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Abstract 
 

The average age of the population is steadily increasing; therefore, we need to look for earlier 

signs of deterioration in cognitive ability. The earlier that abnormalities are spotted, the 

sooner and better they can be treated, and MRIs can spot early signs of disease before any 

symptoms become visible. An MRI is a 3-dimensional medical imaging technique used in 

radiology to form pictures of the anatomy and the physiological processes of the body in both 

health and disease. MRI scanners use strong magnetic fields, magnetic field gradients, and 

radio waves to generate images of the organs in the body. Signs of physical changes include 

gray-matter loss, the brain shrinking, and the decline of white-matter. 

Inspired by 2-dimensional and 3-dimensional convolutions, the aim of this project is to use 

machine learning on the Cam-CAN ageing neuroimaging dataset. Due to the non-linearity 

nature of ageing, it is hard to comprehensively model using standard linear statistical 

techniques such as GLM (Generalized Linear Models). The goal will be to predict the age of 

participants and physiological variables (cognitive ability) from MRIs.  Augmentation of linear 

models by e.g. quadratic terms only partially address this problem since it fails to address 

other relationships. As an alternative, deep neural networks are known to learn arbitrary non-

linear relationships. In recent years, Convolutional Neural Networks (CNNs) have been very 

successful at extracting features from raw images thereby circumventing the necessity for 

prior feature selection / dimensionality reduction through methods such as ICA (Independent 

Component Analysis) 

Results are encouraging, with roughly 40% accuracy from a 7-class Classification model and 

achieving Mean Square Error and Mean Absolute Error of around 0.7, achieving better than 

the results of more basic models like Support Vector Machines. From these results, we believe 

Convolutional Neural Networks are a justified choice when mapping the relationships 

between MRIs and non-linear variables. However, we believe better results can be achieved 

if a larger dataset presents itself, and if greater computational power is available to handle 

the demanding nature of certain Convolutional Neural Network models. This is because 

hardware constraints and a limited dataset imposes restrictions on the type of Network 

architecture we can develop, such as the depth of the model. 
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Introduction 
 

In the UK, the life expectancy of an individual is now roughly 80 years1. Ageing is both 

chronological (number of years you have lived for) and biological (the age we appear to have). 

The chronological age of a person is usually assumed based on their appearance, whereas 

biologically speaking, ageing is a gradual process; it affects us physically, mentally, socially, 

and so on. However, the ageing process is different for everyone; the process can be slower 

or quicker for some. There are younger people who appear older, and vice versa. So, while 

the appearance of a person can give away their age, a person may not be as young or old as 

they appear. A procedure used by doctors around the world to examine the biological age of 

a person is the MRI (Magnetic Resonance Imaging) scan. MRIs produce detailed images of the 

organs and tissue in the body. For example, an MRI scan will be used to check for anomalies 

of the brain. These images can spot existing problems in the body as well as early signs of 

disease before any symptoms become visible. Figure 1 below is an example of a 2-dimensional 

Brain MRI. 

 

Figure 1 2-dimensional Brain MRI 

The aim is to develop 2-dimensional and 3-dimensional Convolutional Neural Network (CNN) 

models for classification and regression, ones that can predict age and cognitive functionality 

from a given MRI. Ageing has a non-linear nature, making it hard to model comprehensively 

using standard linear techniques such as GLM (Generalized Linear Models). Deep neural 

networks are known to learn arbitrary non-linear relationships. In recent years, CNNs have 

been successful at extracting features (attributes) from raw images thereby circumventing 

the necessity for prior feature selection/dimensionality reduction through methods such as 

ICA (Independent Component Analysis), and have had great success in recent years in image 

                                                             
1 

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/bulleti

ns/nationallifetablesunitedkingdom/2015to2017 

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/bulletins/nationallifetablesunitedkingdom/2015to2017
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/bulletins/nationallifetablesunitedkingdom/2015to2017
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processing competitions like the ImageNet competition [1].  The ImageNet competition is one 

where teams compete to achieve the highest accuracy in image classification. 

The methodology used to tackle this project was Agile [2].  The first step of the approach is to 

define a model as simple as possible that can carry out regression or classification on the 

dataset. Next, we develop a solution that meets all minimum requirements for classification 

and/or regression and then test the model. Finally, we evaluate the performance of the 

software. After reflecting on the performance of the model, the software development 

lifecycle starts again, with each new iteration of the cycle building upon the results of the last 

iteration by working on the most relevant pieces of work. By taking this approach, we avoid 

carrying out unnecessary work now and focus on the top priority tasks to meet the 

requirements of the project in this iteration of the lifecycle. Figure 2 is an example of the 

methodology being adopted for the project. 

 

Figure 2 Agile methodology 

In this project, the biological age of an MRI will reflect its perceived age and cognitive ability 

(memory score). The motivation for this project stems from the desire to see whether 

Convolutional Neural Networks are a suitable choice for modelling non-linear relationships 

from images compared to other methods available, therefore the scientific community 

benefits from this work. Looking further afield however, a well-developed solution would help 

doctors to make more decisive and accurate decisions, and patients could expect a higher 

standard of treatment as a result. The predictions themselves would reflect the persoﾐげs 
health, and therefore, justification for succeeding action is given by the result from the 

prediction. These predictions would enable a doctor to take necessary measures with a 

patient more confidently, thus providing greater probability of successful treatment and 

another step forward in the preservation of cognitive ability into old age.  

The network will be trained using the Cam-CAN (Cambridge Centre for Ageing and 

Neuroscience) dataset which contains 653 MRIs of high-resolution and low-resolution quality. 

It is assumed that a developed model will perform better on the high-resolution images due 

to the availability of more data in the high-resolution images. The dataset includes brain 

structure measures, general health measures, demographics data, and cognitive performance 
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from 653 individuals aged between 18-87 years old with different lifestyle choices and 

cognitive performance.  

The results achieved have been great. All Convolutional Neural Network models performed 

better than more basic models (Support Vector Machines, Decision Trees etc.) and show an 

ability to correctly map MRI to non-linear variables, such as age. These results give 

justification for the use of CNNs to map non-linear relationships and will be discussed further 

on in the paper.  
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Background 
 

Cam-CAN dataset 

Cam-CAN is the Cambridge Centre for Ageing and Neuroscience, a large-scale collaborative 

research project. The Cam-CAN project is using epidemiological, behavioural, and 

neuroimaging data to understand how individuals can best retain cognitive abilities into old 

age. The Cam-CAN study is aiming to characterise age-related changes in cognition and brain 

structure and function, and to discover ways to retain cognitive functionality into old age [3]. 

We are using the Cam-CAN dataset for our Artificial Neural Network to be trained and predict 

a mapping between MRIs and values. The dataset contains 653 MRIs, with attributes such as 

age, memory, smoking, alcohol etc. The lifespan of the test subjects is 18-87 years old. For 

the purpose of this project, only the two following features are being focused on: 

• Age 

• Memory. 

The Cam-CAN dataset contains 2 distinct sets of MRIs. These MRIs are divided into high-

resolution and low-resolution data. The high-resolution images have a dimensionality of 

181*217*181 and the low-resolution images have a dimensionality of 61*73*61.  At the start 

of the project we were only given the low-resolution images. In the later stages of the project, 

we received access to the high-resolution images, but had to access them by way of importing 

from a shared directory on the Supercomputer Cluster. The MRIs have been processed 

through a pipeline into separate streams for different avenues of analysis, such as Voxel-

based morphometry (VBM) for structural analysis [3] 

MRI (Magnetic Resonance Imaging) 

MRI uses a strong magnetic field and radio waves to create detailed images of the organs and 

tissues within the body. Since its invention, doctors and researchers continue to refine MRI 

techniques to assist in medical procedures and research. A doctor may order a brain MRI scan 

to look for Blood vessel damage, brain injury, cancer, multiple sclerosis, spinal cord injuries, 

and stroke. The detection of physical changes in the brain can allude to ageing, and can be 

detected by spotting grey-matter loss, shrinkage of the brain, and the decline of white-matter  

Deep Learning in MRIs 

The medical field has been exploring Convolutional Neural Networks for a number of years now., 

supposedly since the 1990s [4]. But the recent resurgence in Artificial Neural Networks has paved 

the way for cutting edge approaches towards neuroimages.  

Machine Learning  

Machine Learning is a field of Artificial Intelligence (AI) that provides systems the capacity to 

learn and improve from experience without being explicitly programmed. A computer 
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program is said to learn from experience E with respect to some class of tasks T and 

performance measure P, if its performance at tasks in T, as measured by P, improves with 

experience E [5]. Once a Machine Learning model is developed, it can learn from data to 

discover useful insights and patterns that can reap future rewards. Through continuous 

development and research, the aim is to create more accurate Machine Learning software 

that can improve and learn with less human intervention.  

Normally, Machine Learning algorithms fall into two different categories. These categories 

are supervised and unsupervised. Whereas unsupervised learning uses neither labelled nor 

categorized data, supervised learning uses labelled data to develop the Machine Learning 

model. Next, we determine the type of Machine Learning problem we are trying to solve; 

examples of supervised learning problems are Classification and Regression problems. 

Regression algorithms attempt to predict the mapping of input data to numerical or 

continuous output, e.g. age: 50 years old, 23 years old. Classification algorithms are almost 

the same, but instead attempt to predict the mapping of data to discrete or categorical 

output, e.g. fヴuit: さappleざ, さHaﾐaﾐaざ. With respect to this project, the solution will adopt a 

supervised learning approach that will solve a classification and regression problem.  

Supervised Learning 

Supervised machine learning algorithms take what has been learned from experience with 

labelled data to make predictions about future data or events. By learning from a labelled 

dataset, the algorithm maps input data to known targets. The learning algorithm can also 

compare its output with the correct, intended output and find errors so that it can modify the 

model accordingly. It can be best understood as the following equation 検 = 血岫捲岻 

where 

- y is the predicted output 

- f is the mapping function 

- x is the input 

Fitting the model to the data 

The best designed network architectures are models that are deep enough to learn the 

relationships between the patterns and the data, but not too deep to leaヴﾐ the dataげs ﾐoise 
and fluctuations. Poor performance of a Machine Learning algorithm can be pointed to 

o┗eヴfittiﾐg aﾐd uﾐdeヴfittiﾐg of the data, ┘heヴe a MaIhiﾐe Leaヴﾐiﾐg ﾏodelげs peヴfoヴﾏaﾐIe Iaﾐ 
start to stagnate, or decline, after numerous iterations of model training, or show no signs of 

learning and improvement. 

Figure 1 displays three graphs for three different models learning from the same dataset.  
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Figure 1: Model Overfitting/Good fit/Underfitting [6] 

Underfitting 

As the graph on the left of figure 1 shows, underfitting occurs when a model is unable to 

model the training data, and unable to generalise new data. The source of this problem can 

usually be attributed to a dataset that is too small. In other words, it is unable to learn 

anything from the training data. Just like overfitting, underfitting of a model is a detriment to 

the performance of a Machine Learning model. Underfitting is likely to be spotted earlier on 

because a model will have poor performance on training data and show no signs of an 

improvement in performance, where a good enough performance metric should be able to 

point out. The normal steps to take is to try a different algorithm and inspect for better 

performances.  

Overfitting 

As the graph on the right of figure 1 shows, overfitting happens when the model has studied 

the training data too much and learned every relationship to the point it decreases the 

performance. With this, the gap between training and test error is abnormally large, i.e. a 

high accuracy on the training data, but low accuracy on unseen data. While it is necessary to 

train a Machine Learning to perform as precise as possible with the training data, too much 

learning can result in the model learning all the detail and noise of the training data, meaning 

a negative impact on new data. This is because all the noise or fluctuations found in the 

training data is mistakenly taken as key aspects when discriminating against data. Actions to 

deal with overfitting include regularisation, more training data, and dimensionality reduction. 

Artificial Neural Network  

The Artificial Neural Network (ANN) [6] takes inspiration from biology and the brain, where 

the brain takes in information from the environment, performs hidden calculations, and 

produces a response. The brain is made up of billions of neurons that communicate with each 

other through electro-chemical signals., and constantly receive input to bring the body into 

action and produce an output.  
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If we wanted to map the relationship of smokers and risk of a health scare, we could construct 

a standard classification model to classify individuals who are at risk. As stated in the 

けIﾐtヴoduItioﾐげ seItioﾐ of this paper, Artificial Neural Networks can learn and model non-linear 

and complex relationships, Once the network has been adequately trained, predictions can 

be made from unseen data.  

There are different types of Artificial Neural Networks, but they can be classed in either feed-

forward or feed-back (recurrent) networks, and Deep or Shallow Neural Networks. In a feed-

forward network, the input signal only travels in one direction, straight from the input layer 

all the way to the output layer. In a feed-back network, the neurons have signals that can go 

in both directions, and all possible connections between neurons are allowed. This results in 

a non-linear system that dynamically changes to reach a desired state of optimisation. Figure 

2 below visualises the differences between feed-forward and feed-back networks. 

 

Figure 2 (Left) Feed-back and (Right) Feed-forward Networks [7] 

It is hard to define what constitutes a Deep or Shallow Neural Network as there is no definition 

for it. The only agreement on the topic is that it is conditional on the number of hidden layers 

a Neural Network has. Some consider anything greater than 1 hidden layer a Deep Neural 

Network, others suggest a much larger number.   

