
Proof-of-concept for an
Infrastructure as Code Teaching

Module

Dominic Routley - C1534969

10th May, 2019

CM2303 - Final year project
School of Computer Science and Informatics, Cardiff University

Project supervisor Padraig Corcoran
corcoranp@cardiff.ac.uk

Project moderator David Walker
walkerdw@cardiff.ac.uk

Dedicated to Faith Routley,
for everything.



Abstract

This report describes and explains a series of resources that
have been created for use in a university teaching module based
around Infrastructure as Code (IaC). These resources make up a
proof-of-concept for a finished module section or small module. The
report then goes on to lay out the future work that would be required
to turn the proof-of-concept into a fully finished module section.

i



Acknowledgements

I would like to thank the following people for their invaluable support
with this project.

Padraig Corcoran corcoranp@cardiff.ac.uk Project supervisor
For support with everything and making sure I actually produced something
useful.

James Osborne osbornej8@cardiff.ac.uk Placement supervisor
For his encouragement during and after my internship that this was a viable
project idea. Also for his help understanding the NSA.

Daniel Rees daniel.rees@devopsgroup.com Industry specialist
For his professional advice regarding code examples, and pointing out code
mistakes in my lecture slides.

Jamaal Primus jamaal.primus@devopsgroup.com Industry
specialist
Technical proof reading (coursework deliverable)

Colin Barker colin.barker@devopsgroup.com Industry specialist
Technical proof reading (coursework deliverable)

Faith Routley
Proof reading (report) & Personal support

Henry Routley
Proof reading (report)

Nancy Routley
Proof reading (report)

Ryan Cullen
Personal support

Lucy Young
Personal support

ii



Contents

Page

Contents iii

0 Introduction 1

1 Background 3

2 Deliverables 5

3 Future work 14

4 Summary 19

5 Reflection 21

Appendices 23

A Coursework Pro forma 23

B Lab session handout 28

Glossary 31

Acronyms 35

Bibliography 36

iii



Chapter 0

Introduction

This project is intended to facilitate the creation of a proof-of-concept
university teaching module that focuses on cloud engineering and cloud
operations. The section that has been decided upon for prototyping and
exploring in the proof-of-concept phase was to be focused around IaC.

The Computer Science BSc degree at Cardiff University does not include
a teaching module (either optional or core), that explores cloud computing
in detail. As cloud engineering and operations have quickly become a large
part of the information technology industry, this project will design and
partially implement a proof-of-concept module that could be used as a basis
for creating a fully fleshed out module in the future. There is currently
a MSc teaching module entitled ‘Distributed and Cloud Computing’ for
which this teaching module could serve as its BSc introduction to prepare
students for the MSc course. Distributed systems is already taught to BSc
students in the third year as part of the ‘High Performance Computing’
and ‘Emerging Technologies’ teaching modules. A cloud operations and
engineering module will complement the third year course in a cohesive
manner without introducing so many new concepts as to be overwhelming.

This is a proof-of-concept design, not all elements are intended to be
fully complete; there simply was not enough time available in the three
months allocated to create a full module with the high level of quality
expected from a third year BSc degree module. Therefore a proof-of-concept
for one section of the module (assuming a module is made of two distinct
sections each covering related topics) was to be created that can give a view
of what could be possible with future work.

There were two possible outcomes of this project; either a section of
the module with all the deliverables being draft examples of the resources

1



required for teaching and examining that section of the module, or a proof-of-concept
of this section of the module could be built but with more time dedicated to
each deliverable, such that each deliverable approached the quality required
of a university module.

The initial planning for the project did not correctly estimate the work
involved in creating the deliverables, whilst also managing to get the accuracy
of the content to an acceptable standard. For this reason, while it was
originally planned that a section of the module would be created, this
was changed to a proof-of-concept a short time into the project. The key
difference between a section of a module, and a proof-of-concept of the
module is that a module section is meant to be a completed part of a larger
module whereas a proof-of-concept is simply examples of different parts
of a section. The intention with the module section was that it could be
joined with another section to make a full module covering two subjects. In
this project portions of the module section have been created, with those
portions being indicative of the rest of the section that have not been fully
created.

2



Chapter 1

Background

Cloud infrastructure management and cloud server configuration are
both subjects that have received little to no attention from Cardiff Universities
BSc Computer Science course. These disciplines are taking over the industry
and replacing traditional on-premises infrastructure hardware and local
manual software management. Essentially, the future is automated, virtualised,
and in the cloud. The addition of a module or modules that cover this
rapidly expanding field of computer science would help keep the Cardiff
University Computer Science and Informatics course a the forefront of
teaching and research in computer science.

There are presently few subjects currently taught on the course that
would make either good companion modules, or could be merged with this
projects proposed module. The computer science BSc teaches distributed
systems as part of the ‘High Performance Computing’ and ‘Emerging Technologies’
modules, these would make good companion modules or could be augmented
by this proposed module section. The National Software Academy (NSA)
runs an Applied Software Engineering undergraduate degree course that
already contains a DevOps module that focuses on Continous Integration
and Continous Delivery (CI/CD) and cloud engineering; this proposed
module section if augmented with a CI/CD or DevOps section could be
comparable to the NSA’s module.

IaC is the name given to the managing of computing infrastructure
(usually virtualised) through definition files. The cloud infrastructure is
stored in text files that define the entire infrastructure in structured code-like
blocks.

IaC is important to teach as it is becoming a foundational part of how
modern technology and technology reliant organisations and companies

3



manage their various infrastructure suites. Modern software development
demands an understanding of all parts of the software life cycle. Developers
need to be familiar with the infrastructure that their code will run on,
and operations teams need to be able to quickly change the infrastructure
environments that they are managing in order to facilitate rapidly changing
software requirements. IaC enables developers to have a hand in building
the infrastructure that their code will be running upon, and also allow
operations teams to quickly change running cloud environments to meet
the needs of the business.

