

Cardiff University School of Computer
Science & Informatics

Game with a purpose
CM3203 - One Semester Individual Project Final Report

Author:
William Cooter

Supervisor:

Irena Spasic

Moderator:
Angelika Kimmig

10th of May, 2019

Abstract:

The game with a purpose is a tool to collect metadata that a computer would find
difficult to generate, but that human would be well suited to. The metadata this
project focuses on are the word associations synonyms, antonyms and hypernyms.
This report will outline the uses and difficulties of this metadata, and present an
approach to creating a game that collects this data from players.

Acknowledgements:

I would like to thank my supervisor Irena Spasic for her support throughout this
project. I greatly appreciate the guidance you have provided to me over the past few
months.

I would also like to thank any friends and family who tested the project by signing up
and playing the game. Without you there would have been no credible data, and
development would have been considerably more difficult.

Table of contents

1. Introduction …….…………………………………………………………………… 1
2. Background ...….…………………………………………………………………… 3
3. Specification and design ..………………………………………………………… 6

3.1. Login system ……………………………………………………………….. 6
3.1.1. User perspective …………………………………………………… 6
3.1.2. System behaviour …………………………………………………. 7
3.1.3. Algorithms and architecture ………………………………………. 8
3.1.4. Constraints …………………………………………………………. 9

3.2. Matchmaking service ……………………………………………………… 9
3.2.1. User perspective …………………………………………………… 9
3.2.2. System behaviour ………………………………………………... 10
3.2.3. Constraints ………………………………………………………... 12

3.3. Multiplayer game …………………………………………………………. 12
3.3.1. User perspective …………………………………………………. 12
3.3.2. System behaviour ………………………………………………... 14

3.4. Result processing service ……………………………………………….. 17
3.4.1. User perspective …………………………………………………. 17
3.4.2. System behaviour ………………………………………………... 18
3.4.3. Constraints ………………………………………………………... 18

3.5. Single-player game ………………………………………………………. 18
3.5.1. User perspective …………………………………………………. 18
3.5.2. System behaviour ………………………………………………...19

3.6. Website ……………………………………………………………………. 19
3.6.1. User perspective …………………………………………………. 19
3.6.2. System behaviour ………………………………………………... 19
3.6.3. Constraints ………………………………………………………... 20

4. Implementation ………………………………………………………………….... 21
4.1. Login system ……………………………………………………………... 21

4.1.1. Database queries ……………………………………………….... 21
4.1.2. POST requests ………………………………………………….... 21
4.1.3. Emails ……………………………………………………………... 21
4.1.4. Registering input validation ……………………………………... 22
4.1.5. Redirects ………………………………………………………….. 22
4.1.6. Timeline of work ………………………………………………….. 23
4.1.7. Element-ui issue ………………………………………………….. 23

4.2. Matchmaking service …………………………………………………….. 24
4.2.1. Matchmaking.js …………………………………………………… 24
4.2.2. checkMatches() …………………………………………………... 24
4.2.3. getQueryParams() ……………………………………………….. 24

4.3. Multiplayer game …………………………………………………………. 25
4.3.1. Get game information and state ………………………………... 25
4.3.2. Timer ………………………………………………………………. 26
4.3.3. Submitting answers …………………………………………….... 27
4.3.4. Skip word ………………………………………………………….. 29
4.3.5. Quit game …………………………………………………………. 30
4.3.6. Results screen ……………………………………………………. 30

4.3.7. Issue with definitions ………………………………………...…... 31
4.4. Result processing service ……………………………………………..... 31

4.4.1. checkWords() …………………………………………………...... 31
4.4.2. resetValuesForTesting() …………………………..…………….. 33

4.5. Single-player game ……………………………………….……………... 33
4.6. Website ………………………………………………………….………... 33

4.6.1. TOML file ……………………………..…………………………... 33
4.6.2. Issue ……………………………………..………………………... 33

5. Results and evaluation …………………………...……………………………... 34
5.1. System working as (or not as) intended ……………..………………… 34

5.1.1. Generate metadata ………………………………….…………... 34
5.1.2. Fun and appealing ………………………………..……….……... 34
5.1.3. Easy to use and available to all …………...…………….……… 35

5.2. Comprehensible results ………………………………….……….……... 35
5.2.1. Matches …………………………………………………….……... 35
5.2.2. Game modes …………………………………………....………... 36

5.3. Confidence in results …………………………………………………….. 36
5.4. Testing …………………………………………………………………...... 37

5.4.1. Code testing …………………………………….………………... 37
5.4.2. Application testing …………….………..………………………... 37

5.5. Evaluate methodology and programming language …………..……... 38
5.5.1. Database ………………………………………………………...... 38
5.5.2. Node …………………………………………………..…………... 38
5.5.3. Vue ………………………………………………….……………... 38

6. Future work ………………………………………..………...…………………… 39
6.1. Unrealised ideas ………………………………………………..………... 39
6.2. Starting point for continuation of work …………………………………. 41

7. Conclusion ………………………………………………………………………... 43
8. Reflection on learning ……………………………………….…………………... 44

Table of figures

Due to the large volume of figures, all screenshots are included at the end of the
main body so as to not break up the flow of the report. Diagrams in section 5 are
included in their appropriate locations in the report.

1. Website screenshots …………………………………………………….………. 45
1.1. Login system screenshots …………………………………………....…. 45

1.1.1. Sign-up page without input ………………………………...……. 45
1.1.2. Sign-up page with input ……………………………………....…. 45
1.1.3. Home page …………………………………………………….…. 46
1.1.4. Forgotten password page ……………….………………………. 46
1.1.5. Reset password page ………………………...…………………. 46
1.1.6. Account settings page ………………………...…………………. 47
1.1.7. Delete account page ……………………………………….……. 47
1.1.8. Website menu …………………………………………………….. 48
1.1.9. Sign-up confirmation email …………………...…………………. 48

1.1.10. Confirmation email alert ………………………....………………. 48
1.1.11. Login failure message ……………………………...……………. 49

1.2. Multiplayer game screenshots ………………………….………………. 49
1.2.1. Multiplayer game menu ………………………….………………. 49
1.2.2. Waiting mode ………………………………………………..……. 49
1.2.3. Game countdown ……………………………………...…………. 50
1.2.4. Game page ……………………………………………….………. 50
1.2.5. Answers before submission …………….………………………. 50
1.2.6. Answers after submission ………………….……………………. 51
1.2.7. Match notification ……………………………………...…………. 51
1.2.8. Disabled input and skip button ……….…………………………. 51
1.2.9. Skip alert ……………………………………………………….…. 51

1.2.10. Multiplayer game information box ……...………………………. 52
1.2.11. Progress bar green …………………….…………...……………. 52
1.2.12. Progress bar amber ………………………………...……………. 52
1.2.13. Progress bar red ……………………………………....…………. 52
1.2.14. Other player quit alert …………………………...………………. 53
1.2.15. Multiplayer game results table ………….………………………. 53

1.3. Singleplayer game screenshots ………………………..………………. 53
1.3.1. Single-player game information box ………...…………………. 53
1.3.2. Single-player game menu ……………………….………………. 54

2. Code screenshots ………………………………………………………..………. 55
2.1. Login system code screenshots …………..……………………………. 55

2.1.1. The database credentials being imported from the .env file into
the file ‘db.js’ ………………………………………...……………. 55

2.1.2. A JavaScript promise in the file ‘db.js’ ……....…………………. 55
2.1.3. The database query function being imported into the file

‘server.js’ ………………………………………………………….. 55
2.1.4. The axios API request function being imported into a Vue

component …………………………………………………..……. 55

2.1.5. The URL of a POST request being determined in the file ‘auth.js’
………………………………………………………………...……. 55

2.1.6. The email credentials being imported from the .env file into the
file mail.js’ ……………………………………………………...…. 56

2.1.7. The URL of a the API being determined in the file ‘mail.js’ …. 56
2.1.8. An email template being read from the file ‘mail.js’ ………….. 56
2.1.9. The password strength function in the file ‘SignUp.vue’ …..… 57

2.1.10. The confirm password function in the file ‘SignUp.vue’ ……... 57
2.1.11. The is a string function in the file ‘SignUp.vue’ ………………. 57
2.1.12. The validation message for no input into a field ……………... 58
2.1.13. The validation message for bad input into a field …………..... 58
2.1.14. The validation message for correct input into a field ………... 58
2.1.15. The redirect function found in most Vue files ……………….... 58
2.1.16. An example of the redirect function in the HTML template …. 59
2.1.17. The Vue router ………………………………………………...…. 59
2.1.18. The redirect in new tab function in the file ‘SignUp.vue’ …….. 60
2.1.19. The redirect in new tab function in the HTML template in the file

‘SignUp.vue’ …………………………………………………….... 60
2.1.20. The hashing of a password in the file ‘server.js’ …………...…. 60
2.1.21. The creation of a sign up token in the file ‘server.js’ ………..... 60
2.1.22. The authentication of a password in the file ‘server.js’ ………. 61
2.1.23. The creation of a JSON web token in the file ‘server.js’ ……... 61

2.2. Matchmaking service code screenshots ……………………………..... 61
2.2.1. The main function with variable time intervals in the file

‘matchmaking.js’ ………………………………………………….. 61
2.2.2. The file ‘matchmaking.js’ checking that a user’s last heartbeat

was no more than 5 seconds ago …………………………….... 61
2.2.3. The grouping of users by their chosen game mode in the file

‘matchmaking.js’ ……………………………………………….… 62
2.2.4. The creation of a string to be used in an SQL statement in the

file ‘matchmaking.js’ …………………………………………….. 62
2.2.5. The file ‘matchmaking.js’ looping through each game mode and

then every other user …………………………………………… 62
2.3. Multiplayer game code screenshots …………………………………... 62

2.3.1. The addition of 1 hour to the data retrieved from the database in
the file ‘server.js’ ………………………………………………… 62

2.3.2. The current word index recovered from a partially completed
game in the file ‘server.js’ ………………………………………. 63

2.3.3. The matched and passed counts recovered from a partially
completed game in the file ‘server.js’ …………………………. 63

2.3.4. The already submitted answers recovered from a partially
completed game in the file ‘server.js’ …………………………. 63

2.3.5. The count of the other player’s answers recovered from a
partially completed game in the file ‘server.js’ ……………….. 63

2.3.6. Assigning of the game information in the file ‘Game.vue’ ….. 64
2.3.7. The HTML timer component in the file ‘Game.vue’, able to call

the methods startGame and delayGame ……………………... 64
2.3.8. The start game function in the file ‘Game.vue’ ……………….. 64

2.3.9. The delay game function in the file ‘Game.vue’ ………………. 65
2.3.10. The watch section of the file ‘TimerMultiplayer.vue’ ………..… 65
2.3.11. The increment time function getting the actual time in a UTC

format in the file ‘TimerMultiplayer.vue’ ………………………... 65
2.3.12. The getDifference function in the file ‘TimerMultiplayer.vue’ ... 65
2.3.13. Emission of ‘start_game’ in the file ‘TimerMultiplayer.vue’ ….. 66
2.3.14. The emission of ‘delay_game’ with the current time in the file

‘TimerMultiplayer.vue’ …………………………………………… 66
2.3.15. The file ‘TimerMultiplayer.vue’ redirecting the client to the game

results page ………………………………………………………. 66
2.3.16. The inputted answer being broken into an array of words in the

file ‘Game.vue’ ……………………………………………………. 66
2.3.17. The filtering of inputted words in the file ‘Game.vue’ ……….... 67
2.3.18. The connection to either the ‘queue’ room or the room by the

name of the token in th file ‘server.js’ ………………………….. 67
2.3.19. The player number strings determined in the file ‘server.js’ …. 67
2.3.20. The parsing of stringified arrays in the file ‘server.js’ ………… 68
2.3.21. The intersections between both player’s answer arrays in the file

‘server.js’ ………………………………………………………….. 68
2.3.22. The emission to the answer submitted socket if there was a

match in the file ‘server.js’ ………………………………………. 68
2.3.23. The emission to the answer submitted socket if there was not a

match in the file ‘server.js’ ………………………………………. 68
2.3.24. File ‘Game.vue’ listening to the answer submitted socket …... 68
2.3.25. The element-ui alert telling the players that they have matched

on a word in the file ‘Game.vue’ ………………………………... 69
2.3.26. The file ‘Game.vue’ redirecting to the results page if they

previous match was on the final word …………………………. 69
2.3.27. The file ‘Game.vue’ incrementing the matched count and

executing the next word function if the previous match was not
the last word …………………………………………………….… 69

2.3.28. The file ‘Game.vue’ emitting through the skip word socket ….. 69
2.3.29. The element-ui alert received by a player if the other player

skipped a word in the file ‘Game.vue’ ………………………….. 70
2.3.30. The emission to the other player skipped socket in the file

‘server.js’ ………………………………………………………….. 70
2.3.31. The code executed by the file ‘Game.vue’ upon receiving an

emission from the other player confirmed skip socket ……….. 70
2.3.32. The file ‘Game.vue’ emitting to the quit game socket and

redirecting to the results page ………………………………….. 71
2.3.33. The emission to the other player quit socket from the file

‘server.js’ ………………………………………………………….. 71
2.3.34. The code executed by the file ‘Game.vue’ upon receiving an

emission to the other player quit socket. ………………………. 71
2.3.35. The HTML code for the table in the file ‘GameResults.vue’

determining the icon at the start of the row ……………………. 72
2.3.36. The CSS of the colours for the background of the table in the file

‘GameResults.vue’ ……………………………………………….. 72

2.4. Result processing service code screenshots ……………………….... 73
2.4.1. The main function of the file ‘result_processing.js’ ………...... 73
2.4.2. The grouping of answers by their game mode in the file

‘result_processing.js’ ……………………………………………. 73
2.4.3. The object created for each word in ‘result_processing.js’ .… 73
2.4.4. The string created to be used in an SQL statement in the file

‘result_processing.js’ ……………………………………………. 73
2.4.5. The SQL statement that recieves a string in the file

‘result_processing.js’ ………………………………………..….. 74
2.4.6. The conditions for a word to be made available in the

single-player game mode in the file ‘result_processing.js’ ….. 74
2.5. Website code screenshots ………………………………………....…... 74

2.5.1. The contents of the file ‘netlify.toml’ ………………………….... 74
2.5.2. The use of the mobile checking function found in all Vue

components. …………………………………………………...… 74
2.5.3. The mobile check function in the file ‘mobileCheck.js’ …….… 75

3. Database screenshots ……………………………………………………..…… 76
3.1.1. The number of synonyms available for the single-player game

mode …………………………………………………………...… 76
3.1.2. The number of antonyms available for the single-player game

mode …………………………………………………………...… 76
3.1.3. The number of hypernyms available for the single-player game

mode …………………………………………………………...… 77
3.1.4. The number of multiplayer game that have been played …... 77
3.1.5. The number of users who played the multiplayer game …….. 78
3.1.6. The four synonyms that are available in the single-player game

mode ……………………………………………………………… 78
3.1.7. The synonyms for the word “cold” …………………………...… 78
3.1.8. The synonyms for the words “cold” and “tree” ……………….. 79
3.1.9. The number of matched antonyms ……………………………. 79

3.1.10. The number of skipped antonyms ………………………....….. 79
3.1.11. The number of antonym games …………………………...….. 79
3.1.12. The number of uncompleted antonyms …………………….… 80
3.1.13. The number of matched hypernyms ………………………...… 80
3.1.14. The number of skipped hypernyms ……………………………. 80
3.1.15. The number of hypernym games ………………………………. 81
3.1.16. The number of uncompleted hypernyms …………………....… 81
3.1.17. The number of matched synonyms ……………………………. 81
3.1.18. The number of skipped synonyms …………………………..… 81
3.1.19. The number of synonym games ……………………………..… 82
3.1.20. The number of uncompleted synonyms …………………….… 82

4. Miscellaneous screenshots ………………………………………………..…… 83
4.1.1. Wordnet antonyms for the word “cold” …………………......… 83
4.1.2. The API (server) and services (matchmaking and

result_processing) running on the Digitalocean server ….….. 83
4.1.3. The address of the website …………………………………..… 83
4.1.4. The website’s certificate ……………………………………...… 84
4.1.5. The default colours used by element-ui …………………….… 85

4.1.6. The Vue components, notably the files ‘Game.vue’ and
‘SinglePlayerGame.vue’ ………………………………………… 85

4.1.7. The ESLint and Prettier files ……………………………….…… 85
4.1.8. A copy of the .env file containing default values for the

environment variables ……………………………………...…… 86
5. Diagrams

5.1.1. Websocket diagram for users in the matchmaking queue 11
5.1.2. Matchmaking algorithm diagram …………………………….… 12
5.1.3. Websocket diagram for answer submission ………………..… 15
5.1.4. Websocket diagram for skipping a word …………………....… 16
5.1.5. Websocket diagram for quitting the game ………………….… 17

1. Introduction

The aim of the ‘game with a purpose’ project is to develop a tool that enables the
generation of metadata that a computer would find hard to create, but that a human
is well suited to. The tool is to be packaged as a game to collect the metadata of
associations between words. There are three word associations that this project
focuses on - synonyms (words with the same meaning, e.g. “cold” → “freezing”),
antonyms (words the opposite meaning, e.g. “empty” → “full”) and hypernyms (words
with a more general meaning, e.g. “chair” → “furniture”). The goals of this project is
to make a game that is both fun and appealing to play, while being efficient and
effective at gathering data. The tool should also be easy to use accessible to all. The
project consists of two games - a multiplayer game where two players agree on
synonyms/antonyms/hypernyms for a set of words, and a single-player game that
uses predefined associations to test a player’s knowledge of the English language.
The system is also to include a login system, requiring users to sign in before they
can play either of the games.

