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Abstract

Millions of people use wearable activity tracking devices to monitor their activity and
maintain a healthy lifestyle. As a result, a wealth of data is gathered in these devices that can
be used to learn about the user that recorded it. This project explores the creation of a mobile
application to be used in conjunction with a Fitbit activity tracker, in order to build a user

profile based on data gleaned from the device. Furthermore, the application will alert the user
when they deviate from this profile.
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Introduction

Devices such as smartphones, smart watches, and activity trackers have become ubiquitous
in recent years. Users willingly give their personal information, such as location, health,
activity, and sleep data, to these devices, and many people use them to track their fitness and
daily activity. This data allows people to quantify how active they are, and users are likely to
be motivated to do more exercise and track their progress as a result.

The aim of this project is to see how a user can be profiled based on data extracted from a
Fitbit activity tracker, and what insights can be gained about a user regarding their lifestyle. |
will create a mobile application that stores and analyses the extracted data. The data will be
mined in order to build a profile for a user which will be displayed within the application. This
profile will provide the user with information about their daily activity.

The application will be able to tell the user when they are deviating from their “normal”
behaviour (i.e. if they are less active than usual). This will be useful for users as they will be
able to see clearly how they are deviating from their regular activity, allowing them to rectify
the deviation by being more active, thus maintaining (or improving) their profile.

This project will see two approaches to mining the user data used to build a model of the user,
which can subsequently be used to classify new datasets. These approaches are a decision
tree-based approach and a cumulative graph-based approach. Both classifiers will be outlined
in this report before being compared to each other in the Results and Evaluation section of
the report.

Project Aims

| aim to design and develop an android application that analyses data gathered from Fitbit
devices and generates a user profile based on this data. The application should be able to
alert the user when they are deviating from their profile. |1 aim to develop functionality within
the application that visualizes how the values in the user’s profile have changed over time
and allows the user to see how their daily statistics compare to these historic values.

Personal Aims

Before this project, | had some experience with JavaScript and no mobile application
development experience, so | wanted to use this project as an opportunity to learn a new
JavaScript framework and gain some experience in developing mobile applications.

Project Scope

The project scope evolved as the project progressed. The main aim of the project was
originally to design and implement a mobile application that could build a user profile from a
user’s data and alert the user when they deviated from this profile. This core aspect of the
project did not change and remained the main focus of the throughout, but other aspects of
the application planned at the start of the project eventually lost precedence to new ideas
that were developed when creating the application, due to understanding different ways that
a user’s Fitbit data could be utilised. Throughout this report, | will endeavour to highlight areas
where plans were changed and provide insights as to why these decisions were taken.



The final scope of the project was the creation of an application that could build a user profile
from a user’s data that contained ‘simple’ information about the user, such as the number of
steps, calories, floors etc. the user completes/burns/climbs in a day, whilst also using more
advanced data mining techniques to build, test and update various models that could be used
to find links between the user’s activity data and their activity level, as defined by Fitbit (this
could be one of four levels: ‘sedentary’/’not active’, ‘lightly active’, ‘fairly active’, and ‘very
active’). This project assesses the capabilities of two data mining approaches in the context
of this activity tracking application.

Approach

At the start of the project, some research was carried out to identify how well existing mobile
applications solve the problem. Following this, user personas and initial requirements were
defined in order to gain an insight into how the application should ideally behave once the
project is complete. This was followed by the development of use cases and user interface
designs to gain a deeper understanding about what the application should be like in its final
state.

Once an overall design for the application was created, the implementation began with the
user interface and navigation, which are core aspects of the application. When these were
working, the Fitbit authentication and request functionality was added. Next, the simple
profile building was done, which involved requesting and processing the data in order to
create the cards for steps, calories, etc. on the profile page. Once complete, the functionality
to display the data in the activity and exercise pages was added, before the most challenging
aspect was tackled: the model building and data classification.

Finally, the application was evaluated based on how well it met the requirements and the
data classification aspects of the project were tested on real data in order to gain an
understanding of how effective they are at modelling user activity.

Assumptions

The main assumption for this project is that users synchronise their Fitbit device with Fitbit
before refreshing their profile. Based on this assumption, the application creates the user
profile based on data from the date that the user got their Fitbit device to the day before they
build the profile for the first time. Any subsequent profile builds on following days combine
the original data from the first build with new data from between (and including) the last
build date, and the day before the current day.

Another assumption is that the mobile device has a working, stable connection to either Wi-
Fi or mobile data, and that the Fitbit API [1] is fully functional. Accounting for network errors
is something that could be done in the future if the project were to be continued, however
given the short timeframe of this module, this was deemed unnecessary.

This project assumes that the user has a specific Fitbit device, namely the Charge 3. This is
because not all of Fitbit’s trackers measure the same types of activity, so there is a question
around whether this application would work with other devices in the Fitbit range. Future
work could include ensuring that the application adapts to the user’s Fitbit device, requesting
only data that is available on that specific device.



Summary of Outcomes

This project finds that data mining techniques can be used to create classifiers based on the
user’s data. These classifiers can classify new user data using existing data. This is one way
that the application can tell when the user has deviated from their profile. Other simple data
analysis is done on user activity data to create average values for the user activities that can
be compared to new data, in order to see how the user deviates from their usual activity. All
the user’s data and deviations are stored and displayed within an Android application.

The project evaluates the effectiveness of two data mining techniques within the context of
the application, to decide which is more appropriate for use within the application in future.
It is found that a graph-based method is more accurate than a decision tree method.
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Background
The Problem

Activity trackers are becoming increasingly popular and users can record more data and learn
more about their health and fitness as a result. Vast amounts of data have become readily
available to users of activity trackers, which leads to the intriguing question of what can be
done with this data. The overall problem that this project explores concerns how users can
be profiled based on their activity, and ways in which they deviate from this profile. This data
mining will be built in to a mobile application that allows users to view their data, and any
deviations that the system finds. Within this problem however, some smaller, subproblems
exist, including the following research questions:

e How can a user’s data be used to model the user?

e What information can be derived about the user’s activity?
e In what ways can a user deviate from their profile?

e How can deviations be detected?

Fitbit Fitness Trackers

Fitbit [2] produce a range of activity trackers, from small wristbands that measure ‘simple’
user activity such as steps, heart rate etc., to fully fledged smart watches that have the same
core functionality of the activity trackers, whilst also having the capability to run more
complex applications. The device used throughout this project was my personal Fitbit Charge
3, which can measure the ‘simple’ user activity as described above, as well as being able to
automatically detect exercise sessions and track sleep. The specific data used throughout this
project consists of the following:

e Steps

e (Calories

e Distance
e Heartrate
e Floors

e Active Minutes
e Activities (exercise)

Throughout this project, steps, calories, distance, heartrate, and floors data is referred to as
“activity data”, and “activities” are referred to as “exercise data”, unless specified otherwise.

The Fitbit data is accessible via Fitbit’s Web API [1]. This allows applications to access users’
data, enabling them to read, create, and modify it.

Related Existing Software

At the start of the project, other applications related to tracking user activity and exercise
data were investigated. Given that the aim of this project was to create an Android
application, research was focused on applications that are available on the Google Play Store,
however this was not exclusive. Notes on the main features of each application were made,
before evaluating how well the applications perform in the context of this project’s research
questions.
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Application 1: Fitbit

Naturally, the first application explored was Fitbit's own offering to the mobile application
market [2]. This application is used to setup Fitbit devices and synchronize data from the
device with the Fitbit servers, and would likely be present on most users’ mobile phones as a
result, regardless of how usable the application is. Therefore, this application cannot be
classed as a competitor to this project, however it is still a good reference point for what
existing applications can do.

By default, the main screen of the Fitbit application shows the activity data listed above
(steps, calories, distance, heartrate, and floors) at the top of the application screen. Below
this are other sections concerning exercises, sleep, live heart rate, hourly activity, and
food/drink tracking. Pressing on any of these buttons takes the user to a screen containing
more detail about the chosen statistic.

Application 2: Strava

Strava [3] is a freemium application that allows users to record themselves running,
swimming, or cycling. It places a focus on the social aspect of fitness and allows users to add
friends, view each other’s activity, and compete with one another, providing motivation to
work out more.

Application 3: MyFitnessPal

MyFitnessPal [4] is a freemium application that allows users to manually enter food, drink,
and exercise data in order to achieve weight, nutrition, and exercise goals. It uses user food
and exercise data to calculate how many calories the user should consume to achieve their
daily goal, and ultimately their overall weight goal.

Application 4: Rbitfit/Fitcoach

Fitcoach [5] is an R package that loads a user’s Fitbit data and allows users to analyse the data
with the aim of helping the user reach their fitness goals. It analyses which activity variables
(steps, calories, distance etc.) have the greatest effect on the user reaching their goals and
plots the performance of the user relative to these variables.

User Profiles and Modelling User Data

Fitcoach is the only application of the four that creates a model using the user’s data. This
model is created to find links between variables in the user data and a specific goal variable,
set by the user. A user selects a goal variable and Fitcoach analyses data taken from Fitbit to
tell the user which of the other variables are having the greatest impact in optimising their
goal variable. This is a contrast to the other three applications, which do not seem to create
models using the user’s data. Fitcoach is also the only application that does not maintain a
user profile; it simply analyses user data when provided some.

Fitbit’s main screen allows users to view the data recorded by their device. Fitbit also creates
7-day summaries for the user that allow them to see how well they are achieving their goals.
The Fitbit profile does not focus on analysing usual behaviour and is instead more focused on
simply displaying the raw data from the device instead and telling the user whether they
reached target values on a given day.
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Strava’s profile is one area within the application where user exercise sessions are found. The
profile keeps track of how much exercise the user has recorded in each week and month and
compares this monthly data to previous months. For running, swimming, and cycling data,
Strava presents the user with ‘Average Weekly Activity’, ‘Year-To-Date’, and ‘All Time’
summaries of their data within the profile area of the application.

MyFitnessPal is focused on nutrition more than activity. Users still log exercise within this
application however, and this information is used in conjunction with their food logs to tell
the user how close they are to reaching a weight goal. This data is not used to create any
information that one may expect to find in a profile though. The profile section of this
application simply displays the user’s goal and their progress towards reaching it.

Information Derived from User Activity

Fitcoach uses user data to analyse which variables are most useful in helping the user achieve
a given goal. Furthermore, this model can be used to predict a value for the goal variable,
given a sample of the user’s data. This is the most interesting information gained from any of
the four applications. The other three applications only provide the user with averages of
values that the user inputs. Averages are a very useful way to give users an indication of their
usual behaviour, so these applications are all good in this respect, however it is surprising
more analysis is not done given the amount of data the applications gather.

Profile Deviations

Fitbit provides users with a 7-day summary of their data. This compares the user’s data to
their goals and tells the user which days they did not meet their goals in the last 7 days. This
is good, however it tells the user how they deviate from goal values, not their usual behaviour.
Strava, however, compares the amount of activity done by the user in the current month to
their values from the previous month, highlighting whether the user has maintained the same
amount of activity as in the previous month. MyFitnessPal does not tell the user when they
deviate from their profile, as no values or model seem to be created within the profile to
compare to. As mentioned previously, Fitcoach does not maintain a profile, and so is not
capable of finding deviations within the user data.

Conclusions

A common theme throughout the applications that have user profiles is that the profile is
primarily a place for users to view their data. Given the vast amount of data gathered in these
applications however, it is surprising that more is not done with the data to learn about the
user’s behaviour. It was decided that this project would therefore focus on not only displaying
data to users, but also using this data to provide the user with information about the way they
behave. The user should be presented with a summary of values that describe how active
they are on average in a day and tell the user ways in which their data is inconsistent with
their usual behaviour when this is the case. The way that Fitcoach explores links between
different variables within user data is interesting, however more could be done than simply
finding links between types of data. This project will focus on using user data to classify user
activity. This will allow the application to compare classifiers for different data in order to find
deviations within the user’s behaviour.

13



Methods and Tools
Methods

Potential Methods
Waterfall Method

The waterfall method is a linear approach that tackles each aspect of the software
development lifecycle in order. This method would be good for this project as it would provide
a clear structure to the project. This method may be unsuitable however as | have no
experience with React Native, and designs and implementation are likely to change
throughout the project as a result, and this method is too rigid to allow for these changes.

Agile Method

The agile method involves adding to the application one piece at a time. This approach
involves planning and designing parts of the application as they are required. This method is
very flexible and would be good for the project as it would allow for changing requirements
and design regularly.

This approach may not work for this project as it would involve little planning at the start of
the project. This means that the goal state of the application would be unclear throughout
the project. This does not seem like a good idea considering the lack of experience with React
Native. Ideally, as much as possible should be planned at the start of the project, however
this should be flexible for changes to designs and requirements, should this be necessary.

Incremental Method

The incremental method of software development involves incrementally designing and
developing parts of the application, adding more each time. This method would be good for
this project as it does not require a full understanding of how each part will be implemented
early in the project. This means that there is some flexibility in terms of changing
requirements, which is likely for this project.

Using this method means that the most important aspects of the application can be
implemented first, such as the user interface, before adding more functionality in stages until
the application is complete. Furthermore, after each increment, there is a working
application. This is ideal for this project as there are potentially many challenges that will not
be planned. Using this method ensures that there will always be a working application with
some core functionality, so there is some fallback if more challenging functionality causes
problems.

Chosen Method

For this project, the incremental development method was adopted. This is largely because
this method enables the application to be implemented in stages, allowing for flexibility with
designs. | will endeavour to implement the simplest aspects of the application first, such as
the user interface, before incrementally adding parts of the application until the application
is finished. As the implementation progresses and becomes more challenging throughout the
project, there will always be a working application from the previous increment if something
goes wrong.
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Tools
React Native

React Native [6] is a framework created by Facebook that allows for simultaneous
development of Android and iOS applications using a single codebase. The framework uses
JavaScript and React (also created by Facebook), and despite being a relatively young
framework, is used in a range of popular mobile applications including Facebook, Skype, and
Uber. | wanted to work with a new tool during this project, so | chose React Native for the
reasons mentioned above.

Third-Party Packages

Third-party React Native packages and code will be discussed in the implementation section
of this report.

Fitbit Charge 3 HR Tracker

Data for this project was gathered throughout the duration of the project from my personal
Fitbit [2] activity tracking device. This data used in the project from this device is the steps,
calories, heartrate, distance, floors, and active minute data. Data was accessed through the
Fitbit Web API [1].

MongoDB

The Fitbit API [1] serves data in a JSON (JavaScript Object Notation) format and MongoDB [7]
is a document database that stores data in “flexible, JSON-like documents” [8]. For this
reason, and the fact that the application was built using a JavaScript-based framework, |
decided that MongoDB would be a natural choice of database. The actual implementation
used was a third-party React Native package called ‘react-native-local-mongodb’ [9].
MongoDB was preferred over an SQL-based database as data would have to be processed
more in order to be stored in an SQL database, however it could be stored in a format close
to its original format in a JSON-based database such as MongoDB.

GitHub (Git)

GitHub [10] is a website that provides version control using Git [11]. | decided to use Git to
track changes to the application and revert any changes that | did not want to keep.
Furthermore, the commit messages used throughout the implementation stage of the project
provide some commentary on how the application changed over time.

Trello

Trello [12] is a project management tool that allows users to create ‘boards’ in order to
manage tasks. Each board contains lists, which contain cards. Each card relates to a task. Lists
used in this project include ‘Backlog’, ‘Open’, ‘In Progress’, and ‘Done’.

Balsamiq

Balsamiq [13] is the tool used for creating the design mock-ups in the Specification and Design
section of this project.
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Personas and Requirements

Personas
User Classes

The application was designed with a variety of users in mind. The users that the application
was designed for can be broadly divided into four groups:

Novice fitness enthusiast with a good level of technical experience
Experienced fitness enthusiast with a good level of technological experience
Novice fitness enthusiast with minimal technological experience
Experienced fitness enthusiast with minimal technological experience

S

The application is aimed at fitness enthusiasts of varying experience levels. Novice fitness
enthusiasts may only be interested in viewing statistics such as the number of steps they do
or the number of calories they burn in a day, whereas more experienced users may be
interested in actively tracking statistics and comparing how they have performed. Some users
will also be more versed in technology and the use of mobile applications than others. Core
aspects of the application should be intuitive and easily accessible by all users.