Basic Neural Network structure 

Artificial Neural Networks are made up of stacks of layers, which contain a varying number of 

neurons. The most basic form of an Artificial Neural Network consists of an input layer, a 

hidden layer, and an output layer, in that order. These layers are a data-processing module 

[8] that take input from a previous layer, perform calculations on them, and output them to 

the next layer. We can visualise the structure described through Figure 3 below     
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Figure 3 Standard Artificial Neural Network [9] 

The Artificial Neural Network in Figure 3 is an example of a basic Neural Network to solve a 

Classification problem. The reason it is a basic model is because there is only 1 hidden layer. 

To solve a complex task, a greater number of hidden layers would be required, otherwise the 

model would have no chance of properly learning from the input data. The model could be 

classifying a dataset of animal features common to cats and dogs. The network would take 

properties of a cat and a dog as input and feed that data forward into the network, and 

eventually transmit into one of the two neurons in the output layer. The number of neurons 

for the output layer depends on the type of problem, e.g. regression, classification. If the 

network is modelling a regression problem, there will only be one neuron in the output layer 

to represent the predicted value of a sample, whereas a classification problem with n classes 

would have n neurons to represent the n different classes.   

It is important to note that discrete values cannot be fed into a neural network, therefore 

┗alues like けDogげ aﾐd けCatげ, or 18-30 years old must be encoded before being fed into the input 

layer. The pre-processing of data is a necessary step to ensure that data is in the correct 

format for the network to learn from and will be covered later.  

The Neural Network layers are made up of computational units called neurons [10]. These 

neurons are interconnected to each other and take in information from 軽 + な values, where 軽 is the number of neurons, and the +1 comes from a bias value 決 [11]. Bias 決 is a free variable 

that is also trained and gets initialised with a random variable. The neurons within the hidden 

layer of the network multiplies each of its input 捲珍 fヴoﾏ the pヴe┗ious la┞eヴげs neurons by a 

weight 拳珍. The functionality of a neuron can be viewed as the following Equation 1: 

∑ 捲珍�
珍=怠 ∙ 拳珍 
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Equation 1 Artificial Neuron: Weighted Sum of Input 

 

where 

- 軽 is the number of neurons from the previous layer connected to a neuron. 

- 捲珍  are the input values. 

- 拳珍  are the weights 

The values get summed together, and the sum gets passed to an activation function 血. 

Activation functions are a key element of an Artificial Neural Network, as they are what 

enables them to learn from complex data and spot patterns, and to map non-linear 

relationships between the input and output; they create the non-linear property of our 

network. Without an Activation function, we end up with a simple linear model, and we would 

be unable to work with more complicated types of data like images and videos. There are 

different activation functions, but their job is to map the ﾐeuヴoﾐげs suﾏﾏed ┗alues to a desiヴed 
range, such as between 0 and 1, or -1 and 1. Some of the more popular Activation functions 

include sigmoid, tanh, and ReLU. Figure 4 below provides a summary of some popular 

Activation functions.  

 

Figure 4 Activation function plots, equation, and data range [12] 
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The higher the value, the greater the activation. Depending on the strength of the neuron 

(output from Activation function), the value gets passed through to the next layer of neurons, 

until it reaches the output neurons. Finally, the difference in value between the predicted 

value from the output neuron against the actual value is propagated backwards into the 

network, adjusting the weight of each neuron in the networkげs hidden layer(s) that directly 

contributes to the output, with accordance to the neuronげs IoﾐtヴiHutioﾐ to the total loss. This 

process is done for each layer until all neurons in the network have a received a loss signal. 

The interaction between activation functions and the dot product of weights and input is 

shown in Equation 2 below: 

血 ∑(岫捲沈 ∙ 拳沈岻 + 決)�
沈=待  

Equation 2 Artificial Neuron: Weighted Sum of Input with Activation Function 

To summarise what has been said about the role of Artificial Neurons, a neuron connected to 軽 neurons from the previous layer receives 軽 + な values from the previous layer, inclusive of 

bias 決, where each 捲沈 of input 捲 gets multiplied by weights 拳沈 of 拳. The sum of this function 

is then passed on to the activation function, and the output transferred to the next layer. 

Figure 5 below visualises the role of the artificial neuron in an Artificial Neural Network.  

 

 

Figure 5 Artificial Neuron [13] 

This Artificial Neuron model was inspired by the Perceptron model first proposed by Minsky 

and Papert [14] which introduced numerical weighting for inputs, and a mechanism for 

learning those weights.  
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Training a neural network 

Optimal Performance  

When an Artificial Neural Network starts off with a randomly assigned set of weights and 

biases, it learns to map a set of inputs to a set of outputs and makes its predictions, the 

network produces a Loss. This Loss is the distance score between the predicted values and 

the output values. Being too high or too low does not matter as much as how incorrect the 

model is. The model then performs backpropagation to propagate this loss to each neuron 

that has contributed to the output of the model, using this information to update the 

parameters (weight, bias) of the neural network with the intention of reducing Loss and 

producing a better model. These steps are repeated until an efficient model is developed.  

Calculating Loss 

Artificial Neural Networks can be viewed as an optimisation problem. To optimise the model, 

we need to reduce the Loss of a model. This can be achieved by readjusting the weight and 

Hias paヴaﾏeteヴs of the ﾏodelげs ﾐeuヴoﾐs. To do this, ┘e ヴel┞ oﾐ Loss fuﾐItioﾐs. Theヴe aヴe 
different Loss functions available, we can even create our own, but certain problems 

(classification, regression) rely on certain Loss functions. 

Loss Functions 

Loss functions are a key element in training a Machine Learning model. They are a method of 

evaluating how well an Artificial Neural Network models a dataset. When we adjust an 

Artificial Neural Network, we use the Loss functions as an indicator of steps in the right or 

wrong direction. Take the following as a functional example of calculating Loss for the ages of 

MRIs. The Loss function used in the following table is a custom-made Loss function that 

calculates loss as the absolute value difference between predictions and true value: 

Network predictions Actual Values Calculated Loss 

1st MRI: 23 years old 

2nd MRI: 41 years old 

3rd MRI: 70 years old 

 

1st MRI: 26 years old 

2nd MRI: 40 years old 

3rd MRI: 73 years old 

6 (we were off by 6 across all 

predictions) 

1st MRI: 26 years old 

2nd MRI: 40 years old 

3rd MRI: 73 years old 

0 (predictions were all 

correct) 

Table 1 Custom Loss function 

The Loss function above can be calculated by the following Equation 1: 

∑岫|建沈 − 喧沈|�
沈=待 岻 

Equation 1 Custom Loss Function 
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where 

- 軽 are all the samples 

- 建沈 is the true value 

- 喧沈 is the predicted value 

- |建沈 − 喧沈| is the absolute value of 建沈 − 喧沈   
Generally, for all Loss functions, they do not take into consideration whether incorrect a 

prediction was higher or lower than expected, and only cares about how far off the prediction 

is from the true value.  

Mean Absolute Error   

Mean Absolute Error (MAE), or L1 loss, measures the average magnitude of the errors (actual 

value – predicted value) in a set of predictions for a Regression model. A popular choice for 

Regression models, it is given by the following Equation 2: な券 ∑|検沈 − 検̂沈|�
沈=怠  

Equation 2 Mean Absolute Error 

where 

- n is all training samples 

- 検沈 are the true values 

- 検̃沈 are the predicted values 

 

Mean Squared Error  

We use a Mean Squared Error (MSE), or L2 loss, to calculate Loss for a Regression problem. 

Mean Square Error measures the average of the squares of the error. Its value tells you how 

close the set of points of a Regression model are to the Regression line.  Arguably the most 

common Loss function, Mean Squared Error can be calculated using the following Equation 3:  な券 ∑岫検沈 − 検̃沈岻態�
沈=怠   

Equation 3 Mean Squared Error 

where 

- 軽 is all training samples 

- 検沈 are the true values 

- 検̃沈 are the predicted values 
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Mean Squared Error vs Mean Absolute Error 

MSE and MAE are both used for Regression problems. The question, then, is which Loss 

function should we use? Observe the values in the following table, where |継堅堅剣堅| is the 

absolute value: 継堅堅剣堅 |継堅堅剣堅| 継堅堅剣堅態 ど ど ど −ど.の ど.の ど.どはにの な.にの な.にの な.のはにの など など などど 

 

                                                警結欠券 畦決嫌剣健憲建結 継堅堅剣堅 =  な券 ∑|検沈 −  検̂沈|�
沈=怠   

                                                                                            = なね ∑|継堅堅剣堅沈|4
沈=怠  

                                                                                            = なね ∑|ど + ど.の + な.にの + など|4
沈=怠  

                                                                                            = に.ひばの 

                                                  警結欠券 鯨圏憲欠堅結穴 継堅堅剣堅 =  な券 ∑岫検沈 −  検̃沈岻態�
沈=怠  

                                                                                             = なね ∑岫継堅堅剣堅沈岻態4
沈=怠  

                                                                                             = なね ∑岫ど + ど.の + な.にの + など岻態4
沈=怠  

                                                                                             = ぬね.のなのはにの 

 

The results show that Mean Absolute Error is less than Mean Square Error, suggesting that a 

model with this result has performed well (the closer to 0, the better). However, given that 

Mean Square Error squares the error, the value of  継堅堅剣堅態, and in turn Mean Square Error, 

increases exponentially when 継堅堅剣堅 is greater than 1. This results in the model giving more 

weight to any outliers. In a dataset filled with outliers, Mean Absolute Error loss is more useful 

because it gives less weight to outliers than Mean Square Error.  
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One big problem in using MAE loss (for neural nets especially) is that its gradient is the same 

thヴoughout, ┘hiIh ﾏeaﾐs the gヴadieﾐt ┘ill He laヴge e┗eﾐ foヴ sﾏall loss ┗alues. This isﾐげt good 
for learning. To fix this, we can use dynamic learning rate which decreases as we move closer 

to the minima. MSE behaves nicely in this case and will converge even with a fixed learning 

rate. The gradient of MSE loss is high for larger loss values and decreases as loss approaches 

0, making it more precise at the end of training (see figure below.) 

In summary, outliers need to be considered when selecting a Loss function. If those outliers 

are an integral part of the dataset, then Mean Square Error should be adopted. But if the 

outliers represent corrupted data, we should use Mean Absolute Error 

Categorical Cross-Entropy   

Categorical Cross-Entropy loss, or Log loss, is a popular loss function for Multiclass 

classification. We use this Loss function when we are mapping samples to only one class out 

of a possible 軽classes. The Categorical Cross-Entropy is calculated for each prediction and 

label pair, and then the sum of loss for each pair gives the total Loss for the model. Categorical 

Cross-Entropy is given as Equation 4 below: 

− ∑ 検沈健剣訣検�̂�
沈=怠  

Equation 4 Categorical Cross-Entropy 

Optimisation Function 

The learning of an Artificial Neural Network comes from adjusting the weights 拳 and bias 決 

during training to reduce Loss on the batch. We start by training the network model on 

randomly initialised weights 拳 and bias 決, calculate the Loss, and then modify the weight and 

bias of the neurons in a model by using an Optimisation function to reduce Loss. The aim of 

an Optimisation function is to find the correct values of weights 拳 and bias b that minimise 

Loss, therefore, we can derive the function 頚岫拳, 決岻. 

Gradients play a big role in how an Artificial Neural Network learns. A higher gradient provides 

a steeper slope that allows a model to learn faster. If the slope is zero, the model stops 

learning. Gradient descent [15] is a common optimisation strategy when training a Machine 

Learning model and involves iteratively adjusting values to minimise the Loss function. To find 

the local minimum, the algorithm takes steps proportional to the negative of the gradient of 

the function at the current point and tweaks parameters iteratively with each step down the 

gradient. See Figure 5 below for an illustration of this. 
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Figure 5 Gradient Descent Optimisation [15] 

In Figure 5, we start at a random value, take the value of the Learning Step (how big we step) 

to move down towards the Global Minimum. As we move further down the slope in 

proportion to the negative of the gradient (where the line slopes downwards), we want to 

decrease the Learning Steps with each iteration but also adjust the parameters to move 

towards the global minimum. However, a Learning Step too big risks being trapped in local 

minima, and a Learning Step too large could result in the algorithm missing the global 

minimum all together. See Figure 6 below for an illustration of the effects of Learning Rate.  

 

Figure 6 Effects of Learning Rate for Gradient Descent [15] 
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Stochastic Gradient Decent Algorithm 

As we have already discussed, the aim of an Optimisation function is to minimise the Loss 

produced by the Loss function. An Optimisation function like Gradient Descent attempts to 

find the Global minima of a Loss function, and Gradient Descent does this by allowing a model 

to learn the direction on a gradient the model should take to reduce Loss and Global Minima. 

The model starts with randomly initialised values for parameters such as weights 拳 and bias 決, and calculates the Loss for the current weight and bias values.  With each iteration of the 

model and further adjustments to the parameters, the model produces less and less Loss. The 

interaction between the Gradient Descent and Loss function is a feedback signal 

communicating how to improve performance.  