The multiplayer game is designed with the intent of it being used by those who
already possess a good understanding of the English language as both players may
have to enter several synonyms/antonyms/hypernyms before they can agree on a
match. On the other hand, the single-player game could be played by anyone with at
least a very basic knowledge of English as the player would only need to enter one
of the predefined word associations for each word they see. This could be useful for
an educational purpose such as helping non-native English speakers test their
knowledge of the language, or to help school children learn about word associations.
The metadata that is generated by the tool could be used in its raw form by
academics studying the English language, for word association dictionaries such as
a thesaurus, or for an API that returns metadata for a specified word.

A login system for the game is the first priority of the project. The main goal of the
login system is for it to be secure and safe, making sure that all user data is
protected where necessary. To login, a user will have to use an email address and
password as their credentials. A user must also have the ability to manage their
account, allowing them to change their credentials and to delete their account if they
so wish. To comply with the General Data Protection Regulation (GDPR), the system
collects as little data as possible from a user, asking for only their forename,
surname and email address. A user’s data can also be erased by deleting their
account, or by requesting that their data be removed in which case I would remove
their account from the system. So that the users are aware that their data is being
stored and they have the right for this data to be erased, a set of terms and
conditions were created which must be agreed to upon registering an account (see
Appendix D).

The single-player and multiplayer games are to be of a similar format - a player
chooses to play one of three game modes (either synonyms, antonyms or
hypernyms), and then has 2½ minutes to find 15 of these word associations. The
words are shown one at a time, and the player will enter answers until a correct
match is found. The player also has the option to skip a word if they so desire. The

1

key difference between the single-player game and the multiplayer game is how an
answer is determined to be a match. In the multiplayer game there are two players
simultaneously entering answers for the same word. Once both players have entered
the same answer, then a match has been created and they are moved on to the next
word. In the single-player game a player’s answer has to be one of the predefined
word associations to be a match. The inputs and matches of each game are to be
recorded, along with whether a word was skipped or if the game was prematurely
quit by a player. Once a game has finished, a result screen is shown to the player(s)
containing a log of the game.

The approach taken to this project was to first analyse the brief and decide on a
means of creating a multiplayer game. For two users to be able to play, they would
either have to share a device, or be able to play from two seperate devices. As the
players would need to be entering answers simultaneously without knowing what the
other player had entered, it was vital that they be able to play the multiplayer game
from different devices. To connect the devices, a server and database were set up to
communicate with each client device. The interface was then built as a web
application for ease of access.

This project was built on the assumptions that players would be able to quickly and
easily find synonyms, antonyms and hypernyms of words under a time limit. The
multiplayer game also assumes that one of the associations that both players enter
will be the same. However the largest assumption made by this project was that
players would be honest when entering answers into the game, and not coordinate
with another player to enter false answers into the multiplayer game.

To summarise, the main goals of this project have been to develop a tool that
contains a login system that securely stores and transmits a user’s data, a
multiplayer game that collects associations between words, and a single-player
game that uses predefined associations to test a player’s knowledge of the English
language.

2

2. Background

Some metadata is hard or impossible for a computer to generate. Objective topics
with a lot data allow a computer to define relationships between entities using either
algorithms or artificial intelligence. In the case of word associations, a system could
be fed data such as definitions and word types, however it would most likely be
unreliable and each association it created would have to be confirmed by a human.
This is because word associations are subjective, and hence are more suited to a
human brain that is better at this type of understanding and processing. Word
associations such as those which this project caters for are an example of this. This
metadata can be used for multiple purposes, but particularly on the internet to create
links between topics. For example, when somebody uses Google to search for a
word, the search engine could also find sites using synonyms of the search term.

Likely stakeholders in this problem are those who require these word associations
for their business/organisation. This could be those who study the English language
at a higher level and want access to multiple associations for a single word. The data
could also be useful to software developers wishing to create applications such a
thesaurus API (and hence need synonyms).

There are already several online tools that are able to give word associations upon
request. These range from thesaurus websites such as Thesaurus.com to word 1

association APIs such as WordsAPI . However neither of these sites disclose how 2

they acquire this metadata, leading to the assumption that they come from a static
pre-made list. There are a few word association games on the internet such as the
synonym game at Learning Games for Kids.com , however these do not collect data 3

in the same way as this project, and instead simply test a player’s knowledge of the
English language (alike to the single-player game of the project). The tool that this
project aims to extend is the Princeton University lexical database ‘Wordnet’ - an API
which contains word associations such as synonyms, antonyms and hypernyms.
These associations were originally to be used in the single-player game as the
criteria for a match, however upon investigation of the API it was decided that the
Wordnet database was insufficient and would not be effective in supporting a
single-player version of the game. For example the word “cold” only has the antonym
“hot” [fig 4.1.1], meaning any other antonyms such as “warm” and “scorching” would
not be accepted. Therefore the decision was made to use the relations generated by
the multiplayer game to support the single-player game, rather than relying on the
relations from Wordnet.

Once the decision had been made to create the game as a web application, the next
step was to decide on a programming language. The obvious choices for the
backend were PHP or Node.js. Though PHP is less complex, Node.js is much more
up to date having been released in 2011 (Node.js, 2019) compared to 1995 (PHP,
2019). Node.js is also considerably faster and more lightweight than PHP, allowing
more demanding processes to be run a small server. Node.js is a JavaScript runtime

1 https://www.thesaurus.com/
2 https://www.wordsapi.com/
3 https://www.learninggamesforkids.com/vocabulary-games/synonyms.html

3

https://www.thesaurus.com/
https://www.wordsapi.com/
https://www.learninggamesforkids.com/vocabulary-games/synonyms.html

environment used to run JavaScript files (.js), and is commonly used for modern
backend servers. To keep the project consistent, the frontend of the project was also
run through a JavaScript framework. The two frameworks that had the greatest
appeal were React and Vue.js. Despite having some limited previous experience
with React, the decision was made to use Vue.js due to it being more up to date and
compatible with the latest JavaScript version ES6.

The tools required for this project were a database to store all of the system and
user’s data, and the means to release the tool as a live website that anyone could
access. While a non-relational database has advantages such as more efficient
storage of JavaScript Object Notation (JSON) data structures (a common occurrence
in web applications), a relational MySQL database was chosen as the initial schema
of the database looked to be fairly consistent. This was hosted on an Amazon Web
Services (AWS) server. To run the backend code such as login verification, a
backend server was needed that could run a Node.js environment. There are many
companies who sell space on a server, with the only notable differences between
them being the price and then customer support levels. DigitalOcean provided a
good balance of these two factors, and so a Ubuntu Node.js droplet was rented from
them. To host the frontend of the system, a global deployment tool was needed. For
this Netlify was chosen for two reasons - firstly it is free, and secondly the site can be
deployed directly from a GitHub repository, automatically redeploying the website
whenever a change is detected to the branch that is being deployed.

To manage version control of the project, GitHub was used to store the code
repository. The branch ‘dev’ was used for production, while various other branches
such as ‘game’ were used for development. These could then be merged back into
the ‘dev’ branch. Before a merge was committed, Netlify would test the merge by
building the frontend in a test environment. If the build was successful, the merge
could be completed and Netlify would automatically deploy a fresh build of the
frontend. The backend would have to be pulled to the server manually and any
processes restarted. The GitHub repository of the project can be located at
https://github.com/WillCooter/final-year-project .

Due to this project handling user data such as emails through the login system, it
was vital that the Cardiff University Research Integrity training be completed (see
Appendix A). This aided in the understanding of the responsibilities of storing user
data and the need for privacy.

Finally, the packages used for this project are listed below. These can also be seen
in the ‘package.json’ files in the ‘frontend’ and ‘backend’ directories of the code:

Languages:

● Backend written in Node v10.7.0 (Node.js, 2018)
● Frontend written in Vue v3.3.0 (Vue.js, 8 th January 2019)
● MySQL v5.6.40 (MySQL, 21st January 2019)

Backend packages:

● Bcrypt v2.0.0 - to hash passwords (Bcrypt, April 2019)

4

https://github.com/WillCooter/final-year-project

● Crypto v1.0.1 - to create random tokens (Crypto, 2017)
● Express v4.16.3 - to allow GET and POST requests from the frontend

(Express, November 2018)
● Jsonwebtoken v8.2.1 - to create web tokens after login (Jsonwebtoken, March

2019)
● Lodash v4.17.11 - data manipulation functions (Lodash, 12 th September 2018)
● Moment v2.24.0 - functions involving time (Moment.js, January 2019)
● Mysql v2.16.0 (version of the package, not the MySQL) - to query the

database
● Nodemailer 4.7.0 - to send emails from a gmail account (Nodemailer, 19 th

April 2019)
● Socket.io v2.2.0 - to use websockets in the API (Socket.io, 29 th November

2018)

Frontend packages:

● Axios v0.18.0 - to send GET and POST requests to the backend API (Axios,
August 2018)

● Element-ui v2.5.4 - frontend components such as buttons (Element-ui, 25 th
August 2019)

● Lodash v4.17.11 - data manipulation functions (Lodash, 12 th September 2018)
● Moment v2.24.0 - functions involving time (Moment.js, January 2019)
● Password-strength-utility v1.1.6 - password strength when

registering/changing password (Password-strength-utility, 2017)
● Socket.io-client v2.2.0 - allow websockets to connect to the API

(Socket.io-client, December 2018)
● Vue v3.0.0 - vue client (Vue, 8 th January 2019)

5

3. Specification and design

The development of the project can be broken down into 6 keys sections:

● A login system which must allow users to sign up with an email address, use it
to log in with their chosen password, and give the user the ability to edit their
credentials or to delete their account.

● A matchmaking system that can find 2 users wishing to play the multiplayer
game, and start a game for them.

● A multiplayer game where 2 players have to agree on synonyms, antonyms or
hypernyms for 15 words.

● A result processing system that can use the results of the multiplayer games
to create answers for the single-player game.

● A single-player game where a player has to find predefined word associations
for 15 words.

● Setting up the server and website.

3.1 Login system

3.1.1 User perspective

The login system was the first part of the project to be developed. This had to be
secure enough to comply with GDPR, whilst also remaining easy to use so as not to
discourage potential users with a long sign-up process. From a user’s perspective,
the first page they would see upon accessing the website is the sign-up page [fig
1.1.1 and fig 1.1.2]. This allows a user to register an account, taking only necessary
details from them. These are the user’s forename, surname and email address. The
user is also required to enter a password and then to confirm it by typing it in again in
a separate field of the form. If the strength of the password is not above a certain
threshold it will be rejected. At the bottom of the page is a checkbox for the user to
accept the terms and conditions of registering an account (see Appendix D), which
can be accessed by clicking on the words ‘terms and conditions’, highlighted in blue.
Once all fields have been filled with valid input (e.g. a valid email address) and the
terms and conditions checkbox has been ticked, the user can register their account.

After registering an account, an email will be sent to the email address used by the
user to sign up. This contains a unique link which upon being clicked takes the user
back to the website and informs them that their account has been set up. The user
can now log in with their email address and password, which will take them to the
homepage of the website [fig 1.1.3]. If a user can not recall their password, there is a
link on the login page that takes a user to the ‘forgotten password’ page [fig 1.1.4].
Here they can enter their email address, which will send an email to the account
registered with that email address if it exists. This email will contain a unique link
alike to the one sent for the account verification, except this time it takes the user to
a page where they can enter a new password [fig 1.1.5]. Similar to when registering,
the user will have to enter their new password twice and it will have to meet a certain
strength criteria.

6

Once a user has logged in successfully, they are now able to manage their account.
The two parts of an account a user can edit are their email address and password
via the ‘account settings’ page [fig 1.1.6]. If a user wishes to change their email
address, they must enter the new email address and their current password. A
confirmation email is then sent to the new address containing a unique link, which
upon being clicked confirms the change and logs the user out. The user must then
log back in with their new address to continue using the account. For a user to
change their password, they must enter their current password along with their new
password and a repetition of their new password. This is also validated with the
password strength criteria alike to when registering and when having forgotten one’s
password.

Should a user wish to delete their account, they must go to the ‘delete account’ page
[fig 1.1.7], accessed by a button at the bottom of the ‘account settings’ page [fig
1.1.6]. Here they must re-enter their email address and password to confirm that
they want to delete their account (as if they are logging in). If they are successful, the
user is redirected back to the login page. If a user chooses to logout of their account
(done via the menu in the top right of the page [fig 1.1.8]) then they will also be
redirected to the login page, but their account will remain valid.

3.1.2 System behaviour

The system itself functions mostly through POST requests to send data to the
system’s API. The API then uses this data to query the database, and returns the
appropriate data to instruct the client (the user’s browser) on what to do next. When
a user registers, the client sends a POST request to the system’s API with the new
credentials. This request is only sent if all fields of the form have been filled, the
password and its confirmation are identical, the terms and conditions checkbox has
been ticked, and the password has met a strength threshold determined by the
package password-strength-utility . Upon receiving the credentials, the API checks
that the email address is of a valid syntax, normalises the inputs (e.g. forname
“wiLL-ia@m” would become “William”), and hashes the password using the bcrypt
package. The API then creates a new entry in the users table of the database with
all of the pre-mentioned data, along with the account creation time and date. After
this, the API generates and sends an email to the inputted email address. The email
contains a unique link using the crypto package to generate a random 20 byte token
and converting it to hexadecimal [fig 1.1.9]. If the email address is already in use, an
email is sent to the address asking whether they tried to register and informing the
user that they already have an account. The API then sends a response to the client
which generates an alert [fig 1.1.10] informing the user that a confirmation email has
been sent to their email address. The alert is identical regardless of whether the
email address is in use as this stops attackers from using this system to determine if
a particular email address has an account. Once a user clicks the link in this email,
upon creation of the page a POST request is sent to the API containing the token
used to make the link unique. The API then updates the database to set that user as
‘verified’.

