
Location-based services with MongoDB

Final Report

Daniel Huntley: c1544004

Supervisor: Alia I Abdelmoty

Moderator: Chris B Jones

Module: CM3203

CM3203 One Semester Individual Project 40 Credits

Abstract

Geospatial data on the web is a core component of many of the services businesses offer
including maps, geo-tagging and the storing of locations, making it an advantageous
tool for developers to adopt and use. Being able to create these queries requires an
in-depth knowledge of the database program which can be overwhelming and confusing
to new developers. Additionally, no solutions currently exist which offer intuitive query
creation for all the different MongoDB operators; and the subset of those supporting
query creation are limited in functionality and supporting user documentation.

In this project, I have produced a program that aids developers in the creation and
understanding of MongoDB geospatial queries. It allows users to connect and visualise
a representation of their geospatial data on a map and through intuitive interaction,
helping improve their understanding of the different operators in MongoDB.

1

Acknowledgements

I would like to thank my supervisor Alia I Abdelmoty for her continued support and
guidance throughout the project, as well as those who invested time to participate in
user testing and provide valuable insights into the value of the application.

2

Contents

1 Introduction . 7

1.1 Project Overview . 7

1.2 Aims and Objectives . 8

2 Background . 9

2.1 Context . 9

2.2 Geospatial Data . 9

2.3 MongoDB . 11

2.4 Existing partial solutions . 16

2.5 Likely stakeholders in the application 20

2.6 Tools and Software Used . 21

2.7 Alternative Tools . 22

3 Specification and Design . 24

3.1 Functional Requirements . 24

3.2 Non Functional Requirements . 26

3.3 User Interface Design . 28

3.4 User Interface Design Choices . 29

3.5 Workflow . 33

3.6 Heuristic Evaluation . 39

3.7 High Level Architecture . 43

3.8 Class Diagram . 44

3.9 Node.JS Rest API best practices 47

4 Implementation . 49

4.1 Project Infrastructure . 49

4.2 Backend . 49

3

4.3 Frontend . 53

4.4 Challenges faced . 56

5 Testing, results and evaluation . 59

5.1 Requirements Evaluation . 59

5.2 Test Cases . 63

5.3 User-Testing . 64

6 Future Work . 68

7 Conclusion . 70

8 Reflection on Learning . 71

9 Appendices . 74

9.1 Test Cases . 74

9.2 User interface Test Cases . 85

4

List of Figures

1 Yelp Business Sample MongoDB Document 11

2 Compass MongoDB instance connectivity 17

3 Compass MongoDB instance connectivity 18

4 GeoJSON.io Interface . 19

5 Deck.gl Interface . 22

6 Iterative design of filtering panel . 28

7 Filtering Panel: Autocomplete Search . 29

8 Notification Icon . 29

9 Progress Tracker indicator . 30

10 Single item selection list . 30

11 Authentication Dropdown List . 31

12 Query Panel . 32

13 Database Connection Successful . 32

14 Connecting and visualisation of MongoDB geospatial data workflow . . . 34

16 Filtering to view a subset of the geospatial data workflow 37

17 Generation of a geospatial query workflow 38

18 High Level System Architecture . 43

19 Class Diagram . 44

20 Class Diagram: Frontend . 45

21 Class Diagram: Backend . 46

22 Map API function . 50

23 MongoDB establish connection function 51

24 Tiled Map Example [1] . 53

25 Query Window Functionality . 54

5

26 Drawing bounding box example for the $geoWithin operator 55

27 D3 versus Leaflet.js Comparison . 57

28 Node.js MongoDB Regex Error . 58

29 SUS Results Summary . 66

6

1 Introduction

1.1 Project Overview

Location-based data drives many of the tools and applications on the web; these include
maps, geo-tagging and the storing of location. These services help gauge new insights
and improve end-user experience.

One of the most popular NoSQL database programs supporting the storing and query-
ing of geospatial data on the web is MongoDB; making it an advantageous tool for
developers. However, creating and querying geospatial data can be confusing and re-
quires previous knowledge of the database program together with an understanding of
the stored geospatial data. For existing tools such as Compass or MongoDB terminal
interaction, there is little or no support in creating geospatial queries or understanding
the stored location-based data.

The application I have developed for this project aims to address this and support new
developers in querying there MongoDB geospatial collections using a map interface.
Users data is visualised and plotted on a map enabling them to observe how their data
is connected and provides an intuitive way to generate geospatial queries with little
understanding of MongoDB and geospatial operators. In addition to further improve
the end users understanding an explanation of the query is displayed explaining each
component.

For the development of this project, the agile development methodology has been utilised
to employ an iterative approach to design, development and testing. Doing so has
enabled prioritisation of valuable features including the user interfaces usability; which
has undergone multiple iterations of enhancements based on feedback of the current
designs and collected results testing conducted.

The scope of this application is limited to the four MongoDB geospatial operators and
is under the assumption that developers have access to a MongoDB instance containing
geospatial records that can be queried.

7

1.2 Aims and Objectives

Aims

The aim of this project is to design and develop a web-based application that allows users
to intuitively build and test MongoDB geospatial queries for their connected MongoDB
datasets.

To generate queries users will interact with a map interface, visualising their collection
allowing for intuitive query creation. Additionally, an information side panel will clearly
explain the different MongoDB operators, as well as output query results.

Objectives

Study and research different tools and techniques used to visualise, interact and under-
stand geospatial data. Including research into,

• Different languages and libraries best suited to develop the application
– Languages: NodeJs and Python.
– Libraries: Leaflet.js, D3 and Mapbox.

• Existing papers and work relating to this topic. Including,
– geojson.io.

• Datasets which can be used for testing, including the,
– Yelp open Dataset.
– MongoDB sample Geojson datasets.
– Ordnance Survey datasets inc. Points of interest and Open Roads
– GeoJson available through Data.gov

• User-interface standards and best practice.
• Techniques which can be used to visualise large amounts of Geospatial data.

Design and develop a solution for new developers to create and understand geospatial
queries.

• Provide a web-based interface allowing users to connect and visualise there Mon-
goDB geospatial data.

• Allow users to interact with a map interface to generate the queries and display
the results.

• Explain each component of the query generated using the map, supporting the
users understanding of geospatial queries.

Test and evaluate the usability of the system

• Test the application using different datasets sourced during research, e.g.the Yelp
Open Dataset.

• Evaluate the usability of the application, testing with a sample of real novice
developers.

8

2 Background

2.1 Context

This chapter contains a detailed explanation of the background topics needed to under-
stand this report and emphasises the aims of this project. This includes introducing
important concepts for representing location-based data on the web (2.2), and how the
database program MongoDB is well suited for storing this (2.3). After which the section
evaluates existing solutions and there limited support in "aiding new developers create
and understand MongoDB geospatial queries"; as well as an insight into the core tools
and software used to produce the completed application.

2.2 Geospatial Data

Geospatial data is information that has a geographic component to it and can be linked
to some location on the earth. It is the foundation of many of the services offered by
applications on the web and for this project is used to allow developers to connect large
sets of geospatial data so that it can be visualised and utilised.

The terms spatial and geospatial data are often used interchangeably. However spa-
tial data refers to the relation of a space, where geospatial refers to the relation of a
geographical location.

Expanding on this to reference geospatial data to a location on the earth, most sys-
tems use geographic coordinates of longitude and latitude to uniquely identify a specific
point on the earth. A single pair of coordinates (longitude and latitude) are good for
representing a single location or point on the earth. However, for regions larger than a
single point such as roads, buildings etc. a series of geospatial points will be stored in
succession to create these shapes.

With the vast amount of large open source geospatial datasets available including Yelp,
Ordnance Survey and data.gov datasets; it has allowed us to improve our understanding,
analysis and visualise the world around us today. Furthermore, the availability of these
large geospatial datasets which encompass tens of thousands of geospatial objects has
improved our understanding of location-based data through the visualisation and allow
us to locate patterns and trends in the data.

9

Geospatial shapes covered in sections 2.3 and 6
Point:
Defined by X, Y coordinate pair

Example: type: "Point", coordinates: [40, 5]
LineString:
Defined by a sequence of points with linear interpolation between the points
(x1, y1,...xn, yn)

Example: type: "LineString", coordinates: [[40, 5], [41, 6]]
Polygon:
Defined by a closed list of points

Example: type: "Polygon", coordinates: [[[0 , 0] , [3 , 6] , [6 , 1] , [0 , 0]]]

10

2.3 MongoDB

MongoDB is a document-oriented database program which stores semi-structured JSON
like data, allowing for a flexible storage solution. In addition, MongoDB uses the BASE
consistency model [2] which in brief allows for high availability of data but at the cost of
potential data inconsistency, which could result in queried data being out of sync. How-
ever, these characteristics of MongoDB as well as support for horizontal scaling of data
across machines "address the performance and scalability requirements of web-based
applications which cannot be addressed by traditional relational databases", making it
popular NoSQL database for storing real-time and big data.

Additionally, with the increasing use of location-based data in applications, a common
use case for MongoDB is the storing and querying of geospatial data. This supports the
storing of geospatial data in GeoJSON objects [3], which is an open standard format
designed for representing geographical features such as the basic geospatial shapes as
discussed above and is stored in JSON like format, which can be seen in the examples
in figure 1 [4] [5].

MongoDB does not require documents to conform to a strict schema for the containing
fields or data type, except for the storing of geospatial data, which is required to be
contained within an embedded document.

Figure 1 demonstrates a sample document from the Yelp Business dataset which has been
utilised for testing the application and contains over 19000 documents of real business
information. The collection has been adapted to conform to this requirement of em-
bedding geospatial data within an embedded document[6] (geospatial data is contained
within the "location" attribute) to enable its use in MongoDB.

{

"_id" : ObjectId ("5 caf84d79a57df481d213c8d "),

"business_id" : "lxnuq9wJiwLOPJ4uZU2ljg",

"name" : "Las Vegas Motorcars",

"address" : "3650 N 5th, Ste 100",

"city" : "North Las Vegas",

"latitude" : 36.2258515 ,

"longitude" : -115.1328004 ,

"review_count" : 3,

"is_open" : 1,

"attributes" : {

"BusinessAcceptsCreditCards" : "True"

},

"categories" : "Automotive , Car Dealers",

"location" : {

"type" : "Point",

"coordinates" : [

-115.1328004 ,

36.2258515

]

}

}

Figure 1: Yelp Business Sample MongoDB Document

11

Several notable real-world use cases exist for the storing and querying of geospatial data
(GeoJSON) in MongoDB. Allowing us to understand the data around us better and
draw new knowledge from our data. Two example use cases include,

• The locating of points of interest near a destination.
– For example: What is the closest post office to Cardiff University?

• The locating of points or polygons intersecting or within an area.
– For example: What restaurants are within Cardiff?

Both of which are expressions which can be queried using the different geospatial oper-
ators in MongoDB listed below.

Understanding and querying GeoJSON objects in MongoDB can be difficult, and this
project aims to support developers in its usage. The application allows users to con-
nect an instance of their MongoDB dataset and visualise and interact with the stored
GeoJSON to produce queries and understand the different tools available.

To query geospatial data in MongoDB requires the creation of a "2dsphere" index to
allow the querying of data on an earth-like sphere. This is done to prevent the large
performance overhead of querying geospatial data and prevent a full collection scan
to search for query matches. This result is achieved by indexing the documents thus
limiting the number of documents which need to be scanned.

Note: MongoDB uses the WGS84 coordinate referencing system for storing geospatial
data.