Stochastic Gradient Descent calculates the error for each training sample in the dataset, 

updating the parameters for the samples one by one. Due to the frequent updates, this drives 

up the computational cost. Furthermore, the frequent updates can potentially result in noisy 

gradients, causing the error to become high then low, rather than slowly converging to a 

Global Minima 

Adam Optimisation Algorithm 

The Adam optimisation algorithm, derived from Adaptive Moment Estimation, is an adaptive 

learning rate method based on the Stochastic Gradient Descent algorithm used to update the 

ﾐet┘oヴkげs ┘eights aﾐd Hias ┘heﾐ tヴaiﾐiﾐg. The benefits of this algorithm [16] are stated from 

its paper with the following, さThe ﾏethod is stヴaightfoヴ┘aヴd to iﾏpleﾏeﾐt, is Ioﾏputatioﾐall┞ 
efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, 

and is well suited for problems that are large in terms of data and/or parameters. The method 

is also appropriate for non-stationary objectives and problems with very noisy and/or sparse 

gradients. The hyper-parameters have intuitive interpretations and typically require little 

tuﾐiﾐgざ. Adam has the advantage over the Stochastic Gradient Descent algorithm in that it 

scales the learning rate for individual parameters to reach the convergence of a gradient, but 

it is not always guaranteed to perform better than Stochastic Gradient Descent.   

Dropout 

Overfitting (explaiﾐed eaヴlieヴ uﾐdeヴ さBaIkgヴouﾐdざぶ is a common problem that neural network 

models must deal with. To counteract Overfitting, we implement the Dropout technique, an 

approach for regularisation in neural networks to reduce interdependent learning for a set of 

neurons. Dropout forces a neural network to learn more about the features more present in 

the random subsets of neurons and reduces training time.  This technique involves 

temporarily dropping random Neurons in the network model during training, along with any 

of its inbound and outbound connection signals. Through Dropout, we construct numerous 

thiﾐﾐed ﾐet┘oヴks ┘heヴe さa ﾐeuヴal ﾐet ┘ith 券 units, can be seen as a collection of に� possible 

thiﾐﾐed ﾐet┘oヴksざ [17]. Once the testing comes around, all the neurons are used again but 

each activation is reduced by a factor of 喧 to act as a scaled down version of the training 

weights. Figure 7 below is a visualisation of Dropout on a Feed-forward network. 
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Figure 7 Application of Dropout [18] 

Convolutional Neural Networks  

The type of neural network used for this project is Convolutional Neural Networks (CNNs). 

They are frequently used in image processing, hence why they are adopted for this project, 

but can also be used for other problems like text classification. A popular starting point for 

many software engineers getting into CNNs is to develop a 2-dimensional Convolutional 

Neural Network for classifying the MNIST dataset [19].  Rather than studying a whole image 

all at once, CNNs can split the task up into smaller jobs by learning patterns of an image from 

its local segments to recognise it on any other part. E.g., a Convolutional Neural Network 

leaヴﾐs to ヴeIogﾐise the digit けΓげ fヴoﾏ the Hottoﾏ ヴight of aﾐ iﾏage aﾐd Iaﾐ ﾐo┘ ヴeIogﾐise it 
from any other part of an image. The general concept of CNNs is to recognise properties of 

images, such as detecting elements of interest or the pixel positions. By learning these 

patterns, a Convolutional Neural Network has a stronger chance of making these predictions 

because they learn from the local patterns rather than learning from the whole image. 

Building Blocks of a Convolutional Neural Network 

Convolutional Neural Networks are a class of deep, feed-forward neural networks made up 

of oﾐe oヴ ﾏoヴe Ioﾐ┗olutioﾐal la┞eヴ. A CNNけs fiヴst la┞eヴ is al┘a┞s the Coﾐ┗olutioﾐal la┞eヴ, but 

can go on to include other layers such as pooling, bath normalisation, and fully-connected. 

Convolution Layer 

Convolutional Neural Networks employ a mathematical operation called convolution to 

extract features from the input map, which is carried out by the convolution layer. The 

convolution function itself is an operation on 2 functions that produces a 3rd function.   

Within a convolutional layer, features are extracted from an image whilst preserving the 

spatial relationship between pixels. This is accomplished by going over the full width and 
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height of the input image and calculating the dot product between a 1D or 2-dimensional 

filter (kernel) and the input at any position. Through each forward pass in the network, a 2-

dimensional map storing the responses of the filter at every spatial position on the image is 

produced. Through learning, the network comes to learn more intuitively what filters activate 

when it sees a feature of interest such as an edge. The functionality of the convolutional layer 

is determined by the parameters, such as kernel size, number of filters, stride, and activation 

function. This is shown through figure 8 below.

 

Figure 8 Convolution Operation [20] 

Pooling Layer 

Convolutional layers are commonly followed by pooling layers, which reduce the data 

dimensions by down sampling feature maps. Inserting these layers reduces the spatial size of 

the feature map to reduce the number of parameters and computation in the network and 

reduces the probability of overfitting. It also serves to allow for assumptions about the 

featuヴes Ioﾐtaiﾐed iﾐ these ヴegioﾐs, suIh as uﾐIo┗eヴiﾐg the ﾐose, ﾏouth, oヴ e┞es of a peヴsoﾐげs 
face. One of the most common pooling layers is max-pooling. The max-pooling layer acts as a 

window. Figure 9 is an example of a max-pooling layer operating on a 4x4 matrix, with a filter 

size of 2 and a stride of 2.  
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Figure 9 Max-Pooling of 4x4 Matrix [21] 

In figure 9, the max-pooling layer will inspect the original 4x4 matrix as a 2x2 window at every 

iteration. Starting at the red region, it will select the element with the highest value and store 

that in the new output matrix. As we have a stride of 2, the max-pooling layer moves 2 pixels 

across to the yellow region and the same steps are followed. Eventually, the whole matrix is 

filtered out, and we are left with a 2x2 matrix with the maximum element values from the 

previous input. Observe Figure 10 below for a visualisation of the effects of max pooling on 

an image. 

 

Figure 10 Effects of Max-Pooling [22] 

Figure 10 is an example of what happens when we cut down on the dimensionality of an 

image via max pooling. The core outline and features of the original image are retained, and 

we cut down on the number of parameters in the network.  

Fully Connected Layer 

Coming after a sequence of convolutional and pooling layers, the neurons in the fully 

connected (dense) layer has full connections to all activations of the previous layer and 

connects each of these neurons to every neuron in the next layer.  
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Batch Normalisation 

The batch normalisation layer acts as a pre-pヴoIessoヴ oﾐ the pヴe┗ious la┞eヴげs output. Imagine 

the difference between a grayscale image and a coloured image. The grayscale image will 

have pixel values ranging from 0 to 1, whereas the coloured image will have pixel values 

ranging from 0 to 255. To retain the similarity of the input, we normalise the data to ensure 

the values are within the same range, e.g. keep all data within the range between 0 and 1. 

Furthermore, batch normalisation allows layers in the network to be more independent of 

each other as it allows the adjustment of learning rates and reduces overfitting because it has 

a regularisation effect on the data. This is because it adds some noise to the activation 

functions.  

One-hot Encoding  

Discrete data, such as Age: 18-30, 31-45, 46-60 years old etc., cannot be directly fed into a 

neural network. To use the data, we encode it into an appropriate format. We can vectorise 

the data to accomplish this. One way of doing this is one-hot encoding [8]. This encoding 

method is a widely used format for categorical data, where the labels are labelled as an all-

zeヴo ┗eItoヴ ┘ith a siﾐgle ヱ iﾐ the plaIe of the laHelげs iﾐde┝. This satisfies the requirement that 

classification models must be fed discrete data. The Keras framework has built-in methods to 

convert labels into one-hot encoding format. Table 2 below shows the conversion of three 

class labels (0, 1, 2) into one-hot vector encoding. 

 

 Class label 0 Class label 1 Class label 2 

Patient 1 1 0 0 

Patient 2 1 0 0 

Patient 3 0 1 0 

Patient 4 0 0 1 

Table 2 One-hot Vector Encoding for Patients' ages 

The example from table 2 demonstrates one-hot encoding to represent continuous data as 

categorical data. Each sample in figure 3 is labelled as a vector of 0s and a single 1, where the 

iﾐde┝ of the ヱ ヴepヴeseﾐts the Ilass of the laHel, so patieﾐt ヱげs Ilass is 1. The one-hot vector 

encoding of Patient 1 is [1, 0, 0], and Patient 3 is [0, 1, 0]. 

The reason we cannot just use the numerical class labels of the data is because the Artificial 

Neurons function 血岫岫捲� ∙ 拳�岻 + 決岻. The equation does not fairly represent the class labels, 

why should we apply the Artificial Neuron functionality to a class label of 0 or 1, let alone 

place greater magnitude on a higher-class label value?   
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Performance Metrics 

To test the strength of a model, a model needs to go under performance evaluation. Different 

choices are available, but different problems call for specific choices when choosing a 

performance evaluation metric. These metrics can then be taken and compared against other 

models to see which approach is better. 

Accuracy 

Accuracy is defined as the number of correct decisions / total number of samples. It is 

calculated using the formula below:  欠潔潔憲堅欠潔検 =  券憲兼決結堅 剣血 潔剣堅堅結潔建健検 喧堅結穴�潔建結穴 嫌欠兼喧健結嫌券憲兼決結堅 剣血 嫌欠兼喧健結嫌  

For example, if an algorithm correctly predicts 50 items out of 100 samples, this produces an 

Accuracy of 50%. 

Confusion Matrix  

A confusion matrix table focuses on the predictive capability of a classification model on test 

data where the actual values are known. 

• True positive – The number of correctly predicted samples in the positive category  

• True negative – The number of correctly predicted samples in the negative category 

• False positive – The number of incorrectly predicted samples in the positive category 

• False negative – The number of incorrectly predicted samples in the negative category  

 

Figure 11 Confusion Matrix illustration [23] 

Convolutional Neural Networks vs Basic models 

To justify the use of Convolutional Neural Networks against more basic models, we compare 

the results of our Convolutional Neural Network models against more basic Classification 
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models at a 2-dimensional level. The expectation is that the Convolutional Neural Network 

will outperform each model. The following basic models will be evaluated on the following 

problems: 

• Naïve Bayes 

• Random Forest 

• Support Vector Machines 

Naïve Bayes 

Naïve Bayes [24] is a type of Supervised Learning conditional probability model to predict the 

class of a given sample. Naïve Bayes is probabilistic in that it calculates the probability of each 

data sample belonging to a given class, and then outputs the class prediction with the highest 

value. It is given by the following Equation 5: 鶏岫畦|稽岻 =  鶏岫稽|畦岻. 鶏岫畦岻鶏岫稽岻  

Equation 5 Naive Bayes Theorem 

where 

- 鶏岫畦|稽岻 is the probability of event A, given event B. 

- 鶏岫稽|畦岻 is the probability of event B, given event A.  

Decision Trees 

We use Random Forest Classifiers as another basic model, which employ Decision Trees. 

Decision Trees [25] can fit complex data sets while allowing a user to see how a decision was 

made. The Decision Trees answer sequential questions to go down a certain route of the tree 

to reach a suitable answer, e.g. Is it Sunny Is it cold? They are easy to interpret. Can handle 

numerical and categorical data, meaning they can be used for Classification and Regression, 

and are quite fast. However, they can be prone to Overfitting when the tree depth is quite 

large because a sample might meet the conditions for a tree at a deeper depth but not earlier 

in the tree, and the choice of algorithms implemented can lead to finding local optimums 

rather than global optimums.  
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Figure 12 Example Decision Tree [25] 

Support Vector Machine 

Support Vector Machines are supervised learning models that can be used for Classification 

or Regression. Given a training x, and the training labels y, an SVM algorithm build a model 

to assign unseen data to one out of 軽 classes.  

Software and Libraries used 

Python 

The Python [26] programming language has fast become one of the most popular languages 

in AI. Its community support and ease of use as a high-level language make it a strong choice 

not only in research endeavours, but in the industry as well. 

Sci-kit Learn, NumPy, Pandas 

• Scikit-learn [26]: A collection of machine learning algorithms for supervised and 

unsupervised learning in Python. Provides efficient tools for data science tasks.  

• NumPy [26]: Supports large, multi-dimensional arrays (tensors) and matrices in 

Python. Also comes with a wide range of mathematical functions to manipulate these 

data structures. 

• Pandas: Useful for data manipulation, visualisation, and analysis, especially with 

tabular data.  

NiBabel  

NiBabel is a Python library [27] for read and write access to medical and neuroimaging file 

formats. It is used to extract meta information about MRIs and to access the image data of 

the MRIs. The image data is stored in a NumPy array.  
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Keras 

Keras [8] is a high-level API framework written in Python for developing Neural Networks. In 

this project, Keras was used because the library makes it easy and quick to develop prototypes 

and supports CNNs. Keras runs seamlessly on CPU and GPU. For this project, Keras uses 

Tensorflow as the backend 

Google Colab 

Google Colab [28] is a free cloud service acting used for its python development environment 

that runs programmes through the web with either a CPU, GPU, or TPU processor. Software 

and libraries are easy to import. While the service is free, every instance of a virtual machine 

can only be run for 13 hours. This presents a problem because some Machine Learning jobs 

taker longer than 13 hours. Once the time expires, a new instance will have to be instantiated. 

This can be done an unlimited amount of times. Google Colab is best treated as a prototyping 

environment for less-demanding computational jobs which is why it will be used for modelling 

2-dimensional MRIs.  

Supercomputing Wales (SCW) 

Supercomputing Wales [29] provides access to powerful computing facilities for 

computationally demanding tasks and problems, like the one being solved in this project. 

Access is strict and only given to authorised users. After successfully applying, SSH is used to 

connect to the facilities. The computationally demanding 3-dimensional Convolutional Neural 

Network model depends on running on the supercomputer cluster for GPU training of the 

Neural Network.  

Tensorflow. 

Tensorflow [30] is an open source Machine Learning framework to develop and train models. 

