
Cardiff University

School of Computer Science and Informatics

CM3203 ONE SEMESTER INDIVIDUAL PROJECT REPORT

Implementation and Analysis of

Truth Discovery Algorithms

Joe Singleton

Supervisor: Dr Richard Booth

Moderator: Dr Federico Cerutti

May 2019

ii

Abstract

With the vast amount of data available in today’s world, partic-

ularly on the web, it is common to find conflicting information from

different sources. Given an input consisting of conflicting claims

from multiple sources of unknown trustworthiness and reliability,

truth discovery algorithms aim to evaluate which claims should be

believed and which sources should be trusted. The evaluations of

trust and belief should cohere with one another, so that a claim re-

ceives a high belief ranking if it is backed up by trustworthy sources

and vice versa.

This project investigates truth discovery from practical and the-

oretical perspectives. On the practical side, a number of algorithms

from the literature are implemented in software and analysed. On

the theoretical side, a formal framework is developed to study truth

discovery from a general point of view, allowing results to be proved

and comparisons made between truth discovery and related areas

in the literature. Desirable properties of truth discovery algorithms

are defined in the framework, and we consider whether they are

satisfied by a particular real-world algorithm, Sums.

Contents

Contents iii

List of Figures vi

1 Introduction 1

2 Background 3

2.1 Related Areas . 4

2.1.1 Resolving Conflicts in Data 4

2.1.2 Trust Analysis . 5

2.2 Truth Discovery Background 5

2.3 Existing Work . 7

2.3.1 Software Implementations 7

2.3.2 Theoretical Work . 9

3 Software Implementation 11

3.1 Specification and Design . 11

3.1.1 Datasets . 14

3.1.2 Algorithms . 22

3.1.3 Results and Evaluation 28

3.1.4 Visualisation . 31

3.1.5 User Interfaces . 34

3.2 Implementation . 39

3.2.1 Programming Languages 40

iii

CONTENTS iv

3.2.2 Third-party Libraries Used 41

3.2.3 Truth Discovery Algorithms 42

3.3 Results and Evaluation . 50

3.3.1 Real-World Dataset Demonstration 50

3.3.2 Synthetic Data Accuracy Experiments 52

3.3.3 Convergence Analysis 56

3.3.4 Time Complexity Analysis 58

3.3.5 User Interfaces . 59

3.3.6 Testing . 64

3.3.7 Evaluation against Requirements 68

3.4 Future Work . 70

4 Theoretical Analysis 72

4.1 Approach . 72

4.1.1 Overview of Approach 74

4.2 A Framework for Truth Discovery 75

4.2.1 Standard Definitions and Notation 75

4.2.2 Truth Discovery Definitions 76

4.2.3 Axioms . 78

4.2.4 Iterative Truth Discovery Operators 88

4.3 Evaluation . 93

4.4 Future Work . 97

4.4.1 Unfinished Business 97

4.4.2 Future Directions . 98

5 Conclusions 101

6 Reflection on Learning 103

References 105

A Web-interface Screenshots 111

B Test Results 119

C Proofs 124

C.1 Proof of proposition 1 . 124

C.2 Proof of proposition 2 . 125

C.3 Proof of proposition 3 . 126

CONTENTS v

C.4 Proof of proposition 4 . 126

C.5 Proof of proposition 5 . 127

C.6 Proof of lemma 1 . 127

C.7 Proof of theorem 1 . 129

C.8 Proof of theorem 2 . 134

List of Figures

3.1 Example truth discovery dataset as a list of claim tuples 15

3.2 Matrix representation of the dataset shown in figure 3.1. . . . 16

3.3 CSV representation of the dataset shown in figure 3.1. 18

3.4 UML class diagram showing high-level design for datasets. . . 21

3.5 UML class diagram for algorithms and iterators. 27

3.6 Example of results of an algorithm as key-value mappings. . . . 28

3.7 UML class diagram for results. 31

3.8 Results from figure 3.6 represented graphically 32

3.9 UML class diagram for graphical representations. 34

3.10 Command-line interface example 36

3.11 Command-line YAML output example 37

3.12 UML class diagram for user interfaces. 39

3.13 Python code for loading the stock dataset. 51

3.14 Results for the stock dataset for each algorithm. 52

3.15 Source trust distribution experiment on synthetic datasets. . . . 53

3.16 Claim probability experiment on synthetic datasets. 54

3.17 Domain size experiment on synthetic datasets. 55

3.18 Convergence experiment on a large synthetic dataset. 57

3.19 Algorithm run time experiments on synthetic datasets. 58

3.20 Python code demonstrating simple use of the API. 60

3.21 Example output of the code in figure 3.20. 61

3.22 Example of CLI interface for running an algorithm. 62

3.23 Example of a Python unit test. 66

vi

List of Figures vii

3.24 Status of the requirements in the finished implemetion. 69

4.1 Example of two equivalent truth discovery networks 80

4.2 Network where we do not wish for an IIA-type axiom to hold. . 85

4.3 Network where some notion of independence may be applied. 86

4.4 A network in which Sums does not rank all sources equally. . . 92

4.5 A counterexample to independence for Sums 93

A.1 Basic view of the input form in the web interface. 112

A.2 CSV dataset entry in the web interface. 113

A.3 Advanced algorithm options in the web interface. 114

A.4 Example results of a single algorithm run via the web interface. 115

A.5 Example results of several algorithms run via the web interface. 116

A.6 Graph representation of results in the web interface. 117

A.7 Frame from an animation of the results of an algorithm. 118

Chapter 1

Introduction

There is an increasing amount of data available in today’s world, particu-

larly from the vast number of pages on the web, user-submitted content

on social media platforms and blogs, and sensor data from scientific in-

struments. Data can be found in many different formats, from structured

datasets to natural language articles, and from many disparate sources,

e.g. news outlets, scientific institutions, and members of the public.

With this abundance of data, it is common to find information about a

single object from multiple sources. An inherent problem faced when us-

ing such data is that different sources may provide conflicting information

for the same object.

Conflicts have a variety of causes, including out of date information,

poor quality data sources, errors in information extraction (when parsing

natural language text, for example), and deliberate spread of misinforma-

tion. When it comes to finding information about an object with conflict-

ing reports, the question is this: which information should we accept as

correct?

Truth discovery has emerged as a topic aiming to tackle this problem

of determining what to believe by considering also the trustworthiness of

sources. A main principle in many approaches is that believable claims are

those that are made by trustworthy sources, and that trustworthy sources

generally make believable claims.

1

CHAPTER 1. INTRODUCTION 2

This project has both practical and theoretical components. On the

practical side, we develop a robust software framework in Python for

truth discovery, which supports running truth discovery algorithms on

real-world datasets and evaluating their performance. A few popular al-

gorithms from the literature are implemented, although the framework

aims to be easily extendible, well-documented and well-tested so as to

allow more algorithms and features to be implemented in the future. The

framework will provide a uniform interface for users and researchers in

truth discovery to run different algorithms on datasets, and compare be-

haviour between algorithms. Additionally, it could be used to aid develop-

ment of new algorithms by evaluating performance against a number of

existing algorithms. To demonstrate its capabilities, some basic analysis

and evaluation of the implemented algorithms is performed.

For the theoretical component, we define a formal mathematical frame-

work for truth discovery, highlighting parallels with other areas in the lit-

erature, especially the theory of voting in social choice [41]. Following

the axiomatic approach used in social choice, we look for axioms (de-

sirable properties) of truth discovery algorithms expressed in the formal

framework, and consider which axioms are satisfied by a particular algo-

rithm, namely Sums [27]. As well as providing some immediate results,

this provides foundations for further theoretical work on truth discovery.

Chapter 2

Background

The fundamental problem of truth discovery is to resolve conflicts in a set

of claims from different sources. A näıve approach is to apply a majority

vote, where the claim made by the largest number of sources is accepted.

Unfortunately, this is prone to yield poor results when the sources are

not all equally trustworthy. For example, the study in [31] found that

false information on Twitter is shared more quickly and more widely than

true information. Applying a majority vote in the Twittersphere would

therefore, in many cases, select the false information as correct.

The problem with the majority vote is that all sources are treated iden-

tically: a claim from one source carries as much weight as a claim from

any other. This is contrary to how we judge the veracity of statements

in everyday life, where claims from trusted colleagues have considerably

more weight that claims from unknown persons (and especially people

known to be untrustworthy). Trust can therefore be a valuable tool in re-

solving conflicting information, since one expects that trustworthy sources

are more likely to make accurate claims than untrustworthy sources are.

Truth discovery therefore has two components: determining trust and

belief in sources and claims, and resolving conflicts in data. These are

tightly linked, since the trust evaluation is based on the claims in the

input data, and the claims to accept are based on the trust evaluation.

Presently we outline related areas in the literature that deal with re-

3

CHAPTER 2. BACKGROUND 4

solving conflicts and trust analysis, before providing some background on

truth discovery itself. Then we review existing work relevant to the prac-

tical and theoretical components of the project.

2.1 Related Areas

2.1.1 Resolving Conflicts in Data

There are numerous areas in the existing literature that deal with re-

solving conflicts in data. In data mining, data fusion considers aggre-

gating data from different sources into a single representation. Various

approaches have been suggested (see [8] for a review): for example, tak-

ing a majority vote (as discussed above), taking the most recent value as

correct, or ignoring objects entirely when a conflict exists.

In collective annotation [17], multiple individuals assign labels (an-

notations) to objects, which are to be aggregated into a single collective

annotation. Different individuals may not agree on the appropriate la-

bels for a given object; aggregation functions consider how to obtain the

collective annotation given these conflicts.

Belief revision [28] is set out in a logical framework, and considers

how to update a knowledge base upon receiving new information that

could cause the knowledge base to be inconsistent.

Argumentation theory [7] takes an abstract view and considers a set

of ‘arguments’ which conflict with each other (known as ‘attacking’). The

structure of the arguments is abstracted away, and only the network of

which arguments attack each other is considered. The aim is then to find

sets of arguments that are acceptable and consistent.

In a more general sense, social choice also deals with conflicts in data.

Here voters express preferences for a number of ‘alternatives’ (e.g. candi-

dates for an election), and a social ordering of the alternatives is sought

that reflects the will of the voters. Difficulties may arise when there is no

consensus among the voters – e.g. one voter’s favourite outcome could be

another’s least favourite. Although the notion of fairness present here is

not applicable to truth discovery, the issue of conflicts in the preferences

of voters is relevant.

CHAPTER 2. BACKGROUND 5

2.1.2 Trust Analysis

Trust has been studied in many different domains for different applica-

tions (see [24] for a survey). In the social sciences and economics, trust

between humans has been considered for the effects on economic trans-

actions. E-commerce sites such as eBay use the concept of trust and repu-

tation of sellers to inform buyers.

In wireless sensing, P2P networks and ad-hoc mobile networks, nodes

are required to behave cooperatively for the network to function. Various

approaches have been suggested for analysing the trust of nodes in these

scenarios (e.g. see section 4.4 in [24]) to mitigate the effects of misbe-

haviour, e.g. due to hardware problems or malicious interference from an

adversary.

It should be noted that some of these approaches to evaluating trust

compute ‘local’ measures of trust from the perspective of a particular

node. For example, a sensor in a network may evaluate the trust of its

neighbours based on its interactions with them. The trust assigned to a

given node may therefore vary as it is evaluated from different perspec-

tives. This is not the case with truth discovery, where we seek an objective

‘global’ notion of trust in sources based only on the claims made.

Other works do not aim to compute trust, but instead use trust rela-

tionships between ‘agents’ in a multi-agent system for some purpose. One

example is trust-based recommendation systems [5], where an agent is

given a recommendation for an item of interest based on the recommen-

dations of the agents it trusts. Other examples include personalised rank-

ing systems [2], trust-based argumentation [29] and trust-based belief

revision [9].

The trust considered here is again from the perspective of a given

agent. Nevertheless ideas from these areas still may be relevant to truth

discovery.

From a theoretical point of view, Marsh [23] provides a formal model

for trust in multi-agent systems.

2.2 Truth Discovery Background

In the preceding sections truth discovery has been discussed only infor-

mally. Here we outline more precisely the main concepts in the basic

CHAPTER 2. BACKGROUND 6

form of truth discovery, and discuss the various extensions to this basic

form that have been addressed in the literature. More information can be

found in survey papers on truth discovery methods [15, 21].

A source is an entity that provides (or claims) information, called facts,

about objects.1 A source may claim at most one fact for a given object.

Different sources may provide different facts for the same object; a fact

need not be ‘true’. It is often assumed that for each object there is a unique

true fact. In the basic form of truth discovery, the nature of the facts is

irrelevant, and they are treated as categorical values.2

A truth discovery algorithm takes the sources, facts, objects and the

facts claimed by each source as its input, and outputs a measure of the

trustworthiness of sources and the believability of facts. In an application

of truth discovery for finding true facts, the fact determined to be most

believable for a given object is taken to be the truth.

The precise definitions of input and output vary across the popular

truth discovery literature. Definitions of input are generally compatible

with each other, in the sense that they can be restated in terms of sources,

objects and facts (as above) without changing the essence of the approach.

For example, in Sums, Average·Log, Investment and PooledInvestment

[27] there is no concept of objects, but instead of mutual exclusion sets of

facts which cannot simultaneously be true. However the mutual exclusion

sets themselves can be seen as the objects linking related facts together.

Cosine, 2-Estimates and 3-Estimates [14] also have no concept of ob-

jects, and sources may make negative claims where they state a fact is

false. However one may view the ‘facts’ (in the sense of [14]) as objects,

and ‘true’ and ‘false’ as the only two facts associated with each object.

The form of the output varies more widely. The treatment of sources

is generally the same: each source is assigned a trust score, (usually a

number in [0, 1]) with higher scores indicating more trustworthy sources.

Differences appear for the treatment of facts, however. The two main

ideas are to assign each fact a belief score [27, 35, 36, 37], or to select

a single ‘true’ fact for each object [34, 38, 40]. Another view, taken in

[22] for example, is to produce a single value for each object to represent

1Note that the terminology is not uniform across the literature; e.g. the survey in
[15] refers to sources as ‘providers’, and the facts in [27] are referred to as ‘claims’ (i.e.
the word ‘claim’ is used as a noun, whereas we use it as a verb).

2Some approaches instead make use of the specific data types of the facts in their
calculations (e.g. [22]).

CHAPTER 2. BACKGROUND 7

the true fact, but where the true value may not have been claimed by any

sources (for example, a weighted average could be applied when facts are

numeric values, and could lead to this situation).

Note that selecting a single fact for each object can be seen as a special

case of assigning each fact a score; e.g. the true facts receive a score of 1

and all others receive 0.

In practise, most algorithms operate iteratively, computing trust and

belief scores (or finding ‘true’ facts) until convergence or some stopping

criterion is satisfied. For algorithms that assign trust and belief scores,

facts are first assigned initial belief scores. At each iteration, the trust

scores for sources are updated based on the current belief scores for the

facts they claim; then the belief scores are updated based on the current

trust scores for the sources. This mutual dependence of trust and belief

scores is hoped to encode the idea that trustworthy sources are ones that

claim believable facts, and believable facts are those claimed by trustwor-

thy sources.

This basic formulation is a simple representation of the real world, and

a number of extensions have been addressed to deal with more complex

situations. Some approaches extend the basic model by requiring more

information in the input (e.g. a set of ‘ground truths’ for semi-supervised

truth discovery), whereas others keep the same basic input but consider

more nuanced issues (e.g considering copying amongst sources). Exten-

sions include: implications between facts [35]; heterogeneous data [22];

correlations between objects [34]; hardness of facts [14]; incorporating

prior domain knowledge [27]; sparsity in claims [37]; semi-supervised

truth discovery [36]; copying between sources [11]; time-varying truth

[11]; and streaming data [39].

2.3 Existing Work

2.3.1 Software Implementations

Due to the wide range of domains in which truth discovery may be applied

and the variety of approaches and additional considerations beyond the

basic model (some of which are domain specific), there is not likely to be

a single algorithm that is best suited for all applications.

CHAPTER 2. BACKGROUND 8

Instead, for a given problem it is necessary to try several algorithms,

or even tailor a bespoke one, to achieve the best results. Note that even

evaluation may be domain specific: run time and memory efficiency may

be critical in some cases (e.g. when dealing with large volumes of data in

a scenario where real-time results are desired), whereas some applications

may be insensitive to long run times but require precise accuracy.3

For this reason, there is a need for an openly available and extendible

software framework for truth discovery, which allows different algorithms

to be evaluated and compared in a uniform environment. When faced

with a particular truth discovery problem, users may then run many al-

gorithms on their data without additional effort for each algorithm. An

easily extendible framework will allow them to define their own metrics

for evaluation that are suitable for the dataset in question, and even mod-

ify algorithms to suit the type of data if required.

Despite the wide interest in truth discovery in research papers, there

are few open source software implementations. One such implementa-

tion is spectrum4, available on GitHub. This library implements some al-

gorithms from the literature, but lacks proper documentation, does not

provide a uniform interface for getting results across algorithms, and does

not support evaluating results for datasets for which some true values are

already known. It also does not provide fine-tuned control for the running

of algorithms, such as the threshold for determining when trust and belief

scores have converged.

Another open source library is DAFNA-EA5, which is the implementa-

tion behind the comparative study in [18]. Whilst extensive in the number

of algorithms implemented, its capability for evaluating performance and

generation of synthetic data, it lacks documentation to allow its code to

be extended (i.e. for users to define their own evaluation metrics or al-

gorithms), and is not geared towards real-world applications of truth dis-

covery. Additionally, a web interface is reportedly available, which may

improve accessibility for non-technical users, but is not operational at the

time of writing.

Other truth discovery implementations are available on GitHub and

elsewhere,6 but these are generally repositories containing code used in

3 The meaning of ‘accuracy’ for truth discovery algorithms will be discussed in section
3.1.

4https://github.com/totucuong/spectrum
5https://github.com/daqcri/DAFNA-EA

https://github.com/totucuong/spectrum
https://github.com/daqcri/DAFNA-EA

CHAPTER 2. BACKGROUND 9

the production of a research paper rather than general purpose libraries.

To produce a software framework for truth discovery that achieves the

goals stated above and which addresses the deficiencies of the existing

frameworks, this project will implement a selection of algorithms from

the literature in a uniform way with a focus on extendability, which will

include comprehensive documentation of both the code and the user in-

terface. Fine-tuned control of parameters for initialising and running al-

gorithms will be available. It will also identify standard metrics for evalu-

ating algorithms (including generation of synthetic datasets), and provide

means of comparing algorithms with respect to those metrics.

2.3.2 Theoretical Work

Many of the truth discovery algorithms in the literature are supported

by some form of theoretical analysis. For example, the survey in [15]

analyses the time complexity of various algorithms, the convergence of

semi-supervised truth finder is proved in [36], and the approach in [33] is

proven to converge to find the true facts under assumptions on the dis-

tributions of source reliability. In [32], a probabilistic framework termed

Unified Truth Discovery is developed, and theoretical properties of this

framework are proved under certain mild assumptions.

A limitation of this kind of theoretical analysis is that the results apply

only to a single algorithm or class of algorithm. These results, whilst

important in their own right, are not general enough to apply to truth

discovery as a whole, and depend on the specific ideas and approaches in

use.

As far as I am aware, at the time of writing there is no general theoreti-

cal framework capable of modelling all truth discovery algorithms, which

allows general properties of such algorithms to be studied. Developing

such a framework would allow algorithms to be compared with respect to

their theoretical properties as opposed to purely practical ones, something

which has not been done in the literature to date.

A general theory of truth discovery would also facilitate deeper com-

parison between truth discovery and other areas in the literature. For

example, it was noted above that truth discovery bears similarity to be-

6 e.g. https://github.com/lvlingyu11/Truth-Discovery-for-Crowdsourcing-Data
and https://github.com/MengtingWan/KDEm

https://github.com/lvlingyu11/Truth-Discovery-for-Crowdsourcing-Data
https://github.com/MengtingWan/KDEm

CHAPTER 2. BACKGROUND 10

lief revision, argumentation theory and, in a more general sense, social

choice. Each of these areas have rich formal foundations which have pro-

vided useful results for both theoretical and practical purposes; develop-

ing similar foundations for truth discovery may reveal deeper similarities

and allow results in these areas to be applied to truth discovery.

An approach that has seen great success in social choice is the ax-

iomatic method, where axioms (desirable properties) of voting rules are

stated, and rules are compared with respect to these properties. Such

analysis can provide deep results; for example, K. Arrow’s famous impos-

sibility theorem [6] shows that it is impossible for a voting rule to simul-

taneously satisfy a few simple axioms that one would reasonably expect

of a fair voting rule, thus proving a fundamental limitation of voting rules

in general. The axiomatic approach has also been successfully applied in

the related areas of ranking [2, 3], recommendation [5, 19], collective

annotation [17] and belief revision [1].

This project will aim to define a theoretical framework for truth discov-

ery that is general enough for any algorithm to be modelled, independent

of the algorithm’s specific approach. Following the axiomatic method em-

ployed in social choice and related areas, axioms for truth discovery algo-

rithms will be developed to encode desirable properties. To demonstrate

the framework’s suitability as a tool for analysing real-world truth dis-

covery algorithms, Sums [27] will be defined formally and analysed with

respect to the developed axioms.

Chapter 3

Software Implementation

This chapter describes the software framework for truth discovery devel-

oped for the practical component of this project. First, high level require-

ments and the design of the system are discussed and justified.

3.1 Specification and Design

The broad goals and aims for the practical component of this project were

outlined in section 2.3.1. In this section, these ideas are developed and

made into precise requirements for the software. This is accompanied by

a high-level description of how the software is designed to meet these

requirements.

The primary use case for the system is applying truth discovery algo-

rithms to real-world datasets to tackle real-world truth discovery prob-

lems. For example, a user may have collected information from various

websites and wishes to use truth discovery to determine, as far as pos-

sible, which information is true and the trustworthiness of the websites.

To distinguish between other types of users, we shall call such users truth

discovery practitioners. To determine the best algorithm to use for their

specific purpose, these users will also be interested in evaluating algo-

rithms in various ways, such as time and memory complexity. Due to the

11

CHAPTER 3. SOFTWARE IMPLEMENTATION 12

variety of diverse domains in which truth discovery can be applied, prac-

titioners may also wish to define their own methods of evaluation specific

to their type of data.

Another use case is algorithm development. Developing and testing a

new truth discovery algorithm requires a lot of supporting infrastructure,

such as methods for loading datasets and user interfaces. Additionally,

one will often look to compare the new algorithm to existing ones, in or-

der to determine in what sense the new algorithm is an improvement; this

requires implementing existing algorithms and methods for evaluation.

Algorithm developers would therefore benefit from a library for truth

discovery that provides the necessary supporting code, allowing them to

focus solely on the development of the algorithm itself. Evaluating the ex-

isting and new algorithms with the same library also ensures comparisons

are fair.

Both the ‘practitioner’ and algorithm developer roles require evaluat-

ing algorithms in some sense. An important measure of an algorithm’s

performance is its accuracy, defined as the proportion of cases where the

algorithm predicts the true fact for an object [20, 27]. In much of the

truth discovery literature, accuracy is calculated by running an algorithm

on a dataset for which true values are already known for some objects. We

will refer to such datasets as supervised datasets. Supervised datasets are

often constructed synthetically, where sources, facts and claims are gen-

erated randomly according to some statistical model, due to the difficulty

in determining with confidence the true facts in real-world datasets [14,

22, 27, 35].

Accordingly, our system should provide methods for loading super-

vised datasets, both from real-world data and by synthesis, and for evalu-

ating accuracy with respect to such datasets.

The final major use for the system is to be a tool for theoretical work.

Users considering theoretical aspects of truth discovery, who we shall refer

to as theorists, will often need to construct simple instances of truth dis-

covery problems for examples and counterexamples, and run algorithms

on these instances. They may also use a software library to empirically

verify or disprove properties of certain algorithms.

Having outlined the target audience for the software implementation,

their goals and the tasks they wish to perform, we can identify distinct

components of the system and high-level requirements for each.

CHAPTER 3. SOFTWARE IMPLEMENTATION 13

• Datasets: Datasets need to be loaded from suitable formats. This in-

cludes loading files on disk for large real-world datasets, and creat-

ing small examples by hand. Additionally, supervised and synthetic

data generation should be supported.

• Algorithms: A selection of algorithms from the literature should

be implemented. Users should have control over any parameters

available, such as stopping criterion for iterative algorithms. The

implementation should be extensible so that new algorithms can be

developed without reimplementing code, to support the ‘algorithm

developer’ use case.

• Results and evaluation: Results from algorithms should be pre-

sented to the user in a suitable format that reflects the aims of the

user – the format may differ between use cases. To support evalua-

tion, information such as run time, memory usage and the number

of iterations should also be returned. It should also be possible for

users to extend the code to define their own metrics, to support

the ‘practitioner’ use case when the evaluation of an algorithm is

domain-specific.

• Visualisation: For the ‘theorist’ use case, it is important that the sys-

tem allows simple examples to be created by hand, and for these to

be analysed in some way. Visual representations such as images and

animations could be used to analyse results for small input datasets.

• User interfaces: Each of the main user types defined above have

different reasons for using the system and may perform different

kinds of tasks. A suitable user interface (or interfaces) should be

available that reflect the aims of the user and allow the required

tasks to be carried out as simply as possible.

Detailed requirements and design for datasets, algorithms and results

will depend on the model of truth discovery that is adopted, since this will

dictate the form of input and output. For our software implementation,

we aim for a model that is general enough to support a wide range of

CHAPTER 3. SOFTWARE IMPLEMENTATION 14

current and future algorithms, but does not stray too far from the model

actually used in the definition of the algorithms we wish to implement.1

For input, we shall use the sources, facts and objects model already

described; it was noted that this approach is widely applicable to popular

algorithms in the literature. However, we will use different terminology.

It is anticipated that facts for objects will commonly represent numeric

values for a variable, e.g. a source may claim the temperature in Celsius

for the weather on the 27th April in Cardiff is 14°C. In such cases it is

more natural to call ‘temperature’ a variable instead of an object, and to

call ‘14°C’ a value instead of a fact. Whilst we will not actually restrict

users to numeric values only, this terminology will occasionally be used

instead of sources/objects/facts.2 Since the same value may be used for

multiple objects, the notion of a ‘fact’ is replaced by a variable-value pair.

For output, trust and belief scores for each source and value-variable

pair will be used, as this is the more general form of output discussed in

section 2.2.