The four main geospatial query operators in MongoDB which are covered in this pa-
per are Near, NearShere, Intersects and within. Below is a brief breakdown of there
functionality and use.

12

MongoDB Geospatial Query Operators

$geoNear
Specifies a point for which a geospatial query returns the documents from nearest to
farthest.

Sample Query:

The following sample query locates geospatial objects in the Yelp Business dataset that
are further than 1000 metres from the specified longitude and latitude coordinates (-
73.9667, 40.78) and that are within 5000 metres.

db.yelp_business.find(

{

location:

{ $near :

{

$geometry: { type: "Point", coordinates: [-73.9667 ,

40.78] },

$minDistance: 1000,

$maxDistance: 5000

}

}

}

)

$NearSphere:
Same as $geoNear except when using legacy coordinates where it will calculate legacy
points on a sphere rather than a flat plane [7].

13

$geoIntersects:
Selects geospatial objects which intersects within a specified GeoJSON object.

Sample Query:

The following sample query locates geospatial objects that are fully contained or inter-
sects the specified GeoJSON coordinates.

db.yelp_business.find(

{

loc: {

$geoIntersects: {

$geometry: {

type: "Polygon" ,

coordinates: [

[[0, 0], [3, 6], [6, 1], [0, 0]]

]

}

}

}

}

)

14

$geoWithin:
Selects geospatial objects which are within a specified GeoJSON object.

Sample Query:

The following sample query locates geospatial objects from the Yelp Business dataset
that are fully contained within the specified GeoJSON coordinates.

db.yelp_business.find(

{

loc: {

$geoIntersects: {

$geometry: {

type: "Polygon" ,

coordinates: [

[[0, 0], [3, 6], [6, 1], [0, 0]]

]

}

}

}

}

)

15

2.4 Existing partial solutions

Several partial solutions exist relevant to the aims and objectives to this project. These
have been outlined below with the reasons for there unsuitability to fulfil the objectives
of the project.

Compass

Compass is a GUI for MongoDB, created by the company as an intuitive way to interact
with users databases [8].

It allows users to "visualise, understand, and work with their data through an intuitive
GUI" and supports CRUD operations amongst other features. In the beta build of the
application, support for generating and visualising geospatial data has been added.

However, interaction using the geospatial map in Compass is currently limited in its
ability to generate queries using the different spatial query operators. At present inter-
action using the GUI is limited to generating queries within a circle polygon, using the
$geoWithin operator. No explanation or guidance is provided on how to generate this
or any other queries using the map interface in Compass.

The visualisation of geospatial data in Compass currently only exists in the 1.3.0-beta
build onwards and is limited in its support of the different geospatial operators and
provides no support for $geoIntersects, $near and $nearSphere. As well as the ability to
draw different query regions other than a circle and documentation on how to use the
functionality.

Figure 3 demonstrates the workflow for query creation in Compass and exhibits its
limited capabilities in creating geospatial queries and supporting the users understanding
of the topic.

The workflow demonstrates the steps taken to,

• connect a user’s MongoDB instance to Compass,
• visualising the Yelp Business dataset and
• creating a query for the only supported geospatial operator ($geoWithin).

To summarise query creation functionality is limited in Compass and provides minimal
supporting documentation for the different MongoDB operators and specifiers. The
application developed for this project aims to address this and provide a more intuitive
and comprehensive interface to "support developers in the creation and understanding
of MongoDB geospatial queries".

16

Compass Workflow: Connecting a user’s MongoDB instance

Connecting a user’s MongoDB instance to Compass is intuitive and easy to do. The
connection wizard guides you through the connectivity of the MongoDB instance and
is consistent in design, styling and displays appropriate error messages on input. The
following workflow demonstrates this for a hosted MongoDB instance containing the
Yelp Business collection.

(a) MongoDB instance connection details input

(b) MongoDB Database selection

(c) MongoDB Collection selection

Figure 2: Compass MongoDB instance connectivity

17

Visualising and generating a $geoWithin query within Compass

The MongoDB collection used for visualisation and query generation is the Yelp Busi-
ness dataset (Fig 1). The workflow demonstrates a step by step process for creating a
$geoWithin query in Compass and discusses the limitations and usability of the interface.

Compass: Analysing Schema
Map and geo query functionality is visible
under the Schema tab within Compass.

However, Locating this functionality is not
easy with no clear guidance in the user in-
terface or supporting documentation of the
tools online. Notably, this functionality is
still in beta and may not be fully integrated
in the product’s workflow but in its current
state is difficult to find.

Compass: Visualised Collection data
After analysis of the Yelp Business dataset
is complete, a map interface is displayed
visualising the analysed schema. Notably,
there is no indication of the number of
geospatial objects displayed on the map
or any way to determine the visualised
documents. Both of which help support
the users understanding of the visualised
collection. Furthermore, the instructions on
query creation are obscured on the bottom
left corner of the map making it difficult for
the user to determine how to do this.

Compass: Query Creation
To create a $geoWithin query in Compass
press “Shift" and drag, after which the
query region is drawn on the map.

Map interactivity to create the query and se-
lect the query region is intuitive. However,
it is limited for drawing different shape re-
gions, creating queries for all the different
MongoDB geospatial operators and lastly
its ability to filter the collection without in-
putting a MongoDB query.

Figure 3: Compass MongoDB instance connectivity

18

geojson.io

geojson.io is a web-based application that allows users to visualise their GeoJSON [9]. It
is a very basic tool which allows users to paste their GeoJSON directly into the website.
It is suitable for experienced developers to be able to quickly grasp how their data is
connected and interact with the map by drawing markers and polygons, it was not
designed to support the connectivity of MongoDB or any other database and does not
offer any support for the generation of MongoDB queries.

Figure 4: GeoJSON.io Interface

19

2.5 Likely stakeholders in the application

The primary stakeholders in this application are new and existing developers in addition
to MongoDB Inc.

The primary focus for this application is to support new developers in their under-
standing of the different geospatial tools in MongoDB. However, existing developers
with knowledge of the subject may also have an invested interest in this application as
they can visualise and determine patterns in geospatial data and identify relationships
between objects.

Likewise, MongoDB Inc. and other third-party GUI tools for MongoDB such as Robo 3T
[10] may have an invested interest as they have the opportunity to enhance their current
geospatial querying methods by implementing or reproducing similar functionality in
their GUI tools for MongoDB and enhance the user’s experience.

20

2.6 Tools and Software Used

Several tools and methods have set the foundations to this application including Map-
Box, Leaflet and the MongoDB node.JS driver.

MapBox

The first tool is MapBox which handles the rendering of the map by seamlessly joining
individual images to draw the map [11]. Doing so allows for the level of detail for the
target area to be adjusted based on the user’s zoom and is much less computationally
demanding to use image tiling, compared to working with a single large map image.

Leaflet

Building on this to allow the plotting and drawing of geospatial objects on the map a
library called Leaflet provides this functionality [12]. In addition, it also handles the
clustering of geospatial objects which helps improve performance and only displays the
individual points at a higher level of zoom.

To render geospatial objects Leaflet requires the data to be in GeoJSON format. The
MongoDB datasets I have been working with are natively not stored in this standardised
format and have had to be converted to GeoJSON to support this.

MongoDB Node.js Driver

Finally to allow connectivity between the backend of the application and the users
databases, the MongoDB Node.js Driver has been used to provide this functionality.

21

2.7 Alternative Tools

MapTiler, Mango (MapBox Alternative)

MapBox is the most widely used cloud mapping service; however other competitors exist
in this space including, Mango [13] and MapTiler [14]. For the scope of this project,
there is no difference between the different services and is only impactful in the different
map styles and the minimum uses of a free license. However, with Mapbox being the
most widely adopted, there is a broader collection of documentation and guidance for
the MapBOX service.

deck.gl (Leaflet alternative)

Deck.gl is a data visualisation framework [15] designed to support large datasets. Sim-
ilar to Leaflet.js it supports visualisation of large two-dimensional GeoJSON datasets
but additionally supports more complex overlays including the rendering of 3d layers;
which can be useful in representing the mapping of cities and viewing data at a higher
dimension.

However, support for querying using the different MongoDB geospatial operators is
limited to solely two-dimensional data.

So although the deck.gl framework has a wider suite of visualisation tools in comparison
to the chosen Leaflet.js library. There is a lack of supporting documentation available
for this framework, to produce interactive maps. Furthermore, as discussed MongoDB
currently does not support the querying of more than two-dimensional data, meaning
for the use cases of this project, Leaflet.js provides all the necessary functionality needed
to deliver the visualisation and map drawing tools.

Figure 5: Deck.gl Interface

22

D3 (Leaflet Alternative)

D3 is a data-driven Javascript library that is used to "produce dynamic, interactive data
visualisations in the web browser"[16]. For early implementation development, D3 was
used in place of Leaflet to handle map visualisation (Section: 4.4).

The library supports a wide plethora of data visualisation uses, among which includes
map visualisation, which is extensively documented with detailed code examples avail-
able. But, as discovered the library lacks support for specific web mapping functionality
including interactivity tools such as pan and zoom and the ability to draw on the map
(Section: 4.4).

23

3 Specification and Design

3.1 Functional Requirements

The following section outlines a detailed set of functional and non-functional require-
ments for the application.

Requirement
The user must be able to connect there MongoDB instance using the application’s user
interface.
Acceptance Criteria:

• Using the application’s web-based user interface the user must be able to establish
a connection to their MongoDB instance.

• The system should be tolerable to invalid entry and inform the user.

Requirement
The user must be able to visualise multiple collections of Geospatial data on the map
from their connected MongoDB instance.
Acceptance Criteria:

• The system should handle visualisation of a subset of 1000 geospatial objects from
the connected MongoDB instance.

• The map visualisation should be adjusted based on collection filters applied.
• The map visualisation should adjust based on the zoom and pan of the map. For

example, zooming to view a smaller region of the map should change the visualised
geospatial objects to that of this region.

Requirement
The user must be able to generate MongoDB Geospatial queries through interaction of
the map and user interface. Including query selectors,

• $geoIntersects (Returns geometries that intersect other GeoJson objects)
• $geoWithin (Returns geometries entirely within a specified shape)
• $near (Return Geospatial Geometrics objects in proximity to a point)
• $nearSphere (Return Geospatial Geometrics objects from nearest to farthest using

spherical geometry)

And Geometry Specifiers,

• $maxDistance Specifies a maximum distance to limit the results.
• $minDistance Specifies a minimum distance to limit the results.

Acceptance Criteria:

• Using the user interface the user should be able to generate valid MongoDB geospa-

24

tial queries for each of the different operators.

Requirement
The user must be able to test the generated MongoDB query against the connected
collection.
Acceptance Criteria:

• The tested query must display a subset of the first five results from the query in
the user interface.

• The user interface must allow for the entry of a query or for the query to be
modified and for results to be displayed.

• The system should be tolerable of invalid query input and display an appropriate
error message in the user interface.

Requirement
The user must be able to visualise the query together with an explanation of each
component of the generated query.
Acceptance Criteria:

• The user interface must explain each component of the generated query.

25

3.2 Non Functional Requirements

Requirement
The applications user interface must be responsive when working with large datasets.
Acceptance Criteria:

• The user interface should be responsive for collections with ten thousand Geospa-
tial Elements.

• The map should be visualised within five seconds.
• Map interactivity tools including pan and zoom should be responsive.