The main underlying reason for IaC being as prevalent as it is in the
industry, is the widespread adoption of service based systems. These include
Software as a Service (SaaS), Infrastructure as a Service (IaaS), and many
other “as a service” systems. These systems are all run in the cloud and
usually require subscription based payment models to access. As IaaS
becomes even more prevalent, IaC becomes the obvious choice to manage
the virtualised infrastructure that IaaS provides.

There are three main technologies that are referred to in this report.
The first is Terraform, an Infrastructure as Code tool that creates and
manages cloud and local infrastructure deployments in logical definition
file stacks. From a programming perspective, Terraform code is simply
object definitions that refer to one another. The Terraform program then
constructs the infrastructure required, based upon these object blocks. The
second technology is Ansible, unlike Terraform, Ansible is not truly an
IaC tool as it is not used to create infrastructure from code. Ansible is a
configuration management tool that is used to configure and install software
on already running server instances. Ansible does this through so called
“tasks”, a task at its most basic form is a function call to an Ansible method
to make specific changes on the target machine(s). The third technology
is Openstack; Openstack is a private cloud that, in this case, is hosted by
Cardiff University. Openstack provides the virtualisation and the APIs that
allow Terraform to build the infrastructure.

4



Chapter 2

Deliverables

2.1 Coursework

There are two tasks outlined on the pro forma (Appendix A) with
each focusing on a specific aspect of IaC that is taught within the module
section. The first task (Task 1) is designed to test the students knowledge
and understanding of Terraform and infrastructure management. The task
requires that the student builds an Openstack based cloud infrastructure
that meets a specified set of requirements. The second task (Task 2) is
designed to test the knowledge and understanding of Ansible and configuration
management through IaC. The task requires the students to write a simple
Ansible playbook that can configure the server instances created in Task 1
with webserver functionality.

The Terraform task (Task 1) is written in a verbose manner that explains
to the student the theoretical layout of the new infrastructure that they are
to build. This is done deliberately as it forces the student to piece together
mentally the components that have been requested by the task, and then
figure out how to write them as code blocks using Terraform.

The specifications are very strict about certain parts of the infrastructure,
namely the number of security groups to use and the naming of the instances
and SSH keys. The number of security groups is limited to one, this is to
force the students to attach multiple rules to a single security group and
therefore test their understanding (or at least give them an example to refer
to in the future), of multiple rules in one security group. The naming of the
instances and the SSH keys has no effect on the running of the Terraform
code. However, forcing the students to use a specific naming scheme will
make it much easier if an automated or semi-automated marking program

5



was to be used to assist the lecturer with marking the coursework.

The Ansible task (Task 2) is much smaller than Task 1, this is because
the second task is much smaller in scope and complexity than the first
task. The main reason for the relative simplicity of Task 2 is that this
coursework is only designed to give a basic understanding of the subjects
and technologies covered (IaC, IaaS, Terraform, Ansible, private cloud).
Ansible can be used to make incredibly complex nested playbooks that can
create intricate bespoke environments at scale. The advantages of requiring
a bigger Ansible playbook would be minimal, as the students would only be
adding more modules from the documentation. The basics however, how
to make a playbook and provision a simple server, are incredibly useful and
will allow the student to go on and learn the more complex parts of Ansible
while already knowing the basics.

Task 2s requirements are very simple; the Apache 2 webserver must be
installed onto the servers, the simple HTML file should be uploaded to the
correct location, and all of the packages on the servers should be updated.
The only more complex requirement in the task is for the playbook to
request or receive the development server IP address when Ansible is run
(as opposed to by storing the IP address in a file). This requirement is useful
as it teaches the students that Ansible can be more than the configuration
files that they have written. This is intended to demonstrate that whilst
the configuration files are important, they are not the only way you can
interact with Ansible.

The coursework pro forma Terraform task was originally written with
multiple diagrams included, they were designed to help describe the tasks to
the students, see figure 2.1. These images were simplistic as they needed to

Figure 2.1: One of the diagrams originally intended for use in the pro forma

6



be understood by students who may have never had to try to build a cloud
infrastructure from a diagram before. However their simplicity was their
major problem, ideally the diagram would have every item of infrastructure
that needed to be made with labels describing what they would all need
to do. This level of detail would have made the diagrams incredibly messy
to try to read. Whilst this may not have been to much of a problem for a
more experienced cloud engineer, it would have made it very hard for the
students to understand anything from the diagrams without it also being
explained in text format elsewhere.

The text format to go along with the diagrams was written, however
when it was finished the need for the diagrams fell away completely. The
diagrams would take up valuable space in the pro forma and whilst they
may be nice to look at and even helpful to a small minority of the students
who had grasped the subject well, the decision was made to drop them from
the pro forma entirely.

For both of the tasks outlined in the coursework pro forma, model
answers were created to show what would be expected of the students.
The full code repository for the answers is available at https://github.
com/domroutley/diss-coursework-answer.

The marking criteria part of the pro forma lays out the task questions
in a more rigid bullet point fashion. This is specifically designed to make
sure that the students answers are easier to mark against a specific set of
requirements. It also will make it simpler for students to understand exactly
what they are being asked to create in the coursework.

The model answers given are just one way that the requirements in the
pro forma can be achieved. Whilst the example lectures and the lab session
both use the same sort of methods to achieve their results, a customary
view of the Terraform Openstack official documentation ([9]) will reveal
that there are often multiple valid methods of creating or linking certain
resources together. The example answers assume that the students have
followed the same sort of methods employed in the lab session and the
example lectures, however other methods should also be viewed as valid.

The marking criteria does not limit the students to a specific method
of answering the question, with one exception. It is requested that only
one security group is used, this is so that the students are forced to use
the networking services to create and manage the security groups. The
non-networking method of managing security groups is messy and can be
hard to read and understand, it therefore has been discouraged as it would
be hard to mark correctly.

7

https://github.com/domroutley/diss-coursework-answer
https://github.com/domroutley/diss-coursework-answer


2.2 Lab session

The lab session is an example of one of the multiple lab sessions that
would be run as part of the module section. As the majority of the coursework
and the lecture completed to the highest standard is about Terraform, it was
decided that the lab session to be created was to also focus on Terraform.