We now describe the components listed above in more detail, set out

precise requirements, and discuss high-level aspects of the design. Non-

functional requirements, which describe how the system should be as op-

posed to what it should do, are also be discussed.

3.1.1 Datasets

Format

The key parts of a truth discovery dataset are the sources, the variables,

and the values claimed by sources for these variables. In a real application

of truth discovery, one wishes to use an algorithm to determine true values

for the variables and to analyse the trustworthiness of sources; the sources

and variables therefore need to be labelled in some way so they can be

referred to in the results. Labels will most commonly be strings (e.g. ‘Met

Office’, ‘Humidity’), but other data types such as integers and floating

point numbers should be allowed too.

1 The requirements for a model here differ from those in the theoretical part of the
project (discussed in section 4.1), where we are less concerned with the model matching
the definition of specific algorithms.

2 The decision to use this alternate terminology was made early on in the project.
Whether it actually improves or worsens clarity is up for debate.

CHAPTER 3. SOFTWARE IMPLEMENTATION 15

(weather.com, 0.50, Humidity),

(weather.com, 1014.2 mb, Pressure),

(weather.com, 14➦C, Temperature),

(weather.com, 16.1 km, Visibility),

(Met Office, 0.56, Humidity),

(Met Office, 1014 mb, Pressure),

(Met Office, 11➦C, Temperature),

Figure 3.1: Example of a small truth discovery dataset expressed as a list of claim

tuples. The data was collected manually from two weather forecasts for Cardiff on

the 27th April 2019.

The first assumption made in this project is that these labels are unique

identifiers for sources and variables. With this assumption, a claim con-

sists of only three parts: a source label, a value, and a variable label.

There is no need to define the sources and variables separately, since the

whole set of sources and variables can be constructed from a list of claims.

A dataset will therefore be represented as a list of claim tuples. An exam-

ple is shown in figure 3.1. This format is simple to understand and work

with by hand and in code, and leads to the first requirement.

Requirement 1. Datasets can be loaded from a list of (source, value,

variable) tuples. Each component of the tuple can be any reasonable data

type, such as a string, integer, or floating point number.

For use cases other than real-world applications of truth discovery,

such as evaluation of algorithms for theoretical analysis and algorithm

development, one is not interested in the results of truth discovery for its

own sake, but for other aspects such as run time and accuracy on super-

vised datasets. In this case the labels for the sources and variables are

irrelevant – the conflicts in the claims between sources is the only impor-

tant detail. Labels can also be irrelevant even when one is interested in

the results; for example when constructing a simple ‘fake’ example dataset

by hand to analyse the results of an algorithm.

Having to create artificial labels in these cases would be inconvenient,

so a format with ‘anonymous’ sources and variables is desired. One sim-

ple way to achieve this is to have a matrix with rows corresponding to

sources, columns corresponding to variables, and claimed values as the

CHAPTER 3. SOFTWARE IMPLEMENTATION 16

[

0.50 1012.2 mb 14°C 16.1 km

0.56 1012 mb 11°C −

]

Figure 3.2: Matrix representation of the dataset shown in figure 3.1.

entries of the matrix. Sources can then be referred to by their row num-

ber if necessary, but no explicit labels need to be given. An example is

shown in figure 3.2. Note that the matrix may contain ‘empty’ cells when

a source does make a claim for all variables, such as the second source

(‘Met Office’) for the final variable (‘Visibility’) in figure 3.2.

Requirement 2. Datasets can be loaded from a matrix format with a row

for each source and a column for each variable, where the entry at row i,
column j is the value the i-th source claims for the j-th variable, or a special

value denoting an empty cell.

In all but trivial cases, datasets need to be stored and loaded from

files on disk. Due to the limited existing software for truth discovery,

there is no standardised format for storing truth discovery datasets. For

this reason we consider ‘bespoke’ formats for the claim tuple and matrix

formats described above.

The claim tuple format (requirement 1) is designed with real-world

applications of truth discovery in mind. Creating a real-world dataset

from scratch is a difficult process which requires considerable time and

effort. To create a dataset of a reasonable size the process must be auto-

mated, which presents challenges for identifying the variables and claims,

especially when dealing with unstructured sources of information such as

web pages. Furthermore, different sources may use different names for

the same variables (e.g. ‘Wind’ and ‘Wind Speed’) which must be consol-

idated – this is called schema matching [8] – and values in different for-

mats (e.g. 14mph and 22.5kmph) need to be recognised and converted

to a common form.

As such, it is expected that users will more often use data from existing

work that they did not collect themselves – such data can be readily found

on the web3 – and so will have no control over the format. With so many

different formats in use (e.g. CSV files, JSON files, relational databases),

there is no single format that can be used in all cases. Defining a fixed

CHAPTER 3. SOFTWARE IMPLEMENTATION 17

file format for our system would therefore require users to first write ‘con-

version code’ to re-write the data in the chosen format; this would take

up additional storage space, require data to be processed twice, and add

complexity for users.

Clearly some amount of code from the user is required, however, to

load data from an unknown format. Ideally the user would write as

little code as possible, specifying only how to extract (source, value,

variable) tuples, with other implementation details abstracted away.

To achieve this, base classes will be provided that implement the core

functionality for loading datasets, but leave the method of extracting

claim tuples from the file undefined. Users will then extend these classes

to implement this functionality according to the particular format in use.

This approach allows files from any format to be ready directly, as the

conversion to claim tuple format can be done on the fly.

Requirement 3. Users can load data from any custom format by imple-

menting a function that extracts (source, value, variable) tuples from

an input file.

The situation is not the same for the matrix format (requirement 2),

which is intended for evaluation and analysis of algorithms on synthetic

and hand-made datasets. In this case the datasets are more likely to be

used within the scope of this software only, and will be created by users

themselves, so the issues with defining a fixed file format described above

do not apply.

We opt to use a plain text CSV (comma separated values) format for

matrix datasets. CSV files are widely used in many domains, can be cre-

ated and edited easily in a text editor or in spreadsheet software, and

naturally represent a matrix: each line in the file represent a row, and val-

ues within a row are separated by commas. Note that empty cells can be

conveniently denoted by the ‘empty string’. Figure 3.3 shown an example

dataset in CSV format.

Requirement 4. Datasets can be loaded from a CSV file representing a ma-

trix.

3 For example, there are five real-world datasets available to download at http:

//lunadong.com/fusionDataSets.htm.

http://lunadong.com/fusionDataSets.htm
http://lunadong.com/fusionDataSets.htm

CHAPTER 3. SOFTWARE IMPLEMENTATION 18

0.50,1012.2mb,14➦C,16.1km

0.56,1012mb,11➦C,

Figure 3.3: CSV representation of the dataset shown in figure 3.1.

Supervised and Synthetic Data

Supervised data is often used to evaluate the accuracy of truth discovery

algorithms by considering the proportion of variables for which the pre-

dicted value is correct. Supervised datasets can be obtained by manually

determining true variable values in a real-world dataset, or by creating

the dataset synthetically. Both approaches are useful in their own ways:

real-world supervised data may be a realistic indicator of accuracy, while

synthetic data is easier to obtain and allows parameters of the dataset

to be precisely controlled (e.g. the number of sources and variables, the

proportion of true claims, the variation in claimed values etc.).

Note that supervised data is still useful if true values are only known

for a subset of variables. Running an algorithm on the full input data

provides more information for the algorithm to base its judgment on, and

the results can be evaluated based only on the subset. In any case, for

real-world datasets with hundreds of variables it is infeasible to manually

find true values for all variables with a high degree of confidence.

A supervised dataset therefore consists of a regular dataset, as defined

in requirements 1 or 2, along with a subset of variables and associated

true values.

For datasets in claim tuple form, true values can be represented simply

as a list of (true value, variable) tuples. For the matrix format, they

can be represented in an additional row.

Requirement 5. Supervised datasets can be loaded from the following for-

mats:

• a list of (source, value, variable) tuples together with a list of

(true value, variable) tuples for a subset of the variables;

• a matrix of claimed values, where the first row contains the known

true values.

For generating synthetic data, various methods have been used in the

literature.

CHAPTER 3. SOFTWARE IMPLEMENTATION 19

In some cases synthetic data is not completely artificial, but generated

based on real-world true facts [22, 27]. The number of artificial sources

is fixed and reliability levels set, either by random selection [27] or pro-

vided as input to process [22]. Claims are then generated according to

the source reliability levels. In some methods, source reliability is the

probability that any given claim from a source is true; sources choose the

correct value with this probability and choose uniformly from a set of pre-

generated false values otherwise [27]. Other methods do not explicitly

generate false facts, but generate a source’s claims by adding different

levels of noise to the true values, where the amount of noise is inversely

proportional to the source reliability [22].

There are also papers describing entirely artificial data generation [14,

35]. These approaches are broadly similar to the ones described above,

but the ‘true values’ for variables are created randomly first.

Note that sources do not make a claim for every variable in the gener-

ated set of claims, since this would not reflect the sparse nature of real-

world datasets. The number of sources for a variable can be determined

first and the appropriate number of sources selected randomly [27, 35],

or one can specify the probability of a source making a claim on any par-

ticular variable and make a probabilistic choice for each source-variable

pair [14].

For our truth discovery implementation, we aim for a simple and gen-

eral method that can be used with a variety of algorithms. A simple ap-

proach will provide value initially, and may be extended in future work to

model more specific qualities of truth discovery datasets. Taking a more

complex and opinionated view from the outset would instead make it dif-

ficult to adapt to future use cases, and risks tailoring the synthetic data

generation to a particular algorithm or type of data.

We will therefore generate synthetic data wholly artificially, i.e. not

based on real-world truths, using a fixed set of categorical values for vari-

able values. The user will specify the number of sources and variables to

generate, a reliability value for each source, the probability that a source

makes a claim for any particular variable, and the number of possible

values for variables.

For each variable, a uniform random number in {0, . . . , d − 1} will be

generated as the ‘true’ value, where d is the number of possible values

(specified by the user). Source reliability will have the probabilistic inter-

pretation mentioned above: a source with reliability p chooses the ‘true’

CHAPTER 3. SOFTWARE IMPLEMENTATION 20

value with probability p, and any other value with probability 1−p

d−1
; that is,

the sources chooses a false value uniformly.

Having the source reliabilities specified by the user instead of gener-

ated randomly allows for different scenarios to be considered – for exam-

ple one can investigate the difference in the behaviour of algorithms when

most sources are trustworthy and when most are untrustworthy. In any

case, the user is free to generate source reliabilities randomly themselves

beforehand.

Requirement 6. Synthetic datasets can be generated based the approach

described above, using user-supplied parameters.

In practise, synthetic data is used to evaluate and compare different al-

gorithms. It is important that the algorithms are run on exactly the same

dataset, particularly when random chance is involved. The software must

therefore support saving synthetic datasets to files; a natural choice is to

use the same CSV format proposed for supervised data to avoid introduc-

ing an extra format.

Requirement 7. Synthetic datasets can be saved in the CSV format for su-

pervised data defined in requirement 5.

Large Data

Real-world truth discovery datasets are often very large. For example,

consider the stock dataset curated by the authors in [20]. Information

about 1,000 stock symbols from 55 sources was collected for each week

day in July 2011. For each stock symbol, 16 attributes for stocks were

identified. Data was obtained for 21 days, resulting in 21 × 16 = 336
variables for each stock, and 336,000 variables in total. In my own exper-

iments, I found that not all sources made a claim for all variables; even so,

across the 55 sources there are 2,843,803 claims. Since this dataset only

covers a period of one month, one may imagine that even larger datasets

are possible.

Indeed, the authors in [36] performed experiments on a highly diverse

web-scale dataset consisting of 65.7 million variables, 591 million claims,

and 33,000 sources.

CHAPTER 3. SOFTWARE IMPLEMENTATION 21

Figure 3.4: UML class diagram showing high-level design for datasets.

Any serious truth discovery implementation must therefore be able to

handle ‘large’ datasets. Clearly ‘large’ is not a precise term, but neverthe-

less we state the following non-functional requirement.

Requirement 8. The system supports loading and running algorithms on

large scale datasets without significant slow-down.

Design

With requirements for datasets defined, the main classes required for deal-

ing with input data can be identified. The core class, called Dataset,

will implement loading data from the claim tuples format defined in re-

quirement 1. This is the most general form of input: the matrix form in

requirement 2 can be reduced to this form by labelling the sources and

variables according to their respective row and column numbers. A class

MatrixDataset will therefore be a specialisation of Dataset.

Supervised data consists of a dataset and true values. In order to use

any kind of dataset (Dataset or MatrixDataset), the SupervisedData

class will hold a Dataset object; i.e. composition is used instead of in-

CHAPTER 3. SOFTWARE IMPLEMENTATION 22

heritance. Synthetic datasets are special cases of supervised data, so a

SyntheticData class will be a specialisation of SupervisedData.

For loading data from custom file formats, as set out in requirement

3, classes FileDataset and FileSupervisedData will implement the nec-

essary functionality, except the format-specific details. These will be ab-

stract classes; they must be sub-classed for the unimplemented methods

to be defined.

A UML class diagram [30] depicting the class hierarchy is shown in

figure 3.4.

3.1.2 Algorithms

The core ingredient for a truth discovery library is the implementation

of truth discovery algorithms, but so far the actual selection of algorithms

that will be implemented has not been discussed. In this section we briefly

describe the various kinds of algorithms defined in the literature, and

set out which ones will be implemented. Other aspects concerning their

implementation will then be considered.

Algorithm Selection

Many truth discovery algorithms have been described in the literature,

with wide variety in the approach and methodology used. The authors

in [20] define five categories: baseline, web-link based, IR based, Bayesian

based, and copying affected. Baseline methods are basic data fusion meth-

ods such as majority voting. These methods are not intended to be serious

contenders for truth discovery, but are useful for evaluation of ‘real’ algo-

rithms by comparison; a truth discovery algorithm should surely perform

better than majority voting to warrant the additional computational cost.

Web-link based algorithms use the structure of links between sources,

facts and objects to iteratively compute trust scores for sources and be-

lief scores for facts. Examples include Sums, Average·Log, Investment and

PooledInvestment [27]. They are inspired by algorithms that measure au-

thority of web pages based on hyperlink structure, such as Hubs and Au-

thorities [16] and PageRank [25].

IR (information retrieval) based methods use similarity measures pop-

ular in information retrieval, such as cosine similarity, to measure similar-

CHAPTER 3. SOFTWARE IMPLEMENTATION 23

ity between sources’ claims, and use this to infer trust and belief. Exam-

ples include Cosine, 2-Estimates and 3-Estimates [14].

Bayesian based methods employ Bayesian probability and statistics to,

roughly speaking, determine the probability that sources will claim true

facts. Examples include TruthFinder [35], LDT [38], BCCTD [12], PTDCorr

[34], and the algorithms defined in [33].

Copying aware algorithms consider copying relationships between sources,

and aim to reduce the trustworthiness of sources that copy from others.

Examples include the algorithms defined in [11].

The survey in [21] notes an additional class of algorithms that define

truth discovery as an optimisation problem. Sources are assigned weights

(i.e. trust scores), and variables assigned ‘true’ values. The objective

function, to be minimised, is the sum of the distances between ‘true’ val-

ues and source claims, with each distance weighted by the source weight.

Distances must be measured using a metric suitable for the data type of

the variables.

In terms of implementation, most algorithms operate in an iterative

fashion, and alternate between source trustworthiness and true fact in-

ference steps. The inference steps vary from simple update rules (e.g.

Sums, Average·Log and friends), to complex operations involving several

hyperparameters (e.g. Bayesian statistical methods).

Ideally, the implementation for this project would cover a range of

algorithms from each of the above categories, including both simple and

complex ones. However there is limited time available, and other aspects

of the work besides the implementation of algorithms to consider. For

this reason we will require only that some of the simpler algorithms are

implemented.

The simplest method to implement is undoubtedly the baseline major-

ity voting method. Voting will also be useful for evaluation of algorithms,

which is an important consideration for this project. For non-baseline

methods, it is my view that the web-link based algorithms proposed in

[27] are the simplest to implement, along with the more straightforward

Bayesian methods such as TruthFinder. Implementing ‘simple’ algorithms

only still provides a useful framework, in which more advanced algo-

rithms can be considered in future work.

Requirement 9. The algorithms implemented include baseline majority vot-

ing, Sums, Average·Log, Investment, PooledInvestment and TruthFinder.

CHAPTER 3. SOFTWARE IMPLEMENTATION 24

Parameters

Many algorithms have depend on various parameters that control their

operation. Some parameters are specific to particular algorithms, whereas

others apply widely to whole classes of algorithms.

It is important that the system allows users to fine-tune these param-

eters. This is particularly important for evaluation use cases, where one

may be interested in not just comparing different algorithms against each

other, but comparing instances of the same algorithm with different pa-

rameters. Additionally, some parameters have no semantic meaning (e.g.

g for Investment and PooledInvestment), so that experimentation may be

the only sensible way to choose values for them.

All the algorithms listed in requirement 9 (except baseline voting) op-

erate iteratively and recursively, updating trust and belief scores based on

the scores in the previous iteration. There are two parameters that apply

globally to this class of algorithm: the mode of iteration and priors.

The recursion aspect requires that initial trust or belief scores are spec-

ified. Four of the algorithms listed use fact beliefs as the initial values

(called priors in [27]), so we will do the same. Users should be able to

select the method of assigning these initial scores; for example all facts

could receive the same score (referred to later as fixed priors), or belief

could be distributed evenly amongst facts for the same object (uniform

priors).

Requirement 10. The method of assigning prior belief scores can be speci-

fied when running an algorithm.

The iterative aspect means that algorithms run until a pre-defined

stopping criterion is satisfied. The stopping criterion is clearly an im-

portant parameter, as the results may be greatly affected by it – both in

terms of how well truths are discovered in the data, and in terms of run

time.

A basic method of iteration is to simply perform a fixed number of

iterations in all cases. More commonly though, algorithms iterate until

‘convergence’ of source trust scores, i.e. until trust scores settle down to

fixed values.

In a truth discovery problem with m sources, the set of trust scores

can be seen as a vector in R
m, which is a metric space when equipped with

a suitable metric. Convergence of a sequence in a metric space (X, d) is

CHAPTER 3. SOFTWARE IMPLEMENTATION 25

defined as follows: a sequence (xn)n∈N in X converges to y ∈ X iff for any

ǫ > 0 there exists N ∈ N such that d(xn, y) < ǫ for all n > N .

The convergence (or otherwise) of a sequence in this sense cannot be

determined via purely computation means, since infinitely many terms

would have to be considered.4A common heuristic is to instead iterate

until the distance between successive terms passes below a fixed (small)

threshold δ.
For the metric d, common choices for Rm include the metrics induced

by the ℓp norm (for p ≥ 1) and the infinity norm, which are d(~x, ~y) :=

(
∑m

i=1 |xi − yi|
p)

1

p and d(~x, ~y) := max1≤i≤m |xi − yi| respectively. The cases

p = 1 and p = 2 of the ℓp norm, called the Manhattan and Euclidean norms

respectively, are widely used.

Some authors consider a looser sense of convergence, where a function

that does not qualify as a metric is used to measure distances between

iterations. For example, the authors of TruthFinder use cosine distance to

determine when iteration should stop, but cosine distance does not satisfy

the triangle inequality and is therefore not a metric.5

To facilitate such approaches, we will use the term distance measure to

mean any function R
m × R

m → [0,∞) that is used to compare the trust

scores in successive iterations.

Two parameters required for convergence until iteration are therefore

the distance measure d and the threshold distance δ. It is possible that the

distance always remains above δ; to avoid an infinite loop a maximum

iteration count should also be given.

Requirement 11. The mode of iteration can be specified when running an

iterative algorithm. The mode may be one of:

• Fixed iteration, where a fixed number of iterations are performed;

• Convergence iteration, where iteration continues until the distance

between trust scores in successive iterations, measured by a user-specified

4 This issue is discussed in more detail in section 4.2.4.
5 Cosine distance is defined as 1 minus cosine similarity:

d(~x, ~y) := 1−
~x · ~y

‖~x‖‖~y‖

where · denotes the dot product and ‖ · ‖ the Euclidean ℓ2 norm.

CHAPTER 3. SOFTWARE IMPLEMENTATION 26

distance measure, becomes smaller than a user-specified threshold level,

or a maximum number of iterations are performed. The available dis-

tance measures include ℓ1, ℓ2, ℓ∞ and cosine distance.

Finally, particular algorithms may have their own parameters, such as

the ‘dampening factor’ in TruthFinder. Such parameters should also be

possible for the user to define.

Requirement 12. Algorithm-specific parameters can be specified by the user

when running an algorithm.

Development

For the development use case, users need to extend code and define their

own algorithms. This clearly requires some interaction with the code base,

but should not require users to know implementation details of other

(unrelated) areas of the software, such as loading datasets and user in-

terfaces. Even some algorithm-related functionality should be handled

external to the user’s code, such as checking the stopping criterion and

reading parameters from user input.

To achieve this we aim to isolate the algorithm-specific code so that it

can be overridden without needing to reimplement generic functionality.

Doing so lowers the barrier to entry for algorithm developers, requiring

less time investment to start working with the library. We state a non-

functional requirement to capture these ideas.

Requirement 13. Users can implement new algorithms without needing

to reimplement or know implementation details of unrelated parts of the

software.

Design

As with the design for datasets in section 3.1.1, the class hierarchy for

the implementation of algorithms can now be set out so as to meet the

requirements defined above.

It was noted above that the implementation of an algorithm includes

both generic functionality and the core steps the algorithm itself. An ab-

stract base class BaseAlgorithm will contain the generic functionality, and

each individual algorithm will be implemented as a sub-class.

CHAPTER 3. SOFTWARE IMPLEMENTATION 27

Figure 3.5: UML class diagram showing high-level design for algorithms and itera-

tors.

Iterative algorithms have yet more generic functionality, such as initial-

ising iteration and prior beliefs; this will be implemented in a BaseIterativeAlgorithm

class.

For iteration, it should be possible to use either fixed or convergence

iteration with any algorithm. As such the iteration logic itself – particu-

larly the stopping criterion for convergence – should be defined outside

the algorithm classes themselves. This avoids repetition of code in pursuit

of requirement 13. A base class Iterator will implement any common

functionality, with FixedIterator and ConvergenceIterator sub-classes

providing the actual logic. Each iterative algorithm object will then have

an Iterator instance as a parameter.

Finally, we note that PooledInvestment is a specialisation of Investment,

and so will be implemented as a sub-class.

CHAPTER 3. SOFTWARE IMPLEMENTATION 28

Trust: {

"source 1": 1.0,

"source 2": 0.5,

"source 3": 0.5,

"source 4": 0.75,

"source 5": 0.1

}

Belief: {

"var 1": {

"7": 0.9, "8": 0.3, "43": 0.01

},

"var 2": {

"green": 0.7, "red": 0.9, "dark red": 0.93

}

}

Figure 3.6: Example of the raw results of a truth discovery algorithm as key-value

mappings.

These classes and their relationships are illustrated in the UML class

diagram in figure 3.5.

3.1.3 Results and Evaluation

Having run a truth discovery algorithm, users need to obtain the results in

some way. Results include the raw trust and belief scores as produced by

the algorithm, and information about the running of the algorithm itself,

such as time/memory usage and the number of iterations.

Evaluation of algorithms – which is a key task for all the use cases

defined at the start of this chapter – will be based solely on the results

they return. As such the requirements for evaluation may shape the form

results are presented in, so we consider results and evaluation together in

this section.

For the ‘practitioner’ use case, where algorithms are run on real-world

datasets, users clearly need to access the trust and belief scores given by

the algorithm. For trust scores, a key-value mapping that maps source

labels to trust scores is a convenient representation. For belief scores,

each variable has a number of proposed values, which in turn have belief

CHAPTER 3. SOFTWARE IMPLEMENTATION 29

scores. A two-level mapping can be used here: keys at the outer level are

the variable labels, and the proposed values are mapped to belief scores

at the inner level. An example is shown in figure 3.6.

There are a number of derived results that can be obtained from the

raw trust and belief scores, including the value for each variable with

maximum belief score (these are often taken as the ‘true values’ in ap-

plications), and statistics regarding the trust and belief scores, e.g. the

mean and standard deviation. For convenience, these calculations will be

implemented in a method that users can call as required.

Finally, recall that in a real application there may be hundreds or thou-

sands of sources and variables. It may be that only a subset variables are

of interest, so it should be possible for users to ‘query’ their results and

only include specified sources and variables.

Requirement 14. Results of an algorithm are given in the key-value map-

ping format shown in figure 3.6. Methods are available to obtain the fact

for a given variable with maximum belief score, and the mean and standard

deviation of trust and belief scores. Results can also be limited to a specified

set of sources and variables.

When it comes to evaluation of algorithms, two important metrics are

time and memory usage. Time usage is straightforward to calculate, but

memory usage needs to be defined precisely. For example, it could be

interpreted as the maximum memory in use at any given time during the

algorithm’s operation, or the total memory allocated; these measurements

could be vastly different. We defer the precise meaning to the implemen-

tation.

Time and memory usage are useful for real-world uses, where one

may compare different algorithms on the same data to determine which

is more efficient, but also for algorithm development and theoretical pur-

poses, where the asymptotic complexity can be estimated by running an

algorithm on datasets of increasing size (such datasets could be generated

synthetically).

For evaluation of iterative algorithms, analysing the behaviour of con-

vergence is also important. This includes the total number of iterations

taken, and the distances between trust scores in successive iterations over

time. For example, does the distance decrease linearly, or does the con-

vergence ‘slow down’ as iteration progresses? Users may answer such

questions if given detailed information on convergence is provided.

CHAPTER 3. SOFTWARE IMPLEMENTATION 30

Requirement 15. Time, memory usage and iteration statistics (where ap-

plicable) are returned alongside the raw results of an algorithm.

Another important aspect of evaluation is accuracy on supervised datasets.

As mentioned previously, this is usually defined as the proportion of vari-

ables where the value with highest belief score is the correct one accord-

ing to the supervised data. However, the precise accuracy calculation may

vary depending on the type of dataset in use: consider a case where the

true value of a variable is ‘8’, but the most likely value according to an al-

gorithm is ‘8.00’. Whether this is acceptable as a correct answer depends

on the context in which truth discovery is being applied.

Nevertheless, a basic implementation of accuracy can be provided that

compares values exactly (i.e ‘8’ would be considered distinct from ‘8.00’).

This will be useful in most cases, and users may extend this implementa-

tion for their own more specific accuracy calculations if required.