Tensorflow can be used to define a range of algorithms, including training and inference 

algorithms for deep neural network models, and it has been used developing Machine 

Learning systems for computer vision. 
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Approach 
 

The aim of the system is to take a Machine Learning approach, more specifically, 

Convolutional Neural Networks, and predict the age and cognitive variables of a given 2-

dimensional and 3-dimensaionl MRI. This section covers the design of the Artificial Neural 

Network, and the data pre-processing.   

Business model approach & user interface 

This solution has been conducted in the interests of scientific research to see if the proposed 

approach is suitable for tackling the pヴojeItげs pヴoHleﾏ. The intended approach has been 

created for someone with enough command-line experience to run the solution. Should the 

results of this project prove successful and show potential for commercial uses, the solution 

can be updated to provide better human-computer interaction for inexperienced users. One 

improvement would be to include a graphical user interface (GUI) for users not experienced 

with using the command-line interface. 

Data flows of the system 

At a high-level, this solution is a Machine Learning approach to predict variables from a 2-

dimensional and 3-dimensional MRI. The system takes as input a multi-dimensional NumPy 

array containing all the un/cropped MRIs and, depending on a regression or classification 

problem, the dataset labels in the form of a NumPy file containing a vector of integer labels, 

or a multi-dimensional array containing the one-hot vector encoding of classes The output 

generated is the evaluation metrics generated from the training, such as Accuracy, Confusion 

Matrix, MAE, and MSE. Each of these parts are carried out in different Python files. For a visual 

explanation of the general system data flow, follow Figure 13 below. 

Extract 

MRIS and 

Labels 

 Crop 

MRIS 

 Create 

Train 

and Test 

data split 

 Train and 

Test 

Network 

 Make 

Network 

Predictions 

 

Figure 13 Data Flow of the System 

Data pre-processing 

The MRI dataset is stored in a shared directory on the supercomputer cluster and must be extracted 

from there. We extract the MRIs from the datasetげs diヴeItoヴ┞ and they ultimately end up as a NumPy 

array. There are 653 unique MRIs of high-res or low-res quality. The 2-dimensional images are used 

with Google-Colab for the earlier part of the project, but we move to the supercomputer cluster for 

the 3-dimensional images in the later stages; using the 3-dimensionalimages requires more 

computational power.  
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The Iogﾐiti┗e ┗aヴiaHles foヴ eaIh uﾐiケue M‘I aヴe stoヴed iﾐ a file Ialled けCCΑヰヰ_ﾏt.t┝tげ. To 
extract the labels for the dataset, we take the unique ID for every instance of an MRI, look it 

up in the text file, and store the value of the required label. The valued is then inserted into 

an array, and every subsequent value stored is added to the end of the array. Doing this 

ensures that the labels are stored at the same array index as the MRI data, making it easier 

to access the related MRI data and label.  

In their original format, the labels extracted from the text file are ready to be used for a 

Regression model. But since the data types of the labels (age, memory) are in numerical 

format, we need to make modifications to the data to make it compatible with a classification 

problem. We go through the values of the variables and assign a numerical class label to 

represent the group that the specific MRI belongs to. Once we have done this, we use one-

hot encoding8 to represent the class labels as vectors. After these steps are completed, the 

data can be fed into the classification model.  

 繋憲健健 経欠建欠嫌結建 − 系健欠嫌嫌�血�潔欠建�剣券 系健欠嫌嫌 詣欠決結健 鯨欠兼喧健結嫌 迎結喧堅結嫌結券建欠建�剣券 ど 岫なぱ − ぬど 検結欠堅嫌 剣健穴岻 ぱど なに.にの% な 岫ぬな − ねど 検結欠堅嫌 剣健穴岻 などの なは.どば% に 岫ねな − のど 検結欠堅嫌 剣健穴岻 などな なの.ねは% ぬ 岫のな − はど 検結欠堅嫌 剣健穴岻 などな なの.ねは% ね 岫はな − ばど 検結欠堅嫌 剣健穴岻 などね なの.ひに% の 岫ばな − ばひ 検結欠堅嫌 剣健穴岻 などど なの.ぬな% は 岫ぱど − ぱば 検結欠堅嫌 剣健穴岻 はに ひ.ねひ% 

 

The table shows that some classes have a higher frequency than others, but since there is no 

great disparity of the distribution, there is no need to make any adjustments to the dataset. 

Choosing to have a 71-79 and 80-87 may seem odd, but this was to increase the 

representation of the class by including 80-year olds into the class, going against the pattern 

set by the previous class labels (upper bound as a multiple of 10). Figure 14 is a histogram 

visualisation of the data split mentioned above. 
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Figure 14 Histogram of the Age Distributions 

 

Cropping the MRIs (conditional). 

This step is required when training the model on the supercomputer cluster with the 3-

dimensional high-res MRIs. To improve performance, and work with hardware constraints, 

we cut the size of each high-res MRI by cropping the images. The MRIs are reduced from their 

original size of 181x217x181 to 96x112x96. Cutting down on data from the MRIs removes 

redundant data, but also helps remove noise. After cropping the images, each MRI is inserted 

to the end of a NumPy array. The order of the array elements is in accordance with the NumPy 

array containing the labels for the dataset.  

One-hot vector encoding (conditional) 

This step is only initiated when creating a classification model. The dataset labels from the 

first step are passed into this step for one-hot vector encoding. When designing a 

classification model, we use one-hot vector encoding on the NumPy array of labels to turn 

the values into vectors of 0s and 1s. If we label all MRIs with a class label between 1 and 5, 

and take MRI instances  with the class labels 4, 5, 1, and 2, the instances will have the one-

hot encodings of [0,0,0,1,0], [0,0,0,0,1], [1,0,0,0,0], and [0,1,0,0,0] 

Convert 3-dimensional MRIs into 2-dimensional slices (conditional) 

The MRIs in their original state are 3-dimensional volumetric images (x*y*z). Each axis is made 

up of multi-dimensional vectors containing float32 bits. The full scope of multi-dimensional 

vectors is accessed when used at a 3-dimensional level. If we want to access the MRI at a 2-

dimensional level, we must select a specific axis index. Take figure 15 belowas an example. 

Let the 3-dimensional shape be represented as an array image[:, :, :], where : represents all 

values of the axis, and the 2-dimensional shape represented as an array image[2, :, :] 
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The reason that the shape on the left-hand side is currently a 3-dimensional shape is because 

every single multi-dimensional array in the MRI is in use. But the shape on the right-hand side 

is 2-dimensional because not every tensor is used; we use one multi-dimensional array at one 

of the axes while the rest of the arrays are omitted. This is what converts the 3-dimensional 

MRIs into 2-dimensional.  

Train/test data split 

The original dataset contains 653 unique MRIs. To split the dataset, the Scikit-learn library is 

used. These MRIs, along with their labels, are stored in NumPy arrays. This data is split in two 

subsets: training data and test data. We train our model on the data, and the model makes 

predictions on the test data. The data split ratio is 80/20, that is 521 MRIs for training, and 

132 for testing. This ratio was chosen because thereげs ﾐot a gヴeat deal of data a┗ailaHle, so 
we need to ensure there is enough data to train the model, while still providing enough data 

to test the model. The frequency of each class label will be kept roughly the same as the 

frequency of the full dataset, and the split can be viewed below. Figure 16 below is an example 

of what the training/test ratio distribution could be. 

Training Set  Test Set 

Class 

Labels 

Samples Representation Class Labels Samples Representation 

0 64 12.28% 0 16 12.12% 

1 84 12.28% 1 21 15.90% 

2 80 15.35% 2 21 15.90% 

3 80 15.35% 3 21 15.90% 

4 83 15.93% 4 21 15.90% 

5 80 15.35% 5 20 15.15% 

6 50 9.59% 6 12 9.09% 

Figure 16 Possible Distribution of Classes 

Convolutional Neural Network 

The final part of the software is the Convolutional Neural Network. The network takes in input 

from the previous steps to start training the network. The input is the two NumPy arrays 

Figure 15 3-dimensional to 2-dimensional 
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containing the MRI dataset and the labels data. For this section, there are two major tasks 

carried out that will be explained in their own subsections. 

 Feature extraction 

After being fed the input data from the NumPy files, the Convolutional and Pooling 

layers of the network extract the features from the data. The network learns the 

relationships between the MRIs and the attributes of the data. The output is a tensor 

whose values depends on the modifications performed by the various functions of the 

Convolutional and Pooling layers with respect to bias and weight. The Feature 

Extraction is carried out by 5 pairings of Convolutional and Max Pooling Layers, where 

their functioﾐalit┞ is e┝plaiﾐed iﾐ the さBaIkgヴouﾐdざ uﾐdeヴ さCoﾐ┗olutioﾐal Neuヴal 
Net┘oヴksざ. E┗eヴ┞ saﾏple is Ioﾐ┗oluted H┞ the Coﾐ┗olutioﾐal la┞eヴ, theﾐ do┘ﾐ 
sampled by the Max Pooling layer. The Convolutional and Max Pooling layers will be 

either 2-dimensional or 3-dimensional, depending on the model being constructed. 

The Classification and Regression jobs can only take place on a 1-dimensional feature 

map, so all the data from the Feature Extraction gets passed to the Flattening layer.  

In the Flattening layer, the aggregated information of the Feature Extraction process 

gets passed transformed from either 2-dimensional or 3-dimensional, into a 1-

dimension vector by multiplying the dimeﾐsioﾐs of the pヴe┗ious la┞eヴげs Ihaﾐﾐels 
together. For example, a 3-dimensional sample of 16*19*64 gets converted into a 

vector of 19456.  See Figure 17 below for a diagram of the Feature Extraction 

structure.  
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 Classification and Regression   

The design of the Classification and Regression structure is generally the same across 

all versions. Once the features have all been extracted by the Convolutional 

components and flattened into a 1-dimensional vector, the information is fed into 

either the Regression or Classification components where the final output is produced. 

For the Classification model, we use two Fully Connected Layers to classify the feature 

ﾏap. The Full┞ CoﾐﾐeIted La┞eヴsげ iﾐdi┗idual neurons are connected to every neuron 

of the previous layer and put forward to 256 neurons in the first Fully Connected layer, 

which is then passed on to the 7 neurons in the final Fully Connected layer. The 

number of neurons we choose for the first Fully Connected layer can be any number 

we see fit, but for the final layer it must be the same as the number of classes, 

therefore the final layer has 7 neurons. The final Fully Connected layer outputs a set 

of predictions for the training sample, but in their original state they are a set of 

unnormalized set of probabilities. The final Fully Connected layer uses an activation 

fuﾐItioﾐ ふけ“oftﾏa┝げぶ to ﾐoヴﾏalise the ﾐet┘oヴkげs pヴediItioﾐs so that the┞ Iaﾐ He 
interpreted as probabilities with a range from 0 to 1.  

For the Regression model, we use follow the same structure as the Classification 

model but change the number of neurons in the final Fully Connected layer to 1. No 

activation function is used for the final Fully Connected layer because Regression 

problems are linear and using anything other than the default けLiﾐeaヴげ aIti┗atioﾐ 
function would result in a non-linear output. See Figure 18 below for a diagram of the 

Classification and Regression structure. 

 

 

 

Figure 17 Convolutional Neural Network: Feature Extraction 

Figure 18 Convolutional Neural Network: Classification and 

Regression 
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Loss and Optimisation functions 

Artificial Neural Network problems can be understood as gradient optimisation problems, as 

highlighted iﾐ the さBaIkgヴouﾐdざ uﾐdeヴ さOptiﾏisatioﾐ FuﾐItioﾐsざ.  Aﾐ AヴtifiIial Neuヴal 
Net┘oヴk leaヴﾐs H┞ IalIulatiﾐg the diffeヴeﾐIe iﾐ ┗alue Het┘eeﾐ the ﾐet┘oヴkげs pヴedictions and 

the true value, and then readjusting the weights and bias to minimise Loss. The types of loss 

and optimisation functions depend on the task (Regression or Classification).  

As we have two different models, we have two different sets functions. For Regression, we 

are using Mean Square Error, and we use Categorical Cross-Entropy Loss for Classification, 

Hoth disIussed iﾐ the さBaIkgヴouﾐdざ uﾐdeヴ さOptiﾏal PeヴfoヴﾏaﾐIeざ. We use Meaﾐ “ケuaヴe 
Eヴヴoヴ foヴ ‘egヴessioﾐ HeIause ┘e ┘aﾐt to ﾏeasuヴe the ﾐet┘oヴkげs predictions distance to the 

Regression line to produce a linear result. Then, use Categorical Cross-Entropy Loss for our 

Classification model because the network is mapping the input to one of 7 different classes, 

the type of mapping that Categorical Cross-Entropy is used for.  

The Optimisation functions we use for our Regression and Classification models is Adam.  

Float32 from Float64 

The MRIs are originally float64. With consideration to the hardware constraints, it is necessary 

for us to convert the MRI data from float64 to float32 format when working with 3-

dimensional models. Float64 format can represent numbers much more accurately than 32-

bit floats and allow larger numbers to be stored. However, they also take up twice as much 

memory. Given that there is only so much computational power available to us, we must 

make sacrifices to precision in order to develop a satisfiable working solution. Despite a loss 

in data, there is not a noticeable dip in performance. 

2-dimensional vs 3-dimensional models 

The models designed for 2-dimensional and 3-dimensional MRIs will have no differences, 

apart from using different dimensionalities for the Convolutional and Max Pooling layers 

which will be 2-dimensional or 3-dimensional depending on the model developed.   