The lab session uses a GitHub repository to provide the students with
some initial code that they are then tasked with editing in certain ways to
teach them about the different Openstack modules and Terraform blocks.
The repository that this code is stored in was originally built to provide
screenshots of code for the lecture examples, this means that the examples
given in the lectures and the lab sessions are practically identical. There
are two repositories, a Terraform repository and an Ansible repository. The
Terraform repository has instructions that can be used in a lab session,
whereas the Ansible repository could later be used to create more lab
sessions, but is currently just code that was used for screenshots.

The instructions for getting the Terraform code to run, are taken from
the repository mentioned above, and some tasks to further the students
understanding of the code were integrated into a lab session handout (Appendix
B). The handout is split into three main sections; “initial system setup”,
“running the module for the first time”, and “further tasks”. The “initial
system setup” and “running the module for the first time” sections are
slightly edited versions of the instructions included along with the code in
the repository.

The initial system setup covers things that the student would need to
do to get their machine ready for running the Terraform code for the first
time. It contains three steps; downloading/cloning the code, generating an
access token, and running terraform init. Generating the token is quite
involved and will probably be the stumbling point for most students doing
this lab session. For this reason a help file is included in the repository that
goes through each step of generating a token in as much detail as can be
reasonably included without overwhelming the student. The last step in the
initial system setup is running terraform init, this initialises Terraform
in the directory in which it is run.

The second section, “running the module for the first time”, walks the
student through setting up the code to be able to run and produce a working
infrastructure on Openstack. It is quite verbose, explaining each command
to be run in sequence and also giving links to help pages for using the Cardiff
University VPN, for those students who may be doing the lab session at

8

https://github.com/domroutley/diss-openstack-terraform-example
https://github.com/domroutley/diss-ansible-example


home or otherwise outside of the university network.

Finally, the further tasks section of the handout sets the student some
simple tasks that will help with the coursework and their understanding of
Terraform and Openstack. These tasks gradually ramp up in complexity,
with the first task asking for just a couple of lines to be added to the outputs
file, all the way to the third task that requests that the student adds a whole
new server to the infrastructure. This third task lists all of the networking
and access blocks that would be needed to successfully integrate this new
server with the current infrastructure. This requires that the student focus
more on the code they are writing rather than trying to figure out what
they need to build, that challenge is left to the coursework.

2.3 Lectures

The main part of any module would revolve around the lectures and
the lecture slides. This is where the vast majority of the content that a
student is expected to know and understand by the end of the module is
located. For this project, three sets of lecture slides were created to show
an example of the sorts of content that would be delivered to the students
taking the course.

There was limited time to spend creating deliverables for this project,
so the lectures that were to be created had to be chosen carefully. For
this reason the Ansible and Terraform lectures that were created are not
completely indicative of the sort of content that would be in a full module.
The idea is to have two lectures on each technology, the first being a more
theory focused lecture talking about what the technology is for and why you
would use it. With the second giving an example of the technology being
used and showing sections of code to teach how to use the technology. With
limited time to create lectures, and the lectures being much harder to create
than was originally anticipated, the two lectures were merged into one. This
has the effect of reducing the “unfinished-ness” feeling of the two lectures,
while still delivering useable content.

2.3.1 Infrastructure as Code lecture

The Infrastructure as Code lecture is the shortest of the three lectures
that was created for this project, but it was also the most focused in its
goal. It has two objectives that the students should be able to achieve

9



after attending the lecture; knowing what IaC is, and knowing why we use
IaC. The intention is that this would be the first “real” lecture (after the
module description lecture) that the students would have. The lecture starts
out by defining IaC and giving example of infrastructure and code, with a
more precise definition of what exactly it means to manage Infrastructure
as Code. There is then an overview of other important technologies and
properties of IaC (Cloudformation, idempotence). The last five slides of the
lecture are focused on, and concerned with, why IaC is important and why
it is used in industry.

As has been mentioned above, there was limited time available which
meant that only certain lectures were able to be made. The Infrastructure
as Code lecture was deemed as integral to creating a useful proof-of-concept,
it can serve as an overview of what is taught over the whole module whilst
also showing a different style of lecture than the Ansible or Terraform
lectures. Both of the Ansible and Terraform lectures are heavily focused
on the “how”, with smaller “whats” preceding. The IaC lecture however,
displays the “why” of Infrastructure as Code as a whole. The IaC lecture
slides are included alongside this report, with an example slide being shown
in figure 2.2.

Figure 2.2: An example slide from the IaC lecture

10



2.3.2 Ansible lecture

The Ansible lecture, the first of the two technology explanation lectures,
is the more undeveloped of the two. This lecture is a merging of two different
lectures, the first part is focused very much on the “what” and the “why” of
Ansible, with the second (much larger) part going over in depth an example
of using Ansible. The lecture overall is mainly trying to teach a basic
understanding of Ansible and how it can be used. The ideal plan would then
be for a lab session covering Ansible to be held in the days after the lecture
so that students can then apply what they have learned visually and audibly
in a kinaesthetic manner. This will reinforce the learning and prepare them
for the coursework and exam where they will apply this knowledge.

As the lecture was not fully completed due to time constraints, there
are significant holes in the knowledge given by this lecture. The Ansible
program itself is the main thing that has been omitted from this lecture.
The lecture never talks about how to actually run an Ansible playbook,
or what happens when a playbook is run. This has been omitted as while
it is important, it is not required for the rest of the information (in the
coursework and IaC lecture) to make sense.

The Ansible lecture slides are included alongside this report, with an
example slide being shown in figure 2.3.

Figure 2.3: An example slide from the Ansible lecture

Both Ansible and Terraform are very important to the goal that this

11



proof-of-concept (or module section) is trying to achieve. However, while
Terraform enables IaC through infrastructure management, Ansible complements
this with highly specialised configuration management that needs to be
understood by students studying IaC, this provides a contextual understanding
of the place that IaC holds in the field of infrastructure management and
configuration.

