

ASSESSMENT TIMETABLE

AND SCHEDULING

SYSTEM
CM3203 – ONE SEMESTER INDIVIDUAL

PROJECT 40 CREDITS

Supervisor: Helen Phillips

Nicole Kan – C1645959

May 2019

Moderator: Paul Rosin

 1

Acknowledgements

I would like to thank my supervisor Helen Phillips for supporting me throughout this project as

well as offering guidance and constructive feedback. It has greatly helped to tackle any

issues I faced and ensure the completion of the system within this project.

I would also like to thank my friends and family who have supported me over the last 3

months and helped me keep going whenever I hit a roadblock.

 2

Abstract

This report documents the work done to create an automated system to make assessment

timetable pdfs for each year group within the School of Computer Science and Informatics

at Cardiff University. The main aim of this project is to make the assessment timetabling

process quicker and easier to manage which has been achieved by creating a standalone

java application that makes the timetables for the user. The system also allows a couple of

additional functionalities such as selecting which master’s modules are to be put into the

timetable and allowing the user to create an updated timetable when they wish to change

an assessment’s hand out/hand in dates.

Throughout this project a combination of Agile and Waterfall development methodology has

been used to manage its progress. The requirements for this project were discussed with the

client before being finalised and used in the short sprint like cycles of development. Upon

completion of development, testing with test cases and usability testing was conducted to

assess if the system was a success.

With the system passing all of its tests it has been deemed successful and although there are

a couple of minor errors discovered upon usage after testing, the basic functionality of the

system works whilst also allowing for potential future works.

 3

Table of Contents

List of Figures .. 5

List of Tables ... 6

1. Introduction and Background .. 7

1.1 The problem ... 7

1.2 Background .. 7

1.2.1 Current timetable creation workflow ... 7

1.2.2. Target user(s) and the need for the program .. 8

2. Approach ... 9

2.1 Choosing a development process .. 9

2.2 Project Scope and Outcomes .. 10

2.3 Assumptions ... 10

3. Specification and Design .. 12

3.1. Functional and Non-Functional Requirements .. 12

3.1.1. Functional Requirements: .. 12

3.1.2. Non-Functional Requirements: .. 13

3.2. Testing .. 14

3.2.1. Test Cases .. 14

3.2.2 User Testing and Ethics Approval ... 16

3.3. Use Cases .. 16

3.4. Design .. 17

3.5. Java Vs Python .. 20

3.6. iText .. 21

3.7. Risk Assessment .. 21

4. Implementation ... 23

Code Practices .. 23

Source Code .. 24

assessmentSystem.java ... 24

GUI.java ... 24

pdfTable.java .. 31

5. Results ... 40

5.1. Test Cases .. 40

5.2 User Testing .. 41
Question 1 .. 42
Question 2 .. 42

 4

Question 3 .. 42

6. Evaluation ... 43

6.1. Success of the software ... 43

6.2 Nielsen’s Heuristics .. 44

7. Future Works ... 45

8. Conclusion and Reflection on Learning .. 47

8.1. Conclusion .. 47

8.2. Reflection on Learning ... 47

Appendices .. 51

Appendix 1 .. 51

Appendix 2 .. 52

Appendix 3 .. 53

Appendix 4 .. 57

Appendix 5 .. 59

Appendix 6 .. 62

Appendix 7 .. 66

 5

List of Figures

2.1 – Waterfall Model 9

2.2 Agile Model 9

2.3 Hybrid Model 10

3.1 - Use Case 1 16

3.2 – Use Case 2 17

3.3 - 2018-2019 ComSc Year 3 Assessment Timetable 18

3.4 – ComSc Year 2 Assessment Timetable from Python Script 18

3.5 – Initial timetable design 19

3.6 – Initial GUI design 20

4.1 – Implementation screenshot: assessmentSystem.java 24

4.2 - Implementation screenshot: GUI.java 24

4.3 - Implementation screenshot: GUI.java 25

4.4 - Implementation screenshot: GUI.java 26

4.5 - Implementation screenshot: GUI.java 27

4.6 - Implementation screenshot: GUI.java 27

4.7 - Implementation screenshot: GUI.java 27

4.8 - Implementation screenshot: GUI.java 28

4.9 - Implementation screenshot: GUI.java 28

4.10 - Implementation screenshot: GUI.java 29

4.11 - Implementation screenshot: GUI.java 29

4.12 - Implementation screenshot: GUI.java 30

4.13 - Implementation screenshot: pdfTable.java 31

4.14 - Implementation screenshot: pdfTable.java 32

4.15 - