌofileValues͛ oďjeĐt to ďe stoƌed iŶ the
database. Figure 14 and Figure 15 show the creation of the values in the activity section of

the profile page. The method in Figure 15 creates an average of the values for each activity

type, to be shown on the profile page.

66

 //Iterate over the types of data we defined above.

 for (const dataField of ProfileBuilder.dataFields) {

 //Build the profile value for the relevant activity

 let value;

 if (dataField != "distance") {

 value = await ProfileBuilder.buildActivity(dataField, true);

 } else {

 value = await ProfileBuilder.buildActivity(dataField, false);

 }

 //Add the new value into the object to be stored later.

 newProfileValues.activities[dataField] = value;

 }

Figure 14 Creating profile activity values

67

 static buildActivity(activity, integer) {

 return new Promise(function(resolve, reject) {

 DatabaseController.fetch(activity, {}, {}).then(function(docs) {

 var totalValue = 0;

 const totalDocs = docs.length;

 for (var i = 0; i < totalDocs; i++) {

 totalValue += parseInt(docs[i].total);

 }

 let output = totalValue / totalDocs;

 if (integer) {

 resolve(Math.round(output));

 }

 else {

 resolve(parseFloat(output.toFixed(2)));

 }

 }).catch(function(error){

 reject(error);

 });

 });

 }

Figure 15 Building profile activity values

After this, three variables (dtHourClassifications, graphHourPredictions, and

graphHourClassifications) are initialised to null. These are variables to store predictions and

classifications from both classifiers during testing.

Neǆt iŶ ͚ďuildPƌofile͛, a Đall to ͚PƌofileBuildeƌ.ďuildEǆeƌĐises͛ peƌfoƌŵs a siŵilaƌ fuŶĐtioŶ to
͚ďuildAĐtiǀitǇ͛ iŶ the figuƌes aďoǀe. This ŵethod aŶd those that it Đalls pƌoǀide the values that

aƌe shoǁŶ iŶ the Đaƌds iŶ the ͚EǆeƌĐises͛ seĐtioŶ of the pƌofile page.

The next section of the code is where the decision tree data mining takes place. First, the

dates required for classification are found, then data for building the tree and data to be

classified are retrieved from the database. Figure 16 shows this and the creation of the

decision tree.

68

 let dtDaysToBuild = await DatabaseController.fetch("dtDatasets", { date: {$nin:

datesToClassify}});

 let dtDaysToClassify = await DatabaseController.fetch("dtDatasets", { date: {$in:

datesToClassify}});

 let dtClassifier = new DTClassifier(ProfileBuilder.getHeadings());

 let buildDatasets = [];

 for (const day of dtDaysToBuild) {

 let dayData = day.datasets;

 for (const dataset of dayData) {

 buildDatasets.push(dataset);

 }

 }

 //Build a tree using the classifier object and the dataset

 let tree = dtClassifier.buildTree(buildDatasets);

Figure 16 Decision Tree creation

Next is some code that is used to classify new data and was originally in

DecisionTreeMining.js, however due to a problem with the database (described in the

problems section), this code was moved to this file. This code is discussed in the Data Mining

part of this section of the report. The output of this code is an array of classifications, which

is then passed into another method to create an array of deviations. Figure 17 and Figure 18

show this.

 let deviations = ProfileBuilder.getDeviationsFromClassifications(dtClassifications, "hour");

 if (deviations.length > 0) {

 await DatabaseController.insert("deviations", deviations);

 }

Figure 17 Creation of deviations after classification

69

 static getDeviationsFromClassifications(classifications, timeInterval) {

 let deviations = [];

 for (const classification of classifications) {

 let keys = Object.keys(classification.predicted);

 let predicted = keys[0];

 if (classification.actual != predicted) {

 deviations.push(new Deviation(classification.date,

 classification.timeOfDay,

 timeInterval,

 "activity",

 predicted,

 classification.actual));

 }

 }

 return deviations;

 }

Figure 18 Creation of deviations (detail)

The next piece of code is used to create and use the graph-based classifier. First, the datasets

for building and classifying are retrieved, as with the decision tree classifier. For the graph

classifier, a third dataset is created which is a combination of the two datasets (i.e. all data

available in the database).

Next, a classifier is created using the build dataset, and the dataset to be classified is classified

using it. The output of this is a prediction of the class of the new data, based on existing data.

FolloǁiŶg this, the ͚updateCGPƌopoƌtioŶs͛ ŵethod updates the stored frequencies of each

activity level (as this information is used during the creation of the graph-based classifier) to

account for the new data. A new classifier is then created using the third dataset mentioned

above and these updated class frequencies. The dataset containing the new data is classified

again using this new classifier to give a final classification. If the classification for any dataset

is different to its classification on the first classifier, then the prediction was incorrect. It

should be noted that the classifications from the graph-based classifier are not used to create

deviations within the application. This is because it is only necessary to use one classifier for

this purpose, however if the graph-based classifier is more accurate in testing, then some

future work should be to replace the decision tree classifications with the classifications from

this classifier when creating deviations. Currently, this code is in the application for the

purpose of comparison with the decision tree classifier.

70

 let datesToClassify = DateUtilities.getDaysOnOrAfter(lastBuildDate);

 let cgDaysToBuild = await DatabaseController.fetch("cgDatasets", { date: {$nin:

datesToClassify}, $not: {_id: "proportions"}});

 let cgDaysToClassify = await DatabaseController.fetch("cgDatasets", { date: {$in:

datesToClassify}});

 let allCGDays = [];

 for (const day of cgDaysToBuild) {

 allCGDays.push(day);

 }

 for (const day of cgDaysToClassify) {

 allCGDays.push(day);

 }

 let cgPredictClassifier = await ProfileBuilder.buildCGClassifier(cgDaysToBuild);

 let cgPredictions = ProfileBuilder.classifyCGData(cgDaysToClassify, cgPredictClassifier);

 await ProfileBuilder.updateCGProportions();

 let cgClassifyClassifier = await ProfileBuilder.buildCGClassifier(allCGDays);

 let cgClassifications = ProfileBuilder.classifyCGData(cgDaysToClassify, cgClassifyClassifier);

Figure 19 Creation and use of graph-based classifiers

Finally, there is a call to ProfileBuilder.removeIntradayDatasets. This method is used to

remove all intraday (minute) data from the database. This is because of a storage limit that

was discovered (see Problems below). The data has already been processed into hourly

datasets and stored in that format by this point, so there is no need to keep the minute data

in the database.

Deviation.js

This file contains a class that ŵodels a ͚deǀiatioŶ͛. A deǀiatioŶ ĐoŶtaiŶs siǆ fields, ǁhiĐh aƌe
described earlier in the report. These fields are passed in to the class using the constructor. A

keǇ ŵethod iŶ this Đlass is ͚getCaƌd͛. This is a ŵethod that is Đalled oŶ aŶ iŶstaŶĐe of
͚DeǀiatioŶ͛ aŶd ƌetuƌŶs J“X ŵaƌkup that is used to ƌeŶdeƌ a Đaƌd oŶ the sĐƌeeŶ. This ŵethod
ƌetuƌŶs a ͚ DeǀiatioŶCaƌd͛ that is displaǇed oŶ the Aleƌts taď. This ŵethod is also aďle to ƌetuƌŶ

71

a ͚PƌofileUpdateCaƌd͛. This is a Đaƌd that displaǇs hoǁ a pƌofile value has changed. This is

teĐhŶiĐallǇ Ŷot a deǀiatioŶ, ďut as the tǁo Đaƌds aƌe so siŵilaƌ, ͚DeǀiatioŶ͛ oďjeĐts aƌe used
within the application to display changes to the user profile.

The otheƌ ŵethods iŶ this file aƌe Đalled ͚ĐoŶǀeƌtToJ“ON͛ aŶd ͚ĐoŶǀeƌtFƌoŵJ“ON͛. These aƌe
necessary as ͚Deviation͛ objects are stored as JSON in the MongoDB database. When they are

ƌetƌieǀed, the ͚ĐoŶǀeƌtFƌoŵJ“ON͛ ŵethod is used to ƌeĐƌeate DeǀiatioŶ oďjeĐts fƌoŵ the
results of the database query.

The only other thing to note about this file is that there is a cardMap object, like the ProfileTab

file. This is ďeĐause the ͚getCaƌd͛ ŵethod ƌetuƌŶs a Đaƌd, so ĐaƌdMap is used to defiŶe hoǁ
this card should look.

Problems

1. Database Limit: It was discovered very late in the project that there is a limit to the

amount of data that can fit in the database. Every day of intraday data contains up to

1440 datasets, and up to 7 days are requested each time (this limit was imposed due

to Fitbit request limits). These datasets were originally being stored in the application,

and the grouping into hourly datasets was done during each profile refresh, until it

was discovered during testing that only around 12 days of data would fit into the

dataďase. UpoŶ fuƌtheƌ iŶǀestigatioŶ, the ͚ƌeaĐt-native-local-ŵoŶgodď͛ paĐkage ǁas
ďuilt oŶ top of ‘eaĐt Natiǀe͛s AsǇŶĐ“toƌage stoƌage ŵeĐhaŶisŵ ;this ǁas Ŷot
mentioned clearly in the documentation), which has a limit of 6MB on Android

devices. There is no mention of this 6MB limit in the React Native documentation as

far as I can tell either, meaning that it was unlikely that I would discover this issue until

I began testing the application with many days of data.