Version-Specific Approach 

The development of a Convolutional Neural Network is quick to start off with, but the fine 

tuning of parameters is the part that will take the longest to perfect. When it comes to 

improving on a model, Artificial Neural Networks do not provide any suggestions for 

improving the performance, and a lot of it comes down to ingenuity or speculations that one 

can make on the results. The idea is that after evaluating the performance of a model, it is up 

to the engineer to try deducing where to go next. In this project, an abundance of models was 

tried and tested to achieve the best results, with some models only differing by something 

small like an adjustment to a few parameters. There were a lot of signs for encouragement 

with the results achieved, but there were plenty more disappointments. In this section is the 

design of some of the most impactful models developed through this project. Even if a model 
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did not provide the expected performance, every outcome was viewed as helpful feedback. 

The 2-dimensional models were trained on Google Colab, while the 3-dimensional models 

were trained on the Supercomputer  

Cluster. It was quick and easy to get started on Google Colab, whereas there were long wait 

times when training on the cluster. This was because other users would compete for the 

limited resources when using a GPU partition.  

1-5 Hidden Layers 

When factoring in what size network model to develop, we must consider the size of the 

dataset. With only 653 MRIs, we are unable to develop a very deep model. If we developed a 

model too large, we would run the risk of Overfitting the model. Therefore, we will 

experiment with a different number of hidden layers in the Convolutional Neural Network 

that to decide what design to use for the final version for use on the 3-dimensional MRIs.  

For the purposes of testing and research, the idea is to build Regression models with a 

different number of hidden layers and neurons to see what the ideal amount is. The 

Classification/Regression components will be kept the same. We will develop 5 models, going 

from 1 hidden layer to 5, and see which gives the best performance.  

1. 1 x Convolutional and Max Pooling layer-256 neurons 

2. 2 x Convolutional and Max Pooling layer-128 neurons twice 

3. 3 x Convolutional and Max Pooling layer-64 neurons, 128 neurons, 128 neurons 

4. 4 x Convolutional and Max Pooling layer-64 neurons, 64 neurons, 128 neurons, 

128 neurons 

5. 5 x Convolutional and Max Pooling layer-32 neurons, 64 neurons, 128 neurons, 

128 neurons, 256 neurons 

It is expected that from these models, a network with depth of 4 or 5 will produce the best 

results. 

Final Version of Models 

We will be developing models for the separate high-resolution and low-resolution MRIs. In 

the 2-dimensional models, the MRIs are inserted into the network and converted into 2-

dimensional format. We can specify which axis (x, y, z) we want to omit. The Feature 

Extraction is carried out by の Convolutional and Max Pooling layer pairings. The number of 

neurons in each Convolutional layer gradually builds up with the depth of the network. The 

1st to 5th Convolutional Layers use 32, 64, 128, 128, and 256 filters respectfully. Each one uses 

the LeakyReLU activation function. Kernel sizes are set to 3*3 

Each Max Pooling layer that succeeds a Convolutional Layer is kept the same, creating a 

consistent down sampling of the output of the Convolutional Layer that precedes. Each Max 

Pooling layer uses a 2*2 filter with stride 2. Eventually, the down sampled feature map is 
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propagated to the flattening layer, which multiplies the filters and channels of the last Max 

Pooliﾐg La┞eヴげs output together to create a 1-dimensional vector.   

For the Classification component, it is carried out by two fully connected layers. The first 

layer is made up of 256 neurons nodes and uses the LeakyReLU activation function. The 

second and last layer is consisted by 7 neurons, representing the 7 different class labels. 

For the Regression component, it is carried out by two fully connected layers. The first layer 

is made up of 256 neurons nodes and uses no set activation function. The second and last 

layer only has 1 neuron to output a numerical result. 

For the 3-dimensional models, the MRIs are inserted into the network in their original 3-

dimensional format. Everything is kept the same as the 2-dimensional model apart from a 

few things. The kernel size of the Convolutional Layer is upped from 3*3 to 3*3*3, and the 

Max Pooling layer filter is increased to 2*2*2.  

The Classification component is once carried out by two fully connected layers. The first 

layer is made up of 256 neurons nodes and uses the LeakyReLU activation function. The 

second and last layer is once again only 1 neuron to produce a numerical result. 
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Implementation 
 

The implementation, training, and evaluation was carried out across two different systems 

using the same programming language (Python) and an assortment of libraries. Google Colab 

was used for the 2-dimensional data, while the Supercomputer Cluster was used for the 3-

dimensional data. An Object-Oriented Programming approach was taken because it seemed 

like the easiest way to manipulate the state of a model object. Apart from a few small 

differences, the implementation is almost the same across the two different model types. 

This section will be divided into two parts: - one part for general implementation common to 

every type of model, and another part for code that carries out specific job that is 

fundamental for the running of a specific model.  

General Implementation 

Dataset Pre-processing  

The first step was importing the Cam-CAN dataset. Importing the images involved setting the 

path to the directory that harboured the directories for each unique MRI. The directory that 

held all the high-resolution images did not just have the MRIs; there is two unrelated files that 

must be ignored, which was not happening in the first attempt. In the Python script, the code 

will skip over anything that is not a directory, thereby ignoring the unwanted files.  Every 

directory is labelled by their subject ID, and within them was the MRI file. The directory paths 

are placed into a list, but a problem that arose was how the list of MRI directories was not 

stored in order. This meant that the script was looking up the MRI directories in a random 

order, such that the list of directories to iterate through was stored like [dir123, dir54, dir2...]. 

There may be a time where we need to know something about Subject 1, but without a sorted 

array we would not know the array index containing the required information. To ensure that 

the list of directories was in proper order, the Sorted method was used on Listdir so that the 

list of diヴeItoヴies ┘as kept iﾐ asIeﾐdiﾐg oヴdeヴ [diヴヱ, diヴヲ, diヴン…].  Fヴoﾏ theヴe, ┘e use a script 

to go through each directory path, extract the necessary file and use NiBabel to load the MRI 

image from that file. Special care had to be taken to avoid extracting the wrong MRI file. As 

e┝plaiﾐed iﾐ the さBaIkgヴouﾐdざ seItioﾐ uﾐdeヴ さCaﾏ-CAN datasetざ, theヴe aヴe diffeヴeﾐt t┞pes of 
MRI files in the dataset, so we must consistently extract the same file format. To accomplish 

this, Regex is used to give absolute certainty that only the file matching the Regex pattern 

would be loaded. The image data is either appended to a NumPy array or stored in a local 

directory ready for image cropping (this step will be explained in a later section). Figure 19 

below shows the code that executes these tasks. 
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Figure 19 Dataset Pre-processing: Extract Cam-CAN MRIs 

Figure 19 shows the extraction of the high-resolution MRI image data. Here we have the path 

to the directory containing all the MRIs directories, and building upon that we can get the 

path to the specific MRI files. From there, NiBabel can start loading the image data into our 

local directory ready for cropping. We use ouヴ defiﾐed ‘ege┝ patteヴﾐ, e.g. さsﾏ┘Iヱざ, to ﾏake 
sure that the script only extracts the image data for file names that match the pattern. 

Working with NiBabel was not the easiest task because the documentation does not have the 

greatest explanations or tutorials for the methods part of the library. To some degree, a 

portion of time was wasted trying to figure out how to use the library.    

At the same time as we iteratively go through each unique MRI folder, we take the subject ID 

of the MRI folder and search it up in the Cam-CAN text file containing all the attributes data 

foヴ the test suHjeIts Ialled けCCΑヰヰ_ﾏt.t┝tげ. The te┝t file is stored as a data frame using Pandas, 

and through that we can look up the subject ID to extract the value of any chosen attribute. 

Figure 20 below shows this process for Multiclass classification.  
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Figure 20 Data Pre-processing: Extract the labels 

In figure 20, we are extracting the age of every individual for Multiclass classification, using 

the saﾏe dataset gヴoupiﾐg defiﾐed iﾐ さAppヴoaIhざ uﾐdeヴ さData Pヴe-pヴoIessiﾐgざ. E┗ery time 

the for loop iterates over a new subject ID, the ID is looked up in the text file we loaded up in 

Pandas and their data is located. From there, the age of the subject is passed to the 

multi_classification method. A class label is then given dependiﾐg oﾐ the suHjeItげs age. Iﾐ a 
Regression model, the same steps are followed except instead of appending a class label to 

the labels array, we append the actual age value. 

Cropping the MRIs 

This step is only carried out if we are developing a 3-dimensional model on the high-resolution 

images.  The code has generously been shared by fellow student Ryan Codrai (Cardiff 

University), and uses the re, os, sys, time, NumPy, math, itertools, and skimage libraries. As it 

has already been explained, the computational power required to run the 3-dimensional high-

resolution at in their vanilla state is too demanding on the resources available. By cropping 

the images, we cut down the dimensionality of each image from 181x217x181 to 96x112x96. 

The code goes through every high-resolution MRI and gets the aggregated value of the pixels 

of the MRIs at selected voxels. If the aggregate sum of the voxel values is less than a set 

tolerance value, the code treats the value as if it was zero. In doing this, we cut down the 

amount of data and eliminate any Noise coming from the empty spaces of the MRI, but also 

maintain the same level of resolution. First, the Python script gets the paths of all the pre-cut 
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MRIs, i.e. path to the MRI files that are at 181*217*181 dimensionality. All the MRIs are held 

in a local directory for easy access. Figure 19 below shows the code used to execute the 

cropping. In the figure, we set the directories of where the pre-cut MRIs are, the directory we 

want the results stored in, the value that an MRI voxel must be greater than to avoid being 

removed, and whether we resize the images. The code is shown in Figure 21 below. 

 

Figure 21 Code to crop the MRIs, 

Once the process is complete, the MRIs produced have less redundant data, and a cropped 

MRI example is displayed below in Figure 22. 

 
Figure 22 Cropped MRI 

Training/Test Split 

 

Figure 23 Training and Test split 
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Figure 23 above shows how we split the dataset into training and test sets into a ratio of 

80/20. The value of test_size determines the fraction of the dataset that goes to the test set.  

One-hot Vector Encoding 

The method for One-hot Vector encoding is caヴヴied out usiﾐg P┞thoﾐ, aﾐd Keヴasげ oﾐe-hot 

vector encoding to_categorical. This method is only used when developing a Classification 

model because the numerical form of Ages and Memory are suitable to feed into a Neural 

Network. As it has already been explaiﾐed iﾐ さBaIkgヴouﾐdざ uﾐdeヴ さOﾐe-hot VeItoヴ eﾐIodiﾐgざ, 
a Convolutional Neural Network cannot take in a discrete range of data, e.g. 18-30 years old, 

class labels 0 to 5. The data_preprocesses method takes in a NumPy array containing the class 

labels for the M‘I dataset, aﾐd iﾐ┗okes Keヴasげ to_categorical method. Figure 24 below 

converts the mris_age array into one-hot vector format. 

 

Figure 24 One-hot Vector Encoding of Ages array 

Convert 3-dimensional MRIs to 2-dimensional slices 

This implementation was carried out using Python. Figure 25 uses no additional libraries and 

slices the MRIs into 2-dimensional form, such as 61*73 dimensionality.  

 

Figure 25 3-dimensional to 2-dimensional slices for low-resolution MRIs 

At the start of the object initialisation, mris_2-dimensional is an empty array. Through the 

reshape_2-dimensional method, we pass a valid axis value, e.g. 30 for the z axes, and the 

method will append every MRI as 61*73*1 size, in the array mri_array, to the array mris_2-

dimensional where the z axis is a constant. This is carried out for all 653 MRIs, and then the 

array is saved as a NumPy array. Figure 26 below is an example of an uncropped 2-

dimensional slice created from the above script. 
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Figure 26 2-dimensional MRI slice with constant z-axis value 

Convolutional Neural Network 

The implementation of the Convolutional Neural Network was done using Python and 

various libraries. Initially, the development followed the tutorial for a 2-dimensional 

Convolutional Neural Network for MNIST digit recognition [31]. Later, with further 

experience, a model was developed for 3-dimensional MRIs. The Convolutional Neural 

Network was developed using Keras with a Tensorflow backend. The justification of use for 

these libraries is e┝plaiﾐed iﾐ さBaIkgヴouﾐdざ uﾐdeヴ さ“oft┘aヴe LiHヴaヴies usedざ. Heヴe, Keヴas 
acts as the front-end, whilst Tensorflow is running in the back-end. With plenty of 

documentation available and adequate tutorials available online, Keras was the correct 

choice for developing a Convolutional Neural Network. Several reputable companies use 

these libraries due to the ease of developing a quick prototype, CNNs support, and the 

ability to run on a GPU. Such companies include Uber, Google, AirBnB [32],  and Facebook.  

Despite the differences between a 2-dimensional and 3-dimensional model, there will not 

be any clear distinctions between implementation of the two models explained here 

because the implementation is generally the same across both models. What is more 

distinctive between these models is the computation carried out by the network model.  

This section will be split up into three parts: The Convolutional Neural Network model 

(Feature extraction, Classification or Regression), the building, training, and evaluation of 

the model, and finally the object constructor method. In each section, the importance and 

role of each section of code is explained and will highlight how the codebase comes 

together to create a trained Convolutional Neural Network. For this implementation, a 3-

dimensional, high-resolution Convolutional Neural Regression model is being used. Some of 

the code may seem abruptly cut off. This is to avoid inserting all the code into the section 

where the lines of code are similar and offer nothing substantially different.  
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Section 1: The Network Model 

The implementation of the model is generally the same across all versions but saw the most 

changes. These changes include parameters, layers, 2-dimensional or 3-dimensional, and 

Classification or Regression. The regression_dropout_model method defines the 

architecture of a developed regression model. Despite the name, the functionality of the 

method is generally the  same across different models. In this method we define all the 

layers of the model, how we fit the data, and train and evaluate network. The method is 

instantiated by the constructor class during the Main function (discussed later) after the 

construction of an object and gets passed defined values for batch size and epochs 

(iterations of training network). Refer to Figure 27 below for this.  