2.3.3 Terraform lecture

The Terraform lecture is the second and more fully developed technology
explanation lecture. It has the same layout as the Ansible lecture, with the
first, smaller, part containing the “what” is Terraform and the “why” use
Terraform. The second part is then dedicated to going over, in depth, an
example of how to use Terraform with code examples. As with the Ansible
lecture, the Terraform lecture is trying to teach a basic understanding of
its subject, and how it can be used in Infrastructure as Code. Unlike the
Ansible lecture the lab session for Terraform has been completed, therefore
we can clearly map the students learning progress from short term audio
and visual learning, towards a more long term kinaesthetic learning method
with the lab session.

This Terraform lecture is the most developed and largest of the three
lectures that have been completed. Infrastructure management is the heart
of IaC, and therefore Terraform is the primary focus of the module section.
Again like the lectures discussed above, the Terraform lecture is not complete
and is missing information that would be vital if the lecture was to be
given as-is. However, unlike the Ansible lecture, the content currently in
the Terraform lecture is at the standard that it is required for it to be
presented to students as part of a module. For this reason, and to give
an idea of how the lecture slides would be presented, a recording of the
lecture being presented has been made and is available as a unlisted video
on YouTube (www.youtube.com/watch?v=EMOgk-gn_Ys).

This recording has three main goals; to demonstrate how one of the
lectures would be given, to show how a lecture slide can be broken down
and explained, and to generate critical feedback on how the content of the
lecture could be changed to make it better. A good example of breaking
a slide down can be seen at 17:27 in the video, this slide is also shown in
figure 2.4 below. The slide itself is simply an image of a definition block
for a compute instance, with a single line of text stating as such. However
each significant line of code, (in this case each key/value pair), is explained

12

www.youtube.com/watch?v=EMOgk-gn_Ys


in the video. This shows that there is more information included in the
presented lectures than is displayed simply on the lecture slides.

The general (self delivered) criticism of the video is focused on one item,
that the theoretical part of the lecture (the first part), was quite small and
underdeveloped compared to the code example part (second part). Whilst it
was known that this would probably be the case, due to the time constraint
forcing that part to be reduced to be able to construct the code example
part, it was only after the presentation that this became fully clear. But
this feedback is good, it shows what needs to be worked upon to make the
lecture better and ready for use in a module.

Figure 2.4: An example slide from the Terraform lecture

The full Terraform lecture slides are included in a separate file alongside
this report.

13



Chapter 3

Future work

At the moment the project contains most of what needs to be created for
a proof-of-concept. This chapter, regarding future work, has been divided
into two sections. The first focusing on completing the proof-of-concept.
The second dealing with the work that would be required after the proof-of-concept
is completed to turn it into a full module section or small independent
module.

3.1 Proof-of-concept phase

The proof-of-concept phase was the work that was originally intended
to be created by the end of the project, with the full module section
then being knowingly relegated to this future work section. However,
due to underestimation of the time that would be required to create the
lectures, some parts of the original plan remain in a draft state, or otherwise
not finished. This section will go over those deliverables that were not
completed (or not even started) and discuss what would be needed to bring
them up to the standard of completion required. The future work in this
section will be discussed in descending order of importance, i.e if they were
to be implemented then they should be implemented in the order that they
are explained here.

The first and most important future task that should be prioritised over
all of the others is the completion of the Ansible and Terraform lectures.
These lectures are, as has been already mentioned in chapter 2 a merged
amalgamation of two designed lectures, a theoretical overview/introduction
to the technology lecture, and a code example/how to use the technology
lecture. To finish these draft lectures they should be split back into their

14



composite parts as separate lectures and then fleshed out into full draft
lectures. This would change the total number of deliverable lectures from
three (IaC, Ansible, and Terraform) to five (IaC, Ansible theory, Ansible
example, Terraform theory, Terraform example).

The main additions to be made would be made to the theory lectures
as those parts are currently the most underdeveloped (even more so than
originally thought when creating them, see the feedback on the Terraform
lecture presentation on page 13). The obvious information that is missing
and would need to be added to the lectures as a minimum, is the running
of the programs (Ansible and Terraform), as at the moment there is no
information about how to run the programs.

The Ansible lecture would also need to have the following additions:

• More information around the different supported Ansible products
that are available

• An explanation of how Ansible actually works

• An example of the other Ansible files that are not currently covered
in the lecture

• An overview of the best practice for using large Ansible projects with
multiple playbooks with far more complex tasks

The exam deliverable was dropped very soon into the project, as it had
been essentially designated as the “slip” deliverable. If there was not enough
time to complete the project, then the exam was intended to be dropped
first. This was for two reasons. Firstly, the exam questions and their model
answers would not take too much extra time to create after the lectures
and coursework had been created, as they would borrow heavily from those
deliverables. The exam questions and the model answers would not really
be able to feedback into the main knowledge base of the module, i.e the
exam was not a generator of information, only a signifier or demonstrator
of that knowledge.

The exam questions and the model answers would be focusing on the
theoretical side of the module, in comparison to the coursework that would
be focusing on the practical side of the module. An example of an exam
question could be;

15



• Terraform and Ansible are both tools used as part of Infrastructure
as Code, describe how you would use them together to create and
manage a webserver on a cloud platform.

The student would then have to display knowledge of the differences
between Terraform, an infrastructure management tool, and Ansible a configuration
management tool. This question is simply an example of the sorts of
questions that you would have in an exam to try to get the students to
display the theoretical knowledge that they have learnt from the module.
There would need to be a wide pool of questions to cover all of the subjects
taught in the module, with the students being able to pick which questions
they wanted to answer.

The last improvement that would need to be made to the project deliverables
to finish the proof-of-concept phase is to increase the scope of the Ansible
coursework task. Whilst it has been explained in chapter 2 that the Ansible
task is deliberately uncomplex and smaller than the Terraform task. Using
careful wording and changes made to the Ansible lectures, it should be
possible to increase the coverage of Ansibles more complex features to a
degree of understanding that can be included in the coursework. This
would be useful for the exam questions also, as there would be a much
larger amount of content that they are able to draw possible exam questions
from and therefore increase the pool of questions that are able to be used.
Furthermore, Ansible is currently a much smaller part of the module than
Terraform. If the coursework (and by extension the lectures) for Ansible
were increased in scope, both of the equally important technologies would
be given a more equal representation in the module.