As a workaround to this issue, time was spent reworking major aspects of the

application, namely the entire data mining process. The application now processes

data into hourly datasets as soon as it is imported into the application, before storing

these hourly datasets. The data mining is then carried out on these hourly datasets as

it was previously, however certain methods required altering. Minute data that was

imported during the refresh is then deleted at the end of the refresh flow to ensure

that the space within the database is freed for future intraday data that requires

processing. Because this rework was done so late into the project, many methods

were copied from the data mining files into ProfileBuilder.js to be worked on

independently of the actual data mining code (to ensure that the original code

remained intact if this rework failed). These methods have been altered slightly,

however there was not enough time to move them back into their original files. As a

result, there are many lines of code near the bottom of ProfileBuilder.js that should

exist elsewhere. As a result of this rework, I was able to get over 70 days of data into

the application during testing (there was potential for more as the database did not

fill), making it a success.

Data Mining Code

Due to a pƌoďleŵ that ǁas eŶĐouŶteƌed ǁith the dataďase ;see ͚Pƌoďleŵs͛ seĐtioŶ iŶ the
͚Pƌofile BuildiŶg Code͛ seĐtioŶ of the ƌepoƌtͿ, soŵe of the data ŵiŶiŶg Đode ǁas teŵpoƌaƌilǇ
moved into ProfileBuilder.js to be worked on, however this code became permanent due to

72

a lack of time at the end of the project. The data mining code is still discussed in this section

of the report, however.

Decision Tree Mining

The code for the decision tree data mining was adapted into JavaScript for this project from

a Google tutorial [14]. The code was originally in Python and can be found at

https://github.com/random-forests/tutorials/blob/master/decision_tree.ipynb. The adapted

code ĐaŶ ďe fouŶd iŶ the folloǁiŶg files: ͚DTClassifieƌ.js͛, ͚DTHelpeƌ.js͛, ͚DTNodes.js͛, aŶd
͚QuestioŶ.js͛. Theƌe is a ŵethod iŶ ͚DTClassifieƌ.js͛ that is Ŷot fƌoŵ this tutorial, called

͚ƌeĐƌeateTƌee͛ ǁhiĐh was used to recreate the tree from the object that is retrieved from the

database, however this is no longer used as a result of the data mining rework.

The file ͚DeĐisioŶTƌeeMiŶiŶg.js͛ ĐoŶtaiŶs the ŵethods that were originally used to process the

data and group the minute datasets into hour and six-hour datasets for the decision trees.

Processing is now done when data is first imported, as a result of the database issue

mentioned earlier (important: processing now only processes the data into hourly datasets

and not six-hour datasets as a result of the rework). This processing is done in

ProfileBuilder.procesToDTHours. This method creates hourly datasets from the minute data.

Whilst the code to process the data has been moved from DecisionTreeMining.js, this method

still calls other methods from DecisionTreeMining.js.

One of the first things to happen in this method is the retrieval of minute data, which is then

put into an object.

 //Create object to hold all minutes data and heart data to match it to

 let activityDoc = {};

 //Iterate over all activity types

 for (const activity of ProfileBuilder.dataFields) {

 activityDoc[activity] = await DatabaseController.fetchAndSort(activity, {intraday: {$exists: true}},

{}, {date: 1});

 }

Figure 20 Retrieval of intraday data

Neǆt, tǁo ŵethods fƌoŵ DeĐisioŶTƌeeMiŶiŶg.js aƌe Đalled. The ͚foƌŵat‘aǁData͛ ŵethod is
used to match the size of datasets for all activities to the heartrate datasets, to remove

missing datasets, and format the data for every minute into an object containing the value

for every activity for that minute, as well as the date and time of the minute. The ͚gƌoupData͛
method is used to group these minute datasets into hour datasets. This is done by simply

iterating through each minute object and aggregating the values from the objects that have

the same date and hour and putting these values into a new object for the hour. The hourly

object also contains an array of minute datasets in the form [steps value, calories value, floors

value, distance value, heart value, activity level], where activity level is the class.

Next in processToDTHours, hourly average datasets of the form [steps value, calories value,

floors value, distance value, heart value, activity level] are created by dividing each value in

the hourly object by the number of minute datasets in the hour. A decision tree is then

https://github.com/random-forests/tutorials/blob/master/decision_tree.ipynb

73

created using the minute datasets for that hour, and the average hourly dataset is classified

on this tree. Figure 21 shows this process.

74

 //Group the data

 let grpData = DecisionTreeMining.groupData(data, "hour");

 //Process the data

 let procData = [];

 let processedTimeData = {};

 //For each day

 for (var i = 0; i < grpData.length; i++) {

 let groupKeys = Object.keys(grpData[i]);

 for (var j = 0; j < groupKeys.length; j++) {

 let key = groupKeys[j];

 let hourData = grpData[i][key];

 //Divide by the number of minute datasets (there is no guarantee that there are 60)

 let numDatasets = hourData.datasets.length;

 let avgSteps = hourData.totalSteps / numDatasets;

 let avgCals = hourData.totalCalories / numDatasets;

 let avgFloors = hourData.totalFloors / numDatasets;

 let avgDist = hourData.totalDistance / numDatasets;

 let avgHeart = hourData.totalHeart / numDatasets;

 //Create average dataset to be classified

 let dataset = [avgSteps, avgCals, avgFloors, avgDist, avgHeart];

 let classifier = new DTClassifier(DecisionTreeMining.getHeadings());

 let tree = classifier.buildTree(hourData.datasets); //Create a tree from the minute datasets

 let outClasses = DTClassifier.classify(dataset, tree);

 let outClass = null;

 let outClassConfidence = 0;

 for (const potentialClass of Object.keys(outClasses)) { //Pick the most likely class

 if (outClasses[potentialClass] > outClassConfidence) {

 outClass = potentialClass;

 outClassConfidence = outClassConfidence;

 }

 }

 dataset.push(outClass);

 procData.push(dataset);

Figure 21 Processing of minute datasets into hourly datasets for decision tree

75

Finally, the hourly datasets are stored in the database under their date.

 let docs = [];

 for (const date of Object.keys(processedTimeData)) {

 let doc = {

 date: date

 }

 for (const timeOfDay of Object.keys(processedTimeData[date])) {

 if (typeof doc.datasets == "undefined") {

 doc.datasets = [processedTimeData[date][timeOfDay]];

 } else {

 doc.datasets.push(processedTimeData[date][timeOfDay]);

 }

 }

 docs.push(doc);

 }

 let docsRes = await DatabaseController.insert("dtDatasets", docs);

Figure 22 Decision tree hourly datasets stored in database

Decision tree classification is done in ProfileBuilder.buildProfile. This used to take place in

DecisionTreeMining.js but was moved as a result of the rework. Figure 23 shows this

classification taking place.

76

 //Build a tree using the classifier object and the dataset

 let tree = dtClassifier.buildTree(buildDatasets);

 //Classify using decision tree

 let classifications = [];

 let correct = 0;

 for (const day of dtDaysToClassify) {

 let dayData = day.datasets;

 let timeOfDay = 0;

 for (const dataset of dayData) {

 let actual = dataset[dataset.length - 1];

 let predicted = DTClassifier.printLeaf(DTClassifier.classify(dataset, tree));

 // let classification = `Actual: ${actual}; Predicted: ${JSON.stringify(predicted)}`;

 let classification = {

 date: day.date,

 timeOfDay: timeOfDay,

 actual: actual,

 predicted: predicted

 }

 classifications.push(classification);

 if (Object.keys(predicted).includes(actual)) {

 correct += 1;

 } else {

 console.log(dataset);

 console.log(classification);

 }

 timeOfDay++;

 }

 }

 return classifications;

Figure 23 Decision tree classification

77

Figure 24 shows an example of a decision tree classifier. The numbers in the prediction objects

state how many data points in the dataset used to build the tree were given that class.

Graph Mining

The original code for this data mining approach can be found in

͚CuŵulatiǀeGƌaphClassifieƌ.js͛, however the code that is used now is at the end of

ProfileBuilder.js as a result of the rework that was required. The classifier is effectively a set

of boundaries between classes for each type of activity, as desĐƌiďed iŶ the ͚Algoƌithŵs͛
section of this report.

This method starts similarly to the decision tree, with a method called processToCGHours.

The first thing that happens within this method is the retrieval of the data from the database,

and the processing of this data to remove values from when the user was not wearing their

device. Next, the code finds the frequency of each class within the datasets and stores this

information in the database if it does not already exist. Figure 25 shows this.