 

Figure 27 Artificial Neural Network-Model definition 

In the first line we define a Sequential Convolutional Neural Network structure. A Sequential 

model is a design made up of a linear stack of layers, like stacking LEGO bricks on top of 

each other. From there, we define our first Convolutional 3-dimensional layer, as every 

Convolutional Neural Network always starts with a Convolutional layer. This is the first 

Convolutional Layer in the code, therefore, Keras treats it as the Input layer. This is shown in 

Figure 28 below.  

 

Figure 28 Convolutional Neural Network: Sequential model, Input Layer 

As the Input layer, we pass the dimensionality of the MRIs into input_shape. In this version, 

the Input layer performs convolution using 32 filters of size 3*3*3. It uses the LeakyReLU 

activation  

The first Max Pooling layer takes the output of the previous Convolutional Layer and down 

samples the result by using a filter of 2*2*2 and stride of 2. Figure 29 below shows the code 

for this 

 

Figure 29 Convolutional Neural Network: Max Pooling 

The implementation of every Convolutional and Max Pooling layer is the same, but the 

number of filters for certain Convolutional Layers after the first one is greater than the 

other. Each of the parameters for the succeeding Max Pooling layers are the same as the 

first one.  

In the 4th and 5th layer, we implement Dropout and Batch Normalisation respectively. This is 

shown in Figure 30 below 
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Figure 30 Convolutional Neural Network: Dropout and Batch Normalisation 

In Figure 30, we set the Dropout ratio i to 0.25 so that 25% of the neurons in that layer are 

randomly dropped from training. Momentum for the Batch Normalisation is set to 0.75. 

What is momentum? 

As stated, the parameters for the succeeding Convolutional and Max Pooling layers of the 

first pairing are the same, apart from the number of filters used for the Convolutional 

Layers. This is displayed in Figure 31 below.  

 

Figure 31 Convolutional Neural Network: Remaining Convolution and Max Pooling Layers 

As Figure 31 shows, the implementation of the layers are the same as the first pair of 

Convolution and Max Pooling layers, with the only difference being the number of filters 

used in the Convolution Layers. The 2nd, 3rd, 4th, and 5th Convolutional Layers use 64, 128, 

128, and 256 filters of 3*3*3 respectively.  

The final Max Pooling Layer is succeeded by a flattening layer which reshapes the output 

from the last Max Pooling Layer of output 3*4*3 and channels 256 into a 1-dimensional 

vector of size (3*4*3*256) = 9216. This is shown in Figure 32 below. 

 

Figure 32 Convolutional Neural Network: Flattening layer 

The resulting output from the flattening layer is then fed forward to the first Dense layer 

made up of 256 neurons with a LeakyReLU activation with alpha set to 0.1. The output of 

the first Dense layer is then passed through to the last Dense layer made of 券 classes, which 

in this case is 7 for the 7 different classes in this multiclassification model. The last Dense 

layer uses the Softmax activation function. This is shown in Figure 33 below.  

 

Figure 33 Convolutional Neural Network: Dense Layers 
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After the training example has been from the input layer to the output layer, each neuron of 

the output layer will produce a probability that the sample belongs to the respective class. 

Softmax is required in order to normalise the probabilities to within a range of 0 and 1.  

Section 2: The Network Training, Evaluation, and Prediction 

Once the model has been constructed, we can start using the model. The three tasks we put 

our model through are Training, Evaluation, and Prediction. Figure 34 shows where the 

model training takes place. 

 

Figure 34 Convolutional Neural Network: Training 

Figure 34 shows the methods uses to calculate and reduce Loss in the network with the 

compile() method. The Loss function is Categorical Cross-Entropy, Adam is the Optimisation 

function used, and the metrics we are retrieving are for categorical accuracy. The training 

and test datasets are fitted to the model using the fit() method. Batch size and epochs are 

defined when the object is instantiated, but in this case, they are 16 and 20 respectively.  

 

Figure 35 Convolutional Neural Network: Evaluation 

In Figure 35 aHo┗e, the ﾏodelげs peヴfoヴﾏaﾐIe is e┗aluated ┘ith the test data. What does 
verbose do? Verbose is set to 1. As a Classification model, this code will produce the 

Accuracy and Loss of the model, such that it compares the predicted class to the actual class 

of the training sample. Once it is finished evaluating the predictions to the true values of the 

sampleげs laHels, it ┘ill ヴetuヴﾐ the AIIuヴaI┞ aﾐd Loss ﾏetヴiIs. 

 

Figure 36 Convolutional Neural Network: Prediction 

Figure 36 above shows how the predictions are carried out on the model. The model will 

return a set of probabilities for which class the model thinks a test sample belongs too and 

store them in predicted_classes. The class label with the highest value in the set of 

pヴoHaHilities is theﾐ takeﾐ as the pヴediIted Ilass laHel foヴ the test saﾏpleげs M‘I. Foヴ the 
Classification model, the model predictions and the true class labels of the dataset are put 
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into a Confusion Matrix to better visualise the predictions vs the true values of the labels. 

The generation of a Confusion Matrix is carried out by the plot_confusion_matrix() function.  

Section 3: The Network Main Function 

The Main function starts by setting values for batch size and epochs. Then, we instantiate 

either a 2-dimensional or 3-dimensional model.  

 

Figure 37 Convolutional Neural Network: Main function 

In Figure 37, we instantiate a 3-dimensional model. We set the batch size to 16 and epochs 

to 20. When it comes to building the network architecture, training and evaluating it, and 

then getting predictions, we do this from the main function by calling methods on the 

instantiated object, which in this case is dropout_model_3-dimensional.  

 

Figure 38 Convolutional Neural Network: Initialising Object 

In Figure 38, when any model is instantiated, the MRI data and MRI labelling is imported. 

For the Classification model, we extract all the unique class labels and store them in a 1-

dimensional vector. nClasses stores the number of different unique classes found. Mris_2-

dimensional is an array used to hold the 2-dimensional slices of the MRI data.  

 

Figure 39 Convolutional Neural Network: Data Pre-processing 

In Figure 39, this is where the data pre-processing happens. Between the 2-dimensional and 

3-dimensional data, the only difference is the additional dimension from using 3-
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dimensional data, therefore, one of either the x, y, or z value of a 3-dimensional MRI would 

be omitted from the reshaping. Furthermore, the train and test data split is done. Test_size 

is set to 0.2, therefore, the ratio is 80% training data and 20% test data. Finally, in the 

Classification model the dataset labels are one-hot vector encoded using the 

to_categorical() method. This converts every element in the mris_age array into a vector 

format.  
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Results and Evaluation 
 

The aim of this project has been achieved. A Convolutional Neural Network to predict non-

linear variables of a given MRI has been developed, and has shown the ability to outperform 

more basic, linear models such as Support Vector Machines aﾐd Naï┗e Ba┞esげ. The 
relationship between the non-linear nature of ageing to the features extracted from the raw 

images has been mapped by CNNs, and results show an ability to either correctly classify MRI 

images or predict the continuous value of an MRI.  Since this is the first time that a 

Convolutional Neural Network has been developed for use with the Cam-CAN dataset, it is 

hard to truly understand how well this model has performed compared to the many 

thousands of models that software engineers have developed when tackling different 

problems with different datasets. It is therefore worth noting that until another model is 

developed for this specific project, the results achieved thus far are to be taken as the best at 

this moment in time.  

Evaluation Metrics and Methods used 

There is a total of 5 different evaluation metrics used to assess the performance of the 

Convolutional Neural Network. The 5 chosen metrics are enough to assess the strength of the 

models for Classification and Regression. For the classification model, Accuracy and Confusion 

Matrix metrics were used, and MAE and MSE were used for the regression model. Each of the 

5 models uses the Loss metric.  

Accuracy is a measure of the number of correctly predicted labels of an MRI out of all the MRI 

samples. The validity of accuracy in a performance evaluation comes into question when 

there is a data imbalance in the dataset; when a classification problem has a disproportionate 

number of samples across n-classes in a n-class classification problem, other metrics should 

be chosen instead of, or at least alongside, Accuracy. For example, in a two-class problem 

with 100 samples, where 90 classes are labelled 1 and 10 samples are labelled 2, it is possible 

for a model to achieve 90% Accuracy due to the disproportionate number of samples 

belonging to the class label 1. 

Accuracy alone can misrepresent the strength of a model, hence why a Confusion Matrix is 

used alongside it. A confusion matrix is an n x n matrix, where n is the total number of classes, 

for summarising the performance of a classification model. It shows the predicted class for a 

sample against its actual class. The Confusion Matrix shows specifically where the classifier is 

mis-classifying samples of the data, allowing us to see where the errors are being made. Below 

is an example of a Confusion Matrix for a classification model that classifies animals as either 

a Cat, Dog, or Rabbit. Figure 40 below is an example of a Confusion Matrix to classify animals 

into one of three different types. 
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  畦潔建憲欠健 系健欠嫌嫌 

  系欠建 経剣訣 迎欠決決�建 鶏堅結穴�潔建結穴 系健欠嫌嫌 系欠建 の に ど 経剣訣 ぬ ぬ に 迎欠決決�建 ど な なな 

 

Figure 40 Confusion Matrix example  

This Confusion Matrix is 3x3 due to there being 3 different classes. The columns show the 

actual class of an instance, whereas the rows show the predicted class of the instance.  For 

example, 2 instances of a Dog were incorrectly predicted to be a Cat. Note that diagonally 

going from top left to bottom right shows the instances that were correctly classified. If a 

model produces a Confusion Matrix where all cells but the diagonal ones from top left to 

bottom right are 0, then that model is 100% accurate.  

When it comes to the Cam-CAN dataset, we expect the Confusion Matrix to make some wrong 

predictions about the samples, but these should be within reason. If an MRI belongs to the 

class 18-30 years old but is predicted to belong to the class 31-40 years old, this is 

understandable because we expect similarities between the MRIs of these 2 groups. 

However, if an MRI belonging to the 18-30 years old class is predicted as being in the 61-70 

years old class this raises a cause for concern. This is the power of a Confusion Matrix; we can 

discover insights that would not be possible when only using the Accuracy metric. It is also 

due to this acknowledgement that we introduce another metric alongside Accuracy, Accuracy 

±1, where Accuracy ±1 is the number of correctly predicted classes and the class predictions that are 

1 higher or lower than the actual value.  

Mean Absolute Error (MAE) measures the average magnitude of the errors (actual value – 

predicted value) in a set of predictions. It is the average over the test sample of the absolute 

differences between prediction and actual observation where all individual differences have 

equal weight. The aim is to get MAE as close to 0 as possible. 

Mean Square Error measures the average of the squares of the error [29]. Its value tells you 

how close the set of points of a regression model are to the regression line. This is done by 

taking the distance of the points from the regression line and squaring them. By squaring 

these values, it keeps the MSE positive and gives greater. Values closer to 0 are always better. 

An MSE of zero, where an estimator predicts input with perfect accuracy, is desirable but 

incredibly hard to achieve. For better understanding of the MSE and MAE metrics, look 

thヴough the さBaIkgヴouﾐdざ seItioﾐ uﾐdeヴ さLoss FuﾐItioﾐsざ. 

The final metric used is Loss. The Loss fuﾐItioﾐ ┘as e┝plaiﾐed duヴiﾐg the さBaIkgヴouﾐdざ seItioﾐ 

uﾐdeヴ さOptiﾏal PeヴfoヴﾏaﾐIeざ. As we are using a type of Gradient Descent Optimisation 

algoヴithﾏ ふAdaﾏぶ, ┘e e┝peIt the ﾏodelげs loss to ケuiIkl┞ deIヴease, Hut theﾐ steadil┞ stagﾐate 
into the later iterations of training, being unable to decrease loss by a great deal.  
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Early Development Results 

The results in this section reflect the assumptions made early in the project and justify certain 

design choices made. The Cam-CAN dataset was used for each evaluation, on a 2-dimensional 

Convolutional model for the low-resolution (61*73) images. These results are not an indicator 

of the pヴojeItげs ultiﾏate ヴesults Hut aiﾏ to ヴeiﾐfoヴIe the justifiIatioﾐ foヴ usiﾐg Coﾐ┗olutioﾐal 
Neural Networks for the aims and objective of the project, hence why we only evaluate the 

performance on the 2-dimensional low-resolution MRI images.  