User Personas
Persona 1 — Primary Persona

Name: Clive Brown

Image sourc .Ettp;:// p xels.om/photo/old-man-6110/
Based on: Group 1
Quote: “I need to make sure | keep active so | can stay healthy throughout my retirement”

Description: Clive Brown is a 65-year-old semi-retired driving instructor. Until recently, Clive
lived a sedentary lifestyle and his main hobby was fishing with his friends. When he gets home
from a stressful day in the car, Clive regularly enjoys a bottle of wine after dinner with his
wife. His wife suggested that he started being more active to ensure that he maintains good
health when he retires; Clive has started going on morning walks with his wife before his first
driving lesson each day as a result.

Goals:

e View how many steps he has done each day
e View his total distance covered each day
e View how many calories he burns each day
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e Be alerted when he is not on track to do his usual number of steps
e Be alerted when he is not on track to move his usual distance
e Be alerted when he is not on track to burn his usual number of calories

Persona 2 — Secondary Persona

Name: Jane Bolton

[l
Image source: https://www.pexels.com/photo/three-women-s-doing-exercises-863977/
Based on: Group 2

Quote: “I love using tech to track my daily activity because | can see how much fitter | am
getting”

Description: Jane Bolton is a 25-year-old accountant. When she is not working or spending
time with her friends, Jane enjoys working out at her local gym. She loves participating in
fitness classes and has met many of her friends this way. Jane is aiming to run the London
marathon soon and trains at least four times per week in preparation for it. This intense
training means that Jane wants the ability to track how her performance improves over time
to ensure that her training regime is working effectively.

Goals:

e Monitor how far she can run and the time it takes each day
e Train regularly and be notified if her performance levels drop

Conclusions

Based on the personas, it was decided that the application should provide simple information
to the user, such as how many steps and calories they do on average each day. This
information should be easy for the user to locate within the application as it is functionality
that is likely to be used by most users.

Based on persona 2, the application should also have a dedicated section for the tracking of
exercise sessions. This is something that is not as likely to be used by as many people, and so
could be placed deeper within the application. This exercise section should display statistics
from different exercise sessions to the user, such as the distance they travelled during a run.

Furthermore, the application was already intended to create a model of the user and let them
know how well the model classified their data, however based on the personas, it would also
be nice to alert the user as to how they deviated from the simple statistics such as average
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steps and calories from day to day, as well as how their average values change after they
update their profile with new data.

Requirements
Functional Requirements
Must

Requirement 1:

The system must build a profile from user activity data.
Acceptance Criteria

When data is uploaded to the application for the first time, the system begins building the
profile and informs the user that the profile is being built. Once complete, the system tells
the user that the profile building has finished, and the profile is displayed.

Justification

This will allow users to view a summary of their activity.

Requirement 2:

The system must alert the user when they are less active than their profile.
Acceptance Criteria

When the user refreshes their profile, deviations are displayed on the ‘Alerts’ screen, telling
the user if/how they were less active than their usual profile.

Preconditions
e Auser profile already exists.
Justification
This will encourage the user to be more active.
Requirement 3:
The system must allow the user to refresh their profile once per day
Acceptance Criteria

The user pulls the profile page down to initiate a refresh. The system provides feedback that
a profile build has started. Once complete, the values in the profile change as appropriate and
the user is alerted by the system that the profile build has finished.

Preconditions
e A user profile already exists.

Justification

This will allow users to compare new data to their profile to find deviations and rebuild their
profile to include the new data.

Requirement 4:

The system must provide feedback to the user when a profile refresh has started and finished.
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Acceptance Criteria

After the user has initiated a refresh, the system provides feedback that a profile build has
started. Once complete, the user is alerted by the system that the profile build has finished.

Preconditions
e A profile refresh has been initiated by the user.
Justification
This is so that the state of the system is clear to the user.
Requirement 5:
The application must remain responsive whilst the profile is being built.
Acceptance Criteria

When a profile build or refresh is in progress, the user can still navigate around the application
and view their data.

Preconditions
e A profile build or refresh has been initiated.

Justification

This is so that the application always remains usable.

Requirement 6:

The system must build a model of the user’s activity level based on the activity values in their
profile.

Acceptance Criteria

When data is imported into the application, a model is built based on the data. When more
data is imported later, the model is used to classify the new data. Any deviation between the
predictions and the classifications are highlighted in the Alerts tab.

Justification

This will allow the system to classify new data, in order to find areas of the user’s activity that
deviate from the norm.

Requirement 7:

The system must allow the user to view historical activity data in a graphical format.

Acceptance Criteria

When the user presses on any of the activity statistics on their profile page, they are directed
to a page containing a list of daily values for the chosen activity and a graph containing the
values.

Justification

This is so that the user can easily compare how their activity data from one day compares to
others.
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Requirement 8:

The system must allow the user to view historical activity data in a list format.

Acceptance Criteria

When the user presses on any of the activity statistics on their profile page, they are directed
to a page containing a list of daily values for the chosen activity and a graph containing the
values.

Justification

This is so that the user can efficiently read their data, meaning that they can learn about their
activity.

Requirement 9:

The system must allow the user to view the durations of historical exercise sessions in a
graphical format.

Acceptance Criteria

When the user presses on any of the cards on the exercise page, they are directed to a page
containing a list of values for each session of the chosen exercise, as well as a graph of the
values and a picker that allows the user to choose which statistics they would like to view.
The user selects ‘Time’ from this picker and the duration of all exercise sessions of the chosen
type are displayed in the graph and list.

Justification

This is so that the user can easily compare how their exercise time from one session compares
to others.

Requirement 10:

The system must allow the user to view the durations of historical exercise sessions in a list
format.

Acceptance Criteria

Same as requirement 9.

Justification

This is so that the user can efficiently read their data in a structured and organised way.

Requirement 11:

The system must allow the user to view the calories burned during historical exercise sessions
in a graphical format.

Acceptance Criteria

When the user presses on any of the exercise types on the exercise page, they are directed
to a page containing a list of values for each session of the chosen exercise, as well as a graph
of the values and a picker that allows the user to choose which statistics they would like to
view. The user selects ‘Calories’ from this picker and the calories burned during all exercise
sessions of the chosen type are displayed in the graph and list.
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Justification

This is so that the user can easily compare how the number of calories burned in one session
to others.

Requirement 12:

The system must allow the user to view the calories burned during historical exercise sessions
in a list format.

Acceptance Criteria

Same as requirement 11.

Justification

This is so that the user can efficiently read their data in a structured and organised way.
Requirement 13:

The system must allow the user to view the distance covered during historical exercise
sessions in a graphical format.

Acceptance Criteria

When the user presses on any of the cards on the exercise page, they are directed to a page
containing a list of values for each session of the chosen exercise, as well as a graph of the
values and a picker that allows the user to choose which statistics they would like to view.
The user selects ‘Distance’ from this picker and the distance covered during all exercise
sessions of the chosen type are displayed in the graph and list.

Justification
This is so that the user can easily compare the distance covered in one session to others.
Requirement 14:

The system must allow the user to view the distance covered during historical exercise
sessions in a list format.

Acceptance Criteria

Same as requirement 13.

Justification

This is so that the user can efficiently read their data in a structured and organised way.
Requirement 15:

The system must display the number of steps the user does on average in a day on the profile
page.

Acceptance Criteria

When the user opens the profile page, a card containing the number of steps the user does
on average is displayed.
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Preconditions
e A user profile has been built.
Justification
This is so that the user can gain an understanding of how many steps they usually do.
Requirement 16:

The system must display the number of calories the user burns on average in a day on the
profile page.

Acceptance Criteria

When the user opens the profile page, a card containing the number of calories the user burns
on average is displayed.

Preconditions

e A user profile has been built.
Justification
This is so that the user can gain an understanding of how many calories they usually burn.
Requirement 17:
The system must display the distance the user covers on average in a day on the profile page.
Acceptance Criteria

When the user opens the profile page, a card containing the distance the user covers on
average is displayed.

Preconditions
e Auser profile has been built.
Justification
This is so that the user can gain an understanding of how much distance they usually cover.

Requirement 18:

The system must display the number of floors the user does on average in a day on the profile
page.

Acceptance Criteria

When the user opens the profile page, a card containing the number of floors the user does
on average is displayed.

Preconditions
e A user profile has been built.

Justification

This is so that the user can gain an understanding of how many floors they usually climb.
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Requirement 19:
The system must display average resting heart rate of the user on the profile page.
Acceptance Criteria

When the user opens the profile page, a card containing the user’s average resting heart rate
is displayed.

Preconditions
e Auser profile has been built.
Justification
This is so that the user can learn how fast or slow their usual resting heart rate is.
Requirement 20:

The system must display the number of active minutes the user completes on average in a
day on the profile page.

Acceptance Criteria

When the user opens the profile page, a card containing the number of active minutes the
user does on average is displayed.

Preconditions
e A user profile has been built.

Justification

This is so that the user can gain an understanding of how many minutes they are usually active
for in a day.

Requirement 21:
The system must store the user’s data.

Acceptance Criteria

The user closes the application and then opens it again to find the same data present that
was there before the application was closed.

Preconditions
e Data has been imported from Fitbit.

Justification

This is so that the user does not need to keep importing their data whenever they wish to use
the application.

Requirement 22:

The system must rebuild a profile from user datasets when new data is entered or imported.
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Acceptance Criteria

Once data has finished importing, a refresh is initiated. The system provides feedback stating
that a build is in progress. Once complete, the values in the profile change where appropriate
and the user is alerted that the build has finished by the system.

Justification

This is so that the profile is as up-to-date as possible. This also helps maintain consistency, as
the user can safely assume that the profile that they are presented is up-to-date and uses all
available data.

Should
Requirement 23:

The system should allow the user to manually log data for an activity.

Acceptance Criteria

On the page for a given activity, the user presses a ‘+’ button. They then input and submit a
value for the given activity before being returned to the screen for the activity. The newly
added dataset is displayed in the list and on the graph.

Justification

This is so that the user could use aspects of the application without the need for a Fitbit
device. This is also beneficial for users who own a Fitbit but were not wearing it for some time.

Requirement 24:
The system should allow the user to edit basic profile information.
Acceptance Criteria

The user can press a button on the profile page that navigates them to an ‘Edit Profile’ page
where the user can edit basic information such as name and age.

Justification
This is so that the user can ensure that their details are up-to-date within the application.
Requirement 25:

The system should allow the user to manually log the date, time, duration, distance, and type
of an exercise session.

Acceptance Criteria

On the exercises page, the user clicks a ‘+’ icon that opens a ‘Log Exercise’ form. The user
must input the relevant values before submitting the form. When opening the exercise page
for the given exercise type that they created, the newly added values appear in the list and
graph on the relevant view on the page (for example, duration would appear on the ‘Time’
view).

Justification

This is so that the user could use aspects of the application without the need for a Fitbit
device. This is also beneficial for users who own a Fitbit but were not wearing it for some time.
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Requirement 26:
The system should highlight the average value of an activity on the graph for that activity.
Acceptance Criteria

Onthe graph for any activity, a line is displayed across the graph that shows the average value
for the activity.

Justification
This is so that the user can easily compare their data with their profile value (the average).
Requirement 27:

The system should derive the user’s most common exercise type and display this in the profile
page.

Acceptance Criteria

On the profile page, there should be a “Most common exercise” card that tells the user what
their most common exercise is.

Justification
This is so that the user is aware of what exercise they spend the most time doing.
Requirement 28:

The system should order the exercise types on the exercise page based upon the user’s data,
with their most frequently done exercise types at the top of the list.

Acceptance Criteria

On the exercise page, the exercises are listed in order of how much time the user spends
doing each one. This order can be verified by checking the total amount of time spent doing
each exercise type within the Fitbit application.

Preconditions
e The user has logged at least two exercise sessions of different types.

Justification

This is because the amount of time spent doing an exercise is an indication of how interested
the user is in that exercise. The user is likely to want to view data for exercises that they are
most interested in, and so these should be easy to locate.

Requirement 29:

The system should alert the user when they have not recorded as many sessions of their most
common exercise as usual.

Acceptance Criteria

On a weekly basis, the system should send the user a notification if they have not recorded
as many sessions as usual during the previous week.
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Preconditions
e The user has logged exercise sessions.
Justification

This is so that the user is aware that they are not on track to keep up with their usual
behaviour.

Requirement 30:

The system should only display exercise types on the exercise page if the user’s data contains
at least one session of that exercise type.

Acceptance Criteria

All types of exercises present within the Fitbit application should be checked. All types logged
within the Fitbit application should be present within this application.

Justification

This is so that the user does not need to waste time looking through a list of exercise types
that they have never done to find one that they have and want to view the data for.

Could
Requirement 31:

The system could base deviation alert times on the user’s usual wake up and sleep times
where this data is available

Acceptance Criteria

If the user’s wake up time is 9am and sleep time is 11pm, they are awake for 14 hours. If they
set the application to give them notifications after every 25% of the day (excluding sleep
time), then the application should generate alerts at 12:30pm, 4pm, and 7:30pm.

Justification

This is so that the user is reminded about exercise at times that are suitable for them.
Requirement 32:

The system could create challenges for the user based on data in their profile.
Acceptance Criteria

When the user opens the application or the first time on a given day, challenges appear in the
‘Alerts’ page.

Justification

This is so that the user has targets to meet so that they stay active. The fact that they are
based off the user’s data makes the challenges more achievable. The application could set a
target for all users of some random value such as 10,000 steps per day, however this may
seem like a lot to some people. If someone walks 5,000 steps in a day, then a challenge of
5,500 or 6,000 steps would much more achievable. If the user maintained this level of activity,
eventually their profile average would increase, and so the challenges would get harder.
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Requirement 33:

The system could provide insights based on the user’s sleep data (such as the amount of time
the user usually spends in each stage of sleep).

Acceptance Criteria

The user opens a ‘Sleep’ page within the application where they are presented with cards
containing information derived from their Fitbit sleep data, or a message stating that there is
no sleep data in the database if that is the case.

Justification

It would be beneficial for users to learn how much sleep they are getting, as well as the quality
of the sleep that they are getting.

Requirement 34:
The system could allow the user to import data directly from their Fitbit profile.
Assessment Criteria

When building the profile, the user is redirected by the application to a Fitbit authentication
page where they must enter their Fitbit credentials in order to allow the application to access
their Fitbit data. Once the build has finished, data visible in the application matches relevant
data within the Fitbit application.

Justification

This is so that the user does not need to manually input data.
Requirement 35:

The system could allow the user to import new data in a file.
Acceptance Criteria

The user presses a button that opens a folder containing data files. The user selects the file
they wish to import into the application and the system parses the file and updates the user’s
profile as appropriate.

Preconditions

e The file must be present on the device.
Justification
This is so that the user does not need to manually input data.
Requirement 36:
The system could allow the user to manually set exercise reminders.
Acceptance Criteria

On the exercises page, the user presses an icon that opens a ‘Set Reminder’ dialog. The user
must input a name for the reminder and a time. Once the reminder has been confirmed, the
user must be notified about the reminder by the system at the correct time.
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Justification
This is so that the user can ensure that they are keeping active and healthy.
Requirement 37:

The default start time for exercise reminders could be derived by the system from the start
times of previous exercises.

Acceptance Criteria

On the exercises page, the user presses an icon that opens a ‘Set Reminder’ dialog. The user
must input a name for the reminder. The time for the reminder has been automatically
populated by the system with a value derived from start times of previous exercise sessions.

Preconditions
e The user has logged previous exercise sessions.

Justification

This is so that the user can be reminded to exercise at around the same time of day each time.

Will Not
Requirement 38:

The system will not allow users to view other users’ profiles.

Acceptance Criteria

There is no sequence of events within the system that allows one user to view the profile of
another user.

Justification

Due to the personal and private nature of the data, it would be inappropriate to allow other
users to read a user’s data.

Non-Functional Requirements

Requirement 39:
The profile should take no longer than n * 20 seconds to rebuild after an import of n days of
data.

Acceptance Criteria

A timer should begin at the start of the build process of n days and stopped once the build
has completed. If the timer reads a value less than n * 20 seconds, then the requirement is
met.

Justification
This is so that the user does not have to wait for a long time when a profile is being built.

Requirement 40:
The application should be intuitive and easy to use.

Acceptance Criteria

The application should be reviewed against Nielsen’s Usability Heuristics.
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Justification

This is so that the user has a good experience when using the application.
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Specification and Design
Use Cases

This section of the report outlines the main use cases for the application. For other use cases,
see Appendix A.

Actors

Fitbit Owner

A person that owns a Fitbit and wishes to use their device in conjunction with the application.

Database

The database within the application.

Fitbit Web API

The API [1] that provides data, gathered by the Fitbit device, that will be stored in the
database for future use.

Original Use Cases
Create Profile (and import data)
Preconditions

The application is already running.

Main Flow

1.

Press the Profile icon

This use case starts when the user presses the profile icon on the main tab bar at the
bottom of the application screen. The profile page is displayed. A message is displayed
that tells the user to pull the screen down to build a profile.

Pull the screen down

The user presses on the screen and drags their finger down the screen to initiate a
refresh.

Sign in to Fitbit

The user is presented with a Fitbit login screen. The user must sign in using their Fitbit
credentials and then confirm that they allow the application to access data from their
Fitbit profile.

Contact Fitbit Web API

The system starts requesting the data from the Fitbit Web API. The data returned in
the response is stored in the local database.

Build Profile

The system uses the newly stored data to build a profile for the user. Once complete,
the user receives an alert stating that profile building is complete. Note: Deviations
are created at this stage of the use case.

Alternative Flows

3A.

Sign in to Fitbit (system)
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The user has already authenticated the application with Fitbit recently, so the
application can use refresh tokens created from the initial authentication to
reauthorize the user without them having to input their Fitbit credentials again.

View Profile

This use case allows the user to view their profile within the application. The profile is the
main page within the application and is opened by default when the application is opened.
The profile page is accessible within the application from the profile icon on the main
application tab bar.

Preconditions

The application is already running.

Main Flow

1.

Press the Profile icon
This use case starts when the user presses the profile icon on the main tab bar at the
bottom of the application screen. The profile page is displayed.

Refresh Profile (and import new data)
Preconditions

The application is already running.
The user has created a profile.

Main Flow

1.

Press the Profile icon

This use case starts when the user presses the profile icon on the main tab bar at the
bottom of the application screen. The profile page is displayed.

Pull the screen down

The user presses on the screen and drags their finger down the screen to initiate a
refresh.

Sign in to Fitbit

The user is presented with a Fitbit login screen. The user must sign in using their Fitbit
credentials and then confirm that they allow the application to access data from their
Fitbit profile.

Contact Fitbit Web API

The system starts requesting the data from the Fitbit Web API. The data returned in
the response is stored in the local database.

Build Profile

The system uses the newly stored data combined with the data that was already in
the system to build a new version of the profile for the user. Once complete, the user
receives an alert stating that profile building is complete. Note: Deviations are created
at this stage of the use case.

Alternative Flows

3A. Sign in to Fitbit (system)
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The user has already authenticated the application with Fitbit recently, so the
application can use refresh tokens created from the initial authentication to
reauthorize the user without them having to input their Fitbit credentials again.

View Activity Data

This use case allows the user to view their activity data for any given activity. The activity page
can be reached by pressing on any of the activities on the profile page.

Preconditions

e The application is already running.
e The user has synchronised the application with Fitbit.
e The user has tracked activity with their Fitbit device.

Main Flow

1. Press the Profile icon
This use case starts when the user presses the profile icon on the main tab bar at the
bottom of the application screen. The profile page is displayed.

2. Press an activity card
The user presses a card on the profile page and is taken to a page that contains more
detailed data for that activity.

View Profile Deviations

This use case allows the user to see the ways that they have deviated from their usual profile.
Preconditions

e The application is already running.

e The user has created a profile prior to the current day.

e The user has refreshed their profile on a day after the initial profile creation date, thus
creating deviations.

Main Flow

1. Press the Alerts icon
This use case starts when the user presses the alerts icon on the main tab bar at the
bottom of the application screen. The alerts page is displayed, containing the profile
activity deviations, activity level deviations, and profile updates.

Updated Use Cases

As the project progressed, the use cases evolved with it. Some use cases were added, whilst
some original use cases were deemed unnecessary. This section highlights these changes.

New Use Case: Edit Settings

This use case allows users to edit any settings within the application, such as the name of the
user, or perform tasks such as clearing the database. Originally, the application was going to
have separate settings pages for the Profile, Exercises, and Alerts areas of the application,
however this was deemed unnecessary within the scope of the project and a single ‘Settings’
page was created. This new ‘Settings’ page also replaces the ‘Edit Profile’ page.
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Preconditions
e The application is already running.

Main Flow

1. Press the Profile icon
This use case starts when the user presses the profile icon on the main tab bar at the
bottom of the application screen. The profile page is displayed.
2. Press the Settings icon
The user presses the gear-shaped icon to open the ‘Settings’ screen.
3. Edit settings
The user makes whatever changes they wish to their settings.

Alternative Flows

3A. Cancel the edit
The user presses the ‘Back’ button and if the user made changes, they are asked to
confirm that they do not want to submit the changes before cancelling. The user is
returned to the profile page.

New Use Case: Clear database

This use case allows users to delete all data within the application. This means that users can
then create a fresh profile if there are any issues in their current profile.

Preconditions
e The application is already running.

Main Flow

1. Press the Profile icon
This use case starts when the use presses the profile icon on the main tab bar at the
bottom of the application screen. The profile page is displayed.

2. Press the ‘Settings’ icon
The user presses the gear-shaped icon to open the ‘Settings’ screen.

3. Press ‘Clear All Data’
The user presses the ‘Clear All Data’ button. Once the data is cleared, an alert pops up
to notify the user that the database has been cleared.

Removed: Edit Profile Information

Replaced by new ‘Edit Settings’ use case defined earlier in this report section.
Removed: Edit Profile Settings

Replaced by new ‘Edit Settings’ use case defined earlier in this report section.
Removed: Edit Exercise Settings

Replaced by new ‘Edit Settings’ use case defined earlier in this report section.

Removed: Edit Alert Settings

Replaced by new ‘Edit Settings’ use case defined earlier in this report section.
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Use Case Diagram
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Log Activity Data

Log Exercize Data Edit Setfings Clear Databaze

Figure 1 Use Case Diagram

Above is a use case diagram that shows which use cases the user and parts of the system are
involved in.

Data Mining and the Dynamic User Profile

One of the aims of this project is to see how users can be profiled using their data. This led to
the idea of creating a dynamic user profile. This is a profile that changes over time in
accordance with the user data. This profile consists of average values for activities such as
steps and calories, but the application is capable of more than this. This section of the report
defines how the application creates models based on the user data, which enable the
application to classify new user data based on data that is already stored in the application.
Every time data is imported, classifiers are created from existing data. These models classify
the new data and deviations are created as a result. Next time data is imported, the data from
the previous import is included when creating the models, so in theory, the models should
get more accurate with time.

Data Types
Decision Tree Data Mining

When looking for appropriate data mining algorithms to use for the project, it was decided
that a decision tree algorithm would potentially be useful in the context of this project. A
tutorial from a Google developer was found at
https://www.youtube.com/watch?v=LDRb09a6XPU. Code to accompany this tutorial was
found at https://github.com/random-forests/tutorials/blob/master/decision tree.ipynb
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[14]. This tutorial used Python to implement a decision tree and its component parts. This
code was rewritten in JavaScript for this project, and it contains three data types: Question,
LeafNode, and DecisionNode. Descriptions of these data types below are heavily based from
the descriptions by the author of the original Python code [14].

Question

This data type represents a question in the form of "is x >=y” if x and y are numerical, or “is x
==y” otherwise. Questions are used to partition a dataset [14] into smaller datasets of rows
that are true or false for the question.

DecisionNode

A decision node is used to ask a question [14] and store a reference to the two children nodes,
created from the true and false datasets for the question.

LeafNode

A leaf node is used to classify the data [14]. It maps the class to the number of times the class
appears in the rows from the training data that reached the leaf [14].

Deviation

This data type was implemented to represent profile deviations. Deviations are created for
incorrect classifications of hourly data or data from a six-hour window (one of 00:00-05:59,
06:00-11:59, 12:00-17:59 and 18:00-11:59). It consists of six pieces of information:

1. Date — the date that this deviation applies to.

2. Time of day — the time of day that this deviation applies to. If the deviation is hourly,
then this value is from the range 0-23, each representing an hour from the day (e.g. 0
would represent 00:00-00:59). If the deviation is six-hourly, then the value is from the
range 0-3, where each value represents one of the four possible windows throughout
the day (e.g. 2 would represent 12:00-17:59).

3. Time type — this defines whether the deviation is hourly or six-hourly.

4. Category — this defines what part of the user profile has deviated from the norm, e.g.
‘Steps’, or ‘Activity Level’.

5. Expected value — the value that was expected based on data or the model from the
user profile.

6. Actual value — the actual value. In the case of ‘Activity Level’ deviations, this value
represents what the data mining model classified the dataset as. For other values,
such as ‘Steps’, this value is simply how many steps the user did in the timeframe
defined in part 2 of this list.

Algorithms
Decision Tree Data Mining Approach
Decision Tree

A decision tree was adapted from one written in Python by J Gordon which can be found at
https://github.com/random-forests/tutorials/blob/master/decision tree.ipynb  [14] as
mentioned in the ‘Data Types’ section. This decision tree consists of a recursive algorithm to
build the tree, which makes use of other, smaller algorithms. The noteworthy algorithms are
explained in this section of the report.
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Build Tree
Algorithm:

1. Find the question that gives the most information gain.

2. If the information for the question is O, return a leaf node containing a reference to
the dataset.

3. Otherwise, partition the dataset into two datasets, one for data points that provide
an answer of ‘true’ to the question, and another for ‘false’ data points.

4. Recursively run ‘Build Tree’ on the ‘true’ dataset.

5. Recursively run ‘Build Tree’ on the ‘false’ dataset.

Find Best Split
Algorithm:

1. Initialise the following variables to these values:
a. Current best gain=0
b. Current best question = null
c. Current uncertainty = gini(dataset)
2. For each column of the dataset (steps, calories, etc.) excluding the classifier column
(final column):
a. For each distinct value in this column:
i. Create a question for the value

ii. Partition the dataset into true and false datasets.

iii. Calculate the information gain from this split.

iv. Ifthe calculated gain is better than ‘current best gain’, then set ‘current
best gain’ to the calculated gain and set the ‘current best question’ to
the question.

b. Return the best gain and question.

Partition

Algorithm:

1. Initialise two empty arrays, one for the ‘true’ data points, and one for the ‘false’ data
points.
2. Forevery data point in the dataset to be split:
a. If the data point satisfies the question used for the split, then add the data
point to the ‘true’ array, otherwise add the data point to the ‘false’ array.
3. Return the arrays.

Classify
Algorithm:

1. Ifthe node is a leaf, return the predictions associated with the node.

2. Otherwise (the node is a decision), if the data point to be classified satisfies the
question associated with this node, then recursively call Classify on the data point and
the ‘true’ branch of the node. If the data point does not satisfy the question, call
Classify on the data point and the ‘“false’ branch of the node.
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Gini
Input: A set of data points.
Algorithm:

1. Count the number of instances of each class within the dataset.
2. Initialise impurity to 1.
3. Foreach class in the dataset:
a. Calculate the probability of the class within the dataset (number of instances
of class / total number of data points)
b. Impurity = impurity — (probability)?
4. Returnimpurity

Data pre-processing

Before the algorithms above can be used, the dataset must be in a certain format. This format
is an array of arrays. Each inner array represents a data point of the form [steps, calories,
floors, distance, heartrate, class], where the final item, ‘class’, is the activity level associated
with the data point.

Furthermore, there are other issues to tackle at this stage, namely missing datasets and
grouping datasets.

Missing Datasets

Fitbit automatically populates fields like steps and calories with a default value, even when
the user is not wearing their device. Of all the fields that are used within this application, the
only one that does not contain this guessed data is heart rate. Therefore, it was necessary to
design an algorithm to match the other datasets to the heart rate dataset.

Input: An object containing daily data for all types (in the form of objects)
Algorithm:

1. Create an empty array containing empty array for each type of data (steps, calories,
floors, distance, heart rate).
2. Foreach type of data
a. If we are not looking heart rate currently, iterate over the length of the heart
rate dataset:
i. Get the minute-by-minute data for heart rate and the current data
type.
ii. Iterate over the minute-by-minute heart rate data:

1. Get the time of the current minute.

2. lterate over the other type of minute-by-minute data from the
current index of the heart rate data to the final index of the
other data type’s data.

a. Ifthe current minute of the other data type matches the
heart rate minute, then a matching dataset has been
found. Push this data point to the relevant array created
in step 1.
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b. Otherwise, iterate over the heart rate dataset and add each point into the
heart rate array created in step 1.
3. Return the 2D array created in step 1, which is now populated.

Grouping Datasets

Fitbit provides an activity level for the user at any given minute. This is one of: ‘sedentary’
(referred to as ‘not active’), ‘lightly active’, ‘fairly active’ and ‘very active’. This is useful as this
activity level is used as a classifier for the user’s data, however there is an issue in that when
the user’s data is grouped into hourly groups, there is no classifier for data at this granularity.
The workaround for this was to process the minute-by-minute data into the desired format
and create a decision tree for each hour. A dataset containing the average values for this hour
can then be created and classified using this decision tree to create a classifier for the grouped
dataset.

Algorithm:

1. For every hour of data:
a. Create a decision tree from the minute data in the hour
b. Create a set of average values for the hour
c. Classify the average dataset using the decision tree, in order to provide a
classification for the hour

Graph Data Mining

This method was used to group minute-by-minute datasets into hourly datasets and create a
model based on these. The approach is as follows:

1. Calculate the frequency of all the activity levels within the minute datasets.

2. Calculate an average value for each activity per hour, so that there is a value for each
hour of the dataset.

3. Plot a graph of average hour reading against the number of hours where the average
is less than the average we are looking at (maximum y value on the graph would be
the number of hours in the dataset minus 1).

4. This graph is used to define the values needed to reach the four activity levels classes.
For example, if 40% of values are ‘not active’, then one must find the 40% mark on the
y axis and then read the corresponding x axis. Any values between this x value and 0
would be classed as ‘not active’. If the next class covered 10% of minute values, then
the x values related to y values between 40% and 50% would be in this class, and so
on.

5. Once complete, there is a set of values for each activity. This set of values defines the
boundaries between the activity classes.

6. The values in the hourly datasets should be compared to these boundaries, to find a
set of potential classes for the hourly dataset. The highest class from these is taken as
the class of the hourly dataset.

To classify new hourly datasets against the model (boundaries), the following approach was
used:

1. Combine new minute datasets into hours, as before.
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2. Predict a classification for the new hourly datasets using the boundaries created using
the old data.

3. Create a new model (set of boundaries) from a combination of the old and new data.
This model should be more accurate than the previous model.

4, Use this new model to find a classification for each new hourly dataset. These
classifications can be compared against the predictions to test the accuracy of the
model.

Data Pre-processing
Missing Datasets

The same principles applied to missing datasets as with the decision tree mining method.
Datasets for all activities other than heart rate had to be processed so that they matched the
heart rate dataset.

User Interface Design

This section of the report describes the way the application looks and the reasons behind the
choices made.

Colour Usage

Primary Secondary

#64ffda #ffb74d

S — Light
#ffe97d

P — Light
#9effff

Figure 2 Colour scheme

The figure above shows the main colours used in the application. Material Design’s colour
tool [15] was used to create the colour scheme. This scheme can be found at
https://material.io/tools/color/#!/?view.left=0&view.right=0&primary.color=64FFDA&secon
dary.color=FFB74D. The primary colour is used for the navigation bar, the light primary colour
is used for buttons, and the dark primary colour is used for the Android status bar and icons
throughout the application. The secondary colour is used for the profile icon and all graphs in
the application.
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The ‘Accessibility’ tab on the colour tool website showed that each of the six colours above
are appropriate to have black text on them.

Screen Designs
Profile Page

Notable Features

Nathan Melly
| Steps | ‘ Distance (km) |
| 7561 467
| Calories | ‘ Floors
2185 4
i Active Minutes | | Most Active Day |
O &
£
=
L ) 4

Figure 3 Profile Page Design

Feature Description and Justification

Profile icon This is to inform the user that they are on the profile page.

Profile value These cards provide a summary of data to the user. They exist in pairs
cards on each row and are centrally aligned so that the user’s eye progresses

down the screen, as opposed to any other direction. The font size of the
value on each card is larger than the title of the card so that the user’s
eye is drawn to the value.

Navigation bar

This is the main navigation bar of the application. This allows the user to
switch between the Profile, Exercises, and Alerts tabs. This is on every
page of the application and so it uses the primary application colour to
ensure that this main colour is on every page of the application. When
the user is currently in one of the three sections of the application, the
corresponding icon on the navigation bar is dark, so that it is clear to the
user where they are in the application.

