CARDIFF

UNIVERSITY

PRIFYSGOL

CAERDYD

Final Report

Generating Differentially Private Datasets Using Deep Learning
(in collaboration with: Office for National Statistics)

Module: 1819-CM3203 - 40 credits
Author: Wei Loon Teh
Supervisor: George Theodorakopoulos

Moderator: Luis Espinosa-Anke



Acknowledgements

Abstract

Introduction

Background & Related Work

Design & Implementation
Overview
Dataset
Synthetic Data Creation
GAN Implementation
Gaussian Noise Addition

Measuring and Comparing Histograms

4. Evaluation & Conclusions
Data Quality

5. Future Work

Reflections on Learning

5. References

16
16

20

21
22



Acknowledgements

I would like to extend my sincere gratitude and thanks to my supervisor Professor George
Theradoukopoulos and to Dr Ioannis Kaloskampis from the Office of National Statistics. Their expertise
and guidance was invaluable in the forming of the project, especially the methodology

I would also like to thank my family for all their love and support. And to my friends, for the
happy diversions and helpful discussions.

Abstract

The release of sensitive private data for the purposes of analytics requires the
protection and guarantees of privacy. This project implements two different
mechanisms to achieve differential privacy and evaluates and compares them
together. It is found that the Generative Adversarial Networks are capable of
generating data that closely mimics distribution of table data while providing
aspects of data quality and privacy, but the Gaussian Noise mechanism is more
controllable and accurate in terms of data quality and privacy



Introduction

Government organisations, businesses, academia, members of the public and other
decision-making bodies require access to a wide variety of administrative and survey data to
make informed and accurate decisions. However, the collecting bodies are often unable to share
sensitive data with third-parties without risking breaking the confidentiality and consent checks
required to obtain this data.

Even aggregation methods or other functions that distort original data could still leak information
through reconstruction attacks or model inversion attacks, such as described below in Fedrikson
et al. (2015)

Therefore, researchers have proposed many methods for generating synthetic data to replace the
raw data for the purposes of processing and analysis. A good synthetic dataset has two
properties: it is representative of the original data and it provides strong guarantees about
privacy.

Aside from synthetic data generation there exists methods to provide a more robust form of
quantitative privacy called Differential Privacy (Dwork et al 2006). A differentially private
mechanism has similar constraints of the tradeoff between utility of the data and privacy
provided.

This project explores and compares methods of generating synthetic data using Deep Learning
and Neural networks with traditional Differential Privacy methods while evaluating privacy and
utility of the data.

Background & Related Work

Data sets have been released throughout the ages with data anonymization techniques and data
aggregation used to protect privacy of the users within the dataset.

These methods include not only technological means of data protection but choices in
what kind of data and how to publish. Examples include excluding data with small number of
correspondents (cell suppression), creating and upper ceiling or limit (top-coding) and more.
These techniques together limit statistical disclosure of the data. (Adam, N. R., & Worthmann, J.
C. 1989)



Yet data released in this manner is still vulnerable to attacks such as tracing and
reconstruction attacks. Reconstruction attacks seek to uncover underlying microdata by
comparing released data and known attributes across multiple queries to determine secret
information hidden within the dataset. A more subtle attack is the tracing attack. This attack
determines whether or not a specific individual is a member or not a member of a given dataset,
a more modest goal (Dwork et al, 2017)

These types of attacks can be mitigated by Differential Privacy, (Dwork et al 2006).
Differential Privacy is a type of quantitative privacy goal where a procedure M take sensitive
data x and releases output M(x). Output M(x) when compared with a different output M(y)
where y and x differs only one one single individual, M(x) and M(y) are indistinguishable. This
doesn’t prevent no information about a person being released, but mitigates the problem.

There are established mechanisms of differential privacy, such as adding noise to the
data. But here we consider exploring a different method of doing so, synthetic data.

Synthetic data is the idea of generating data to meet specific needs or conditions that may
not be found in original data. It is often representative of the authentic dataset and dates back to
1993, proposed by Rubin to release data samples without disclosing microdata.

With regards to synthetic data, the project was proposed in conjunction with Dr. loannis
Kaloskampis, attached to the Office of National Statistics Data Science Campus. He has done
preliminary work with the office of Data Science regarding data generation with GANS.