7

When a user attempts to log in, a POST request is sent to the API with the inputted
email and password. The first task is to check if there is an account with this email
address. If an account exists, then the API uses the bcrypt package to compare the
user’s stored hash of their password against the password just entered. If all criteria
are met, the user is redirected to the home page. If not, a response is returned to the
client, not giving away which of the inputted credentials were wrong for security
purposes [fig 1.1.11].

If a user cannot recall their password and chooses to reset it, submitting their email
sends a POST request to the API with the inputted email address. The API then
generates and sends an email to the inputted email address. The email contains a
unique link generated using the crypto package to generate a random 20 byte token
and converting it to hexadecimal. Once the link is followed, the user can input a new
password. If these are identical and meet the determined password-strength-utility
threshold, another POST request is sent to the API, which updates the user’s
password. Once this is completed, the API sends a response to the client, redirecting
the client back to the login page.

In the account settings are the options for a user to change their email address or
their password. If a user enters their password and a new email address, submitting
these sends them to the API via another POST request. The API checks that the
address is of the correct syntax, normalises it by changing all characters to
lowercase, authenticates the password by using bcrypt to compare the inputted
password against the stored hash of the user’s password, and checks that the email
address is not the user’s current email address. The API then checks if the email
address is already in use by another user. If it is, an email is sent to the address
telling the user someone just tried to use their email and asking if it was them. If the
email address is not in use, a confirmation email is sent with the same method as
when registering for the first time - using a hex token to create a unique link. If
instead a user is attempting to change their password, then a POST request is sent
only if the new password and it’s confirmation are identical and meet the
password-strength-utility threshold. If the API is able to authenticate the user’s
current password, it uses bcrypt to create a hash of the new password, and then
updates the database. It then returns a response to the client which determines the
message displayed by the frontend (either a successful or unsuccessful password
change).

Should a user wish to delete their account, the process is similar to logging in as it
requires the email and password. However the API also checks that the email is the
same as the one that the user logged in with (i.e. a user can only delete the account
that they have logged in to). If all checks are valid then the database is updated and
that user can no longer use those credentials to log in. A response is then sent to the
client forcing it to remove it’s login token and redirect to the login page.

3.1.3 Algorithms and architecture

The frontend of the application is written as Vue.js components (.vue). To create
elements such as buttons and forms, the element-ui package is used. These are

8

more aesthetically pleasing than the standard HTML components, and provide
additional functionality such as being able to set syntax rules for form inputs. This is
used whenever the user has to enter a new email address as a preliminary check,
however a regex test is also done on the API to guarantee the email address is of a
valid format. In the login system all POST requests are bound to buttons that are
disabled until the relevant form has been completely filled in. The API is an express
app that can receive GET and POST requests sent to the API’s http address. The
API can then use the MySQL package to send queries to the database. The
database credentials are stored in an .env file, which also contains the environment
variables and credentials for the gmail account used to send emails. When the API
recieves a particular request, it contains code to be executed upon that request,
before returning a JSON object to the client. Each JSON response will always
contain a key ‘status’ with the value true or false to tell the client whether the
request was a success.

3.1.4 Constraints

The most obvious constraint of the login system is that a user must have a valid and
accessible email address to make an account. The only solution to this would be to
have no login system at all, or to use a unique identifier such as in a username
based system. However in the present day it is very common to own an email
address, and it can help to prevent the use of bots. Having a login system also
restricts the system as a user must sign up to play - a process that requires them to
fill in several fields, confirm that they have read a page of terms and conditions, and
then verify their email address. This process could deter some potential users from
the game if they do not wish to give out their details. However it is good to have a
login system as it can help to prevent bots using the site. It also allows results to
recorded for individual players, allowing for future in-game features such as a
leaderboard and records of previous games.

3.2 Matchmaking service

3.2.1 User perspective

Once a user has registered an account and is logged in, they now have the option to
play either the single-player game or the multiplayer game [fig 1.1.3]. If the user
chooses to play the multiplayer game then they must first have another user to play
with. The project brief instructed that a user be “automatically matched with a
random partner”. This means that the system must be able to match any users who
wish to play the multiplayer game into pairs and create a game for them.

From a user’s perspective, one they have selected to play the multiplayer game they
are then presented with three game modes [fig 1.2.1] - synonyms, antonyms and
hypernyms. Below each game mode is a counter to show the number of players who
are currently queueing for this game mode, enabling the user to make their choice
based on the likelihood of being immediately matched with another player. Once the
user has selected a game mode, they join a queue and the page enters into a

9

waiting mode [fig 1.2.2]. As soon as the system finds another player queueing for the
same game mode, the players are matched and are both redirected to their game.

3.2.2 System behaviour

From the system’s perspective there are two main things happening here. The first is
the client displaying the number of players queueing for each game mode. When a
user joins the queue for a game mode, a POST request is sent to the API adding the
user to the queued_users table in the database. After this another POST request is
sent every 2 seconds to the API as a “heartbeat” to let the API know that the user is
still in the queue. Seperatly running on the Digitalocean droplet is a second file
‘matchmaking.js’ which shall be referred to as the ‘matchmaking service’ [fig 4.1.2].
This checks that the most recent heartbeat is no more than 5 seconds old, and if it is
then it removes the user from the queue by marking their entry to the queued_users
table as invalid. Also being sent every 2 seconds is an emission from the client to the
API via a websocket. Websockets allow data to be pushed from the API to the
frontend client without the frontend sending a request for the data. The client emits to
the API that is is in the queue via the inQueue socket once every 2 seconds. The
primary API then gets all users who are queued from the database and emits the
data through the queueStatus socket, back to any frontend clients who are
listening to this socket. The socket is only received by the multiplayer page, and
uses the data to display the number of users queued for each game mode. All clients
who are on this page will be listening to the queueStatus socket in the queue
room [fig 5.1.1]. They will then receive the number of players in each game mode
and update their values accordingly.

10

[Figure 5.1.1] Websocket diagram for users in the matchmaking queue

The second task that the system is performing is matching the queued users
together. As well as maintaining the queue of users for the multiplayer game, the
matchmaking service also pairs users together so that they can play the game. It
does this by retrieving every valid entry from the queued_users table, splitting them
into their respective game modes, and then matching every odd user with the next
even user in the queue [fig 5.1.2]. These users are then marked as matched in the
queued_users table, and new entries are added to the multiplayer_games and
multiplayer_answers tables.

11

[Fig 5.1.2] Matchmaking algorithm diagram

3.2.3 Constraints

There are currently two known constraints of this solution. The first is that there is
currently no way to leave to matchmaking queue except via refreshing the page. This
is because the waiting mode [fig 1.2.2] is a fullscreen element-ui component that
disables use of the page until a match has been found and the user has been
redirected. The second constraint is an untested theory that some users who have a
very poor internet connection may not be able to keep up with sending a heartbeat
request every 2 seconds. If their connection goes down for more than 5 seconds, the
matchmaking service will remove the user from the queue and they will have to
rejoin the queue.

3.3 Multiplayer game

3.3.1 User perspective

Once the user has been matched with another player, they will both be redirected
from the multiplayer menu page to to the game. Both users will then see a
countdown of up to 10 seconds before the game begins [fig 1.2.3]. This countdown
will be in sync for both players, and the maximum value they see will depend on how
quickly they are redirected to the game.

The game page [fig 1.2.4] has several pieces of information for the user, and several
actions that the user can perform. The piece of information they are likely to see is

12

the word that they are meant to find synonyms/antonyms/hypernyms for. Below the
input field is the definition of this word. It is important that the word is the largest text
in the game as it should be the centre of the player’s thoughts. When a player thinks
of an answer, they can enter it into the input field, submitting the answer by either
clicking the button at the end of the field, or by pressing the enter key on the
keyboard. Multiple answers can be submitted at once if separated by spaces, and
the answers are normalised by the system. If any of the answers entered are the
same as the word itself or the same as any of the words in the definition, the answer
will not be recorded. Those that are recorded will appear in the answers table in the
bottom right of the screen [see fig 1.2.5 and fig 1.2.6 for an example].

Once the system detects that both users have entered the same answer for a word,
they will both be moved on to the next word. They will also both receive a green
notification [fig 1.2.7] at the top of the screen telling them that they matched and
what the answer that they matched with was. The ‘matched’ counter on the right of
the screen will also be incremented. Both users have the option to skip a word at any
time (unless it is the final word). If player 1 skips a word, then their input field and the
buttons on their screen will be disabled [fig 1.2.8], and they will have to wait for
player 2 to confirm an alert telling them that the first player has skipped [fig 1.2.9].
Once the alert has been dismissed by player 2, both players will be moved on to the
next word.

On the right of the screen is a box containing several pieces of information that are
not critical to the user playing the game, but may help a user decide whether to skip
a word or to persist with a word [fig 1.2.10]. Information displayed in the box includes
the number of the current word and how many are left to go, the definition of the
game mode (e.g. if playing synonyms, it will read “words with the same meaning,
e.g. fast → quick”), the number of answers entered by the other player for this word,
and the number of words that have been passed or matched so far during the game.
All of these are updated in real time.

At the top of the screen is a progress bar that gradually decreases as the 2½
minutes of game time decreases. To the left of the progress bar is the remaining
time written in minutes and seconds. The colour of the bar and text varies depending
on the time left in the game - green for the first half of the game, amber for the third
quarter, and red for the final quarter [see fig 1.2.11, fig 1.2.12 and fig 1.2.13].

Beneath the list of answers in the far bottom right of the screen is the quit button,
allowing either player to quit the game at any time. This will force both players to the
results page, giving the player who did not quit an alert telling them that the other
player quit the game [fig 1.2.14]. This is one of 3 ways for the game to end. The
second is for the users to skip and/or match their way through all 15 words in the
game. The third way is for the players to run out of time. In all cases, the players are
then redirected to the results page.

The results page displays the results of the game to both users in a table [fig 1.2.15].
The table contains a row for each word, also showing the match (if there was one)
and both player’s answers. The rows are colour coordinated - green if there was a

13

match, yellow if the word was skipped, and red if the word was never reached (either
because the players ran out of time or one of them quit the game). At the top of the
screen is a tally of each of these 3 outcomes.

3.3.2 System behaviour

The page is created using a unique token generated by the matchmaking service
when the match is made. This is used in the url of the game so as to give each game
a unique link. When the page is created (either by redirecting from the matchmaking
or by refreshing the page when in game), the client sends a POST request to the API
asking for the game information. The API then retrieves the game information from
the multiplayer_games table, as well as retrieving the game’s current state from
mutliplayer_answers encase the game was already in progress and a user
refreshed the page. This information is then returned to the client. One of the pieces
of information that is retrieved is the end time of the game. This is a time in
Coordinated Universal Time (UTC) decided upon by the matchmaking service, and is
2 minutes and 40 seconds after the match was made. Once both players have been
redirected to the game after being matched, if there is more than 2 minutes and 30
seconds until the end of the game, the players will see a countdown on their screen.
This means that both players will be in sync as the game will not start until a pre
chosen UTC date and time 10 seconds after that match is made.

The words for the game are retrieved from the database by the API at the start of the
game. These words are pre-selected at random by the matchmaking service. Once
the client possess the words, they are stored in an array, and a counter value is used
to index the array. Answers can then be entered into the input field, and when
submitted they emit the word and that game’s metadata to the submitAnswer
websocket. So that multiple games can go on at once, each time a websocket is
used in game, it is submitted to a room by the name of the game’s unique token.
When the API receives the broadcast that a word has been submitted, it compares it
to all of the other player’s previous answers. It then emits the result through the
websocket answerSubmitted to both players [fig 5.2.1]. Depending on whether
there was a match, 2 things can happen. If there was a match, both players receive
a notification and are moved on to the next word. If there was not a match, then the
player who did not submit the answer will have their count of answers submitted by
the opposing player incremented. If a match is made on the final word in the game,
then both users are redirected to the results page.

14

[Fig 5.2.1] Websocket diagram for answer submission

If a player (e.g. player 1) decides to skip a word by clicking the skip button, the
game’s metadata is emitted to the API using the skipWord websocket, once again
in the room by the name of the game’s unique token. Once the API receives this
information, it updates the database accordingly and send out an emission through
the websocket otherPlayerSkipped , which sends out to everyone in the room
except for the sender of the original skipWord . As there are only 2 players in each
room, it is just the opponent who receives the otherPlayerSkipped broadcast.
Upon receiving this broadcast, player 2 will see an alert telling them that the other
player has skipped the word. As soon as player 2 dismisses the alert, they are
moved on to the next word, and a second broadcast is sent to the API, but this time it
is through the confirmSkip socket. Once the API recieves this, it send a final
broadcast back to player 1 otherPlayerConfirmedSkip . This tells player 1 that
the skip has been accepted, and it moves player 1 on to the next word [fig 5.2.2].

15

[Fig 5.2.2] Websocket diagram for skipping a word

The timer functions by comparing the actual UTC time to the game termination date
once a second. It then calculates the difference and displays this as minutes and
seconds. It also takes the total value in seconds and divides it by 150 (2½ minutes =
150 seconds) to get the percentage value for the progress bar. Once the number of
minutes and seconds has reached 0, both users are redirected to the results page.

If a player (e.g. player 1) quits the game, the client emits the game’s metadata to the
API via the quitGame websocket. It then redirects player 1 to the results page. The
API then updates the database, and emits to the otherPlayerQuit websocket to
player 2. Upon receiving this, player 2 will be redirected to the results page and will
see an alert telling them that the other player quit [fig 5.2.3].

16

[Fig 5.2.3] Websocket diagram for quitting the game

Upon creation of the results page, a POST request is sent to the API asking for the
game’s results. The API then gathers the relevant data from the
multiplayer_answers table, and sends it back to the client, where it is displayed
in a table.

3.4 Result processing service

3.4.1 User perspective

As mentioned in the ‘background’ (see Section 2), the lexical dictionary Wordnet
which this project was originally designed to extend does not provide adequate word
associations to supports a single-player game. Instead a decision was made to use
the results of the multiplayer game to support the single-player game. This means
that the single-player game functions by showing words that have an adequate
repository of synonyms/antonyms/hypernyms, and validating answers based on
whether they are in this repository of word associations. From the user’s perspective,
when playing the single-player game, the answer to a word is either accepted or
denied. Some answers that are more uncommon may not be accepted. An example
of this situation would be if the word “cold” has the recorded synonyms “chilly”,
“freezing” and “bitter”, but the player enters the word “icy”. It is a synonym, but not
one that the system is aware of, and hence it would not be registered as a match.

17

3.4.2 System behaviour

The third and final file running on the Digitalocean droplet is the result processing
service (result_processing.js) [fig 4.1.2]. Once every 10 seconds, this service finds
any previously unprocessed answers from the multiplayer game and puts them
through a set of criteria to determine whether there is enough data for the word to be
included in the single-player game. Currently the criteria for a word to be available in
single-player are:

● The word must have occurred and a match found for the word at least 5 times
in multiplayer games

● The word must have less than a 50% skip rate
● The word must have at least 2 unique matches

These criteria are currently relatively low, as a word could for example have 10
common synonyms but only 2 would get a match in the single-player game as they
are the ones that have been recorded. However these criteria have been designed to
be easily scalable so that when more multiplayer games have been played, the
single-player game logic can also be improved.