Edit button

This button navigates the user to an ‘Edit Profile’ page. It is not a primary
function of the application, so it is coloured grey to ensure that it does
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not attract attention, however the grey is dark to create enough
contrast with the background so that the button is easy to find, should
the user need it.

Settings button

This button navigates the user to the ‘Settings’ page. It is not a primary
function of the application, so it is coloured grey to ensure that it does
not attract attention, however the grey is dark enough that the button
is easy to find, should the user need it. The icon is a gear, which is
commonly used to indicate settings within an application, so the
functionality of the button is clear to the user.

Activity Page

Notable Features

4 o )
b
_—

[l osasem =
Steps
________ e
Average: 7562
113/02/2019 13,156 |
112/02/2019 7618 |
|11/02/2019 2185 |
|10702/2019 6589 |
| . - —— |

O [ J
©

Figure 4 Activity Page Design

Feature Description and Justification
Title This tells the user what activity they are currently viewing.
Graph The graph shows how the user data changes over time. The horizontal

line shows the average value of the activity for the user, allowing easy
comparison between this and their daily values.

Back button

This button returns the user to the Profile page. The arrow is a common
symbol for a back button, so the function of this button is obvious to the
user. The button is grey because the button’s function is not a key
function of the application, so it does not need to catch the user’s eye.
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List

This lists the date and value for each of the data points relating to the
activity. This list is ordered in reverse-chronological order so that the
most recent dates are at the top of the list. This is because the user is
likely to be most interested in their recent activity, so this should be the
first thing that they see.

Exercises Page

Notable Features

)
L
—>o
il 05:33 PM L]

Exercises

f  Walk

R
°

(& _ J

Figure 5 Exercises Page Design

Feature

Description and Justification

Title

This tells the user what page they are currently viewing.

Exercise Cards

These cards show the user what exercise types are available for them to
view. They are large and easy to press. Their simple style means that it
is clear to the user that pressing on any of the cards will allow them to
view more detail about the selected exercise type.
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Exercise Page

Notable Features

4 0 )\
[ S—
[l osasem =
Run
| Time | Distance |
________ Arerage: 1524
Average: 15:24
118/02/2019 16:40 |
112/02/2019 06:32 |
| 11/02/2019 3512 |
| AN IAN FAMRAN A .44 I
@
©
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Figure 6 Exercise Page Design

Feature Description and Justification
Title This tells the user what exercise type they are currently viewing.
Graph The graph shows how the user data changes over time. The horizontal

line shows the average value of the chosen data category for the user,
allowing easy comparison between this and their other sessions.

Back button

This button returns the user to the Exercises page. The arrow is a
common symbol for a back button, so the function of this button is
obvious to the user. The button is grey because the button’s function is
not a key function of the application, so it does not need to catch the
user’s eye.

List

This lists the date and value for each of the data points relating to the
exercise type. This list is ordered in reverse-chronological order so that
the most recent dates are at the top of the list. This is because the user
is likely to be most interested in their recent exercise sessions, so this
should be the first thing that they see.
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Alerts Page

Notable Features

a )

Yy
\J
_——
J 0533 PM =

Alerts

5 min ago
Achieved goal
7000 steps

2h
Increased Profile oo

+324 steps

~ 15/02/2019 2137
Achieved goal
10 floors

15/02/2019 1918
l Decreased Profile
-31 calories

] 15/02/2019 1354
Achieved goal

30 active minutes

)
(@

Figure 7 Alerts Page Design

. 4

Feature Description and Justification
Title This tells the user what page they are currently viewing.
Cards The cards show the user information about their behaviour. The cards

can show the user how their profile has changed as new data has been
imported into the application. The cards could also show whether the
user has achieved certain goals they aimed to meet.

The icons on the cards are used so that the user can tell what kind of
information is on the card at a glance.

Heuristic Evaluation

One of the main aims of this project was to create an application that is intuitive and usable.
This section of the report is an evaluation of the screens against Nielsen’s “10 Usability
Heuristics for User Interface Design’ [16]. The heuristics are as follows:

ok wnNeE

Visibility of system status

Match between system and the real world
User control and freedom

Consistency and standards

Error prevention

Recognition rather than recall
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Flexibility and efficiency of use

Aesthetic and minimalist design

Help users recognise, diagnose, and recover from errors
10. Help and documentation

O 0o N

Each screen will be evaluated on how well or poorly the heuristic has been used, if at all.
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Profile Page

O
| C—
[l osssem =
Nathan Meally
Steps Distance (km)
| 7561 ‘ 467
Calories Floors
| 2185 ‘ 4
| Active Minutes ‘ Most Active Day ‘
O &
©

Principle | Comments
1. | Good:
e The navigation bar clearly shows which section of the application the
userisin.
e The red icon on navigation bar alerts the user to the fact that there are
new alerts in the alerts tab.
2. | Good:
e Aunitis displayed for all values that require one. This will be familiar to
the user and aid in their understanding of the value.
e The phrasing on the cards aligns with words used by Fitbit, so these
should be familiar to the user.
3. | Good:
e The user is free to navigate to whichever part of the application they
wish.
4. | Good:
e The button for the ‘edit profile’ page is a pencil, which is commonly
associated with editing information in applications and websites.
e The button for the settings page is a gear symbol, which is commonly
associated with settings, so this would be familiar to the user.
Bad:
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e The functionality of the orange profile icon is unclear.

e The cards are different colours, which could cause the user to think that
they have different functionality.

5.
6. | Good:

e Arange of actions are clearly available to the user in the form of buttons.

e The cards have a title which gives the user an indication of the
information they would find if they pressed the card.

7. | Bad:

e There is nothing to suggest that the user must pull the screen down to

refresh the profile.
8. | Good:

e The page is well-structured and symmetrical.

e The cards contain the minimum amount of information possible to fulfil
their task, reducing clutter on the screen, and making important
information easily visible.

Bad:

e The orange icon takes up almost half the screen.

e The layout of the cards makes it unclear where the user should be
looking.

9.
10.

Problem: The purpose of the orange profile icon is unclear

Heuristic Violated 4
Severity 2
Description The orange icon takes up a large portion of the page, and it

coloured in a way that draws attention to it, however the only
functionality it has is that it shows that the user is on the profile

page.

Alternative Solutions | Replace the icon with a page title that reads ‘Profile’.

Replace the icon with a profile picture (this could be taken from
the user’s Fitbit profile).
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Evidence

Nathan Melly
‘ Steps ‘ Distance (km)
7561 467
‘ Calories ‘ Floors
2185 4
‘ Active Minutes ‘ Most Active Day

O o

Problem: The cards are different colours

Heuristic Violated 4
Severity 3
Description The cards are different colours, which could cause the user to

think that they have different functionality.

Alternative Solutions

Make all cards the same colour.

Evidence

Steps Distance (km)

‘ 7561 ‘ 467
Calories Floors

‘ 2185 ‘ 4

| Active Minutes ‘ | Most Active Day‘

Problem: Refresh action unclear

Heuristic Violated 7
Severity 4
Description There is nothing to suggest that the user must pull the screen

down to refresh the profile. This may leave the user confused
about how to complete this vital task.

Alternative Solutions

Add some text to tell the user to pull the screen down.
Use the profile icon’s colour to indicate when data has been
loaded. This would also solve the first problem.
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Evidence

cal osasem =

4 e
MNathan Melly
Steps | | Distance (km)
‘ 7561 ‘ 467
Calories ' Floors
‘ 2185 ‘ 4
‘ Active Minutes | " Most Active Day
e @

Problem: The profile icon is too large

Heuristic Violated 8
Severity 2
Description The orange icon takes up almost half the screen. The size is

unnecessary and causes space on the page to be wasted.

Alternative Solutions

Reduce the size of the icon.

Evidence

call o osssem =

4 &
Nathan Melly
Steps | | Distance (km)
‘ 7561 ‘ 467
Galories . Floors
‘ 2185 ‘ 4
‘ Active Minutes | Most Active Day
(8) @

Problem: Card layout unclear

Heuristic Violated

Severity
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Description

Having two cards per row makes it unclear where the user should

be looking.

Alternative Solutions

Put only one card on each row to ensure that the user’s eye moves
down the page.

Evidence

Steps

7561

Calories

2185

Active Minutes

Distance (km)

467

Floors

4

Most Active Day
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Activity Page

Average: 7562
118/02/2019 13,156 |

112/02/2012 7618 |

| 11/02/2019 2185 |

110/02/2019 6589 |

O [ ]

@

Principle

Comments

1.

Good:

The title at the top of the screen is clear and tells the user what data they
are looking at.

Good:

The date is in a format that is easy to understand.
The information appears in a logical order (newest to oldest)

There is a back button in the top left corner so that the user can leave
this page at any time.

The user can press any of the buttons on the main navigation bar in order
to return to one of the three main application pages.

Good:

Bad:

The title matches the title of the corresponding card on the profile page.

The cards are different colours, which could cause the user to think that
they mean different things.

Good:
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The title of the page reminds the user which card they pressed on the
profile page

The functionality of the back button in the top left is clear to the user as
they would be familiar with pressing an arrow to go back.

Bad:

e Asthere are no labels on the graph, the user is required to compare the
graph to the list to find out which point on the graph corresponds to
which value in the list.

7. | Good:

e As the main navigation bar is still present, the user can access the
exercises tab and alerts tab directly from here, instead of having to go
back to the profile page first.

8. | Good:

There are only two main sections on the page, and there is nothing that
does not need to be here.

10.

Problem: No labels on graph

Heuristic Violated 6

Severity 3

Description There are no labels on the graph. This means that the useris
required to compare the graph to the list to find out which point
on the graph corresponds to which value.

Alternative Solutions e Add labels.

e Display the value and date when the user presses on the
bar. This is preferred as the value will only be displayed
temporarily, meaning that the minimalist design of the
screen remains intact.

Evidence

The problem of cards being different colours and potential solutions were described in the
Profile Page evaluation.
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Exercises Page

4 0 )
_—
all 05:33 PM =
Exercises
[ ]
m  Walk
li'l Run
&7 Bike
.j', Swim
P o
©
- _ J
Principle | Comments
1. | Good:
e The title at the top of the screen is clear and tells the user which section
of the application they are in.
2. | Good:
e Theicons on the cards attempt to make the meaning of the cards clearer.
Bad:
e The icons on the cards do not fit the title particularly well (although this
is because of a limited range of icons on Balsamiq).
3. | Good:
e The usercan press any of the buttons on the main navigation bar in order
to go to any of the three main application pages.
e The user can press any of the cards to view exercise data.
4. | Bad:
e The cards are different colours, which could cause the user to think that
they mean different things.
5. | Good:
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e There is nothing on this page that could lead to an erroneous state.
6.
7.
8. | Good:
e There are only cards on this page, so the design is simple and clear.
9.
10.

Problem: The icons do not match the titles well

Heuristic Violated 2
Severity 4
Description The icons do not match the titles of the cards particularly well, so

they are not fulfilling their purpose of making the meaning of the
cards clearer.

Alternative Solutions

Change the icons.

Evidence

f  Walk

m Run

The problem of cards being different colours and potential solutions were described in the
Profile Page evaluation.
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Exercise Page

4 O )
—
| .l osssem =
= Run
| Time | Distance |
________ heags 524
Average: 15:24
118/02/2019 16:40 |
112/02/2019 06:32 |
|11/02/201 3512 |
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®
©
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Principle | Comments
1. | Good:
e Thetitle at the top of the screen is clear and tells the user what data they
are looking at.
2. | Good:
e The dateis in a format that is easy to understand.
e The information appears in a logical order (newest to oldest)
3. | Good:
e There is a back button in the top left corner so that the user can leave
this page at any time.
e The usercan press any of the buttons on the main navigation bar in order
to return to one of the three main application pages.
4. | Good:
e The title matches the title of the corresponding card on the exercises
page.
Bad:
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e The cards are different colours, which could cause the user to think that

they mean different things.
5.
6. | Good:

e The title of the page reminds the user which card they pressed on the
exercises page

e The functionality of the back button in the top left is clear to the user as
they would be familiar with pressing an arrow to go back.

Bad:

e Asthere are no labels on the graph, the user is required to compare the
graph to the list to find out which point on the graph corresponds to
which value in the list.

7. | Good:

e As the main navigation bar is still present, the user can access the
exercises tab and alerts tab directly from here, instead of having to go
back to the profile page first.

8. | Good:

e There are only two main sections on the page, and there is nothing that

does not need to be here.
9.
10.

The problem of cards being different colours and potential solutions were described in the
Profile Page evaluation.

The problem concerning the lack of labels on the graph has been discussed in the Activity

Page evaluation.
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Alerts Page

4 0 )
_——
05:33 PM [5]
Alerts
5 min ago
Achieved goal
7000 steps
Increased Prt:lﬁleahmaﬂ
+324 steps
15/02/2019 2137
Achieved goal
10 floors
15/02/2019 1118
Decreased Profile
-31 calories
15/02/2019 1254
Achieved goal
30 active minutes
O
©
Principle | Comments
1. | Good:
e The navigation bar clearly shows which section of the application the
e Thereis no red circle on the Alerts tab icon anymore as the tab has been
2. | Good:
e The language used on the cards clearly tells the user how their profile
has changed.
e The date is in a common format that is familiar to the user.
e The time is in 24hr format, which removes confusion as to whether the
time displayed is morning or afternoon.
e Greenis used for profile improvements (good) and red is used for profile
deteriorations (bad).
3. | Good:
e The usercan press any of the buttons on the main navigation bar in order
to go to any of the three main application pages.
4. | Bad:
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e The cards are different colours, which could cause the user to think that
some are more important than others.

5. | Good:

e There is nothing on this page that could lead to an erroneous state.

6. | Good:

e The words used on the cards (such as ‘steps’) match those used in other
areas of the system.

7.
8. | Good:
e There is nothing on this page that does not need to be here.
e The cards are arranged in a way that makes the user’s eye move down
the page in a logical way.
9.
10.

The problem of cards being different colours and potential solutions were described in the
Profile Page evaluation.
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Implementation
Software Architecture Diagram

Local —

| Fequest
i HTTPS/JSON

Request & Ul Backend
(React Native) {JavaScript) HTTPS/JSON

Fitbit Web API

Figure 8 Software Architecture Diagram

The software architecture diagram above shows the technology used for each part of the
application, as well as how these parts interact with each other.

The user interacts with the user interface, written in React Native. The Ul requests some data
from the backend, written in JavaScript. The backend interacts with the Fitbit Web API via a
HTTP request when requesting user data, before receiving the data in JSON format and storing
it in the database. The raw data is then retrieved from the database for processing before
being passed to the user interface to be presented to the user.
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Data Flow Diagram
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Figure 9 Diagram of data flow within system
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Figure 9 shows how data moves within the system from when it is requested until it is
displayed in the application. First, a request is sent to the Fitbit Web API, and the relevant
values are taken from the response and stored in the database. Next, the minute data is
processed into hours. Before this can happen, ‘missing’ (auto-populated) values must be
removed as they correspond to times when the user was not wearing their Fitbit device. After
this, the minute values are aggregated into hourly average datasets in order to build the
models and classify the data. The newly imported data is classified on a model created on the
existing data, and deviations are created from these and stored in the database. Daily total
values for data types such as steps etc. are then used to create the profile values, which are
stored in the database. Finally, the deviations and profile values are retrieved by and
displayed in the Alerts tab and Profile tab, respectively.
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Class Diagram
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Figure 10 Class Diagram

The diagram above shows how each class within the application interacts with each other.
The ‘React.Component’ class on the left side of the diagram is from the React package that
comes with React Native. Only the fields and methods from this class that have been used in
the application have been added to the class diagram to prevent unnecessary information
being added.
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Ul Code
Main Tabs

The application is split into three main areas, each consisting of a tab that is accessible from
the main navigation bar within the application. These areas/tabs are the Profile, Exercises,
and Alerts tabs.

The files for these tabs contain an object called ‘cardMap’, which contains information about
how certain predefined cards should be displayed (such as what icon to use, and what unit to
use if the card displays a value).

Profile Tab

The largest file out of the three tabs is ProfileTab.js. This page within the application has a
‘RefreshControl’ object that allows the user to pull the screen down to refresh. This calls the
_onRefresh method, which in turn calls methods from other files that request new data from
Fitbit and build the profile.

