
Ansible

CMXXXX
Lecture XX - IaC part 3
Dom Routley

Objectives ● Know what Ansible is

● Know why we are using Ansible over the

alternatives

● Have looked at an example of using

Ansible to configure an Apache2 web

server

IaC part 3

What is Ansible

Ansible background

● Owned by RedHat

● Agentless operation (no need for program on target machines)

● Built of modules

● Modules are idempotent

● Built in Python

Why are we using
Ansible over the
alternatives

Why Ansible

Ansible is one of the simplest system provisioning programs that is currently available.

Unlike many of its competitors it is agentless and is therefore perfect for the initial provisioning

of short lived cloud instances.

Examples and
explanations

Config file

Settings in Ansible are adjustable via a config file. The default config should be sufficient for

most users, but there may be reasons you would want to change it.

Changes can be made and used in a user defined configuration file which will be processed in the

following order:

● ANSIBLE_CONFIG (an environment variable)

● ansible.cfg (in the current directory)
● .ansible.cfg (in the home directory)
● /etc/ansible/ansible.cfg (This is the stock config file)

Config file

This is a basic user created config file.

Ansible looks in the section headed [defaults]

for most of its configuration.

This sets the location that Ansible will look to

fill its inventory of hosts. By convention this is

called inventory or hosts

hint: you should not need a more complex config file than this
for your coursework

Config file

This just confirms that we will be using the

SSH port 22.

If a host is reinstalled and has a different key in

‘known_hosts’, this will result in an error

message until corrected. If a host is not

initially in ‘known_hosts’ this will result in

prompting for confirmation of the key.

To prevent this you can set

hosts_key_checking to False

Hosts file

The hosts file contains a list of all of the

“targetable” endpoints for Ansible to talk to.

These endpoints can be described or

grouped under titles with square brackets so

that Ansible can hit multiple hosts at once

with the same configuration

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

Hosts file - children tags

Host file titles allow you to group hosts and

refer to multiple titles at once without

having to write down the address multiple

times.

This is done by using the :children suffix to

the title, the titles of the “children” groups

can then be listed

Hosts file - children tags

Children groups do not have to replace

simply listing addresses.

They can also be used in conjunction with

them.

In this example the “servers” group refers to

four addresses, but you can also just refer to

the “webServers” group if wished

Hosts file - children tags - Why?

For example, you could have two web servers and a backend database server. 90% of the

changes you want to make are made to all three, but you don’t want to install Apache on your

database server, or SQL on your web servers.

You could write three different playbooks, one that called all of the servers to do the 90% setup,

and one each for the database and webserving specific tasks.

Hosts file - host variables

A hosts file can also contain variables that

are specified against specific server groups.

Here the interpreter that Ansible will use on

the remote machines is being set to Python3,

by default the interpreter is set to Python2.7

Hosts file - host variables

You can also set the private key file that

Ansible will use to SSH into the target

machine/s.

This is useful if you have mutliple machines

that are going to be provisioned with the

same playbook, but have different SSH keys

Definition (playbook) files

Playbooks are the files that Ansible uses to

define what it should do.

They are generally made up of two sections.

1. The settings/variables preamble

2. Tasks

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html

Preamble/settings/header

This line tells Ansible what group of hosts to

target with this playbook

This line tells Ansible that it should use

admin privileges (sudo) when executing

commands

This line tells Ansible what use to login to the

target servers with

Modules

In Ansible, Modules are pre-written chunks

of code that can be executed by Ansible on a

target machine.

Modules

An example of a module being used is the apt

module in this code.

All modules have specific parameters that

you can set to ensure that they do what you

want them to do.

Here we are telling the apt module to make

sure that apache2 is at the latest version.

Modules

One of the most simple modules is the raw

module.

This module allow you to inject commands

directly into the target machines

terminal/runtime environment.

This module is not recommended, but is

useful if you have to do something that

cannot be achieved with a module.

A bit more about modules

There are literally thousands of modules available for Ansible that can do everything from

copying files to a remote machine to retrieving tokens from AWS.

You can also build your own modules, most of the modules listed on Ansibles’ module index are

community built and supported however some core modules are built and maintained by the

Ansible team.

All modules can be found at this link:
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html

https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html

Input variables

Input variables

Input variables in Ansible are different than standard internal variables. (Although you can set

internal variables with input variables).

Input variable names are not predetermined like the internal variables (like

ansible_private_key_file) and so can be named whatever you wish.

Input variables can then be used to set things in Ansibles runtime environment that are not

included in static files.

Declaring variables in the playbook file

Variables can be simply declared in the

playbook file under the vars heading.

Here the internal variable defining what

http_port should be used by Ansible is being

set to 80.

Using vars_prompt

The vars_prompt section will get Ansible to

prompt the user at runtime for an input.

In this example the input is then stored in the

variable http_port, the prompt given to the

user can be any string of characters.

Command line arguments

Command line arguments can also be passed to Ansible that can set variables.

In this example the internal variable http_port is being set to 80

Multiple variables can be set at once this way, you simply need to include the key value pairs of

variable_name=variable in the speech marks

Localhost

Worth noting is that Ansible can be run

against your local machine (the one running

Ansible) using the host “localhost”.

Input variables

You can also merge multiple ways of

inputting variables into Ansible.

In this example the custom variable dev_ip is

being prompted for in the first play of this

playbook.

It is worth noting that vars_prompt will not

run if the custom variable has already been

filled by some other means (say, by command

line arguments)

Input variables

The singular task of the first play in this

playbook is to use a module called add_host

that will add a host to Ansibles internal host

memory.

This will NOT add the host to the hosts file.

Input variables

In this example we assume that the

webservers host group includes as a child the

development group.

The development IP may not be static, and

therefore we can set the IP when we run

Ansible and not have to edit any files.

This also shows an example of multiple plays

in one playbook, the plays will run

sequentially so a lower one can rely on

settings and changed made higher up.