Requirement
The application should be intuitive and easy to use.
Acceptance Criteria:

• The application must be tested with real novice developers to assess the effec-
tiveness of the project in supporting users to generate and understand geospatial
queries.

• The application will adhere to Nielsen’s 10 Usability principles.

Requirement
The application must be tested and evaluated with multiple MongoDB datasets of vary-
ing size.
Acceptance Criteria:

• The application must function as intended including all map and query generation
functionality, with different MongoDB datasets including,

– MongoDB restaurants sample dataset
– Yelp Open Business dataset
– Ordnance survey Points of interest and open Roads

Requirement
The applications web interface should be compatible with varying browsers including
Chrome (v73+), Firefox (v65+) and Microsoft Edge (v44+).
Acceptance Criteria:

• The application’s functionality including all map and query generation function-
ality must be compatible with,

– Chrome (v73+),
– Firefox (v65+) and
– Microsoft Edge (v44+).

Requirement
The application’s user interface should adhere to usability standards.

26

Acceptance Criteria:

• A heuristic evaluation must be completed to ensure usability standards of Nielsen’s
10 Usability principles are followed.

Requirement
The application must be tested to ensure all paths of the application function correctly.
Acceptance Criteria:

• Manual test cases need to be completed to verify the different paths of the appli-
cation work as intended.

• Automated test cases need to be in place to ensure the stability of the code.
• User testing will test different paths of the application’s functionality work cor-

rectly.

27

3.3 User Interface Design

With the focus for this project being on "aiding developers in the creation and under-
standing of MongoDB geospatial queries"; having an intuitive, easy to use and aesthet-
ically pleasing user interface has been an essential focus for the application. Consider-
ations into usability guidelines and design choices such as layout and design of widgets
have driven user interface development. Furthermore, the design has undergone multiple
iterations as a result of,

• the heuristic evaluation of Nielsen’s usability principles[17],
• analysis of existing solutions,
• functional and non-functional requirements as well as
• feedback on the current designs.

The purpose of doing so has been important in meeting the objectives of the project
and avoid creating a more complicated tool than otherwise exists, such as Compass or
MongoDB terminal interface.

Figure 6 demonstrates this with a comparison between the initial filtering panel con-
trasting the final mockup; as evident analysis and completion of a heuristic evaluation
has had a massive impact on the final design.

(a) Filtering Panel: Initial Mockup (b) Filtering Panel: Final Mockup

Figure 6: Iterative design of filtering panel

28

3.4 User Interface Design Choices

A significant focus during the design of the application has been on providing users with
a familiar and intuitive GUI to create and understand MongoDB queries. The following
section explains decisions into the layout, controls and components of the interface to
create an easy to use interface.

These include considerations into input control factors [18], CARP principles [19] and
use of familiar components which have all been influential factors in the design.

User Interface Components

Input Fields
Input fields are one of the most recognisable user interface components and offer flex-
ibility in form input. Despite this, it is easy to make mistakes on entry as a result of
confusion or simply entry mistakes. To prevent this typeahead functionality has been
added where possible (Fig: 7) in addition to placeholders show expecting input. Overall
input entry has been included where necessary with modifications to address the high
chance of input error.

Figure 7: Filtering Panel: Autocomplete Search

Notification Icon
Similarly to keep the user informed of the applications state a notification icon has been
included to alert the user of the number of current active MongoDB collection filters.
This is helpful as from the map alone it may not be clear a subset of data is being
visualised and consequently will result in a different generated query and results.

Figure 8: Notification Icon

29

Progress Tracker
Displayed beneath the MongoDB connection wizard is a progress tracker indicating the
current step of the user in the wizard. Including this has been beneficial in keeping the
user informed of their current position, what they have completed and what steps are
left.

Figure 9: Progress Tracker indicator

Single Selection List
A single selection list is effective at displaying a large number of choices simultaneously
in comparison to other UI components for example dropdowns. However, because of this
it takes up a large amount of screen space and has only been used in one instance for
the selection of the users MongoDB instance; where it has allowed users to see a large
number of collections from their selected database at once.

Figure 10: Single item selection list

30

Dropdowns
Inclusion of dropdowns has been limited where possible in favour of other entry forms
such as table selection so that all items are visible. Despite this dropdowns are a familiar
interface component and take up less screen space than alternative selection methods
such as radio buttons or table selection.

Figure 11 demonstrates the single use of this component in the application’s workflow.

(a) Authentication Dropdown (b) Authentication Dropdown: Expanded

Figure 11: Authentication Dropdown List

31

Layout

The layout of the user interface has been carefully designed to produce a consistent and
intuitive application, with a large emphasis on the visibility of essential functionality for
query creation, such as the visualised data (map) and tools to create geospatial queries.
To achieve this considerations into the

• use of familiar components [18],
• Positioning of elements and
• CARP Principles [19] (Contrast, Alignment, repetition and Proximity).

To achieve this styling of the background, user interface components and layout have
been designed to be invariable to create a sense of unity and familiarity in the applica-
tion; which is demonstrated in Fig 14 and 16, showcasing the different workflows of the
application.

To keep the UI uncluttered information has been encapsulated within collapsible ele-
ments or paged to avoid overwhelming the user with a large amount of information.
For example, the Query Creation panel has been subdivided into three collapsible paged
elements and displays only content relevant to the specific MongoDB geospatial operator.

Figure 12: Query Panel

To draw the user’s attention high contrasting colours have been used for user interface
components and text to make them stand out and easier to read. An example of this for
error message popups are displayed in a highly contrasting colour as well as positioned
in the centre of the screen to focus the user’s attention.

Figure 13: Database Connection Successful

32

3.5 Workflow

Illustrated beneath is a workflow of three core use cases in the application. These include,

• Connecting and visualisation of MongoDB geospatial data
• Filtering to view a subset of the geospatial data
• Generation of a geospatial query

Connecting and visualisation of MongoDB geospatial data

Immediately upon launching the application, the user is presented with a landing page
wizard, which helps guide the user through connecting their MongoDB instance; which
is necessary for the visualisation of their geospatial data and provides a platform to
execute their geospatial queries.

In much greater detail section 3.6 discusses considerations of the colour scheme, design
and consistency of application widget such as inputs and buttons in each of the panels
and pages of the application have been reflected upon to ensure the usability of the
interface and overall supporting the user in generating geospatial queries.

To not overwhelm the user, form information has been divided into pages, helping the
user process each new piece of information including hostname, port, authentication
details, database and collection name.

Dividing the connection interface up was decided upon after review of the Compass
workflow which displays all connection information on a single interface. For experienced
developers, this allows for faster input of connection details but can be overwhelming for
new developers and offers limited space to display help and guidance. As a result, the
content has been divided into pages to make it easier to process, and allow for a more
in-depth explanation of connection elements.

(a) Landing Page (Hostname and port input) (b) Authentication Details

33

(c) Authentication Details Expanded (d) Database Name

(e) Database Connection Successful (f) Collection selection

Figure 14: Connecting and visualisation of MongoDB geospatial data workflow

34

Generation of a geospatial query

Once a connection has been established to the users MongoDB instance, the user is
redirected to the map interface displaying a visual representation of their geospatial
data within their selected MongoDB collection. The interface has been divided into
distinct subsections including the visual representation of the map, tools and filters side
panels for query generation and the generated query displayed beneath.

The following workflow demonstrates the process for creating a MongoDB query to
select all geospatial objects within a 5km radius of Cardiff University. The workflow has
been designed to solve issues with existing solutions such as Compass’s query creation
workflow, by guiding the user and explaining the different geospatial operators and
specifiers.

Map Visualisation
Once a connection has been established to
the users MongoDB instance a visual rep-
resentation of their geospatial data will be
displayed on the map. This is together with
details of the collection visualised and the
number of objects visible which is shown
above the map to inform the user to the data
visualised.

Query Generation side panel
Located to the right of the map is the
Query Generation panel which provides
intuitive tools to construct queries and filter
the visualised data.

To keep the user-interface uncluttered query
generation is divided into multiple panels as
not to overwhelm the user with new informa-
tion. Demonstrated in the mockup a short
description of the query operator has been
provided to support the users understanding
and find out more information before pro-
gressing to create the query.

35

Near query generation
After the user has selected to create a query
the query creation panel is displayed for the
chosen query builder tool.

In this example, the Near operator provides
the user with the ability to either mark a
point on the map or find an existing geospa-
tial object within their MongoDB collection.

Near query generation: Existing point
selection
To make it easier for the user a typeahead
dropdown listing geospatial objects from
their collection is provided so that the user
can easily select an existing point.

Near query generation: Point map se-
lection
After selecting an existing point, the map
will recenter on the point and display a
marker at the location.

36

Near query generation: Additional pa-
rameters
As mentioned to avoid overwhelming the
user, content has been subdivided into pan-
els. For the Near query operator, additional
parameters such as min and max distance
have been provided on the following page.
Again to avoid overwhelming the user less
common parameters such as min distance
have been collapsed by default.

Figure 16: Filtering to view a subset of the geospatial data workflow

37

Filtering to view a subset of the geospatial data

Once a connection has been established, the user can interact with the map to better
understand the visualised data and generate queries. To refine the displayed data and
visualise a subset of the collection can be achieved using the "Filters" tab.

In the following workflow a demonstration of how the collection can be filtered to visu-
alise a subset of geospatial objects which are in the "city" "Cardiff". Doing so offers an
intuitive way to hone in on a subset of the collection and can be used in query genera-
tion, for example, searching for the nearest post office in Cardiff. The functionality to
filter on attributes provides an easier alternative compared to existing tools of writing a
MongoDB query to filter the collection.

(a) Filtering Panel (b) Filtering Panel: Filtering on Attribute

(c) Filtering Panel: Autocomplete Search (d) Filtering Panel: Apply Filters

Figure 17: Generation of a geospatial query workflow

38

3.6 Heuristic Evaluation

To assess and identify usability issues in the user interface a heuristic evaluation has been
completed to identify any opposing interface design patterns, based on best practices.
For the evaluation and to assess compliance, the assessment will be completed against
Nielsen’s usability principles [17] which is one of the most-used heuristics for usability
design.

To assess Nielsen’s usability principles, the interface has been evaluated using a nu-
meric scale measuring the extent of compliance and significance of issues found for each
heuristic.

Nielsen’s usability principles

Outlined beneath is a summary of Nielsen’s Ten Usability Heuristics for User Interface
Design [17].

• Visibility of system status
• User control and freedom
• Consistency and standards
• Error prevention
• Recognition rather than recall
• Flexibility and efficiency of use
• Aesthetic and minimalist design
• Help users recognize, diagnose, and recover from errors
• Help and documentation

Severity Ratings

To rank the severity of each heuristic, a ranking system from 0 to 4, assessing the
frequency, impact and persistence of the issue have been used. Doing so highlights the
importance of fixing the problem and provides a measurable metric for the testing [20].

Severity Rating Scale

0 I don’t agree that this is a usability problem at all
1 Cosmetic problem only: need not be fixed unless extra time is available on project
2 Minor usability problem: fixing this should be given low priority
3 Major usability problem: important to fix, so should be given high priority
4 Usability catastrophe: imperative to fix this before product can be released

39

Heuristic Evaluation results

Heuristic Severity

Visibility of system status
The system status of the connected collection and number of visualised geospatial
objects are visible above the map which is informative to the user.

However, connection details including, the host, port and database are not
visible other than when first input. This could be improved upon to meet this
heuristic and communicate better the current state of the application.