Figure 24 Example of a decision tree classifier

78

 //Create object to hold all minutes data and heart data to match it to

 let activityDoc = {};

 //Iterate over all activity types

 for (const activity of ProfileBuilder.dataFields) {

 activityDoc[activity] = await DatabaseController.fetchAndSort(activity, {intraday: {$exists: true}},

{}, {date: 1});

 }

 //Remove invalid datasets

 ProfileBuilder.matchToHeartData(activityDoc);

 //CREATE PROPORTIONS

 //Get the existing activity level proportions

 let proportionsRes = await DatabaseController.fetch("cgDatasets", {_id: "proportions"}, {});

 if (proportionsRes.length == 0) {

 //Get proportions of new data

 let newProportions = ProfileBuilder.getClassProportions(activityDoc);

 newProportions["_id"] = "proportions";

 await DatabaseController.insert("cgDatasets", newProportions);

 }

Figure 25 Initial retrieval and processing of data for graph-based classifier

The end of the graph dataset processing method involves creating hourly datasets (the call to

ProfileBuilder.getHourlyDocs does this) before adding these datasets to objects and inserting

them into the database. Figure 26 shows this.

79

 let docsToInsert = {};

 //Insert new hourly docs into db for every data type

 for (const activity of ProfileBuilder.dataFields) {

 let docs = ProfileBuilder.getHourlyDocs(activityDoc[activity]);

 for (const doc of docs) {

 doc.activity = activity

 }

 for (const doc of docs) {

 if (typeof docsToInsert[doc.date] == "undefined") {

 docsToInsert[doc.date] = [doc];

 } else {

 docsToInsert[doc.date].push(doc);

 }

 }

 }

 let formattedDocsToInsert = [];

 for (const key of Object.keys(docsToInsert)) {

 let datasets = docsToInsert[key];

 let doc = {

 date: key,

 datasets: datasets

 }

 formattedDocsToInsert.push(doc);

 }

 let insertionRes = await DatabaseController.insert("cgDatasets", formattedDocsToInsert);

Figure 26 Creation, formatting and storage of hourly datasets

Figure 27 shows the datasets from when the user was not wearing their Fitbit device being

removed.

80

static matchToHeartData(activityDoc) {

 //Get the heart data to match the active minute data to

 let allHeartData = activityDoc.heart;

 //Get the keys of the active minute activities only (exclude 'heart')

 let activityKeys = Object.keys(activityDoc);

 activityKeys.splice(activityKeys.indexOf('heart'), 1);

 //For each day of heart data

 for (const day of allHeartData) {

 //Get the date

 let date = day.date;

 //Get the minute-by-minute data

 let heartIntraday = day.intraday;

 //Check each type of active minute data

 for (const activityKey of activityKeys) {

 //Get the data for the current type

 let allMinuteData = activityDoc[activityKey];

 //For each day of active minute data of the current type

 for (const minuteData of allMinuteData) {

 //If the date matches the current heart day, we want to match the two intraday array times

 if (minuteData.date == date) {

 //Get the minute-by-minute datasets for the current day of the current active minute type

 let minuteIntraday = minuteData.intraday;

 //New array to keep values we are interested in

 let newMinuteIntraday = [];

 //Iterate over each heart minute

 for (const heartDataset of heartIntraday) {

 //Iterate over each active minute minute

 for (const minuteDataset of minuteIntraday) {

 //If the times match, we want to keep the active minute dataset

 if (heartDataset.time == minuteDataset.time) {

 newMinuteIntraday.push(minuteDataset);

 }

 }

 }

 //Replace the old day dataset with the new one containing only values from when the device was being worn

 minuteData.intraday = newMinuteIntraday;

 }

 }

 }

 }

 }

81

Figure 27 Removing datasets from when the user was not wearing their device

The main method related to the graph-based classifier is buildCGClassifier. This method

iterates over each activity type and then over every dataset and finds how many datasets

have a value for the activity that is less than the one in the current dataset. This information

could be used to plot a graph of the values for the activity (x axis) against the number of

datasets where the value was lower than the current value (y axis). This graph, along with the

frequencies of each class within the data (this information was stored in the database earlier),

is used to define the boundaries for each class for the activity. For example, if the frequency

of the lowest class (͚not active͛) is 80%, then one would find the value for 80% on the y axis

and then read the related value on the x axis. This value would define the boundary between

͚Ŷot aĐtiǀe͛ aŶd the Ŷeǆt Đlass ;͚lightlǇ aĐtiǀe͛Ϳ. If the Ŷeǆt Đlass had a fƌeƋueŶĐǇ of ϱ%, theŶ
the same process should happen as with the lowest class, except the 5% should be added to

the previous 80%, meaning the value for 85% should be read. This idea is simulated in the

code for this classifier as there was no way to plot a graph. When one would find the

frequency value on the y axis, the code instead finds the value before and the value after this.

These values and their corresponding x values are used to create a straight line between the

two points. The function for this line is found, meaning that the frequency value (y) can be

plugged into the equation to find the respective x value. Figure 28 shows this.

82

 let totalFq = 0;

 for (const fqKey of keys) {

 // console.log(fqKey);

 let frequency = minuteTotals[fqKey];

 let y = frequency * numHours;

 totalFq += y;

 let idx = 0;

 let y1 = 0;

 let x1 = 0;

 let y2 = 0;

 let x2 = 0;

 for (const doc of hourlyDocs) {

 // console.log("Total Fq: " + totalFq + ", numLess: " + doc.numLess + ", value: " + y);

 if (doc.numLess > totalFq) {

 y2 = hourlyDocs[idx].numLess;

 x2 = hourlyDocs[idx].value;

 if (idx > 0) {

 idx--;

 }

 y1 = hourlyDocs[idx].numLess;

 x1 = hourlyDocs[idx].value

 break;

 }

 idx++

 }

 let m = (y2 - y1) / (x2 - x1);

 let c = y2 - (m * x2);

 let x = (totalFq - c) / m;

 thresholds[fqKey.substring(0, fqKey.length - 9)] = x;

 }

 classifier[field] = thresholds;

Figure 28 Simulating a graph reading

83

Finally, in ProfileBuilder.classifyCGData, the boundaries created when creating the classifier

are used to classify new hourly values. This is done for each activity by finding which boundary

the value fits in. This provides a set of five classifications (as there are five activity types), of

which the highest class is taken. Figure 29 shows an example of these boundaries. Using the

calories row as aŶ eǆaŵple, aŶǇthiŶg ďeloǁ Ϯ.ϯϭϭϰ… is Đlassed as ͚Ŷot aĐtiǀe͛, aŶd aŶǇthiŶg
ďetǁeeŶ Ϯ.ϯϭϭϰ… aŶd ϰ.ϯϮ9ϱ… is ͚lightlǇ aĐtiǀe͛ aŶd so oŶ.

Figure 29 Graph-based classifier boundaries

Problems

Some problems were encountered during the creation of the data mining functionality. These

problems were as follows:

1. Data mining package incompatibility: As React Native is JavaScript-based, I was

anticipating using a JavaScript-based package from npm to carry out the data mining

tasks, but it was discovered that this package was incompatible with React Native. This

was a major setback as it sparked a search for a way to carry out data mining tasks

late into the implementation phase of the project. I thought that an alternative could

be to use a familiar Java package as this is an Android application and React Native

allows use of native Java code to implement things that cannot be implemented in

React Native. Furthermore, as I had experience with this Java package, this seemed

like an ideal solution. It was then discovered that this package contained functionality

that was not compatible with the Android device and could not be used as a result.

Eventually, an open-source decision tree approach [14] was discovered in pure

Python, so this was adapted into JavaScript for the project.

2. Grouping datasets:

A classification for a minute of data is not particularly useful for a user. For this reason,

it was decided that the data mining should be done on hourly datasets. This

introduced the problem of classifying these grouped datasets, as the Fitbit data only

contains an activity level for each minute. This led to the decision tree approach to

grouping datasets.

The decision tree approach to grouping datasets, where a new tree is created for each

hour in order to classify an average dataset for the hour, seems to return low activity

levels as classifiers for the hourly dataset. I believe that this is because there are

geŶeƌallǇ ŵoƌe ͚ Ŷot aĐtiǀe͛ ŵiŶutes iŶ aŶ houƌ, ǁhiĐh outǁeigh the ͚ ǀeƌǇ aĐtiǀe͛ ǀalues
when creating the average dataset. Future work could involve an investigation into

how these hourly classifications would be different if the average dataset was

Đlassified oŶ a tƌee Đƌeated foƌ the eŶtiƌe daǇ͛s data ;<= ϭϰϰϬ ŵiŶute datasets), instead

of just the hourly (<= 60 minute datasets) data. This idea of usiŶg all the daǇ͛s data

could also be taken further and tested on data where the data points from when the

user is sleeping are excluded.

3. Duplicate code:

84

The problems described above led to a lot of time being spent on unplanned tasks.

This meant that often when a piece of code was working for the first time, it was left

in the state it was in for the remainder of the project, as there was little time to

refactor and tidy up the code base. This means that there are aspects of the data

mining code that are very similar between the decision tree and graph classifiers.