Effect of number of Layers 

It ┘as disIussed iﾐ the さAppヴoaIhざ uﾐdeヴ さVeヴsioﾐ “peIifiI AppヴoaIhざ that ┘e ┘aﾐted to see 
the effect of a different number of hidden layers for a network architecture. For this, 5 

Regression models are developed, with the number of hidden layers for the Feature 

Extraction increasing per model, up to a maximum of 5 hidden layers. The Regression 

component of the models are kept the same. The experiment was carried out on the high-

resolution MRIs, using a 2-dimensional Regressive model. When evaluating the performance 

of the models, we are comparing the Mean Squared Error, Mean Absolute Error, and Loss.  系剣券懸剣健憲建�剣券欠健 軽結憲堅欠健 軽結建拳剣堅倦 − 系欠兼 − 系畦軽 結血血結潔建 剣血 詣欠検結堅嫌 

 警鯨継 警畦継 詣剣嫌嫌 な 健欠検結堅 はぬ.はぱ 7.85 はぬ.ぱひ に 健欠検結堅嫌 1.54 1 な.のね ぬ 健欠検結堅嫌 0.74 0.69 0.74 ね 健欠検結堅嫌 0.74 0.67 0.74 の 健欠検結堅嫌 0.69 0.67 0.69 

Table 3 Convolutional Neural Network: Effect of Layer Count 

The  results in Table 3 above show that, as expected, a network architecture with several 

layers in proportion to the size of the dataset will perform than one with too few layers. This 

could be down to the smaller architectures not having enough time to learn the features from 

the images before being fed to the output layer, where the backpropagation begins again.  

Effects of Dropout  

As disIussed iﾐ さOptiﾏal PeヴfoヴﾏaﾐIeざ iﾐ the さBaIkgヴouﾐdざ, ┘e iﾏpleﾏeﾐt Dヴopout to 
reduce Overfitting when fitting data in the network. The testing was carried out on the Cam-

CAN dataset, fitted to a Multi-class Classification model. The MRIs had class labels ranging 

from 0 to 3, therefore, it was a 4-class model. The network architecture was three 

Convolutional and Max Pooling layer pairings, succeeded by two Dense layers for the 

classification. The Dropout followed one of the Convolutional layers at a factor 喧 = ど.に, 

where 喧 is the fraction of neurons randomly dropped in a layer. The batch size was 128, and 

there were 20 epochs (iterations of training). The Dropout is set low because of the small 

dataset size, relative to the network architecture. 
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系剣券懸剣健憲建�剣券欠健 軽結憲堅欠健 軽結建拳剣堅倦 − 継血血結潔建 剣血 経堅剣喧剣憲建 

 経堅剣喧剣憲建 血欠潔建剣堅 劇結嫌建 畦潔潔憲堅欠潔検 劇結嫌建 詣剣嫌嫌 経堅剣喧剣憲建 ど.に ど.のど% な.なね 軽剣 経堅剣喧剣憲建 券/欠 ど.ねば% な.なの 

Table 4 Network Performance with/out Dropout 

As expected by Table 4 above, the network performs better when Dropout is in place. Figure 

41 below shows the training and validation Accuracy and Loss for both models, where the x 

axis is epochs, and y axis is either Accuracy or Loss.  

  

Figure 41 (Left) No Dropout, (Right) Dropout 

The graphs show for both models that both models eventually stops learning, but most 

importantly, that the Dropout model had better performance. This can be attributed to how 

the model had less to train on than a network without Dropout, therefore, the weaker model 

must have started to pick up on Noise and fluctuations in the dataset, detriments that the 

model with Dropout cut down on. However, the performance suggests that there is no great 

benefit in using Dropout in the model. This could be down to the size of the dataset and the 

network, as has already been highlighted. Nonetheless, it could be beneficial to have one 

Dropout layer where the ratio of dropped neurons is set, thus giving enough features for the 

network to learn from.  
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Comparing Convolutional Neural Networks to Basic Models 

Results show the Convolutional Neural Network models performed better than the basic 

models on the Classification models. The Convolutional Neural Network and basic models 

used the same training and test dataset to ensure no ambiguity regarding their performance 

on the dataset.   

The comparison of results between the different models is given by their accuracy. The 

dataset is randomly split into training and test datasets, but each model uses the same data.  畦喧喧堅剣欠潔ℎ 畦潔潔憲堅欠潔検 系剣券懸剣健憲建�剣券欠健 軽結憲堅欠健 軽結建拳剣堅倦 ど.のな 鯨憲喧喧剣堅建 �結潔建剣堅 警欠潔ℎ�券結嫌 ど.ねの 迎欠券穴剣兼 繋剣堅結嫌建 系健欠嫌嫌�血潔欠建�剣券 ど.ねば 軽欠�懸結 稽欠検結嫌 ど.ねは 

Table 5 Convolutional Neural Network vs Basic Models 

As we would have expected, the results in Table 5 show a Convolutional Neural Network 

performed better than the more basic models. 

Key Results 

The results in this section are indications of how well the Convolutional Neural Network has 

performed to meet the aims and objectives of the project, as set out from the beginning in 

the さIﾐtヴoduItioﾐざ seItioﾐ. Iﾐ this seItioﾐ, eight diffeヴeﾐt models are compared, with the 

Regression and Classification models having four different models each for the different 

image dimensionalities and resolution. The Classification model is a 7-class model, with MRIs 

labelled a number between 0 and 6, with 0 being the youngest age group and 6 being the 

oldest age group. The gヴoup laHelliﾐg is e┝plaiﾐed eaヴlieヴ iﾐ さAppヴoaIhざ uﾐdeヴ さData flo┘s of 
the “┞steﾏざ.   

These different models are summed up in Figure 42 below. 系剣券懸剣健憲建�剣券欠健 軽結憲堅欠健 軽結建拳剣堅倦 兼剣穴結健嫌 迎結訣堅結嫌嫌�剣券 系健欠嫌嫌�血�潔欠建�剣券 詣剣拳 − 迎結嫌剣健憲建�剣券 茎�訣ℎ − 堅結嫌剣健憲建�剣券 詣剣拳 − 迎結嫌剣健憲建�剣券 茎�訣ℎ − 堅結嫌剣健憲建�剣券 に経 ぬ経 に経 ぬ経 に経 ぬ経 に経 ぬ経 

Figure 42 Breakdown of models developed 

The model architecture for the performance evaluation in this section is the one described as 

the final version iﾐ the さAppヴoaIhざ seItioﾐ, i.e. a Convolutional Neural Network with 5 pairs 

of Convolutional and Max Pooling layers, and 2 Dense layers. The results for each of the 

models are given below in Figure 43. The batch size was set to 16, and the epochs was set to 

20 
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系剣券懸剣健憲建�剣券欠健 軽結憲堅欠健 軽結建拳剣堅倦 警剣穴結健嫌 鶏結堅血剣堅兼欠券潔結 警剣穴結健 劇検喧結 経�兼結券嫌�剣券欠健�建検 警迎荊 迎結嫌剣健憲建�剣券 畦潔潔憲堅欠潔検 警鯨継 警畦継 詣剣嫌嫌 系健欠嫌嫌�血�潔欠建�剣券 に経 茎�訣ℎ ねね% ~ ~ な.ひば 系健欠嫌嫌�血�潔欠建�剣券 に経 詣剣拳 ぬに% ~ ~ に.ぱな 系健欠嫌嫌�血�潔欠建�剣券 ぬ経 茎�訣ℎ ねね% ~ ~ な.ひば 系健欠嫌嫌�血�潔欠建�剣券 ぬ経 詣剣拳 ぬね% ~ ~ に.どひ 迎結訣堅結嫌嫌�剣券 に経 茎�訣ℎ ~ ど.はひ ど.はば ど.はひ 迎結訣堅結嫌嫌�剣券 に経 詣剣拳 ~ ど.ひは ど.ぱな 0.96 迎結訣堅結嫌嫌�剣券 ぬ経 茎�訣ℎ ~ ど.ばぬ ど.はば 0.73 迎結訣堅結嫌嫌�剣券 ぬ経 詣剣拳 ~ ど.ばね ど.ば ど.ばね 

Figure 43 Compiled Results of CNN models 

Note on Classification Results 

There are 7 different class labels in the Classification model (0-6). The probability of correctly 

predicting the class label for a random MRI is 
怠7 = ど.なね. Any model with an accuracy greater 

than 0.14 is performing better than a baseline. 

2D Classification High-Resolution 

This model evaluated the test data with 44% accuracy and 1.97 Loss. The accuracy is much 

better than the expected accuracy of 0.14% The predictions are presented in the following 

Confusion Matrix in Figure 44. 

 

Figure 44 Result: Confusion Matrix Classification 2D High-Resolution 

The Confusion Matrix shows that most predictions were correct or were classes ±1 from the actual 

label. 20 samples were completely incorrect (were not ±1 from the actual class). 



59 

 

劇堅憲結 詣欠決結健 �欠健憲結 畦潔潔憲堅欠潔検 畦潔潔憲堅欠潔検 ± な  ど はど% ぱは.は% な にひ% ばの% に には% ひの% ぬ はぱ.な% ひど.ひ% ね ぬば.の% ぱに.ぬの% の ぬな.の% ぱね.にな% は ばに.ばに% ばに% 畦懸結堅欠訣結 ねは.ね% ぱぬ.ばに% 

 

 

Figure 45 Result: 2D Classification High-res Loss graph 

 Analysis 

The accuracy of the model is satisfiable. The model performed better than the baseline of 

14%, achieving 44% accuracy. However, the results could be better. There appears to be signs 

that the model can capture the relationship between the features and the variables. On the 

other hand, the Loss graph in Figure 45 is a concern, as it starts off well, but halfway through 

the gradient sharply goes up, and slowly comes down. This indicates to me that the model is 

still learning or is starting to Overfit the data. Overall, the results of this model are okay, but 

we would have to look at ways of improving the model. 

2D Classification Low-resolution 

This model evaluated the test data with 32% accuracy and 2.81 Loss. The predictions are 

presented in the following Confusion Matrix in Figure 46. 
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Figure 46 Result: 2D Classification Low-res Confusion Matrix 

Figure 44 shows that there were a lot of unsuccessful predictions, along with less successful 

±1 predictions. There were 31 completely incorrect predictions  劇堅憲結 詣欠決結健 �欠健憲結 畦潔潔憲堅欠潔検 畦潔潔憲堅欠潔検 ± な  ど はど% ばぬ% な なに.の% などど% に のば% はひ% ぬ ひ% ぱは.ぬ% ね にぬ% ねば% の ぬは% ぱひ.ね% は なぱ% はぬ% 畦懸結堅欠訣結 ぬど.ぱ% ばの.ね% 

 

 

Figure 47 Results: 2D Classification Low-res Accuracy and Loss 
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Analysis 

The results of this model are not as good as the ones from the previous model that was fed 

high-resolution images. This shows that a model fed the high-resolution images performs 

better than one without them. This comes as no surprise, given that the high-resolution 

images offer more parameters for the model to train from. However, it would not be right in 

saying that either of the models have a good standard of performance, after observing the 

Loss graph. There appears to be no sign that the graph is slowly reducing Loss to 0. Arguably, 

the model stops learn around the 10th epoch.  

3D Classification High-resolution 

This model evaluated the test data with 44% accuracy and 1.97 Loss. Miraculously, this is the 

same set of results as the 2-dimensional High-resolution Classification model. Figure 46 below 

is the Confusion Matrix for this model. 

 

Figure 48 Results: 3D Classification High-res Confusion Matrix 劇堅憲結 詣欠決結健 �欠健憲結 畦潔潔憲堅欠潔検 畦潔潔憲堅欠潔検 ± な  ど はど% ぱは% な にひ% ばの% に には% ひの% ぬ はぱ% ひど% ね ぬの.に% ぱに.ぬ% の ぬな.の% ぱね.に% は ばに% ばに% 畦懸結堅欠訣結 ねの.ひは% ぱぬ.の% 
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Figure 49 Results: 3D Classification High-res Loss 

Analysis 

This model is arguably the best performing Classification model out of the 4 developed. It possibly 

shows an ability to map the MRIs to the correct class labels. This is because, despite the Loss and 

gradient spiking up near 12 epochs, the last few epochs show a direction towards a Loss of 0. 

However, more iterations would be needed in order to see where the slope is actually going. 

3D Classification Low-resolution 

This model achieved 34% accuracy and 2.09 loss. The Confusion Matrix for this model is displayed 

below in Figure  

 

Figure 50 Result: 3D Classification Low-res Confusion Matrix 
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劇堅憲結 詣欠決結健 �欠健憲結 畦潔潔憲堅欠潔検 畦潔潔憲堅欠潔検 ± な  ど ぬぬ% はは% な ぬば.の% ばひ.な% に ぱ.ば% ばぱ.に% ぬ ねど.ひ% ばば.に% ね なな.ぱ% はの% の ぬな.の% ぱひ.ね% は ばに% ひど% 畦懸結堅欠訣結 ぬぬ.は% ばば.ぱ% 

 

 

Figure 51 Results: 3D Classification Low-res Loss 

Analysis 

As to be expected, the low-resolution model performed roughly the same as the 2-

dimensional model, highlighting the factor that the number of trainable parameters play in 

the strength of a model. In this model, this is no reason to believe that this model has learned 

to map MRIs to variables because of the trajectory and gradient of the Loss graph not 

decreasing towards 0.  

2D Regression High-resolution 

This model achieved an MSE of 0.69 and MAE of 0.67.  
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Figure 52 Result: 2D Regression High-res MSE & MAE 

 

Figure 53 Result: 2D Regression High-res Loss 警鯨継 警畦継 詣剣嫌嫌 ど.はひ ど.はば ど.はひ 

 

Analysis 

This was a great result. Each graph shows how the metrics are making huge steps towards 

reaching 0. On the other hand, the gradient for Validation MAE is less stable than the other 

metrics and shows signs of instability. This is possibly because of the interaction between MAE 

and the Gradient Descent algorithm, where MAE is a more Linear gradient, and produces a 

smaller range of values compared to MSE. The results of this model lead me to believe that it 

can map the relationships between MRIs and non-linear variables.  