Requirement 16. Users can calculate the accuracy of a set of results with

respect to a supervised dataset.

Finally, the ‘theorist’ use case involves analysing theoretical properties

of algorithms. One interesting task is to compare the results of an algo-

rithm between two datasets, i.e. to study the effects of a small change

in the input data.6 This leads to the final requirement for results and

evaluation.

Requirement 17. Two sets of results can be compared to view

• changes in trust and belief scores (for sources and facts present in both

results);

• differences in time and memory usage, and the number of iterations

taken (where applicable)

Design

The class structure for results and related functionality is illustrated in

figure 3.7. The Result class will represent the results of an algorithm,

and has fields for trust and belief scores (in the key-value format described

6 See the Monotonicity axiom in section 4.2.3 for an example of the type of change
that could be studied.

CHAPTER 3. SOFTWARE IMPLEMENTATION 31

Figure 3.7: UML class diagram showing high-level design for results.

above), time and memory usage, and the number of iterations. Note that

the number of iterations is not applicable to all algorithms – it does not

apply to majority voting – yet we include it in the results class. This is

because we expect that voting is an outlier in this respect, and that almost

all future algorithms to be implemented will be iterative.

Comparing results will be done using the ResultDiff class, which

stores the differences between the fields in its two component Result

objects.

3.1.4 Visualisation

For the ‘theorist’ use case defined previously, we stated that users will

be interested in creating small examples of truth discovery problems to

analyse the behaviour of algorithms. This involves inspecting results, and

comparing results in different cases. Whilst this is possible using the key-

value form of results defined in the previous section, a visual representa-

tion is more suitable.

CHAPTER 3. SOFTWARE IMPLEMENTATION 32

Figure 3.8: Results from figure 3.6 represented graphically. Darker colours corre-

spond to higher trust and belief scores.

For example, consider the set of results that were given in the tex-

tual key-value pairs format in figure 3.6. They may alternatively be rep-

resented by the colour-coded graph, shown in figure 3.8, where darker

colours correspond to higher trust and belief scores.

It is my view that the visual representation is much more useful for

extracting key information at a glance. For example, one immediately

sees which sources are most and least trustworthy, and which values are

most and least believable. It can also aid in developing intuition for what

is going on, which is important for theoretical work. Note that this only

applies to small datasets: any more than a handful of sources, values and

variables would cause the graphs to become overly crowded.

Graphs can also be useful for visualising datasets alone, i.e. without

colouring the nodes according to the results of some algorithm. For ex-

CHAPTER 3. SOFTWARE IMPLEMENTATION 33

ample, chapter 4 includes several figures that demonstrate datasets with

particular properties, and datasets that provide counterexamples for par-

ticular properties of algorithms.

Requirement 18. A dataset can be represented visually as a graph with

nodes for sources, variables and values, and edges indicating connections

between them.

The results of an algorithm can additionally be shown in the graph by

colouring sources and values according to their respective trust and belief

scores.

We note that the graph representation corresponds to the definition of

input to a truth discovery problem in the theoretical analysis of chapter 4.

In addition to visualising the end results of an algorithm, one may wish

to visualise the convergence of results. Requirement 15 partly addresses

this by ensuring users can access statistics regarding the convergence of

trust scores for all sources as a whole. However for small datasets where

a graphical representation is feasible, we can do even better, and visu-

alise the convergence of scores for individual sources by means of an an-

imation. This will simply be a sequence of graph images coloured-coded

according to trust and belief scores as described above.

Requirement 19. Animations can be generated that show the results of an

iterative algorithm at each iteration as a colour-coded graph.

Design

A UML diagram showing the design and class hierarchy for graphing

datasets and results is shown in figure 3.9. Note that this diagram ref-

erences classes first defined in previous sections, namely Result, Dataset

and BaseIterativeAlgorithm.

The core class for producing graphs will be GraphRenderer. It will

contain a Dataset object and a ColourScheme object for specifying the

colour palette; other graphical settings (node size, border widths etc. . .)

are encapsulated in the display settings field in the diagram for brevity.

The ResultsGradientColourScheme class will implement colouring nodes

according to their scores in the results of an algorithm, and is a speciali-

sation of ColourScheme.

CHAPTER 3. SOFTWARE IMPLEMENTATION 34

Figure 3.9: UML class diagram showing high-level design for graphical representation

of datasets and results.

For animations, an Animator class will take dataset and algorithm ob-

jects as input, and create an image for each partial result as the algorithm

progresses. Individual frames will be rendered via a GraphRenderer to

avoid duplication of functionality.

3.1.5 User Interfaces

So far we have discussed the form of users’ interactions with the system,

but not the specific interface they will use. In this section we consider

appropriate user interfaces for the use cases and tasks described.

Since the use cases have sometimes widely varying goals and con-

straints, there is no single interface that will be suitable for all purposes.

For example, using the software as a tool for theoretical analysis requires

building datasets by hand and detailed inspection of results. By contrast,

real-world applications need to load datasets from files, and the scale of

CHAPTER 3. SOFTWARE IMPLEMENTATION 35

the data makes it impractical to look at detailed results for each source

and variables.

There is also variation in aims for the same broad use case: e.g. al-

gorithm development clearly requires interacting with the code itself on

the one hand (i.e. using an API interface from code), but may also require

investigating results on smaller datasets to get a feel for its behaviour. The

latter could also be done from code, but a graphical interface could allow

for simpler data entry and visualising results.

With this in mind, we propose three separate user interfaces:

• API: a simple and well-documented Python API7 covering the en-

tire codebase will support algorithm development, loading datasets

from bespoke formats and integrating the library with other code.

Additionally, an all-encompassing API ensures that all functionality

is available to users in at least some form, even if it is not imple-

mented in other more accessible interfaces.

• Command-line: this will be suitable for tasks involving large datasets

– where graphical representations are infeasible – and for inter-

facing with other code at a higher level (for example, to be used

with programming languages other Python). Also, well designed

command-line interfaces can often be simpler to use than graphical

ones, particularly when there are many sub-commands and options

available.

• Web-based: for small-scale datasets and non-technical users, a web-

based interface will be provided. This will make it easy for new users

to try out the software without learning a command-line interface

or API. It also allows the graphical representations discussed above

to be presented in a simple way.

API

In this context, by API we simply mean a set of public-facing classes for

users to interact with in their own code. These classes should allow the

user to have full control over operation of algorithms, datasets etc. . . ,

whilst providing a simple interface that does not require knowledge of

7 Justification for using Python as the programming language will be provided in
section 3.2.

CHAPTER 3. SOFTWARE IMPLEMENTATION 36

truthdiscovery run --algorithm sums --dataset synth-data.csv \

--supervised --output time accuracy trust

Figure 3.10: Example of command-line arguments for running an algorithm on

synthetic data.

unrelated implementation details. In particular, the user should be able to

treat the system as ‘black box’, providing their input and receiving output

without consideration for how the implementation actually works.

The design of the classes that comprise the software should therefore

consider the tasks users wish to perform, which details are relevant to

them, and what should be hidden as an implementation details.

Beside the code itself, thorough documentation and a suite of exam-

ples are essential for a successful API.

Requirement 20. A Python API is available that allows all features of the

system to be accessed without detailed knowledge of the system as a whole.

Detailed documentation and examples of API usage are also provided.

Command-Line

A command-line interface is suitable for many of the tasks described through-

out this chapter, particularly those for which input and output needs to be

stored in files, where data is large and cannot be reasonable represented

visually, and where few steps of interaction is required. It will also allow

the library to be used programmatically with other projects, particularly

if a machine-readable output format is used.

As an example, consider evaluating accuracy, run-time and trust scores

for a particular algorithm on a synthetic dataset. The use supplies a few

simple parameters, including the file to read the CSV dataset from, and

receives some simple output. An example of how this could look, follow-

ing the established conventions for command-line programs in the UNIX

world, is shown in figure 3.10.

Here truthdiscovery is the name of the program, run is the relevant

sub-command, and options are given in the long format used by many

GNU utilities.

Output should be printed to stdout – this complies with established

conventions and allows users to either inspect results by eye in their ter-

CHAPTER 3. SOFTWARE IMPLEMENTATION 37

sums:

accuracy: 0.625

time: 0.1234

trust:

0: 0.2

1: 0.4

2: 1.0

Figure 3.11: Hypothetical YAML output for the command shown in figure 3.10.

minal for small scale datasets, or use output redirection functionality from

their shell to save output to a file or pipe to other programs.

In terms of the format of the output, YAML will be used.8 YAML is a

data serialisation format that is both human and machine readable, with

implementations available for wide range of programming languages. A

hypothetical example for the output of the command in figure 3.10 is

shown in figure 3.11.

The full list of tasks that will be available in the command-line inter-

face are as follows.

• Running algorithms on CSV datasets, specifying the output fields

and parameters for algorithms;

• Generating synthetic data;

• Producing visual graph representations of datasets, and saving these

as images to files.

Requirement 21. A command-line interface is available that implements

the tasks listed above. Its form complies with conventions for command-line

programs. Output is given in YAML format where appropriate.

Web-based

A web-based interface will provide a graphical front end to the system.

This is well-suited for casual and non-technical users, as it requires no

installation and virtually all users are familiar with using the web.

8 https://yaml.org/

https://yaml.org/

CHAPTER 3. SOFTWARE IMPLEMENTATION 38

A task that will greatly benefit from a graphical interface is creating

example datasets by hand, as required for the ‘theorist’ use case, and to

some extent algorithm development. Recall that the matrix form of input

(requirement 2) is most suitable in these cases. A simple approach to in-

putting such matrices in a graphical context is to display an empty matrix

in which users can click the cells to interactively provide values. This is

less error prone than manual CSV entry, and arguably more user-friendly.

Viewing the results of algorithms for small datasets will also be pos-

sible in the web interface. There is some overlap with the command-line

client in this sense, but graphical elements such as colour, font size and

text styles can be used in a web page to enhance the output.

Finally, visualising datasets and results through images and anima-

tions, as per section 3.1.4, is simple in a web interface. When one is

interested in simply viewing such imagery, as opposed to saving to a file

for later use, it is much more convenient to have the images displayed

immediately alongside the results.

It is worth noting that the web interface has its limitations, and is not

suitable for all use cases. For example, large datasets will be difficult to

input, and the bespoke formats in which many real-world datasets are

stored cannot be used. The interface also cannot be accessed program-

matically, and making the site available to the public requires dedicated

hosting which may cost real money. Nevertheless, it will complement the

API and command-line interfaces and provide value for its intended use

cases.

Requirement 22. A web interface is available that provides a graphical

front end to the system. Users can interactively input a dataset in the matrix

format described in requirement 2, and select algorithms to run. Results can

be viewed, and images and animations as per section 3.1.4 are shown.

Design

The UML class diagram in figure 3.12 shows the high-level design for

the implementation of the user-interfaces discussed above. The API inter-

face is not represented by a single class: the API in fact consists of all the

classes defined throughout this chapter. The two more concrete interfaces,

command-line and web-based, are represented by classes CommandLineClient

and WebClient respectively. Some common functionality is required in

CHAPTER 3. SOFTWARE IMPLEMENTATION 39

Figure 3.12: UML class diagram showing high-level design for user interfaces.

both interfaces: e.g. parsing algorithm names and parameters and datasets

from user-supplied strings to their object representations. Such functions

will be implemented in a base class BaseClient.

Users will also be able to specify which output fields they wish to re-

ceive, as was illustrated in the command-line example in figure 3.10. An

enumeration OutputFields lists the available fields.

3.2 Implementation

This section discusses the software implementation at a lower level, cov-

ering how the requirements of the preceding section were actually imple-

mented in code. Justification for the programming languages and libraries

used is given first, followed by detailed descriptions of the algorithms

identified in requirement 9.

CHAPTER 3. SOFTWARE IMPLEMENTATION 40

3.2.1 Programming Languages

Python was chosen as the core programming language for this project

– specifically Python 3. Development and testing was performed with

version 3.6.7, but it is expected that it will work with versions 3.3 and

newer.9

There were several reason for choosing Python. Firstly, it is an ex-

tremely popular language – according to the TIOBE index it is fourth most

popular worldwide, as of April 2019.10 This is an important consideration,

since a major goal for the software is to be extendible to allow for new

algorithms to be developed, and for it to integrate nicely with other code.

An unpopular or obscure programming language would go against this

goal.

Due to its popularity, Python has a rich ecosystem of libraries and pack-

ages surrounding it. This allows external libraries to be used during devel-

opment to provide functionality that would otherwise take too long to im-

plement in the time available. For example, I was able to use the cairo11

library to produce graphics and Flask12 to implement a web server – both

tasks could have constituted entire projects in their own right if no suit-

able libraries were available. Such libraries are invariably more compre-

hensive than a ‘home-grown’ solution would be anyway, since they are

dedicated projects aimed specifically at graphics and web frameworks re-

spectively.

Whilst third-party libraries are not unique to Python, they are particu-

larly plentiful in the Python world, which makes it a suitable choice.

Python also has strong object-oriented programming capabilities, which

were useful for creating a clean and straightforward API. Code for differ-

ent portions of the code can be easily compartmentalised into separate

classes, making it so that users only need to be aware of the specific classes

relevant to their use case.

Finally, Python is the language I personally have the most experience

with. Using it for this project allowed me to get started quickly, without

9 To the best of my knowledge, the newest language feature used is the yield

from expression, which was added in version 3.3. See https://docs.python.org/3/

whatsnew/3.3.html#pep-380 for details.
10 https://www.tiobe.com/tiobe-index/.
11https://github.com/pygoject/pycairo
12http://flask.pocoo.org

https://docs.python.org/3/whatsnew/3.3.html#pep-380
https://docs.python.org/3/whatsnew/3.3.html#pep-380
https://www.tiobe.com/tiobe-index/
https://github.com/pygoject/pycairo
http://flask.pocoo.org

CHAPTER 3. SOFTWARE IMPLEMENTATION 41

having to learn a new language. This meant that more features could be

developed in the limited time available.

For the web interface to the software, an interactive web page was

required: e.g. for inputting data, selecting which results to view and con-

trolling animations. Such interactive elements require the use of JavaScript.

The JavaScript code interacts with the Python server via HTTP.

3.2.2 Third-party Libraries Used

The main purpose of the practical component of this project is to imple-

ment truth discovery algorithms. These algorithms often involve lots of

numerical computations, which can be represented conveniently in terms

of matrix operations on large matrices. The de-facto standard library in

the Python world for numerical computing is numpy.13 Amongst other

things, numpy has a highly efficient n-dimensional array implementation,

written in C, which supports various operations including matrix multi-

plication (the case n = 2 of an n-dimensional array is a matrix). Another

library scipy14 – which is often used in conjunction with numpy – imple-

ments sparse arrays, which are optimised to store large arrays with few

non-zero entries in a memory efficient way. Operations can also be per-

formed on sparse arrays efficiently without converting to a ‘dense’ format.

Sparse arrays were essential in this project for representing large real-

world datasets, and numpy and scipy were used extensively throughout.

For generating graphics, cairo was used. The graphs described in

requirement 18 only require simple drawing, such as circles, lines, rectan-

gles and basic text rendering. cairo was more perfectly sufficient for this,

and provides a simple and straightforward API. For generating animations

as per requirement 19, imageio15 was used to combine PNG images pro-

duced by cairo into an animated GIF.16

As briefly mentioned already, Flask was used to provide the back-

end server for the web interface. Testing was performed with the help of

pytest,17

13https://www.numpy.org/
14https://www.scipy.org/
15https://imageio.github.io/
16 Note that cairo and imageio are not used for the images and animations shown

in the web interface: JavaScript canvas drawing is used instead.
17 https://docs.pytest.org/en/latest/

https://www.numpy.org/
https://www.scipy.org/
https://imageio.github.io/
https://docs.pytest.org/en/latest/

CHAPTER 3. SOFTWARE IMPLEMENTATION 42

For the web front-end, I opted to use AngularJS,18 a JavaScript library

designed to simplify the development of web applications and encourage

rapid development. In particular, Angular removed the need for large

amounts of simple and tedious code in my application, and its simplic-

ity allowed me to implement features that I may not have bothered with

otherwise. For the visual aspect of the web interface, I used a CSS frame-

work called Spectre.css,19 which handles visual styling of elements on

the page and provides responsive and mobile-friendly layouts.

Sphinx was used for documentation.20 Sphinx compiles reStructuredText

sources to HTML, and can automatically parse Python source files to doc-

ument classes and methods. For this project the documentation includes

a user guide and examples of using the API and CLI client, with links to

the class API documentation as appropriate.

3.2.3 Truth Discovery Algorithms

In this section we describe in detail the algorithms implemented for this

project – namely majority voting, Sums, Average·Log, Investment, Pooled-

Investment and TruthFinder – and how they were implemented in code.

The format of truth discovery datasets was discussed from a user’s per-

spective in section 3.1.1. In terms of actual implementation, yet another

representation is most appropriate: the dataset is represented by two ma-

trices (distinct from the matrix format described in requirement 2), trust

and belief scores are stored as vectors, and scores are updated at each

iteration using matrix operations.

Some notation is required to properly define the algorithms above.

Consider a fixed dataset of m sources labelled 1, . . . ,m and n distinct facts

labelled 1, . . . , n. Note that the labelling is arbitrary. We denote the set

of sources claiming fact j by src(j), the set of facts claimed by source

i by facts(i), and the object relating to fact j by obj(j).21 The set of

facts about the same object as j – the facts mutually exclusive with j – is

mut(j) = {k : obj(k) = obj(j)}.

The trust scores for an algorithm at iteration t ∈ N will be denoted

T t ∈ R
m, and the belief scores Bt ∈ R

n. Subscripts will denote the entries

18https://angularjs.org/
19https://picturepan2.github.io/spectre/
20 http://www.sphinx-doc.org/en/master/

https://angularjs.org/
https://picturepan2.github.io/spectre/
http://www.sphinx-doc.org/en/master/

CHAPTER 3. SOFTWARE IMPLEMENTATION 43

in these vectors; i.e. T t
i is the trust score for source i at iteration t.

The following matrices can be used to represent the dataset and per-

form the trust/belief score updates.

• Source-claims matrix: this binary m × n matrix indicates which

claims are made by which sources, and will be denoted here by M .

It is defined as:

[M]ij =

{

1 if i ∈ src(j)

0 otherwise

i.e. 1 if source i claims fact j, and 0 otherwise.

• Mutual exclusion matrix: this n × n matrix, denoted X, indicates

which facts relate to the same object, i.e. which facts are mutually

exclusive:

[X]kj =

{

1 if obj(k) = obj(j)

0 otherwise

Note that X is symmetric.

In practise, both M and X are often extremely sparse, in that most

entries are 0. Note that a truth discovery dataset is uniquely determined

by M and X, up to the ordering of the sources and facts.

Using this notation, each algorithm listed above is specified by three

components:

• the prior belief scores B0, which may depend on M and X;

• the formulae for obtaining T t+1 and Bt+1 from Bt, T t, M and X;

• the stopping criterion.

Note that we do not claim all iterative truth discovery algorithms are

determined by these three factors, merely that the ones implemented in

this project are. However, this structure is common across the literature.

Since it was stated in requirement 11 that the user should have full

control over the stopping criterion, we do not consider it as part of the

algorithm here.

21 This notation is similar to that which will be adopted in the theoretical work in
section 4.2, but adapted to the set up here.

CHAPTER 3. SOFTWARE IMPLEMENTATION 44

Prior Belief Scores

It was stated in requirement 10 that the user should be able to specify

how the prior belief scores are assigned to facts. We choose the priors

defined by Pasternack and Roth in [27] for the available options: fixed,

uniform and voted.

• Fixed: each fact is assigned a score of 0.5:

B0 = 0.5en

where en = [1, . . . 1] ∈ R
n is the vector consisting of n ones.

• Uniform: each object is allocated unit belief, which is distributed

evenly amongst objects, i.e. the score for fact j is 1
|mut(j)|

. Note that

|mut(j)| is the sum of the j-th row of X, which is given by the j-th
entry of Xen. We may therefore write

B0 =
1

Xen

where the division is performed entry-wise.

• Voted: the belief in a fact is proportional to the number of sources

claiming it, with the scores scaled such that the total belief across

each object is 1:

B0
j =

|src(j)|
∑

k∈mut(j) |src(k)|

Note that |src(j)| is the sum of the j-th column of M , i.e. the j-th
entry of MT em. Set v = MT em. Also note that k ∈ mut(j) iff [X]jk =
1 and [X]jk = 0 otherwise. The denominator above is therefore

∑

k∈mut(j)

|src(k)| =
n
∑

k=1

xjkvk = [Xv]j

Performing entry-wise division of vectors, we may write

B0 =
v

Xv

CHAPTER 3. SOFTWARE IMPLEMENTATION 45

numpy supports matrix multiplication and entry-wise division as used

above, which makes computing prior beliefs extremely simple when ex-

pressed in this form.

We can now define the truth discovery algorithms in terms of matrix

operations in a similar way.

Sums

Inspired by the Hubs and Authorities [16] for ranking web pages based on

the hyperlink structure of the web, Sums sets the trust score for a source

to the sum of the belief scores of its facts, and vice versa:

T t+1
i =

∑

j∈facts(i)

Bt
j

Bt+1
j =

∑

i∈src(j)

T t+1
i

Sums has a natural matrix representation, which is also given in the

original Hubs and Authorities paper. Note that j ∈ facts(i) iff i ∈ src(j)
iff [M]ij = 1, and [M]ij = 0 otherwise. Hence

T t+1
i =

n
∑

j=1

[M]ijB
t
j = [MBt]i

and similarly

Bt+1
j = [MTT t+1]j

so the trust and belief updates are simply

T t+1 = MBt

Bt+1 = MTT t+1

To prevent the trust and belief scores growing without bound, T t+1 and

Bt+1 are normalised by dividing by maxi T
t+1
i and maxj B

t+1
j respectively

after the above operations.

CHAPTER 3. SOFTWARE IMPLEMENTATION 46

AverageLog

Sums allows sources to inflate their trust score by simply making many

claims, which is potentially undesirable. The number of claims should

not be ignored, however: a source with 90% accuracy over a hundred

claims is surely more trustworthy than one with 90% accuracy over 10

[27]. Average·Log attempts a compromise by setting the trust score for a

source to the average belief score of its claims, multiplied by the logarithm

of the number of facts it claims.

T t+1
i = log(|facts(i)|) ·

∑

j∈facts(i) B
t
j

|facts(i)|

Taking a logarithm ensures that making many trivial claims has diminish-

ing returns for sources. Belief score update is the same as for Sums.

Observe that |facts(i)| is the sum of the i-th row of M , which is the

i-th entry of Men. It was shown for Sums that the sum of the belief scores

is the i-th entry of MBt. Set

w =
log(Men)

Men

where the log and division are taken entry-wise. Then

T t+1 = w ◦MBt

where ◦ denotes entry-wise multiplication of vectors (also called the Hadamard

product).

As with Sums, normalisation is performed to prevent numerical over-

flow.

Investment

In Investment, sources invest their trust among their claims, belief scores

are grown non-linearly, and sources receive trust returns proportional to

the their investment in the next iteration (relative to other sources). More

detail on the intuition behind the algorithm is given in [27]. The trust and

CHAPTER 3. SOFTWARE IMPLEMENTATION 47

belief updates are as follows.

T t+1
i =

∑

j∈facts(i)

Bt
j ·

T t
i

|facts(i)| ·
∑

r∈src(j)
T t
r

|facts(r)

Bt+1
j = G





∑

i∈src(j)

T t+1
i

|facts(i)|





where G(x) = xg. The parameter g is set to 1.2 in [27]. In our implemen-

tation the g value can be specified by the user, but defaults to 1.2.

Each sources invests their trust score evenly amongst its facts: the in-

vestment amount is
T t
i

|facts(i)|
for source i. Let St be the vector of investment

amounts at iteration t, i.e.

St =
T t

Men
Then we have

T t+1
i =

n
∑

j=1

[M]ij · B
t
j ·

St
i

∑m

r=1 [M]rj · St
r

= St
i ·

n
∑

j=1

[M]ij · B
t
j ·

1

[MTSt]j

= St
i ·

n
∑

j=1

[M]ij
[MTSt]j

· Bt
j

Define an m×n matrix N by [N]ij =
[M]ij

[MTSt] j
; then the sum is the i-th entry

of NBt, so

Tt+1 = St ◦NBt

For belief update, we have

Bt+1
j = G

(

m
∑

i=1

[M]ij · [S
t+1]i

)

= G
(

[MTSt+1]j
)

so Bt+1 is obtained by applying G to each entry in MTSt+1.

Again, normalisation is performed by dividing by the maximum trust

and belief scores.

CHAPTER 3. SOFTWARE IMPLEMENTATION 48

PooledInvestment

PooledInvestment uses the same trust update as Investment, but belief scores

are linearly scaled after applying G so that the total across each object is

preserved. We defer the detailed interpretation to [27]. The belief update

is as follows: with H t+1 ∈ R
n defined by H t+1

j =
∑

i∈src(j)
T t+1

i

|facts(i)|
:

Bt+1
j = H t+1

j ·
G(H t+1

j)
∑

k∈mut(j) G(H
t+1
k)

Note that H t+1
j is the total amount ‘invested’ in fact j before applying G in

Investment, so we have H t+1 = MTSt+1 with St+1 defined as above.

Write H̃ t+1 = G(H t+1), where G is applied entry-wise. Then the sum

in the denominator is

∑

k∈mut(j)

G(H t+1
k) =

n
∑

k=1

[X]jkH̃
t+1
k = [XH̃ t+1]j

Hence we have

Bt+1 = H t+1 ◦
H̃ t+1

XH̃ t+1

Normalisation is performed after the trust and belief updates.

TruthFinder

TruthFinder, by Yin et. al. [35], was one of the first truth discovery algo-

rithms to be introduced. In contrast to the algorithms above, belief scores

in TruthFinder have pseudo-probabilistic interpretation: Bt
j is (an estimate

for) the probability that fact j is correct. TruthFinder also uses prior trust

scores instead of prior belief scores; trust for each source is set to a fixed

initial value t0, which can be specified by the user in our implementation

but defaults to 0.9.

TruthFinder also considers implications between claims for cases where

confidence in one fact should increase (or decrease) the confidence in

another. For each pair of facts f1, f2 relating to a common object, an im-

plication value imp(f1 → f2) ∈ [−1, 1] describes the level of implication:

1 for strong positive implication, -1 for strong negative implication, and 0

for no implication. The specific method of assigning implication values is

domain-specific.