This file also contains a method called ‘getProfileFromDb’ which is used to load the profile
from the database (if it exists) when the application is opened.

Information stored in the profile is displayed on the screen in the form of cards. These cards
are created from this information in the ‘createCards’ method.

This file contains a ‘render’ method which is inherited from React.Component. This returns
markup that is used to display items on the page.

Exercises Tab

When this tab gains focus, exercise data is loaded from the database. Exercise types are
gleaned from this data, and a card is displayed for each one. Pressing on these cards will take
the user to a page that shows the data for that specific exercise type.

This page is designed so that a user can only attempt to view data for exercises that they have
completed. Initially, an option for common exercises such as ‘Run’, ‘Walk’, and ‘Sport” were
going to be included, however the solution that only shows cards for exercise types that the
user has done is better as the application is more tailored to the user, and there is no way
that the user can view a page containing no data.

Alerts Tab

On focus, this page retrieves data from the ‘deviations’ datastore. This data is split into three
categories: activity level deviations, profile deviations, and profile updates. Activity level
deviations are deviations that were created based on classifications using the decision tree
data mining model. Profile deviations are created when the user has not matched a value in
their profile for a given activity. Profile updates tell the user how values in their profile have
changed since the last profile build.

This file also contains a ‘createCards’ method, which is called in the render method, just like
in the other two ‘tab’ files. Unlike in the other two files, this method also adds a picker to the
page, that allows the user to filter what they see on the page between the three categories
listed earlier, and ‘all’.
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Activity and Exercise Pages

The activity page is where the user is taken when they press any of the cards in the activity
section of the profile page. On navigation, the activity page accepts parameters consisting of
the title of the page (usually the activity name correctly formatted with capital letters), the
‘key’ (usually just the activity name. This dictates which data store the DatabaseController file
should query when providing data for the page), and a value (which is the value related to the
activity that shows on the card on the profile page for the user). These parameters allow the
page to show different data, meaning that it is necessary to only create this one dynamic page
for all activities, instead of one for each.

The page consists of a graph showing how the user’s data has changed over time, followed by
a list of values related to the current activity. A key method in this file is ‘getDataPairs’. This
uses the key parameter that was passed to the page to retrieve data from the relevant part
of the database, sorted by date in reverse chronological order, to be displayed in the list. This
method returns pairs consisting of a date and the value for the activity on that date. It is
ordered by using the ‘fetchAndSort’ method from the DatabaseController.js file and
specifying sort conditions, so that the most recent day’s data is displayed first in the list.

The exercise page is like the activity page in that it can show data for various exercises and is
not specific to any exercise. The page has an almost identical layout to the activity page, and
the only notable difference is that there is a picker at the top of the exercise page. The
exercise page is accessed by pressing any of the cards on the exercises tab. The exercises page
displays data from sessions of the selected exercise type. As each exercise session has values
relating to the duration and calories burned during the exercise, the picker at the top of the
screen allows the user to choose which of these values they wish to see displayed in the graph
and list on this page. For the exercise types ‘Treadmill’ and ‘Run’, the user can also choose to
view the distance covered during exercise sessions.

Cards

Cards appear in three places within the application: the profile tab, the exercises tab, and the
alerts tab. There are three types of card (‘ProfileCard’, ‘DeviationCard’, and
‘ProfileUpdateCard’) and their implementation is simple. Each card simply extends
React.Component and has a render method that returns JSX code that defines how the card
should be rendered. The information to be displayed by the card is passed in via ‘props’, which
is standard in React Native. These props are combined with the JSX markup to display the
cards that are seen in the application.

Other Pages
Help Page

This page is a simple page that contains only a render method, used to display text that
provides guidance to the user on aspects of the application.

Settings Page

The settings page contains two buttons, with very simple tasks. The first button clears all the
data within the database. The other button initiates a rebuild of the user profile.
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Navigation
Navigation.js

This is where the navigation for the application is defined. The main ‘tab’ navigation bar at
the bottom of the application is split into three sections, which correspond to the three tabs
within the application. Within the navigation file, each of these buttons corresponds to a
separate ‘stack’ navigator for each of the three application parts. The ‘ProfileStack’ stack
navigator contains all the pages that are reachable from the profile tab. The ‘ExerciseStack’
stack navigator contains all the pages that are reachable from the exercises tab. The
‘AlertStack’ stack navigator contains all the pages that are reachable from the alerts tab. A
diagram showing how the navigators are combined is shown below.

MainMavigator - BottomTabMNavigator

! v .

ExerciseStack - StackMNavigator ProfileStack : StackMNavigator ExerciseStack : StackMavigator

[

v v v
ExerciseTab ExerciseFage AlertTab
¥ ¥

ProfileTab ActivityPage

h h 4

HelpFage SettingsPage

Figure 11 Navigation

Profile Building Code
ProfileBuilder.js

This file is where all profile-related activities happen, from requesting data, to calculating the
values that are seen on the profile page, to building a model based on the user and calculating
deviations. The method that is called to start all the above is ‘buildProfile’.

The first thing that happens in this method is the creation of an object called
‘newProfileValues’. This object stores all the information that will be added to the profile in
the ‘profile’ collection of the database.

The method then checks if this is the first time a profile has been built. If so, an entry is created
in the database within the call to ‘ProfileBuilder.createlnitialProfile()’. The profile is the
retrieved from the database, ready for updating later. Figure 12 below shows the profile being
readied.

64



//Check if a profile exists already

let isFirstBuild = await ProfileBuilder.checklIfFirstBuild();

//Create an intial profile object if this is the first build
if (isFirstBuild) {
await ProfileBuilder.createlnitialProfile();

}

//Get the profile object from the db
let profiles = await DatabaseController.fetch("profile", {3}, {});

let profile = profiles[0];

Figure 12 Getting a Profile ready to update

The code then requests new data from Fitbit if the user is refreshing the profile. Figure 13
below shows this call (note, the ‘rebuild’ variable is true if the user is only rebuilding the
profile from the existing data, and false if the profile is being refreshed, thus new data is
required). There are also calls to methods here that process the minute data into hourly
datasets to be used by the two classifiers, however this code will be discussed in the data
mining section.

if ('rebuild) {
//Requests the data from Fitbit and stores it
await ProfileBuilder.requestAndStoreData();
//Convert to hourly datasets in correct format for DT
await ProfileBuilder.processToDTHours();
//Convert to hourly datasets in correct format for CG

await ProfileBuilder.processToCGHours();

Figure 13 Requesting data

The next snippet of note iterates through all the activity types and creates the profile value
for each type. These values are added to the ‘newProfileValues’ object to be stored in the
database. Figure 14 and Figure 15 show the creation of the values in the activity section of
the profile page. The method in Figure 15 creates an average of the values for each activity
type, to be shown on the profile page.
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//\terate over the types of data we defined above.

for (const dataField of ProfileBuilder.dataFields) {

//Build the profile value for the relevant activity
let value;
if (dataField !="distance") {
value = await ProfileBuilder.buildActivity(dataField, true);
}else {
value = await ProfileBuilder.buildActivity(dataField, false);

}

//Add the new value into the object to be stored later.

newProfileValues.activities[dataField] = value;

Figure 14 Creating profile activity values

66



static buildActivity(activity, integer) {
return new Promise(function(resolve, reject) {
DatabaseController.fetch(activity, {}, {}).then(function(docs) {
var totalValue = 0;
const totalDocs = docs.length;
for (vari=0; i< totalDocs; i++) {
totalValue += parselnt(docs]i].total);
}
let output = totalValue / totalDocs;
if (integer) {
resolve(Math.round(output));
}
else {
resolve(parseFloat(output.toFixed(2)));
}
}).catch(function(error){

reject(error);

1;

Figure 15 Building profile activity values

After this, three variables (dtHourClassifications, graphHourPredictions, and
graphHourClassifications) are initialised to null. These are variables to store predictions and
classifications from both classifiers during testing.

Next in ‘buildProfile’, a call to ‘ProfileBuilder.buildExercises’ performs a similar function to
‘buildActivity’ in the figures above. This method and those that it calls provide the values that
are shown in the cards in the ‘Exercises’ section of the profile page.

The next section of the code is where the decision tree data mining takes place. First, the
dates required for classification are found, then data for building the tree and data to be
classified are retrieved from the database. Figure 16 shows this and the creation of the
decision tree.
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let dtDaysToBuild = await DatabaseController.fetch("dtDatasets", { date: {Snin:
datesToClassify}});

let dtDaysToClassify = await DatabaseController.fetch("dtDatasets", { date: {Sin:
datesToClassify}});

let dtClassifier = new DTClassifier(ProfileBuilder.getHeadings());
let buildDatasets = [];
for (const day of dtDaysToBuild) {

let dayData = day.datasets;

for (const dataset of dayData) {

buildDatasets.push(dataset);

}
}
//Build a tree using the classifier object and the dataset

let tree = dtClassifier.buildTree(buildDatasets);

Figure 16 Decision Tree creation

Next is some code that is used to classify new data and was originally in
DecisionTreeMining.js, however due to a problem with the database (described in the
problems section), this code was moved to this file. This code is discussed in the Data Mining
part of this section of the report. The output of this code is an array of classifications, which
is then passed into another method to create an array of deviations. Figure 17 and Figure 18
show this.

let deviations = ProfileBuilder.getDeviationsFromClassifications(dtClassifications, "hour");
if (deviations.length > 0) {
await DatabaseController.insert("deviations", deviations);

}

Figure 17 Creation of deviations after classification
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static getDeviationsFromClassifications(classifications, timelnterval) {

let deviations = [];

for (const classification of classifications) {

let keys = Object.keys(classification.predicted);

let predicted = keys[0];

if (classification.actual != predicted) {

deviations.push(new Deviation(classification.date,

classification.timeOfDay,
timelnterval,
"activity",
predicted,

classification.actual));

}
}

return deviations;

Figure 18 Creation of deviations (detail)

The next piece of code is used to create and use the graph-based classifier. First, the datasets
for building and classifying are retrieved, as with the decision tree classifier. For the graph
classifier, a third dataset is created which is a combination of the two datasets (i.e. all data
available in the database).

Next, a classifier is created using the build dataset, and the dataset to be classified is classified
using it. The output of this is a prediction of the class of the new data, based on existing data.

Following this, the ‘updateCGProportions’ method updates the stored frequencies of each
activity level (as this information is used during the creation of the graph-based classifier) to
account for the new data. A new classifier is then created using the third dataset mentioned
above and these updated class frequencies. The dataset containing the new data is classified
again using this new classifier to give a final classification. If the classification for any dataset
is different to its classification on the first classifier, then the prediction was incorrect. It
should be noted that the classifications from the graph-based classifier are not used to create
deviations within the application. This is because it is only necessary to use one classifier for
this purpose, however if the graph-based classifier is more accurate in testing, then some
future work should be to replace the decision tree classifications with the classifications from
this classifier when creating deviations. Currently, this code is in the application for the
purpose of comparison with the decision tree classifier.
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let datesToClassify = DateUtilities.getDaysOnOrAfter(lastBuildDate);

let cgDaysToBuild = await DatabaseController.fetch("cgDatasets", { date: {Snin:
datesToClassify}, Snot: {_id: "proportions"}});

let cgDaysToClassify = await DatabaseController.fetch("cgDatasets", { date: {Sin:
datesToClassify}});

let allCGDays = [];

for (const day of cgDaysToBuild) {
allCGDays.push(day);

}

for (const day of cgDaysToClassify) {

allCGDays.push(day);

}

let cgPredictClassifier = await ProfileBuilder.buildCGClassifier(cgDaysToBuild);

let cgPredictions = ProfileBuilder.classifyCGData(cgDaysToClassify, cgPredictClassifier);

await ProfileBuilder.updateCGProportions();

let cgClassifyClassifier = await ProfileBuilder.buildCGClassifier(allCGDays);

let cgClassifications = ProfileBuilder.classifyCGData(cgDaysToClassify, cgClassifyClassifier);

Figure 19 Creation and use of graph-based classifiers

Finally, there is a call to ProfileBuilder.removelntradayDatasets. This method is used to
remove all intraday (minute) data from the database. This is because of a storage limit that
was discovered (see Problems below). The data has already been processed into hourly
datasets and stored in that format by this point, so there is no need to keep the minute data
in the database.

Deviation.js

This file contains a class that models a ‘deviation’. A deviation contains six fields, which are
described earlier in the report. These fields are passed in to the class using the constructor. A
key method in this class is ‘getCard’. This is a method that is called on an instance of
‘Deviation’ and returns JSX markup that is used to render a card on the screen. This method
returns a ‘DeviationCard’ that is displayed on the Alerts tab. This method is also able to return
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a ‘ProfileUpdateCard’. This is a card that displays how a profile value has changed. This is
technically not a deviation, but as the two cards are so similar, ‘Deviation’ objects are used
within the application to display changes to the user profile.

The other methods in this file are called ‘convertToJSON’ and ‘convertFromJSON’. These are
necessary as ‘Deviation’ objects are stored as JSON in the MongoDB database. When they are
retrieved, the ‘convertFromJSON’ method is used to recreate Deviation objects from the
results of the database query.

The only other thing to note about this file is that there is a cardMap object, like the ProfileTab
file. This is because the ‘getCard’ method returns a card, so cardMap is used to define how
this card should look.

Problems

1. Database Limit: It was discovered very late in the project that there is a limit to the

amount of data that can fit in the database. Every day of intraday data contains up to
1440 datasets, and up to 7 days are requested each time (this limit was imposed due
to Fitbit request limits). These datasets were originally being stored in the application,
and the grouping into hourly datasets was done during each profile refresh, until it
was discovered during testing that only around 12 days of data would fit into the
database. Upon further investigation, the ‘react-native-local-mongodb’ package was
built on top of React Native’s AsyncStorage storage mechanism (this was not
mentioned clearly in the documentation), which has a limit of 6MB on Android
devices. There is no mention of this 6MB limit in the React Native documentation as
faras | can tell either, meaning that it was unlikely that | would discover this issue until
| began testing the application with many days of data.
As a workaround to this issue, time was spent reworking major aspects of the
application, namely the entire data mining process. The application now processes
data into hourly datasets as soon as it is imported into the application, before storing
these hourly datasets. The data mining is then carried out on these hourly datasets as
it was previously, however certain methods required altering. Minute data that was
imported during the refresh is then deleted at the end of the refresh flow to ensure
that the space within the database is freed for future intraday data that requires
processing. Because this rework was done so late into the project, many methods
were copied from the data mining files into ProfileBuilder.js to be worked on
independently of the actual data mining code (to ensure that the original code
remained intact if this rework failed). These methods have been altered slightly,
however there was not enough time to move them back into their original files. As a
result, there are many lines of code near the bottom of ProfileBuilder.js that should
exist elsewhere. As a result of this rework, | was able to get over 70 days of data into
the application during testing (there was potential for more as the database did not
fill), making it a success.

Data Mining Code

Due to a problem that was encountered with the database (see ‘Problems’ section in the
‘Profile Building Code’ section of the report), some of the data mining code was temporarily
moved into ProfileBuilder.js to be worked on, however this code became permanent due to
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a lack of time at the end of the project. The data mining code is still discussed in this section
of the report, however.

Decision Tree Mining

The code for the decision tree data mining was adapted into JavaScript for this project from
a Google tutorial [14]. The code was originally in Python and can be found at
https://github.com/random-forests/tutorials/blob/master/decision tree.ipynb. The adapted
code can be found in the following files: ‘DTClassifier.js’, ‘DTHelper.js’, ‘DTNodes.js’, and
‘Question.js’. There is a method in ‘DTClassifier.js’ that is not from this tutorial, called
‘recreateTree’ which was used to recreate the tree from the object that is retrieved from the
database, however this is no longer used as a result of the data mining rework.

The file ‘DecisionTreeMining.js’ contains the methods that were originally used to process the
data and group the minute datasets into hour and six-hour datasets for the decision trees.
Processing is now done when data is first imported, as a result of the database issue
mentioned earlier (important: processing now only processes the data into hourly datasets
and not six-hour datasets as a result of the rework). This processing is done in
ProfileBuilder.procesToDTHours. This method creates hourly datasets from the minute data.
Whilst the code to process the data has been moved from DecisionTreeMining.js, this method
still calls other methods from DecisionTreeMining.js.

One of the first things to happen in this method is the retrieval of minute data, which is then
put into an object.