3.2 Creation phase of full module section

The first addition that would be made is an Ansible lab session. This
lab session would have the same structure as the Terraform lab session
that has already been created (Appendix B), but would be based upon
the Ansible example code available on Github. This lab session would also
have the same objectives as the Terraform lab session and would aim to be
completable in one lab session. However it would probably be prudent to
have both lab sessions run over two lab session time slots each so as to give
the students ample help time to complete the tasks.

The other additions to the module would be the creation and organisation
of the rest of the lectures needed to teach all of the information required for

16

https://github.com/domroutley/diss-ansible-example


the module. Assuming that the three lectures that are currently available
have been scaled up to the five suggested in section 3.1, there will only
be two lectures left to be created. Overall this will create a total of seven
lectures, or roughly half the number of lectures for an autumn semester ten
credit module.

The first new lecture to be created would be the module description
lecture, this would not want to be that large or long, as it would probably
have to share a lecture slot with the description lecture for the other section
of the module. This lecture would include:

• The list of technologies and tools that would be covered in the module,
making sure to note that these are not necessarily the only or the best
tools, but they are the ones that give the widest base to learn from

• A reading list of potential books and/or websites containing extra
information about IaC

• A timeline and short explanation of each of the lectures

• Information about the lab sessions

• The dates of coursework hand out and hand in

• Explanation of why this lecture is important and why the students
should want to learn about IaC, configuration management, IaaS etc

The first of the “content” lectures would be the IaC lecture. Currently
this lecture is in a draft state with much of the information missing that
would need to be added to bring it to the required level of quality. Currently
this lecture talks about what IaC is and why it is important, however it
would also need to cover:

• Infrastructure as a Service

• Software as a Service

• Amazon Web Services

• MicrosoftAzure

• Openstack

• Ansible

17



• Terraform

The second “content” lecture would be focused on Openstack. This
lecture would aim to explain what Openstack is and give an example of what
it can be used for. This example would be run using the web interface of
Openstack, the idea behind the example given would be to create the exact
same infrastructure that is created in the later Terraform example lecture
to show the difference between creating a server manually and creating a
server using an IaC tool like Terraform.

The fourth and fifth lectures would be the Terraform background and
code example lectures (see 3.1, 2.3.3). They may need to be tweaked at
this stage to make sure that they flow correctly from the previous Openstack
lecture and do not create much of a split in the lecture style. The penultimate
and final lectures will then be the Ansible background and code example
lectures (see 3.1, 2.3.2). At this point the module should be complete and
ready for delivering to a student class.

18



Chapter 4

Summary

Overall, this report was intended to facilitate the creation of a proof-of-concept
university teaching module concentrated on cloud engineering and cloud
operations. It was focused on creating prototypes of resources that could
be used in a section of a module, centred around the cloud and web based
industry. This chapter will summarise what was done to achieve the target
of creating that proof-of-concept.

The first deliverable created as a prototype for this proof-of-concept
module was a coursework pro forma detailing an example coursework that
the lectures were based off of. The second deliverable was then the model
answers created for the coursework, showing what is expected of the students
when they are given the coursework. The next deliverable was the three
lectures; one was a theoretical IaC lecture, and two were amalgamations of
lectures designed for Ansible and Terraform. These two lectures merge the
theoretical and practical parts of those technologies into a single lecture
for each. While creating the lectures some code was written to provide
examples, one of these code examples was then used to create a lab session
for Terraform as the last deliverable. These deliverables are intended to
be prototype-examples of what could be used if a full module, or module
section, is created that is based upon the cloud engineering and operations
fields that this report proposes.

This report also presents a plan for transforming the partially incomplete
proof-of-concept into a complete proof-of-concept, and then into a fully
complete module section that is ready to be delivered to students.

This project has succeeded in its primary goal of creating a proof-of-concept
for a university teaching module based around cloud engineering and cloud
operations. Not all deliverables that were originally planned were in fact

19



finished in time, mainly due to an underestimation of how time consuming
certain tasks, (namely creating quality lecture slides) would be. The most
important deliverables were prioritised and were completed to a high standard,
enabling the proof-of-concept to be workable even if some of the less important
deliverables were not completed.

It should now be possible for the deliverables to be used to create a full
proof-of-concept module section, and then augmented with new content
such that an entire module section can be completed. This module section
could then be used along with a second related module section, to create a
full ten credit module; or it could be delivered on its own as a smaller five
credit independent module.

20



Chapter 5

Reflection

During this project; I have increased my technical skills regarding Openstack,
and learnt about the difficulties involved in creating quality academic content.

Before this project, I had some limited knowledge of Openstack but
I had never interacted with it. During this project I have gained a basic
understanding of Openstack’s web portal, mainly though interacting with it
to retrieve information about the infrastructure stacks I was creating using
Terraform. Most of the interaction I had with the creation and management
of infrastructure on Openstack did not come from the web portal. Most of
my understanding of Openstack came from using Terraform to interact with
and control Openstack programmatically. My knowledge of Openstack is
therefore centred around what Terraform can do with Openstack and not
what Openstack is necessarily capable of. I also had to learn a bit about
the Openstack API to enable me to use the API to retrieve an access token.
My understanding of the API was then increased as I wrote a ‘how to’ guide
for retrieving an access token.

When I started this project, I initially thought that the lectures would be
relatively simple in comparison to writing the coursework and the subsequent
coursework answers. This was not the case; I thought that creating the
lectures would just be a case of using what I had done in the coursework
and laying it out in slide format. I could then simply explain what was
happening in each section of code. I am a very kinaesthetic learner, therefore
I struggle to gain knowledge through the audio and visual methods provided
by lectures, and instead learn while interacting with the subject. My
learning style gave me a subconscious bias in favour of the coursework and
practical learning, I was excited and enthusiastic to create the coursework
and lab session deliverables, and thought that I could use them to create the
lectures as opposed to creating the lectures first and building the coursework

21



from the content outlined in the lectures.