CHAPTER 3. SOFTWARE IMPLEMENTATION 49

An example from [35] is as follows: suppose a fact f1 states that the

author of a particular book is ‘Jennifer Widom’, and a second fact f2 gives

the authors of the same book as ‘Jennifer Widom and Stefano Ceri’. If we

have high confidence in f2, then f1 is incomplete and thus should receive

low confidence: the implication imp(f2 → f1) should be low. On the

other hand, it is common for sources to list only the first author of a book,

even when multiple authors exist. If we are confident about f1, then we

should also be confident about f2, because f2 is consistent with f1. Thus

imp(f1 → f2) should be high. This example illustrates that the implication

values are asymmetric.

As for the actual definition of TruthFinder, it is already given in terms

of matrix operations in the original paper, using an m × n matrix U and

n×m matrix V defined as follows.22

[U]ij =

{

1/|facts(i)| if j ∈ facts(i)

0 otherwise

[V]ji =











1 if j ∈ facts(i)

ρ · imp(fk → fj) if k ∈ facts(i) for some k ∈ mut(j)

0 otherwise

where ρ ∈ [0, 1] is a parameter controlling the influence of implications

between facts. It defaults to 0.5 in our implementation.

The definition of trust and belief updates make use of additional vec-

tors τ ∈ R
m and σ ∈ R

n; these represent trust and belief scores scaled

from [0, 1] to [0,∞) by taking a logarithm. The precise definitions are as

follows (as usual, logarithms, scalar addition etc. for vectors are taken

entry-wise).

τ t+1 = − log(1− T t)

σt+1 = V τ t+1

Bt+1 =
1

1 + exp(−γ · σt+1)

T t+1 = UBt+1

γ ∈ (0, 1) is a parameter called the dampening factor; details can be found

in the original paper. It defaults to 0.3 in our implementation.
22 U and V are called A and B in the original paper.

CHAPTER 3. SOFTWARE IMPLEMENTATION 50

3.3 Results and Evaluation

Having described the requirements for the truth discovery software frame-

work in section 3.1 and aspects of its implementation in section 3.2, we

come to demonstrating exactly what was implemented and evaluating the

system against the requirements. The demonstrations will cover each of

the use cases identified, including real-world truth discovery applications

and evaluation of algorithms.

3.3.1 Real-World Dataset Demonstration

The main use case for the system is to run truth discovery algorithms on

real-world datasets. The stock dataset briefly described in section 3.1.1

provides a suitable example of ‘large’ real-world data to test with: it con-

tains 2,843,803 claims covering 336,000 variables from 55 sources.23

The claims relate to 1,000 distinct stocks. For 100 of these, data was

manually obtained from NASDAQ by the original authors, and these val-

ues are taken to be ground truths. This means we can not only run al-

gorithms on the large dataset, but also load supervised data and assess

accuracy with respect to the NASDAQ ground truths.

Additionally, the data is in a TSV (tab separated values) format, which

allows us to demonstrate the base classes FileDataset and FileSupervisedData

for loading data from custom formats.

The Python classes are shown in figure 3.13. Note that no code is

given to actually open the files and construct the matrices required for

running algorithms: this is handled automatically by the FileDataset

and FileSupervisedData base classes.

A small script was created to run each algorithm on the dataset with,

initialised with its default parameters. The results are shown in figure

3.14.

From these results we see that TruthFinder is by far the quickest (ex-

cluding majority voting), but achieves poor accuracy. It should be noted

that TruthFinder was run without considering implications between claims,

which may explain this. We also see that Sums and PooledInvestment are

the only algorithms that perform better than näıve majority voting.

23 The dataset was collected by the authors in [20], and is available to download at
http://lunadong.com/fusionDataSets.htm.

http://lunadong.com/fusionDataSets.htm

CHAPTER 3. SOFTWARE IMPLEMENTATION 51

Figure 3.13: Python code for loading the stock dataset.

CHAPTER 3. SOFTWARE IMPLEMENTATION 52

loading data...

loaded in 208.617 seconds

loading true values...

loaded in 0.119 seconds

dataset has 55 sources, 2843803 claims, 336000 variables

running MajorityVoting...

0.280 seconds, 0.641 accuracy

running Sums...

11.998 seconds, 0.646 accuracy

running AverageLog...

12.172 seconds, 0.641 accuracy

running Investment...

31.216 seconds, 0.423 accuracy

running PooledInvestment...

18.545 seconds, 0.671 accuracy

running TruthFinder...

1.598 seconds, 0.439 accuracy

Figure 3.14: Results for the stock dataset for each algorithm.

3.3.2 Synthetic Data Accuracy Experiments

Another key use case for the system is evaluation of algorithms with re-

spect to their accuracy on synthetic datasets. Unlike real-world datasets,

synthetic datasets are easy to obtain, allow accuracy to be calculated, and

their parameters can be precisely controlled. One can also generate mul-

tiple datasets with varying parameters to study the effects of changes in

certain parameters.

Recall the parameters available in this project: the source reliability

scores (interpreted as probabilities), the number of variables to generate,

the probability that a source will make a claim for a given variable (re-

ferred to as the claim probability), and the domain size for each generated

variable. We will explore this parameter space in a number of directions to

demonstrate the types of analysis that can be performed with the system.

The first experiment studies the effects of the distribution of source

reliability scores. We consider three distributions:

• Mostly bad: a third of sources have reliability score 0.75, and the

CHAPTER 3. SOFTWARE IMPLEMENTATION 53

Figure 3.15: Source trust distribution experiment on synthetic datasets.

remaining two-thirds have score 0.25, i.e. most sources are correct

only 25% of the time.

• Uniform: reliability scores are drawn from a uniform distribution

on [0, 1].

• Normal: reliability scores are drawn from a normal distribution

with mean 0.5 and standard deviation 0.15. It is possible for scores

to be less than 0 or greater than 1: they are clipped to 0 or 1 in such

cases.

For each of these distributions, source reliability scores were generated

and a synthetic dataset produced with 100 sources, 100 variables, 0.1

claim probability and 5 domain values. Each algorithm was then run (on

the same dataset), and its accuracy computed. This process was repeated

10 times for each distribution in an attempt to cancel out random effects

of the reliability score and claim generation.

The mean accuracy scores were then taken as the final results, which

are shown in figure 3.15.

CHAPTER 3. SOFTWARE IMPLEMENTATION 54

Figure 3.16: Claim probability experiment on synthetic datasets.

As one might expect, the ‘Mostly bad’ distribution leads to the poorest

accuracy for all algorithms, with the exception of PooledInvestment where

‘Normal’ gave slightly worse accuracy.

For the next experiment, the effects of the claim probability pc on accu-

racy were investigated. Recall that for each artificial source and variable, a

claim is made with probability pc. In the extreme case pc = 1, every source

claims a value for every variable. The dataset becomes more ‘sparse’ as pc
decreases.

In the experiment, claim probability was increased from 0.1 to 1 in

increments of 0.05. For each value, 10 synthetic datasets were generated

with a uniform trust distribution over 100 sources, 100 variables, and

10 domain values. The mean accuracy of each algorithm across the 10

datasets is shown in figure 3.16.

The results are again unsurprising. For low claim probabilities, the

CHAPTER 3. SOFTWARE IMPLEMENTATION 55

Figure 3.17: Domain size experiment on synthetic datasets.

expected number of claims for each variable is small. This means it is less

likely for multiple sources to agree on the value for a variable – but this

is one of the main ways in which truth discovery algorithms determine

the true values. As a result we see accuracy rise dramatically as the claim

probability increases. All algorithms achieve the maximal accuracy score

of 1 for pc greater than around 0.5.

The final experiment concerns the domain size, which is the num-

ber of values the artificial sources choose from for their claims – in this

project the domain of possible values is the same for each artificial vari-

able. The minimum domain size is 2; values from 2 to 20 were tested for

this demonstration. Other parameters were kept at the same values as in

the claim probability experiment, with claim probability itself set to 0.1.

Mean accuracy scores for each variable are shown in figure 3.17.

The shape of the graph is similar to the claim probability experiment;

CHAPTER 3. SOFTWARE IMPLEMENTATION 56

that is, accuracy increases sharply as domain size increases. Note that

the increase is more dramatic here: mean accuracy increases from around

0.55 to near 1, whereas in the claim probability experiment the minimal

accuracy was already fairly high at around 0.9.

Recall that in the model of synthetic data adopted in this project, a

source s will choose the correct value with probability ps – their reliability

score – when making a claim for a variable, and choose one of the d − 1
incorrect values each with probability 1−ps

d−1
.

Since each incorrect value is chosen with equal probability, the prob-

ability of choosing any particular value decreases as the domain size d is

increased. This means that for larger d, it is less likely that sources will

agree on incorrect values. Stated another way, when d is large agreements

between sources are likely to correspond to the true values, as opposed to

multiple sources making the same mistake. Agreements between sources

is a key indicator for true values, at least as far as the algorithms con-

sidered in this project are concerned, and thus we see higher accuracy as

domain size increases.

3.3.3 Convergence Analysis

Continuing with the evaluation of truth discovery algorithms using the

developed software, we analyse the convergence behaviour of each algo-

rithm. To do this, a synthetic dataset consisting of 1000 sources and 1000

variables was created. Each iterative algorithm was then run for 100 it-

erations, and the distance between the trust score vectors in successive

iterations measured in the ℓ2 norm, i.e. we measure ‖T t−T t−1‖2 for each

time t ∈ {2, . . . , 100}.24 If the trust scores converge – in the sense of a

limit in a metric space as discussed earlier – we should see this distance

become arbitrarily small, and remain so as t → ∞.

Figure 3.18 shows the results. Many algorithms, particularly Sums,

Average·Log and TruthFinder, appeared to converge exponentially quickly.

A logarithmic scale is therefore used on the vertical axis to show more

clearly the convergence behaviour.

Unfortunately, it was only possible to run TruthFinder for 3 iterations.

After this the trust score T 3
i for one of the sources i became sufficiently

24 Distance measures other than ℓ2 – namely L1, L∞ and cosine distance – were also
experimented with. The graphs for each looked almost identical to the L1 graph, so they
are not included here.

CHAPTER 3. SOFTWARE IMPLEMENTATION 57

Figure 3.18: Convergence experiment on a large synthetic dataset.

close to 1 that 1 − T 3
i becomes 0 due to a rounding error; we then get

an undefined result when computing log(1 − T 3
i) in the next iteration as

per the TruthFinder algorithm. More work needs to be done to determine

whether this is an implementation issue or a limitation of TruthFinder

itself. However, in only three iterations the distance between successive

trust scores becomes close to 10−3, which is small enough that one may

consider it to have converged reasonably well.

Another interesting point is the distances for Sums and Average·Log.

They are almost identical up to around 25 iterations, where they start

to diverge. Average·Log then stabilises so that the trust scores remain

constant, and the distance is therefore 0 for the remainder.

In contrast, the distances for Sums remain more or less constant after

30 iterations, but are not 0. Upon closer inspection, the trust scores re-

peatedly oscillate between two (very close together) vectors. This could

CHAPTER 3. SOFTWARE IMPLEMENTATION 58

Figure 3.19: Algorithm run time experiments on synthetic datasets.

be caused by numerical instability in the algorithm, or its implementation

in this project. In practical terms this is not problematic, since the distance

between these two vectors in the ℓ2 norm is as small as 10−14.

Finally, observe that Investment and its friend PooledInvestment con-

verge much slower than the other algorithms. The reason for the sharp

drop off in distance for Investment at around 80 iterations is not clear.

Running beyond 100 iterations showed this behaviour continuing; unlike

Sums, the distance appears to decrease consistently towards 0.

3.3.4 Time Complexity Analysis

To conclude the analysis of truth discovery algorithms, we consider algo-

rithm run time as the size of the input dataset varies. Synthetic datasets

were again used, due to the ease of creating datasets with fixed sizes.

‘Size’ has at least three components here: the number of sources, the

number of variables, and the number of claims.

The effect of the number of claims on accuracy was shown above. Its

effect on run time was observed to be marginal, so it is not considered in

detail.

Instead, this test investigates the effects of varying the number of

sources and variables. In principle an algorithm may scale differently

CHAPTER 3. SOFTWARE IMPLEMENTATION 59

with respect to these parameters, so they are changed independently in

two separate tests.

The methodology was as follows. First, a large synthetic dataset with

2,000 sources, 2,000 variables and uniform trust distribution was created.

For each parameter (number of sources and number of variables), sizes

from 100 to 2,000 in increments of 200 were tested, whilst the other

parameter was fixed at 500. The large 2,000×2,000 dataset was then re-

duced to the correct size by taking the first n sources and first m variables

in each case. Figure 3.19 shows the results.

Subsetting a large dataset for each trial, as opposed to generating a

new dataset, is hoped to reduce any random effects on timing that may

arise due to the random nature of synthetic datasets. It also allowed larger

sizes to be tested in a reasonable time, since generating many random

claims is time consuming.

In terms of the results, we see that most algorithms exhibit linear

growth with respect to both the number of sources and variables. The

exception is Voting, which is not an iterative algorithm and thus does not

depend in a major way on the size of the dataset. One might expect the

matrix operations involved to take longer for larger matrices, but this ef-

fect is negligible compared to other algorithms.

Note that TruthFinder run time is particularly quick, and grows very

slowly. This may be due to it running for only a few iterations due to the

numerical problems mentioned above.

3.3.5 User Interfaces

As set out in section 3.1.5, three user interfaces were developed for the

system: a documented Python API, a command-line interface, and a web-

based interface.

Python API

A simple example of API usage is shown in figure 3.20. This example

creates a synthetic dataset, runs an algorithm with particular parameters,

and inspects the results. Output of this script is shown in figure 3.21.

Note that the API is the most comprehensive interface, in the sense

that all the implemented functionality is available and can be used in any

combination. For the CLI and web interfaces, some functionality has to be

CHAPTER 3. SOFTWARE IMPLEMENTATION 60

Figure 3.20: Python code demonstrating simple use of the API.

CHAPTER 3. SOFTWARE IMPLEMENTATION 61

Got results in 0.012 seconds, 23 iterations

Most trustworthy source is 5

Most probable value(s) for variable 4 are: [3.0]

Dataset was:

0.0,0.0,0.0,7.0,3.0,7.0,5.0

3.0,0.0,,,,,2.0

0.0,0.0,0.0,,,,5.0

,2.0,7.0,,,,0.0

,,,7.0,3.0,,

1.0,1.0,5.0,,4.0,,

0.0,,,,3.0,,

,,,,2.0,2.0,

,,,,5.0,,6.0

,,,,,4.0,

0.0,6.0,,,3.0,,0.0

Figure 3.21: Example output of the code in figure 3.20.

left out in the interest of presenting a simple and fit for purpose interface.

For example, it is not possible in the CLI or web interfaces to instantiate

multiple algorithms with separate parameters; this is a niche requirement

and allowing for it would complicate parameter specification for the most

common use cases. However, this is trivial to achieve when using the API.

Further examples of API usage include the code for each of the algo-

rithm analysis experiments discussed throughout this section. Each ex-

periment uses the ‘external’ API interface without requiring modifications

to the core code; this emulates the level of access an end user would have

if using the API interface. These examples can be found in the examples

directory in the source code repository.

Command-Line Interface

In the command-line interface, users can run algorithms on datasets in

CSV format, generate synthetic data, and create graph representations of

datasets. Figure 3.22 shows an example of running an algorithm; this

uses the same dataset, algorithm and parameters as the code of figure

3.20. One can confirm that the results coincide with those shown in figure

3.21.

CHAPTER 3. SOFTWARE IMPLEMENTATION 62

Figure 3.22: Example of CLI interface for running an algorithm.

Note that the tail25 command is used to remove the first line of the

synthetic data CSV, which contains the ‘true’ values and is thus not part

of the data itself. This demonstrates a strength of the command-line in-

terface: it can easily be used in conjunction with other programs using

standard shell features such as input and output redirection and variable

substitution.

Not all functionality of the command-line interface can be demon-

strated here. A full description of the available features and options

is given in the help output, which can be shown with truthdiscovery

--help and truthdiscovery <cmd> --help for each of the available sub-

commands, namely run, synth and graph.

25 http://man7.org/linux/man-pages/man1/tail.1.html

http://man7.org/linux/man-pages/man1/tail.1.html

CHAPTER 3. SOFTWARE IMPLEMENTATION 63

Web Interface

The finished web interface is shown in figures A.1 to A.7 in appendix A.

These screenshots are included in a separate appendix due to their size

and number.

Figure A.1 shows the basic view presented when a user first loads the

page. At the top, the user selects one or more algorithms from the list. By

default a small dataset is already loaded. Datasets are represented in the

the matrix form described in requirement 2.

Users may edit the cells by simply clicking them, and buttons are avail-

able to add and remove sources and variables. The ‘trash’ icon in the lower

right allows all entries to be cleared.

This interactive matrix format has proved to be successful for manual

entry of small datasets. For example, I used it extensively when analysing

the behaviour of algorithms for the theoretical work of chapter 4. It is

not suitable for datasets of any significant size, however; it is particu-

larly limited by the number of variables (displayed horizontally) that can

comfortably be shown at one time. It also becomes fiddly to enter many

entries when one has to click each individual cell. Future work could

improve this by implementing keyboard shortcuts to navigate the matrix.

It is also possible to load datasets from CSV format, as shown in figure

A.2. The reverse conversion – exporting the constructed matrix to CSV –

was not implemented; this is a clear improvement that can be made in

future work.

As a final point on data entry, note that there is a dropdown menu for

‘preset’ datasets. I created four small datasets exhibiting different prop-

erties: a ‘typical’ dataset with mixture of agreements and disagreements,

one where all sources are in agreement bar one, one consisting of two

disjoint sets of sources whose claims do not overlap, and one where no

sources agree on any variable. This allows users to quickly get started

with the site without having to construct their own dataset.

Another aspect of user input is algorithm parameters. Parameter op-

tions are hidden behind an ‘advanced options’ checkbox, since it is ex-

pected that most users will use the default parameters. Figure A.3 shows

the options displayed when this box is checked. Algorithm parameters are

specified by a free-text field using the same format as for the command-

line interface. This is a weakness of the interface; a graphical view would

be more appropriate here.

CHAPTER 3. SOFTWARE IMPLEMENTATION 64

Once the algorithms, dataset and parameters are chosen, the user runs

the algorithms by clicking the ‘Run’ button. An example of how results are

displayed is shown in figure A.4.

First, the run-time and number of iterations are displayed. Beneath

this there are four sections: source trust scores, claim belief scores, graph

representation and animation. Each section can be collapsed and ex-

panded by clicking its title.

The trust and belief score sections are straightforward: they are dis-

played in a tabular format, with the maximum scores displayed in bold.

Note that the rows can be sorted by score (ascending or descending) or

source/variable ID by clicking the table headings.

Note that each score has an additional number in brackets beside

it. This shows the change in trust/belief score compared to the previ-

ous dataset. Displaying these changes is optional, and can be controlled

by the checkbox labelled ‘Compare against previous results’ which can

be seen in figure A.1. This was particularly useful when experimenting

with algorithms on hand-crafted datasets to see how they react to small

changes in the dataset, and also to see how different algorithms compare

for the same dataset. Note that comparison is not available when running

multiple algorithms simultaneously, since it is not clear which results are

being compared against.

The results of running multiple algorithms is shown in figure A.5. Ob-

serve that a tabbed interface is used, so that only one set of results can be

seen at a time. This was useful for comparing results between algorithms

– this was a major use case identified in section 3.1. One may collapse the

sections of results that are not of interest and quickly change between the

tabs to see any changes.

As for the graph and animation sections in the results, examples are

shown in figures A.6 and A.7 respectively. A slider and buttons beneath

the animation frame allows the user to control playback; arrow keys can

also be used. Future work could implement automatic playback of ani-

mations – presently the user must control the slider themselves to see a

smooth animation.

3.3.6 Testing

Testing was an important consideration throughout the practical compo-

nent of this project. Several use cases involve users extending or otherwise

CHAPTER 3. SOFTWARE IMPLEMENTATION 65

interacting with the code, which becomes extremely difficult if the code is

buggy or unreliable. Thorough testing is therefore required to ensure, as

far as possible, that the code behaves correctly.

The most basic form of testing involved manually checking the be-

haviour of the code during development. For example, after implementing

running algorithms until convergence, I experimented with the threshold

level and checked that the number of iterations performed changed ac-

cordingly.

Clearly this kind of ad-hoc testing is not sufficient. It is impractical to

perform such tests for all areas of the software after every code change;

this means it is easy for bugs to creep in when making future changes.

Moreover, manual inspection is not always enough to spot errors in

output. For the truth discovery algorithms implemented here, it is surely

impossible for one to know the expected results of an algorithm before

running it through software. In this case looking at the results by eye will

most likely not provide any useful information regarding the correctness

of the implementation. Even if one could predict the results of an algo-

rithm, the trust and belief scores are often floating point numbers with

an excess of 10 digits after the decimal point: checking these numbers

manually would be extremely challenging and error-prone.

Automated testing was used heavily to address these issues. This al-

lowed many tests covering broad parts of the code to be run quickly with-

out manual intervention, and allowed the tests to be far more compre-

hensive than manual testing could be. For these reasons and others, au-

tomated tests are now standard practise in software development.

I intended to adopt a test-driven development workflow, where tests are

developed before real code. This is hoped to force one to write tests that

cover the actual functionality required, rather than testing the specific im-

plementation. I achieved this semi-successfully, often writing a basic test

first and spotting gaps in the test coverage after the code implementation.

At any rate, the project benefits from a comprehensive suite of 150

unit tests covering all aspects of the Python code. Test coverage, which is

the percentage of lines of code that are run during the execution of the

tests, is 100% as measured using the coverage library26 (after manually

excluding lines that ought not to run during tests, such as starting the

web server, reading command-line arguments etc.). Note that 100% test

coverage does not necessarily mean that the tests are sufficient to find all

CHAPTER 3. SOFTWARE IMPLEMENTATION 66

Figure 3.23: Example of a unit test for constructing the source-claims matrix for a

dataset.

potential bugs in the code, but it is nonetheless a desirable statistic.

As mentioned, pytest was used to implement and run the tests. The

complete test output is shown in B.

Most of the automated tests can be described as unit tests, which check

the behaviour of a small part of the code (a ‘unit’) in isolation. In my case

this usually involved writing multiple tests for each class and method. An

example is shown in figure 3.23. This test checks that the source-claims

matrix M is constructed correctly when a dataset is loaded.

A pattern I used throughout development was to first write tests for

the expected behaviour of a class with ‘correct’ inputs, then consider ‘edge

cases’, and finally consider invalid inputs to check that error checking is

performed as appropriate.

26 https://coverage.readthedocs.io/en/v4.5.x/

https://coverage.readthedocs.io/en/v4.5.x/

CHAPTER 3. SOFTWARE IMPLEMENTATION 67

The example in figure 3.23 illustrates this to some extent. The first six

claims follow a predictable format: they deal with one variable at a time

(‘wind’ for the first four, ‘rain’ for the next two), with a mixture of repeated

values and distinct ones. These constitute the obviously ‘correct’ parts of

the input. Edge cases are thrown in for the remaining claims. First, the

value ‘wet’ is repeated, but for a different variable; this is perfectly valid

input, but a näıve implementation could incorrectly fail to distinguish be-

tween the claims in this case. The variables are also introduced out of

order with the final claim. Again, this is an attempt to ‘trick’ the code in

order to catch errors that may occur if one does not consider these edge

cases.

Erroneous input is handled in a separate test which is not shown in

figure 3.23. Test cases here include invalid datasets where a source makes

multiple claims for a variable.

In addition to unit tests, regression tests were used for testing the im-

plementation of algorithms. Regression tests are designed to ensure code

behaves correctly over time as new developments are made. This was par-

ticularly important for the truth discovery algorithms themselves, where

it is not at all obvious if an algorithm has been implemented correctly by

looking at its results against a dataset.

To create the regression tests, each algorithm was run against a large

synthetic dataset as soon as it was implemented. The results were then

stored in a file, and a test created to re-run the algorithm on the same

dataset and compare against the stored results. Any inadvertent changes

resulting in a change in behaviour for a particular algorithm are then

caught the next time the tests are run. Note that the regression tests rely

on the algorithms being correct at the time of their initial implementation;

this was checked separately in unit tests.

Indeed, this proved useful on a few occasions throughout develop-

ment, where accidental errors in the algorithm code caused non-obvious

errors in results. These were fortunately caught by the regression tests

and quickly rectified.

Besides the Python code, JavaScript was used for the interactive el-

ements of the web interface. Unfortunately, no automated tests were

produced for the JavaScript code. Manual testing was performed dur-

ing development and a final run through and test of all functionality was

performed on completion, but this was the extent of testing for the web

interface. On the one hand, the core backend Python code is thoroughly

CHAPTER 3. SOFTWARE IMPLEMENTATION 68

tested, so the web interface testing would only need to cover the inter-

active user interface aspects, such as dataset entry, displaying of results

and so on. Automated testing for such graphical components is much

more challenging than for the Python code, and would have required sig-

nificant time investment. On the other hand, AngularJS, the JavaScript

framework used, is built with with testability in mind, and various tools

exist to simplify automated testing of Angular applications. Tests could be

added in future work to address this.

3.3.7 Evaluation against Requirements

To conclude this section, the software as a whole is evaluated with respect

to the requirements and use cases of section 3.1.

The table in figure 3.24 shows the status of each requirement in the

finished system. Some requirements are tested in several ways; for ex-

ample generating animations is covered by unit tests, but the animations

also inspected visually. Requirements with a subjective component (e.g.

support for ‘large’ datasets) are indicated with asterisks.

The table shows that most requirements were indeed met, and for

the most part verified by unit tests. Note that most of the unit tested

requirements have multiple associated tests, and that the unit tests go far

beyond the high-level requirements listed.

Requirement 8, which relates to the handling of ‘large’ datasets, was

not met. Whilst it was possible to run algorithms on a reasonably large

dataset (see section 3.3.1), it took far too long for the dataset to load.

It is unclear where the bottleneck in dataset loading lies; this could be

investigated in future work.

Requirement 15 stated that time, memory and iteration statistics should

be returned with the results of an algorithm. This is only partially com-

plete in the finished system: no memory usage information is returned.