//Create object to hold all minutes data and heart data to match it to
let activityDoc = {};

//\terate over all activity types

for (const activity of ProfileBuilder.dataFields) {

activityDoc[activity] = await DatabaseController.fetchAndSort(activity, {intraday: {Sexists: true}},
{}, {date: 1});

}

Figure 20 Retrieval of intraday data

Next, two methods from DecisionTreeMining.js are called. The ‘formatRawData’ method is
used to match the size of datasets for all activities to the heartrate datasets, to remove
missing datasets, and format the data for every minute into an object containing the value
for every activity for that minute, as well as the date and time of the minute. The ‘groupData’
method is used to group these minute datasets into hour datasets. This is done by simply
iterating through each minute object and aggregating the values from the objects that have
the same date and hour and putting these values into a new object for the hour. The hourly
object also contains an array of minute datasets in the form [steps value, calories value, floors
value, distance value, heart value, activity level], where activity level is the class.

Next in processToDTHours, hourly average datasets of the form [steps value, calories value,
floors value, distance value, heart value, activity level] are created by dividing each value in
the hourly object by the number of minute datasets in the hour. A decision tree is then
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created using the minute datasets for that hour, and the average hourly dataset is classified
on this tree. Figure 21 shows this process.
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//Group the data
let grpData = DecisionTreeMining.groupData(data, "hour");
//Process the data
let procData = [];
let processedTimeData = {};
//For each day
for (vari=0; i< grpData.length; i++) {
let groupKeys = Object.keys(grpDatali]);
for (varj =0; j < groupKeys.length; j++) {
let key = groupKeyslj];
let hourData = grpDatali][key];
//Divide by the number of minute datasets (there is no guarantee that there are 60)
let numDatasets = hourData.datasets.length;
let avgSteps = hourData.totalSteps / numDatasets;
let avgCals = hourData.totalCalories / numDatasets;
let avgFloors = hourData.totalFloors / numDatasets;
let avgDist = hourData.totalDistance / numDatasets;
let avgHeart = hourData.totalHeart / numDatasets;
//Create average dataset to be classified

let dataset = [avgSteps, avgCals, avgFloors, avgDist, avgHeart];

let classifier = new DTClassifier(DecisionTreeMining.getHeadings());

let tree = classifier.buildTree(hourData.datasets); //Create a tree from the minute datasets

let outClasses = DTClassifier.classify(dataset, tree);
let outClass = null;

let outClassConfidence = 0;

for (const potentialClass of Object.keys(outClasses)) { //Pick the most likely class
if (outClasses[potentialClass] > outClassConfidence) {
outClass = potentialClass;

outClassConfidence = outClassConfidence;

}
dataset.push(outClass);

procData.push(dataset);

Figure 21 Processing of minute datasets into hourly datasets for decision tree



Finally, the hourly datasets are stored in the database under their date.

let docs =[];

for (const date of Object.keys(processedTimeData)) {

let doc={
date: date

}

for (const timeOfDay of Object.keys(processedTimeData[date])) {
if (typeof doc.datasets == "undefined") {

doc.datasets = [processedTimeData[date][timeOfDay]];

}else {

doc.datasets.push(processedTimeData[date][timeOfDay]);

}
}

docs.push(doc);
}

let docsRes = await DatabaseController.insert("dtDatasets", docs);

Figure 22 Decision tree hourly datasets stored in database

Decision tree classification is done in ProfileBuilder.buildProfile. This used to take place in

DecisionTreeMining.js but was moved as a result of the rework. Figure 23 shows this
classification taking place.
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//Build a tree using the classifier object and the dataset

let tree = dtClassifier.buildTree(buildDatasets);

//Classify using decision tree
let classifications = [];

let correct = 0;

for (const day of dtDaysToClassify) {
let dayData = day.datasets;
let timeOfDay = 0;
for (const dataset of dayData) {
let actual = dataset[dataset.length - 1];
let predicted = DTClassifier.printLeaf(DTClassifier.classify(dataset, tree));
// let classification = ‘Actual: ${actual}; Predicted: ${JSON.stringify(predicted)}’;
let classification = {
date: day.date,
timeOfDay: timeOfDay,
actual: actual,
predicted: predicted
}
classifications.push(classification);
if (Object.keys(predicted).includes(actual)) {
correct +=1;
}else {
console.log(dataset);
console.log(classification);
1
timeOfDay++;
}
}

return classifications;

Figure 23 Decision tree classification
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Figure 24 shows an example of a decision tree classifier. The numbers in the prediction objects
state how many data points in the dataset used to build the tree were given that class.
Is distance »= 0.00387931038470745612?
--» True:
Predict {"lightly active":6}
--» False:
Is calories »>= 1.5433288137113022?
--» True:
Is heart »>= 61.6666666666666642
--» True:
Predict {"not active":2}
--» False:
Predict {"lightly active™:1}
--» False:

Predict {"not active":15}

Figure 24 Example of a decision tree classifier
Graph Mining

The original code for this data mining approach can be found in
‘CumulativeGraphClassifier.js’, however the code that is used now is at the end of
ProfileBuilder.js as a result of the rework that was required. The classifier is effectively a set
of boundaries between classes for each type of activity, as described in the ‘Algorithms’
section of this report.

This method starts similarly to the decision tree, with a method called processToCGHours.
The first thing that happens within this method is the retrieval of the data from the database,
and the processing of this data to remove values from when the user was not wearing their
device. Next, the code finds the frequency of each class within the datasets and stores this
information in the database if it does not already exist. Figure 25 shows this.
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//Create object to hold all minutes data and heart data to match it to

let activityDoc = {};

//\terate over all activity types
for (const activity of ProfileBuilder.dataFields) {

activityDoc[activity] = await DatabaseController.fetchAndSort(activity, {intraday: {Sexists: true}},
{}, {date: 1});

}

//Remove invalid datasets

ProfileBuilder.matchToHeartData(activityDoc);

//CREATE PROPORTIONS
//Get the existing activity level proportions

let proportionsRes = await DatabaseController.fetch("cgDatasets", {_id: "proportions"}, {});

if (proportionsRes.length == 0) {
//Get proportions of new data
let newProportions = ProfileBuilder.getClassProportions(activityDoc);
newProportions["_id"] = "proportions";
await DatabaseController.insert("cgDatasets", newProportions);

}

Figure 25 Initial retrieval and processing of data for graph-based classifier

The end of the graph dataset processing method involves creating hourly datasets (the call to
ProfileBuilder.getHourlyDocs does this) before adding these datasets to objects and inserting
them into the database. Figure 26 shows this.
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let docsTolnsert = {};
//Insert new hourly docs into db for every data type
for (const activity of ProfileBuilder.dataFields) {
let docs = ProfileBuilder.getHourlyDocs(activityDoc[activity]);
for (const doc of docs) {
doc.activity = activity
}
for (const doc of docs) {
if (typeof docsTolnsert[doc.date] == "undefined") {
docsTolnsert[doc.date] = [doc];
}else {
docsTolnsert[doc.date].push(doc);
}
}
}

let formattedDocsTolnsert = [];
for (const key of Object.keys(docsTolnsert)) {
let datasets = docsTolnsert[key];
let doc={
date: key,
datasets: datasets
}

formattedDocsTolnsert.push(doc);

}

let insertionRes = await DatabaseController.insert("cgDatasets", formattedDocsTolnsert);

Figure 26 Creation, formatting and storage of hourly datasets

Figure 27 shows the datasets from when the user was not wearing their Fitbit device being
removed.
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static matchToHeartData(activityDoc) {
//Get the heart data to match the active minute data to
let allHeartData = activityDoc.heart;
//Get the keys of the active minute activities only (exclude 'heart')
let activityKeys = Object.keys(activityDoc);
activityKeys.splice(activityKeys.indexOf('heart'), 1);
//For each day of heart data
for (const day of allHeartData) {
//Get the date
let date = day.date;
//Get the minute-by-minute data
let heartIntraday = day.intraday;
//Check each type of active minute data
for (const activityKey of activityKeys) {
//Get the data for the current type
let allMinuteData = activityDoc[activityKey];
//For each day of active minute data of the current type
for (const minuteData of allMinuteData) {
//If the date matches the current heart day, we want to match the two intraday array times
if (minuteData.date == date) {
//Get the minute-by-minute datasets for the current day of the current active minute type
let minutelntraday = minuteData.intraday;
//New array to keep values we are interested in
let newMinutelntraday = [];
//\terate over each heart minute
for (const heartDataset of heartintraday) {
//Iterate over each active minute minute
for (const minuteDataset of minutelntraday) {
//If the times match, we want to keep the active minute dataset
if (heartDataset.time == minuteDataset.time) {

newMinutelntraday.push(minuteDataset);

//Replace the old day dataset with the new one containing only values from when the device was being worn

minuteData.intraday = newMinutelntraday;
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Figure 27 Removing datasets from when the user was not wearing their device

The main method related to the graph-based classifier is buildCGClassifier. This method
iterates over each activity type and then over every dataset and finds how many datasets
have a value for the activity that is less than the one in the current dataset. This information
could be used to plot a graph of the values for the activity (x axis) against the number of
datasets where the value was lower than the current value (y axis). This graph, along with the
frequencies of each class within the data (this information was stored in the database earlier),
is used to define the boundaries for each class for the activity. For example, if the frequency
of the lowest class (‘not active’) is 80%, then one would find the value for 80% on the y axis
and then read the related value on the x axis. This value would define the boundary between
‘not active’ and the next class (‘lightly active’). If the next class had a frequency of 5%, then
the same process should happen as with the lowest class, except the 5% should be added to
the previous 80%, meaning the value for 85% should be read. This idea is simulated in the
code for this classifier as there was no way to plot a graph. When one would find the
frequency value on the y axis, the code instead finds the value before and the value after this.
These values and their corresponding x values are used to create a straight line between the
two points. The function for this line is found, meaning that the frequency value (y) can be
plugged into the equation to find the respective x value. Figure 28 shows this.
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let totalFq = 0;
for (const fgKey of keys) {
// console.log(fgKey);
let frequency = minuteTotals[fqKey];

let y = frequency * numHours;

totalFq +=y;
letidx = 0;
letyl=0;
letx1=0;
lety2=0;
letx2 =0;

for (const doc of hourlyDocs) {
// console.log("Total Fg: " + totalFq + ", numLess: " + doc.numLess + ", value: " +y);
if (doc.numLess > totalFq) {
y2 = hourlyDocs[idx].numLess;
x2 = hourlyDocs[idx].value;
if (idx > 0) {
idx--;
}
y1 = hourlyDocs[idx].numLess;
x1 = hourlyDocs[idx].value

break;

idx++

let m=(y2-y1)/(x2-x1);

letc=y2-(m * x2);

let x = (totalFq - ¢) / m;

thresholds[fgKey.substring(0, fqgKey.length - 9)] = x;
}

classifier[field] = thresholds;

Figure 28 Simulating a graph reading



Finally, in ProfileBuilder.classifyCGData, the boundaries created when creating the classifier
are used to classify new hourly values. This is done for each activity by finding which boundary
the value fits in. This provides a set of five classifications (as there are five activity types), of
which the highest class is taken. Figure 29 shows an example of these boundaries. Using the
calories row as an example, anything below 2.3114... is classed as ‘not active’, and anything
between 2.3114... and 4.3295... is ‘lightly active’ and so on.

CGClassify threshelds:
v {steps: {.}, calories: {.}, floors: {.}, distance: {.}, heart: {.}}
» calories: {minutesSedentary: 2.3114820145899393, minutesLightlyActive: 4.3295182464293084, minutesFairlyActive: 4.8508036632791583}
» distance: {minutesSedentary: ©.0@5279848219000317, minuteslightly. e: ©.82513778357584356, minutesFairlyActive: ©.82753974733343478}
» floors: {minutesSedentary: ©.01694486826485725, minuteslightlyAct : 8.989874436317861, minutesFairlyActive: ©.11455136478799183}
» heart: {minutesSedentary: 78.99753095272241, minutesLightlyActive: 91.433289@739486, minutesFairlyActive: 97.112209182609111}
» steps: {minutesSedentary: 7.285850184843221, minutesLightlyActive: 34.629@3434636899, minutesFairlyActive: 37.94527941186171}
» : Object

Figure 29 Graph-based classifier boundaries

Problems

Some problems were encountered during the creation of the data mining functionality. These
problems were as follows:

1. Data mining package incompatibility: As React Native is JavaScript-based, | was
anticipating using a JavaScript-based package from npm to carry out the data mining
tasks, but it was discovered that this package was incompatible with React Native. This
was a major setback as it sparked a search for a way to carry out data mining tasks
late into the implementation phase of the project. | thought that an alternative could
be to use a familiar Java package as this is an Android application and React Native
allows use of native Java code to implement things that cannot be implemented in
React Native. Furthermore, as | had experience with this Java package, this seemed
like an ideal solution. It was then discovered that this package contained functionality
that was not compatible with the Android device and could not be used as a result.
Eventually, an open-source decision tree approach [14] was discovered in pure
Python, so this was adapted into JavaScript for the project.

2. Grouping datasets:

A classification for a minute of data is not particularly useful for a user. For this reason,
it was decided that the data mining should be done on hourly datasets. This
introduced the problem of classifying these grouped datasets, as the Fitbit data only
contains an activity level for each minute. This led to the decision tree approach to
grouping datasets.

The decision tree approach to grouping datasets, where a new tree is created for each
hour in order to classify an average dataset for the hour, seems to return low activity
levels as classifiers for the hourly dataset. | believe that this is because there are
generally more ‘not active’ minutes in an hour, which outweigh the ‘very active’ values
when creating the average dataset. Future work could involve an investigation into
how these hourly classifications would be different if the average dataset was
classified on a tree created for the entire day’s data (<= 1440 minute datasets), instead
of just the hourly (<= 60 minute datasets) data. This idea of using all the day’s data
could also be taken further and tested on data where the data points from when the
user is sleeping are excluded.

3. Duplicate code:
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The problems described above led to a lot of time being spent on unplanned tasks.
This meant that often when a piece of code was working for the first time, it was left
in the state it was in for the remainder of the project, as there was little time to
refactor and tidy up the code base. This means that there are aspects of the data
mining code that are very similar between the decision tree and graph classifiers.
Given more time, these similar pieces of code would have been refactored into one
piece, so that it would only be written once. An example of this repetition is the
‘matchDataToHeartDataset’ in DecisionTreeMining.js and ‘matchToHeartData’ in
CumulativeGraphClassifier.js.

Fitbit Communication
FitbitCaller.js

This file contains methods that are used to authorise the application with the Fitbit Web API
and request data from it.

Methods 1, 2, and 3: authenticate(), authorizeUser(), and refreshToken()

These methods authenticate the user with the Fitbit Web API or refresh the tokens each time
the application needs to request data.

Method 4: generateUri(String activityName, boolean intraday, String startDate, String
endDate)

Generates URIs that can be used to request data from the Fitbit Web API. The activityName
parameter states which activity the application needs data for. The intraday parameter states
whether the application is requesting intraday data. The final two parameters specify the start
and end dates of the period that the application requires data from.

Method 5: requestData(String uri)

This method is used to request data from the Fitbit Web API. The uri parameter is a URI that
was generated by the generateUri method.

Problems

1. Fitbit API Registration:
| planned the application to request the data from Fitbit, however | encountered the
issue of registering the application with Fitbit. The registration form requires a website
for the application, which this project does not have. After some further investigation,
it was discovered that a dummy value could be used for the application. This was a
very simple conclusion, however the investigation required to find this solution took
a chunk out of the implementation time.

2. Fitbit Authentication:
When planning the project, | did not consider the necessity of authenticating the
application with Fitbit. In order to get data from Fitbit, | had to learn about OAuth2
authentication and callback URLs, which | had never encountered before.
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Database
DatabaseController.js

This file contains all the methods that create the database and allow the system to interact
with it.
Method 1: createDb()

This method creates various datastores. Each datastore behaves like a MongoDB collection.
There is a datastore for each element of activity data, as well as exercise data, the user profile,
and any deviations.

Method 2: insert(String dbName, Object jsonDoc)

Inserts the given jsonDoc parameter into the datastore that is identified by the dbName
parameter.

Method 3: fetch(String dbName, Object jsonDoc, Object project)

Fetches documents from the datastore that is identified by the dbName parameter. The
jsonDoc parameter is used to provide query terms, and the project parameter is used to
project parts of the document, just like in plain MongoDB.

Method 4: fetchAndSort(String dbName, Object jsonDoc, Object project, Object sort)

This is like fetch(), however the extra parameter, ‘sort’, is used to sort the returned array of
documents.