Looking back on this project with hindsight, I now realise that the order
in which I planned to do the deliverables was not necessarily the best or
the most efficient way to proceed. I think that if I had collected all of
the relevant information together before writing the lectures, rather than
gathering together extra theoretical information to augment the practical
information that stemmed from the coursework, it would have made the
organising and writing of the lectures much more time efficient. I would then
have been able to build a series of draft lectures one after the other, that
would have had all of the information and would be of gradually increasing
quality, until they were completed.

What I believe I should have done was create a large content dump of
the information that was going to be in the lecture, and then, when the
content is all there, created the actual slides. Instead I created the lecture
slide by slide, doing the research for each slide as I came to it. This was a
highly time inefficient method of creating the lectures and resulted in the
lectures taking longer than I had initially thought to create.

22



Appendix A

Coursework Pro forma

23



Outline

A small online news company, Generic Reporting, is using OpenStack to house their
current cloud infrastructure. Their webserver is a basic Ubuntu 18.4 install, with Apache2
manually installed and configured onto it. Generic Reporting’s new CTO thinks that their
current cloud infrastructure is in need of an update. She wants a production server with
an identical development server that can be modified/rebuilt at a moments notice.

Hand-in instructions

All submissions must be made via Learning Central. Upload the following files in a single
zip file named “CMXXXX [student number].zip”. Make sure that the files are
organised in the folder structure specified.

Hand in files

Description Type Name
Cover sheet PDF (.pdf) file [student number].pdf

Terraform section
Terraform (.tf) files

provider.tf
compute.tf

networking secgroup.tf
networking.tf
output.tf
vars.tf

SSH key file (no extension)
dragon
pheonix

Ansible section

Configuration (.cfg) file ansible.cfg
Plain file (no extension) hosts

HTML (.html) file file.html
YAML (.yml) file main.yml

Folder structure

zip file

coversheet

terraform/

...all 8 Terraform section files...

ansible/

...all 4 Ansible section files...

1

APPENDIX A. COURSEWORK PRO FORMA 24



Tasks

1. Using Terraform, construct the proposed cloud infrastructure as code from the
description below.

The new infrastructure must contain two server instances that are identical in all
respects other than names and SSH keys. These two instances should be both
connected to a network along with a router that is also connected to the internet.
There should only be one subnet with all three of these devices on it. The subnet
DNS nameservers should be set to the University DNS servers. Using exactly one
security group allow SSH, HTTP, and HTTPS connections to the subnet. All
connections can be allowed from anywhere.

The server instances should be named “Production” and “Development”. “Development”
should be allocated a dynamically associated IP address pulled from the University
private floating IP pool. “Production” should have a statically associated IP address
that is pre-reserved on OpenStack and will therefore result in the instance having
the same IP address each time you create it with Terraform. This IP should not
be written in any of the Terraform source files but should be stored in the “vars.tf”
file.

There should be two different SSH keypairs for accessing the instances. One for
“Production” and one for “Development”, the public keys for these keypairs should
be stored in the “vars.tf” file. The “Production” keypair should be called “pheonix”
and the “Development” keypair should be called “dragon”, both the private keys
also need to be submitted.

There should be six outputs from the Terraform deployment, the IPs of each
instance, the security groups of each instance, and the SSH key name of each
instance.

Your Terraform code should be split into multiple files, each file should contain the
following:

File name What it contains
compute.tf All blocks with resource type starting “openstack compute”

networking secgroup.tf Resource types starting “openstack networking secgroup”
networking.tf All other “openstack networking” blocks
provider.tf The provider block
vars.tf All variable blocks

output.tf All output blocks

2

APPENDIX A. COURSEWORK PRO FORMA 25



2. Write an Ansible playbook that can provision the webservers from task 1 to the
following specifications:

• Apache2 installed and running

• A file named file.html has been uploaded to the server in such a way that going
to the address [IP]/file.html will return that file. (The content of the file is
unimportant, just some text to prove that it works is sufficient)

• All packages in the system are up to date

• The dynamically assigned IP for the development server from task 1 is entered
at runtime (entered when Ansible is run, not hard-coded in a file)

3

APPENDIX A. COURSEWORK PRO FORMA 26



Marking criteria

Task 1

• Production server instance is associated with a static IP that is declared in the
vars.tf file

• Development server instance is associated with a dynamic IP

• All servers should be on the same subnet and network

• The two webservers should not be accessible by anything other than HTTP, HTTPS
and SSH

• Only one security group has been used

• Two SSH keys used. One for each webserver.

– Production key named pheonix

– Development key named dragon

– Public keys stored in vars.tf file

– Private keys authenticate correctly and allow access to server setup with public
key

• The Terraform module should have six outputs.

– The IPs of each instance

– The security groups of each instance

– The name of the SSH key used by each instance

• Terraform code split into multiple files as specified in the hand-in instructions.

• Effort has been made to variablise values that are not static

Task 2

• Only one IP is defined in the hosts file (production IP)

• A working method to input a IP to Ansible at runtime is used (command line args,
prompt, ect)

• There are at least three tasks in the Ansible playbook that do the following:

1. Update the system packages - Only this task is allowed to be accomplished
with the raw module

2. Install Apache2

3. Upload a html file from the local machine to the servers and puts it into the
/html/ directory of the Apache webserver

• All tasks successfully run on both server instances

• The uploaded file ”file.html” is accessible on both instances from the “web”. (Cardiff
University internal network)

4

APPENDIX A. COURSEWORK PRO FORMA 27



Appendix B

Lab session handout

28



Terraform initial lab session

Outline

This lab session will walk you through the steps to create a basic working Terraform
managed cloud infrastructure as code. There will then be a series of tasks that will help
you learn things that will be useful for your coursework.