Defining memory usage proved to be challenging, and from initial inves-

tigations it seemed that profiling memory usage whilst an algorithm runs

would have a negative impact on performance. Memory usage was omit-

ted for these reasons. Note that the other aspects of the requirement,

namely time and iteration statistics, were met and verified with unit tests.

Naturally requirement 17, which requires that time, memory and iter-

ation statistics can be compared between results, was also only partially

met.

CHAPTER 3. SOFTWARE IMPLEMENTATION 69

Req. number Unit tested Manually tested Partially met Not met

1 X

2 X

3 X

4 X

5 X

6 X

7 X

8 X*

9 X

10 X

11 X

12 X

13 X*

14 X

15 X X

16 X

17 X X

18 X X

19 X X

20 X*

21 X X*

22 X

Figure 3.24: Status of each of the requirements in the finished implementation.

The use cases identified at the start of this section are supported to

varying degrees in the final implementation. The main goals for the ‘prac-

titioner’ use case were to run algorithms on real-world datasets and eval-

uate them with respect to their performance. It has been seen that large

real-world datasets are not well-supported in the system due to the ex-

cessive time it takes to load them. This limits the system’s usefulness in

practical applications of truth discovery, especially if real-time results are

required.

Evaluation is supported reasonably well; the demonstrations through-

out this section show how the system can be used to evaluate and compare

algorithms with respect to various metrics, such as accuracy on synthetic

CHAPTER 3. SOFTWARE IMPLEMENTATION 70

datasets and run-time. One shortcoming is that analysis of memory usage

is not possible.

The ‘algorithm developer’ use case requires users to be able to eas-

ily extend the codebase to implement new algorithms with ease. This is a

subjective goal, and it is difficult for the author of some software to impar-

tially comment on its usability from the perspective of others. Neverthe-

less, I feel that this goal was mostly achieved, due to the clean separation

in the code between the public API and implementation details. The code

is also well-documented, well-tested, and includes numerous examples of

its usage.

Finally, the system was intended to be helpful as a tool for theoretical

truth discovery work. The web interface proved particularly useful for this

in my own theoretical work (see chapter 4), where I often needed to run

a particular algorithm on small datasets to get a feel for its behaviour in

different scenarios. The counter-example used to prove that Sums does

not satisfy a certain independence property (see theorem 2) was found

using the web interface, and the figures demonstrating it were generated

using the Python API.

3.4 Future Work

This section discusses unrealised ideas and potential future work for the

software framework.

Perhaps the most obvious area for improvement is the selection of al-

gorithms available. Truth discovery has been studied extensively in the

literature and many algorithms proposed, yet only five are implemented

here. It would be interesting to implement algorithms of different types;

for example, algorithms based on statistical models (e.g. [33, 38]) are

absent.

Real-valued variables could also be handled in future work. This im-

plementation treats values categorically – 3.001 is completely distinct

from 3.002. In practise, however, datasets often contain real-valued vari-

ables whose claimed values may be close but not exactly equal. In this

case the values can be ‘quantised’ to discrete intervals before truth discov-

ery is applied. Future work could implement this inside the framework to

reduce the effort required from end users.

CHAPTER 3. SOFTWARE IMPLEMENTATION 71

Another area that could be greatly expanded upon is synthetic data

generation. The model of synthetic data adopted here is a simple one, and

could be extended in various ways. For example, each variable could have

its own domain of possible values, instead of a fixed constant domain; this

would more accurately reflect real-world datasets, where variables have

their own unique characteristics.

The distribution of claimed values could also vary between variables:

currently all source incorrect values uniformly at random. This artificially

prevents certain algorithms performing as well as they might do on real

data, where similarity between claimed values can be used to great effect

– for example, implications between claims in TruthFinder.

Chapter 4

Theoretical Analysis

This chapter presents and analyses a formal theoretical framework for

truth discovery. First, the approach taken is discussed and justified.

4.1 Approach

In the previous chapters, we have motivated the need for a general the-

oretical framework for truth discovery. To work towards actually con-

structing one, it is necessary to set out exactly what such a framework

will consist of, and what features and properties are required for it to be

useful.

The main goal of developing the framework is to set out rigorous defi-

nitions for what truth discovery is, which allows the current situation to be

modelled whilst also permitting a more general view. The key definitions

will therefore be

• What is the ‘input’ to truth discovery? The input has been described

in terms of sources, facts, objects and conflicting claims, but this

needs to be formulated mathematically.

• What is the ‘output’? We have stated that the output is most com-

monly trust and belief scores for sources and facts, according to ex-

72

CHAPTER 4. THEORETICAL ANALYSIS 73

isting work in the literature. However our aim is to study truth

discovery in full generality, and not just the algorithms already in

existence. Therefore a more general view could be taken if desired,

so long as it can still model existing algorithms.

With these definitions in place, a truth discovery algorithm is simply

a mapping from the space of inputs to outputs. This abstracts away the

process of performing truth discovery so that ‘algorithm’ is not the correct

term to use. We opt for truth discovery operator to describe a mapping

from inputs to outputs.

There are several criteria against which to judge the usefulness of the

developed framework.

• Ability to model existing approaches: We aim to find a unified

framework that allow as many existing algorithms in the literature

as possible to be represented.

• Simplicity: the key definitions should be easy to interpret, and

should relate to intuitive notions of truth discovery in a clear way.

• Flexibility: we wish to prove properties of operators, compare dif-

ferent operators, and develop axioms, so the framework should be

easy and flexible to work in.

• Generality: the framework should be general and ‘unopinionated’

enough to be useful as foundations for future work, i.e. it should not

rely on specific ideas and approaches to performing truth discovery.

It should also be general in the sense of facilitating easy comparison

between truth discovery and related areas in the literature. This will

allow ideas in these areas to be applied to truth discovery, e.g. many

axioms from social choice could be translated to truth discovery.

Once the framework has been established, we aim to develop axioms

for operators. In line with axiomatic foundations for other problems, the

axioms should represent intuitively desirable properties that a ‘reasonable’

operator should satisfy. The power of the axiomatic approach is to then

consider multiple axioms together; the types of results attained include

impossibility results, where it is proved that no operator1 can satisfy a set

of axioms, and representation theorems, where a set of sound and complete

axioms are found for a particular operator. For example, in the context of

CHAPTER 4. THEORETICAL ANALYSIS 74

ranking systems, the authors in [3] show that two seemingly complemen-

tary and desirable axioms cannot be satisfied simultaneously, which has

implications when deciding which ranking system to use in practise.

Requirements for ‘good’ axioms include having simple interpretations

and representing desirable properties in some way or another.

4.1.1 Overview of Approach

We now give an overview and justification of the approach to develop-

ing the theoretical framework, before the formal definitions are given in

section 4.2.

For input to a truth discovery problem, it was noted in section 2.2 that

the following form is applicable to many approaches in the literature: we

have a set of sources, facts and objects, and sources claim facts for objects.

To represent this formally, a graph-theoretic representation is chosen.

Nodes will be sources, facts and objects. Edges between nodes repre-

sent the obvious relations: an edge from a source to a fact represents the

source claiming that fact, and an edge from a fact to an object indicates

the object the fact relates to. Setting this up in graph theory allows for

simple interpretation, and allows concepts in graph theory to be usefully

applied to describe properties of the input (for example, the notion of

connected components is key in axiom 6).

Using a well established tool such as graph theory is hoped to also pro-

vide flexibility for future refinements to consider more complex problems:

notions such as weighted edges, annotated nodes etc. could be used to

conveniently describe additional properties of the input.

Finally, a graph representation is already used in the related area of

ranking systems [2, 3]. Using a similar set up allows comparison between

the two areas.

For output, consider the two main ideas discussed in section 2.2: as-

signing each fact a score and selecting a single true fact for each object.

Since the latter is a special case of the former, the former is more suitable

for a general theory of truth discovery.

Note that assigning a numeric score to each source and fact in particu-

lar induces an ranking of the sources and facts. We argue that the essence

1 We use ‘operator’ as a blanket term to refer to social choice functions, ranking
systems, annotation aggregators etc.

CHAPTER 4. THEORETICAL ANALYSIS 75

of truth discovery lies more in this induced ranking that the particular

numerical scores, and will therefore define the output of truth discovery

as a pair of rankings (precisely, total preorders) on the set of sources and

facts.

Indeed, when applying truth discovery methods to determine which

sources to trust and which facts to believe, one is interested in which

sources/facts are more believable than others, not in the particular nu-

meric values produced by an algorithm. Additionally, the numeric values

produced often do not have any semantic meaning [27], which prevents

inter-algorithm comparison. The induced rankings can therefore act as a

bridge between results from different algorithms.

A similar view is also taken in social choice and the axiomatic theory of

ranking systems, where rankings instead of numeric scores are the main

objects of interest. Taking the same approach here highlights the similari-

ties between truth discovery and these areas, and allows concepts in these

areas to be carried over into truth discovery.

Nevertheless, to model in their entirety the algorithms that produce

numeric scores, it will be possible to define such operators in the frame-

work as more general objects, but restrict our attention mainly to the

ranking-output operators.

4.2 A Framework for Truth Discovery

In this section we define formally the graph-theoretic framework for truth

discovery, and set out the central problem of truth discovery via the def-

inition of a truth discovery operator. We then develop axioms (desirable

properties) for such operators, and prove some basic properties regarding

them. Finally, we consider how to represent real-world truth discovery

algorithms in the developed framework, focussing specifically on Sums

[27].

First we state some standard definitions and notation.

4.2.1 Standard Definitions and Notation

Definition 1. A preorder on a set X is a binary relation � that is reflexive

and transitive:

1. x � x for all x ∈ X (reflexivity)

CHAPTER 4. THEORETICAL ANALYSIS 76

2. If x � y and y � z, then x � z for all x, y, z ∈ X (transitivity)

A total preorder is a preorder that is complete: for all x, y ∈ X, x � y
or y � x. L(X) is the set of all total preorders on X.

The strict order induced by � is ≺ where x ≺ y if and only if x � y but

not y � x. Note that ≺ is irreflexive, transitive (and hence asymmetric),

and is not complete.

The equality predicate associated with � is ≃, where x ≃ y if and only

if x � y and y � x. Note that ≃ is an equivalence relation on X.

Definition 2. A permutation of a set X is a bijective mapping X → X. We

use cyclic notation for permutations: π = (a, b, c) is the mapping π(a) = b,
π(b) = c, π(c) = a, and π(x) = x for x /∈ {a, b, c}. Juxtaposition of cycles

denotes function composition.

Definition 3. Two graphs G = (V,E) and G′ = (V ′, E ′) are isomorphic

if there is a bijective mapping φ : V → V ′ such that (u, v) ∈ E ⇐⇒
(φ(u), φ(v)) ∈ E ′.

Definition 4. Let G = (V,E) be an undirected graph, and define a rela-

tion ∼ on V by u ∼ v iff there is a path from u to v in G (including the

zero-length path when u = v). It is easily checked that ∼ is an equiva-

lence relation. A connected component of G is an induced subgraph of an

equivalence class of ∼.

Notation. For sets X and Y , Y X denotes the set of all functions X → Y .

4.2.2 Truth Discovery Definitions

We consider fixed finite and mutually disjoint sets S, F and O, called the

sources, facts and objects respectively. All definitions and axioms will be

stated with respect to these sets.

Definition 5. A truth discovery network is a directed graph N = (V,E)
where V = S ∪F ∪O, and E ⊆ (S ×F) ∪ (F ×O) satisfies the following

properties:

1. Each f ∈ F has a unique successor node in O, denoted obj(N, f)
(i.e. each fact relates to a single object).

CHAPTER 4. THEORETICAL ANALYSIS 77

2. For s ∈ S and o ∈ O, there is at most one directed path from s to o
(i.e. sources can only claim one fact per object).

3. (S × F) ∩ E is non-empty (i.e. at least one claim is made).

We will say that s claims a fact f when (s, f) ∈ E. Let N denote the set of

all truth discovery networks.

Remark. Note that the definition above does not rule out a source s making

no claims, a fact f being claimed by no sources, or an object o having no

associated facts or sources.

In the special case where each object has exactly two associated facts, the

objects can be seen as binary variables taking one of two values, e.g. true or

false. The truth discovery network is then similar to a set of judgements in

judgement aggregation [13] for an agenda consisting only of propositional

variables.

Notation. For convenience, for a network N = (V,E), define:

facts(N, s) = {f ∈ F : (s, f) ∈ E}

facts(N, o) = {f ∈ F : (f, o) ∈ E}

src(N, f) = {s ∈ S : (s, f) ∈ E}

src(N, o) = {s ∈ S : ∃f ∈ F : (s, f), (f, o) ∈ E}

Definition 6. A truth discovery operator T is a mapping T : N → L(S) ×
L(F), i.e. T assigns to each truth discovery network N a pair of total

preorders T (N) = (⊑T
N ,�

T
N) on the sets S and F respectively.

s1 ⊑
T
N s2 means s2 is ranked as more trustworthy than s1 in the network

N according to T ; f1 �
T
N f2 means f2 is ranked as more believable than f1.

In practise, real-world truth discovery algorithms do not usually out-

put a ranking of sources and facts directly, but instead assign each source

a numeric trust score, and each fact a belief score. This is captured in the

following definition.

Definition 7. A numerical truth discovery operator T is a mapping T :
N → R

S ×R
F , i.e. T assigns to each truth discovery network N functions

tN : S → R (referred to as the source trust mapping) and bN : F → R

(referred to as the fact belief mapping).

CHAPTER 4. THEORETICAL ANALYSIS 78

Remark. Any numerical truth discovery operator T naturally induces a

truth discovery operator T ′, where for any truth discovery network N we

define

s1 ⊑
T ′

N s2 ⇐⇒ tN(s1) ≤ tN(s2)

f1 �
T ′

N f2 ⇐⇒ bN(f1) ≤ bN(f2)

for s1, s2 ∈ S and f1, f2 ∈ F .

In this work we deal primarily with truth discovery operators as de-

fined in definition 6, instead of working directly with numeric trust and

belief scores as in definition 7. This is due to the reasons dicussed in sec-

tion 4.1.1; namely that, from a theoretical point of view, we are interested

in the qualitative ranking of sources and facts rather than quantitative val-

ues.

One disadvantage to this approach is that whilst we can tell whether

or not s1 is more trustworthy than s2, we cannot tell by how much. For

example, consider two numerical operators T and T ′ and S = {s1, s2}
such that tN(s1) = 0.5, tN(s2) = 0.51, and t′N(s1) = 0.01, t′N(s2) = 0.99.

Both operators induce the same ranking on S, yet T considers the two

sources to have similar trust values while T ′ considers s2 to be much more

trustworthy than s1.

4.2.3 Axioms

The fact-believability component of truth discovery can be seen as a spe-

cial case of voting in the theory of social choice [41], where agents are

sources and alternatives are facts. Each source then ranks the facts it

claims above all other facts, and ranks its claimed facts equally.2 Several

axioms for voting rules from this theory can be adapted to truth discovery,

and we do so presently.

Symmetry and Dictatorship

Definition 8. Two truth discovery networks N and N ′ are equivalent if

there is a graph isomorphism π between them that preserves sources, facts

and objects:

2 Note that the formulation of social choice must allow for agents to have weak

preferences for alternatives, where ties are allowed.

CHAPTER 4. THEORETICAL ANALYSIS 79

1. π(s) ∈ S for all s ∈ S

2. π(f) ∈ F for all f ∈ F

3. π(o) ∈ O for all o ∈ O

In such case we write π(N) for N ′.

Figure 4.1 shows an example of two equivalent networks.

The first axiom states that the ordering of sources and facts should not

depend on the ‘names’ of the sources, facts and objects in the input.

Definition 9. Let T be a truth discovery operator. T satisfies symmetry if

for any equivalent truth discovery networks N and N ′ = π(N), we have

s1 ⊑
T
N s2 ⇐⇒ π(s1) ⊑

T
N ′ π(s2)

and

f1 �
T
N f2 ⇐⇒ π(f1) �

T
N ′ π(f2)

T satisfies source-symmetry if both the above statements hold in cases

where π only permutes sources, i.e. π(f) = f and π(o) = o for all f ∈ F
and o ∈ O. Fact-symmetry and object-symmetry are defined similarly.

Axiom 1 (Symmetry). An operator T should satisfy symmetry.

Source-symmetry is analogous to anonymity in classical social choice,

where all voters are treated identically, and fact and object symmetry are

analogous to neutrality, where the alternatives being voted on are treated

identically [41].

Note that source-symmetry does not mean that sources are treated

equally per se, since some sources are presumed to be more trustworthy

than others (this is more or less the central premise of truth discovery).

Instead it means that sources are judged solely by the facts that they claim,

not their identities.

Proposition 1. T satisfies symmetry if and only if it satisfies source, fact

and object symmetry.

Proposition 2. If T satisfies source-symmetry and facts(N, s1) = facts(N, s2)
in some network N , then s1 ≃

T
N s2.

CHAPTER 4. THEORETICAL ANALYSIS 80

Figure 4.1: Example of two equivalent truth discovery networks. Here the isomor-

phism between the left and right networks is π = (S, T, U)(A,B). The colours show
that the structure of the right network is the same as the left, just with different

‘names’ for the nodes.

Similarly, if T satisfies fact-symmetry and src(N, f1) = src(N, f2),
obj(N, f1) = obj(N, f2), then f1 ≈

T
N f2.

That is, any two sources making identical claims are ranked equally, and

any two facts for the same object with identical support from sources are

ranked equally.

All missing proofs are presented in appendix C.

In some sense the opposite of source-symmetry, where the identities

of the sources are irrelevant and only the structure of the truth discovery

network is important, is a situation where only the identities of the sources

are considered.

Definition 10. A source s∗ ∈ S is authoritative for a network N = (V,E)
with respect to an operator T if s ⊑T

N s∗ for all s ∈ S, and (s∗, f ∗) ∈ E
implies f �T

N f ∗ for all f ∈ F .

In other words, s∗ is more (or equally) trusted than all other sources,

and its facts are more (or equally) believable than all others.

We also define a strict version: s∗ is strictly authoritative if additionally

s ⊏T
N s∗ for all s 6= s∗, and f ≺T

N f ∗ for all f, f ∗ ∈ F such that (s∗, f ∗) ∈ E
and (s∗, f) /∈ E.

An operator T is a dictatorship if there is a source s∗ ∈ S (the dictator)

that is authoritative for all networks, and T is a strict dictatorship if there

is a source s∗ ∈ S that is strictly authoritative for all networks.

CHAPTER 4. THEORETICAL ANALYSIS 81

Axiom 2 (Non-dictatorship). An operator T should not be a dictatorship.

As noted above, source-symmetry and dictatorship are conceptually

at odds with one another. This is expressed formally in the following

proposition, which essentially shows that only trivial operators can satisfy

both properties.

Proposition 3. If an operator T is both source-symmetric and a dictatorship,

then for any network N :

1. All sources are ranked equally

2. If f1 is claimed by at least one source in N , then f2 �
T
N f1 for all facts

f2.

In particular, there is no operator that is both source-symmetric and a

strict dictatorship.

Example 1. A trivial operator that satisfies symmetry and dictatorship is

one that always ranks all sources and facts equally: Ttriv(N) = (S2,F2).
If we restrict N to those networks where all facts are claimed by

at least one source, then proposition 3 shows that T satisfies source-

symmetry and dictatorship if and only if T = Ttriv.

Without this restriction, facts not claimed by any source may be ranked

strictly below other facts. Indeed, consider T defined as follows. For

any network N write F+ = {f ∈ F : src(N, f) 6= ∅}, and define T by

s1 ≃
T
N s2 for all s1, s2 ∈ S, and

f1 �
T
N f2 ⇐⇒ f2 ∈ F+ or f1 /∈ F+ (f1, f2 ∈ F)

T is trivially a dictatorship for any s∗ ∈ S. It can be easily checked

that �T
N is a well-defined total preorder, and that T is also symmetric.

However any fact in F \ F+ ranks strictly below any fact in F+.

Dictatorship requires there to be a fixed source that is authoritative in

all networks. A weaker form of dictatorship, which is more compatible

with symmetry, is where the authoritative source may depend on N .

Definition 11. A truth discovery operator T is a generalised dictatorship if

for every network N there exists a source sN ∈ S that is authoritative for

N with respect to T . A generalised strict dictatorship is defined similarly.

CHAPTER 4. THEORETICAL ANALYSIS 82

Clearly a dictatorship is also a generalised dictatorship.

Example 2. An operator that is both symmetric and a generalised dicta-

torship is the numerical operator T defined as follows. For any truth dis-

covery network N , let QN = {s ∈ S : |facts(N, s)| = maxx∈S |facts(N, x)|}
be the set of sources making the maximal number of claims, and set

tN(s) =

{

1 if s ∈ QN

0 otherwise

bN(f) =

{

1 if src(N, f) ∩QN 6= ∅

0 otherwise

Clearly any source in QN is authoritative.

To show symmetry, let N and π(N) be equivalent networks. Let s ∈ S.

First note that f ∈ facts(N, s) iff π(f) ∈ facts(π(N), π(s)) by defi-

nition of equivalent networks, and in particular the restriction of π to

facts(N, s) is a bijection into facts(π(N), π(s)); hence |facts(N, s)| =
|facts(π(N), π(s))|. Also, since π restricted to S is a bijection into S, we

have

max
x∈S

|facts(N, x)| = max
x∈S

|facts(π(N), π(x))|

= max
x∈S

|facts(π(N), x)|

and so

s ∈ QN ⇐⇒ |facts(N, s)| = max
x∈S

|facts(N, x)|

⇐⇒ |facts(π(N), π(s))| = max
x∈S

|facts(π(N), x)|

⇐⇒ π(s) ∈ Qπ(N)

We see that tN(s) = tπ(N)(π(s)) for any s ∈ S.

Now let f ∈ F . Note that s ∈ src(N, f) iff π(s) ∈ src(π(N), π(f)).
Using this fact and s ∈ QN ⇐⇒ π(s) ∈ Qπ(N), it is easy to see that

src(N, f)∩QN 6= ∅ iff src(π(N), π(f))∩Qπ(N) 6= ∅, i.e. bN(f) = bπ(N)(π(f)).
Finally this means, for any s1, s2 ∈ S and f1, f2 ∈ F :

s1 ⊑
T
N s2 ⇐⇒ tN(s1) ≤ tN(s2)

⇐⇒ tπ(N)(π(s1)) ≤ tπ(N)(π(s2))

⇐⇒ π(s1) ⊑
T
π(N) π(s2)

CHAPTER 4. THEORETICAL ANALYSIS 83

and similarly f1 �
T
N f2 iff π(f1) �

T
π(N) f2. Hence T is symmetric.

Note that to be a generalised dictatorship, an operator needs only to

rank facts claimed by the most trusted source(s) above all other facts.

One may argue that this is not necessarily an undesirable property, since

the most trusted source presumably claims believable facts, which should

rank highly.

However, the operator in example 2 has the additional (perhaps unde-

sirable) property that the ranking is ‘binary’: it is two-level ranking where

all non-authoritative sources rank equally to each other and strictly be-

low the authoritative ones. This behaviour is captured in the following

definition.

Definition 12. A truth discovery operator T is a binary generalised dicta-

torship if for every network N there is a set of sources QN ⊆ S such that,

with

tN(s) =

{

1 if s ∈ QN

0 otherwise

bN(f) =

{

1 if src(N, f) ∩QN 6= ∅

0 otherwise

it holds that

s1 ⊑
T
N s2 ⇐⇒ tN(s1) ≤ tN(s2)

f1 �
T
N f2 ⇐⇒ bN(f1) ≤ bN(f2)

Remark. If T is a binary generalised dictatorship, it clear that for each

network N , each source in QN is authoritative.

In such case the orderings ⊑T
N and �T

N are fully determined by the choice

of QN . Therefore a binary generalised dictatorship can be identified with

a mapping N → 2S that selects the authoritative sources for each truth

discovery network.

Axiom 3 (Non- binary generalised dictatorship). An operator T should not

be a binary generalised dictatorship.

Proposition 4. Non-dictatorship and non- binary generalised dictatorship

are independent.

CHAPTER 4. THEORETICAL ANALYSIS 84

Unanimity

The next axioms formalise the idea that if all sources are in agreement

about the status of a fact, then a truth discovery operator should respect

this in its verdict. Two obvious ways in which sources can be in agreement

are when all sources believe a fact is true, and when no sources believe a

fact is true.

Axiom 4 (Unanimity). For any truth discovery network N , src(N, f) = S
implies f ′ �T

N f for all f ′ ∈ F .

Axiom 5 (Groundedness). For any truth discovery network N , src(N, f) =
∅ implies f �T

N f ′ for all f ′ ∈ F .

That is, a fact cannot do better than to be claimed by all sources when

T satisfies unanimity, and cannot do worse than to be claimed by no

sources when T is grounded.

Note that we do not require strict inequalities here, so as to not be too

restrictive. For unanimity in particular, requiring f to rank strictly above

all other facts would require T to choose a highest-ranking fact arbitrarily

in the case where there are multiple facts claimed by all sources.

Unanimity is similar to the weak Paretian property [10] in social choice,

which states that whenever each individual prefers an alternative a over b,
the social preference order prefers a over b also. It can also be compared

to unanimity in judgement aggregation [13].

Axioms similar to groundedness have been proposed for collective an-

notation (e.g. see groundedness in [17])

Example 3. The majority voting operator, which ranks a fact by the num-

ber of sources claiming it, satisfies unanimity and groundedness. Indeed,

define Tvote by s1 ≃
Tvote

N s2 for all s1, s2 ∈ S, and

f1 �
Tvote

N f2 ⇐⇒ |src(N, f1)| ≤ |src(N, f2)|

If src(N, f) = S then for all f ′ we have src(N, f ′) ⊆ S = src(N, f),
so f ′ �T

N f . Also, if src(N, f) = ∅ then src(N, f) ⊆ src(N, f ′) for all f ′,

so f �T
N f ′. Hence Tvote is unanimous and grounded.

A consequence of groundedness is that any fact ranking strictly above

all others must have been claimed by at least one source (assuming |F| >
1).

CHAPTER 4. THEORETICAL ANALYSIS 85

Figure 4.2: Network demonstrating a case where we do not wish for an IIA-type

axiom to hold.

Proposition 5. Unanimity and groundedness are independent.

Independence

In social choice, the ‘Independence of Irrelevant Alternatives’ (IIA) axiom

[6] requires that the relative ranking of two alternatives A and B depends

only on the individual rankings of A and B, and not on any ‘irrelevant’

alternative C. That is, if the individual voter preferences are changed

such that the ranking of A versus B remains the same for each voter, the

ranking of A and B in the social ranking remains unchanged.

