
Initial Plan - Cloud Engineering University

Teaching Module

Dom Routley

February 4, 2019



Description

In this project (provisionally named Cloud Engineering University Teaching Module) I
intend to create a proof-of-concept university teaching module focusing on cloud engineering
and cloud operations.

The Computer Science BSc degree at Cardiff University does not include a teaching
module (either optional or core) that explores cloud computing in detail. As cloud
engineering and operations has quickly become a large part of the information technology
industry this project will attempt to build a proof-of-concept module that could be used
as a basis for creating a fully fleshed out module in the future. There is currently a
MSc teaching module entitled ‘Distributed and Cloud Computing’ for which this teaching
module could serve as its BSc vanguard to prepare students for the MSc course. Distributed
systems is already taught to BSc students in the third year as part of the ‘High Performance
Computing’ and ‘Emerging Technologies’ teaching modules.

As this is a proof-of-concept design, not all elements are intended to be fully complete,
I simply do not have the time or initial knowledge available to be able to create a fully
ready module in three months. I therefore intend to create a module layout/syllabus/overview
as well as building/writing as much of the actual teaching module as possible in the time
given.

I intend to create a mix of lecture style resources, coursework, and exam material.
I will focus on creating the coursework and its marking criteria as I believe that this
is the single most valuable part of the project. During the creation of the coursework
lecture style information will be created such that you should be able to study the lecture
notes and use them to complete the coursework to at least a 70% grade level. From this
lecture style information it should be possible to build out some exam questions. The
lecture style information that I intend to create is to take the format of lecture slides with
attached speaker notes, I intend to be able to pull together this content and create some
fully formed deliverable lectures ready for use. To prove the viability of these lectures I
will record myself giving each lecture (that I fully create) and upload the footage/audio
to the internet such that it can be viewed as part of the viva.

For the coursework I intent to cover cloud server management, primarily through
automated deployment/provisioning tooling such as Ansible, Puppet, Chef, and Terraform.
Out of these four, I have prior experience mainly with Terraform and Ansible and believe
that Ansible is the most versatile for what I would like to achieve. Puppet and Chef
both are designed for client-server models of server configuration, Ansible is deployable
by the user on their own machine and would therefore be more useful for a coursework
style task. Terraform can be used as a server configuration management tool, but is
primarily used for orchestration (creating virtual servers and their environments) rather
than configuration.

Whilst I do not yet know exactly what the coursework will be about, the very basic
plan that I think would work is that of a server and environment configuration task.
Where the student must first build a cloud environment (or design it) and then write
an Ansible configuration script that would configure the server/s in a particular manner.
(Set up a web server, DHCP server ect). Terraform could be used in the back-end of
the coursework to enable some automated environment testing (in OpenStack) of the
coursework to achieve a grade for the student.

Other relevant information will be included as well, but as I am unlikely to be able
to build a full exam along with a full semesters worth of lecture content alongside the

1



Figure 1: Ansible server management

https: // www. tutorialspoint. com/ ansible/ ansible_ introduction. htm

coursework, I expect this to be brief and simple an outline to be covered in the “What I
would do if I had more time” section of the final report.

The coursework is going to be the most significant portion of the project. I want to
not only design the coursework questions, but also construct at least one model answer.
I am also very interested in automated testing and linting (syntax/grammar), so I would
like to build at least a plan of how these could be implemented into the marking system
to aid the course lecturer. If there is time, then I would like to make these working and
available to be shown at the viva.

Objectives

The objectives that I want to achieve can all be split into a set of deliverables that are
then given weekly target dates for their completion. The discussion of the target dates
is in the work plan section below. None of this is set in stone as I may decide that some
or all of these are bad ideas and I will then pivot to different ideas/objectives.
Each of the deliverables has been allocated into a work block, these work blocks are:

• A mostly to fully complete coursework question sheet and model answers

– Block 1a

∗ A task asking for a logical design of a Virtual Private Cloud (VPC) that
is appropriate for a certain task

∗ A “correct” design of the VPC meeting the specifications given in the
question - 100% grade example

∗ A “correct” written answer for why the VPC meets the criteria - 100%
grade example

2

https://www.tutorialspoint.com/ansible/ansible_introduction.htm


∗ Lecture content, (slides + written content) explaining all the information
needed to design the VPC correctly

∗ Written explanations for why the VPC design question is useful for the
module and pointing to the lecture content that it examines

– Block 1b - This is a continuation of Block 1a, but is classed as surplus to
Minimum Viable Product (MVP) so will be done after the MVP has been met
and has a lower priority than other work blocks

∗ A “correct” design of the VPC meeting the specifications given in the
question - 70% grade example

∗ A “correct” design of the VPC meeting the specifications given in the
question - 60% grade example

∗ A “correct” design of the VPC meeting the specifications given in the
question - 50% grade example

∗ A “correct” design of the VPC meeting the specifications given in the
question - 40% grade example

∗ A “correct” written answer for why the VPC meets the criteria - 70%
grade example

∗ A “correct” written answer for why the VPC meets the criteria - 60%
grade example

∗ A “correct” written answer for why the VPC meets the criteria - 50%
grade example

∗ A “correct” written answer for why the VPC meets the criteria - 40%
grade example