Given more time, these similar pieces of code would have been refactored into one

piece, so that it would only be written once. An example of this repetition is the

͚ŵatĐhDataToHeaƌtDataset͛ iŶ DeĐisioŶTƌeeMiŶiŶg.js aŶd ͚ŵatĐhToHeaƌtData͛ iŶ
CumulativeGraphClassifier.js.

Fitbit Communication

FitbitCaller.js

This file contains methods that are used to authorise the application with the Fitbit Web API

and request data from it.

Methods 1, 2, and 3: authenticate(), authorizeUser(), and refreshToken()

These methods authenticate the user with the Fitbit Web API or refresh the tokens each time

the application needs to request data.

Method 4: generateUri(String activityName, boolean intraday, String startDate, String

endDate)

Generates URIs that can be used to request data from the Fitbit Web API. The activityName

parameter states which activity the application needs data for. The intraday parameter states

whether the application is requesting intraday data. The final two parameters specify the start

and end dates of the period that the application requires data from.

Method 5: requestData(String uri)

This method is used to request data from the Fitbit Web API. The uri parameter is a URI that

was generated by the generateUri method.

Problems

1. Fitbit API Registration:

I planned the application to request the data from Fitbit, however I encountered the

issue of registering the application with Fitbit. The registration form requires a website

for the application, which this project does not have. After some further investigation,

it was discovered that a dummy value could be used for the application. This was a

very simple conclusion, however the investigation required to find this solution took

a chunk out of the implementation time.

2. Fitbit Authentication:

When planning the project, I did not consider the necessity of authenticating the

application with Fitbit. In order to get data from Fitbit, I had to learn about OAuth2

authentication and callback URLs, which I had never encountered before.

85

Database

DatabaseController.js

This file contains all the methods that create the database and allow the system to interact

with it.

Method 1: createDb()

This method creates various datastores. Each datastore behaves like a MongoDB collection.

There is a datastore for each element of activity data, as well as exercise data, the user profile,

and any deviations.

Method 2: insert(String dbName, Object jsonDoc)

Inserts the given jsonDoc parameter into the datastore that is identified by the dbName

parameter.

Method 3: fetch(String dbName, Object jsonDoc, Object project)

Fetches documents from the datastore that is identified by the dbName parameter. The

jsonDoc parameter is used to provide query terms, and the project parameter is used to

project parts of the document, just like in plain MongoDB.

Method 4: fetchAndSort(String dbName, Object jsonDoc, Object project, Object sort)

This is like fetĐh;Ϳ, hoǁeǀeƌ the eǆtƌa paƌaŵeteƌ, ͚soƌt͛, is used to soƌt the ƌetuƌŶed aƌƌaǇ of
documents.

Method 5: update(String dbName, Object jsonDoc, Object update, Object options)

Updates documents that match the query criteria defined by the jsonDoc parameter within

the datastore identified by the dbName parameter. The update parameter contains

information about what should be updated within the relevant documents, and the options

parameter is used to specify options (such as whether multiple documents should be

updated).

Method 6: remove(String dbName, Object jsonDoc, Object options)

Removes documents that match the query criteria defined by the jsonDoc parameter within

the datastore identified by the dbName parameter. The final parameter is used to specify

options.

Method 7: clear()

This method clears the database. It was originally for debugging, however it has remained in

the application so that the user can clear the database if they desire to.

Other Notable Code

DateUtilities.js

This file contains some static methods that assist with date-related activities within the

application. All dates within the application are strings with the foƌŵat ͞ǇǇǇǇ-MM-dd͟. This is
because Fitbit uses this format in their responses, so this format was adopted in other areas

of the application for consistency and simplicity.

86

Method 1: getDaysOnOrAfter(String startDate)

This method takes a parameter which is a date string of the format described earlier. This

date is expected to be before the current day. The method systematically creates a string

from the current date in the desired format before repeating this process for all the dates up

to the date in the parameter. The method returns an array which contains all the dates

between the current day and the start date. The purpose of this method is to get a list of

dates since the last time the profile was updated, so that the system focuses on requesting

and classifying new data.

Method 2: getDateAsString(Number offset)

Any date string generated within the application is generated by this method. The method

ƌetuƌŶs the ĐuƌƌeŶt date iŶ the foƌŵ ͞ǇǇǇǇ-MM-dd͟ if the ͚offset͛ paƌaŵeteƌ is Ϭ. The
parameter is used to get dates at an offset from the current day. For example, if the offset is

-ϭ, theŶ the ŵethod ƌetuƌŶs ǇesteƌdaǇ͛s date iŶ the desiƌed foƌŵat.

This method was useful for debugging as an offset of -1 can be used within the method to

effectively set the date of the application to the previous day. This meant that a profile could

be built before resetting the date to the current day by removing the offset and restarting the

application so that the profile can be refreshed with new data. This meant that the

classification/deviation functionality could be tested effectively, as deviations are only

created on new data, not during the first profile build.

Method 3: isDateBefore(String dateStringA, String dateStringB)

This method is simply used to compare which of the two date string parameters is before the

otheƌ. The ŵethod ƌetuƌŶs ͚tƌue͛ if date A is ďefoƌe date B, aŶd false otheƌǁise.

Packages Used

react-native

This is the package for React Native [6]. This is crucial to the entire project.

react-native-app-auth

This package [17] is an authentication package for React Native. This was used for

authentication with the Fitbit Web API [1].

react-native-local-mongodb

This is the package [9] that is used to create and manipulate the database. All code used from

this package is in DatabaseController.js.

native-base

This is the package [18] that is used for various on-screen components such as buttons.

react-native-svg-charts

This package [19] is used to create the graphs on the activity page and the exercise page.

react-native-svg

This package [20] is included as react-native-svg-charts depends on it.

87

react-navigation

This package [21] is used to handle the navigation throughout the application.

User Interface

Profile Page

Differences between design and screenshot

The profile icon is smaller in the implemented application. This is to allow more screen space

for cards, which are more interesting and useful to the user.

Another key change is that the edit button was replaced by a help button. During

iŵpleŵeŶtatioŶ, it ǁas disĐoǀeƌed that pƌofile iŶfoƌŵatioŶ suĐh as the useƌ͛s Ŷaŵe aŶd date
of birth etc. could be requested from Fitbit. This meant that there was not much need for the

useƌ to edit pƌofile details iŶ this appliĐatioŶ as theǇ Đould do it ǁith Fitďit. The ͚Edit Pƌofile͛
page ǁas theŶ ƌeplaĐed ǁith a ͚Help Page͛ that siŵplǇ pƌoǀides the useƌ ǁith a siŵple guide
on how to use the application.

The icons on the navigation bar are also different in the original design. This is simply because

the software used to create the design had a limited selection of icons and so during

implementation, more appropriate icons were found that aid the user in understanding what

each button represents.

The other noteworthy change is the colour and layout of the cards. During implementation,

the two-card-per-row layout was tested, however it was not as usable as a the one-card-per-

row-layout. The alternating colours of the cards in the original design could have wrongly led

Figure 31 Profile Page Screenshot Figure 32 Profile Page Screenshot (no

profile)
Figure 30 Profile Page Design

88

the user to believe that the functionality of the cards was different if the colour was different,

so a decision was made to keep all the cards one colour.

Activity Page

Differences between design and screenshot

The most obvious difference between the design and implementation is that the graph is a

line chart, however it is a bar chart in the design. This is because the only graph image in the

design software was a bar chart, so this was used as a placeholder in the design. The graph

shows all the available data for the activity, so a bar chart would not have been an appropriate

choice as there would have been too many bars, meaning that the graph would have likely

had to be very small to accommodate this.

AŶotheƌ Ŷotaďle diffeƌeŶĐe ďetǁeeŶ the tǁo is the laĐk of ͚Aǀeƌage͛ liŶe oŶ the Đhaƌt. This is
ďeĐause the ͚ƌeaĐt-native-svg-Đhaƌts͛ paĐkage [19] used in implementation only allows one

set of data to be plotted on a chart, meaning that it was not possible to add a second line to

the chart. A workaround could perhaps have been found, however it was not deemed

important enough to warrant the time that it would have taken to find a solution.

A final difference of note is that the list has no colour in the implementation, whereas it does

in the design. This is because I was anticipating creating the list from cards, however a third-

party package had a list JSX object that created the simple list in the image on the right. The

list in the implemented application looks tidier than the colourful cards in the design, so this

change was a positive one overall.

Figure 34 Activity Page Screenshot
Figure 33 Activity Page Design

89

Exercises Page

Differences between design and screenshot

The main difference between the two images above is that the cards are all the same colour

in the implementation. This is because it was decided that alternating the colours was

unnecessary and having different colours on the cards could lead the user to think that they

have different purposes.