To consider whether a similar axiom should be adopted for truth dis-

covery, consider facts A and B in the network shown in figure 4.2. A
has support from source S only, who is not in agreement with any other

sources, whilst B has support from T , who agrees with both U and V on

facts C and D. For this reason, it may be reasonable to expect that T is

more trustworthy than S, and therefore B is more believable than A.

Directly translating IIA to this situation, we would require that the

ranking of A and B is unchanged if, say, we removed T ’s claims for C and

CHAPTER 4. THEORETICAL ANALYSIS 86

Figure 4.3: Network where some notion of independence may be applied.

D (which are ‘irrelevant’), and instead had S make these claims. However

the intuition above suggests that the ranking of A and B should actually

be reversed in this case, despite the individual judgements on A and B
remaining unchanged. For this reason, we argue that a more subtle notion

of independence is required.

The issue in figure 4.2 is that C and D are not entirely irrelevant to A
and B, since they are connected indirectly via sources that make claims

for both objects O and P (namely, source T). Consider removing these

indirect links, as show in figure 4.3. In this case it can be argued that

C and D truly are irrelevant to A and B, and so changes to the network

outside of S, T , A, B and O should not affect the ranking of A and B.

This idea can be generalised by noting that two nodes are ‘relevant’

to each other (perhaps indirectly) if they lie in the same connected com-

ponent of the network (where we consider the connected components of

the undirected version of the graph). A suitable independence axiom is

therefore to require that changes outside a connected component do not

affect the ranking of sources and facts within that component. A precise

statement is given below.

CHAPTER 4. THEORETICAL ANALYSIS 87

Axiom 6 (Independence Of Irrelevant Stuff). For any truth discovery net-

works N1, N2 with a common connected component G, the restrictions of

⊑T
N1

and ⊑T
N2

to G ∩ S are equal, and the restrictions of �T
N1

and �T
N2

to

G ∩ F are equal.

Independence of irrelevant stuff requires that s1 ⊑T
N1

s2 if and only if

s1 ⊑T
N2

s2. A weaker version is to require only that the ranking of s1 and

s2 in N1 is not reversed in N2, not necessarily that the ranking if the same

(for example, a strict inequality in N1 may become weak in N2).

Axiom 7 (Weak Independence Of Irrelevant Stuff). For any truth discovery

networks N1, N2 with a common connected component G and for any s1, s2 ∈
G ∩ S and f1, f2 ∈ G ∩ F :

s1 ⊏
T
N1

s2 =⇒ s1 ⊑
T
N2

s2

f1 ≺
T
N1

f2 =⇒ f1 �
T
N2

f2

Clearly axiom 6 implies axiom 7.

Coherence

A guiding principle of many truth discovery approaches is that facts claimed

by trustworthy sources should receive high belief, and sources claiming

high belief facts should be seen as trustworthy – the trust and belief rank-

ings should cohere with one another in this sense. The following axiom

aims to formalise this in a specific case where it is possible to compare

facts for two sources in a straightforward way (and similarly for facts). Its

form is inspired by transitivity axioms for ranking systems [3].

Axiom 8 (Coherence). Suppose N is a truth discovery network and s1, s2 ∈
S are such that there is a bijective mapping φ : facts(N, s1) → facts(N, s2)
with f �T

N φ(f) for all f ∈ facts(N, s1). Then s1 ⊑
T
N s2.

That is, if the facts claimed by two sources can be paired up such that the

fact claimed by s1 always ranks beneath the fact claimed by s2, then s1 ranks

beneath s2.
Similarly, if there are facts f1, f2 ∈ F and a bijection φ : src(N, f1) →

src(N, f2) such that s ⊑T
N φ(s) for all s ∈ src(N, f1), then f1 �

T
N f2.

CHAPTER 4. THEORETICAL ANALYSIS 88

Monotonicity

The axioms considered so far have largely dealt with the output of a truth

discovery operator for one input network at a time, or for two networks

which are structurally similar. Another dimension to the axiomatic ap-

proach is to consider how the output of an operator is effected by a change

in the input to modify it in a particular way.

The following axiom considers what should happen if a network is

changed by adding additional support for a particular fact. Intuitively,

this should be seen as additional evidence that the fact is true, and an

operator should rate it no worse than it did before.

Axiom 9 (Monotonicity). Let N = (V,E) be a truth discovery network, and

f ∈ F , s ∈ S such that (s, f) /∈ E. Write o = obj(N, f). Consider the

network N ′ = (V,E ′) where s claims f , i.e.

E ′ = {(s, f)} ∪ E \ {(s, f ′) : f ′ 6= f, (f ′, o) ∈ E}

Then f ′ �T
N f implies f ′ �T

N ′ f for all f ′ ∈ F .

That is, if f receives additional support from a new source s, its ranking

should not get worse.

4.2.4 Iterative Truth Discovery Operators

Real-world algorithms for truth discovery generally compute numerical

trust and belief scores, as per definition 7. Additionally, most operate in an

iterative manner, computing trust and belief scores recursively from one

another until the respective scores (hopefully) converge to fixed values.

In this section we define the concept of iterative truth discovery oper-

ators to represent and reason about such real-world algorithms.

Definition 13. An iterative truth discovery operator is a sequence I =
(Tn)n∈N of numerical truth discovery operators, i.e. a sequence of map-

pings Tn : N → R
S × R

F .

For a network N and n ∈ N we will write Tn(N) = (tnN , b
n
N) to refer

directly to the source trust and claim belief mappings for the n-th iteration

(but note that this notation does not make explicit the dependence of t
and b on the sequence I).

I is said to converge to a numerical operator T ∗ if tnN → t∗N and bnN → b∗N
pointwise as n → ∞ for each network N .

CHAPTER 4. THEORETICAL ANALYSIS 89

Remark. Recall that a numerical operator T ∗ naturally induces a (non-

numerical) operator by rankings sources according to t∗N and facts according

to b∗N . We may therefore identify a convergent iterative operator I with the

operator induced by its limit T ∗, and write ⊑I
N and �I

N for the source and

fact rankings. To be explicit:

s1 ⊑
I
N s2 ⇐⇒ lim

n→∞
tnN(s1) ≤ lim

n→∞
tnN(s2)

and similarly for facts.

Note that this mapping is not injective: there may be many iterative oper-

ators with the same limit T ∗; furthermore two distinct numerical operators

T ∗ and T ∗∗ may induce the same non-numerical operator.

Given a real-world algorithm in practise, one usually aims to deter-

mine whether it converges by iterating until the distance (measured in

some suitable way) between trust (or belief) scores in consecutive iter-

ations becomes smaller than a fixed threshold. This is of course only a

heuristic, since it is not possible to determine whether a sequence con-

verges by considering only finitely many terms. Moreover even if the

difference between subsequent trust/belief scores were to become arbi-

trarily small (i.e. smaller than any threshold), one still cannot guarantee

convergence.3 This means that it may not be trivial to define a real-world

algorithm as a truth discovery operator, since it may not be clear whether

the trust and belief scores converge in all cases. Nevertheless, in this work

we will assume that the iteration does converge in all cases and consider

which axioms of section 4.2.3 are satisfied given this assumption.

To check whether a convergent operator satisfies the axioms, it will be

convenient to have sufficient conditions for some of the axioms that refer

to the numeric trust and belief scores directly.

For convenience we assume that trust and belief scores are in the range

[0, 1], as this is generally the case in practise.

Lemma 1. Let I be a convergent iterative truth discovery operator with limit

T ∗. Suppose that tnN(s) ∈ [0, 1], bnN(f) ∈ [0, 1] for all N, s, f and n. Then:

1. t∗N(s) ∈ [0, 1] and b∗N(f) ∈ [0, 1]

3 For an example of a sequence exhibiting such behaviour, consider the partial sums
of the Harmonic series

∑

∞

j=1

1

j
, which is divergent. The difference between the (n+1)-th

and nth terms is 1

n+1
which converges to 0 as n → ∞, yet the series does not converge.

CHAPTER 4. THEORETICAL ANALYSIS 90

2. If for any equivalent networks N and N ′ = π(N) it holds that

tnN(s) = tnπ(N)(π(s))

and

bnN(f) = bnπ(N)(π(f))

for all N, n, s, f , then I satisfies symmetry (axiom 1).

3. If for any network N and f ∈ F ,

src(N, f) = S =⇒ bnN(f) = 1 for sufficiently large n ∈ N

then I satisfies unanimity (axiom 4).

4. If for any network N and f ∈ F ,

src(N, f) = ∅ =⇒ bnN(f) = 0 for sufficiently large n ∈ N

Then I satisfies groundedness (axiom 5).

5. If for any networks N1, N2 with a common connected component G it

holds that tnN1
(s) = tnN2

(s) and bnN1
(f) = bnN2

(f) for s ∈ G ∩ S and

f ∈ G ∩ F , then I satisfies independence of irrelevant stuff (axiom 6).

6. If for any networks N1, N2 with a common connected component G
there are sequences of non-negative numbers (αn)n∈N, (βn)n∈N such

that, for all n ∈ N, s ∈ G ∩ S and f ∈ G ∩ F ,

tnN2
(s) = αn · t

n
N1
(s)

bnN2
(f) = βn · b

n
N1
(f)

then I satisfies weak independence of irrelevant stuff (axiom 7).

Sums

Sums [27] is an iterative algorithm for truth discovery based on the Hubs

and Authorities [16] algorithm for the ranking of web pages based on the

hyperlink structure of the web. The trust score for a source at a given

iteration is computed as the sum of the current belief scores of its claimed

facts, and the belief score for a fact is given by the sum of its sources trust

scores.

The trust/belief scores are normalised at each iteration by dividing by

the maximum score; this prevents the scores growing without bound to

ensure convergence.

CHAPTER 4. THEORETICAL ANALYSIS 91

Definition 14 (Sums). Sums is the iterative truth discovery operator Isums

defined for any network N as follows, where we write tn for tnN for brevity:

t1(s) =
1

2
, b1(f) =

1

2

and for n > 1:

t̂n(s) =
∑

f∈facts(N,s)

bn−1(f)

b̂n(f) =
∑

s∈src(N,f)

t̂n(s)

tn(s) =
t̂n(s)

max
x∈S

t̂n(x)

bn(f) =
b̂n(f)

max
y∈F

b̂n(y)

Note that t̂ and b̂ are only used to define t and b, and are not part of

the definition of Sums itself.

If a source s makes no claims in N (i.e. facts(N, s) = ∅), we follow

the convention that an empty sum is 0 and set t̂nN(s) = 0 (similar for a fact

without sources).

Remark. The normalisation ensures that trust and belief scores always lie

in [0, 1]. Note that any source that makes at least one claim has strictly

positive trust score for all n, and any fact with at least one source has strictly

positive belief score. Since any network N must contain at least one claim,

this ensures that the maximum in the denominator for tn and bn is non-zero.

Theorem 1. If Sums is convergent, it satisfies symmetry (axiom 1), non-

dictatorship (axiom 2), unanimity (axiom 4), groundedness (axiom 5) and

weak independence of irrelevant stuff (axiom 7).

The proof of theorem 1 uses lemma 1, and can be found in appendix C.

For non-dictatorship, it is sufficient by proposition 3 and symmetry to find

a single truth discovery network in which Sums does not rank all sources

equally. Figure 4.4 shows such a network: in this network A ranks strictly

above B and C, which are ranked equally.

CHAPTER 4. THEORETICAL ANALYSIS 92

Figure 4.4: A network in which Sums does not rank all sources equally.

Theorem 2. Sums does not satisfy Independence of Irrelevant Stuff (axiom

6).

Figures 4.4 and 4.5 provide an example of Sums failing to satisfy inde-

pendence. The details can be found in the proof in appendix C.

We conjecture that Sums is indeed convergent for any input network.

Indeed, it is easy to see that Sums closely related to Hubs and Authori-

ties [16], where trust scores correspond to hub scores, and belief scores

correspond to authority scores. There are only two differences: the ini-

tial scores (1
2

in Sums and 1 in Hubs and Authorities), and the method of

normalisation (Sums ensures the maximum score is 1, whereas Hubs and

Authorities ensures the sum of the squares of the scores is 1). In [16] is is

proved that Hubs and Authorities always converges using techniques from

linear algebra. The difference in normalisation only amounts to using a

different norm to measure convergence (namely ‖.‖∞ in Sums instead of

‖.‖2), so it is hoped that the proof can be modified to work for Sums.

CHAPTER 4. THEORETICAL ANALYSIS 93

Figure 4.5: A counterexample to independence for Sums: this network contains the

one shown in figure 4.4 as a connected component, but A is ranked equal to B here

whereas it ranks strictly above B in figure 4.4.

4.3 Evaluation

In this section, the framework and results of the previous section are eval-

uated. In particular, the framework is evaluated with respect to the crite-

ria outlined in section 4.1.

Ability to model existing approaches

The main definitions are that of a truth discovery network and a truth

discovery operator. For the framework to be useful as tool for analysing

truth discovery, these definitions should be compatible with the existing

ideas and approaches to truth discovery, in the sense that it should be

possible to define existing algorithms within the framework.

For the input network definition, it is easily verified that the definition

given is capable of modelling the input required for many algorithms pro-

posed in the literature. Indeed, since there is little disagreement on the

CHAPTER 4. THEORETICAL ANALYSIS 94

form on input across algorithms, there are several possible choices for the

exact form of the input, and the one we make is sufficient.

For the operator definition, we must consider whether the output of an

operator, namely a pair of total preorders on the set of sources and facts,

is sufficient to model the existing approaches. As mentioned previously,

output usually consists of numeric trust scores for each source, and either

numeric belief scores for facts or a single ‘true’ fact for each object.

Whilst neither of these options involve rankings of sources and facts

directly, they both induce such rankings, allowing both forms of output

to be reduced to a common form. Indeed, it was already noted that the

numeric scores induce rankings by simply sorting sources and facts by

their score in ascending order.

When given instead an identified ‘true’ fact for each object, a ranking

is induced by having the identified true facts rank equally to each other

and strictly above non-true facts. For some algorithms, the identified true

fact may not have been claimed by any source; this is not a problem in

the framework since we permit a network to contain facts with no associ-

ated sources. One may simply take the set of facts for an object to be all

permitted values for the object.4

The definition of an operator can therefore model many existing al-

gorithms. However it neglects an important characteristic of many algo-

rithms in practise, which is that they operate iteratively, running until the

results converge in some sense. For this reason, we defined an iterative

operator.

This allowed a real-world algorithm, Sums, to be defined and analysed

in the framework. Due to time constraints, no other algorithms were

realised. However it is clear that many other algorithms can be defined in

a similar way. This is immediate for algorithms similar to Sums, such as

Average·Log, Investment and PooledInvestment [27], since they only differ

in their formulae for trust and belief score updates; their fundamental

method of operation is the same.

4We make the assumption that the domain of all possible values is well-defined as a
set.

CHAPTER 4. THEORETICAL ANALYSIS 95

Simplicity

Simplicity is naturally a subjective aim, since what appears simple to the

author may not appear so to others. Nonetheless, we argue that the frame-

work achieves its goal of expressing ideas as simply as possible.

For example, one of the key definitions is that of truth discovery net-

work. Adopting a graph-theoretic approach, the definition (including the

constraints on the graph) is easy to understand for those familiar with the

basics of graph theory, and even lends itself to pictorial representations of

truth discovery networks.

The next main definition is that of a truth discovery operator. This is

defined simply as a mapping from a space of inputs, denoted N , to a space

of outputs, denoted L(S) × L(F). The definition of an iterative operator

extends the non-iterative one in a natural way, by defining it simply as a

sequence of non-iterative operators.

Whilst the notation for the rankings for a particular operator and par-

ticular network may appear crowded at first, it expresses all the compo-

nents of the ranking without having to introduce additional notation prior

to its use each time. It is inspired by the notation introduced by Altman &

Tennenholtz [3] for ranking systems.

We also believe that the axioms are expressed as simply as possible.

Where the formalities become tedious, plain-English explanations are pro-

vided to give insight into the intuition backing them.

Flexibility

Flexibility is also not something that can be objectively verified. Neverthe-

less, we were able to express a variety of ideas in the framework without

excessive complexity, and the basic results shown have simple proofs.

Generality

By and large, the framework is neutral with respect to any specific idea

or approach for truth discovery. A possible exception is perhaps the defi-

nition of an iterative operator; this is defined as a sequence of numerical

operators, whereas in principle an iterative algorithm need not compute

numerical scores. Indeed, algorithms such as CRH [22] operate in an

iterative manner, yet do not assign belief scores to facts.

CHAPTER 4. THEORETICAL ANALYSIS 96

However, the definition could easily be generalised to a sequence of

non-numerical operators, and a separate definition given for numerical it-

erative operators. The definition as given was chosen to reduce the num-

ber of definitions required and improve the clarity of the work, since the

only algorithm actually discussed does in fact use numeric scores.

Another aim for the framework was to permit comparison between

truth discovery and related areas in the literature. The framework is gen-

eral enough for this; whilst clearly being a framework for truth discovery,

one may easily see truth discovery networks and operators from the per-

spective of social choice and ranking systems. For example, it is easily

seen that truth discovery networks form a particular class of graphs, and

a truth discovery operator is essentially a ranking system defined on this

class of graphs. The similarity is also demonstrated empirically by the

fact that many of the developed axioms are directly inspired by axioms in

these areas, but still have intuitive interpretations in terms of truth dis-

covery. However, the similarities do not extend to areas less influenced by

social choice, such as argumentation theory and belief revision.

Having evaluated the definitions comprising the framework, we turn

to the work carried out inside it, namely the development of axioms and

analysis of operators with respect to these axioms.

Axioms and Results

Several axioms covering a range of ideas were defined, each accompa-

nied by a description of the intuition backing them. It is hoped that the

axioms represent ‘desirable’ properties for operators, although of course

desirability is a subjective property.

However, little work was done beside stating the axioms. An important

aspect of the axiomatic approach is to analyse the implications of axioms,

and to consider interactions between them (e.g. impossibility and rep-

resentation results, or interesting properties entailed by a combination of

axioms). In section 4.2 only very simple results regarding the axioms were

proved, such as the independence of similar axioms and incompatibility

of source-symmetry and dictatorship. More work is required to fully study

the developed axioms.

In terms of analysis of operators with respect to the axioms, a set of

sound axioms for Sums was obtained. Whilst I expect that these axioms

are not complete, this was not considered in section 4.2.

CHAPTER 4. THEORETICAL ANALYSIS 97

A clear weakness of the analysis is that only one real-world algorithm

is considered. One of the aims for the framework was a unified model that

can represent many different algorithms – defining only a single algorithm

does not demonstrate this particularly well.

As such, there is no comparison of the theoretical properties between

operators. An interesting task would be to find axioms that distinguish

between operators, i.e. axioms that one operators satisfies but another

does not. This would provide insight into meaningful differences between

operators, which is hard to glean from the definitions in terms of an itera-

tive procedure. Knowledge of the differences in terms of simple desirable

properties could be helpful in deciding which algorithm to use in practise

for real applications of truth discovery.

It was noted above that a strength of the framework is the scope for

comparison between truth discovery and other areas. A weakness of the

analysis is that no such comparison was actually carried out, besides the

casual observations linking truth discovery to social choice and ranking

systems. To make the links more concrete, one could consider whether

social welfare functions, ranking systems, annotation aggregators etc. can

be formulated as truth discovery operators, or vice versa.

4.4 Future Work

This section discusses possible future work for the theoretical part of the

project.

4.4.1 Unfinished Business

Due to time constraints, there are some elements of the work left in a

semi-finished state. The most obvious example is regarding the conver-

gence of Sums. At the end of section 4.2.4, we conjecture that the trust

and belief scores of Sums convergence in any input network. As men-

tioned there, a proof might be obtained by modifying the proof of the

convergence of Hubs and Authorities, to which Sums is closely related.

The lack of a proof of the convergence in all cases (or otherwise, as

the case may be) leaves the analysis of Sums in the unsatisfactory state

where it is unclear if Sums properly defines a truth discovery operator in

CHAPTER 4. THEORETICAL ANALYSIS 98

the sense of definition 6. This also means that theorems 1 and 2 must

include the hypothesis that Sums is actually convergent.

Another unfinished element of the Sums analysis is that we make no

determination (or even conjecture) on whether is satisfies the monotonic-

ity and coherence axioms. Monotonicity and coherence are also not ad-

dressed in lemma 1.

4.4.2 Future Directions

In terms of future directions for the framework, two aspects to consider

are problems that could be fixed in future work, and new ideas that could

be explored. New ideas can be further split into ideas for the framework

itself (i.e. new or modified definitions and concepts) and ideas for new

results that one could attempt to prove.

A first problem is in the role of objects. Whilst objects are an impor-

tant part of truth discovery in many approaches (particularly those which

output an identified true fact for each object), they do not play much of

a role in the framework of section 4.2, beside the constraint that sources

make at most one claim per object in definition 6.

Future work could address this by developing axioms that consider

objects directly. For example, one could consider what happens if two ob-

jects are ‘merged’, i.e. facts from each combined under object in a new

network. This would presumably have little or no effect in algorithms such

as Sums and Average·Log [27] which do not use objects in their calcula-

tions, but would affect algorithms such as Investment [27] and TruthFinder

[35] where the role of objects is important.5

In many of the definitions and axioms, there is redundancy where we

state a property for source rankings, and then an almost identical one

for fact rankings. Similarly, the proofs often prove a result for source

rankings, and the result for facts follows by an identical argument. This

may lead one to wonder whether truth discovery as defined here is just

an instance of ranking k groups of nodes in a k + 1-partite graph for

the special case k = 2 (plus one to account for the objects). A similar

idea is considered in the PhD thesis of Pasternack ([26], section 4.5.3) to

represent ‘groups’ of sources.

5 Objects are termed mutual exclusion sets in [27].

CHAPTER 4. THEORETICAL ANALYSIS 99

Taking this more general view would highlight the symmetry between

the groups (sources and facts in our case), where symmetry exists, and

remove redundancy from definitions and proofs. However, this new prob-

lem may no longer represent truth discovery in the same way, and would

need careful interpretation. In particular, it is not clear how objects would

fit into this approach. Nevertheless, it could be something to consider in

future work.

There are numerous possible extensions to the framework that could

be made. One example is the definition of an iterative truth discovery

operator (definition 13). Most real-world algorithms operate not only

iteratively but recursively, updating trust and belief scores based on the

scores in the previous iteration. However, the recursion aspect is not cap-

tured in any definition in this work. Making such a definition could lead

to a simpler representation of these algorithms in terms of the update

rules. This would provide a more general set up for studying recursively

iterative algorithms; for example one could consider the effects of making

changes to the update rules. It could also provide a method for comparing

different algorithms, by comparing their update rules.

More potential extensions to the framework come from the numerous

extensions to the basic truth discovery model, some of which were listed

in section 2.2. This would allow for consideration of more specific sub-

problems in truth discovery and lead to a richer theory.

Future work on the axioms themselves could involve generalising ax-

ioms where possible. For example, one may note that unanimity and

groundedness (axioms 4 and 5) are special cases of the following axiom.

Axiom 10. For any truth discovery network N and facts f1, f2 ∈ F , src(N, f1) ⊆
src(N, f2) implies f1 �

T
N f2.

That is, facts with ‘more’ sources rank higher than those with less.6

Unanimity is the case where src(N, f2) = S, and groundedness is the

case where src(N, f1) = ∅.

Future work could investigate this axiom in detail. For example, it

would be interesting to find operators that satisfy unanimity and/or ground-

edness, but not this more general axiom.

Also relating to axioms, it was mentioned in the text preceding the

monotonicity axiom (axiom 9) that most of the axioms deal with the prop-

6 ‘More’ here is in the sense of set inclusion, not the number of sources

CHAPTER 4. THEORETICAL ANALYSIS 100

erties of rankings in a static network. Monotonicity, however, deals with

modifications to a network and the resulting effect on rankings. These

kind of axioms, where input is changed in some way, are used to great

effect in social choice and related areas; a notable example is the axioma-

tisation of PageRank [25] in [4]. Developing more axioms of this type

may therefore be useful in seeking sound and complete axioms for truth

discovery algorithms.

Finally, the approach taken throughout the theoretical work was largely

to apply ideas from social choice to truth discovery. Future work could ex-

plicitly incorporate ideas from other related areas such as argumentation

theory and belief revision.

In terms of new results, a major aspect of future work will be to formu-

late more results involving the axioms. As alluded to in the evaluation in

section 4.3, this could include implications of the axioms (particularly the

implications of an operator satisfying multiple axioms simultaneously),

impossibility results, and finding sound and complete axioms for a par-

ticular algorithm or class of algorithms. More truth discovery operators

could also be defined to provide examples of axioms failing to hold.

Chapter 5

Conclusions

Truth discovery has been explored in this project from a practical per-

spective in chapter 3, and a theoretical perspective in chapter 4. The two

halves have been largely disjoint, although it is noted that the software

implementation was useful in constructing examples for the theoretical

work and verifying results empirically.

The practical aspect involved implementing truth discovery algorithms

in Python and making them accessible through command-line and web-

based user interfaces. Methods for evaluating and comparing algorithms

were provided, and some basic algorithm analysis was demonstrated in

section 3.3. Additionally, visual representation of truth discovery datasets

and results were produced, which were useful for demonstration of con-

cepts throughout the theoretical chapter.

For the theoretical component, we set out a formal framework in which

to study truth discovery; the key definitions being that of a truth discovery

network and truth discovery operator. Graph-theoretic and ordinal repre-

sentations were used, highlighting the similarities with related areas in

the literature such as ranking systems and social choice.

Following the approach commonly taken in social choice, axioms were

defined to encode desirable properties of operators. The axioms presented

are largely inspired by existing axioms from other areas in the literature,

adapted to the truth discovery framework. Some basic results regarding

101

CHAPTER 5. CONCLUSIONS 102

these axioms were shown, including a proof that Sums satisfies some but

not all of our axioms when viewed as an operator within the framework.

Chapter 6

Reflection on Learning

To conclude this report, we reflect on the skills developed and what was

learned throughout the project. There were several aspects to the project,

each requiring a unique set of skills. In particular, there were elements of

research, software development, theoretical work, and project management.

Research was required throughout the project, and especially in its

early stages. Understanding the cutting-edge approaches and ideas in

the truth discovery world required careful reading of numerous published

papers, something which I had little experience with before this project.