There are various methods of generating synthetic data, (Variational Auto-Encoders,
SMOTE, etc) but the one that is of interest for this project is Generative Adversarial Networks.
GANS for short, (Goodfellow et al 2014)

This method is to simultaneously train two models which Generator G and Discriminator
D. Generator G tries to create data that imitates the real data, while discriminator D tries to tell
between generated and real data.

The idea here is to evaluate an compare GAN data generation, which releases no ‘real’
data, offers any inherent privacy when evaluated as a differential privacy mechanism.



Design & Implementation

Overview
The project will be split into two stages: implementing and evaluating two different mechanisms
for achieving differential privacy, synthetic data generation using GANs (Goodfellow et al 2014)
and gaussian noise addition

The two methods will be experimentally tested vs the definition of differential privacy described

below

Definition : (Differential Privacy, Dwork et al. 2006b). A mechanism M satisfies € -
differential privacy if, for any datasets x and y differing only on the data of a single
individual and any potential outcome ¢,

P[M(x) =q] <e* P[M(y) =q]
To give a brief overview of the overall project, the steps are below.

1. Synthetic Data Creation
1.1.  Develop and evaluate GAN suitability to produce synthetic data
1.2. Tune GAN to provide closest representation to real data
1.3.  Create GAN training system to save and load the weights of trained layers.
1.4.  Train WGAN on full data, save the weights of the dataset
2. Gaussian Noise Addition
2.1.  Test adding Gaussian noise to histogram plots of the data
2.2.  Create system to change std variation to provide different noise
3.  Compare and evaluate the mechanisms
3.1.  Evaluate quality of mechanism by comparing M(data) with original data
3.2.  Evaluate privacy of mechanism by comparing M(data) vs M(data minus i-th row)

Further details on implementation are below, and more details on evaluation methodology in the

evaluation section



Dataset

For the purposes of our project, we are working with the US Adult Census dataset (Dua, D. and
Graff, C. 2019), limiting it to 6 continuous variables and the first 5000 records.

Data Description
age age
fnlwgt Final Weight, a sampling weight of the dataset

education-num

Numerical representation of education

capital-gain

Income from sources apart from wages

capital-loss

Losses from sources apart from wages

hours-per-week

Hours worked per Week

Example shown:

age fnlwgt education-num capital-gain capital-loss hours-per-week
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All variables are treated as normal data features and network is trained on the dataset.

Data was pre-processed and normalized before training




Synthetic Data Creation

Generative Adversarial Networks is a class of machine learning algorithm that takes a
game-theoretic approach. The Generator and Discriminator learns to generate data that
approximates the distribution of real data through an adversarial mini-max game.

Two competing networks play against one another. The Generator takes noise as input and
creates samples of approximate real data. The Discriminator network is fed both real and
generated data and tries to determine which one is the real data. These two networks learn off of
each other, each performing better at their task to achieve the goal of creating synthetic, highly
realistic data.

Figure 1.1 : Generative Adversarial Network
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Most of the achievements in the field of generative adversarial networks have not been with table
data, such as this project but rather images, such as CycleGAN and StyleGAN which does
domain and style transfer, (real scenery to paintings, zebras to horses) or image combination
such as GANbreeder.

This portion of the project was supervised and advised by Dr Ioannis Kaloskampis, attached to
the Data Science Campus at the Office of National Statistics. His work and advice was
indispensable to the project.



GAN Implementation

GANs were implemented in Python, using the Keras and Tensorflow packages for building
neural networks. Matplotlib and seaborn were used for plots and sklearn package for data
preprocessing and normalization.

GAN training and weight saving-loading system of code adapted from publicly available github
code of Cody Nash, which was used for credit card fraud data.

Keras and Tensorflow was used to build the GANs and WGAN due to suitability for deep neural
networks, compared to the more NLP focused packages available in PyTorch. Keras High-level
API was sufficient for the task.

Initial ‘Vanilla” GAN implementation was very difficult. Multiple problems with GANs exist
such as mode collapse, only generating one type of correct data, leading to a lack of diversity in
distribution

Figure 1.2: Mode Collapse in standard GAN, data not distributed properly

generated

flwgt

o G

100 000 025 050 075 100

=]
[
[=]
[
Pod =
Ln
[=]
L
=
[=]
|
Ln

[=]

We explored developing two types of GANs with different objective functions: WGANs
(Arjovsky et al 2017) using Wassertein Earth Mover distance WGAN and traditional GAN using
Jensen Shannon Divergence.