3.4.3 Constraints

Currently the result processing service is able to take into account whether a word
has been matched or passed, but it does not consider how fast these decisions were
made. A match that is found on both player’s first answer is considerably stronger
than a match found after both players have entered several words and eventually got
lucky. The system also does not consider the time that it takes for the answers to be
entered, but could be programmed to take this into account. This would involve
logging the time of every answer submission and at the end of the game calculating
the relative times.

3.5 Single-player game

3.5.1 User perspective

From a user’s perspective, the single-player game is almost identical to the
multiplayer game. The only difference in the interface is that the game does not need
to show the number of answers submitted by the other player as there is only one
player [fig 1.3.1]. As the words for the single-player game rely on the results of the
multiplayer game, there will always be a likelihood that there will not be 15 words
available for each game mode. At the time of writing this, with the current criteria in
place there are 4 synonyms [fig 3.1.1], 8 antonyms [fig 3.1.2] and 3 hypernyms [fig
3.1.3] that can be played in the single-player game. This is a problem that would
become less important as the multiplayer game is played more and eventually there
would be at least 15 words available for each game mode in single-player.

18

3.5.2 System behaviour

Due to there only being one player in the single-player game, there is no need for
websockets. Instead all functions that require communication with the API are done
via POST requests. The single-player menu where a user can select whether they
want to play the synonym, antonym or hypernym gamemode does not need to use
websockets as it does not need to show how many users are queueing for each
gamemode. Instead it sends a POST request upon creation of the page to find out if
there are words available for that gamemode in single-player. Currently, if there are
less than 5 words available for a gamemode, the button is disabled and a user is
unable to select that game mode [fig 1.3.2].

The functions that are run by the API for the single-player game are similar in most
aspects to those for the multiplayer game, expect that that they do not have to deal
with the complications of having 2 different players, and the tables accessed are
singleplayer_games and singleplayer_answers . The main difference
however is that there is no matchmaking function to decide which words will be in the
game, generate a token and allocate an end time. Instead this is done by the API
upon the user’s selection of a gamemode using the startSinglePlayerGame
POST request.

3.6 Website

3.6.1 User perspective

The game is available at the website https://werdz.fun. This is a short and easy to
remember domain. The name of the game is “Werdz” - a comical misspelling of
“words”. The domain extension is .fun for two reasons - firstly it is cost effective
compared to a domain name such as werdz.com , and secondly because it
emphasises that the project is a game by using the word “fun” as the extension.

3.6.2 System behaviour

The frontend of the project is run at https://werdz.fun on Netlify, which automatically
runs the command yarn build to build a production variant of the frontend. The
backend of the project is run at http://api.werdz.fun on Digitalocean. To start or stop
any of the three files running on the droplet, a developer must run first ssh onto the
server. The files are run using pm2 - a Node.js process manager. To start a process,
a developer must be in the correct directory and use the command pm2 start
file.js , where ‘file.js’ can be replaced with a filename. After this, the process can
be stopped with the command pm2 stop file.js and restarted with the
command pm2 restart file.js . If changes are made to the code, then the
developer must first use git pull to pull the changes from GitHub, and then run
pm2 restart all to restart all processes.

To make sure that the website was secure, it was vital to obtain a certificate so that
any data being sent from the client to the website would be encrypted [fig 4.1.4]. This
was particularly important when dealing with user credentials such as emails and

19

https://werdz.fun/
https://werdz.fun/
https://werdz.fun/
http://api.werdz.fun/

passwords, particularly because the passwords are hashed after they have reached
the API. This also develops trust with the users of the system as they will be able to
see that the website has a secure ‘https’ address [fig 4.1.3], and their browser will
not warn them that the site may be dangerous.

3.6.3 Constraints

The greatest constraint of the game being a web application is that it requires a
steady internet connection to play. However it is very common in this day and age to
have easy access to the internet via WiFi, ethernet or mobile data.

20

4. Implementation

4.1 Login System

To fully understand the implementation of this project, a basic understanding of the
frontend framework Vue.js (see Appendix B) and the architecture of the database
(see Appendix C) is required.

4.1.1 Database queries

The login system is the most code-heavy part of the project, with 10 different POST
requests and 9 Vue pages. However the majority of this code is relatively simple,
consisting mostly of POST requests which ask the API to check various credentials
against those in the database, update the database accordingly, and return the
appropriate values. For the API to be able to query the database, a universal
database query function was created in the file ‘db.js’. In this file, the database
credentials are accessed from the .env [fig 2.1.1] containing the environment
variables, and these are used to first connect to the database and then send the
query. The function also handles errors and bad queries by using a JavaScript
promise [fig 2.1.2]. Promises are used to make sure an asynchronous function
returns a value by promising this value to the process that executed the function.
The promise then resolves the query results if it has been successful, and rejects to
the promise if there was an error. This function can then be imported and run
anywhere in the backend [fig 2.1.3], but it must always be predated by await to tell
the system to wait for the promise’s response (e.g. const user_id = await
db.qry(`SELECT user_id FROM users WHERE email = ?`,
[req.body.email])). The nodemailer package already protects against SQL
injection by checking any variables that inserted into the query using question marks.
If the value has dangerous text that could be malicious, then the statement is not
executed and an error is returned.

4.1.2 POST requests

For the client to be able to send POST requests to the API, the axios package is
used. The function for a POST requests is imported from the file ‘auth.js’ in the
frontend [fig 2.1.4]. Here the URL is defined based on the Node environment [fig
2.1.5] - if the environment is development then the base URL is
‘ http://localhost:8080 /’, and if the environment is production then the base URL is
‘ https://api.werdz.fun/ ’. The endpoint is then added (it is fed to the function from the
vue page) along with the method (POST or GET) and the data object that is passed
with the request. For this system only POST requests are used as they send the
data as metadata whereas a GET request sends the data as part of the url, making it
less secure.

4.1.3 Emails

A key part of the login system is the ability for the system to send emails to a user.
There are 5 possible emails the system can send - a confirmation email for a user

21

http://localhost:8080/
https://api.werdz.fun/

signing up, a warning email telling a user someone just tried to sign up with the email
address they use for their account, a confirmation email for when a user changes
their email address, a warning email telling a user someone just tried to change their
email to the email they use for their own account, and finally the password reset
email. These are all specified in the ‘mail.js’ file, and all use the same newMail()
function. This is similar to the database query function as it uses credentials from the
.env file to send an email [fig 2.1.6]. It also has similarity to the POST request
function as it must first use the Node environment to determine whether links in the
emails should use the localhost address or website address [fig 2.1.7]. The email
bodies are imported from HTML templates in the templates directory of the backend
[fig 2.1.8], which have variables such as the recipient's name and unique links such
as a a password reset link.

4.1.4 Registering input validation

On the register page where users sign up for the first time, when defining the Vue
component data, 3 validation methods are also specified for the input fields. The first
is passwordStrength() [fig 2.1.9] - this uses the password strength score
generated by vue-password-strength-meter , and provided the strength is above 1
(out of a maximum of 5) then the password is accepted. Originally the validation
required the strength to be over 2, however upon feedback from users the
requirements were too high compared to other websites. A password strength of
over 1 still filters out most common passwords such as single words and common
phrases. The second validation is confirmPassword() [fig 2.1.10] - this checks
that the second entry of the password is identical to the first. The final validation is
isAString() [fig 2.1.11] - this checks that the forename and surname fields do not
contain any characters other than letters and spaces. It does this with a regex test of
the form const re = /^([a-z]+\s)*[a-z]+$/ - the first part ^([a-z]+\s)
allows the use of uppercase letter and spaces, and the second part [a-z] allows for
the use of lowercase letters. When the data is declared after the validation methods,
the rules for each input field are also defined. Each rule has a criteria, a warning
message, and trigger to cause that message to be displayed. For example, the
forename field has 2 rules - the first is that the field is required and will display a
warning message on ‘change’, which means when the message will be displayed
whenever the input field is empty. The second rule is the isAString() message
defined earlier. The warning message for this is displayed on ‘change’ and on ‘blur’,
meaning it will also be displayed when a user clicks out of the input field. These rules
are then processed by the element-ui package, and changes the colour of the input
fields accordingly [see fig 2.1.12, fig 2.1.13 and fig 2.1.14].

4.1.5 Redirects

The majority of the Vue components contain the method redirect(location) [fig
2.1.15 and fig 2.1.16] which redirects the user to another page on the site. The
location is defined by the page’s name in the routing index [fig 2.1.17]. However the
sign up page contains a redirect to the page containing the sign up terms and
conditions. Originally, clicking this link would redirect the user straight to this page,
meaning that any input they had entered to the form would be lost when the user

22

returns to the page. The easiest way to solve this was to have the link open in a new
tab. This is done by first defining the route as a variable, and then using the route’s
address in a new tab [fig 2.1.18 and fig 2.1.19].

4.1.6 Timeline of work

The first week of the project was spent setting up a development environment. This
involved setting up an AWS relational database, creating a backend API using the
express package, setting up the frontend Vue client, creating a .env file and config to
allow the data inside it to be accessed, and setting up a GitHub repository for the
project. Once the development environment was initiated, the next step was to set
up communication between the frontend and backend via the ‘auth.js’ file (see
Section 4.1.2). After this, the login system could start to be developed. The first task
was to research valuable features of a login system, and those that appeared to be
most vital were password hashing, confirmation emails, and giving the user the
ability to manage their account post sign-up. The first page that was developed was
the login and registering page. These were on the same page so that if a user
entered details into one form and then switched to the other, when they return to the
original form their input would still remain. Once a user had inputted their details, the
API would hash the password using the bcrypt package [fig 2.1.20], and insert the
data into the users table using a database query function. The API would also send
an email to the inputted email address - either a confirmation email with a unique link
(unique because of a token generated using the crypto package [fig 2.1.21]), or a
warning email telling the owner of the account who uses that email address that
someone had attempted to register an account with their credentials. The next task
was for the login system to be able to confirm the user’s details against those in the
database. To check the validity of the inputted password, bcrypt has a function
compareSync() which takes a plaintext password and a hash of a password and
returns a boolean value for whether they match [fig 2.1.22]. The same method is
used in account settings - when the user is changing their email/password or
deleting their account, the plaintext password and hash are compared using bcrypt
(e.g. const authenticated = await
bcrypt.compareSync(req.body.current_password, user.password)).
When a user logs in, the user’s credentials are used to create a web token using the
package jsonwebtoken [fig 2.1.23]. This token is returned to the frontend which sets
the token in the local storage of the browser. Each time a page is loaded, the token
is checked, and if invalid then the user is redirected back to the login page and the
token value is set to null. The login system in total took around 3 weeks to complete
including the initial setup of the development environment.

4.1.7 Element-ui issue

One major problem that emerged as the project developed was the lack of
documentation for element-ui . This is because the package was originally developed
in Chinese before the docs were translated to English. There were alternative
frontend design packages, however element-ui had a lot of favourable characteristics
such as the ability to create custom rules for input fields of a form.

23

4.2 Matchmaking Service

4.2.1 Matchmaking.js

Once the login system was completed, the next step was to create a matchmaking
system that could pair users together who are queueing for a multiplayer game. For
this to happen, a matchmaking service was created by running the file
‘matchmaking.js’ on the server [fig 4.1.2]. Once the matchmaking service is running,
it recursively executes 2 predefined functions with a variable time interval between
the executions. That time interval is a minimum of 2 seconds and a maximum of 20
seconds. The first function is checkGames() which checks over all multiplayer
games in the multiplayer_games table to find any that are invalid, and removes
them. The second function is checkMatches() which checks for users in the
multiplayer queue, and matches them together if they chose the same game mode
(synonyms, antonyms or hypernyms). Every time checkMatches() is executed, it
returns a boolean dependant on whether there are any users in the queue. If there
are, then the time interval of the function is reset back to 2 seconds. If there are no
users in the queue, the time interval is incremented by 3 seconds each interval up to
a maximum of 20 seconds. Once users are detected in the queue, the interval time is
reset back to 2 seconds [fig 2.2.1].

4.2.2 checkMatches()

The checkMatches() function first selects all valid queued users from the
queued_users table. If there are none, the function immediately returns false ,
causing the interval time to be incremented by 3 seconds. The next task for the
matchmaking service is to separate the users with a valid heartbeat from those
without one. This is done by checking whether each user’s last heartbeat was less
than 5 seconds ago [fig 2.2.2]. As the heartbeats are meant to occur once every 2
seconds from the client when a user is queued, this means that even if for some
reason one heartbeat is missed, the user can still stay in the queue. The user ids of
both groups are recorded, and those in with a dead heartbeat are set to removed in
the queued_users table. If by this point there are no users with a valid heartbeat,
the function returns false and the time interval is incremented. Next the valid users
are grouped by their gamemode using the lodash package’s function _.groupBy()
which can group an array of objects by a key of the object [fig 2.2.3]. The grouped
users are then fed into the function getQueryParams() .

4.2.3 getQueryParams()

As the code in the matchmaking service is run every 2 seconds (or more), having a
low runtime is critical to making sure that the process intervals do not overlap. To
make sure this is the case, the function needs to have as few asynchronous
functions as possible. The majority of the asynchronous functions in the
matchmaking service are database queries, and so to reduce the number of queries
a non-standard method of inserting values into tables had to be used. Every time the
matchmaking service matches 2 users together, several database queries have to
be performed:

24

● The queued user’s entries in the queued_users table must be updated
● Any valid previous multiplayer games with either player must be ended
● A new game must be inserted into the multiplayer_games table
● The game’s words must be inserted into the multiplayer_answers table

If seperate queries were performed for each match, then there would be 4 queries
for each match, resulting in a large runtime if there are a lot of users queuing. To
prevent this, the matchmaking service creates a string of values to be inserted into
each table [fig 2.2.4], and then inserts them all at once. This means that no matter
how many matches are made, there will only ever be 6 MySQL database queries.
The function getQueryParams() does this by looping through each game mode,
and then looping through half of the users in that game mode to match them together
with the other half of the queued users [fig 2.2.5]. For each query, a string is created
which has data appended to it in each loop. For example, after the loop a string
queued_values may read (1, ‘William’, ‘Cooter’), (2, ‘Bob’,
‘Jinska’) . The MySQL statement would then read await db.qry(`INSERT
INTO queued_users (id, forename, surname) VALUES ?`,
[queued_values]) .

4.3 Multiplayer game

4.3.1 Get game information and state

After a pair of users have been matched together by the matchmaking service, they
are redirected to a unique game link. As the page is created, a POST request is sent
to the API requesting the information for that game. Before it can return any data, the
API formats the time values correctly by adding 1 hour to the value from the
database [fig 2.3.1]. This is because the time is saved to the database by the
matchmaking service in the format ‘YYYY-MM-DD HH:mm:ss’, and in doing so the
knowledge that it is a UTC timestamp is not retained. Therefore to get the time back
into UTC, 1 hour must be added to the time. The API also has to set the placeholder
of the input field depending on the chosen game mode, and determine the player
number specified in the multiplayer_games table by comparing the user id of
player 1 to the user id of the user requesting the game information. If they are the
same, then that user is player 1. Otherwise they are player 2.