With time I was able to efficiently parse the relevant information from

these articles, which often have broad scope and contain sections irrele-

vant to my work. Extracting the important details from large bodies of

text in this way is an important skill that will undoubtedly be useful in

future work.

Beyond just extracting these details, I had to constantly relate them

back to my own project to consider how they were relevant and if they

would influence my approach. This was particularly challenging when

reading papers relating to other fields, such as social choice and ranking

systems. As a result of this I am now more confident in combining ideas

from existing papers and keeping a mental map of information across the

literature.

Reading published papers also improved my writing skills, as I became

103

CHAPTER 6. REFLECTION ON LEARNING 104

more accustomed to the type of language and phrasing appropriate for

technical writing.

In terms of software development, the project called for a fairly large-

scale system to be designed, developed and tested. This contrasted with

previous programming work I had done, which for the most part only

involved writing code to satisfy fixed requirements. Aspects of the de-

sign process, such as considering relevant use cases and user interfaces,

were not specific to truth discovery; this allowed me to develop general

software design skills that will be useful in future projects.

Writing documentation is another general skill that the project pro-

vided ample opportunity to practise. In addition to documenting the code

throughout development, I wrote a user guide explaining the concepts of

the system and how it can be used. This required looking critically at

the software as a whole and understanding how it can be broken down

logically in a clear way.

The theoretical work was largely separate from the programming, and

required very different skills and techniques. Transferable skills developed

here include formulating mathematically rigorous definitions, theorems

and proofs, mathematical writing, and laying out a mathematical paper.

I also had to think carefully about the level of generality and the type of

results desired; this involved many iterations before the final framework

was decided on. I am better equipped to approach future theoretical work

having gone through the process in this project.

Finally, this was a long-running individual project which required time

management and organisational skills. In particular, I learned through

trial and error what sort of time schedule works well for me personally;

this will be carried forward to future projects in order to use my time as

efficiently as possible. I also learned suitable methods for organising my

workload, finding Issues on GitHub particularly useful, for example.1

1 https://help.github.com/en/articles/about-issues

https://help.github.com/en/articles/about-issues

References

[1] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. “On

the Logic of Theory Change: Partial Meet Contraction and Revision

Functions”. In: The Journal of Symbolic Logic 50.2 (1985), pp. 510–

530. ISSN: 00224812. URL: http : / / www . jstor . org / stable /

2274239.

[2] Alon Altman and Moshe Tennenholtz. “An Axiomatic Approach to

Personalized Ranking Systems”. In: J. ACM 57.4 (May 2010), 26:1–

26:35. ISSN: 0004-5411. DOI: 10.1145/1734213.1734220. URL:

http://doi.acm.org/10.1145/1734213.1734220.

[3] Alon Altman and Moshe Tennenholtz. “Axiomatic Foundations for

Ranking Systems”. In: J. Artif. Int. Res. 31.1 (Mar. 2008), pp. 473–

495. ISSN: 1076-9757. URL: http://dl.acm.org/citation.cfm?

id=1622655.1622669.

[4] Alon Altman and Moshe Tennenholtz. “Ranking Systems: The PageR-

ank Axioms”. In: Proceedings of the 6th ACM Conference on Elec-

tronic Commerce. EC ’05. Vancouver, BC, Canada: ACM, 2005, pp. 1–

8. ISBN: 1-59593-049-3. DOI: 10 . 1145 / 1064009 . 1064010. URL:

http://doi.acm.org/10.1145/1064009.1064010.

[5] Reid Andersen et al. “Trust-based Recommendation Systems: An

Axiomatic Approach”. In: Proceedings of the 17th International Con-

ference on World Wide Web. WWW ’08. Beijing, China: ACM, 2008,

pp. 199–208. ISBN: 978-1-60558-085-2. DOI: 10.1145/1367497.

1367525. URL: http://doi.acm.org/10.1145/1367497.1367525.

105

http://www.jstor.org/stable/2274239
http://www.jstor.org/stable/2274239
https://doi.org/10.1145/1734213.1734220
http://doi.acm.org/10.1145/1734213.1734220
http://dl.acm.org/citation.cfm?id=1622655.1622669
http://dl.acm.org/citation.cfm?id=1622655.1622669
https://doi.org/10.1145/1064009.1064010
http://doi.acm.org/10.1145/1064009.1064010
https://doi.org/10.1145/1367497.1367525
https://doi.org/10.1145/1367497.1367525
http://doi.acm.org/10.1145/1367497.1367525

REFERENCES 106

[6] Kenneth J. Arrow. “Social Choice and Individual Values”. In: Ethics

62.3 (1952), pp. 220–222.

[7] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. “Ab-

stract Argumentation Frameworks and Their Semantics”. In: Hand-

book of Formal Argumentation. Ed. by Pietro Baroni et al. College

Publications, 2018. Chap. 4.

[8] Jens Bleiholder and Felix Naumann. “Data Fusion”. In: ACM Com-

put. Surv. 41.1 (Jan. 2009), 1:1–1:41. ISSN: 0360-0300. DOI: 10.

1145/1456650.1456651. URL: http://doi.acm.org/10.1145/

1456650.1456651.

[9] Richard Booth and Aaron Hunter. “Trust as a Precursor to Belief

Revision”. In: J. Artif. Intell. Res. 61 (2018), pp. 699–722.

[10] Felix Brandt et al. “Introduction to Computational Social Choice”.

In: Handbook of Computational Social Choice. Ed. by Felix Brandt

et al. 1st. New York, NY, USA: Cambridge University Press, 2016.

Chap. 1.

[11] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. “Truth

Discovery and Copying Detection in a Dynamic World”. In: Proc.

VLDB Endow. 2.1 (Aug. 2009), pp. 562–573. ISSN: 2150-8097. DOI:

10.14778/1687627.1687691. URL: https://doi.org/10.14778/

1687627.1687691.

[12] Y. Du et al. “Bayesian Co-Clustering Truth Discovery for Mobile

Crowd Sensing Systems”. In: IEEE Transactions on Industrial Infor-

matics (2019), pp. 1–1. ISSN: 1551-3203. DOI: 10.1109/TII.2019.

2896287.

[13] Ulle Endriss. “Judgment Aggregation”. In: Handbook of Computa-

tional Social Choice. Ed. by Felix Brandt et al. 1st. New York, NY,

USA: Cambridge University Press, 2016. Chap. 17.

[14] Alban Galland et al. “Corroborating Information from Disagreeing

Views”. In: Proceedings of the Third ACM International Conference

on Web Search and Data Mining. WSDM ’10. New York, New York,

USA: ACM, 2010, pp. 131–140. ISBN: 978-1-60558-889-6. DOI: 10.

1145/1718487.1718504. URL: http://doi.acm.org/10.1145/

1718487.1718504.

https://doi.org/10.1145/1456650.1456651
https://doi.org/10.1145/1456650.1456651
http://doi.acm.org/10.1145/1456650.1456651
http://doi.acm.org/10.1145/1456650.1456651
https://doi.org/10.14778/1687627.1687691
https://doi.org/10.14778/1687627.1687691
https://doi.org/10.14778/1687627.1687691
https://doi.org/10.1109/TII.2019.2896287
https://doi.org/10.1109/TII.2019.2896287
https://doi.org/10.1145/1718487.1718504
https://doi.org/10.1145/1718487.1718504
http://doi.acm.org/10.1145/1718487.1718504
http://doi.acm.org/10.1145/1718487.1718504

REFERENCES 107

[15] Manish Gupta and Jiawei Han. “Heterogeneous Network-based Trust

Analysis: A Survey”. In: SIGKDD Explor. Newsl. 13.1 (Aug. 2011),

pp. 54–71. ISSN: 1931-0145. DOI: 10.1145/2031331.2031341. URL:

http://doi.acm.org/10.1145/2031331.2031341.

[16] Jon M. Kleinberg. “Authoritative Sources in a Hyperlinked Environ-

ment”. In: J. ACM 46.5 (Sept. 1999), pp. 604–632. ISSN: 0004-

5411. DOI: 10.1145/324133.324140. URL: http://doi.acm.org/

10.1145/324133.324140.

[17] Justin Kruger et al. “Axiomatic Analysis of Aggregation Methods

for Collective Annotation”. In: Proceedings of the 2014 International

Conference on Autonomous Agents and Multi-agent Systems. AAMAS

’14. Paris, France: International Foundation for Autonomous Agents

and Multiagent Systems, 2014, pp. 1185–1192. ISBN: 978-1-4503-

2738-1. URL: http://dl.acm.org/citation.cfm?id=2617388.

2617437.

[18] Dalia Attia Waguih and Laure Berti-Equille. “Truth Discovery Al-

gorithms: An Experimental Evaluation”. In: CoRR abs/1409.6428

(2014). URL: http://arxiv.org/abs/1409.6428.

[19] Omer Lev and Moshe Tennenholtz. “Group Recommendations: Ax-

ioms, Impossibilities, and Random Walks”. In: TARK. 2017.

[20] Xian Li et al. “Truth finding on the deep web: is the problem solved?”

In: Proceedings of the 39th international conference on Very Large

Data Bases. PVLDB’13. Trento, Italy: VLDB Endowment, 2013, pp. 97–

108. URL: http://dl .acm.org/citation.cfm?id =2448936.

2448943.

[21] Yaliang Li et al. “A Survey on Truth Discovery”. In: SIGKDD Explor.

Newsl. 17.2 (Feb. 2016), pp. 1–16. ISSN: 1931-0145. DOI: 10.1145/

2897350.2897352. URL: http://doi.acm.org/10.1145/2897350.

2897352.

[22] Yaliang Li et al. “Conflicts to Harmony: A Framework for Resolv-

ing Conflicts in Heterogeneous Data by Truth Discovery”. In: IEEE

Transactions on Knowledge and Data Engineering 28.8 (Aug. 2016),

pp. 1986–1999. ISSN: 1041-4347. DOI: 10.1109/TKDE.2016.2559481.

[23] Stephen Marsh. “Formalising Trust as a Computational Concept”.

PhD thesis. University of Stirling, 1994.

https://doi.org/10.1145/2031331.2031341
http://doi.acm.org/10.1145/2031331.2031341
https://doi.org/10.1145/324133.324140
http://doi.acm.org/10.1145/324133.324140
http://doi.acm.org/10.1145/324133.324140
http://dl.acm.org/citation.cfm?id=2617388.2617437
http://dl.acm.org/citation.cfm?id=2617388.2617437
http://arxiv.org/abs/1409.6428
http://dl.acm.org/citation.cfm?id=2448936.2448943
http://dl.acm.org/citation.cfm?id=2448936.2448943
https://doi.org/10.1145/2897350.2897352
https://doi.org/10.1145/2897350.2897352
http://doi.acm.org/10.1145/2897350.2897352
http://doi.acm.org/10.1145/2897350.2897352
https://doi.org/10.1109/TKDE.2016.2559481

REFERENCES 108

[24] Mohammad Momani and Subhash Challa. “Survey of trust models

in different network domains”. In: CoRR abs/1010.0168 (2010).

[25] Lawrence Page et al. The PageRank Citation Ranking: Bringing Order

to the Web. Technical Report 1999-66. Previous number = SIDL-

WP-1999-0120. Stanford InfoLab, Nov. 1999. URL: http://ilpubs.

stanford.edu:8090/422/.

[26] Jeff Pasternack. “Knowing Who to Trust and What to Believe in

the Presence of Conflicting Information”. PhD thesis. University of

Illinois at Urbana-Champaign, 2011. URL: http://hdl.handle.

net/2142/29516.

[27] Jeff Pasternack and Dan Roth. “Knowing What to Believe (when

You Already Know Something)”. In: Proceedings of the 23rd In-

ternational Conference on Computational Linguistics. COLING ’10.

Beijing, China: Association for Computational Linguistics, 2010,

pp. 877–885. URL: http : / / dl . acm . org / citation . cfm ? id =

1873781.1873880.

[28] Gärdenfors Peter. Belief Revision. Cambridge Univserity Press, 2003.

[29] Yuqing Tang et al. “Using argumentation to reason about trust and

belief”. In: Journal of Logic and Computation 22.5 (Oct. 2012),

pp. 979–1018. ISSN: 0955-792X. DOI: 10.1093/logcom/exr038.

[30] Unified Modeling Language (Version 2.5). Mar. 2015. URL: http:

//www.omg.org/spec/UML/2.5.

[31] Soroush Vosoughi, Deb Roy, and Sinan Aral. “The spread of true

and false news online”. In: Science 359.6380 (2018), pp. 1146–

1151. ISSN: 0036-8075. DOI: 10.1126/science.aap9559. eprint:

https://science.sciencemag.org/content/359/6380/1146.

full.pdf. URL: https://science.sciencemag.org/content/359/

6380/1146.

[32] Houping Xiao. “Multi-sourced Information Trustworthiness Anal-

ysis: Applications and Theory”. PhD thesis. University at Buffalo,

State University of New York, 2018.

http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://hdl.handle.net/2142/29516
http://hdl.handle.net/2142/29516
http://dl.acm.org/citation.cfm?id=1873781.1873880
http://dl.acm.org/citation.cfm?id=1873781.1873880
https://doi.org/10.1093/logcom/exr038
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
https://doi.org/10.1126/science.aap9559
https://science.sciencemag.org/content/359/6380/1146.full.pdf
https://science.sciencemag.org/content/359/6380/1146.full.pdf
https://science.sciencemag.org/content/359/6380/1146
https://science.sciencemag.org/content/359/6380/1146

REFERENCES 109

[33] Houping Xiao et al. “A Truth Discovery Approach with Theoretical

Guarantee”. In: Proceedings of the 22Nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. KDD ’16. San

Francisco, California, USA: ACM, 2016, pp. 1925–1934. ISBN: 978-

1-4503-4232-2. DOI: 10.1145/2939672.2939816. URL: http://

doi.acm.org/10.1145/2939672.2939816.

[34] Yi Yang, Quan Bai, and Qing Liu. “A probabilistic model for truth

discovery with object correlations”. In: Knowledge-Based Systems

165 (2019), pp. 360–373. ISSN: 0950-7051. DOI: https://doi.

org / 10 . 1016 / j . knosys . 2018 . 12 . 004. URL: http : / / www .

sciencedirect.com/science/article/pii/S0950705118305914.

[35] Xiaoxin Yin, Jiawei Han, and Philip S. Yu. “Truth Discovery with

Multiple Conflicting Information Providers on the Web”. In: IEEE

Transactions on Knowledge and Data Engineering 20.6 (June 2008),

pp. 796–808. ISSN: 1041-4347. DOI: 10.1109/TKDE.2007.190745.

[36] Xiaoxin Yin and Wenzhao Tan. “Semi-supervised Truth Discovery”.

In: Proceedings of the 20th International Conference on World Wide

Web. WWW ’11. Hyderabad, India: ACM, 2011, pp. 217–226. ISBN:

978-1-4503-0632-4. DOI: 10.1145/1963405.1963439. URL: http:

//doi.acm.org/10.1145/1963405.1963439.

[37] Daniel Yue Zhang et al. “On robust truth discovery in sparse social

media sensing”. In: 2016 IEEE International Conference on Big Data

(Big Data). Dec. 2016, pp. 1076–1081. DOI: 10.1109/BigData.

2016.7840710.

[38] Liyan Zhang et al. “Latent Dirichlet Truth Discovery: Separating

Trustworthy and Untrustworthy Components in Data Sources”. In:

IEEE Access 6 (2018), pp. 1741–1752. ISSN: 2169-3536. DOI: 10.

1109/ACCESS.2017.2780182.

[39] Zhou Zhao, James Cheng, and Wilfred Ng. “Truth Discovery in Data

Streams: A Single-Pass Probabilistic Approach”. In: Proceedings of

the 23rd ACM International Conference on Conference on Informa-

tion and Knowledge Management. CIKM ’14. Shanghai, China: ACM,

2014, pp. 1589–1598. ISBN: 978-1-4503-2598-1. DOI: 10.1145/

2661829.2661892. URL: http://doi.acm.org/10.1145/2661829.

2661892.

https://doi.org/10.1145/2939672.2939816
http://doi.acm.org/10.1145/2939672.2939816
http://doi.acm.org/10.1145/2939672.2939816
https://doi.org/https://doi.org/10.1016/j.knosys.2018.12.004
https://doi.org/https://doi.org/10.1016/j.knosys.2018.12.004
http://www.sciencedirect.com/science/article/pii/S0950705118305914
http://www.sciencedirect.com/science/article/pii/S0950705118305914
https://doi.org/10.1109/TKDE.2007.190745
https://doi.org/10.1145/1963405.1963439
http://doi.acm.org/10.1145/1963405.1963439
http://doi.acm.org/10.1145/1963405.1963439
https://doi.org/10.1109/BigData.2016.7840710
https://doi.org/10.1109/BigData.2016.7840710
https://doi.org/10.1109/ACCESS.2017.2780182
https://doi.org/10.1109/ACCESS.2017.2780182
https://doi.org/10.1145/2661829.2661892
https://doi.org/10.1145/2661829.2661892
http://doi.acm.org/10.1145/2661829.2661892
http://doi.acm.org/10.1145/2661829.2661892

REFERENCES 110

[40] Shi Zhi et al. “Modeling Truth Existence in Truth Discovery”. In:

Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. KDD ’15. Sydney, NSW, Aus-

tralia: ACM, 2015, pp. 1543–1552. ISBN: 978-1-4503-3664-2. DOI:

10.1145/2783258.2783339. URL: http://doi.acm.org/10.1145/

2783258.2783339.

[41] William S. Zwicker. “Introduction to the Theory of Voting”. In:

Handbook of Computational Social Choice. Ed. by Felix Brandt et

al. 1st. New York, NY, USA: Cambridge University Press, 2016.

Chap. 2.

https://doi.org/10.1145/2783258.2783339
http://doi.acm.org/10.1145/2783258.2783339
http://doi.acm.org/10.1145/2783258.2783339

Appendix A

Web-interface Screenshots

111

APPENDIX A. WEB-INTERFACE SCREENSHOTS 112

Figure A.1: Basic view of the input form in the web interface.

APPENDIX A. WEB-INTERFACE SCREENSHOTS 113

Figure A.2: CSV dataset entry in the web interface.

APPENDIX A. WEB-INTERFACE SCREENSHOTS 114

Figure A.3: Advanced options for algorithm parameters in the web interface.

APPENDIX A. WEB-INTERFACE SCREENSHOTS 115

Figure A.4: Example results of a single algorithm run via the web interface.

APPENDIX A. WEB-INTERFACE SCREENSHOTS 116

Figure A.5: Example results of several algorithms run simultaneously via the web

interface.

APPENDIX A. WEB-INTERFACE SCREENSHOTS 117

Figure A.6: Graph representation of results of a truth discovery algorithm, presented

in the web interface.

APPENDIX A. WEB-INTERFACE SCREENSHOTS 118

Figure A.7: Frame from an animation of the results of an algorithm as it iterates,

presented in the web interface.

Appendix B

Test Results

======================================= test session starts

=======================================

platform linux -- Python 3.6.7, pytest-4.2.0, py-1.7.0, pluggy-0.8.1 -- /home/joe/

documents/uni/project/code/venv/bin/python3

cachedir: .pytest_cache

rootdir: /home/joe/documents/uni/project/code, inifile:

collecting ... collecting 31 items

collected 150 items

truthdiscovery/test/test_algorithms.py::TestBase::test_empty_dataset PASSED [0%]

truthdiscovery/test/test_algorithms.py::TestBase::test_get_parameter_names PASSED [1%]

truthdiscovery/test/test_algorithms.py::TestVoting::test_basic PASSED [2%]

truthdiscovery/test/test_algorithms.py::TestBaseIterative::test_run_fail PASSED [2%]

truthdiscovery/test/test_algorithms.py::TestBaseIterative::test_fixed_priors PASSED [3%]

truthdiscovery/test/test_algorithms.py::TestBaseIterative::test_voted_priors PASSED [4%]

truthdiscovery/test/test_algorithms.py::TestBaseIterative::test_uniform_priors PASSED [

4%]

truthdiscovery/test/test_algorithms.py::TestBaseIterative::test_invalid_priors PASSED [

5%]

truthdiscovery/test/test_algorithms.py::TestSums::test_basic PASSED [6%]

truthdiscovery/test/test_algorithms.py::TestAverageLog::test_basic PASSED [6%]

truthdiscovery/test/test_algorithms.py::TestInvestment::test_basic PASSED [7%]

truthdiscovery/test/test_algorithms.py::TestInvestment::test_converge_to_zero PASSED [8%]

truthdiscovery/test/test_algorithms.py::TestPooledInvestment::test_basic PASSED [8%]

truthdiscovery/test/test_algorithms.py::TestTruthFinder::test_basic PASSED [9%]

truthdiscovery/test/test_algorithms.py::TestTruthFinder::test_no_implications PASSED [

10%]

truthdiscovery/test/test_algorithms.py::TestTruthFinder::test_trust_invalid PASSED [10%]

truthdiscovery/test/test_algorithms.py::TestOnLargeData::test_sums PASSED [11%]

truthdiscovery/test/test_algorithms.py::TestOnLargeData::test_average_log PASSED [12%]

truthdiscovery/test/test_algorithms.py::TestOnLargeData::test_investment PASSED [12%]

119

APPENDIX B. TEST RESULTS 120

truthdiscovery/test/test_algorithms.py::TestOnLargeData::test_pooled_investment PASSED [

13%]

truthdiscovery/test/test_algorithms.py::TestOnLargeData::test_truthfinder PASSED [14%]

truthdiscovery/test/test_algorithms.py::TestOnLargeData::test_voting PASSED [14%]

truthdiscovery/test/test_algorithms.py::TestIteratorsForAlgorithms::

test_default_iterator_types PASSED [15%]

truthdiscovery/test/test_algorithms.py::TestLoggingAlgorithm::test_final_result PASSED [

16%]

truthdiscovery/test/test_algorithms.py::TestLoggingAlgorithm::test_no_logging PASSED [

16%]

truthdiscovery/test/test_algorithms.py::TestLoggingAlgorithm::test_partial_results PASSED

[17%]

truthdiscovery/test/test_algorithms.py::TestLoggingAlgorithm::test_sums_detailed PASSED [

18%]

truthdiscovery/test/test_clients.py::TestBaseClient::test_get_iterator PASSED [18%]

truthdiscovery/test/test_clients.py::TestBaseClient::test_get_algorithm_parameter PASSED [

19%]

truthdiscovery/test/test_clients.py::TestBaseClient::test_get_output_obj PASSED [20%]

truthdiscovery/test/test_clients.py::TestBaseClient::test_get_algorithm_params PASSED [

20%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_no_commands PASSED [21%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_basic PASSED [22%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_results PASSED [22%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_multiple_parameters

PASSED [23%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_multiple_algorithms

PASSED [24%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_get_algorithm_instance

PASSED [24%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_set_prior_belief PASSED [

25%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_set_iterator PASSED [

26%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::

test_invalid_algorithm_parameter PASSED [26%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_invalid_algorithm PASSED

[27%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_filter_sources_variables

PASSED [28%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_default_output PASSED [

28%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_custom_output PASSED [

29%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_show_most_believed_values

PASSED [30%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_belief_stats PASSED [

30%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_synthetic_generation

PASSED [31%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::

test_synthetic_generation_claim_prob_1 PASSED [32%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::

test_synthetic_generation_source_trust_1 PASSED [32%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::

test_synthetic_generation_invalid_params PASSED [33%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::

test_supervised_dataset_and_accuracy PASSED [34%]

APPENDIX B. TEST RESULTS 121

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_accuracy_not_supervised

PASSED [34%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_accuracy_undefined PASSED

[35%]

truthdiscovery/test/test_clients.py::TestCommandLineClient::test_graph_generation PASSED [

36%]

truthdiscovery/test/test_clients.py::TestWebClient::test_routing PASSED [36%]

truthdiscovery/test/test_clients.py::TestWebClient::test_home PASSED [37%]

truthdiscovery/test/test_clients.py::TestWebClient::test_run_fail PASSED [38%]

truthdiscovery/test/test_clients.py::TestWebClient::test_run_success PASSED [38%]

truthdiscovery/test/test_clients.py::TestWebClient::test_run_multiple_algorithms PASSED [

39%]

truthdiscovery/test/test_clients.py::TestWebClient::test_results_diff PASSED [40%]

truthdiscovery/test/test_clients.py::TestWebClient::

test_results_diff_invalid_previous_results PASSED [40%]

truthdiscovery/test/test_clients.py::TestWebClient::test_get_json_graph PASSED [41%]

truthdiscovery/test/test_clients.py::TestWebClient::test_get_json_animated_gif PASSED [

42%]

truthdiscovery/test/test_clients.py::TestWebClient::test_voting_imagery PASSED [42%]

truthdiscovery/test/test_clients.py::TestWebClient::test_empty_dataset PASSED [43%]

truthdiscovery/test/test_clients.py::TestWebClient::test_non_convergence PASSED [44%]

truthdiscovery/test/test_codestyle.py::TestCodeStyle::test_pep8 PASSED [44%]

truthdiscovery/test/test_drawing.py::TestRendering::test_entity_positioning PASSED [45%]

truthdiscovery/test/test_drawing.py::TestRendering::test_node_ordering PASSED [46%]

truthdiscovery/test/test_drawing.py::TestRendering::test_single_source PASSED [46%]

truthdiscovery/test/test_drawing.py::TestRendering::test_invalid_node_size PASSED [47%]

truthdiscovery/test/test_drawing.py::TestRendering::test_no_horizontal_overlapping PASSED

[48%]

truthdiscovery/test/test_drawing.py::TestRendering::test_png_is_default PASSED [48%]

truthdiscovery/test/test_drawing.py::TestRendering::test_long_labels PASSED [49%]

truthdiscovery/test/test_drawing.py::TestRendering::test_matrix_renderer PASSED [50%]

truthdiscovery/test/test_drawing.py::TestRendering::test_image_size PASSED [50%]

truthdiscovery/test/test_drawing.py::TestRendering::test_progress_bar PASSED [51%]

truthdiscovery/test/test_drawing.py::TestBackends::test_base_backend PASSED [52%]

truthdiscovery/test/test_drawing.py::TestBackends::test_valid_png PASSED [52%]

truthdiscovery/test/test_drawing.py::TestBackends::test_results_based_valid_png PASSED [

53%]

truthdiscovery/test/test_drawing.py::TestBackends::test_json_backend PASSED [54%]

truthdiscovery/test/test_drawing.py::TestBackends::test_json_backend_entity_serialisation