Furthermore, the system status is displayed appropriately to the user, when the
connection is being established or loading, which is done in the form of a loading
animation.

2

Match between system and the real world
The application uses real-world language and aims to avoid confusing the user
with terms they are unsure of by providing explanations of complex terminology
where needed.

For example, specific MongoDB query terminology has been explained, and for
the generated MongoDB query output, a natural language expression has been
provided to "speak the users’ language". [21]

0

User control and freedom
Throughout the application, the user is not limited and has the freedom to
navigate with no restrictions. Furthermore, every action is reversible, and the
user can return to any previous state.

For example, the input of the users MongoDB connection details can be reversed
or changed after input.

0

Consistency and standards
The program’s design is consistent for both elements and terminology. For
widgets including, buttons, inputs and error messages are invariable in their
styling and terminology.

However, there is a minor change in navigation button styling which may confuse
the user. The styling of the buttons remains consistent; however, there is a
variance in text and colouring which would be better if kept constant.

1

40

Heuristic Severity

Error prevention
To prevent errors from occurring confirmation modals have been added asking
the user to confirm their action before proceeding. For example, when redrawing
a query selection bounding box, the user is asked to confirm that this was the
action they wished to make.

Where possible to prevent errors from happening, typeahead inputs have been
added to avoid input error. However, for invalid or empty input, this could be
better addressed by highlighting the error before submission of the page. For
example, when establishing a connection to the MongoDB instance, it would
have been more appropriate to highlight the fields after invalid input rather than
on page submission.

1

Recognition rather than recall
On the map interface, the user can see which collection they are connected to.
However, the connected hostname, port and database are not displayed after
input of these details. Making these visible these would be massively beneficial
to the user instead of having to recall what connection details they inputted or
to validate the correct host and database are connected.

3

Flexibility and efficiency of use
For new users who have never used the application before it is clear how to use
and navigate with added support for new developers in the form of placeholder,
tooltips and suggestions. For example, a placeholder for hostname and port have
been added to show example input and tooltips provided on the map interface
explaining functionality.

Additionally, for expert users who require additional functionality, expansion of
panels and further options have been added, e.g. additional options in the Near
query panel. Again these have been collapsed (hidden) by default to keep the
interface uncluttered and displaying only the essential functionality.

0

Aesthetic and minimalist design
No unnecessary content is displayed throughout all of the different user interfaces
and follows the same aesthetic design throughout each of the applications states.

0

Help users recognize, diagnose, and recover from errors
If the user was to makes an invalid action or entry, feedback in the form of an
error message is displayed to the user; helping them "recognise, diagnose, and
recover from errors". An example of this occurs when attempting to connect to a
non-existent host, where the user is provided with an appropriate error message
and allow them to correct it.

0

Help and documentation
Where possible help, documentation and useful links have been added to make all
of the application’s functionality easier to understand. This includes references
to the appropriate MongoDB documentation, which is extremely useful as a sec-
ondary source of information for understanding geospatial queries in MongoDB.

0

41

Heuristic Evaluation Summary

Completing a heuristic evaluation has been valuable in providing confidence in the us-
ability of the program and revealed a number of opportunities to enhance the user
interface.

A significant usability issue uncovered was the visibility of the users MongoDB instance
hostname, port and database details which were not visible once submitted. Doing this
prevents the user from having to recall the connection details they inputted and could
be resolved by including the details alongside the visualised collection name on the map
interface.

The remaining enhancements discovered from the heuristic evaluation are minor cos-
metic issues which are easily solvable. These consisted of an inconsistency in the styling
of navigation buttons and the enhancement of certain inputs to include typeahead func-
tionality.

42

3.7 High Level Architecture

Below Figure 18 displays a high level overview of the system architecture.

The user will interact using the web Frontend interface; which is responsible for com-
municating to the backend of the application, using the necessary Rest API’s to retrieve
information relevant to the interface and the user’s request, such as the retrieval of map
data.

The Node.JS backend of the application is entirely responsible for the processing and
handling of data from the users MongoDB client (instance); where it will then be passed
to the frontend of the application.

For example for the visualisation of map data, the relevant Rest API will request the
map data, where the Node.js application will query the user’s collection to retrieve this
information. Once returned it will be processed and forwarded onto the application’s
frontend where it can be visualised to the user.

Figure 18: High Level System Architecture

43

3.8 Class Diagram

Expanding on the high-level architecture, the class diagram outlines a more granular
level of the application’s class structure.

The class structure for this application adheres to design best practices to make main-
tainability, testing and addition of new features straightforward. This includes consider-
ations into the grouping of related functionality (high cohesion) and separation of class
functionality from one another (low coupling). Sections 3.8 and 3.8 outline the design
of the front and backend of the program and how functionality has been separated into
relevant classes, additionally making agile development easier. For example, the con-
tainment of all Query Builder functionality is contained within QueryBuilder.js and can
function independently from other classes.

Figure 19: Class Diagram

44

Web Frontend

The frontend of the application which consists of the top two levels in figure 19 is made
up of frontend technologies,

• HTML: index.ejs, map.ejs
• CSS: stylesheet.css
• JS: createConnection.js, map.js, mapTools.js, mapFilters.js, mapQuery.js

The frontend of the application is responsible for the visualisation of the user inter-
face and handles all of the necessary requests to the backend of the application and
subsequently the user’s MongoDB instance.

A single stylesheet has been used to handle the complete styling of the application, to
enable reusability for all of the different widgets. Doing so makes sure the UI is consistent
throughout.

The underlying javascript files are each responsible for processing user interface interac-
tion on the frontend of the program such as map and query creation panel interaction.
And for making the necessary API requests to the backend of the program to retrieve
important information such as map data and the generated MongoDB geospatial query.
Outlined in section 4.2 is a breakdown of different API’s in the application as well as a
clear description of their use.

Figure 20: Class Diagram: Frontend

45

Node.JS backend

The backend of the application is responsible for the communication between the users
MongoDB client and the processing of incoming requests from the frontend of the ap-
plication. The backend of the application is handled via Node.js which an open source
JavaScript run-time environment.

The server is instantiated using the index.js file where the application’s middleware
consisting of error handling (errors.js), routing of incoming HTTP API requests 4.2
(routes.js) and the applications configuration file (config.js).

The routes.js file defines all the API routes in the application. For incoming HTTP
requests, it maps where the corresponding request is to be processed and responded. In
this application, it acts as the glue connecting the frontend of the application to the
different rest API’s. This includes the routing of the following RESTful API’s, to their
corresponding API route.

• /api/monogDB
• /api/mongoDB/collection
• /api/map
• /api/query
• /api/query/breakdown

Furthermore, as explained in the high-level architecture design, the backend of the ap-
plication is also responsible for the communication between the users MongoDB client
to retrieve data and test queries.

Figure 21: Class Diagram: Backend

46

3.9 Node.JS Rest API best practices

APIs provide access to features or data of a service and are used in this solution to retrieve
information from the backend of the application and subsequently MongoDB. When
designing the different API’s needed for this project, best practices were considered to
ensure the maintainability of the endpoints. Ensuring API usage is clear will make
future project maintainability or extension simpler, as developers will have a clearer
understanding of the purpose of the different APIs in the application [22].

For this application, we have used REST as our API architectural style, which takes
advantage of HTTP to read, post and delete data. It is well optimised for web-based
applications and permits a response with the payload format of JSON; making it ad-
vantageous for retrieving MongoDB documents which are stored in a JSON like format
(BSON) — making it a great choice in comparison to other popular API protocols such
as SOAP, which uses XML for message exchange.

For REST APIs there are no official guidelines on how they should be defined; however,
there is a consensus of best practices [22] [23]. Below I have outlined an analysis of these
with examples on how they have impacted the design of the endpoints in this project.

Singular noun of documents

For individual resources, the API needs to echo its naming convention to reflect this. For
this application, endpoints have been defined accordingly to adhere to this best practice,
as demonstrated in the map data endpoint.

• /api/map ✓

• /api/maps ✗

Plural noun for collections

For resources within a collection (contain more than one item), the API needs to reflect
this in its naming convention. As demonstrated in the example below, MongoDB doc-
uments can comprise of multiple attributes and to adhere to this will need to use the
plural noun for the resource.

• /api/MongoDB/collection/attributes ✓

• /api/MongoDB/collection/attributes ✗

Appropriate error handling

Constructing robust APIs with appropriate error handling is essential in system design
so the cause of the error is clear and can be acted upon. This can be addressed through
the returning of a response that describes the error in detail, including the status code
and body containing a description of the error.

47

In the example beneath you can see a modelled response for an API testing an invalid
MongoDB connection; the response returns a valid status code of 400 as well as an
appropriate error message.

Response:

Status: 400

{

"error": {

"message ": "Authentication failed ."

}

}

48

4 Implementation

This section describes the specifics and structure of the implementation and is divided
into subtopics, first outlining the infrastructure of the project, backend and frontend of
the application; whereafter more specific problems are described in detail.

4.1 Project Infrastructure

The applications infrastructure uses Node.js which is an open-source Javascript run-time
environment used to handle both server-side API requests and the visualisation of the
program’s frontend.

Previously discussed in section 3.8, the frontend of the application communicates through
the use of Ajax API requests to the backend of the application to retrieve data. The
Node.js backend is exclusively responsible for listening, and processing of incoming API
requests from the frontend of the application and communication between the users
connected MongoDB instance.

Node.js is best suited for real-time web applications, where performance and speed are
crucial. In this application, we are processing and visualising large MongoDB datasets
of thousands of geospatial objects; consequently making performance a critical factor in
enabling the application to be responsive with large datasets.

In comparison to other alternatives such as Python and PHP, Node.js has a steeper
learning curve and thus has resulted in a larger time investment spent on understanding
the environment. However, Node.js is extensively documented and has a vast range of
supporting Node.js modules which have been valuable in the applications delivery. A
more extensive analysis of these has been discussed in section [24].

4.2 Backend

The express.js node module is responsible for the routing and creation of robust APIs.
For incoming API requests from the frontend of the application, express.js listens for
the specified endpoints, where the relevant callback function is triggered, processed and
returned with the appropriate response and status code. Outlined below is a list of all
of the key endpoints in this application.

/api/map

The map API is responsible for querying the users MongoDB instance and returning
collection data in a prepared geoJSON format which can be used for visualisation. The
API request supports filtering in two ways.

Firstly the databases collection data can be filtered to those which match query cri-
teria for specific attributes in the collection — for example, finding map data which

49

matches a particular attribute in full or partially such as name: "Cardiff Castle" or
name: "Cardiff*".

Secondly to handle the visualisation of large datasets a query window can be specified
to set the bounds of the visible map (fig: 25); thus limiting the quantity of data that
needs to be retrieved, processed and visualised. For example, with the map focused on
the UK region, it does not need to retrieve data outside of this window.

After each map adjustment in the form of pan and zoom, the map API is called with
the updated query window, and data is fetched for the new query region. Doing so helps
resolve the most significant limitation in the application of visualising large datasets,
which can overload the system and cause the interface to be unresponsive and slow.
A restriction of 1000 geospatial elements has been applied to prevent this. However,
retrieving data for only the visible map region focuses data selection to a limited set
and allows the visualisation of more data; especially when focusing on a smaller region
of the world.