Method 5: update(String dbName, Object jsonDoc, Object update, Object options)

Updates documents that match the query criteria defined by the jsonDoc parameter within
the datastore identified by the dbName parameter. The update parameter contains
information about what should be updated within the relevant documents, and the options
parameter is used to specify options (such as whether multiple documents should be
updated).

Method 6: remove(String dbName, Object jsonDoc, Object options)

Removes documents that match the query criteria defined by the jsonDoc parameter within
the datastore identified by the dbName parameter. The final parameter is used to specify
options.

Method 7: clear()

This method clears the database. It was originally for debugging, however it has remained in
the application so that the user can clear the database if they desire to.

Other Notable Code

DateUtilities.js

This file contains some static methods that assist with date-related activities within the
application. All dates within the application are strings with the format “yyyy-MM-dd”. This is

because Fitbit uses this format in their responses, so this format was adopted in other areas
of the application for consistency and simplicity.
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Method 1: getDaysOnOrAfter(String startDate)

This method takes a parameter which is a date string of the format described earlier. This
date is expected to be before the current day. The method systematically creates a string
from the current date in the desired format before repeating this process for all the dates up
to the date in the parameter. The method returns an array which contains all the dates
between the current day and the start date. The purpose of this method is to get a list of
dates since the last time the profile was updated, so that the system focuses on requesting
and classifying new data.

Method 2: getDateAsString(Number offset)

Any date string generated within the application is generated by this method. The method
returns the current date in the form “yyyy-MM-dd” if the ‘offset’ parameter is 0. The
parameter is used to get dates at an offset from the current day. For example, if the offset is
-1, then the method returns yesterday’s date in the desired format.

This method was useful for debugging as an offset of -1 can be used within the method to
effectively set the date of the application to the previous day. This meant that a profile could
be built before resetting the date to the current day by removing the offset and restarting the
application so that the profile can be refreshed with new data. This meant that the
classification/deviation functionality could be tested effectively, as deviations are only
created on new data, not during the first profile build.

Method 3: isDateBefore(String dateStringA, String dateStringB)

This method is simply used to compare which of the two date string parameters is before the
other. The method returns ‘true’ if date A is before date B, and false otherwise.

Packages Used
react-native

This is the package for React Native [6]. This is crucial to the entire project.

react-native-app-auth

This package [17] is an authentication package for React Native. This was used for
authentication with the Fitbit Web API [1].

react-native-local-mongodb

This is the package [9] that is used to create and manipulate the database. All code used from
this package is in DatabaseController.js.

native-base

This is the package [18] that is used for various on-screen components such as buttons.

react-native-svg-charts

This package [19] is used to create the graphs on the activity page and the exercise page.

react-native-svg

This package [20] is included as react-native-svg-charts depends on it.
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react-navigation

This package [21] is used to handle the navigation throughout the application.

User Interface

Profile Page
? e
Nathan Melly Pull screen down to create profile!
Activity

Nathan Melly " 9 ;‘;p;

‘ Steps | Distance (km)
?561 467 Calories:
d 2819

‘ Calories | Floors
2185 4 Floors:
+ 16

‘ Active Minutes ‘ Most Active Day
4T - e Distance:
O ® T 6.3%n
Resting Heart Rate:

@ . e
Figure 30 Profile Page Design Figure 31 Profile Page Screenshot Figure 32 Profile Page Screenshot (no
profile)

Differences between design and screenshot

The profile icon is smaller in the implemented application. This is to allow more screen space
for cards, which are more interesting and useful to the user.

Another key change is that the edit button was replaced by a help button. During
implementation, it was discovered that profile information such as the user’s name and date
of birth etc. could be requested from Fitbit. This meant that there was not much need for the
user to edit profile details in this application as they could do it with Fitbit. The ‘Edit Profile’
page was then replaced with a ‘Help Page’ that simply provides the user with a simple guide
on how to use the application.

The icons on the navigation bar are also different in the original design. This is simply because
the software used to create the design had a limited selection of icons and so during
implementation, more appropriate icons were found that aid the user in understanding what
each button represents.

The other noteworthy change is the colour and layout of the cards. During implementation,
the two-card-per-row layout was tested, however it was not as usable as a the one-card-per-
row-layout. The alternating colours of the cards in the original design could have wrongly led
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the user to believe that the functionality of the cards was different if the colour was different,
so a decision was made to keep all the cards one colour.

Activity Page
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|13/02/2019 13,156 | 2019-04-27 9778
|12/02/2019 7618 — 2571
|1/02/201 2185 | T 10764
|10/02/2019 6589 | — 9008
|~ el
9 . 2019-04-23 6487
2019-04-22 8195

Figure 33 Activity Page Design Figure 34 Activity Page Screenshot

Differences between design and screenshot

The most obvious difference between the design and implementation is that the graph is a
line chart, however it is a bar chart in the design. This is because the only graph image in the
design software was a bar chart, so this was used as a placeholder in the design. The graph
shows all the available data for the activity, so a bar chart would not have been an appropriate
choice as there would have been too many bars, meaning that the graph would have likely
had to be very small to accommodate this.

Another notable difference between the two is the lack of ‘Average’ line on the chart. This is
because the ‘react-native-svg-charts’ package [19] used in implementation only allows one
set of data to be plotted on a chart, meaning that it was not possible to add a second line to
the chart. A workaround could perhaps have been found, however it was not deemed
important enough to warrant the time that it would have taken to find a solution.

A final difference of note is that the list has no colour in the implementation, whereas it does
in the design. This is because | was anticipating creating the list from cards, however a third-
party package had a list JSX object that created the simple list in the image on the right. The
list in the implemented application looks tidier than the colourful cards in the design, so this
change was a positive one overall.
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Exercises Page
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Figure 35 Exercises Page Design Figure 36 Exercises Page Screenshot

Differences between design and screenshot

The main difference between the two images above is that the cards are all the same colour
in the implementation. This is because it was decided that alternating the colours was
unnecessary and having different colours on the cards could lead the user to think that they
have different purposes.
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Exercise Page
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. . . Figure 38 Exercise Page Screenshot
Figure 37 Exercise Page Design

Differences between design and screenshot

The main differences are the graph being a line chart and not a bar chart as designed, the
‘Average’ value line not being present in the implementation, and the list being colourful in
the design. The reasons for these differences have already been discussed in the ‘Activity
Page’ section.

The other difference between the two images is the style of the picker. The picker looks the
way it does in the implementation because it is the only style of picker available in React
Native and it did not seem necessary to depend on an extra third-party package for such a
minor detail.
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Alerts Page
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Figure 39 Alerts Page Design
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Figure 40 Alerts Page Screenshot

The cards in the implemented version are the same colour so that the user does not think
that they behave in different ways. They are a lighter colour than the touchable cards in other
areas of the application in order to distinguish them from the touchable cards, as these cards
do nothing when pressed.

Another difference is that the icons on the cards are the dark primary colour from the colour
scheme instead of different colours, as in the design. The text on the cards is also right-aligned
so that the user’s eye can move in a straight line down the screen, and the user knows where
the information will be due to the greater consistency between the cards.

The picker in the implementation allows the user to filter the types of cards they see.
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Results and Evaluation
Testing and Evaluation of Data Mining Approaches

In order to compare the classifiers, each was implemented in the main flow of the application
and tested on real data. The data was imported in chunks spanning five days each. Data would
usually be imported up to seven days at a time, however for the purposes of not hitting Fitbit
request limits, two five-day chunks were pulled into the application each hour. The process
was as follows:

1. Pick a date over five days from the first day of data (30" January 2019).

2. Set the application date to this chosen date by offsetting the returned value in

DateUtilities.getDateAsString.

Clear the application database.

Restart the application.

Pull the profile screen down to refresh the profile.

Wait while the data is imported and processed.

Close the application and lower the offset in DateUtilities.getDateAsString by five in

order to move the application date forward by five days.

Start the application.

Pull the profile screen down to refresh the profile.

10. Wait while the new data is imported, a classifier of each type is built from the existing
data, and the new data is classified on the classifiers. The results are printed to the
console.

11. Copy the results into a CSV file to be evaluated later.

12. Repeat steps 7 — 11 until there is no longer an offset in DateUtilities.getDateAsString.
The application is up to date.

Nouvsw

L ®

Following the approach outlined above, the application was tested on 76 days of data (the
original offset was 70, however the testing took two days and so these extra days were added
to the offset as testing progressed). The initial application date was 20" February 2019, and
testing was completed on 3™ May 2019, meaning that the data spanned 15 February 2019
— 2" May 20109.

The decision to test the application in chunks of five days was to enable the classifiers various
opportunities to incorporate more data, which in theory should make them more accurate.
Using chunks of seven days would have meant that two tests could not be done safely per
hour because there was potential to hit the Fitbit request limit and using chunks of under five
days would have resulted in many more tests. For these reasons, five days became the date
span of choice.

The results of these tests can be found below. Each row corresponds to the import of five
days of data, except for test 15, which had two days imported. The results start from the
second data import, as this is the first time that data is classified (no classifier is built during
the first profile build). Each test tested the classifiers, which were built from all data that
existed within the application before the current import. The newly imported data was then
classified on these classifiers. Classification accuracy was worked out by dividing the number
of correct classifications by the total number of classifications (apart from in the final two
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columns, where the number of correct classifications was instead divided by the total number
of classifications minus the number of classifications where both classifiers were wrong).

1 2

3 4

5 6

7 8

9 10 11

12 13

Test Number | Total DT Graph Both DT Correct % | Graph DT Correct % | Graph
Classifications | Incorrect | Incorrect | Incorrect Correct % (ignoring Correct %
both (ignoring
incorrect) both
incorrect)
1 119 19 1 0 | 84.03361345 | 99.15966387 | 84.03361345 | 99.15966387
2 120 19 0 0 | 84.16666667 100 | 84.16666667 100
3 120 12 7 1 90 | 94.16666667 | 90.83333333 95
4 119 8 1 0 | 93.27731092 | 99.15966387 | 93.27731092 | 99.15966387
5 120 10 4 2 | 91.66666667 | 96.66666667 | 93.33333333 | 98.33333333
6 120 20 0 0 | 83.33333333 100 | 83.33333333 100
7 118 12 1 0 | 89.83050847 | 99.15254237 | 89.83050847 | 99.15254237
8 119 16 1 0 | 86.55462185 | 99.15966387 | 86.55462185 | 99.15966387
9 120 19 1 0 | 84.16666667 | 99.16666667 | 84.16666667 | 99.16666667
10 120 19 1 0 | 84.16666667 | 99.16666667 | 84.16666667 | 99.16666667
11 120 14 0 0 | 88.33333333 100 | 88.33333333 100
12 120 9 1 0 92.5 | 99.16666667 92.5 | 99.16666667
13 112 14 0 0 87.5 100 87.5 100
14 117 11 1 0 90.5982906 | 99.14529915 90.5982906 | 99.14529915
15 48 4 0 0 | 91.66666667 100 | 91.66666667 100
All 1712 206 19 3 | 87.96728972 | 98.89018692 | 88.14252336 | 99.06542056
Percentage of Correct Classifications

105

100

95

90

85

80

75

14 15

84.0384.167 90 93.27P1.668B3.3389.83B6.5584.1684.1688.33392.5 | 87.590.5981.667
Frequency Graph 99.16 100 94.16799.1696.667 100 99.15399.1699.169.167 100 99.167 100 99.145 100

e Decision Tree

Figure 41 Test results for both classifiers

We can see from the results in Figure 41 that there is a clear difference in the performance of
the classifiers. The graph classifier was consistently close to 100% accuracy, and its lowest
accuracy was 94.167%. This is a contrast to the performance of the decision tree, which
struggled to reach 90% accuracy, although it did manage this a small number of times. One
could hypothesise that the decision tree classifier is not accurate because the new data in
each test was genuinely inconsistent with the existing data, however because the graph
classifier classified the data correctly in most cases, we can assume that this is not the case.
There were a number of instances where both classifiers provided an incorrect classification,
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where we could perhaps assume that the new data was genuinely inconsistent with the
existing data, however this happens at such a low rate that these anomalous classifications
make a minimal impact on the percentage of correct classifications for each classifier.

We can also see from the results that the decision tree classifier’s accuracy does not improve
over time. This could be due to one of several potential causes:

1. The implementation of the classifier. This is a likely cause as the implemented tree is
very basic and the tree can have any number of levels.

2. The method of grouping the datasets biases the data. An interesting topic for future
work could be to investigate other ways in which minute datasets can be grouped
into hourly datasets for this classifier.

3. The imported data is genuinely dissimilar to the existing data during each test. This
is unlikely, as the graph-based classifier almost always has no problem classifying
datasets that the decision tree classifier gets wrong.

Unfortunately, the test results do not help answer the question of how the accuracy of the
graph-based classifier changes over time. This is because the results are too similar and are
very high from the first test. This meant that there was almost no scope for the graph-based
classifier to improve.

Something worth noting for the graph-based classifier is that the classification for every
hourly dataset was one of five possible classifications (one each for steps, calories, floors,
distance, heartrate). The classifier related to the highest possible class was chosen from the
set of five for each hourly dataset. This is not necessarily the best way to get a single
classification for the hourly data. Future work should include an investigation into the
performance of this classifier when a different classification is taken from the five potential
classifications. Moreover, a better way of finding a single classification should be investigated.

One conclusion that can safely found from the tests on these classifiers is that the graph-
based classifier is more accurate than the decision tree classifier, at least within the context
of this application and its implementation of the mining techniques.

Evaluation Against Requirements

This section goes through each requirement and analyses if it was met or not, before
providing a justification for the outcome of each requirement.

Requirement | Requirement | Justification

Number Met

Functional

Must

1 Yes A profile is created and displayed in the profile page.

2 Yes When the profile is refreshed, cards appear in the Alerts tab
if the user has a different activity level based on similar data
to their model.
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3 Yes The profile can be refreshed once per day. If the user
attempts to refresh again, an alert pops up stating that the
profile is up-to-date.

4 Yes Alerts are displayed to the user when their profile rebuild
starts and when it is complete.

5 Yes The user can still use the application after they have initiated
a profile refresh.

6 Yes The classifiers were tested in the section above.

7 Yes When the user navigates to the activity page, a graph
containing data for the chosen activity is displayed.

8 Yes When the user navigates to the activity page, a list
containing data for the chosen activity is displayed.

9 Yes When the user navigates to the exercises page and ‘Time’ is
selected in the picker, a graph containing durations of their
sessions of the selected exercise is displayed.

10 Yes When the user navigates to the exercises page and ‘Time’ is
selected in the picker, a list containing dates and durations
of their sessions of the selected exercise is displayed.

11 Yes When the user navigates to the exercises page and ‘Calories’
is selected in the picker, a graph containing the calories
burned in their sessions of the selected exercise is displayed.

12 Yes When the user navigates to the exercises page and ‘Calories’
is selected in the picker, a list containing dates and calories
burned in their sessions of the selected exercise is displayed.

13 Yes When the user navigates to the exercises page and
‘Distance’ is selected in the picker, a graph containing the
distance travelled in their sessions of the selected exercise
is displayed.

14 Yes When the user navigates to the exercises page and
‘Distance’ is selected in the picker, a list containing dates
and distances travelled in their sessions of the selected
exercise is displayed.

15 Yes Cards are displayed on the profile page that tell the user the

16 Yes average steps, calories, distance, and floors they do each
day, and their average resting heart rate.

17 Yes

18 Yes

19 Yes
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20

Yes

Four cards are displayed on the profile page that tell the user
their average number of minutes in each activity level per
day.

21

Yes

The user’s data is retrieved from the database and
presented to them when they restart the application.

22

Yes

When the user pulls the profile page down to refresh their
profile, data is imported and then the values in their profile
are recalculated to include the new data. These values are
then updated on the profile page, and an alert is displayed
to the user when their profile build is complete.

Should

23

No

This functionality was not included because the project
focussed on testing a second data mining approach as the
project progressed.

24

No

This was decided against once implementation started as it
was discovered that basic user information can be gleaned
from their Fitbit profile, so it seemed unnecessary to get the
user to input this information a second time.

25

No

This was not met because the focus moved away from the
manual input aspects of the application and moved instead
to the comparison of two data mining approaches.

26

No

This was not included as it did not seem straightforward to
do using the third-party graph package. It is likely that there
is a solution, however this did not seem important enough
to justify spending much time on. The average value is
displayed in the list on the activity page however.