PASSED [54%]

truthdiscovery/test/test_drawing.py::TestColourSchemes::test_get_gradient_colour PASSED [

55%]

truthdiscovery/test/test_drawing.py::TestColourSchemes::test_plain_colour_scheme PASSED [

56%]

truthdiscovery/test/test_drawing.py::TestColourSchemes::test_results_based_colours PASSED

[56%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_base PASSED [57%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_gif_animation PASSED [58%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_json_animation PASSED [58%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_renderer PASSED [59%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_fps PASSED [60%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_invalid_backend PASSED [60%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_default_backend PASSED [61%]

truthdiscovery/test/test_drawing.py::TestAnimations::test_progress_bar PASSED [62%]

truthdiscovery/test/test_input.py::TestDataset::test_num_sources_variables_claims PASSED [

62%]

truthdiscovery/test/test_input.py::TestDataset::test_claims_matrix PASSED [63%]

APPENDIX B. TEST RESULTS 122

truthdiscovery/test/test_input.py::TestDataset::test_mut_ex_matrix PASSED [64%]

truthdiscovery/test/test_input.py::TestDataset::

test_source_multiple_claims_for_a_single_variable PASSED [64%]

truthdiscovery/test/test_input.py::TestIDMapping::test_insert PASSED [65%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_create PASSED [66%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_num_sources_variables_claims

PASSED [66%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_dimension PASSED [67%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_from_csv PASSED [68%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_invalid_csv_shape PASSED [68%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_from_csv_empty_rows PASSED [

69%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_from_csv_single_row_or_column

PASSED [70%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_claims_matrix PASSED [70%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_mutual_exclusion_matrix PASSED

[71%]

truthdiscovery/test/test_input.py::TestMatrixDataset::test_export_to_csv PASSED [72%]

truthdiscovery/test/test_input.py::TestSupervisedData::test_from_csv PASSED [72%]

truthdiscovery/test/test_input.py::TestSupervisedData::test_accuracy PASSED [73%]

truthdiscovery/test/test_input.py::TestSupervisedData::test_unknown_variable PASSED [74%]

truthdiscovery/test/test_input.py::TestSupervisedData::test_no_true_values_known PASSED [

74%]

truthdiscovery/test/test_input.py::TestSupervisedData::test_not_enough_claimed_values

PASSED [75%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_trust_as_list PASSED [76%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_invalid_trust_vector_shape

PASSED [76%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_trust_range_error PASSED [77%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_valid_trusts PASSED [78%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_claim_probability PASSED [78%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_invalid_claim_probability

PASSED [79%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_domain_size PASSED [80%]

truthdiscovery/test/test_input.py::TestSyntheticData::test_export_to_csv PASSED [80%]

truthdiscovery/test/test_input.py::TestImplications::test_implications PASSED [81%]

truthdiscovery/test/test_input.py::TestImplications::test_invalid_implication_values

PASSED [82%]

truthdiscovery/test/test_input.py::TestFileDataset::test_base PASSED [82%]

truthdiscovery/test/test_input.py::TestFileDataset::test_basic PASSED [83%]

truthdiscovery/test/test_input.py::TestFileDataset::test_implications PASSED [84%]

truthdiscovery/test/test_input.py::TestFileSupervisedData::test_base PASSED [84%]

truthdiscovery/test/test_input.py::TestFileSupervisedData::test_basic PASSED [85%]

truthdiscovery/test/test_iterators.py::TestBaseIterator::test_run_base_fail PASSED [86%]

truthdiscovery/test/test_iterators.py::TestBaseIterator::test_it_count PASSED [86%]

truthdiscovery/test/test_iterators.py::TestBaseIterator::test_reset PASSED [87%]

truthdiscovery/test/test_iterators.py::TestFixedIterator::test_invalid_limit PASSED [88%]

truthdiscovery/test/test_iterators.py::TestFixedIterator::test_finish_condition PASSED [

88%]

truthdiscovery/test/test_iterators.py::TestConvergenceIterator::test_basic PASSED [89%]

truthdiscovery/test/test_iterators.py::TestConvergenceIterator::

test_invalid_distance_measures PASSED [90%]

truthdiscovery/test/test_iterators.py::TestConvergenceIterator::test_did_not_converge

PASSED [90%]

truthdiscovery/test/test_iterators.py::TestDistanceMeasures::test_l1 PASSED [91%]

truthdiscovery/test/test_iterators.py::TestDistanceMeasures::test_l2 PASSED [92%]

truthdiscovery/test/test_iterators.py::TestDistanceMeasures::test_l_inf PASSED [92%]

APPENDIX B. TEST RESULTS 123

truthdiscovery/test/test_iterators.py::TestDistanceMeasures::test_cosine PASSED [93%]

truthdiscovery/test/test_result.py::TestResult::test_most_believed_values PASSED [94%]

truthdiscovery/test/test_result.py::TestResult::test_num_iterations PASSED [94%]

truthdiscovery/test/test_result.py::TestResult::test_time_taken PASSED [95%]

truthdiscovery/test/test_result.py::TestResult::test_filter_result PASSED [96%]

truthdiscovery/test/test_result.py::TestResult::test_stats PASSED [96%]

truthdiscovery/test/test_result.py::TestResultDiff::test_no_common_sources_or_vars PASSED

[97%]

truthdiscovery/test/test_result.py::TestResultDiff::test_common_sources PASSED [98%]

truthdiscovery/test/test_result.py::TestResultDiff::test_common_vars_but_no_common_values

PASSED [98%]

truthdiscovery/test/test_result.py::TestResultDiff::test_common_var_values PASSED [99%]

truthdiscovery/test/test_result.py::TestResultDiff::test_no_iteration_info PASSED [100%]

=================================== 150 passed in 9.57 seconds

====================================

Appendix C

Proofs

C.1 Proof of proposition 1

Proof. The ‘only if’ direction is clear. For the converse, suppose T is

source, fact and object symmetric, and let N , N ′ = π(N) be equivalent

networks. Define

πS(x) =

{

π(x) if x ∈ S

x if x ∈ F ∪ O

Define πF , πO similarly, and set σ = πS ◦ πF ◦ πO. Then for s ∈ S,

σ(s) = πS(πF(πO(s)))

= πS(πF(s))

= πS(s)

= π(s)

Similarly σ(f) = π(f) and σ(o) = π(o) for f ∈ F and o ∈ O. Hence σ = π.

Let s1, s2 ∈ S. Since πO only permutes objects, we may apply object-

symmetry to get

s1 ⊑
T
N s2 ⇐⇒ πO(s1) ⊑

T
πO(N) πO(s2)

124

APPENDIX C. PROOFS 125

Then since πF only permutes facts and πS only permutes sources, we may

successively apply fact and object symmetry to the right hand side to get

s1 ⊑
T
N s2 ⇐⇒ σ(s1) ⊑

T
σ(N) σ(s2)

⇐⇒ π(s1) ⊑
T
π(N) π(s2)

⇐⇒ π(s1) ⊑
T
N ′ π(s2)

An identical argument for fact ranking gives f1 �
T
N f2 ⇐⇒ π(f1) �

T
N ′ f2.

Hence T is symmetric.

C.2 Proof of proposition 2

Proof. For the first claim, consider the permutation π = (s1, s2). We claim

that π(N) = N . Let E be the edges in N and π(E) be the edges in π(N).
For any (s, f) ∈ S × F we have three cases:

1. s /∈ {s1, s2}: in this case (π(s), π(f)) = (s, f) and (s, f) ∈ E iff

(π(s), π(f)) ∈ π(E) by definition, so (s, f) ∈ E iff (s, f) ∈ π(E).

2. s = s1: Here we have (s1, f) ∈ E iff (s2, f) ∈ E by hypothesis. This

is equivalent to (π(s2), π(f)) ∈ π(E) by definition of π(E), which by

definition of π is equivalent to (s1, f) ∈ π(E).

3. s = s2: As above, (s2, f) ∈ E iff (s2, f) ∈ π(E)

Also, it is clear that (f, o) ∈ E iff (f, o) ∈ π(E) for f ∈ F , o ∈ O. We have

shown that (x, y) ∈ E iff (x, y) ∈ π(E), i.e. π(E) = E and thus π(N) = N .

Applying source-symmetry, this gives

s1 ⊑
T
N s2 ⇐⇒ π(s1) ⊑

T
π(N) π(s2)

⇐⇒ s2 ⊑
T
N s1

i.e. s1 ≃
T
N s2.

For the second claim, consider σ = (f1, f2) and apply a similar argu-

ment to the above. Note that we require f1 and f2 to be associated with

the same object here so that both facts have the same incoming and out-

going edges in N .

APPENDIX C. PROOFS 126

C.3 Proof of proposition 3

Proof. Suppose T is source-symmetric and a dictatorship with dictator s∗.
Let N = (V,E) be a truth discovery network.

1. Let s1, s2 ∈ S. Without loss of generality s1 ⊑T
N s2, since ⊑T

N is

complete. Consider the permutation π = (s1, s
∗). We have s2 ⊑T

π(N)

s∗ by dictatorship in π(N), which by symmetry means π−1(s2) ⊑T
N

π−1(s∗), i.e. s2 ⊑
T
N s1. Hence s1 ≃

T
N s2 as required.

2. Let f1, f2 ∈ F such that there is a source s with (s, f1) ∈ E. Set

σ = (s, s∗). Then σ(E) contains (σ(s), σ(f1)) = (s∗, f1), so we have

σ(f2) �
T
σ(N) f1 = σ(f1) since the facts claimed by s∗ rank above all

others. Applying symmetry gives f2 �
T
N f1 as required.

This implies there is no source-symmetric strict dictatorship. If T were

such an operator then T is also a non-strict dictatorship, so symmetry

implies all sources are ranked equally, but this contradicts s ⊏T
N s∗ for all

s 6= s∗.

C.4 Proof of proposition 4

Proof. The operator T defined in example 2 is not a dictatorship but is a

binary generalised dictatorship. Indeed, it is clearly a binary generalised

dictatorship from the definition. To show it is not a dictatorship, it is

sufficient by symmetry and proposition 3 to find a network in which T
does not rank all sources equally. A suitable example is a network N
where a source s claims two facts and all other sources claim only one

fact. Then QN = {s}, so s is ranked strictly above all other sources.

For an operator that is a dictatorship but not a binary generalised dic-

tatorship, fix two distinct sources s∗, s∗∗ ∈ S and consider the numerical

APPENDIX C. PROOFS 127

operator T ′ defined by

tN(s) =











2 if s = s∗

1 if s = s∗∗

0 otherwise

bN(f) =

{

1 if s∗ ∈ src(N, f)

0 otherwise

Clearly this is a dictatorship with dictator source s∗. Also, for any network

N we have s ⊏T ′

N s∗∗ ⊏T ′

N s∗; such a chain of strict inequalities cannot

occur for a binary generalised dictatorship, so we are done.

C.5 Proof of proposition 5

Proof. An operator that satisfies unanimity but not groundedness is T that

ranks facts according to the function

rN(f) =

{

1 if src(N, f) ∈ {S, ∅}

0 otherwise
(f ∈ F)

i.e. f1 �T
N f2 iff rN(f1) ≤ rN(f2) (note that T ’s ranking of sources is

irrelevant). Clearly T satisfies unanimity but not groundedness: consider

any network N in which there is a fact f1 with no corresponding sources,

and a fact f2 with at least one source, but whose sources are not the whole

of S. Then f1 6�
T
N f2 contrary to the requirements of groundedness.

Reversing the fact ordering of T gives an operator satisfying ground-

edness but not unanimity.

C.6 Proof of lemma 1

The following lemma will be used to prove the claim regarding weak in-

dependence.

APPENDIX C. PROOFS 128

Lemma 2. Let (an)n∈N, (bn)n∈N be convergent sequences of real numbers,

and let L = limn→∞ an, M = limn→∞ bn.

1. If L < M , then an < bn for sufficiently large n.

2. If an ≤ bn for sufficiently large n, then L ≤ M .

Proof. For the first claim, suppose L < M . Set ǫ = 1
2
(M − L) > 0. By

definition of the limit an → L, there is N1 ∈ N such that |an − L| < ǫ for

all n > N1. In particular, an − L < ǫ = 1
2
M − 1

2
L and so an < 1

2
(M + L).

On the other hand, by definition of bn → M there is N2 ∈ N such that

|bn − M | < ǫ for n > N2, and in particular bn − M > −ǫ = 1
2
L − 1

2
M

and so bn > 1
2
(M + L). Thus, for n > N := max{N1, N2} we have an <

1
2
(M + L) < bn.

The second claim is now immediate; if an ≤ bn for sufficiently large n
and L ≤ M were false, then by the first claim we would have bn < an for

sufficiently large n, which is a contradiction.

Proof of lemma 1. Let I be as in the statement of the lemma.

1. This is immediate since t∗N(s) is a limit of numbers in [0, 1] which is

a closed set, so t∗N(s) ∈ [0, 1] (and similar for b∗N(f)).

2. Let N and N ′ = π(N) be equivalent networks. For any s1, s2 ∈ S we

have

s1 ⊑
I
N s2 ⇐⇒ lim

n→∞
tnN(s1) ≤ lim

n→∞
tnN(s2)

⇐⇒ lim
n→∞

tnπ(N)(π(s1)) ≤ lim
n→∞

tnπ(N)(π(s2))

⇐⇒ π(s1) ⊑
I
π(N) π(s2)

⇐⇒ π(s1) ⊑
I
N ′ π(s2)

and for f1, f2 ∈ F ,

f1 �
I
N f2 ⇐⇒ lim

n→∞
bnN(f1) ≤ lim

n→∞
bnN(f2)

⇐⇒ lim
n→∞

bnπ(n)(π(f1)) ≤ lim
n→∞

bnπ(n)(π(f2))

⇐⇒ π(f1) �
I
π(N) π(f2)

⇐⇒ π(f1) �
I
N ′ π(f2)

Hence I is symmetric.

APPENDIX C. PROOFS 129

3. Let N be a truth discovery network and f ∈ F with src(N, f) = S.

By hypothesis there is M ∈ N such that bnN(f) = 1 for n > M , so

b∗N(f) = limn→∞ 1 = 1 ≥ b∗N(f
′) for any f ′. This means f ′ �I

N f , i.e.

I satisfies unanimity.

4. Similarly, if src(N, f) = ∅ then by hypothesis bnN(f) = 0 for n suf-

ficiently large, so b∗N(f) = 0 ≤ b∗N(f
′) for any f ′, and f �I

N f ′ as

required for groundedness.

5. Let G, N1, N2 be as in the statement of the claim. For s1, s2 ∈ G ∩ S
we have

s1 ⊑
I
N1

s2 ⇐⇒ lim
n→∞

tnN1
(s1) ≤ lim

n→∞
tnN1

(s2)

⇐⇒ lim
n→∞

tnN2
(s1) ≤ lim

n→∞
tnN2

(s2)

⇐⇒ s1 ⊑
I
N2

s2

and an identical argument proves the same for facts. Hence I satis-

fies independence of irrelevant stuff.

6. Let G, N1, N2 be as in the statement of the claim. Let s1, s2 ∈ G ∩ S
and suppose s1 ⊏I

N1
s2, i.e. limn→∞ tnN1

(s1) < limn→∞ tnN1
(s2). By

lemma 2 part 1, there is K ∈ N such that tnN1
(s1) < tnN1

(s2) for n > K.

For any such n, αn ≥ 0 means tnN2
(s1) = αn · t

n
N1
(s1) ≤ αn · t

n
N1
(s2) =

tnN2
(s2). Lemma 2 part 2 then gives limn→∞ tnN2

(s1) ≤ limn→∞ tnN2
(s2),

i.e. s1 ⊑
I
N2

s2.

An identical argument proves the result for fact ranking. Hence I
satisfies weak independence.

C.7 Proof of theorem 1

Proof. Assume Sums is convergent. Since trust and belief scores for Sums

are always in the range [0, 1], lemma 1 can be applied.

1. Symmetry: We will use lemma 1 part 1. Let N and N ′ = π(N) be

equivalent networks. We show that tnN(s) = tnπ(N)(π(s)) and bnN(f) =

bnπ(N)(π(f)) for all n ∈ N by induction.

APPENDIX C. PROOFS 130

The base case n = 1 is clear since t1N , t1π(N), b
1
N and b1π(N) are constant

with value 1
2
. Suppose n ∈ N is such that tnN(s) = tnπ(N)(π(s)) and

bnN(f) = bnπ(N)(π(f)) for all s ∈ S and f ∈ F .

Let s ∈ S. Note that f ∈ facts(N, s) iff π(f) ∈ facts(π(N), π(s))
by definition of π(N). In particular, π restricted to facts(N, s) is a

bijection into facts(π(N), π(s)), so we may consider a ‘substitution’

y = π(f) in the sum for t̂n+1
N (s):

t̂n+1
N (s) =

∑

f∈facts(N,s)

bnN(f)

=
∑

y∈facts(π(N),π(s))

bnN(π
−1(y))

=
∑

y∈facts(π(N),π(s))

bnπ(N)(π(π
−1(y)))

=
∑

y∈facts(π(N),π(s))

bnπ(N)(y)

= t̂n+1
π(N)(π(s))

Similarly, for f ∈ F note that π restricted to src(N, f) is a bijection

into src(π(N), π(F)): using the above and an identical argument

we get b̂n+1
N (f) = b̂n+1

π(N)(π(f)).

Now we have

tn+1
N (s) =

t̂n+1
N (s)

max
x∈S

t̂n+1
N (x)

=
t̂n+1
π(N)(π(s))

max
x∈S

t̂n+1
π(N)(π(x))

Note that π restricted to S is a bijection into S itself, since by defi-

nition of equivalent networks each of S, F and O are closed under

π. Hence we may replace π(x) in the maximum in the denomina-

tor with simply x by surjectivity of π, and so tn+1
N (s) = tn+1

π(N)(π(s)).

APPENDIX C. PROOFS 131

Similarly, bn+1
N (f) = bn+1

π(N)(π(f)). Hence, by lemma 1, Sums satisfies

symmetry.

2. Non-dictatorship: We have shown that Sums satisfies symmetry. In

particular Sums satisfies source-symmetry, so given proposition 3 it

suffices to show that there is at least one truth discovery network

N for which Sums does not rank all sources equally. The network

shown in figure 4.4 is a suitable example. In this network there are

three sources A, B and C, and two facts D and E, each relating to

a different object1.

We will show that Sums converges on this network, and that B ranks

strictly beneath A.

For brevity write an for tnN(A), ân for t̂nN(A) and similar for B,C,D,E.

We claim that for all n > 1, an = 1, bn = cn = 1
2

and dn = en = 1. By

definition, for all n > 1:

ân = dn−1 + en−1, b̂n = dn−1, ĉn = en−1

d̂n = ân + b̂n, ên = ân + ĉn

Recalling that d1 = e1 =
1
2
, taking n = 2 we get

â2 = 1, b̂2 =
1

2
, ĉ2 =

1

2

d̂2 =
3

2
, ê2 =

3

2

and so a2 = 1, b2 = c2 =
1
2

and d2 = e2 = 1. For n = 3 we get

â3 = d2 + e2 = 2, b̂3 = d2 = 1, ĉ3 = e2 = 1

d̂3 = â3 + b̂3 = 3, ê3 = â3 + ĉ3 = 3

and so a3 = 1, b3 = c3 = 1
2

and d3 = e3 = 1, i.e. the trust/belief

scores are unchanged. Repeating in this way we see that an = 1 and

bn = 1
2

for all n > 1. Hence t∗N(A) = 1 > 1
2
= t∗N(B): this means B

ranks strictly below A, which completes the proof.

1 If S contains more than three sources we consider all other sources to have no
outgoing edges (and similarly for if F contains more than two facts). Note that the
objects to not play any role in Sums.

APPENDIX C. PROOFS 132

3. Unanimity: Let N be a truth discovery network and suppose f ∈ F
is such that src(N, f) = S. Then, for n > 1 and any f ′ ∈ F ,

b̂n(f
′) =

∑

s∈src(N,f ′)

t̂n(s) ≤
∑

s∈S

t̂n(s) = b̂n(f)

using the fact that t̂n(s) ≥ 0. Therefore maxy∈F b̂n(y) = b̂n(f), so

bn(f) = 1. By lemma 1 part 3, Sums satisfies unanimity.

4. Groundedness: Let N be a truth discovery network and suppose

f ∈ F has src(N, f) = ∅. By definition bn(f) = 0 for all n > 1, so by

lemma 1, Sums satisfies groundedness.

5. Weak independence: To show weak independence we will use

lemma 1 part 6. Let N1, N2 be truth discovery networks with a com-

mon connected component G. Suitable sequences (αn)n∈N, (βn)n∈N
will be defined recursively. For n = 1, set α1 = β1 = 1. We have, by

definition of Sums,

t1N2
(s) =

1

2
= α1 ·

1

2
= α1 · t

1
N1
(s)

b1N2
(f) =

1

2
= β1 ·

1

2
= β1 · b

1
N1
(f)

for any s ∈ G ∩ S and f ∈ G ∩ F . Now suppose n ∈ N is such that

there are αn−1, βn−1 ≥ 0 with

tn−1
N2

(s) = αn−1 · t
n−1
N1

(s)

bn−1
N2

(f) = βn−1 · b
n−1
N1

(f)

for all s ∈ G ∩ S and f ∈ G ∩ F . Fix a source s ∈ G ∩ S. Let E1, E2

and EG denote the set of edges in N1,N2 and G respectively. Note

that for any fact f ∈ F ,

f ∈ facts(N1, s) ⇐⇒ (s, f) ∈ E1

⇐⇒ (s, f) ∈ EG

⇐⇒ (s, f) ∈ E2

⇐⇒ f ∈ facts(N2, s)

APPENDIX C. PROOFS 133

so facts(N1, s) = facts(N2, s). Hence

t̂nN2
(s) =

∑

f∈facts(N2,s)

bn−1
N2

(f)

=
∑

f∈facts(N1,s)

βn−1 · b
n−1
N1

(f)

= βn−1

∑

f∈facts(N1,s)

bn−1
N1

(f)

= βn−1t̂
n
N1
(s)

Write

γ1 =
1

max
x∈S

t̂nN1
(x)

, γ2 =
1

max
x∈S

t̂nN2
(x)

so that

tnN1
(s) = γ1 · t̂

n
N1
(s)

tnN2
(s) = γ2 · t̂

n
N2
(s)

= γ2 · βn−1 · t̂
n
N1
(s)

=
γ2 · βn−1

γ1
· γ1 · t̂

n
N1
(s)

=
γ2 · βn−1

γ1
· tnN1

(s)

Taking αn = γ2βn−1

γ1
we have the desired equality for trust scores.

Note that γ1, γ2 > 0, so αn ≥ 0.

The argument for belief scores is similar. Fix f ∈ G ∩ F . We have

src(N1, f) = src(N2, f), so

b̂nN2
(f) =

∑

s∈src(N2,f)

t̂nN2
(s)

=
∑

s∈src(N1,f)

βn−1 · t̂
n
N1
(s)

= βn−1 · b̂
n
N1
(f)

Write

δ1 =
1

max
y∈F

b̂nN1
(y)

, δ2 =
1

max
y∈F

b̂nN2
(y)

APPENDIX C. PROOFS 134

Then

bnN1
(f) = δ1 · b̂

n
N1
(f)

bnN2
(f) = δ2 · b̂

n
N2
(f)

= δ2 · βn−1 · b̂
n
N1
(f)

=
δ2 · βn−1

δ1
· δ1 · b̂

n
N1
(f)

=
δ2 · βn−1

δ1
· bnN1

(f)

so we may take βn = δ2βn−1

δ1
.

By induction, there exist sequences (αn)n∈N, (βn)n∈N, satisfying the

hypothesis of lemma 1 part 6, so Sums satisfies weak independece.

C.8 Proof of theorem 2

Proof. Let N1 be the network shown in figure 4.4, and N2 be the network

shown in figure 4.5. With G = N1, G is a connected component of both

networks. We have already shown in the proof of theorem 1 that t∗N1
(A) =

1 and t∗N1
(B) = t∗N1

(C) = 1
2
, so in particular A is ranked strictly above B

in N1. To prove Sums does not satisfy independence, we will show that

A and B are in fact ranked equally in N2; in particular, we shall have

A ⊑Isums

N2
B but A 6⊑Isums

N1
B.

As before, write an for tnN2
(A) and similar for the other nodes. We

claim that, for n > 1:

an =
2

3n−1
, bn = cn =

1

3n−1
, sn = tn = un = 1

dn = en =
1

3n−1
, vn = wn = xn = 1

The base case for induction is n = 2. We have

â2 = d1 + e1 = 1, b̂2 = d1 =
1

2
, ĉ2 = e1 =

1

2
,

APPENDIX C. PROOFS 135

ŝ2 = t̂2 = û2 = v1 + w1 + x1 =
3

2

d̂2 = â2 + b̂2 =
3

2
, ê2 = â2 + ĉ2 =

3

2

v̂2 = ŵ2 = x̂2 = ŝ2 + t̂2 + û2 =
9

2

The maximum trust score is 3
2

and the maximum belief score is 9
2
, so

a2 =
2

3
, b2 =

1

3
, c2 =

1

3
, s2 = 1, t2 = 1, u2 = 1

d2 =
1

3
, e2 =

1

3
, v2 = w2 = x2 = 1

Thus the claim holds for n = 2. Now suppose that the claim holds for the

(n− 1)-th iteration. We have

ân = dn−1 + en−1 =
2

3n−2
, b̂n = dn−1 =

1

3n−2
, ĉn = en−1 =

1

3n−2

ŝn = t̂n = ûn = vn−1 + wn−1 + xn−1 = 3

d̂n = ân + b̂n =
3

3n−2
, ên = ân + ĉn =

3

3n−2

v̂n = ŵn = x̂n = 9

The maximum trust and belief scores are 3 and 9 respectively, so we get

an =
2

3n−2
·
1

3
=

2

3n−1
, bn =

1

3n−2
·
1

3
=

1

3n−1
, cn =

1

3n−2
·
1

3
=

1

3n−1
,

sn = tn = un = 1

dn =
3

3n−2
·
1

9
=

1

3n−1
, en =

3

3n−2
·
1

9
=

1

3n−1
,

vn = wn = xn = 1

as required.

Finally, this means

t∗N2
(A) = lim

n→∞

2

3N−1
= 0

t∗N2
(B) = lim

n→∞

1

3N−1
= 0

and A ≃Isums

N2
B, which completes the proof.