– Block 2a

∗ A task asking for a Ansible Playbook to configure a server (or group of
servers) for specific tasks

∗ A “correct” Ansible Playbook meeting the specifications given in the
question - 70% grade example

∗ Lecture content, (slides + written content) explaining all the information
needed to write the Ansible Playbook (up to a 70% grade)

∗ Written explanation for why the Ansible Playbook question is useful for
the module and pointing to lecture content that it examines

– Block 2b - This is a continuation of Block 2a, but is classed as surplus to MVP
so will be done after the MVP has been met and has a lower priority than
other work blocks

∗ A “correct” Ansible Playbook that goes further than what is explained in
lectures and achieves more than 70%

∗ Written explanation for what would constitute valid “further than in
lectures” content and how you would grade this

∗ A “correct” Ansible Playbook meeting the specifications given in the
question - 60% grade example

∗ A “correct” Ansible Playbook meeting the specifications given in the
question - 50% grade example

3



∗ A “correct” Ansible Playbook meeting the specifications given in the
question - 40% grade example

– Block 3

∗ Two more tasks for coursework designed

∗ Those two tasks written with lecture content also created and justifications
for all

– Block 4

∗ Automated marking/linting system designed and made for the Ansible
Playbook coursework task

– Block 5

∗ A test area in OpenStack created that allows the students to run tests for
the coursework and also allows the automated testing to run

∗ Instructions on use of test area created to a professional standard

• Multiple exam questions with model answers

– Block 6

∗ Design (minimum) four exam questions

∗ Model answers for all exam questions

– Block 7

∗ Lecture content for all exam questions that covers everything needed to
know

• Example Lecture/s

– Block 8

∗ More lecture content that is useful to know, but is not expressly assessed
in exams or coursework so far generated

∗ One or more fully compiled lecture presentations

∗ All fully compiled lecture presentations are presented and the audio/presentation
content uploaded to the internet (publicly available)

Work Plan

I have split the project into two parts, each intended to take approximately one third of
the total time that is remaining from now (4th of February) to the submission date of
the project (10th May). This gives my fourteen (14) weeks to divide between my two
sections of work and pulling all of my notes together into the final report. I intend to
split the time in a 5/4/5 split, five weeks for the first section of work, four for the second,
and five for honing the report. The reason for the sections having uneven time is that I
expect the first section to be harder as I expect there to be some false starts/discarded
work in the first section. I will place the most valuable work in the first section, that way
if my time planning is wrong I can drop second section work in order to focus on more
valuable work.

4



Work section one will run from the 5th February to the 8th March. It will consist
of internal objective dates: 8th/15th/22nd February, 1st/8th March. Work section one
will run from the 9th March to the 5th April. It will consist of internal objective dates:
15th/22nd/29th March, 5th April. Internal objective dates are Fridays, they correspond
with the meetings between myself and my project supervisor and will act as minor reviews
of how the project is going. There will be major reviews of the project at the end of both
of the work sections. (March 8th, April 5th)

February March April

8th 15th 22nd 1st 8th 15th 22nd 29th 5th

Work section 1

Work section 2

Block 1a

Block 1b

Block 2a

Block 2b

Block 3

Block 4

Block 5a

Major review of project

Block 6

Block 7

Block 8

5



Glossary

Ansible Ansible is an open-source software provisioning, configuration management, and
application deployment tool. It runs on many Unix-like systems, and can configure
both Unix-like systems as well as Microsoft Windows. It includes its own declarative
language to describe system configuration. Unlike competing products, Ansible is
agentless - temporarily connecting remotely via SSH or remote PowerShell to do its
tasks. 1

Ansible Playbook An Ansible playbook is an organized unit of scripts that defines
work for a server configuration managed by the automation tool Ansible. 3, 4

Chef Chef is a configuration management tool. Chef is used to streamline the task of
configuring and maintaining a company’s servers, and can integrate with cloud-based
platforms to automatically provision and configure new machines. Chef can run
in client/server mode, or in a stand-alone configuration named ”chef-solo”. In
client/server mode, the Chef client sends various attributes about the node to the
Chef server. The server uses Elasticsearch to index these attributes and provides
an API for clients to query this information. Chef then query’s these attributes and
uses the resulting data to help configure the node. Chef supports both Linux and
Windows. 1

MVP Minimum Viable Product 3

OpenStack OpenStack is a free and open-source software platform for cloud computing,
mostly deployed as infrastructure-as-a-service, whereby virtual servers and other
resources are made available to customers. Cardiff University School of Computer
Science maintains an OpenStack cluster. 1, 4

Puppet Puppet is an open-source software configuration management tool. It runs on
many Unix-like systems as well as on Microsoft Windows, and includes its own
declarative language to describe system configuration. Puppet Server is installed
on one or more servers, and Puppet Agent is installed on all the machines that
the user wants to manage. Puppet Agents communicate with the server and fetch
configuration instructions. The Agent then applies the configuration on the system
and sends a status report to the server. 1

Terraform Terraform is an open-source infrastructure as code tool. It enables users to
define and provision a datacenter infrastructure. 1

VPC Virtual Private Cloud 2, 3

6

https://www.ansible.com/
https://www.chef.io/
https://www.openstack.org/
https://puppet.com/
https://www.terraform.io/

