
Outline

A small online news company, Generic Reporting, is using OpenStack to house their
current cloud infrastructure. Their webserver is a basic Ubuntu 18.4 install, with Apache2
manually installed and configured onto it. Generic Reporting’s new CTO thinks that their
current cloud infrastructure is in need of an update. She wants a production server with
an identical development server that can be modified/rebuilt at a moments notice.

Hand-in instructions

All submissions must be made via Learning Central. Upload the following files in a single
zip file named “CMXXXX [student number].zip”. Make sure that the files are
organised in the folder structure specified.

Hand in files

Description Type Name
Cover sheet PDF (.pdf) file [student number].pdf

Terraform section
Terraform (.tf) files

provider.tf
compute.tf

networking secgroup.tf
networking.tf

output.tf
vars.tf

SSH key file (no extension)
dragon
pheonix

Ansible section

Configuration (.cfg) file ansible.cfg
Plain file (no extension) hosts

HTML (.html) file file.html
YAML (.yml) file main.yml

Folder structure

zip file

coversheet

terraform/

...all 8 Terraform section files...

ansible/

...all 4 Ansible section files...

1



Tasks

1. Using Terraform, construct the proposed cloud infrastructure as code from the
description below.

The new infrastructure must contain two server instances that are identical in all
respects other than names and SSH keys. These two instances should be both
connected to a network along with a router that is also connected to the internet.
There should only be one subnet with all three of these devices on it. The subnet
DNS nameservers should be set to the University DNS servers. Using exactly one
security group allow SSH, HTTP, and HTTPS connections to the subnet. All
connections can be allowed from anywhere.

The server instances should be named “Production” and “Development”. “Development”
should be allocated a dynamically associated IP address pulled from the University
private floating IP pool. “Production” should have a statically associated IP address
that is pre-reserved on OpenStack and will therefore result in the instance having
the same IP address each time you create it with Terraform. This IP should not
be written in any of the Terraform source files but should be stored in the “vars.tf”
file.

There should be two different SSH keypairs for accessing the instances. One for
“Production” and one for “Development”, the public keys for these keypairs should
be stored in the “vars.tf” file. The “Production” keypair should be called “pheonix”
and the “Development” keypair should be called “dragon”, both the private keys
also need to be submitted.

There should be six outputs from the Terraform deployment, the IPs of each
instance, the security groups of each instance, and the SSH key name of each
instance.

Your Terraform code should be split into multiple files, each file should contain the
following:

File name What it contains
compute.tf All blocks with resource type starting “openstack compute”

networking secgroup.tf Resource types starting “openstack networking secgroup”
networking.tf All other “openstack networking” blocks

provider.tf The provider block
vars.tf All variable blocks

output.tf All output blocks

2



2. Write an Ansible playbook that can provision the webservers from task 1 to the
following specifications:

• Apache2 installed and running

• A file named file.html has been uploaded to the server in such a way that going
to the address [IP]/file.html will return that file. (The content of the file is
unimportant, just some text to prove that it works is sufficient)

• All packages in the system are up to date

• The dynamically assigned IP for the development server from task 1 is entered
at runtime (entered when Ansible is run, not hard-coded in a file)

3



Marking criteria

Task 1

• Production server instance is associated with a static IP that is declared in the
vars.tf file

• Development server instance is associated with a dynamic IP

• All servers should be on the same subnet and network

• The two webservers should not be accessible by anything other than HTTP, HTTPS
and SSH

• Only one security group has been used

• Two SSH keys used. One for each webserver.

– Production key named pheonix

– Development key named dragon

– Public keys stored in vars.tf file

– Private keys authenticate correctly and allow access to server setup with public
key

• The Terraform module should have six outputs.

– The IPs of each instance

– The security groups of each instance

– The name of the SSH key used by each instance

• Terraform code split into multiple files as specified in the hand-in instructions.

• Effort has been made to variablise values that are not static

Task 2

• Only one IP is defined in the hosts file (production IP)

• A working method to input a IP to Ansible at runtime is used (command line args,
prompt, ect)

• There are at least three tasks in the Ansible playbook that do the following:

1. Update the system packages - Only this task is allowed to be accomplished
with the raw module

2. Install Apache2

3. Upload a html file from the local machine to the servers and puts it into the
/html/ directory of the Apache webserver

• All tasks successfully run on both server instances

• The uploaded file ”file.html” is accessible on both instances from the “web”. (Cardiff
University internal network)

4