If the game page is reloaded part of the way through the game, the game’s state
must also be recovered. The first piece of information the API hasto recover is the
current word index in the array of words. This is calculated by filtering the answers
for the game by those who have not been matched or passed using the lodash
_.filter() function, and subtracting the length of this array from the length of the
original array [fig 2.3.2]. This gives the index of the current word. For example, if no
words have been matched or passed, the length of the filtered answers will be
identical to the length of the unfiltered answers, so subtracting one from the other
gives 0, i.e. the first word in the array. Other data that the API recovers includes the
matched and passed count by filtering the answers using either the matched or
passed attribute with the lodash _.filter() function [fig 2.3.3], the current word
answers by looping through all the answers for that player at the current word index
and recording them all as an array of objects in the form [{answer:

25

ans},{answer: ans}] [fig 2.3.4], and the other player answer count by getting all
the answers for the other player at the current word index and counting the length of
that array [fig 2.3.5]. Once all of this data has been returned to the client, these
values are set in their respective data items [fig 2.3.6].

4.3.2 Timer

The most complex part of the game is the 2½ minute timer. One of the items of data
generated by the matchmaking service is the termination date of the game - a UTC
timestamp 2 minutes and 40 seconds after the match is made. The multiplayer game
Vue component imports another component ‘Timer.vue’, which can call 2 methods in
the multiplayer game [fig 2.3.7]. The first is startGame() [fig 2.3.8], which tells the
game to start and sets the data item game_started to true . The second is
delayGame() [fig 2.3.9] which recieves the current time in seconds until the end of
the game, subtracts 150 from it (150 seconds = 2½ minutes), and displays this
number as a countdown until the game begins. Originally the time functions using
the moment.js package were not using UTC and were just using standard GMT time.
However this presented the problem that users playing from non-GMT time zones
were unable to play the game as the timer for the game uses the client’s local time.
For this reason the times across the system were all converted to UTC.

The timer component works by running the functions compute() and
incrementTime() . In the ‘watch’ section of the component is the function
actualTime() [fig 2.3.10], which watches the data value actualTime and
executes the compute() function every time a change is detected in the
actualTime value. This value is updated every 1 second by the
incrementTime() [fig 2.3.11] function, and so the compute() function is also
executed every 1 second. The compute() function gets the time difference between
the end of the game and the current time using the getDifference() function [fig
2.3.12], and sets the variable current_time to this value in seconds. If the current
time is less than or equal to the game length (150) then the timer emits game_start
[fig 2.3.13] to the multiplayer game, causing it to run the gameStart() function. If
the current time is greater than the game length then the timer emits delay_game
[fig 2.3.14]. If the current number of minutes and seconds is 0, the timer redirects the
user from the game to the results screen [fig 2.3.15]. When the timer is first initiated,
the current_time in seconds is 0. So that the game does not immediately redirect
to the results screen, the data value timer_is_going starts as false , and several
functions require it to be true to execute. The first time the number of minutes and
seconds is 0, the value is set to true . Then the second time the number of minutes
and seconds is 0 (when the game actually finishes), the user is redirected. The
incrementTime() function sets the actual time to the current time in UTC
(generated using moment.js). It then sets a timeout of 1 second to call itself again,
meaning that the function will run every 1 second. In this time it also determines the
colour of the progress bar of the timer, sets the current_time value to be the
number of seconds and the number of minutes multiplied by 60 to give the total
number of seconds remaining, and finally uses the value to sets the bar progress
percentage.

26

The HTML template of the timer has 2 parts. Firstly on the left of the component is
the time remaining in minutes and seconds displayed as text. Secondly there is a
progress bar from the element-ui package, used to display the time remaining as a
percentage of the initial 2 ½ minutes. The incrementTime() function manages the
colour of the text and bar depending on the time remaining:

● If there is over half the allotted time remaining (2min 30sec - 1min 15sec)
then they are green (#67C23A).

● If there is less than half but more than a quarter of the time remaining (1min
15sec - 0min 33sec) then they are amber (#E6A23C).

● If there is a less than a quarter of the time remaining (32sec or less) then they
are red (#F56C6C).

These are the default colours for the components in the element-ui package [fig
4.1.5], so these were used to keep the app consistent.

4.3.3 Submitting answers

Once the game has begun, the main action a player can take is to submit
synonyms/antonyms/hypernyms for the word that they are being shown. Answers
are entered into the input field below the word. When an answer is submitted by a
player (say player 1), a lot of data needs to be sent to the API. This includes the
game id so that the API knows which game to reference in the database, the current
word that the players are trying to find associations for, all of the answers that player
has entered for this word, the player’s user id, the player’s player number (in this
case it would be ‘1’ for player 1), the game token, the current word index, and the
maximum word index (the index of the final word in the game, e.g. for a game with
15 words, this value would be 14). All of this data is ready to be submitted
immediately except for the answers that a player has submitted. These must first be
validated against several criteria, which is done in the frontend as these answers
need to be displayed in the ‘previous answers’ section of the page. The game can
take multiple words in the same input so long as they are separated by spaces. To
allow this, the initial processing of the answer string is to separate it into individual
words. This is done with the lodash _.words() function which separates a string
into an array of words [fig 2.3.16]. It also removes any punctuation. After this, the
system loops through this array of answers, testing 4 criteria on each answer [fig
2.3.17]. These criteria are:

● The answer must not be already in the list of answers submitted for this word
(i.e. not repeats). This is done using the lodash _.filter() function to filter
out all answers that are not the new answer, and checking the length of this
array. If the array has length, that means this answer has already been
submitted, and the condition returns false .

● The answer must exist. If for some reason the lodash _.words() function
returns an empty string, the condition returns false .

● The answer must not be the word that the players are trying to find
synonyms/antonyms/hypernyms for. If the answer and the word are identical
(even after the answer has been normalised), then the condition returns false .

27

● The answer must not be any of the words in the definition of the word. For
example if the definition of the word “cold” is “low temperature”, then the
words “low” and “temperature” will cause the condition to return false . This is
done by using the lodash _.words() function on the definition, and then
using the lodash function _.includes() to check if the array of words
contains the answer.

If all 4 of these conditions return true , the word is added to the answers data item so
that it can be displayed on screen, and also added to the answers in the data that is
to be sent to the API. If the length of the answers is greater than 0 (i.e. there were
some valid answers), then the data is emitted to the API using the submitAnswer
websocket.

By submitting the game token with the data, the API connects to a websocket room
by the name of that token [fig 2.3.18]. This means that for each game there is a
unique websocket room for that game’s sockets to pass through. It also keeps the
room private as the only users who have access to the token are the players of that
game.

Once an answer has been submitted, the first thing the API does is use the
submitted player number to define the variables this_player_number (which in
this case would be the string “p1_answers”) and other_player_number (which
would be the string “p2_answers”) [fig 2.3.19]. These strings are then used to define
whose answers belong to which player when retrieving the answers submitted so far
from the multiplayer_answers table. As these answers are currently in the form
of stringified arrays, they must be converted back to real arrays using the code
JSON.parse(answers) . This in wrapped in a try catch error handle incase for
some reason the answers have not been saved correctly or there is an error in
parsing them back to real arrays [fig 2.3.20]. There are now 2 arrays of words -
this_player_words containing player 1’s answers, and other_player_words
containing player 2’s answers.

The next step is to complete player 1’s answers by adding each new answer to the
array this_player_word . Then any crossover can be found using the lodash
_.intersections() function, which finds any identical elements in the 2 arrays
[fig 2.3.21]. If any identical elements exist, the first one is taken as the matching
answer.

If there was a match then the process is to firstly update the
multiplayer_answers table, setting that word’s matched value to 1, recording the
matched word, and updating the list of player 1’s answers to now include any new
answers. Then, if the current_word_index value is equal to the
max_word_index value (i.e. this is the last word in the game), any words in the
multiplayer_answers table that are not marked as matched or passed are
marked as incomplete. There is no reason that an answer should not be marked as
one or the other, however on occasion for a reason that is still unknown this can
happen, so this is a temporary fix until the issue is diagnosed and fixed. The table
multiplayer_games is then updated to be completed and no longer valid. Finally

28

the API emits to the websocket answerSubmitted with the data that the status of
the submission is true and the answer that was the match [fig 2.3.22]. This socket is
emitted to both players.

If there was not a match then the process is firstly to update the
multiplayer_answers table similarly to if there was a match, but the only
attribute that is changed is player 1’s answers which are updated with the new
answers. The API then emits to the websocket answerSubmitted with the data
that the status of the submission is false , player 1’s user id, and the total number of
answers submitted by each player for this word (this_player_word_count and
other_player_word_count) [fig 2.3.23]. This socket is emitted to both players.

The client is constantly listening for the socket answerSubmitted in the room with
the same name as that game’s token [fig 2.3.24]. Both players will simultaneously
receive the emission to this websocket and perform the same action, regardless of
whether they were the one to send the initial emission to the submitAnswer socket
(i.e. at this stage players 1 and 2 both do the same thing). When the client recieves
the data emitted by the API through the answerSubmitted socket, the first thing it
does is to check the status.

If the status is true , then the players have found a matching
synonym/antonym/hypernym for the word, and can move on to the next word. The
game first displays an element-ui notification telling the players that they matched,
and shows them the word that they matched on [fig 2.3.25]. If the current word index
is equal to the maximum index of the list of words for the game (i.e. that was the last
word in the game), then the players are redirected to the results screen [fig 2.3.26]. If
it was not the last word in the game, then the data value matched_count is
incremented (used to show how many words have been matched in the game so
far), and the function nextWord() is executed [fig 2.3.27].

The function nextWord() moves the game on to the next word. This function is
used when a match is found or a word is skipped. The function resets the input field,
answers, and the count of the opponent’s answers all back to their default values. It
then increments the current word index, and if the game is moving on to the final
word it disables the skip button.

If the status is false , then the total number of answers submitted by the other player
is updated to the current value using either this_player_word_count or
other_player_word_count, and the players continue submitting answers for that
word.

4.3.4 Skip word

If neither of the player can think of an answer in common, either player can choose
to skip the word. When a player (say player 1) skips a word, the data sent to the API
is the game id, the current word, the user id of the player skipping the word, and the
game token. These are emitted through the skipWord websocket [fig 2.3.28]. The
skip and submit buttons for player 1 are then disabled, and the skip button text now

29

reads “waiting for other player to skip”. Player 1 will remain in this state until the skip
has been confirmed by player 2.

When the API recieves the emission to the skipWord socket, the relevant row of the
multiplayer_answers table will be updated so that ‘skipped’ is true . The API will
then emit to the socket otherPlayerSkipped , however unlike when submitting a
word, this socket will only be received by members of that websocket room who did
not send the initial skipWord emission. This means that player 1 will not receive the
otherPlayerSkipped emission, and as player 2 is the only other member of that
websocket room, they will be the one to receive the emission.

Upon receiving the emission, player 2 will be shown an element-ui alert telling them
that the other player has skipped the word [fig 2.3.29]. Once the alert has been
confirmed or dismissed, player 2’s skipped_word_count data item is
incremented, their nextWord() function is executed, and an emission is made to
the confirmSkip websocket. The API then emits the the
otherPlayerConfirmedSkip websocket [fig 2.3.30], but it only emits to the
player who did not emit to the confirmSkip socket (i.e. the
otherPlayerConfirmedSkip socket is emitted to player 1 - the player who
initiated the skip). Player 1’s pass count is then incremented, their skip and submit
buttons re-enabled, and the nextWord() function is executed [fig 2.3.31].

4.3.5 Quit game

If a player (say player 1) decides to quit the game using the quit button, the same
data is sent to the API as if the user were skipping a word, but instead the data is
emitted through the quitGame websocket. Player 1 is then redirected to the results
screen and is no longer listening to any of the websockets [fig 2.3.32].

When the API recieves the emission it makes 2 updates to the database. The first is
to set ‘quit’ to be true in the multiplayer_games table, and the second is to set all
remaining words for that game in the multiplayer_answers table to
‘uncompleted’. The API then emits to the websocket otherPlayerQuit [fig 2.3.33].
Upon receiving the emission to the otherPlayerQuit socket, player 2 is
redirected to the results screen and is shown an element-ui alert telling them that the
other player quit the game [fig 2.3.34].

4.3.6 Results screen

Once the players have been redirected the the results page (either by completing the
game, quitting the game, or running out of time), the client sends a POST request to
the API asking for the multiplayer results. The API then returns the answers both
players gave, the matched word of each round if there was a match, and the total
counts of matched, passed and uncompleted words. The results are displayed by the
client in an element-ui table. The element-ui package is particularly useful here as it
can display a JSON object as a table. After the data is returned from the POST
request, the results of the query to the multiplayer_answers table is assigned to
the data item table_data . This is then selected as the data for the element-ui

30

table, and the keys of the object are used to determine the values in the table
attributes. For example, the first attribute is an icon that indicates whether the word
was matched, skipped or uncompleted. Using Vue’s “v-if” attribute in the row’s HTML
tag allows the table to variably show a green success icon if the data’s matched
attribute is true , an amber warning icon is the data’s passed attribute is true , and a
red error icon if the data’s uncompleted attribute is true [fig 2.3.35]. Each row also
has a background colour indicating it’s status. These are defined in the style section
of the Vue framework [fig 2.3.36], and use the default lighter colour values of the
element-ui package for consistency.

4.3.7 Issue with definitions

An interesting issue that arose while selecting words for the game was how to write
the definitions of the word. Most definitions use synonyms, antonyms or hypernyms
to define the word they are discussing, for example to define the word “tractor” one
might say “a farm vehicle”. However this gives away the hypernym “vehicle”, so to
avoid this the definitions had to be selected very carefully. In the case of the word
“tractor”, the chosen definition was “What a farmer drives”.

4.4 Result processing

4.4.1 checkWords()

The result processing service executes the function checkWords() every 10
seconds to process results from new multiplayer games and use these results to
improve the single-player game [fig 2.4.1]. The function starts by retrieving all
non-processed answers from the multiplayer_answers table. It then groups
these answers by their game mode using the lodash function _.groupBy() [fig
2.4.2]. Then for each of the 3 game modes (synonyms, antonyms and hypernyms) it
creates an object where each key is a word, and each value is another object
containing an array of the matched answers, and counts of the matches, skips and
completions [fig 2.4.3], to look something like this JSON object:

{
cold: {

matched_words: [‘freezing’],
matched: 1,
passed: 0,
uncompleted: 0

}
}

The service then creates a string of the words [fig 2.4.4] in the form
(‘cold’,’hot’,’ugly’) , which it uses to query the relevant game mode table
(e.g. the synonyms table if processing synonym games) [fig 2.4.5]. This table
contains the total occurrences, matches and skips for each word in all recorded
games. The matched and skipped values are added to their counterparts in the
JSON object, and 2 more keys are created in the object. The first is occurances,

31

which sums the previous occurrences, new matches, new passes and new
incompletions. The second is the previous answers, which is all of the previous
answers from the game mode table. The previous answers are in the form of a
JSON object where the key is an answer and the value is its frequency. Once they
have been parsed using JSON.parse() and appended to the original JSON object it
will look something like this:

{
cold: {

matched_words: [‘freezing’],
matched: 4,
passed: 1,
uncompleted: 3,
total_occurances: 11,
previous_answers: {

‘chilly’: 2,
‘freezing’: 4

}
}

}

This JSON is then used to update that game mode table so that the attributes
multiplayer_answers , multiplayer_occurrences ,
multiplayer_matches and multiplayer_passes reflect both the previous
results and the new results.

The next step is for the system to query that game mode table again and retrieve all
rows of that database. Then for each row, the data is used to determine whether or
not the word of that row should be available for the single-player game [fig 2.4.6]. As
stated Section 3.4.2, the conditions for a word to be available are:

● Having at least 5 matches, determined simply by checking the number of
multiplayer matches.