Once data has been retrieved from the users MongoDB collection, incoming data is
preprocessed and converted into "GeoJSON; which is an open standard format used to
represent simple geographical features"[4]. This is achieved through the geojson node.js
module and is required so that the data is in a standardised format and can be visualised
on the frontend.

router.get(’/’, async (req , res) => {

let collection = req.query.collection;

let filters = filterBuilder(req.query.filterCollection);

let mapBounds = mapBoundsBuilder(req.query.mapBounds);

let findParam = Object.assign ({},filters , mapBounds);

const client = await mongoDBConnection.establishConn(req.query);

const db = client.db(req.query.database);

db.collection(collection).find(findParam).limit(config.mapLimit).toArray(

function(err , result) {

if (err) throw err;

res.status (200).send(

parseJson(result)

);

});

});

Figure 22: Map API function

50

/api/mongoDB/test-connection

The test-connection endpoint adds the functionality to establish and test the connection
to the users MongoDB instance. Upon connection, the instance is validated to verify
that one or more collections exist. Whereafter a valid status code and message are
responded, informing the status of the connection.

This API is primarily used to establish that a connection exists for the instance upon
the input of connection details when connecting the users MongoDB instance.

The core code (function) responsible for establishing a connection to the user’s instance
is utilised by every endpoint which requires a connection to the user MongoDB instance
and is required before retrieval or processing can take place.

function establishConn(req) {

let url = req.url;

let username = req.username;

let password = req.password;

let database = req.database;

/* Auth or no Auth */

if (username !== ’’ & password !== ’’) {

url = ’mongodb ://’ + username + ’:’ + password + ’@’ + url + ’/’ +

database;

} else {

url = ’mongodb ://’ + url + ’/’;

}

return new Promise ((resolve , reject) => {

MongoClient.connect(decodeURIComponent(url), {

useNewUrlParser: true

}, function(err , client) {

if (err) {

console.log(’Error ’ + err);

reject(err);

} else {

console.log(’connected to ’ + req.url);

resolve(client);

}

})

});

}

Figure 23: MongoDB establish connection function

51

/api/query

The core focus of this project is to "aid developers in the creation and understanding of
MongoDB geospatial queries" where as a result, one of the core pieces of functionality
for this application is the creation of MongoDB queries using the map interface.

The query API builds the query based on passed parameters and outputs it into a format
processable by MongoDB.

/api/query/breakdown

In addition to supporting developers in creating MongoDB geospatial queries, the ap-
plication aims to improve their understanding of the queries.

On the frontend of the application, the different query operators and explained, however,
the generated MongoDB query output can be difficult to understand and process. To
facilitate this, a natural language alternative to the generated query is provided; which
explains the query in a human-readable format.

/api/mongoDB/execute-query

This API facilitates the testing of MongoDB queries and the retrieval of a subset of
results, thus enabling users to test, execute and capture results; which is important in
validating that the query is returning desired results.

The main use cases for the API is to test and retrieve results for the generated query.
However, users can modify the generated query and input and test custom geospatial
queries. For ill-formed queries, the endpoint is tolerable and will return a valid error
message with the result.

Error Handling

Operational errors are not bugs in the program but problems experienced by correctly
functioning programs, such as connectivity issues to the users MongoDB instance. These
run-time problems need to be handled correctly so that the system can continue to
operate uninterrupted from these errors.

Outlined in section 3.9, discusses the importance of API error handling best practices,
including error response and status code. To ensure this error handling has been ex-
ternalised through the use of a middleware function1. The function ensures that the
response returned is in a consistent format with a valid status code.

1Middleware are functions which have access to the API request object.

52

4.3 Frontend

The frontend of the application is displayed to the user through a web-based interface,
made up of, HTML, Javascript and CSS as the underlying technologies. In addition to
several important Javascript libraries, Jquery, Leaflet and D3 which has eased imple-
mentation and provided essential front-end infrastructure.

Visualisation of the map

For this application, a map interface provides intuitive interaction to create geospatial
queries and better understand visualised MongoDB geospatial data.

To achieve this the open source library Leaflet.js provides the web mapping, interactivity
and layering of geoJSON for the map. However, for visualisation of the underlying world
map Leaflet.js relies upon a tiling service, for the requested map; where the individual
tiles are seamlessly joined together to draw the map. As discussed in "Tools and Software
Used" the benefit to doing this is it is computationally less demanding in comparison to
the use of a single high detailed image and allows for a much higher level of detail with
high zoom levels.

Figure 24: Tiled Map Example [1]

Additionally, Leaflet.js is used to visualise users MongoDB collection data on top of the
underlying map. Data is retrieved through an Ajax API request to the /api/map end-
point defined above. On retrieval, the data is appended and represented as a GeoJSON
layer on top of the underlying world map.

Each geospatial object retrieved from the collection is appended as a new HTML DOM
element, resulting in a potentially large performance overhead. Because of this visuali-
sation is restricted to displaying no more than 1000 objects at any one time, to ensure
the interface remains usable. To overcome this limitation, users can filter their Mon-
goDB collection to visualise geospatial objects of interest such as those that contain the
attribute name, "Cardiff". In conjunction with displaying only geospatial objects within
the current view window. As the user refines the search to a smaller query window

53

(zooms in to a smaller region), an increasing percentage of collection data is visible,
where the first thousand geospatial objects will be retrieved.

One of the issues with retrieving the first thousand documents which match the search
is after panning or zooming the map it can create the illusion of objects appearing which
can be confusing to the user. The reason for this is as the user refines the search more
elements can be retrieved and as a result appear on the map.

One strategy proposed to resolve this was the sampling of points throughout the col-
lection rather than retrieving the first thousand documents. The reasoning for was the
distribution of points would be more even and as a result less confusing with less large
regions of points appearing, as tested datasets were typically ordered and appeared from
left to right. To achieve this, the MongoDB $sample operator was tested, which "ran-
domly selects the specified number of documents". The outcome of this was a more even
distribution; however, upon map interactivity, it resulted in new points being sampled
every iteration and points constantly changing upon map movement.

For this proposal to work, consistent sampling of MongoDB data needs to occur, however
with no existing functionality and other solutions such as sampling every nth row being
detrimental to performance. The current solution continues to sample the first thousand
documents with potential for future improvement.

(a) Querying full map
(Retrieval of all data)

(b) Querying specific region
(Retrieval of subset)

Figure 25: Query Window Functionality

To promote intuitive interaction for query creation, users can define the geoJSON query
region for the different geospatial query operators using the map, for example, drawing
the bounding region for $geoWithin queries. Doing so developers can visually distinguish
the selected documents and quickly assess whether the query is behaving as needed.

• $geoNear: Drawing of marker to specify a point for which documents are returned
from nearest to farthest.

• $geoIntersects and $geoWithin: Drawing of a bounding box to specify documents
which either intersect or are contained within.

Drawing markers and regions on the map is achieved using an extension to Leaflet.js

54

called Leaflet draw [25]. Latitude and longitude coordinates are captured for each point
of the drawn shape and passed as a parameter to the two query builder APIs (api/query,
api/query/breakdown). Whereafter the two API’s return a structured MongoDB query
and natural language variant.

Figure 26: Drawing bounding box example for the $geoWithin operator

55

4.4 Challenges faced

Generation of geospatial queries for multiple collections

One of the unforeseen problems encountered during the implementation of this project
was to include support for querying multiple collections.

Relational databases such as MySQL support the querying of multiple tables, however
for NoSQL databases such as MongoDB they are poorly optimised to join collections,
especially for those of which are sharded 2 (distributing data across multiple machines).
Unlike relational DBs MongoDB is a NoSQL database and is not required to conform
to any established relational schema.

To resolve this and create geospatial queries over multiple collection severals potential
approaches could be used. Firstly, and the most performance optimal solution would
be to combine the two collections into a single collection before querying. This can be
achieved using aggregation, which will process the data from the two collections and
return the computed results into one collection. Alternatively, at the cost of decreased
performance and which defeats the purpose of using a BASE orientated database solu-
tion, would be to perform a join on the two collections using $lookup operator.

Change in underlying map visualisation library

The completed application uses Leaflet.js to provide web mapping, interactivity and
layering of geoJSON, for the map. However, early development used the D3 Javascript
library[16] which is a more versatile, lower level library I had had previous experi-
ence with. D3 is designed to produce "dynamic, interactive data visualisations in web
browsers"[16], compared to Leaflet.js which is specifically designed to build interactive
maps.

Development of core map visualisation was straightforward using D3 thanks to the pop-
ularity of the resource and previous knowledge of the library. However, as development
progressed the implementation of more complicated features became increasingly diffi-
cult with support for specific mapping tools lacking, including interactivity tools such as
pan and zoom. As a result, the decision to transition to Leaflet.js was decided because
of the significant time investment being spent in sourcing documentation and developing
complicated mapping features, which were present in other resources such as Leaflet.js.

2Sharding is a method used to distribute data across multiple machines and is used to address system

growth through horizontal scaling.

56

(a) Initial Implementation: D3.js (b) Final Implementation: Leaflet.js

Figure 27: D3 versus Leaflet.js Comparison

Filtering on MongoDB Document Attributes

One of the features of the application is to allow users to filter the generated query and
visualised MongoDB map. An unforeseen challenge during the implementation was to
predetermine the field type which is required when producing the MongoDB query and
for typeahead functionality. Because of this filtering is limited to only attributes of type
"string" with further opportunity to support other data types. The reasoning for this is
the used MongoDB Node.js $regex operator is limited and doesn’t offer support for the
other data types including Integer, Date and Object.

To resolve this, an API has been added to determine the field type whereafter further de-
velopment needs to take place to modify the generated query to filter on other data types.

router.get(’/attribute/type’, async (req , res) => {

let collection = req.query.collection;

const client = await mongoDBConnection.establishConn(req.query);

const db = client.db(req.query.database);

const attr = req.query.attribute;

let attrType = ’’;

db.collection(collection).findOne ({}, function(err , result) {

if (err) throw err;

for (let key in result) {

if (result.hasOwnProperty(key)) {

console.log(key + ":" + attr);

if (key === attr) {

attrType = typeof result[key];

}

}

}

res.status (200).send({

’attributeType ’: attrType

});

});

});

57

Figure 28: Node.js MongoDB Regex Error

58

5 Testing, results and evaluation

The following section evaluates the success of the application in meeting functional and
non-functional requirements and to what extent the system works as intended. User
testing, test cases and a heuristic evaluation have been completed to test the application
as well as considerations into more tests which would help provide added confidence.

5.1 Requirements Evaluation

Functional Requirements

Requirement
The user must be able to connect there MongoDB instance using the applications
user-interface.
Accepted: Yes
Users can establish a connection to their MongoDB instance using the web-based user
interface. The connection wizard provides this functionality and is displayed upon
launch of the application.

Requirement
The user must be able to visualise multiple collections of Geospatial data on the map
from their connected MongoDB instance.
Accepted: No
After connection of the users MongoDB instance, the map is able to visualise a subset
of 1000 geospatial objects from a single collection. Visualisation is limited to a single
collection as a result of unforeseen limitations which have been described in detail in
section 4.4.

59

Requirement
The user must be able to generate MongoDB Geospatial queries through interaction
of the map and user interface. Including query selectors,

• $geoIntersects (Returns geometries that intersect other GeoJson objects)
• $geoWithin (Returns geometries entirely within a specified shape)
• $near (Return Geospatial Geometrics objects in proximity to a point)
• $nearSphere (Return Geospatial Geometrics objects from nearest to farthest

using spherical geometry)
And Geometry Specifiers,

• $maxDistance Specifies a maximum distance to limit the results.
• $minDistance Specifies a minimum distance to limit the results.