Figure 36 Exercises Page Screenshot Figure 35 Exercises Page Design

90

Exercise Page

Differences between design and screenshot

The main differences are the graph being a line chart and not a bar chart as designed, the

͚Aǀeƌage͛ ǀalue liŶe Ŷot ďeiŶg pƌeseŶt iŶ the iŵpleŵeŶtatioŶ, aŶd the list ďeiŶg Đolouƌful iŶ
the desigŶ. The ƌeasoŶs foƌ these diffeƌeŶĐes haǀe alƌeadǇ ďeeŶ disĐussed iŶ the ͚AĐtiǀitǇ
Page͛ seĐtioŶ.

The other difference between the two images is the style of the picker. The picker looks the

way it does in the implementation because it is the only style of picker available in React

Native and it did not seem necessary to depend on an extra third-party package for such a

minor detail.

Figure 38 Exercise Page Screenshot
Figure 37 Exercise Page Design

91

Alerts Page

Differences between design and screenshot

The cards in the implemented version are the same colour so that the user does not think

that they behave in different ways. They are a lighter colour than the touchable cards in other

areas of the application in order to distinguish them from the touchable cards, as these cards

do nothing when pressed.

Another difference is that the icons on the cards are the dark primary colour from the colour

scheme instead of different colours, as in the design. The text on the cards is also right-aligned

so that the useƌ͛s eǇe ĐaŶ ŵoǀe iŶ a stƌaight liŶe doǁŶ the sĐƌeeŶ, aŶd the useƌ kŶoǁs ǁheƌe
the information will be due to the greater consistency between the cards.

The picker in the implementation allows the user to filter the types of cards they see.

Figure 40 Alerts Page Screenshot Figure 39 Alerts Page Design

92

Results and Evaluation

Testing and Evaluation of Data Mining Approaches

In order to compare the classifiers, each was implemented in the main flow of the application

and tested on real data. The data was imported in chunks spanning five days each. Data would

usually be imported up to seven days at a time, however for the purposes of not hitting Fitbit

request limits, two five-day chunks were pulled into the application each hour. The process

was as follows:

1. Pick a date over five days from the first day of data (30th January 2019).

2. Set the application date to this chosen date by offsetting the returned value in

DateUtilities.getDateAsString.

3. Clear the application database.

4. Restart the application.

5. Pull the profile screen down to refresh the profile.

6. Wait while the data is imported and processed.

7. Close the application and lower the offset in DateUtilities.getDateAsString by five in

order to move the application date forward by five days.

8. Start the application.

9. Pull the profile screen down to refresh the profile.

10. Wait while the new data is imported, a classifier of each type is built from the existing

data, and the new data is classified on the classifiers. The results are printed to the

console.

11. Copy the results into a CSV file to be evaluated later.

12. Repeat steps 7 – 11 until there is no longer an offset in DateUtilities.getDateAsString.

The application is up to date.

Following the approach outlined above, the application was tested on 76 days of data (the

original offset was 70, however the testing took two days and so these extra days were added

to the offset as testing progressed). The initial application date was 20th February 2019, and

testing was completed on 3rd May 2019, meaning that the data spanned 15th February 2019

– 2nd May 2019.

The decision to test the application in chunks of five days was to enable the classifiers various

opportunities to incorporate more data, which in theory should make them more accurate.

Using chunks of seven days would have meant that two tests could not be done safely per

hour because there was potential to hit the Fitbit request limit and using chunks of under five

days would have resulted in many more tests. For these reasons, five days became the date

span of choice.

The results of these tests can be found below. Each row corresponds to the import of five

days of data, except for test 15, which had two days imported. The results start from the

second data import, as this is the first time that data is classified (no classifier is built during

the first profile build). Each test tested the classifiers, which were built from all data that

existed within the application before the current import. The newly imported data was then

classified on these classifiers. Classification accuracy was worked out by dividing the number

of correct classifications by the total number of classifications (apart from in the final two

93

columns, where the number of correct classifications was instead divided by the total number

of classifications minus the number of classifications where both classifiers were wrong).

Test Number Total

Classifications

DT

Incorrect

Graph

Incorrect

Both

Incorrect

DT Correct % Graph

Correct %

DT Correct %

(ignoring

both

incorrect)

Graph

Correct %

(ignoring

both

incorrect)

1 119 19 1 0 84.03361345 99.15966387 84.03361345 99.15966387

2 120 19 0 0 84.16666667 100 84.16666667 100

3 120 12 7 1 90 94.16666667 90.83333333 95

4 119 8 1 0 93.27731092 99.15966387 93.27731092 99.15966387

5 120 10 4 2 91.66666667 96.66666667 93.33333333 98.33333333

6 120 20 0 0 83.33333333 100 83.33333333 100

7 118 12 1 0 89.83050847 99.15254237 89.83050847 99.15254237

8 119 16 1 0 86.55462185 99.15966387 86.55462185 99.15966387

9 120 19 1 0 84.16666667 99.16666667 84.16666667 99.16666667

10 120 19 1 0 84.16666667 99.16666667 84.16666667 99.16666667

11 120 14 0 0 88.33333333 100 88.33333333 100

12 120 9 1 0 92.5 99.16666667 92.5 99.16666667

13 112 14 0 0 87.5 100 87.5 100

14 117 11 1 0 90.5982906 99.14529915 90.5982906 99.14529915

15 48 4 0 0 91.66666667 100 91.66666667 100

All 1712 206 19 3 87.96728972 98.89018692 88.14252336 99.06542056

Figure 41 Test results for both classifiers

We can see from the results in Figure 41 that there is a clear difference in the performance of

the classifiers. The graph classifier was consistently close to 100% accuracy, and its lowest

accuracy was 94.167%. This is a contrast to the performance of the decision tree, which

struggled to reach 90% accuracy, although it did manage this a small number of times. One

could hypothesise that the decision tree classifier is not accurate because the new data in

each test was genuinely inconsistent with the existing data, however because the graph

classifier classified the data correctly in most cases, we can assume that this is not the case.

There were a number of instances where both classifiers provided an incorrect classification,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Decision Tree 84.03484.167 90 93.27791.66783.33389.83186.55584.16784.16788.333 92.5 87.5 90.59891.667

Frequency Graph 99.16 100 94.16799.1696.667 100 99.15399.1699.16799.167 100 99.167 100 99.145 100

75

80

85

90

95

100

105

Percentage of Correct Classifications

94

where we could perhaps assume that the new data was genuinely inconsistent with the

existing data, however this happens at such a low rate that these anomalous classifications

make a minimal impact on the percentage of correct classifications for each classifier.

We ĐaŶ also see fƌoŵ the ƌesults that the deĐisioŶ tƌee Đlassifieƌ͛s aĐĐuƌaĐǇ does Ŷot iŵpƌoǀe
over time. This could be due to one of several potential causes:

1. The implementation of the classifier. This is a likely cause as the implemented tree is

very basic and the tree can have any number of levels.

2. The method of grouping the datasets biases the data. An interesting topic for future

work could be to investigate other ways in which minute datasets can be grouped

into hourly datasets for this classifier.

3. The imported data is genuinely dissimilar to the existing data during each test. This

is unlikely, as the graph-based classifier almost always has no problem classifying

datasets that the decision tree classifier gets wrong.

Unfortunately, the test results do not help answer the question of how the accuracy of the

graph-based classifier changes over time. This is because the results are too similar and are

very high from the first test. This meant that there was almost no scope for the graph-based

classifier to improve.

Something worth noting for the graph-based classifier is that the classification for every

hourly dataset was one of five possible classifications (one each for steps, calories, floors,

distance, heartrate). The classifier related to the highest possible class was chosen from the

set of five for each hourly dataset. This is not necessarily the best way to get a single

classification for the hourly data. Future work should include an investigation into the

performance of this classifier when a different classification is taken from the five potential

classifications. Moreover, a better way of finding a single classification should be investigated.

One conclusion that can safely found from the tests on these classifiers is that the graph-

based classifier is more accurate than the decision tree classifier, at least within the context

of this application and its implementation of the mining techniques.

Evaluation Against Requirements

This section goes through each requirement and analyses if it was met or not, before

providing a justification for the outcome of each requirement.

Requirement

Number

Requirement

Met

Justification

Functional

Must

1 Yes A profile is created and displayed in the profile page.

2 Yes When the profile is refreshed, cards appear in the Alerts tab

if the user has a different activity level based on similar data

to their model.

95

3 Yes The profile can be refreshed once per day. If the user

attempts to refresh again, an alert pops up stating that the

profile is up-to-date.

4 Yes Alerts are displayed to the user when their profile rebuild

starts and when it is complete.

5 Yes The user can still use the application after they have initiated

a profile refresh.

6 Yes The classifiers were tested in the section above.

7 Yes When the user navigates to the activity page, a graph

containing data for the chosen activity is displayed.

8 Yes When the user navigates to the activity page, a list

containing data for the chosen activity is displayed.

9 Yes WheŶ the useƌ Ŷaǀigates to the eǆeƌĐises page aŶd ͚Tiŵe͛ is
selected in the picker, a graph containing durations of their

sessions of the selected exercise is displayed.

10 Yes WheŶ the useƌ Ŷaǀigates to the eǆeƌĐises page aŶd ͚Tiŵe͛ is
selected in the picker, a list containing dates and durations

of their sessions of the selected exercise is displayed.