Earth Mover distance is an objective function which assesses distance between probabilities
WGANSs were developed by Martin Arjovsky and colleagues to improve the stability of learning,
and reduce problems of mode collapse. Dr Kaloskampis’s previous work had also shown that
WGANSs perform better for the dataset



Figure 1.3 : fnlweight distribution real vs generated plotted at step 5000 using WGAN
real generated
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Other problems included problem with training time. Training time using full dataset 32,251
records proved over 20 mins long, with no batch size training. By reducing the dataset size to
5000, and implementing a batch size of 128 to train the network it took about 6 minutes to train
to 5000 steps which gave good results on distribution charts like above.

GANSs were hypersensitive to Hyperparameters, which took trial, time and experimentation with
the parameters and guidance from Dr. Ioannis to solve. Tested multiple different batch sizes,
neurons per layer and steps.

Final Hyperparameters which showed promising results, evaluated through distribution
histograms and correlation matrices are as such :

Figure 1.4
GAN Hyperparameters
Layers 3 Dense Layers
Neurons per Layer 128
Batch Size 128
Steps (epochs) 5000
Learning Rate Se-4
Critic Pre-Train Steps 100

Below is an example of a few histogram plots and correlation matrices which we used to explore
the differences and compare real and generated data.



Figure 1.5 Correlation Matrix with WGAN data at step 5000
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Figure 1.6 : Histogram comparison of Real vs Generated Data at step 5000 using WGAN
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Gaussian Noise Addition

Output perturbation is one of the existing families of differential privacy mechanisms.

In output perturbation, after computing the output of a query, f from the user,(in our case, a
histogram of the distribution of values) random noise variable Z is added to the output, which is
calculated by function N (Dwork and Roth 2014)

M(x) = x) + Zwhere Z~ N

There exist multiple different styles of output perturbation but the one of focus for our project is
Gaussian noise output perturbation.

Z~N(0,

The Gaussian Mechanism calculates a zero mean isotropic Gaussian perturbation based on o
(std deviation)

The higher the value of O, the more noise is added to the data and the more privacy you achieve.
The lower the value of O, the more representative the data is.

The trade-off of adding higher or lower amounts of noise depends on the priority of the users of
the dataset. Is it more important to achieve better privacy protection, which lowers the
probability of an individual being detected within the dataset, or to preserve the
representativeness of the data that is being protected by differential privacy.

Implementation was done using numpy.random packages that can generate gaussian distributed
data in a given shape. To account for accurate data in the histogram, after adding random noise,
data is rounded up or down to the nearest integer, given that histogram counts cannot have
decimal points.

Example data is shown on the next page.



Figure 1.7 : Histogram Plots of Real data vs Noise added data witha 0 =20
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Measuring and Comparing Histograms

To compare the output of two histograms, the output can be calculated by calculating the sum of absolute
differences between each bin, so long as the bin edges remain the same for both histograms.

Y | hist(i) — hist() |

n=bins

By determining and setting the bin edges of the histograms, we use the sum of the absolute difference
between each bin as our indicator as to how similar the two distributions are.

Bin edges are determined by using a combination of the of the Freedman Diaconis Estimator
(Freedman et al 1981), for large datasets and the Sturges (Scott D.W. 2009) estimator for
smaller datasets.

Figure 1.8 Comparison of histograms using both (left) vs Freedman Diaconis alone (right)
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Evaluation & Conclusions

Data Quality

For the purposes of the project, we are considering distribution of the data as the main query
performed and will evaluate quality based on distribution.

Comparing two histogram distributions is challenging, we opted to try two different approaches,
Chi-Squared tests and Absolute Difference.

After experimenting with chi-squared tests for frequency using the Python stats package, the data
frequencies of the dataset were found to be unsuitable for the test due to the limitation of chi
squared test requiring at least 5 counts in all frequency categories.

To evaluate data quality of the mechanisms, the solution is to compare histogram of full raw data
hist(x) and histogram of data after hist(M(x))

GAN mechanism

Y | hist(x) — hist(GAN(x)) |

n=bins

Noise mechanism

> | hist(x) — hist(Noise(x)) |

n=bins
This gives the absolute difference between distributions before and after each mechanism. The
smaller the absolute difference, the higher the data quality, as it is more representative of the real

data.

To take into account randomness of both mechanisms, as data from noise and GAN is generated
from random input, a mean average output after 30 times is used to compare with real data.

Results are below.

Figure 2.1 : Absolute Difference between hist against o noise. GAN parameters remain static.
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As you can see, the GAN achieves high difference in distribution compared to the low noise
noise sigma variable.