● Having a skip rate of less than 50%, determined by dividing the number of
passes by the sum of passes and matches. It is important that the total
occurrences is not used here as this includes occasions when the word was
uncompleted because the players never got to that word in the game.

● Having at least 2 unique matches, determined using the lodash _.keys()
function to determine how many keys the answers JSON object has.

If all 3 conditions are satisfied, the unique id of the row is appended to the
available_ids string. If not satisfied, the unique id of the row is appended to the
unavailable_ids string. Both strings will end up in the format (2, 3, 5) and
will then be used for a query to the game mode table to update the
‘singleplayer_availability’ attribute to either true or false . Once all of this has been
done for all 3 game modes, the final step is to mark the answers as processed in the
multiplayer_answers table.

32

4.4.2 resetValuesForTesting()

The result processing service contains one other function
resetValuesForTesting() . This resets all 3 game mode tables to their original
form with all numerical values being set to 0, and the answers JSON being reset to
an empty JSON {}. This is useful after testing the multiplayer game as testing it will
create game instances that should be processed. For example, if testing the in-game
skip button, the ratio of skips may shift over 50%, removing the word from the
single-player game. To tackle this, all games and answers that have been played in
testing are manually removed, and then the resetValuesForTesting() function
is run. The service is then able to regenerate all of the values and JSON objects
upon its next iteration.

4.5 Single-player game

As stated Section 3.5.2, there are only minor differences between the single-player
and multiplayer games. The major differences in the code are the lack of
websockets, reduced complexity and lack of player numbers.

4.6 Website

4.6.1 TOML file

The only code that is exclusively for getting the website live is the file ‘netlify.toml’ [fig
2.5.1]. This contains 2 command variables that affect how the frontend is built and
where in the directory it is to be built from.

4.6.2 Issue

An issue that was common to all parts of the site was that a lot of the element-ui
components would not perform well on a mobile device. There were also some
issues with websockets when running the website through the iPhone safari browser.
As there was limited time for this project, spending valuable time trying to fix this
problem would have been a mistake, and so instead the decision was made to stop
support entirely for mobile devices and have the website only available to non-mobile
platforms. This is done using the mobileCheck() function from the file
‘mobileCheck.js’. All Vue components import this function and execute it upon
creation of the page [fig 2.5.2]. If the function detects that the site is being viewed on
a mobile device, the user is redirected to an information screen informing the user
that they cannot access the site on their current device [fig 2.5.3].

33

5. Results and evaluation

5.1 System working as (or not as) intended

The results of this project can be found in files ‘synonyms.csv’, ‘antonyms.csv’ and
‘hypernyms.csv’. These are exact copies of the corresponding tables in the
database. The other database tables are irrelevant to the results or contain user
information, and are therefore not included.

5.1.1 Generate metadata

The main goal of this project was to create a system that would use human
computation to generate difficult metadata - in this case synonyms, antonyms and
hypernyms. To this extent the project has been a success, as seen in the game
mode tables of the database. At the time of writing this, 44 multiplayer games have
been played by 16 players [fig 3.1.4 and fig 3.1.5], giving the result processing
service enough data to let several words from each game mode pass the criteria for
being available in the single-player game. For example, in the synonyms table the
words “cold”, “house”, “eat” and “finger” all have at least 5 matches, 2 unique
matches, and a skip rate of less than 50% [fig 3.1.6]. This shows that despite the
criteria for words available for single-player being relatively low (at present), the
system works and can be self sufficient in providing words for the single-player
game. This is important due to the choice not to use the Wordnet API, and in my
opinion presents what will eventually be a superior alternative once enough data has
been collected. The game also helps to generate the strength of the association
between words with the frequency of a match. For example, the word “cold” has had
6 matches with the synonym “freezing” and 2 matches with the synonym “chilly” [fig
3.1.7]. I have not yet developed an algorithm to determine the strengths of the
relations, but going just by frequency one could say that the word “freezing” is a
stronger synonym then the word “chilly”.

5.1.2 Fun and appealing

A secondary goal of the project was to make the game both fun and appealing to
play. The game itself is not a highly appealing concept for many to repeatedly play
as it offers only a limited experience. On average, users played 2-3 games each,
trying out each game mode once and then not returning to play again. There are
several reasons why this could be happening. The first is that the game does not
incite competitiveness. As both players are working together to find matches for
words, there is no competition between the users, and therefore the sense of
achievement at completing the game is merely against the system and not against
the other player. The second reason is that the act of finding these word associations
is not an engaging or exciting task to most players. With the rapid development of
mobile and console games in the 21st century, humans are becoming increasingly
used to having fun and unique games at their fingertips. The game developed in this
project is comparatively dull and uninteresting to the majority of users. However, if
the game were to be used as a tool for specific groups of people it may have more
success. The multiplayer and single-player game could be used by school children,

34

particularly those learning the basics of English in primary school. The games could
also be used by those who are studying English as a foreign language and wish to
test or improve their skills. The single-player game could be used as a tool by
speech and language therapists to help patients who have difficulty with word
associations, for an example an elderly patient who has had a stroke and is
attempting to relearn words that they have forgotten. In these cases the game
functions as an educational tool with the primary focus of teaching and testing rather
than being engaging and exciting.

5.1.3 Easy to use and available to all

Another secondary goal of the project was to make the tool easy to use and
available to all. As per the brief, the game requires a user to login before they can
play the game. This makes the tool considerably less easy to use as the user must
spend anywhere for 2 to 10 minutes setting up their account (depending largely on
the ease of use of their email provider - an external factor which the project cannot
influence). This presents the issue that during the sign up or login process a user
may lose interest in playing the game. It also makes the game hard to access for
children who are unlikely to have an email address of their own, and if playing at
school in an English lesson would not have a parent available to sign up for them. It
also makes the game harder to play for those who are less technologically capable
such as the elderly, who may find it difficult to complete the sign up process. The
game itself however is fairly straightforward and easy to play - the most important
information such as the word to find answers for and the time remaining are the
largest items on the screen, and there are only 4 options available to the user (input,
submit, skip and quit). Regardless, a user’s first game will likely be of poor quality as
they will have to become accustomed to the interface. In terms of accessibility the
project has been a success, with the website running indefinitely at the address
(https://werdz.fun). The initial plan was to run the servers and database through a
Raspberry Pi, however this would have been unreliable (higher risk of the server
going down from a power cut), slow (latency would depend on the location of the
user relative to the Pi) and unscalable (unless multiple Pi’s were to be run in
parallel). It would also have over-complicated the project having to learn how to
configure a Raspberry Pi and setup a server, leaving less time to work on the game
and the login system.

5.2 Comprehensible results

5.2.1 Matches

The main results of the project are stored in the game mode tables. In the
multiplayer game there were a total of 70 matches in the synonym game mode with
34 unique answers, 80 matches in the antonym game mode with 35 unique answers,
and 34 matches in the hypernym game mode with 19 unique answers. Each game
mode currently has 21 words available for the multiplayer game, however due to the
words being chosen at random for each game there is an imbalance in the number
of games each word has featured in. For example, the word “cold” has occurred in
13 synonym games, but the word “tree” has only occurred once [fig 3.1.8]. This

35

https://werdz.fun/

means it is hard to give an overall success rate, however despite this it is still
obvious that the results show a multitude of word associations have been generated.

5.2.2 Game modes

The synonym game mode was played 20 times, with 70 matches, 11 skips and 59
incompletions [fig 3.1.17, fig 3.1.18, fig 3.1.19 and fig 3.1.20]. This means that the
match rate of words has been exactly 50%. The ratio is likely to be lower as a word
will usually have multiple obvious synonyms, and so the players may not be able to
find one and either have to skip the word, or spend so much time on it that they run
out of time and are unable to complete the game. This explains why the number of
incompletions is so high. So far this is just a theory, however this could be tested by
also recording the length of time spent on each round of a game.

The antonym game mode was played 14 times, with 80 matches, 6 skips and 5
incompletions [fig 3.1.9, fig 3.1.10, fig 3.1.11 and fig 3.1.12]. This is a much better
ratio than synonyms with an 88% match rate. This is likely because antonyms are
easier to find due there usually being just one obvious choice. For example, the word
“light” could have several antonyms such as “gloomy”, “dim” and “overcast”, but the
obvious antonym that most users would immediately enter is “dark”. Therefore it is
much more likely that a match will be found in a short period of time.

The hypernym game mode was played 9 times, with 34 matches, 5 skips and 16
incompletions [fig 3.1.13, fig 3.1.14, fig 3.1.15 and fig 3.1.16]. This gives a match
rate of 62% - not as low as synonyms, but also not as high as antonyms. Hypernyms
are similar to antonyms in that there will often be one obvious choice, however the
thought process of trying to classify a word is more complicated than the thought
process of finding the opposite of a word. Therefore finding hypernyms of a word will
usually take longer, leading to a relatively high number of incompletions due to
running out of time.

5.3 Confidence in results

The results so far have been generated by friends and family members, however if
the game were to be released to the public there would be the opportunity for users
to exploit the system if they discover how it works. In the multiplayer game, so long
as both players type in the same answer then it will be matched and become a
synonym/antonym/hypernym for the word, regardless if it actually has that
association. This means that 2 players could type in any answer they like as long as
it is the same answer. This would not only make the game redundant, but would
generate incorrect data. It would also corrupt the single-player game as the false
answer that was entered could then potentially be used as an answer after the result
processing server has analysed it. There are measures that could be undertaken to
possibly prevent the results of cheating players leaking into the overall results and
single-player game, however it is hard to be foolproof (see Section 6.1).

36

5.4 Testing

5.4.1 Code testing

Due to the large scope of this project, the decision was made to forsake unit testing
in the interest of developing the project as much as possible in the allocated time
span. In most parts of the code this was acceptable, however in hindsight testing
would have been very useful for the more complicated algorithms such as those run
by the matchmaking and result processing services. Both of these files use the
unconventional method of creating a large string and using it to execute one SQL
query rather than several. Because of this the code is both difficult to read and
understand, so unit testing would have been appropriate. The testing of JavaScript
files could be done using chai , a testing library that is run through the Node.js 4

environment. A file would be created with the same name as the file that is being
tested, but with the extension .test.js (e.g. ‘matchmaking.js’ would be tested with the
file ‘matchmaking.test.js’). The original file’s functions would then be imported into
the test file. Each function would have an input JSON and expected output JSON
defined for it in the test. The input would then be fed into the function, and the output
would be compared to the expected output. When the test file is run in the Node
environment, the chai package is able to identify which parts of the output JSON are
different from the expected output and highlight them in the terminal. This would
have been particularly useful for developers wishing to either continue the project, or
salvage the matchmaking/result processing services for use in another project.

Testing of the frontend is much less formal when compared to the backend. When a
change is made to a Vue component, the development build of the frontend does not
need to be re-run, and the build is able to automatically integrate the changes. In
future an official testing environment could be used such as Puppeteer - a tool for 5

testing individual components and processes in Google Chrome.

5.4.2 Application testing

To test the functionality of the system and to gather data, the system was tested by
25 users, with 16 of them playing the game [fig 3.1.5]. The games were not done
under controlled conditions as the priority at the time was to generate enough data
for the development of the single-player game. The participants were instructed to
make contact with any bugs, issues or general opinions on the game and login
system. This feedback was then used to develop the user-friendliness of the game.
For example, the criteria for a new password was originally a password that had
been scored at least 3/5 by the password-strength-utility package. Several users
complained that this was too strict, disallowing passwords that other sites would
usually accept. Therefore the criteria was changed from a minimum of 3/5 to a
minimum of 2/5.

The data generated by the game (the word associations) is difficult to test from a
programming aspect, otherwise there would be no need for this project. As there are

4 https://www.npmjs.com/package/chai
5 https://github.com/GoogleChrome/puppeteer

37

https://www.npmjs.com/package/chai
https://github.com/GoogleChrome/puppeteer

currently only 21 words per game mode, there is still a small enough results pool that
they can be checked manually by a human.

5.5 Evaluate methodology and programming languages

5.5.1 Database

The decision to use the relational database language MySQL over a non-relational
database language such as MongoDB was a success. MongoDB stores data in
JSON-like documents which may have been useful in some cases due to the
backend of the system being written in JavaScript. It would have also allowed easier
and more appropriate storage of JSON objects such as the array of objects in the
words attribute of the multiplayer_games table. However most of the tables have
a clear schema that is suited better to a relational database. The option to have both
a relational and a non-relational database is not valid for 2 reasons. Firstly it would
have over complicated the project at an early stage, taking time away from
developing the system to learn how to set up and use a non-relational database such
as MongoDB. Secondly it would mean that some data fetches that could be done in
one MySQL query would now need to be done in two queries - one to each database
(for example having to fetch a game from the multiplayer games in a MongoDB
database, and then use the player’s id to get their email addresses from the MySQL
database).

5.5.2 Node

The decision to use Node.js as the backend environment was also a success. I
already had some knowledge of JavaScript and was familiar with some of the
essential packages such as lodash , allowing me to quickly get to work and not waste
time learning a new language.

5.5.3 Vue

Using the Vue.js frontend framework was particularly useful due to JavaScript being
an asynchronous programming language. This means that the system can run parts
of the code separately from the primary application thread, which is particularly
useful for functions that deal with time such as the timer component. It allows a
function to run in parallel to the main process, and once it has either completed or
failed its task, will notify the main thread and return any data that it has promised.

38

6. Future work

6.1 Unrealised ideas

One of the key issues with the game was it’s lack of competitiveness. In the
multiplayer game, the players are competing against the system. However a more
competitive game where the players compete against each other may be more
appealing. This could be similar to the single-player game, however a round is won
by the first player to enter a valid synonym/antonym/hypernym. The player with the
most rounds won at the end of the game would be the winner. There could also be a
‘pointless’ variety of the game, where the aim is to enter the most obscure answer
that they can think of. For example, if the word was “off”, then the antonym “on”
would be a low scoring answer, whereas the word “activated” would be a high
scoring answer. There could also be more word association game modes such as
‘hyponyms’ - the opposite of hypernyms (i.e. if a hypernym is a more general
meaning, then a hypernym is a more specific example, e.g. furniture → chair).

Another incentive for uses to play the game could be a leaderboard system. This
would display all players in a table with the rank of a player being determined by how
many games they have played and how many word associations they have made.
This could be accompanied by user names for an account, and the option to add an
image to a user’s account as a ‘profile picture’.

To make the game more accessible, a change to the system could be made so that
users are not required to login or have an account to play the game. This would
make the game much more available, but would also increase the likelihood of
players creating bots to play the game. The login system could still exist as an
option, and only users with an account would be displayed on a leaderboard. There
could also be other perks to creating an account such as being able to rematch the
last player that a user and played with, or choose to play with a friend rather than
being matched with another random player.

When a user first signs up, a tutorial telling them how to play the game could help
first time players. This could be an embedded video, or an interactive walk through of
the single-player game. Once completed, the multiplayer game would become
available to the user. To verify that a player is genuine and not a bot, a user could be
forced to play an arbitrary number of single-player games before they can access the
multiplayer game. If the player is unable to complete any single-player games then
they are either a bot, or they are a user who is not proficient enough in the English
language to be able to play the multiplayer game successfully.

Currently the result processing service has no way to evaluate whether an answer is
actually a valid synonym, antonym or hypernym. If user’s are abusing the system by
coordinating an answer, a few fail-safes could be implemented:

● If a player enters the same answer for multiple rounds in a game, their results
are not processed.