Accepted: Yes
After creation of a MongoDB geospatial query or input of a custom query, the "Query
Output" tab displays a subset of five results from the executed query.

For invalid query input, the system is tolerable and continues to function as intended,
with an appropriate error message being displayed in the user interface.

Requirement
The user must be able to test the generated MongoDB query against the connected
collection.
Accepted: Yes
After input or generation of a MongoDB geospatial query, the "Query Output" tab
displays the first five results from the executed query.
For invalid query input, the system is tolerable and displays an appropriate error
message in the user-interface and continues to function as intended.

Requirement
The user must be able to visualise the query together with an explanation of each
component of the generated query.
Accepted: Yes
In conjunction with generating a MongoDB geospatial query, a natural language
breakdown is produced explaining each component of the generated query in the
"Query Breakdown" tab.

60

Non-functional Requirements

Requirement
The applications user-interface must be responsive when working with large datasets.
Accepted: Yes
The program is responsive for datasets containing over 10000 geospatial objects and
the map is visualised in less than 5 seconds for the following test data sets,

• MongoDB restaurants,
• Yelp Open Business dataset and
• Ordnance survey Points of interest and open Roads.

Requirement
The application should be intuitive and easy to use.
Accepted: Yes
To assess this a heuristic evaluation, user-testing and SUS questionnaire have been
completed, helping to identify whether the application’s usability.

Requirement
The application must be tested and evaluated with multiple MongoDB datasets of
varying size.
Accepted: Yes
The application has been tested with multiple datasets of varying size including,

• MongoDB restaurants,
• Yelp Open Business dataset and
• Ordnance survey Points of interest and open Roads.

Requirement
The applications web interface should be compatible with varying browsers including
Chrome (v73+), Firefox (v65+) and Microsoft Edge (v44+).
Accepted: Yes
The system has been tested with all listed browsers and corresponding versions to val-
idate the application’s functionality works and behaves as intended for all platforms.

Requirement
The application’s user interface should adhere to usability standards.
Accepted: Yes
To assess whether the user interface adheres to usability standards a heuristic evalu-
ation using Nielsen’s ten usability principles has been conducted helping to identify
usability problems in the user interface.

61

Requirement
The application must be tested to ensure all paths of the application function correctly.
Accepted: No
Manual test cases and user testing have been completed evaluating the different work-
flows. However, due to time limitations, no implementation of automated testing has
been completed.
The result of this is that any changes to the existing code could lead to unknown
bugs, as no validation is in place checking modifications to existing functionality.
Nevertheless, it would be advantageous to verify that the system continues to function
as intended after the implementation of new features or changes.

62

5.2 Test Cases

Ten test cases have been produced to help validate the success of the project and expose
issues in the application. The following section summarises the results of these tests
with a full breakdown of the steps and criteria defined in Appendix 1.

The test cases have been created based on the requirements and goals of the project
and have been successful in validating functionality and workflows in the program. The
overall result of these tests has been positive with a 100% pass rate, for all of the tests.

Test cases summary:
Test No Test Case Name Result

1 Connect a MongoDB instance and select a collection to visualise Passed
2 Connect a MongoDB instance with invalid connection details Passed
3 See details of a map data point (object) Passed
4 Filter map data to visualise only objects with a specific value

(attribute)
Passed

5 Create a query to find all objects near a specified point Passed
6 Create a query to find all geospatial objects intersecting a spec-

ified region
Passed

7 Create a query to find all geospatial objects within a specified
region

Passed

8 Pan and zoom dense regions of map data Passed
9 Test custom MongoDB geospatial queries Passed
10 Test custom invalid MongoDB geospatial queries Passed

Tests cases are made up of a combination of valid and invalid use cases aiming to simulate
different workflows. One thing to note is that with future development, continual testing
of these test cases and expansion should take place, to ensure the test cases remain valid
and test all system functionality.

63

5.3 User-Testing

User testing has been carried out to evaluate the success of this project in identifying
whether the application "supports new developers create and understand MongoDB
geospatial queries". Individuals have completed five test cases followed by a usability
questionnaire measuring the usability of the program. The questionnaire utilised SUS
(System Usability Scale[26]) as a model for the questions and is an industry standard.
The assessment comprises of ten questions with five possible responses for each.

The following section outlines a summary of the results for both tests, with a full break-
down included in appendix 2. As evident in table 1 usability testing was a success and
highlighted some valuable improvements to the program’s workflow; with only two tests
failing in total. Because of the limited number of participants of three, results may not
accurately depict the consensus of the program’s usability. Although have still been
beneficial in highlighting improvement areas and used as a determining factor to assess
whether the project was successful in meeting its aims and objectives. For the contin-
uation of this project, completion of further user testing would be beneficial to assess
current findings and potentially uncovered new knowledge.

Prior to conducting user testing, testers were made aware of the use of data in this
project and how they would remain anonymous. In addition to this, an overview of the
programs and tests purpose were clearly explained to the participant.

64

Summary of User interface Testing

Test case 1:
Pass rate: 3/3
Summary of results
All users were successfully able to connect a MongoDB instance using the application’s
interface. On the occasion where the user inputted incorrect connection details, they
were able to correct the mistake after being prompted with an error message.

One thing to note for the completion of this test case, participants were provided with an
existing pre-setup MongoDB instance and were provided with connection details before
the test.
Test case 2: Filter the map to display only T.G.I. Friday’s restaurants
Pass rate: 3/3
Summary of results
All users were successfully able to filter the map to display T.G.I. Friday’s restaurants.

One thing to note during the completion of this test case was different variations in the
naming of T.G.I. Fridays confused a participant when attempting to filter collection on
this value - the multiple variations in naming returned a different subset of results and as
a result confused the user.

• Expected: "T.G.I. Fridays"
• Alternative: "Tgi Fridays"

Test case 3: Create a query to find T.G.I. Fridays Restaurants nearest to Chicago
Pass rate: 2/3
Summary of results
For this use case, two out of three testers were able to create the required query. However,
a participant expressed confusion when attempting to find “Chicago" by inputting the
city name in the filters panel.

Two possible improvements could be made to resolve this, firstly, introducing the func-
tionality to allow users to search the map for specific locations such as "Chicago" rather
than having to locate it manually. Secondly, an improvement to the description on the
filters panel making its use clearer.
Test case 4: Create a query to find all Mcdonald’s Restaurants within New York City
Pass rate: 3/3
Summary of results
All users were successfully able to filter the collection to view Mcdonald’s restaurants and
draw a bounding box around the restaurants in New York City. Different variations in
the tool selection for drawing the bounding box was used, e.g. Rectangle, Pencil tool etc.
but all achieved the correct result.
Test case 5: View results and an explanation of the created query Pass rate: 2/3
Summary of results
All users viewed the query results intuitively before being prompted. However, one partic-
ipant was unsure how to see the "explanation of the created query" (Query Breakdown).
To resolve this prompting the user when the explanation of the query has been updated,
and providing an interface tour, demonstrating the different tools would both enhance the
user’s experience.

Table 1: User Testing Summary

65

System Usability Scale Questionnaire

The results from the SUS questionnaire correlated to user testing results with an agree-
ment that testers would use the system frequently (question 1) and found it consistent
and easy use (questions 3,6).

However, for the two participants who were unable to complete one of the two failed test
cases; both felt they needed prior knowledge before using the system (question 10). This
is understandable as the application is targeted at new developers and requires a basic
foundation in knowledge of databases. Based on this data, enhancements in explaining
the user interface before interaction would be beneficial such as in the form of a user
interface tour to provide the user with a more in-depth understanding.

Based on research, a SUS score above 68 is considered above average and is calculated
"through "normalising" the scores to produce a percentile ranking" [26]. The combined
mean of the tests conducted averaged at 77.5 which is considerably above the threshold.
What’s more each of the individual averages was higher, providing valuable support that
the application is indeed usable and effective.

Figure 29: SUS Results Summary

66

SUS Questions
Listed below are the ten questions participants answered with a breakdown of candidates
scores viewable in Figure 29 and Appendix 2.

SUS Questions

Q1: I think that I would like to use this system frequently.
Q2: I found the system unnecessarily complex.
Q3: I thought the system was easy to use.
Q4: I think that I would need the support of a technical person to be able to use this
system.
Q5: I found the various functions in this system were well integrated.
Q6: I thought there was too much inconsistency in this system.
Q7: I would imagine that most people would learn to use this system very quickly.
Q8: I found the system very cumbersome to use.
Q9: I felt very confident using the system.
Q10: I needed to learn a lot of things before I could get going with this system.

67

6 Future Work

The goal of this project is to support "developers in the creation and understanding of
MongoDB geospatial queries", throughout this project several ideas have developed, as
well as shortcomings in the implementation. The following section outlines these and
there reasoning.

Visualisation of multiple collections

One of the unforeseen problems during the development of this project was to support
users in "visualising multiple collections of Geospatial data" (Functional Requirement
2). MongoDB is not designed or well optimised to support the joining of collections and
consequently increases the challenge of implementing this requirement.

However, the functionality to visualise and query multiple collections is a beneficial
use case. To overcome this and performance implications discussed in section 4.4, an
advantageous enhancement would be to provide the ability for users to aggregate and
merge the two collections as a way of overcoming this shortcoming.

Upload or paste MongoDB collection data

A beneficial enhancement would be to support the ability for user’s to upload or paste
MongoDB JSON files directly into the user interface. Doing so provides a fast alterna-
tive to having to connect their MongoDB instance which may not always be possible,
particularly when hosted on a different server and a remote connection is required to
the database.

Enhanced User testing

To evaluate the success of this application, real user testing has been conducted, helping
to highlight potential issues and areas for improvements in the user interface. However,
as a result of time constraints, user testing has been completed with a limited sample
size of three participants. It would be hugely beneficial to continue the testing with a
larger sample size to ensure the results obtained are valid as well as the discovering of
new knowledge.

Filtering on MongoDB Documents Attributes

One of the unforeseen challenges during the implementation was to filter on attributes
for types other than string. This was a result of limited support for the different data
types in the MongoDB Node.js $regex operator (Section 4.4). Added support would
allow users to filter the map and produce a generated query for all collection attributes
instead of a subset.

68

An API has been developed to determine the field type of the selected attribute but
requires further development to the query generation functionality. This would require
research and implementation of alternative Node.js MongoDB operators, which could be
used to filter the collection using the alternative data types.

Support for the creation of complex geospatial queries

An enhancement to the systems current support for MongoDB query creation would be
to facilitate the creation of complex geospatial queries including MultiPolygon, Multi-
lineString and MultiPoint queries; to better support experienced developers. Outlined
beneath are several sample use cases which are achievable from adding support for these
GeoJSON shapes.

• Querying MultiPolygons allows you to define multiple distinct regions such as two
cities from which to find document matches, such as, finding restaurants in Cardiff
and Swansea. Furthermore, you can set interior rings if you need to exclude a
particular region.

• And finally, for MultiPoint queries it allows you to specify multiple locations from
which to retrieve results from nearest to farthest.

69

7 Conclusion

The main aim of the project is to produce a program which aids developers in the
creation and understanding of MongoDB geospatial queries. Based on the evaluation of
user testing and requirement completion, the project has been successful in producing
an intuitive and easy to use application for MongoDB geospatial query creation and
learning.

Creating a successful solution has required extensive research into likely stakeholders,
tools and software which could aid development and an assessment of existing solutions
to determine the focus of the application. From which detailed requirements have been
constructed setting the goals and foundations for the project.