This is because although the trained data retains similar distributions and correlations, there are
significant differences to real data still. Also, the method of evaluation using absolute differences
is not an exact measure of the goodness of fit between two distributions.

Noise perturbation is still the more accessible method of preserving data quality, as tuning
GAN: s is a trial and error process which can drastically alter output based on the

hyperparameters

Testing for Data Privacy

Each mechanism will be tested by removing a single line of data, running the mechanism on
both the full data M(x) and the ‘data minus i-th row’ M(y) and compared against each other. This
will be repeated for the top 40 rows of the dataset to get an average.

GAN mechanism
Avg > | hist(GAN(x)) — hist(GAN(»)) |
n=bins

Noise mechanism

Avg Y | hist(Noise(x)) — hist(Noise(y)) |

n=bins
Where y = x with i-th data row removed, 0<i < 40

Figure 2.2 : i-th Row impact on absolute difference
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This plot shows the removal of which rows have a higher impact on the overall mechanism
output. The lower the absolute difference, the lower the likelihood of the data being discovered
by an attacker

However, the definition of differential privacy states that it is the likelihood of detection of a
single individual that determines how privacy protected the dataset is. Therefore by determining



a threshold T where if the absolute difference is over T, the detector/attacker will be able to
discover the information hidden, we can split the absolute difference and obtain a probability.
This could be an arbitrary threshold but a better way for exploring that will be explored in future
work.

Figure 2.3 Histogram of Absolute Difference & Row Count for GAN mechanism
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Figure 2.4 Histogram of Absolute Difference & Row Count for Noise mechanism
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5. Future Work

For Future work in the project, we will first look at future work available on the
mechanisms themselves.

More experimentation on the hyperparameters of the GAN to further improve the output
of the synthetic data would be needed to compare against differential privacy. Changing the
number of layers, which was not experimented on heavily during the testing of the project, or
even trying out other types of GANs such as Conditional GANs. Adding support for categorical
or labeled data would be an improvement, as currently the GAN only works on categorical data

More work could be done in the area of the output perturbation noise mechanisms.
Laplace distribution noise is an alternative that could be explored

As for the evaluation process, further looking into methods of comparison would be
better. Log-Likelihood tests or a kernel density estimate sampling could improve the comparison
of the frequencies to give a better idea of goodness of fit.

Implementing an attacker/discriminator to build a more robust system for experimental
testing of Differential Privacy, as it would be able to empirically assess of how often and how
probable it is to obtain the protected data from the real data.

Finally, experimenting with a hybrid combination would be interesting to compare to
both pure GAN and pure noise. Adding noise to the data pre-gan training could show interesting
results.



Reflections on Learning

Reflecting on the journey of the entire project, I thoroughly believe that I’ve learned a lot.
There are skills that I’ve gained throughout this project that I will carry with me into my work
and apply it liberally.

Firstly I now know exponentially more about neural networks, GAN’s, statistical
analytics and programming in python, I’ve learned the basics about Differential Privacy and its
mechanisms as well as how to troubleshoot more thoroughly, carefully and deliberately. The
guidance of Professor George Theodorakopoulos and Dr Ioannis was key into getting the project
off the ground, as I had no prior experience with neural network programming and differential
privacy.

Not to undermine the ‘hard skills’ that I have learned throughout the project but there are
a few other key skills I identified that would carry me into my career. Number one would be the
how to perform research. I’ve never undertaken a research type project where the goal of the
project is not only to complete the project in the standard manner, but also to test and evaluate all
different methods available. A research is not only guided by the prompt or the supervisor, it is
more independent. How would I go about solving this problem, or testing this theory in the
context of the project. It challenges your own assumptions and concepts that you understand
about the subject. Many of the skills I have now at the end of the project, would greatly improve
the process of any research type project that I undertake in the future.

There were a few assumptions that I had made about the project that in hindsight
could’ve saved me much time and effort. Reading the internal documentations more clearly on
the packages as well as understanding that a thorough understanding of the methodology would
help speed things along.

These are the skills that I will carry on into my next projects. I will continue to ask more
pertinent questions of myself, when evaluating a problem. Is this methodology truly the right
way? Are there any key areas that need more research with the decisions about the data, the
relevant approach to reduce trial and error and wasting time?

Thank you once more for the learning experience and I will build upon the skills and
approaches that I have learned during this project and grow through the projects I undertake in
the future.
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