11 Yes WheŶ the useƌ Ŷaǀigates to the eǆeƌĐises page aŶd ͚ Caloƌies͛
is selected in the picker, a graph containing the calories

burned in their sessions of the selected exercise is displayed.

12 Yes WheŶ the useƌ Ŷaǀigates to the eǆeƌĐises page aŶd ͚ Caloƌies͛
is selected in the picker, a list containing dates and calories

burned in their sessions of the selected exercise is displayed.

13 Yes When the user navigates to the exercises page and

͚DistaŶĐe͛ is seleĐted iŶ the piĐkeƌ, a gƌaph ĐoŶtaiŶiŶg the
distance travelled in their sessions of the selected exercise

is displayed.

14 Yes When the user navigates to the exercises page and

͚DistaŶĐe͛ is seleĐted iŶ the piĐkeƌ, a list ĐoŶtaiŶiŶg dates
and distances travelled in their sessions of the selected

exercise is displayed.

15 Yes Cards are displayed on the profile page that tell the user the

average steps, calories, distance, and floors they do each

day, and their average resting heart rate.
16 Yes

17 Yes

18 Yes

19 Yes

96

20 Yes Four cards are displayed on the profile page that tell the user

their average number of minutes in each activity level per

day.

21 Yes The useƌ͛s data is ƌetƌieǀed fƌoŵ the dataďase aŶd
presented to them when they restart the application.

22 Yes When the user pulls the profile page down to refresh their

profile, data is imported and then the values in their profile

are recalculated to include the new data. These values are

then updated on the profile page, and an alert is displayed

to the user when their profile build is complete.

Should

23 No This functionality was not included because the project

focussed on testing a second data mining approach as the

project progressed.

24 No This was decided against once implementation started as it

was discovered that basic user information can be gleaned

from their Fitbit profile, so it seemed unnecessary to get the

user to input this information a second time.

25 No This was not met because the focus moved away from the

manual input aspects of the application and moved instead

to the comparison of two data mining approaches.

26 No This was not included as it did not seem straightforward to

do using the third-party graph package. It is likely that there

is a solution, however this did not seem important enough

to justify spending much time on. The average value is

displayed in the list on the activity page however.

27 Yes The most common exercise type is worked out based on

how much time the user spends doing each exercise type.

Based on my data, this eǆeƌĐise ǁas ͚Walk͛. This is

unsurprising because Fitbit logs exercises when one walks.

In future, this could be amended to exclude walking, or

exclude automatically logged sessions.

28 No This was a desirable feature as opposed to a necessary

feature. It was not important enough to justify spending

time on it when there were issues with other areas of the

application.

29 No There was not enough time to implement this due to issues

with other areas of the application, however this would be

a good thing to display on the Alerts page in future.

30 Yes No exercise type is displayed on the exercises tab unless it

eǆists iŶ the useƌ͛s data.

97

Could

31 No Working with sleep data was defined as an extra challenge

if other aspects of the application were complete before the

project deadline. This was not the case however, so this

requirement remains incomplete.

32 No Like requirement 31, this was an extra challenge that there

was no time for.

33 No See justification for requirement 31.

34 Yes This is one of the core aspects of the application. User data

is requested from Fitbit before the profile is created.

35 No This was deemed unnecessary once the application could

directly import data from Fitbit. This requirement also

presents the issue of the user having to create/import a file

onto their Android device, which is extra hassle for the user.

36 No There was no time to implement this given the focus on

getting other areas of the application working.

37 No As discussed in the justification for requirement 36, there

was no time to implement exercise reminders.

Will Not

38 Yes Theƌe is Ŷo ǁaǇ to ǀieǁ otheƌ useƌs͛ data ǁithiŶ the
application.

Non-Functional

39 Yes The application takes less than n*20 seconds to import data

from n days, build the profile, and classify the data.

40 Yes A heuristic evaluation was done on the UI designs to identify

issues with it. Many of these issues were addressed during

implementation to produce an application that is intuitive.

Requirements Type Total Requirements Number of

Requirements Met

Percentage of

Requirements Met

Functional 38 26 68.421%

Must 22 22 100%

Should 8 2 25%

Could 7 1 14.283%

Will Not 1 1 100%

Non-Functional 2 2 100%

98

All 40 28 70%

The first table above shows which of the 40 requirements were met and provides an

explanation of how each one is met (or why it is not met). We can see from the tables above

that 70% of all requirements were met by the final application, including ϭϬϬ% of the ͚ŵust͛
requirements, which is a success. OŶlǇ aƌouŶd ϭϰ% of the ͚Đould͛ ƌeƋuiƌeŵeŶts ǁeƌe ŵet,
which is acceptable as these requirements expressed non-essential functionality to be

included if there was enough time within the project. Only 25% of the ͚should͛ ƌeƋuiƌeŵeŶts
were met, which is lower than anticipated. The reason for many of these requirements not

being met is that there was originally only going to be one data mining method implemented

within the application, but two were eventually created and compared. This work was

deemed more important than many of the ƌeƋuiƌeŵeŶts iŶ the ͚should͛ seĐtioŶ, aŶd this is
justified by the fact that through testing the two classifiers, we have seen that the new graph-

based classifier is much better than the original classifier. This is a conclusion that would not

have been possible to make if this work was not carried out.

99

Future Work

Network Errors

During implementation, no method of handling network errors was put in place. As stated

earlier, this project assumes that these network errors will not happen, however this is clearly

Ŷot the Đase iŶ the ƌeal ǁoƌld. OfteŶ, these Ŷetǁoƌk eƌƌoƌs aƌe out of the useƌ͛s haŶds, aŶd
so work should be carried out to ensure that these errors have no effect on the state of the

application.

Changing Classifier

We have seen from testing that the graph-based classifier was much better at classifying user

datasets as the model was more accurate. Going forward, this classifier should be the one

used within the application to create the deviations, not the decision tree classifier.

Adjusting Decision Tree Classifier Grouping Method

The decision tree minute datasets were grouped into hourly datasets by creating a decision

tƌee foƌ eaĐh houƌ͛s data, creating an average dataset from this data, and classifying it on the

decision tree. This is not necessarily an effective way of grouping the datasets into hours, and

so an investigation into how else this can be handled should take place. One suggestion is to

classify the aǀeƌage houƌlǇ dataset oŶ a deĐisioŶ tƌee Đƌeated fƌoŵ the eŶtiƌe daǇ͛s data, Ŷot
just one hour.

Remove Sleep Datasets

WheŶ the useƌ is asleep, theiƌ aĐtiǀitǇ leǀel is alŵost ĐeƌtaiŶ to ďe ͚Ŷot aĐtiǀe͛ ďǇ default.
Ignoring or removing the datasets from when the user is asleep could drastically alter the

classifiers, especially the graph-based classifier, which uses the frequency of classes within

the data to decide how to classify unseen datasets. Removing these datasets would make the

fƌeƋueŶĐǇ of ͚Ŷot aĐtiǀe͛ datasets ŵuĐh loǁeƌ.

Classifying Days

Currently, the application can only classify hourly datasets. This is likely to be quite useful to

users, however it would also be useful if the system could give the user an indication of how

active they were for an entire day. This would also reduce the number of requests that would

need to be made to Fitbit. Users can request daily total values for a given activity for as many

days as they would like in a single request, however if they would like to request data at a

smaller granularity, they need individual intraday requests. This is an issue with the request

limit of 150 per hour, imposed by Fitbit.

Authentication Bug

There is a bug that causes the application to hang when authenticating occasionally. The

cause of this bug is unknown, but it seems to be during a call of a third-party method. This

bug should be investigated, as currently there is no way to feedback to the user if the

application is hanging.

100

Further Testing

The application should be tested on data from different timeframes to see how the classifiers

adapt to different datasets. Further to this, the data should be added to each classifier in

ǀaƌǇiŶg iŶĐƌeŵeŶts to see hoǁ ƋuiĐklǇ the Đlassifieƌs͛ aĐĐuƌaĐǇ ĐhaŶges. The classifiers were

tested by adding 5 days of data at a time, however it would be interesting to see how they

would behave if data was added in groups of 3 or 7 days for example.

Additionally, the graph-based classifier should be tested using a different classification from

the possible five it creates, to see how this affects the accuracy.

Manual User Input

There was not enough time to implement mechanisms that allow the user to manually log

exercise sessions and activity data. This should be looked at in future, as it would be beneficial

to allow users to log activity from times when they were not wearing their device.

Adapting to Fitbit Devices

This project was completed using a Fitbit Charge 3 to gather data. As not all Fitbit devices

track the same data, this application should be tested with other Fitbit models, and adapted

as necessary to work with these.