2D Regression Low-resolution 

This model achieved an MSE of 0.96 and MAE of 0.81, and a Loss of 0.96. The performance is 

not as good when the model uses the low-resolution images. But this is expected because 

there are more parameters for the network to train with the high-resolution images.  
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Figure 54 Result: 2D Regression Low-res MSE & MAE 警鯨継 警畦継 詣剣嫌嫌 ど.ひは ど.ぱな ど.ひは 

 

 

Figure 55 Result: 2D Regression Low-res Loss 

Analysis 

The results are reasonable. The metrics returned are good, but the graph projections raise 

concerns. Towards the later epochs the model seems less stable, and it is possible that the 

model was at its best around the 10th epoch. This could be because the model started to 

Overfit, or because the weights and bias that the model randomly initialized with put the 

model into this scenario. On the other hand, we could bring into question whether the Adam 

optimisation function has performed well enough, given its nature to adjust the training 

samples weights and bias, and the adapt the learning rate per sample. The results of this 

model lead me to believe that it can map the relationships between MRIs and non-linear 

variables, but not as well as models with the high-resolution images. 
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3D Regression High-resolution 

This model achieved an MSE of 0.73 and MAE of 0.67 and a Loss of 0.73.  

  

Figure 56 Results: 3D Regression High-res MSE and MAE 警鯨継 警畦継 詣剣嫌嫌 ど.ばぬ ど.はば ど.ばぬ 

 

 

Figure 57 Results: 3D Regression High-res Loss 

Analysis 

The results show that the Regression model can map MRIs to the outputs with a good degree 

of certainty. Each graph show progression towards reaching 0.  

3D Regression Low-resolution 

This model achieved an MSE of 0.74 and MAE of 0.70 and a Loss of 0.74.  
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Figure 58 Result: 3D Regression Low-resolution MSE and MAE 

 

 

 警鯨継 警畦継 詣剣嫌嫌 ど.ばね ど.ばど ど.ばね 

 

 

Figure 59 Result: 3D Regression Low-res Loss 

Analysis 

The results are strong. The model appears to map the relationship between an output and 

the MRIs extremely well. The metrics from this model are some of the best achieved, and is 

proven by the illustrations of the MSE, MAE, and Loss graphs, as the values of the 3 metrics 

steadily go closer towards 0. Once again, and not for the first time, MAE shows signs of 

uncertainty. The model must be strong because the MSE and Loss are edge further towards 

0. The results of this model lead me to believe that it can map the relationships between MRIs 

and non-linear variables 
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Conclusion of Results 

The analysis of the results achieved show that the Regression models performed better than 

the Classification models at 3-dimension and 2-dimension. This is due to the illustrations 

shown by the graphs between the models, where in Regression the model shows signs of 

learning the relationships between MRIs and variables, whereas the Classification models do 

not. The Regression models have consistently shown strong performances, whereas the 

Classification models have been just above average. However, the results achieved for the 

Classification models would be better had there been a better distribution of classes amongst 

the training and test set.  

There appears to be a pattern that networks fed the same resolution MRIs will result in getting 

roughly the same evaluation metrics results. This was most notable when training the 

Classification models on the high-resolution and low-resolution MRIs.  

We have shown that the depth of an Artificial Neural Network does matter, but that there is 

more emphasis on their needing to be a minimum number of layers to correctly train the 

model. As always, the number of layers chosen should be in proportion to the size of the 

dataset, hence why a layer depth of 4 or 5 would have been adequate to complete this task. 
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Future Work 
 

The aims of the project have been met, but there are more avenues to be explored that could 

improve upon the results achieved in this project. 

Architecture Optimisation  

If there was more time available, some effort into finding optimal parameter values for things 

like kernel size, learning rate, and padding could have happened. The key decisions such as 

the model architecture, the optimisers and loss functions used etc. were choices made based 

on experimentation to find the best results. But the values for certain parameters were 

chosen only because they were the widely accepted default value. An attempt at training the 

model with something like different kernel sizes could have made smaller steps to a better 

performing model.  

Future work should also look at using a different type of Gradient Optimisation function. In 

this project, we use the Adam optimiser, a variant of Stochastic Gradient Descent. The next 

approach should experiment with a different one, such as Mini-batch gradient descent.   

Better Classification Training/Test Split 

Unfortunately, there was not enough time to properly split the Multiclassification labels into 

a fair distribution. This means that the training and test split distribution shown in さAppヴoaIhざ 
uﾐdeヴ さData flo┘s of the s┞steﾏざ ┘as ﾐot the one used. Due to this, the representation of 

classes in the training and test datasets are random, resulting in unsavoury results because of 

a lack of fair representation. In the future, a function, or process, will have to be done to 

ensure a fair distribution amongst classes in the training and test split to get the distribution 

shown in Figure 56 below. 

Training Set  Test Set 

Class 

Labels 

Samples Representation Class Labels Samples Representation 

0 64 12.28% 0 16 12.12% 

1 84 12.28% 1 21 15.90% 

2 80 15.35% 2 21 15.90% 

3 80 15.35% 3 21 15.90% 

4 83 15.93% 4 21 15.90% 

5 80 15.35% 5 20 15.15% 

6 50 9.59% 6 12 9.09% 

Figure 60 Future Training/Test split distribution 

Capsule Networks 

Despite the success of Convolutional Neural Networks, it is believed that one of their biggest 

pitfalls is an inability to map the spatial relationship of objects, such that rotating an image in 
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an alignment that the model has never seen before could throw off the ﾏodelげs pヴediItioﾐs, 
e.g. rotating a face in a dataset 47 degrees clockwise. This is because Convolutional Neural 

Networks focus on the features present on an image, and do not focus on the spatial 

relationship between features, like the relationship between the different parts of a face. 

Capsule Networks [33] are a modern neural network architecture based on Convolutional 

Neural Networks that work similarly, but make sure to map the spatial relationship between 

features of an image, such that the model performs better by recognising a face based not 

only on the features of a nose and, but their position on the face of an image as well. On the 

MNIST dataset, the model achieved a ど.にの% classification error rate, and a の.に% classification 

error rate on the MultiMNIST dataset. 

Different Architecture Model 

The network architecture designed in this project is inspired by classic architectures that stack 

layers on top of each other sequentially. But in recent times, modern architectures have given 

way to new and innovative ways to construct Convolutional Layers. Allowing for more 

efficient learning and better performance overall. One such modern architecture is the 

Inception model [34]. The Inception model is a modern architecture first introduced in 2014 

for the ImageNet competition, where it took first place. The general model is displayed 

bellowed in Figure 27. 

 

Figure 61 Inception Model [34] 

This ﾏodel t┞pe is Hased aヴouﾐd a HasiI uﾐit Ialled aﾐ さIﾐIeptioﾐ Iellざ, ┘heヴe ┘e peヴform a 

series of Convolutions of different scales (3*3, 5*5 etc.), and aggregate the results together. 

There was a follow up paper that improved upon the first version of Inception. In the follow 

up [35], it cuts down on computation cost by factorising larger convolutions into a set of 

smaller ones, where a filter such as 5*5 can be more computationally efficiently represented 

by two 3*3 filters. This is because a 2-dimensional filter of 5*5*c, where 潔 is the number of 

channels, costs にの潔, whereas two 3*3*c filters would cost なぱ潔 
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Figure 62 Mini-network replacing 5*5 Convolution [35] 

Mapping the Relationship between MRIs and other variables 

There was no time in this project to map the MRIs to any other variables. At the start, the 

aim was to map MRIs to age and cognitive variables such as memory. It is worth noting that 

a variable such as memory can be harder to map due to the factors that influence it, such as 

lifestyle choices, age, and IQ.  
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Conclusion 
 

As this project reaches its conclusion, it is worth critically evaluating whether the aims of the 

project were yet. The aim of the project was to develop a Convolutional Neural Network that 

could predict the age and cognitive variables of an MRI. It was never the intention to aim for 

a specific result or baseline, but rather a proof of concept that CNNs could be used for this 

type of problem. This aim has been achieved, as a model has been created for 2-dimensional 

and 3-dimensional MRIs for both a regression and classifier model. The results of the project 

suggest that, in time, future Convolutional Neural Networks will be developed to a greater 

degree of success than the ones developed in this project, as would be expected with the 

introduction of newfound concepts, ideas, and software engineering tools. Should the future 

work outlined in this project be followed, there is no reason to believe that a greater level of 

success with CNNs and MRI images cannot be achieved. For the benefit of the scientific 

community, this work should be a starting point for someone tackling the same, or a similar, 

problem to the one described in this project.  

The results show that a Convolutional Neural Network can be developed to predict variables, 

after adequate training, based off an MRI. The comparison of results also show that the 

performance of a Convolutional Neural Network is greater than that of a more basic model. 

This is evident when we compare the results of a Convolutional Neural Network to Decision 

Trees, Naïve Bayes, and Support Vector Machines.  

The drawback with Convolutional Neural Networks, as with many Machine Learning methods, 

is being unable to see where a model struggles to learn from an image. The evaluation metrics 

used do well to assess the performance of a network but offer limited help in explicitly stating 

what went wrong and how to improve performance.  

Not having the desired computational power to develop an optimal model will be the biggest 

け┘hat ifげ of this pヴoject. Despite the tremendous power of the supercomputer cluster, a 

stronger model could have been developed if more resources were available. The high-res 3-

dimensional images and 3-dimensional Convolutional Neural Network demanded a great deal 

of power to run. Running the 3-dimensional model on the supercomputer cluster required 

cropping the high-res images to a smaller size and reducing the complexity of the 3-

dimensional model. It would have been interesting to see what results would have been 

achieved with stronger resources.  

My results have shown that the network model has the ability map an MRI to a predicted 

value, but I believe this is not only down to the capabilities of CNNs and the design of the 

model. Given the nature of neuroimage data with regards to their spatial invariance, is it 

possible to develop a baseline for CNNs when used with MRIS? If this is the case, then where 
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do we go next with CNNs for neuroimages? Even though Convolutional Neural Network 

architectures are not cookie cutter (one size fits all), further investigation could be spent into 

seeing how to optimise neural networks for use with neuroimaging data. However, this is 

going on a tangent away from the aim of this project.  

Arguably the biggest challenge with working with neuroimages is that the images are so like 

each it is harder for a Convolutional Neural Network to distinguish between images in the 

dataset and map the relationship. Common applications of Convolutional Neural Networks 

are to identify images in a dataset that are slightly different in some way, like identifying a 

dog in different sections of an image. But MRIs tend to be spatially invariant, in that a set of 

MRIs are displayed in the same way at a 2-dimensional or 3-dimensional level. The most 

distinctive things between a pair of MRIs could be the smallest details/pixels not easy to 

detect by the human eye. Due to this, it is possible that a Convolutional Neural Network is 

more likely to pick up on noise when training.  

  



74 

 

Reflection 
 

The final year project has proven to be my most challenging academic challenge to date. The 

trials, discipline, and dedication to complete this project have been challenging, and it was 

the toughest test of my soft and technical skills to date.  

As someone who has worked with an Agile methodology in the previous workplace, it made 

sense for me to try and adopt similar ideas to this project. Many people may prefer to look 

through large amounts of documentation before experimenting and tinkering, but I have 

found that I need to start developing as soon as possible and learn as I go along. This allows 

me to start developing earlier but obtain a better grasp of the content I am following.  

I took interest in this project because I have an interest in Machine Learning, and the 

applicability of Machine Learning to medical data made it even more enticing. I had some 

experience in creating basic Machine Learning models in Python prior to this project, but 

nothing remotely like the tools and software used to complete this task. This was the first-

time hearing about Artificial Neural Networks but I feel like I am starting to understand this 

field of AI to a satisfactory standard. I have constructed many different models during this 

project, and I feel like I have only touched the surface of Artificial Neural Networks. There is 

plenty more to be discovered, and this could serve well if I decide to pursue a Data Science 

career.  

Furthermore, the biggest challenge of this project has been my use of time management and 

task prioritisation. I am responsible for the outcome of this project, therefore the 

management and overseeing of the work carried out falls on me alone. One of the biggest 

problems when training my 3-dimensional models on the supercomputer was how my jobs 

could spend many hours in the queue before executing, and sometimes they took over a day! 

The use of my time has been the hardest part of this project because the time goes very 

quickly, especially when things do not always go to plan, like waiting for a Supercomputer job 

to finish. It is in circumstances such as these that I need to be able to take a step back, analyse 

the situation, re-evaluate my priorities, and create contingency plans in the event of a massive 

problem. Despite the long waiting times, it forced me to become patient and look for other 

work to get on with. Having said that, I failed to implement a function to properly manage the 

training and test dataset split, thus producing results for the multiclass Classifier that do not 

fairly reflect the capabilities and performance of the model developed. In the future, better 

care needs to be taken to make sure that certain tasks are placed as top priority, as they could 

be more important to the goal than other tasks.  

Finally, resource management has been challenging. As it has been explained in this project, 

the most complex of Neural Network models require the most computational power. For a 

while, I was able to manage on Google Colab for developing my 2-dimensional models. 

Eventually, I had to move from Google Colab to the supercomputer cluster to run the 3-
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dimensional models. I had absolutely no experience with using the cluster, so understanding 

how to use its resources was like learning a new challenge but was made more difficult when 

trying to manage my time effectively because it became a bottleneck. It is hurdles like this 

that forced me to re-evaluate my priorities and time so that I could give myself a realistic 

expectation of what work could be accomplished.   
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