39

● If a game’s matched words are repeated or below a certain length (e.g.
always 1 character), they are not processed.

● An answer is not processed until it has been entered as a synonym, antonym
or hypernym by several different users.

● Create a blacklist of inappropriate or offensive words that if entered as an
answer cause the rest of that user’s answers to not be processed, and for that
user to be potentially banned.

● Further develop the matchmaking service to not match users who are playing
the game from the same IP address.

The current criteria for a word to be included in the single-player game is relatively
low. Once more results have been obtained from the multiplayer game, the criteria
could be made stricter, for example:

● Increasing the minimum number of matches for a word from 5 to 20.
● Decreasing the maximum skip rate of a word from 50% to 10%.
● Increasing the minimum number of unique matches for a word from 2 to 5.

Another possible future development could be to separate the databases into a
relational database for login system and queueing, and a non-relational database for
the games and answers. Once the project has been further developed, there may be
scope to implement such a separation. This may be more efficient for storing tables
such as mulitplayer_games and multiplayer_answers due to them already
containing stringified JSON objects that would be better stored in a non-relational
database.

At its current stage, the game is ready for a controlled testing phase. This would
involve taking a select group of individuals and having them play multiple games with
each other. This would serve 2 purposes:

● It would help to discover any remaining bugs in the game and login system.
● It would generate more data, allowing the single-player game to be further

developed based on the results.

Currently there have been 42 multiplayer games, but I estimate that I would need a
minimum of 200 games played by at least 30 users before the single-player game
could be tested.

Despite the game being available to all, the data that the game has generated is still
only accessible from the database. To make the results public, this data could be
published in several different ways. The first option could be in a public database
that is updated from the original database. The original database would not be made
public for security as it also contains user details such as email addresses and
names. Another form in which the data could be accessed is through an API that
allows developers to get data for a word in a JSON format. The data that would be
returned could look something like this:

40

{
word: “cold”,
synonyms: {

freezing: 6,
chilly: 2,
subzero: 1,

},
antonyms: {

hot: 2,
warm: 1,

},
}

From a business perspective, the most obvious goal is to attract users to sign up and
play the game. For this to happen, the first step would be making the public aware of
the game’s existence. This could be done through advertising, for example by
creating a Google Ads campaign to have the game show up as an advert on
appropriate Google searches. To cover the costs of a Google Ads campaign, as well
as to cover the costs of the domain name, servers and database, the game could
contain advertising space for other companies and organisations who would pay an
advertising fee.

6.2 Starting point for continuation of work

For a developer to continue the project, they would have 2 options - to use the
source code to set up their own website with their own domain, servers and
database; or to use the ones that have already been set up. If the latter option were
to be chosen, the credentials of these tools would have to be transferred as they are
not stored in the GitHub repository. The developer would also have to create a new
.env file to store some of these credentials and environment variables in the backend
of their local repository [fig 4.1.8].

If a developer was to start with just the source code, once they have created a
database they can then use the command line function npm run
create_db_tables . This executes the code in the file ‘create_db_tables.js’, which
creates all of the tables that the database needs for the system to function correctly.

To keep the code consistent, I have employed several coding guidelines for the sake
of consistency:

● Included in the source code are several ESLint and Prettier files [fig 4.1.7].
These can be used in the text editor Visual Studio Code (VS Code) along with
the corresponding VS Code extensions to format the code to a consistent
format such as tabs being 4 spaces.

● Using snake case for variables, e.g. user_id rather than userID .
● Using camel case for functions, e.g. getSnacks() rather than

get_snacks() .

41

● Using uppercase for global variables, e.g. PORT = 8080 rather than port =
8080 .

● Using ES6 JavaScript arrow functions, e.g. const test = () =>
{return} rather than const test = function() {return} .

There are a few inconsistencies within the architecture of the directory. For example,
the Vue component for the multiplayer game is named ‘Game.vue’, but the Vue
component for the single-player game is named ‘SinglePlayerGame.vue’ [fig 4.1.6].
A future piece of work could be to tidy up the directories and eliminate any
inconsistencies in file names. In this example, I would rename the file ‘Game.vue’ to
‘MultiPlayerGame.vue’. There is also a relatively large inconsistency in how the
skipping of a word in a game is referenced. In some places such the file ‘Game.vue’,
the button is referred to as the ‘skip word button’. However in the database, the
skipping of a word is referred to as ‘passing’, for example in the
multiplayer_answers table, the attribute to determine whether a word was
skipped is labeled ‘passed’. This should be noted by any developers using the
project.

42

7. Conclusion

The main aim of this project was to create a data generation tool and package it as a
game. The data to be collected was synonyms, antonyms and hypernyms of words.
To make the tool a success, the secondary goals of the project were to make the
game fun and easy to play, while being easily accessible and available to all. I
believe I have achieved these goals to the best of my ability, however there are
limitations to how appealing a word association game can be. At its current state I
would be willing to start a controlled testing phase of the game.

The results of the multiplayer game have shown that the system functions as a tool
to generate synonyms, antonyms and hypernyms of words, and the relative strength
of these associations. It has also shown that all 3 of these game modes perform
differently and can be treated as such.

43

8. Reflection on learning

Over this project I have developed many technical skills that I lacked prior to this
semester. These include the knowledge gained on the subject of JavaScript,
experience using the frontend framework Vue.js, and a better understanding of
relational databases. I have also developed a much larger understanding of the ways
in which web applications function, now being knowledgeable in servers,
websockets, POST requests and many other parts of the web which until now were
just terms I had heard thrown around by colleagues and lecturers.

In terms for personal skills, I feel like my ability to manage a project has transcended
throughout this semester. I am now far more aware of the uses of GitHub for large
projects such as this, and have a much greater appreciation for the development
process. This project has taught me to plan ahead in whatever part of development I
am working - to consider all eventualities before going anywhere near a keyboard,
which in the long run saved time that would have been spent fixing bugs and
optimising algorithms. In future I would create a much more extensive plan than the
2 page initial plan that was first created, setting out all available resources before
deciding which to use in each location.

44

1.0.0 - Website screenshots:

[Fig 1.1.1] Sign-up page without input

[Fig 1.1.2] Sign-up page with input

45

[Fig 1.1.3] Home page

[Fig 1.1.4] Forgotten password page

[Fig 1.1.5] Reset password page

46

[Fig 1.1.6] Account settings page

[Fig 1.1.7] Delete account page

47

[Fig 1.1.8] Website menu

[Fig 1.1.9] Sign-up confirmation email

[Fig 1.1.10] Confirmation email alert

48

[Fig 1.1.11] Login failure message

[Fig 1.2.1] Multiplayer game menu

[Fig 1.2.2] Waiting mode

49

[Fig 1.2.3] Game countdown

[Fig 1.2.4] Game page

[Fig 1.2.5] Answers before submission

50

[Fig 1.2.6] Answers after submission

[Fig 1.2.7] Match notification

[Fig 1.2.8] Disabled input and skip button

[Fig 1.2.9] Skip alert

51

[Fig 1.2.10] Multiplayer game information box

[Fig 1.2.11] Progress bar green

[Fig 1.2.12] Progress bar amber

[Fig 1.2.13] Progress bar red

52

[Fig 1.2.14] Other player quit alert

[Fig 1.2.15] Multiplayer game results table

[Fig 1.3.1] Single-player game information box

53

[Fig 1.3.2] Single-player game menu

54

2.0.0 - Code screenshots:

[Fig 2.1.1] The database credentials being imported from the .env file into the file

‘db.js’

[Fig 2.1.2] A JavaScript promise in the file ‘db.js’

[Fig 2.1.3] The database query function being imported into the file ‘server.js’

[Fig 2.1.4] The axios API request function being imported into a Vue component

[Fig 2.1.5] The URL of a POST request being determined in the file ‘auth.js’

55

[Fig 2.1.6] The email credentials being imported from the .env file into the file mail.js’

[Fig 2.1.7] The URL of a the API being determined in the file ‘mail.js’

[Fig 2.1.8] An email template being read from the file ‘mail.js’

56

[Fig 2.1.9] The password strength function in the file ‘SignUp.vue’

[Fig 2.1.10] The confirm password function in the file ‘SignUp.vue’

[Fig 2.1.11] The is a string function in the file ‘SignUp.vue’

57

[Fig 2.1.12] The validation message for no input into the forename field

[Fig 2.1.13] The validation message for bad input into the forename field

[Fig 2.1.14] The validation message for correct input into the forename field

[Fig 2.1.15] The redirect function found in most Vue files

58

[Fig 2.1.16] An example of the redirect function in the HTML template

[Fig 2.1.17] The Vue router

59

[Fig 2.1.18] The redirect in new tab function in the file ‘SignUp.vue’

[Fig 2.1.19] The redirect in new tab function in the HTML template in the file

‘SignUp.vue’

[Fig 2.1.20] The hashing of a password in the file ‘server.js’

[Fig 2.1.21] The creation of a sign up token in the file ‘server.js’

60

[Fig 2.1.22] The authentication of a password in the file ‘server.js’

[Fig 2.1.23] The creation of a JSON web token in the file ‘server.js’

[Fig 2.2.1] The main function with variable time intervals in the file ‘matchmaking.js’

[Fig 2.2.2] The file ‘matchmaking.js’ checking that a user’s last heartbeat was no

more than 5 seconds ago

61

[Fig 2.2.3] The grouping of users by their chosen game mode in the file

‘matchmaking.js’

[Fig 2.2.4] The creation of a string to be used in an SQL statement in the file

‘matchmaking.js’

[Fig 2.2.5] The file ‘matchmaking.js’ looping through each game mode and then

every other user

[Fig 2.3.1] The addition of 1 hour to the data retrieved from the database in the file

‘server.js’

62

[Fig 2.3.2] The current word index recovered from a partially completed game in the

file ‘server.js’

[Fig 2.3.3] The matched and passed counts recovered from a partially completed

game in the file ‘server.js’

[Fig 2.3.4] The already submitted answers recovered from a partially completed

game in the file ‘server.js’

[Fig 2.3.5] The count of the other player’s answers recovered from a partially

completed game in the file ‘server.js’

63

[Fig 2.3.6] The assigning of the game information in the file ‘Game.vue’

[Fig 2.3.7] The HTML timer component in the file ‘Game.vue’, able to call the

methods startGame and delayGame

[Fig 2.3.8] The start game function in the file ‘Game.vue’

64

[Fig 2.3.9] The delay game function in the file ‘Game.vue’

[Fig 2.3.10] The watch section of the file ‘TimerMultiplayer.vue’

[Fig 2.3.11] The increment time function getting the actual time in a UTC format in

the file ‘TimerMultiplayer.vue’

[Fig 2.3.12] The get difference function in the file ‘TimerMultiplayer.vue’

65

[Fig 2.3.13] The emission of ‘start_game’ in the file ‘TimerMultiplayer.vue’

[Fig 2.3.14] The emission of ‘delay_game’ with the current time in the file

‘TimerMultiplayer.vue’

[Fig 2.3.15] The file ‘TimerMultiplayer.vue’ redirecting the client to the game results

page

[Fig 2.3.16] The inputted answer being broken into an array of words in the file

‘Game.vue’

66

[Fig 2.3.17] The filtering of inputted words in the file ‘Game.vue’

[Fig 2.3.18] The connection to either the ‘queue’ room or the room by the name of

the token in th file ‘server.js’

[Fig 2.3.19] The player number strings being determined in the file ‘server.js’

67

[Fig 2.3.20] The parsing of stringified arrays in the file ‘server.js’

[Fig 2.3.21] The intersections between both player’s answer arrays in the file

‘server.js’

[Fig 2.3.22] The emission to the answer submitted socket if there was a match in the

file ‘server.js’

[Fig 2.3.23] The emission to the answer submitted socket if there was not a match in

the file ‘server.js’

[Fig 2.3.24] The file ‘Game.vue’ listening to the answer submitted socket

68

[Fig 2.3.25] The element-ui alert telling the players that they have matched on a word

in the file ‘Game.vue’

[Fig 2.3.26] The file ‘Game.vue’ redirecting to the results page if they previous match

was on the final word

[Fig 2.3.27] The file ‘Game.vue’ incrementing the matched count and executing the

next word function if the previous match was not the last word

[Fig 2.3.28] The file ‘Game.vue’ emitting through the skip word socket

69

[Fig 2.3.29] The element-ui alert received by a player if the other player skipped a

word in the file ‘Game.vue’

[Fig 2.3.30] The emission to the other player skipped socket in the file ‘server.js’

[Fig 2.3.31] The code executed by the file ‘Game.vue’ upon receiving an emission

from the other player confirmed skip socket

70

[Fig 2.3.32] The file ‘Game.vue’ emitting to the quit game socket and redirecting to

the results page

[Fig 2.3.33] The emission to the other player quit socket from the file ‘server.js’

[Fig 2.3.34] The code executed by the file ‘Game.vue’ upon receiving an emission to

the other player quit socket.

71

[Fig 2.3.35] The HTML code for the table in the file ‘GameResults.vue’ determining

the icon at the start of the row

[Fig 2.3.36] The CSS of the colours for the background of the table in the file

‘GameResults.vue’

72

[Fig 2.4.1] The main function of the file ‘result_processing.js’

[Fig 2.4.2] The grouping of answers by their game mode in the file

‘result_processing.js’

[Fig 2.4.3] The object created for each word in the file ‘result_processing.js’

[Fig 2.4.4] The string created to be used in an SQL statement in the file

‘result_processing.js’

73

[Fig 2.4.5] The SQL statement that recieves a string in the file ‘result_processing.js’

[Fig 2.4.6] The conditions for a word to be made available in the single-player game

mode in the file ‘result_processing.js’

[Fig 2.5.1] The contents of the file ‘netlify.toml’

[Fig 2.5.2] The use of the mobile checking function found in all Vue components.

74

[Fig 2.5.3] The mobile check function in the file ‘mobileCheck.js’

75

3.0.0 - Database screenshots:

[Fig 3.1.1] The number of synonyms available for the single-player game mode

[Fig 3.1.2] The number of antonyms available for the single-player game mode

76

[Fig 3.1.3] The number of hypernyms available for the single-player game mode

[Fig 3.1.4] The number of multiplayer game that have been played

77

[Fig 3.1.5] The number of users who have played the multiplayer game

[Fig 3.1.6] The four synonyms that are available in the single-player game mode

[Fig 3.1.7] The synonyms for the word “cold”

78

[Fig 3.1.8] The synonyms for the words “cold” and “tree”

[Fig 3.1.9] The number of matched antonyms

[Fig 3.1.10] The number of skipped antonyms

[Fig 3.1.11] The number of antonym games

79

[Fig 3.1.12] The number of uncompleted antonyms

[Fig 3.1.13] The number of matched hypernyms

[Fig 3.1.14] The number of skipped hypernyms

80

[Fig 3.1.15] The number of hypernym games

[Fig 3.1.16] The number of uncompleted hypernyms

[Fig 3.1.17] The number of matched synonyms

[Fig 3.1.18] The number of skipped synonyms

81

[Fig 3.1.19] The number of synonym games

[Fig 3.1.20] The number of uncompleted synonyms

82

4.0.0 - Miscellaneous screenshots:

[Fig 4.1.1] Wordnet antonyms for the word “cold”

[Fig 4.1.2] The API (server) and services (matchmaking and result_processing)

running on the Digitalocean server

[Fig 4.1.3] The address of the website

83

[Fig 4.1.4] The website’s certificate

84

[Fig 4.1.5] The default colours used by element-ui

[Fig 4.1.6] The Vue components, notably the files ‘Game.vue’ and

‘SinglePlayerGame.vue’

[Fig 4.1.7] The ESLint and Prettier files

85

[Fig 4.1.8] A copy of the .env file containing default values for the environment

variables

86

Terminology guide:

API - Unless otherwise specified, this is referring to the Express app in the file
‘server.js’. All POST requests and websockets are routed through the API.