27

Yes

The most common exercise type is worked out based on
how much time the user spends doing each exercise type.
Based on my data, this exercise was ‘Walk’. This is
unsurprising because Fitbit logs exercises when one walks.
In future, this could be amended to exclude walking, or
exclude automatically logged sessions.

28

No

This was a desirable feature as opposed to a necessary
feature. It was not important enough to justify spending
time on it when there were issues with other areas of the
application.

29

No

There was not enough time to implement this due to issues
with other areas of the application, however this would be
a good thing to display on the Alerts page in future.

30

Yes

No exercise type is displayed on the exercises tab unless it
exists in the user’s data.
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Could

31 No Working with sleep data was defined as an extra challenge
if other aspects of the application were complete before the
project deadline. This was not the case however, so this
requirement remains incomplete.

32 No Like requirement 31, this was an extra challenge that there
was no time for.

33 No See justification for requirement 31.

34 Yes This is one of the core aspects of the application. User data
is requested from Fitbit before the profile is created.

35 No This was deemed unnecessary once the application could
directly import data from Fitbit. This requirement also
presents the issue of the user having to create/import a file
onto their Android device, which is extra hassle for the user.

36 No There was no time to implement this given the focus on
getting other areas of the application working.

37 No As discussed in the justification for requirement 36, there
was no time to implement exercise reminders.

Will Not

38 Yes There is no way to view other users’ data within the
application.

Non-Functional

39 Yes The application takes less than n*20 seconds to import data
from n days, build the profile, and classify the data.

40 Yes A heuristic evaluation was done on the Ul designs to identify
issues with it. Many of these issues were addressed during
implementation to produce an application that is intuitive.

Requirements Type | Total Requirements | Number of | Percentage of
Requirements Met Requirements Met

Functional 38 26 68.421%

Must 22 22 100%

Should 8 2 25%

Could 7 1 14.283%

Will Not 1 1 100%

Non-Functional 2 2 100%
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All 40 28 70%

The first table above shows which of the 40 requirements were met and provides an
explanation of how each one is met (or why it is not met). We can see from the tables above
that 70% of all requirements were met by the final application, including 100% of the ‘must’
requirements, which is a success. Only around 14% of the ‘could’ requirements were met,
which is acceptable as these requirements expressed non-essential functionality to be
included if there was enough time within the project. Only 25% of the ‘should’ requirements
were met, which is lower than anticipated. The reason for many of these requirements not
being met is that there was originally only going to be one data mining method implemented
within the application, but two were eventually created and compared. This work was
deemed more important than many of the requirements in the ‘should’ section, and this is
justified by the fact that through testing the two classifiers, we have seen that the new graph-
based classifier is much better than the original classifier. This is a conclusion that would not
have been possible to make if this work was not carried out.
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Future Work

Network Errors

During implementation, no method of handling network errors was put in place. As stated
earlier, this project assumes that these network errors will not happen, however this is clearly
not the case in the real world. Often, these network errors are out of the user’s hands, and
so work should be carried out to ensure that these errors have no effect on the state of the
application.

Changing Classifier

We have seen from testing that the graph-based classifier was much better at classifying user
datasets as the model was more accurate. Going forward, this classifier should be the one
used within the application to create the deviations, not the decision tree classifier.

Adjusting Decision Tree Classifier Grouping Method

The decision tree minute datasets were grouped into hourly datasets by creating a decision
tree for each hour’s data, creating an average dataset from this data, and classifying it on the
decision tree. This is not necessarily an effective way of grouping the datasets into hours, and
so an investigation into how else this can be handled should take place. One suggestion is to
classify the average hourly dataset on a decision tree created from the entire day’s data, not
just one hour.

Remove Sleep Datasets

When the user is asleep, their activity level is almost certain to be ‘not active’ by default.
Ignoring or removing the datasets from when the user is asleep could drastically alter the
classifiers, especially the graph-based classifier, which uses the frequency of classes within
the data to decide how to classify unseen datasets. Removing these datasets would make the
frequency of ‘not active’ datasets much lower.

Classifying Days

Currently, the application can only classify hourly datasets. This is likely to be quite useful to
users, however it would also be useful if the system could give the user an indication of how
active they were for an entire day. This would also reduce the number of requests that would
need to be made to Fitbit. Users can request daily total values for a given activity for as many
days as they would like in a single request, however if they would like to request data at a
smaller granularity, they need individual intraday requests. This is an issue with the request
limit of 150 per hour, imposed by Fitbit.

Authentication Bug

There is a bug that causes the application to hang when authenticating occasionally. The
cause of this bug is unknown, but it seems to be during a call of a third-party method. This
bug should be investigated, as currently there is no way to feedback to the user if the
application is hanging.
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Further Testing

The application should be tested on data from different timeframes to see how the classifiers
adapt to different datasets. Further to this, the data should be added to each classifier in
varying increments to see how quickly the classifiers’ accuracy changes. The classifiers were
tested by adding 5 days of data at a time, however it would be interesting to see how they
would behave if data was added in groups of 3 or 7 days for example.

Additionally, the graph-based classifier should be tested using a different classification from
the possible five it creates, to see how this affects the accuracy.

Manual User Input

There was not enough time to implement mechanisms that allow the user to manually log
exercise sessions and activity data. This should be looked at in future, as it would be beneficial
to allow users to log activity from times when they were not wearing their device.

Adapting to Fitbit Devices

This project was completed using a Fitbit Charge 3 to gather data. As not all Fitbit devices
track the same data, this application should be tested with other Fitbit models, and adapted
as necessary to work with these.
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Conclusions

The main aim of this project was to create an application that can profile a user based on their
Fitbit data, allows the user to track their activity, and alerts the user when they deviate from
their profile. This has been achieved by creating an Android application, using React Native,
that allows users to import data directly from their Fitbit profile, before performing some
simple data analysis to provide the user with information such as the average number of steps
they complete in a day. More complex data mining methods were employed in order to
analyse the way a user’s activity level changes with their activity data. This project has
evaluated the effectiveness of a decision tree and a graph-based classifier for this purpose
and has found that the graph-based classifier is the more accurate classifier.

Each time a user imports new data into the application, this new data is compared to their
existing data in order to find deviations from their existing profile. These deviations tell the
user when they have achieved less than usual in terms of their activity data, such as steps and
calories. Deviations are also created using the decision tree classifier (this classifier is used as
it was implemented within the flow of the application originally) to tell the user when their
data during a given hour of the day provided a different activity level than what was expected
by the classifier. This information is displayed to the user within a responsive and intuitive
application.

Overall, this project has been a success in terms of creating a usable mobile application to
allow users to track and read their Fitbit data and find deviations in their activity level based
on this data.
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Reflection on Learning

The main thing | have learned during this project is that | should research the capabilities of
tools and languages more before using them. The choice to use React Native turned out to be
poor because the framework itself is quite new and support is therefore minimal. This
framework also proved to be a poor choice for a data mining project as many of the packages
| intended to use turned out to be incompatible with it. Furthermore, the underlying database
turned out to be incredibly small, which caused issues when testing the application, causing
me to have to rework large parts of the application at a late stage in the project (although |
do not believe that | would have found this issue with added research as the database
restriction is not mentioned in the React Native documentation as far as | can tell). If | were
to repeat this project, | would use more appropriate languages such as Python for the data-
related aspects, and perhaps store the data on a server.

In addition, | have learned that | should decide on complex areas of functionality earlier in
projects. | did not know what data mining techniques | wanted to use until implementation
had started, which lead to unnecessary stress when trying to research various solutions
before choosing and implementing one. There were also further issues with React Native as
any packages | found to potentially aid with data analysis were incompatible. Use of Python
or Java would have meant that | could use a variety of well-supported packages for this
project.

A personal aim of the project was to learn about a new framework and mobile application
development. Whilst | found React Native difficult to work with at times, | found the challenge
of learning a new technology as part of the project rewarding. | believe that | was successful
in learning about mobile development as | have managed to create an application that is
usable and has a range of useful features. This project has given me a new skill and knowledge
that | can take forward into future projects that require mobile development experience.
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Appendices

Appendix A
Use Cases
Log Activity Data

This use case allows the user to manually log activity data for adding to the profile.
Preconditions
e The application is already running.

Main Flow

1. Press the Profile icon
This use case starts when the user presses the profile icon on the main tab bar at the
bottom of the application screen. The profile page is displayed.

2. Press an activity card
The user presses an activity card on the profile page and is taken to a page that
contains detailed data for that activity.

3. Press the log entry icon
The user presses the ‘+’ icon on the activity page that they are currently on. The user
is presented with a form that asks for information related to the activity.

4, Complete and submit the form
The user completes the form and presses the ‘Submit’ button. The database stores
the information that the user entered with the rest of the data for the specific activity
that the user has logged an entry for. The user’s profile is automatically rebuilt.

Alternative Flows

4A. Cancel the entry
The user presses the ‘Cancel’ button and is asked to confirm that they do not want to
submit the entry before cancelling. The user is returned to the activity page that they
were previously browsing.

View Exercise Calories

This use case allows the user to view the number of calories burned during exercise sessions
that they have completed.

Preconditions

e The application is already running.
e The user has synchronised the application with Fitbit.
e The user has tracked exercises with their Fitbit device.

Main Flow

1. Press the Exercise icon
This use case starts when the user presses the exercise icon on the main tab bar at the
bottom of the application screen. The exercise page is displayed and contains a list of
cards containing exercise types that the user has completed such as ‘Run’, ‘Walk’, and
‘Cycle’.
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2. Press an exercise card
The user presses a card on the exercise page and is taken to a page that contains
detailed data for that exercise. For example, if the user presses the ‘Run’ card, they
are taken to a page containing a drop down menu that is set to ‘Calories’ by default, a
list of the number of calories burned in each run, and a graph showing the calories
burned in each run.

View Exercise Time

This use case allows the user to view the time taken to complete exercise sessions.

Preconditions

e The application is already running.
e The user has synchronised the application with Fitbit.
e The user has tracked exercises with their Fitbit device.

Main Flow

1. Press the Exercise icon
This use case starts when the user presses the exercise icon on the main tab bar at the
bottom of the application screen. The exercise page is displayed and contains a list of
cards containing exercise types that the user has completed such as ‘Run’, ‘Walk’, and
‘Cycle’.

2. Press an exercise card
The user presses a card on the exercise page and is taken to a page that contains
detailed data for that exercise. For example, if the user presses the ‘Run’ card, they
are taken to a page containing a picker menu that is set to ‘Calories’ by default, a list
of the number of calories burned in each run, and a graph showing the calories burned
in each run.

3. Select the picker menu
The user presses on the picker menu, and a list of possible views is displayed. This list
contains ‘Calories’ and ‘Time’ for all exercise types, and ‘Distance’ for activities where
this is available.

4. Press ‘Time’
The user returns the exercise screen, which now shows a picker menu that is set to
‘Time’, a list of times for each session of the selected exercise, and a graph showing
the time taken for each session.

View Exercise Distance

This use case allows the user to view the distance covered in exercise sessions where this
value was recorded.

Preconditions

e The application is already running.
e The user has synchronised the application with Fitbit.
e The user has tracked exercises with their Fitbit device.

Main Flow

1. Press the Exercise icon
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This use case starts when the user presses the exercise icon on the main tab bar at the
bottom of the application screen. The exercise page is displayed and contains a list of
cards containing exercise types that the user has completed such as ‘Run’, ‘Walk’, and
‘Cycle’.

2. Press an exercise card
The user presses a card on the exercise page and is taken to a page that contains
detailed data for that exercise. For example, if the user presses the ‘Run’ card, they
are taken to a page containing a picker menu that is set to ‘Calories’ by default, a list
of the number of calories burned in each run, and a graph showing the calories burned
in each run.

3. Select the picker menu
The user presses on the picker menu, and a list of possible views is displayed. This list
contains ‘Calories’ and ‘Time’ for all exercise types, and ‘Distance’ for activities where
this is available.

4. Press ‘Distance’
The user returns the exercise screen, which now shows a picker menu that is set to
‘Distance’, a list of distances recorded in each session of the selected exercise, and a
graph showing the distance covered in each session.

Log Exercise Data

This use cases allows users to manually log an exercise session.
Preconditions
e The application is already running.

Main Flow

1. Press the Exercise icon
This use case starts when the user presses the exercise icon on the main tab bar at the
bottom of the application screen. The exercise page is displayed and contains a list of
cards containing exercise types that the user has completed such as ‘Run’, ‘Walk’, and
‘Cycle’.

2. Press an exercise card
The user presses a card on the exercise page and is taken to a page that contains
detailed data for that exercise. For example, if the user presses the ‘Run’ card, they
are taken to a page containing a picker menu that is set to ‘Calories’ by default, a list
of the number of calories burned in each run, and a graph showing the calories burned
in each run.

3. Press the log entry icon
The user presses the ‘+’ icon on the exercise page that they are currently on. The user
is presented with a form that asks or information related to the exercise.

4. Complete and submit the form
The user completes the form and presses the ‘Submit’ button. The database stores
the information that the user entered with the rest of the data for the specific exercise
type that the user logged an entry for. The user’s profile is automatically rebuilt.

Alternative Flows

4A. Cancel the entry
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The user presses the ‘Cancel’ button and is asked to confirm that they do not want to
submit the entry before cancelling. The user is returned to the activity page that they
were previously browsing.

Edit Profile Information

This use case allows users to edit basic profile information such as name, age, height, weight
etc.

Preconditions

e The application is already running.
e The user has created a profile.

Main Flow

1. Press the Profile icon
This use case starts when the user presses the profile icon on the main tab bar at the
bottom of the application screen. The profile page is displayed.

2. Press the ‘Edit Profile’ icon
The user presses the pencil-shaped icon to open the ‘Edit Profile’ screen. Here, the
user can change their basic profile information such as name and date of birth.

3. Edit profile and submit
The user makes whatever changes they wish to their profile before pressing a green
tick icon to submit their changes.

Alternative Flows

3A. Cancel the edit
The user presses the ‘Back’ button and if the user made changes, they are asked to
confirm that they do not want to submit the changes before cancelling. The user is
returned to the profile page.

Edit Profile Settings

This use case allows the user to edit settings related to the ‘Profile’ section of the application.

Preconditions
e The application is already running.

Main Flow

1. Press the Profile icon
This use case starts when the use presses the profile icon on the main tab bar at the
bottom of the application screen. The profile page is displayed.

2. Press the ‘Profile Settings’ icon
The user presses the gear-shaped icon to open the ‘Profile Settings’ screen. Here, the
user can choose settings such as what level of detail they wish to use for their activity
data, and the amount of data they would like the application to use to build their
profile.

3. Edit settings and submit
The user makes whatever changes they wish to their settings before pressing a green
tick icon to submit their changes.

106



Alternative Flows

3A. Cancel the edit

The user presses the ‘Back’ button and if the user made changes, they are asked to

confirm that they do not want to submit the changes before cancelling. The user is
returned to the profile page.

Edit Exercise Settings

This use case allows the user to edit settings related to the ‘Exercises’ section of the
application.

Preconditions

The application is already running.

Main Flow

1. Press the Exercises icon

This use case starts when the use presses the exercises icon on the main tab bar at the
bottom of the application screen. The exercises page is displayed.

Press the ‘Exercise Settings’ icon

The user presses the gear-shaped icon to open the ‘Exercise Settings’ screen. Here,
the user can choose exercise related settings such as units, and how much data they
would like to view on the graphs.

Edit settings and submit

The user makes whatever changes they wish to their settings before pressing a green
tick icon to submit their changes.

Alternative Flows

3A. Cancel the edit

The user presses the ‘Back’ button and if the user made changes, they are asked to
confirm that they do not want to submit the changes before cancelling. The user is
returned to the profile page.

Edit Alert Settings

This use case allows the user to edit settings related to the ‘Alerts’ section of the application.

Preconditions

The application is already running.

Main Flow

1. Press the Alerts icon

This use case starts when the use presses the alerts icon on the main tab bar at the
bottom of the application screen. The alerts page is displayed.

Press the ‘Alert Settings’ icon

The user presses the gear-shaped icon to open the ‘Alert Settings’ screen. Here, the
user can choose settings such as how often they would like to generate alerts.

Edit settings and submit

The user makes whatever changes they wish to their settings before pressing a green
tick icon to submit their changes.
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Alternative Flows

3A. Cancel the edit

The user presses the ‘Back’ button and if the user made changes, they are asked to
confirm that they do not want to submit the changes before cancelling. The user is
returned to the profile page.
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