If you are doing this lab session from home, then you will need to install Terraform
from this link
https://learn.hashicorp.com/terraform/getting-started/install.html

Start here

Initial system setup

1. Download/clone this repository into a new directory
https://github.com/domroutley/openstack-terraform-example

2. Generate a token to access OpenStack and export it to your environment (for
detailed instructions on how to do this open the TOKENGENERATIONHELP.md file
from the repository you have just downloaded)

3. Run terraform init in the repository directory

Running the module for the first time

1. Assuming everything went ok with the setup, create an ssh key and copy the Public
key into the vars.tf file as the default value of the variable access key

2. You should now be all set. Run terraform plan to see the changed to be made to
the cloud. terraform plan will also validate that your module is formed correctly
and has no syntax errors.

3. If you are satisfied with what you see, run terraform apply and type and approve
the changes.

4. You should be able to see the IP address of the instance as the output printed at
the end of Terraforms run.

• To bring this up again you can run terraform output

5. You can now SSH into the server with the following command
ssh -i LOCATION/OF/SSH/KEY ubuntu@INSTANCE IP

1

APPENDIX B. LAB SESSION HANDOUT 29



• It may take a couple of minutes for the server to be able to accept SSH requests
so be patient

• If you are not on the university network, you will need to connect via the VPN
before you can SSH into the instance.

– Using OpenVPN to connect to Cardiff Uni VPN Windows
https://docs.cs.cf.ac.uk/notes/openvpn-windows

– Using OpenVPN to connect to Cardiff Uni VPN MacOS
https://docs.cs.cf.ac.uk/notes/openvpn-macos/

– For Linux, get the ovpn file from one of the above links, then add a new
connection in your network manager from the ovpn template file.

Further tasks

These further tasks will help prepare you for your coursework.
Don’t forget to terraform plan after each task to test your syntax and structure, and
then terraform apply to apply those changes to the cloud.

1. Add some more outputs to the module that output the DNS IP addresses

2. Add a new security group rule in the networking secgroup.tf that allows HTTP
access from all IP addresses, attach this rule to the already created security group
and change the security group name to be more appropriate

3. Create a new server for FTP

• Create the new compute resource resource

• Create a new security group and security group rule that allow incoming con-
nections via FTP (port 21)

• Add the server to the already created subnet

• Attach the SSH and HTTP security group to the new server

• Attach the already created key pair to the new server

• Create a new floating IP resource and attach it to the new server

• Add outputs for the new IP, and outputs detailing what servers have what
security groups attached

After you are done, run terraform destroy to remove your infrastructure stack form
the cloud.

2

APPENDIX B. LAB SESSION HANDOUT 30



Glossary

Amazon Web Services

Amazon Web Services (AWS) is Amazon’s public cloud platform. 17,
see public cloud

Ansible

Ansible is an open-source software provisioning, configuration management,
and application deployment tool. [3] It can configure systems, deploy
software, and orchestrate more advanced IT tasks such as continuous
deployments or zero downtime rolling updates. [2] 4–6, 8–12, 14–19

Cloudformation

Cloudformation is an Amazon Web Services (AWS) product that
takes a JSON-like “stack” of resources and creates the corresponding
infrastructure in AWS public cloud environment. 10

Continous Integration and Continous Delivery

Continuous integration is the practice of routinely integrating code
changes into the main branch of a repository, and testing the changes,
as early and often as possible. Ideally, developers will integrate their
code daily, if not multiple times a day. [4] Continuous Delivery is the
ability to get changes of all types—including new features, configuration
changes, bug fixes and experiments—into production, or into the
hands of users, safely and quickly in a sustainable way. [13] 3

idempotence

Idempotence is the property of a function/computer operation that
can be applied multiple times without the result changing. e.g cancelling
an order in an online shopping cart is an idempotent operation as no
matter how many time the operation is run the result will always be
that the order is cancelled. But placing an item is your shopping cart

31



is not idempotent as running the operation multiple times will result
in multiple items placed in the cart, therefore being different each
time. [5] 10

Infrastructure as a Service

Infrastructure as a Service (IaaS) is an instant computing infrastructure,
provisioned and managed over the internet. [14] Infrastructure as a
Service (IaaS) are online services that provide high-level APIs used to
dereference various low-level details of underlying network infrastructure
like physical computing resources, location, data partitioning, scaling,
security, backup etc. [6] They differ from traditional infrastructure as
instead of the customer making a once off purchase of the hardware
infrastructure and then possibly paying for further support, the customer
only pays for the infrastructure that they are using while they are
using it, with access to the (potentially virtualised) infrastructure
being made via an API or web interface. 4, 17, 33, see Openstack &
Software as a Service

Infrastructure as Code

Infrastructure as Code (IaC), is a type of IT setup wherein developers
or operations teams automatically manage and provision the technology
stack for an application through software, rather than using a manual
process to configure discrete hardware devices and operating systems. [15]
i, 4, 9, 10, 12

MicrosoftAzure

Microsoft Azure is Microsoft’s public cloud platform. 17, see public
cloud

National Software Academy

The National Software Academy (NSA) is a partnership between
Cardiff University, Welsh Government and industry leaders. [1] “The
NSA at Cardiff University focuses on applied software engineering and
learning technical skills like cloud engineering and managing virtualised
server infrastructure through infrastructure as code.” James Osborne [12]
3

Openstack

OpenStack is a cloud operating system that controls large pools of
compute, storage, and networking resources throughout a datacenter,