101

Conclusions

The main aim of this project was to create an application that can profile a user based on their

Fitbit data, allows the user to track their activity, and alerts the user when they deviate from

their profile. This has been achieved by creating an Android application, using React Native,

that allows users to import data directly from their Fitbit profile, before performing some

simple data analysis to provide the user with information such as the average number of steps

they complete in a day. More complex data mining methods were employed in order to

aŶalǇse the ǁaǇ a useƌ͛s aĐtiǀitǇ leǀel ĐhaŶges ǁith theiƌ aĐtiǀitǇ data. This pƌojeĐt has
evaluated the effectiveness of a decision tree and a graph-based classifier for this purpose

and has found that the graph-based classifier is the more accurate classifier.

Each time a user imports new data into the application, this new data is compared to their

existing data in order to find deviations from their existing profile. These deviations tell the

user when they have achieved less than usual in terms of their activity data, such as steps and

calories. Deviations are also created using the decision tree classifier (this classifier is used as

it was implemented within the flow of the application originally) to tell the user when their

data during a given hour of the day provided a different activity level than what was expected

by the classifier. This information is displayed to the user within a responsive and intuitive

application.

Overall, this project has been a success in terms of creating a usable mobile application to

allow users to track and read their Fitbit data and find deviations in their activity level based

on this data.

102

Reflection on Learning
The main thing I have learned during this project is that I should research the capabilities of

tools and languages more before using them. The choice to use React Native turned out to be

poor because the framework itself is quite new and support is therefore minimal. This

framework also proved to be a poor choice for a data mining project as many of the packages

I intended to use turned out to be incompatible with it. Furthermore, the underlying database

turned out to be incredibly small, which caused issues when testing the application, causing

me to have to rework large parts of the application at a late stage in the project (although I

do not believe that I would have found this issue with added research as the database

restriction is not mentioned in the React Native documentation as far as I can tell). If I were

to repeat this project, I would use more appropriate languages such as Python for the data-

related aspects, and perhaps store the data on a server.

In addition, I have learned that I should decide on complex areas of functionality earlier in

projects. I did not know what data mining techniques I wanted to use until implementation

had started, which lead to unnecessary stress when trying to research various solutions

before choosing and implementing one. There were also further issues with React Native as

any packages I found to potentially aid with data analysis were incompatible. Use of Python

or Java would have meant that I could use a variety of well-supported packages for this

project.

A personal aim of the project was to learn about a new framework and mobile application

development. Whilst I found React Native difficult to work with at times, I found the challenge

of learning a new technology as part of the project rewarding. I believe that I was successful

in learning about mobile development as I have managed to create an application that is

usable and has a range of useful features. This project has given me a new skill and knowledge

that I can take forward into future projects that require mobile development experience.

103

Appendices

Appendix A

Use Cases

Log Activity Data

This use case allows the user to manually log activity data for adding to the profile.

Preconditions

• The application is already running.

Main Flow

1. Press the Profile icon

This use case starts when the user presses the profile icon on the main tab bar at the

bottom of the application screen. The profile page is displayed.

2. Press an activity card

The user presses an activity card on the profile page and is taken to a page that

contains detailed data for that activity.

3. Press the log entry icon

The useƌ pƌesses the ͚+͛ iĐoŶ oŶ the aĐtiǀitǇ page that theǇ aƌe ĐuƌƌeŶtlǇ oŶ. The useƌ
is presented with a form that asks for information related to the activity.

4. Complete and submit the form

The useƌ Đoŵpletes the foƌŵ aŶd pƌesses the ͚“uďŵit͛ ďuttoŶ. The dataďase stoƌes
the information that the user entered with the rest of the data for the specific activity

that the useƌ has logged aŶ eŶtƌǇ foƌ. The useƌ͛s pƌofile is autoŵatiĐallǇ ƌebuilt.

Alternative Flows

4A. Cancel the entry

The useƌ pƌesses the ͚CaŶĐel͛ ďuttoŶ aŶd is asked to ĐoŶfiƌŵ that theǇ do Ŷot ǁaŶt to
submit the entry before cancelling. The user is returned to the activity page that they

were previously browsing.

View Exercise Calories

This use case allows the user to view the number of calories burned during exercise sessions

that they have completed.

Preconditions

• The application is already running.

• The user has synchronised the application with Fitbit.

• The user has tracked exercises with their Fitbit device.

Main Flow

1. Press the Exercise icon

This use case starts when the user presses the exercise icon on the main tab bar at the

bottom of the application screen. The exercise page is displayed and contains a list of

cards ĐoŶtaiŶiŶg eǆeƌĐise tǇpes that the useƌ has Đoŵpleted suĐh as ͚‘uŶ͛, ͚Walk͛, aŶd
͚CǇĐle͛.

104

2. Press an exercise card

The user presses a card on the exercise page and is taken to a page that contains

detailed data for that exercise. For example, if the user pƌesses the ͚‘uŶ͛ Đaƌd, theǇ
aƌe takeŶ to a page ĐoŶtaiŶiŶg a dƌop doǁŶ ŵeŶu that is set to ͚Caloƌies͛ ďǇ default, a
list of the number of calories burned in each run, and a graph showing the calories

burned in each run.

View Exercise Time

This use case allows the user to view the time taken to complete exercise sessions.

Preconditions

• The application is already running.

• The user has synchronised the application with Fitbit.

• The user has tracked exercises with their Fitbit device.

Main Flow

1. Press the Exercise icon

This use case starts when the user presses the exercise icon on the main tab bar at the

bottom of the application screen. The exercise page is displayed and contains a list of

Đaƌds ĐoŶtaiŶiŶg eǆeƌĐise tǇpes that the useƌ has Đoŵpleted suĐh as ͚‘uŶ͛, ͚Walk͛, aŶd
͚CǇĐle͛.

2. Press an exercise card

The user presses a card on the exercise page and is taken to a page that contains

detailed data foƌ that eǆeƌĐise. Foƌ eǆaŵple, if the useƌ pƌesses the ͚‘uŶ͛ Đaƌd, theǇ
are taken to a page containing a picker ŵeŶu that is set to ͚Caloƌies͛ ďǇ default, a list
of the number of calories burned in each run, and a graph showing the calories burned

in each run.

3. Select the picker menu

The user presses on the picker menu, and a list of possible views is displayed. This list

ĐoŶtaiŶs ͚Caloƌies͛ aŶd ͚Tiŵe͛ foƌ all eǆeƌĐise tǇpes, aŶd ͚DistaŶĐe͛ foƌ aĐtiǀities ǁheƌe
this is available.

4. Press ͚Tiŵe͛
The user returns the exercise screen, which now shows a picker menu that is set to

͚Tiŵe͛, a list of tiŵes foƌ each session of the selected exercise, and a graph showing

the time taken for each session.

View Exercise Distance

This use case allows the user to view the distance covered in exercise sessions where this

value was recorded.

Preconditions

• The application is already running.

• The user has synchronised the application with Fitbit.

• The user has tracked exercises with their Fitbit device.

Main Flow

1. Press the Exercise icon

105

This use case starts when the user presses the exercise icon on the main tab bar at the

bottom of the application screen. The exercise page is displayed and contains a list of

Đaƌds ĐoŶtaiŶiŶg eǆeƌĐise tǇpes that the useƌ has Đoŵpleted suĐh as ͚‘uŶ͛, ͚Walk͛, aŶd
͚CǇĐle͛.

2. Press an exercise card

The user presses a card on the exercise page and is taken to a page that contains

detailed data foƌ that eǆeƌĐise. Foƌ eǆaŵple, if the useƌ pƌesses the ͚‘uŶ͛ Đaƌd, theǇ
aƌe takeŶ to a page ĐoŶtaiŶiŶg a piĐkeƌ ŵeŶu that is set to ͚Caloƌies͛ ďǇ default, a list
of the number of calories burned in each run, and a graph showing the calories burned

in each run.

3. Select the picker menu

The user presses on the picker menu, and a list of possible views is displayed. This list

ĐoŶtaiŶs ͚Caloƌies͛ aŶd ͚Tiŵe͛ foƌ all eǆeƌĐise tǇpes, aŶd ͚DistaŶĐe͛ foƌ activities where

this is available.

4. Press ͚DistaŶce͛
The user returns the exercise screen, which now shows a picker menu that is set to

͚DistaŶĐe͛, a list of distaŶĐes ƌeĐoƌded iŶ eaĐh sessioŶ of the seleĐted eǆeƌĐise, aŶd a
graph showing the distance covered in each session.

Log Exercise Data

This use cases allows users to manually log an exercise session.

Preconditions

• The application is already running.

Main Flow

1. Press the Exercise icon

This use case starts when the user presses the exercise icon on the main tab bar at the

bottom of the application screen. The exercise page is displayed and contains a list of

Đaƌds ĐoŶtaiŶiŶg eǆeƌĐise tǇpes that the useƌ has Đoŵpleted suĐh as ͚‘uŶ͛, ͚Walk͛, aŶd
͚CǇĐle͛.

2. Press an exercise card

The user presses a card on the exercise page and is taken to a page that contains

detailed data foƌ that eǆeƌĐise. Foƌ eǆaŵple, if the useƌ pƌesses the ͚‘uŶ͛ Đaƌd, theǇ
aƌe takeŶ to a page ĐoŶtaiŶiŶg a piĐkeƌ ŵeŶu that is set to ͚Caloƌies͛ ďǇ default, a list
of the number of calories burned in each run, and a graph showing the calories burned

in each run.