A major focus for the application has been on usability with a significant investment
of time and effort invested in producing a usable and intuitive user interface. Multiple
iterations of mockups have been created based upon an evaluation of the user interface
through heuristic evaluation, and assessment of the applications use.

Constructed from the design mockups, the implementation of the program was successful
using the tools and technologies sourced from the in-depth research. However, several
unexpected obstacles were incurred, increasing the complexity of supporting specific
requirements such as the visualisation and querying of multiple MongoDB geospatial
collections and visualising large datasets. As explained MongoDB is ill-suited towards
the querying of two or more collections particular in sharded environment. The result
of this is visualisation and querying is limited to a single collection and would be an
advantageous enhancement for development.

In summary, the application supports developers in their understanding and creation of
MongoDB geospatial queries using an intuitive map interface; with additional project
scope for more advanced query generation and visualisation tools.

70

8 Reflection on Learning

Completing this final year project and bringing it to fruition has been extremely re-
warding in supporting my personal development of valuable skills such as prioritisation,
adaptability and the advancing of multiple technical skills. This section outlines signifi-
cant experiences during this project which have enabled me to develop and improve.

The initial plan outlining the aims and objectives for this project was in hindsight
ambitious for the timescale. Despite this to guarantee the success of this project, it was
critical that I was able to adapt, prioritise and reassess goals to ensure that the primary
requirements were met.

For the design of the application’s workflow, a larger than predicted time was spent on
the design. As a result, adjustments to the project plan (Gantt chart) were made to
accommodate this, including modifications to the testing of the application. Having this
experience increased my awareness of the projects progress and time management, and
was able to utilise these skills for the rest of the project.

Development of this program has been challenging and required me to work with new
technologies. Preceding this project the vast majority of learning material has been
provided in the form of trustworthy lecture material. However, working independently
with unfamiliar technologies has required me to engage my problem-solving skills in
understanding and sourcing reliable and accurate material.

The decision to use Node.js for the backend of the application has required me to un-
derstand a new programming language as well as implementation specifics such as best
practices. Evaluating learning resources reliability and accuracy to ensure they were
trustworthy; overall developed my ability to research, assess and source new information
through the development of my problem-solving skills.

Throughout this project, I have met weekly with my supervisor to discuss how the
project is progressing in terms of development and challenges. Having regular interaction
with my supervisor has been beneficial to review progress, however, having a limited
timeframe to discuss ideas and alterations has required me to clearly and concisely
explain development to ensure there is a clear understanding of the undertaken work
and challenges. This is a skill which has continually developed throughout the project
and has enabled me to showcase work and problems in a clearer manner.

For the implementation of the user interface, I was eager to begin and as a result, did
not invest enough time into its design. The outcome of this was a considerable amount
of rework was required for the implementation of the user interface.

The design underwent several iterations as a result of a heuristic evaluation assessing
the design’s usability and meetings with my supervisor. Having to spend time reimple-
menting major changes to the mockup resulted in a large amount of rework and lost
time. Having this experience has helped me to adapt and reassess the approach of the
project; where consequently for future tasks more time was allocated were needed before
progressing in the project.

71

Bibliography

[1] The hitchhacker’s guide to tiled maps 2019. [Accessed 23 April 2018]. [Online].
Available: http://www.liedman.net/tiled-maps/

[2] D. G. Chandra. Base analysis of nosql database 2018. [Accessed 12 February
2019]. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X15001788

[3] Mongodb geojson objects 2018. Accessed 17 February 2019]. [Online]. Available:
https://docs.mongodb.com/manual/reference/geojson/

[4] Geojson 2018. [Accessed 17 February 2019]. [Online]. Available: http://geojson.org/

[5] H. Butler. The geojson format 2018. [Accessed 18 February 2019]. [Online].
Available: https://www.rfc-editor.org/rfc/pdfrfc/rfc7946.txt.pdf

[6] Mongodb geospatial queries 2019. [Accessed 5 May 2019]. [Online]. Available:
https://docs.mongodb.com/manual/geospatial-queries/

[7] Mongodb nearsphere operator 2019. [Accessed 5 May 2019]. [Online]. Available:
https://docs.mongodb.com/manual/reference/operator/query/nearSphere/

[8] Compass 2018. [Accessed 18 February 2019]. [Online]. Available: https:
//www.mongodb.com/products/compass

[9] geojson.io 2018. [Accessed 18 February 2019]. [Online]. Available: http://geojson.io/

[10] Robo 3t 2018. [Accessed 5 March 2019]. [Online]. Available: http://geojson.io/

[11] (2018) Mapbox 2018. [Accessed 5 March 2019]. [Online]. Available: https:
//www.mapbox.com/

[12] Leafletjs 2018. [Accessed 11 March 2019]. [Online]. Available: https://leafletjs.com/

[13] Mango. [Accessed 12 April 2018]. [Online]. Available: https://mangomap.com/

[14] maptiler. [Accessed 12 April 2018]. [Online]. Available: https://www.maptiler.com/

[15] Deck.gl. [Accessed 12 April 2018]. [Online]. Available: http://deck.gl/

72

[16] D3 2019. [Accessed 26 April 2018]. [Online]. Available: https://d3js.org/

[17] J. Nielsen. 10 usability heuristics for user inter-
face design. [Accessed 16 April 2018]. [Online]. Avail-
able: http://courses.ischool.utexas.edu/rbias/2014/Spring/INF385P/files/10%
20Usability%20Heuristics%20for%20User%20Interface%20Design.docx

[18] J. aTidwell. Designing interfaces. [Accessed 6 May 2019].

[19] Presentation design: Principles and techniques 2008. [Accessed 6 May 2019].
[Online]. Available: https://www.presentationzen.com/chapter6_spread.pdf

[20] J. Nielsen. Severity ratings for usability problems. [Accessed 16
April 2018]. [Online]. Available: https://www.nngroup.com/articles/
how-to-rate-the-severity-of-usability-problems/

[21] A. Kaley. Match between the system and the real world 2018. [Ac-
cessed 16 April 2018]. [Online]. Available: https://www.nngroup.com/articles/
how-to-rate-the-severity-of-usability-problems/

[22] D. Kumar. Best practices for building restful web services. [Accessed 13 April
2018]. [Online]. Available: https://www.infosys.com/digital/insights/Documents/
restful-web-services.pdf

[23] C. P. Alessandro Bozzon, Philippe Cudré-Mauroux. Web engineering. [Accessed
13 April 2018]. [Online]. Available: https://link-springer-com.abc.cardiff.ac.uk/
content/pdf/10.1007%2F978-3-319-38791-8.pdf

[24] K. Lei, Y. Ma, and Z. T. 2014, “Performance comparison and evaluation of web
development technologies in php, python, and node.js,” 2014, [Accessed 16 April
2018].

[25] Leaflet draw 2019. [Accessed 23 April 2018]. [Online]. Available: https:
//leaflet.github.io/Leaflet.draw/docs/leaflet-draw-latest.html

[26] J. B. 1996. System usability scale (sus). [Accessed 28 April 2019]. [Online]. Available:
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

73

9 Appendices

9.1 Test Cases

Test Case ID: 1
Test Purpose: Connect MongoDB instance and select collection to visualise
Environment: Ubuntu 18.04 - Google Chrome
Preconditions:
Step No Procedure Response Pass/Fail
1 Launch application’s website The connection page is loaded Pass

2

Enter MongoDB instance host-
name and port
Test Data:
Hostname: ds135786.mlab.com
Port: 35786

Pass

3 Click Next

The system will take the user to
the next page in the wizard, and
the step indicator is updated ac-
cordingly to display the current
step

Pass

4

Select the authentication type
from the dropdown
Test Data:
Username/Password

The user interface is updated to
display the authentication form
input for username/password

Pass

5

Enter the username and pass-
word for the user you wish to
connect from your MongoDB in-
stance
Test Data:
admin
password123!

Pass

6 Click Next

The popup is dismissed, and the
user is taken to the next page in
the wizard, with the step indi-
cator being updated accordingly
to display the current step

Pass

74

7

Enter MongoDB instance
Database name
Test Data:
heroku_j7g5sqhn

Pass

8 Click Test Connection
The system informs the user
with a popup that the connec-
tion was successful

Pass

9 Click OK

The popup is dismissed and the
user is taken to the next page in
the wizard with the step indica-
tor also being updated

Pass

10

Select the collection you wish to
visualise
Test Data:
GeoDB

The selected collection is high-
lighted, and the "Connect" nav-
igational button is enabled.

Pass

11 Click Connect
The page is updated to display
the map interface.

Pass

Comments:

75

Test Case ID: 2
Test Purpose: Connect MongoDB instance with invalid connection details
Environment: Ubuntu 18.04 - Google Chrome
Preconditions:
Step No Procedure Response Pass/Fail
1 Launch application’s website The connection page is loaded Pass

2

Enter MongoDB instance host-
name and port
Test Data:
Hostname: nohost
Port: 8000

Pass

3 Click Next

The system will take the user to
the next page in the wizard, and
the step indicator is updated ac-
cordingly to display the current
step

Pass

4

Select the authentication type
from the dropdown
Test Data:
Username/Password

The user interface is updated to
display authentication form in-
put for username/password

Pass

5

Enter the username and pass-
word for the user you wish to
connect from your MongoDB in-
stance
Test Data:
admin
password123!

Pass

6 Click Next

The popup is dismissed, and the
user is taken to the next page in
the wizard, with the step indi-
cator being updated accordingly
to display the current step

Pass

7
Enter MongoDB instance
Database name

Pass

8 Click Test Connection

The system will inform the user
with a popup stating a connec-
tion error of "failed to connect
to server"

Pass

9 Click "OK" Button

The popup is dismissed and kept
on the same page where they can
retest the connection or amend
the inputted connection details

Pass

Comments:

76

Test Case ID: 3
Test Purpose: See GeoJSON objects details (attributes)
Environment: Ubuntu 18.04 - Google Chrome
Preconditions: The user has connected their MongoDB instance to the application
and is on the map interface
Step No Procedure Response Pass/Fail

1

Hover over a point (GeoJSON
object) on the map
Sample Point:
Carlyle Green Pool Stand

A popup is displayed listing the
objects name

Pass

2 Click on the hovered object
A full list of MongoDB at-
tributes for the selected geospa-
tial object are displayed

Pass

Comments:

77

Test Case ID: 4
Test Purpose: Filter map data to visualise only objects with a specific value (attribute)
Environment: Ubuntu 18.04 - Google Chrome
Preconditions: The user has connected their MongoDB instance to the application
and is on the map interface
Step No Procedure Response Pass/Fail
1 Click "Filters" tab The filters tab is displayed list-

ing all of the attributes found in
the collection

Pass

2 Click attribute element
Test Data:
Click "Name" attribute

The selected attribute is ex-
panded displaying an input field

Pass

3 Enter the name to filter the col-
lection on
Test Data:
T.G.I. Friday’s

Pass

4 Click "Apply Filters" The map is recentered and
refined to display only objects
with the attribute name, equal
to T.G.I. Friday’s

The filters indicator is updated
to show 1 (indicating the num-
ber of filters applied)

Pass

Comments:

78

Test Case ID: 5
Test Purpose: Create a query to find all objects near a specified point
Environment: Ubuntu 18.04 - Google Chrome
Preconditions: The user has connected their MongoDB instance to the application
and is on the map interface
Step No Procedure Response Pass/Fail
1 Click "Tools" tab The tools tab is displayed listing

all of the collections attributes
Pass

2 Click Near information Panel Near Panel is expanded Pass
3 Click "Create Query" Button Near panel is expanded to dis-

play query creation tools
Pass

4 Click "Draw Selection" Button "Draw selection" button colour
changes to purple

Hovering over the map will dis-
play a marker beneath the cursor

Pass

5 Click on map where you wish to
draw the marker
Test Data:
Drawn point at Cardiff

Marker is drawn on map

"Generated Query" input box
is updated to display the gener-
ated MongoDB query

"Query Breakdown" displays a
natural language version of the
query

Query output displays results

Pass

6 Click "Next" Next page of Near query Cre-
ation panel is displayed

Pass

7 Enter a value in the max dis-
tance input field
Test Data:
Max Distance: 50000

A ring is displayed around the
draw marker

The "Generated Query" input
window is updated to display
the generated MongoDB query

The "Query Breakdown" tab
is updated displaying a natural
language version of the updated
query

Query output displays updated
results

Pass

Comments:

79

Test Case ID: 6
Test Purpose: Create a query to find all geospatial objects intersecting a specified
region
Environment: Ubuntu 18.04 - Google Chrome
Preconditions: The user has connected their MongoDB instance to the application
and is on the map interface
Step No Procedure Response Pass/Fail

1 Click "Tools" tab
The tools tab is displayed listing
all of the attributes found in the
collection

Pass

2
Click "Intersects" information
Panel

Intersects Panel is expanded Pass

3 Click "Create Query" Button
Intersects panel is expanded to
display query creation tools

Pass

4
Under "Draw Bounding Box"
click the rectangle drawing tool

Button is selected and colour is
changed to purple

Hovering over the map will dis-
play an edit cursor

Pass

5

Continually click and move to
draw the bounding box on the
map
Test Data:
Bounding box drawn on map se-
lecting the UK

Bounding box is drawn on the
map

"Generated Query" input box
is updated to display the gener-
ated MongoDB query

"Query Breakdown" displays a
natural language version of the
query

Query output displays the re-
sults

Pass

Comments:

80

Test Case ID: 7
Test Purpose: Create a query to find all geospatial objects within a specified
region
Environment: Ubuntu 18.04 - Google Chrome
Preconditions: The user has connected their MongoDB instance to the application
and is on the map interface
Step No Procedure Response Pass/Fail

1 Click "Tools" tab
The tools tab is displayed listing
all of the attributes found in the
collection

Pass

2
Click "Within" information
Panel

Within Panel is expanded Pass

3 Click "Create Query" Button
Within panel is expanded to dis-
play query creation tools

Pass

4
Under "Draw Bounding Box"
click the rectangle region drawer

Button is selected and colour is
changed to purple

Hovering over the map will dis-
play an edit cursor

Pass

5

Click and drag on the map to
draw the bounding box Test
Data: Rectangle drawn select-
ing the UK
Test Data:
Bounding box drawn on map se-
lecting the UK

Bounding box is drawn on the
map

"Generated Query" input box
is updated to display the gener-
ated MongoDB query

"Query Breakdown" displays a
natural language version of the
query

Query output displays the re-
sults

Pass

Comments:

81

Test Case ID: 8
Test Purpose: Pan and zoom dense regions of map data
Environment: Ubuntu 18.04 - Google Chrome
Preconditions: The user has connected their MongoDB instance to the application
and is on the map interface
Step No Procedure Response Pass/Fail

1

Iteratively double click on area
of map
Sample Point:
Zoom on New York City

On map zoom the counter dis-
playing the quantity of geospa-
tial objects continues to display
1000 as the map is zoomed in
retrieving new data for the up-
dated view window unless at a
high level of zoom

Pass

2

Pan away from dense area of
map
Test Data:
Pan South to Highlands

Zoom counter updates after ev-
ery map movement

Pass

Comments:

82

Test Case ID: 9
Test Purpose: Testing custom MongoDB geospatial query
Environment: Ubuntu 18.04 - Google Chrome
Preconditions: The user has connected their MongoDB instance to the application
and is on the map interface
Step No Procedure Response Pass/Fail

1
User inputs valid query
Test Data:
Sample below

Notification ring displayed
around the "Query Output" tab

Pass

2 Click "Query Output" tab
Results for the query are dis-
played

Pass

Comments:

Test Case 9: Sample MongoDB Query

db.GeoDB.find(

{

"location ":

{ "$geoWithin" :

{

"$geometry ": { "type": "Polygon", "coordinates ":

[[[-3.693857 ,50.590103] ,[-3.693857 ,53.182893] ,

[1.524779 ,53.182893] ,[1.524779 ,50.590103] ,

[-3.693857 ,50.590103]]] }

}

}}

)

83

Test Case ID: 10
Test Purpose: Testing custom MongoDB geospatial query
Environment: Ubuntu 18.04 - Google Chrome
Preconditions: The user has connected their MongoDB instance to the application
and is on the map interface
Step No Procedure Response Pass/Fail

1
User inputs invalid query
Test Data:
Sample below

Notification ring displayed
around the "Query Output" tab

Pass

2 Click "Query Output" tab
Appropriate error message is
displayed in Query Output and
application continues to function

Pass

Comments:

Test Case 10: Sample invalid MongoDB Query

db.GeoDB.find(

{

"location ":

{ "$geoWithin" :

{

"$geometry ": { "type": "Polygon", "coordinates ":

[[[-3.693857 ,50.590103] ,[-3.693857 ,53.182893] ,

[1.524779 ,53.182893] ,[1.524779 ,50.590103] ,]] }

}

}}

)

84

9.2 User interface Test Cases

User 1: Test Cases

Test Case 1: Connect a MongoDB instance to the application
Result: Pass
The user successfully connected the MongoDB instance to the application.

However, during input of the instances connection details the user mistypes the
password but was able to correct it after being prompted with invalid authentication
details.

Note: Database connection details and collection have been provided to the user

Test Case 2: Filter the map to display only T.G.I. Friday’s restaurants
Result: Pass
The user was successfully able to filter the map to display T.G.I. Friday’s restaurants.

Test Case 3: Create a query to find T.G.I. Fridays Restaurants nearest to Chicago
Result: Pass
The user successfully created a query to find T.G.I restaurants near Chicago, although
intuitively the user right-clicked where they wanted to place the near marker instead
of selecting the tool from the Near Panel.

Test Case 4: Create a query to find all Mcdonald’s Restaurants within New York City
Result: Pass
The user successfully created a query to find T.G.I. Restaurants near Chicago.

When attempting to mark Chicago on the map, intuitively the user right-clicked where
they wanted to place the marker instead of selecting the tool from the Near panel.

Test Case 5: Connect a MongoDB instance to the application
Result: Pass
The user viewed the results and breakdown query intuitively before being prompted.

85

User 1: System Usability Scale Results

Strongly

disagree

Strongly

agree

1. I think that I would like to use this system
frequently

1 2 3 4 5

2. I found the system unnecessarily complex 1 2 3 4 5

3. I thought the system was easy to use 1 2 3 4 5

4. I think that I would need the support of a technical
person to be able to use this system

1 2 3 4 5

5. I found the various functions in this system were
well integrated

1 2 3 4 5

6. I thought there was too much inconsistency in this
system

1 2 3 4 5

7. I would imagine that most people would learn to
use this system very quickly

1 2 3 4 5

8. I found the system very cumbersome to use 1 2 3 4 5

9. I felt very confident using the system 1 2 3 4 5

10. I needed to learn a lot of things before I could get
going with this system

1 2 3 4 5

Table 2: User 1: SUS Results

86

User 2: Test Cases

Test Case 1: Connect a MongoDB instance to the application
Result: Pass
The user successfully connected the MongoDB instance to the application.

Test Case 2: Filter the map to display only T.G.I. Friday’s restaurants
Result: Pass
The user was successfully able to filter the map to display T.G.I. Friday’s restaurants.
To be noted because of the multiple variants in the naming of T.G.I. Fridays the user
filtered on "Tgi Fridays" which only displaying a single object on the map instead of
the hundreds expected when filtering on "T.G.I. Fridays".

Test Case 3: Create a query to find T.G.I. Fridays Restaurants nearest to Chicago
Result: Fail
The user was successful in filtering the collection but attempted to find Chicago on
the map through input in the "Location" filter input and was not clear that this was
achieved through the "Tools" panel.

Test Case 4: Create a query to find all Mcdonald’s Restaurants within New York City
Result: Pass
The user was successfully able to filter the collection to view Mcdonald’s restaurants
and draw a bounding box to find all Mcdonald’s restaurants in New York City.

Test Case 5: Connect a MongoDB instance to the application
Result: Pass
The user viewed the results and query breakdown intuitively before being prompted.

87

User 2: System Usability Scale Results

Strongly

disagree

Strongly

agree

1. I think that I would like to use this system
frequently

1 2 3 4 5

2. I found the system unnecessarily complex 1 2 3 4 5

3. I thought the system was easy to use 1 2 3 4 5

4. I think that I would need the support of a technical
person to be able to use this system

1 2 3 4 5

5. I found the various functions in this system were
well integrated

1 2 3 4 5

6. I thought there was too much inconsistency in this
system

1 2 3 4 5

7. I would imagine that most people would learn to
use this system very quickly

1 2 3 4 5

8. I found the system very cumbersome to use 1 2 3 4 5

9. I felt very confident using the system 1 2 3 4 5

10. I needed to learn a lot of things before I could get
going with this system

1 2 3 4 5

Table 3: User 2: SUS Results

88

User 3: Test Cases

Test Case 1: Connect a MongoDB instance to the application
Result: Pass
The user successfully connected the MongoDB instance to the application.

Test Case 2: Filter the map to display only T.G.I. Friday’s restaurants
Result: Pass
The user was successfully able to filter the map to display T.G.I. Friday’s restaurants.

To be noted the participant took longer than expected to complete the test case in
comparison to other candidates. This was a result of the user exploring all of the
application’s functionality before proceeding to complete on the test case.

Test Case 3: Create a query to find T.G.I. Fridays Restaurants nearest to Chicago
Result: Pass
The user successfully created a query to find T.G.I restaurants near Chicago, although
intuitively the user right-clicked where they wanted to place the near marker instead
of selecting the tool from the Near Panel.

Test Case 4: Create a query to find all Mcdonald’s Restaurants within New York City
Result: Pass
The user was successfully able to filter the collection to view Mcdonald’s restaurants
and draw a bounding box to find all Mcdonald’s restaurants in New York City.

Test Case 5: Connect a MongoDB instance to the application
Result: Fail
The user viewed the results intuitively before being prompted, however, was unsure
how to see the "explanation of the created query" (Query Breakdown).

89

User 3: System Usability Scale Results

Strongly

disagree

Strongly

agree

1. I think that I would like to use this system
frequently

1 2 3 4 5

2. I found the system unnecessarily complex 1 2 3 4 5

3. I thought the system was easy to use 1 2 3 4 5

4. I think that I would need the support of a technical
person to be able to use this system

1 2 3 4 5

5. I found the various functions in this system were
well integrated

1 2 3 4 5

6. I thought there was too much inconsistency in this
system

1 2 3 4 5

7. I would imagine that most people would learn to
use this system very quickly

1 2 3 4 5

8. I found the system very cumbersome to use 1 2 3 4 5

9. I felt very confident using the system 1 2 3 4 5

10. I needed to learn a lot of things before I could get
going with this system

1 2 3 4 5

Table 4: User 3: SUS Results

90