32



all managed through a dashboard that gives administrators control
while empowering their users to provision resources through a web
interface. [16] Openstack also has an API that can be used to control
Openstack resources through an IaC tool such as Terraform. Cardiff
University maintains an Infrastructure as a Service private cloud that
is built in Openstack and is available for Computer Science students
to use. 4, 5, 7–9, 17, 18, 21, see Infrastructure as a Service & private
cloud

playbook

Ansible playbooks are expressed in YAML format and have a minimum
of syntax, which intentionally tries to not be a programming language
or script, but rather a model of a configuration or a process. Each
playbook is composed of one or more ‘plays’ in a list. The goal of a
play is to map a group of hosts to some well defined roles, represented
by things Ansible calls tasks. [7] 5, 6, 11, 15, see Ansible

private cloud

A private cloud is a particular model of cloud computing that involves
a cloud based environment in which only the specified client can
operate. [17] Private clouds are often self-hosted by the client as
opposed to hosted by the cloud provider as with public clouds. 4,
6, 33, see Openstack

pro forma

Pro forma/pro-forma/proforma (Latin for ”as a matter of form” or
”for the sake of form”) is in this case used to describe a document
that is provided to describe the requirements for a section of work. It
is the formal specifications of the work to be done. 5–7, 19

public cloud

The public cloud is defined as computing services offered by third-party
providers over the public Internet, making them available to anyone
who wants to use or purchase them. They may be free of charge or
sold on demand, allowing customers to only pay per usage for the
CPU cycles, storage or bandwidth they consume. [10] 33

Software as a Service

Software as a service (SaaS) allows users to connect to and use cloud-based
apps over the Internet. Common examples are email, calendar, and

33



office tools (such as Microsoft Office 365). [18] Another good example
of SaaS is G-Suite. Some defenitions of SaaS include IaaS as part of
SaaS, while others treat them as different but connected. 4, 17, see
Infrastructure as a Service

Terraform

Terraform is a tool for building, changing, and versioning infrastructure
safely and efficiently. Terraform can manage existing and popular
service providers as well as custom in-house solutions. [8] Terraform
is an open-source infrastructure as code software tool created by
HashiCorp. It enables users to define and provision a datacenter
infrastructure using a high-level configuration language known as Hashicorp
Configuration Language (HCL), or optionally JSON. [11] 4–12, 14–16,
18, 19, 21, 33, see Infrastructure as Code

34



Acronyms

AWS Amazon Web Services Glossary: Amazon Web Services

CI/CD Continous Integration and Continous Delivery 3, Glossary: Continous
Integration and Continous Delivery

IaaS Infrastructure as a Service 4, 6, 17, 34, Glossary: Infrastructure as a
Service

IaC Infrastructure as Code i, 1, 3–6, 10–12, 17–19, 33, Glossary: Infrastructure
as Code

NSA National Software Academy 3, Glossary: National Software Academy

SaaS Software as a Service 4, Glossary: Software as a Service

35



Bibliography

[1] About us - National Software Academy - Cardiff University
url: www.cardiff.ac.uk/software-academy/about-us (visited on
05/01/2019).

[2] Ansible Documentation - Ansible Documentation
url: https://docs.ansible.com/ansible/latest/index.html
(visited on 04/27/2019).

[3] Ansible (Software)
url: https : / / en . wikipedia . org / wiki / Ansible _ (software)
(visited on 04/27/2019).

[4] Continous integration, explained — Atlassian
url: www.atlassian.com/continuous- delivery/continuous-
integration (visited on 05/01/2019).

[5] Idempotence
url: https://en.wikipedia.org/wiki/Idempotence (visited on
04/29/2019).

[6] infrastructure as a service
url: https://en.wikipedia.org/wiki/Infrastructure_as_a_
service (visited on 04/27/2019).

[7] Intro to Playbooks - Ansible Documentation
url: https://docs.ansible.com/ansible/latest/user_guide/
playbooks_intro.html (visited on 04/29/2019).

[8] Introduction - Terraform by HashiCorp
url: www.terraform.io/intro/index.html (visited on 04/27/2019).

[9] Provider: OpenStack - Terraform by HashiCorp
url: www.terraform.io/docs/providers/openstack/ (visited on
04/28/2019).

[10] Public Cloud - Definition

36

www.cardiff.ac.uk/software-academy/about-us
https://docs.ansible.com/ansible/latest/index.html
https://en.wikipedia.org/wiki/Ansible_(software)
www.atlassian.com/continuous-delivery/continuous-integration
www.atlassian.com/continuous-delivery/continuous-integration
https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
www.terraform.io/intro/index.html
www.terraform.io/docs/providers/openstack/


url: https://azure.microsoft.com/en-gb/overview/what-is-
a-public-cloud/ (visited on 04/27/2019).

[11] Terraform (Software)
url: https://en.wikipedia.org/wiki/Terraform_(software)
(visited on 04/27/2019).

[12] J. Osborne (Cardiff University)
Personal email conversation
May 1, 2019.

[13] What is Continous Delivery - Continous Delivery
url: www.continuousdelivery.com (visited on 05/01/2019).

[14] What is Iaas? Infrastructure as a Service
url: https://azure.microsoft.com/en-gb/overview/what-is-
iaas/ (visited on 04/27/2019).

[15] What is infrastructure as code? - Definition from WhatIs.com
url: https://searchitoperations.techtarget.com/definition/
Infrastructure-as-Code-IAC (visited on 04/27/2019).

[16] What is Openstack?
url: www.openstack.org/software (visited on 04/27/2019).

[17] What is Private Cloud
Page now redirects to gtt.net, however searching for the quote will
show it under the original URL
url: www.interoute.com/what-private-cloud (visited on 04/27/2019).

[18] What is Saas? Software as a Service — Microsoft Azure
url: https://azure.microsoft.com/en-gb/overview/what-is-
saas/ (visited on 05/02/2019).

37

https://azure.microsoft.com/en-gb/overview/what-is-a-public-cloud/
https://azure.microsoft.com/en-gb/overview/what-is-a-public-cloud/
https://en.wikipedia.org/wiki/Terraform_(software)
www.continuousdelivery.com
https://azure.microsoft.com/en-gb/overview/what-is-iaas/
https://azure.microsoft.com/en-gb/overview/what-is-iaas/
https://searchitoperations.techtarget.com/definition/Infrastructure-as-Code-IAC
https://searchitoperations.techtarget.com/definition/Infrastructure-as-Code-IAC
www.openstack.org/software
www.interoute.com/what-private-cloud
https://azure.microsoft.com/en-gb/overview/what-is-saas/
https://azure.microsoft.com/en-gb/overview/what-is-saas/