3. Press the log entry icon

The useƌ pƌesses the ͚+͛ iĐoŶ oŶ the eǆeƌĐise page that theǇ aƌe ĐuƌƌeŶtlǇ oŶ. The useƌ
is presented with a form that asks or information related to the exercise.

4. Complete and submit the form

The useƌ Đoŵpletes the foƌŵ aŶd pƌesses the ͚“uďŵit͛ ďuttoŶ. The dataďase stoƌes
the information that the user entered with the rest of the data for the specific exercise

type that the user logged an entry for. The useƌ͛s pƌofile is autoŵatiĐallǇ ƌeďuilt.

Alternative Flows

4A. Cancel the entry

106

The useƌ pƌesses the ͚CaŶĐel͛ ďuttoŶ aŶd is asked to ĐoŶfiƌŵ that theǇ do Ŷot ǁaŶt to
submit the entry before cancelling. The user is returned to the activity page that they

were previously browsing.

Edit Profile Information

This use case allows users to edit basic profile information such as name, age, height, weight

etc.

Preconditions

• The application is already running.

• The user has created a profile.

Main Flow

1. Press the Profile icon

This use case starts when the user presses the profile icon on the main tab bar at the

bottom of the application screen. The profile page is displayed.

2. Press the ͚Edit Profile͛ icoŶ

The user presses the pencil-shaped iĐoŶ to opeŶ the ͚Edit Pƌofile͛ sĐƌeeŶ. Heƌe, the
user can change their basic profile information such as name and date of birth.

3. Edit profile and submit

The user makes whatever changes they wish to their profile before pressing a green

tick icon to submit their changes.

Alternative Flows

3A. Cancel the edit

The useƌ pƌesses the ͚BaĐk͛ ďuttoŶ aŶd if the useƌ ŵade ĐhaŶges, theǇ aƌe asked to
confirm that they do not want to submit the changes before cancelling. The user is

returned to the profile page.

Edit Profile Settings

This use Đase alloǁs the useƌ to edit settiŶgs ƌelated to the ͚Pƌofile͛ seĐtioŶ of the appliĐatioŶ.

Preconditions

• The application is already running.

Main Flow

1. Press the Profile icon

This use case starts when the use presses the profile icon on the main tab bar at the

bottom of the application screen. The profile page is displayed.

2. Press the ͚Profile SettiŶgs͛ icoŶ

The user presses the gear-shaped iĐoŶ to opeŶ the ͚Pƌofile “ettiŶgs͛ sĐƌeeŶ. Heƌe, the
user can choose settings such as what level of detail they wish to use for their activity

data, and the amount of data they would like the application to use to build their

profile.

3. Edit settings and submit

The user makes whatever changes they wish to their settings before pressing a green

tick icon to submit their changes.

107

Alternative Flows

3A. Cancel the edit

The useƌ pƌesses the ͚BaĐk͛ ďuttoŶ aŶd if the useƌ ŵade ĐhaŶges, theǇ aƌe asked to
confirm that they do not want to submit the changes before cancelling. The user is

returned to the profile page.

Edit Exercise Settings

This use Đase alloǁs the useƌ to edit settiŶgs ƌelated to the ͚EǆeƌĐises͛ seĐtioŶ of the
application.

Preconditions

• The application is already running.

Main Flow

1. Press the Exercises icon

This use case starts when the use presses the exercises icon on the main tab bar at the

bottom of the application screen. The exercises page is displayed.

2. Press the ͚Exercise SettiŶgs͛ icoŶ

The user presses the gear-shaped iĐoŶ to opeŶ the ͚EǆeƌĐise “ettiŶgs͛ sĐƌeeŶ. Heƌe,
the user can choose exercise related settings such as units, and how much data they

would like to view on the graphs.

3. Edit settings and submit

The user makes whatever changes they wish to their settings before pressing a green

tick icon to submit their changes.

Alternative Flows

3A. Cancel the edit

The useƌ pƌesses the ͚BaĐk͛ ďuttoŶ and if the user made changes, they are asked to

confirm that they do not want to submit the changes before cancelling. The user is

returned to the profile page.

Edit Alert Settings

This use case allows the useƌ to edit settiŶgs ƌelated to the ͚Aleƌts͛ seĐtioŶ of the appliĐatioŶ.

Preconditions

• The application is already running.

Main Flow

1. Press the Alerts icon

This use case starts when the use presses the alerts icon on the main tab bar at the

bottom of the application screen. The alerts page is displayed.

2. Press the ͚Alert SettiŶgs͛ icoŶ

The user presses the gear-shaped iĐoŶ to opeŶ the ͚Aleƌt “ettiŶgs͛ sĐƌeeŶ. Heƌe, the
user can choose settings such as how often they would like to generate alerts.

3. Edit settings and submit

The user makes whatever changes they wish to their settings before pressing a green

tick icon to submit their changes.

108

Alternative Flows

3A. Cancel the edit

The useƌ pƌesses the ͚BaĐk͛ ďuttoŶ aŶd if the useƌ ŵade ĐhaŶges, theǇ aƌe asked to

confirm that they do not want to submit the changes before cancelling. The user is

returned to the profile page.

109

References

1. Dev.fitbit.com. (2019). Fitbit Development: Web API. [online] Available at:

https://dev.fitbit.com/build/reference/web-api/ [Accessed 1 Feb. 2019].

2. Fitbit.com. (2019). Fitbit Official Site for Activity Trackers and More. [online] Available

at: https://www.fitbit.com [Accessed 1 Feb. 2019].

3. Strava.com. (2019). Strava | Run and Cycling Tracking on the Social Network for

Athletes. [online] Available at: https://www.strava.com [Accessed 5 Feb. 2019].

4. Myfitnesspal.com. (2019). MyFitnessPal | MyFitnessPal.com. [online] Available at:

https://www.myfitnesspal.com [Accessed 5 Feb. 2019].

5. Juneja, N. and de Lassence, C. (2016). webscale/Rbitfit. [online] GitHub. Available at:

https://github.com/webscale/Rbitfit [Accessed 5 Feb. 2019].

6. Facebook.github.io. (2019). React Native · A framework for building native apps using

React. [online] Available at: https://facebook.github.io/react-native/ [Accessed 1 Feb.

2019].

7. MongoDB. (2019). The most popular database for modern apps. [online] Available at:

https://www.mongodb.com [Accessed 8 Mar. 2019].

8. MongoDB. (2019). What Is MongoDB?. [online] Available at:

https://www.mongodb.com/what-is-mongodb [Accessed 19 Apr. 2019].

9. Silva, A. (2019). antoniopresto/react-native-local-mongodb. [online] GitHub. Available

at: https://github.com/antoniopresto/react-native-local-mongodb [Accessed 8 Mar.

2019].

10. GitHub. (2019). Build software better, together. [online] Available at:

https://www.github.com [Accessed 19 Feb. 2019].

11. Git-scm.com. (2019). Git. [online] Available at: https://git-scm.com [Accessed 19 Feb.

2019].

12. Trello.com. (2019). Trello. [online] Available at: https://trello.com/ [Accessed 11 Feb.

2019].

13. Balsamiq.com. (2019). Balsamiq. Rapid, effective and fun wireframing software. |

Balsamiq. [online] Available at: https://balsamiq.com/ [Accessed 12 Feb. 2019].

14. Gordon, J. (2017). decision_tree.ipynb. [online] GitHub. Available at:

https://github.com/random-forests/tutorials/blob/master/decision_tree.ipynb

[Accessed 27 Mar. 2019].

15. Color Tool - Material Design. (2019). Color Tool - Material Design. [online] Available

at: https://material.io/tools/color/ [Accessed 12 Feb. 2019].

16. Nielsen, J. (1994). 10 Heuristics for User Interface Design: Article by Jakob Nielsen.

[online] Nielsen Norman Group. Available at: https://www.nngroup.com/articles/ten-

usability-heuristics/ [Accessed 24 Apr. 2019].

17. Formidable. (2019). react-native-app-auth. [online] Available at:

https://formidable.com/open-source/react-native-app-auth [Accessed 6 Mar. 2019].

18. Nativebase.io. (2019). NativeBase | Essential cross-platform UI components for React

Native. [online] Available at: https://nativebase.io/ [Accessed 26 Feb. 2019].

19. Lekland, J. (2019). JesperLekland/react-native-svg-charts. [online] GitHub. Available

at: https://github.com/JesperLekland/react-native-svg-charts [Accessed 19 Mar.

2019].

110

20. react-native-community (2019). react-native-community/react-native-svg. [online]

GitHub. Available at: https://github.com/react-native-community/react-native-svg

[Accessed 19 Mar. 2019].

21. Reactnavigation.org. (2019). React Navigation · Routing and navigation for your React

Native apps. [online] Available at: https://reactnavigation.org [Accessed 26 Feb.

2019].