Server - This refers to the Digitalocean droplet on which Node environments can be
run. The files run on the server are ‘server.js’, ‘matchmaking.js’ and
‘result_processing.js’.

Service - The files ‘matchmaking.js’ and ‘result_processing.js’ are run on the server
and are referred to as “services”.

Backend - The server side of the project repository.

Frontend - The client side of the project repository.

Normalise - Manipulating a string to a predefined standard format, for example a
name would be lowercase except for the first letter.

Client - The user’s browser.

User - The human using the system.

Player - The human playing the game.

Attacker - A human attempting to disrupt the system or retrieve sensitive information.

87

Glossary:

Antonym - a word association where 2 words have opposite meanings, for example
“happy” is an antonym of “sad”.

API - an Application Programming Interface is a set of routines, protocols and tools
for building software.

AWS - Amazon Web Services, a cloud computing platform.

Component - a building block of a Vue interface.

ESLint - a configurable linting tool for JavaScript code.

ES6 - the latest update to JavaScript.

Express - a web application framework for Node.js.

GDPR - the General Data Protection Regulation, a set of rules and regulations on
data protection and privacy for the EU.

GET - a HTTP method used to request data from a specified source.

GitHub - a web based version control service.

HTML - Hypertext Markup Language, the standard markup language for web
applications.

Hypernym - a word association where one words is a more general meaning of the
other, for example “building” is a hypernym of “hospital”.

IP address - Internet Protocol address, a unique identifier for each device using the
internet.

JavaScript - a programming language most commonly found in web applications.

JSON - JavaScript Object Notation, a human readable data object consisting of
key:value pairs.

Key - the identifier of a data value in a JavaScript object.

Localhost - a host running on a local machine.

Metadata - data that provides information about other data.

MySQL - a relational database management system.

Node.js - a runtime environment for JavaScript files.

88

Object - see JSON .

PHP - Hypertext Preprocessor, a general purpose programming language originally
designed for web applications.

Pm2 - a process manager for Node.js.

POST - a HTTP method used to send to a server.

Process - an executing instance of an application.

Raspberry Pi - a small affordable computer for small projects.

React - a JavaScript library for building user interfaces.

Server - a device that provides functionality for other devices/clients.

SQL injection - a technique whereby code is inserted into an SQL query for malicious
purposes.

Synonym - a word association where 2 words have the same meaning, for example
“fast” is a synonym of “quick”.

Thread - see process .

URL - Uniform Resource Locator, a web address.

UTC - Coordinated Universal Time, a primary standard time standard that is not
adjusted for daylight savings.

Value - the data value of a JavaScript object, identified by a key.

VS Code - Visual Studio Code, a source code editor.

Vue.js - a JavaScript framework for building user interfaces.

Websocket - a computer communication protocol provided over a single TCP
connection.

Word association - a link between 2 or more words.

89

Appendices

Appendix A: Research Integrity Training

90

Appendix B: Vue.js guide

To understand the implementation of this project, a basic understanding of the
frontend framework Vue.js is required. A Vue component (any .vue file) has 3
sections - the ‘template’ section containing the HTML, the ‘script’ section containing
the JavaScript functions, and the ‘style’ section containing any css. Data items and
methods defined in the script can be referenced/called in the template. For example,
to display a user’s first name on a page, the template would contain the line
<p>{{user.forename}}</p>. The script section is where the majority of the work
happens. Here components and packages can be imported such as the
vue-password-strength-meter component. This is followed by a JSON object
containing 8 keys (or less if not all). These are as follows:

● Name: this is simply a string containing the name of the Vue file.
● Components: an object for defining the imported components so that they can

be used in the HTML template.
● Data: this returns an object containing all of the data items that will be used

throughout the script and template. For a data item to be referenced in the
rest of the script, is must be predated by ‘this’ tag (eg: this.user.forename).

● Created: this is a function that is executed upon creation of the page, before
the HTML items on the page are created. This can be useful for functions
such as redirecting to another page if the user’s login token is invalid.

● Mounted: this is a function that is executed upon creation of the page, after
the HTML items on the page are created. This can be useful to access a
component immediately after it has been rendered.

● Computed: this is an object containing multiple functions that are executed
every time a change is detected in the computed function data. This can be
useful to keep the page up to date according to the environment - for example
disabling a button if there is no input into a form.

● Watch: this acts like the computed object, however a function only executes
when a data item that shares its name changes. For example if the data item
user changed, then the function user() in the watched object would be
executed.

● Methods: this is an object containing multiple functions that can be called from
the HTML template and from other places in the script by predating it with
‘this’. This can be useful for executing JavaScript code upon an action, for
example sending a POST request to the primary server when the user clicks a
button.

● Destroyed: this is a function that is executed when the page is destroyed (eg:
the user is redirected to another page). This can be useful for ending an
ongoing process on a page, such as the heartbeat requests when queueing
for the multiplayer game.

91

92

Appendix C: Database architecture

● ‘Users’ table: a table that contains all of a user’s details - a unique id, a unique
email address, a forename, a surname, the hash of a password, the account
creation date, the last login date, a boolean value for the account’s
verification, a boolean value for whether the account has been deleted, the
date of the deletion (if there was one).

● ‘Sign_up_requests’ table: a table that stores all requests to sign up to the
website - a unique id, the user id of the user signing up, a token for that sign
up (the one used for the unique link), a boolean value for validity of the sign
up request, another boolean for completion of the request, and the completion
date.

● ‘Email_change_requests’ table: a table that store all requests for a user to
change their email address - identical to ‘sign_up_requests’, however it also
has an attribute for the requested email address.

● ‘Password_reset_requests’ table: a table to store all requests for a user to
recover their password - identical to ‘sign_up_requests’

● ‘Queued_users’ table: a table to store users who are queued for the
multiplayer game - a unique id, the user id, gamemode, a boolean for validity
of the queued user, the initialisation date (when the user joined the queue), a
boolean for whether the matchmaking system removed the user from the
queue due to a dead heartbeat, a boolean value for matched if the system
found another player to match with, the match date, the id of the match in the
‘queued_users’ table, the user id of the user that was matched with, the date
of the last heartbeat, and the game token.

● ‘Multiplayer_games’ table: a table to store the data of each multiplayer game -
a unique id, the user id of player 1, the user id of player 2, the game mode,
the game token, the initialisation date, the termination date, the words and
their definitions for the game stored as a stringified array of javascript objects
(eg: [{"word":"Cold","def":"Low temperature"},{"word":"House","def":"A place to
live in"}], and 4 booleans for the games validity, completion, removed and
quitted.

● ‘Mulitplayer_answers’ table: a table to store the results of each word from
each multiplayer game - a unique id, the game id, the game mode, the word,
player 1 and player 2’s answers stored as a stringified arrays (eg: [“chilly”,
“freezing”]), a boolean for whether a match was found, the match if there was
one, and booleans for whether the word has been passed, uncompleted, and
processed (processed being whether the result processing server has taken
into account this result yet).

● ‘Singleplayer_games’ table: a table to store the data of each singleplayer
game - identical to ‘multiplayer_games’ except that there is only one player,
so only one user id needs to be stored

● ‘Singleplayer_answers’ table: a table to store the results of each word for
each singleplayer game - identical to ‘multiplayer_answers’ except that there
is only one player, so only one array of answers needs to be stored. There is
also no boolean processed attribute as the singleplayer answers are not being
processed by the result processing server.

93

● ‘Synonyms’, ‘antonyms’ and ‘hypernyms’ tables: tables to store the words for
each game mode and the processed data of each word - a unique id, the
word, the definition, the answers that have occured and their frequency stored
as a stringified javascript object (eg: {"cold":5,"freezing":1}), a boolean value
for the words availability in the multiplayer game, the total occurrences of that
word in the multiplayer game, the number of times a match has been found
for that word, the number of times that word has been skipped, and whether
that word is available in the singleplayer game mode.

94

Appendix D: Website terms and conditions

Last updated: 27th of February, 2019

Please read these Terms and Conditions ("Terms", "Terms and Conditions")
carefully before using the werdz.fun website (the "Service") operated by William
Cooter ("us", "we", or "our"). Your access to and use of the Service is conditioned on
your acceptance of and compliance with these Terms. These Terms apply to all
visitors, users and others who access or use the Service. By accessing or using the
Service you agree to be bound by these Terms. If you disagree with any part of the
terms then you may not access the Service.

Accounts
When you create an account with us, you must provide us information that is
accurate, complete, and current at all times. Failure to do so constitutes a breach of
the Terms, which may result in immediate termination of your account on our
Service. You are responsible for safeguarding the password that you use to access
the Service and for any activities or actions under your password, whether your
password is with our Service or a third-party service. You agree not to disclose your
password to any third party. You must notify us immediately upon becoming aware
of any breach of security or unauthorized use of your account.

Links To Other Websites
Our Service may contain links to third-party web sites or services that are not owned
or controlled by us. We have no control over, and assumes no responsibility for, the
content, privacy policies, or practices of any third party web sites or services. You
further acknowledge and agree that we shall not be responsible or liable, directly or
indirectly, for any damage or loss caused or alleged to be caused by or in connection
with use of or reliance on any such content, goods or services available on or
through any such web sites or services. We strongly advise you to read the terms
and conditions and privacy policies of any third-party web sites or services that you
visit.

Termination
We may terminate or suspend access to our Service immediately, without prior
notice or liability, for any reason whatsoever, including without limitation if you
breach the Terms. All provisions of the Terms which by their nature should survive
termination shall survive termination, including, without limitation, ownership
provisions, warranty disclaimers, indemnity and limitations of liability. We may
terminate or suspend your account immediately, without prior notice or liability, for
any reason whatsoever, including without limitation if you breach the Terms. Upon
termination, your right to use the Service will immediately cease. If you wish to
terminate your account, you may simply discontinue using the Service. All provisions
of the Terms which by their nature should survive termination shall survive
termination, including, without limitation, ownership provisions, warranty disclaimers,
indemnity and limitations of liability.

95

Governing Law
These Terms shall be governed and construed in accordance with the laws of United
Kingdom, without regard to its conflict of law provisions. Our failure to enforce any
right or provision of these Terms will not be considered a waiver of those rights. If
any provision of these Terms is held to be invalid or unenforceable by a court, the
remaining provisions of these Terms will remain in effect. These Terms constitute the
entire agreement between us regarding our Service, and supersede and replace any
prior agreements we might have between us regarding the Service.

Changes
We reserve the right, at our sole discretion, to modify or replace these Terms at any
time. If a revision is material we will try to provide at least 30 days notice prior to any
new terms taking effect. What constitutes a material change will be determined at
our sole discretion. By continuing to access or use our Service after those revisions
become effective, you agree to be bound by the revised terms. If you do not agree to
the new terms, please stop using the Service.

Contact Us
If you have any questions about these Terms, please contact us at
game.cooter@gmail.com.

96

1. Node.js, 2019. Previous Releases . Available at
https://nodejs.org/en/download/releases/ [Accessed on: 06/05/2019]

2. PHP, 2019. History of PHP: PHP Tools, FI, Construction Kit, and PHP/FI.
Available at
https://www.php.net/manual/en/history.php.php?fbclid=IwAR3vyifU4P4ZHSCn
IvsdiIq5WAtTZi7G5WsPABh_l59SQ3j5gz_4uHPOJ5c [Accessed on:
02/02/2019]

3. Node.js, 18 th July 2018. Node.js v10.7.0. Available at
https://nodejs.org/en/download/releases/ [Accessed on: 02/02/2019]

4. Vue.js, 8 th January 2019. Vue-cli v3.3.0. Available at
https://cli.vuejs.org/guide/installation.html [Accessed on 09/02/2019]

5. MySQL, 21st January 2019. MySQL v5.6.40. Available at
https://dev.mysql.com/downloads/mysql/5.6.html [Accessed on 02/02/2019]

6. Bcrypt, April 2019. Bcrypt v2.0.0. Available at
https://www.npmjs.com/package/bcrypt/v/2.0.0 [Accessed on 17/02/2019]

7. Crypto, 2017. Crypto v1.0.1. Available at
https://www.npmjs.com/package/crypto [Accessed on 17/02/2019]

8. Express, November 2018. Express v4.16.3. Available at
https://www.npmjs.com/package/express/v/4.16.3 [Accessed 04/02/2019]

9. Jsonwebtoken, March 2019. Jsonwebtoken v8.2.1. Available at
https://www.npmjs.com/package/jsonwebtoken/v/8.2.1 [Accessed 22/02/19]

10.Lodash, 12 th September 2018. Lodash v4.17.11. Available at
https://lodash.com/ [Accessed 24/02/19]

11.Moment.js, January 2019. Moment.js v2.24.0. Available at
https://momentjs.com/ [Accessed 03/03/19]

12.Nodemailer, 19 th April 2019. Nodemailer v4.7.0. Available at
https://www.npmjs.com/package/nodemailer/v/4.7.0 [Accessed 24/02/19]

13.Socket.io, 29 th November 2018. Socket.io v2.2.0. Available at
https://socket.io/docs/ [Accessed 17/03/19]

14.Axios, August 2018. Axios v0.18.0. Available at
https://www.npmjs.com/package/axios [Accessed 05/02/19]

15.Element-ui, 25 th August 2019. Element-ui v2.5.4. Available at
https://element.eleme.io/?ref=madewithvuejs.com#/en-US/component/installat
ion [Accessed 28/02/19]

16.Password-strength-utility, 2017. Password-strength-utility v1.1.6. Available at
https://www.npmjs.com/package/password-strength-utility [Accessed
17/02/2019]

17.Socket.io-client, December 2018. Socket.io-client v2.2.0. Available at
https://www.npmjs.com/package/socket.io-client [Accessed 17/03/19]

18.Vue, 8 th January 2019. Vue-cli v3.3.0. Available at
https://cli.vuejs.org/guide/installation.html [Accessed on 09/02/2019]

97

https://nodejs.org/en/download/releases/
https://www.php.net/manual/en/history.php.php?fbclid=IwAR3vyifU4P4ZHSCnIvsdiIq5WAtTZi7G5WsPABh_l59SQ3j5gz_4uHPOJ5c
https://www.php.net/manual/en/history.php.php?fbclid=IwAR3vyifU4P4ZHSCnIvsdiIq5WAtTZi7G5WsPABh_l59SQ3j5gz_4uHPOJ5c
https://nodejs.org/en/download/releases/
https://cli.vuejs.org/guide/installation.html
https://dev.mysql.com/downloads/mysql/5.6.html
https://www.npmjs.com/package/bcrypt/v/2.0.0
https://www.npmjs.com/package/crypto
https://www.npmjs.com/package/express/v/4.16.3
https://www.npmjs.com/package/jsonwebtoken/v/8.2.1
https://lodash.com/
https://momentjs.com/
https://www.npmjs.com/package/nodemailer/v/4.7.0
https://socket.io/docs/
https://www.npmjs.com/package/axios
https://element.eleme.io/?ref=madewithvuejs.com#/en-US/component/installation
https://element.eleme.io/?ref=madewithvuejs.com#/en-US/component/installation
https://www.npmjs.com/package/password-strength-utility
https://www.npmjs.com/package/socket.io-client
https://cli.vuejs.org/guide/installation.html

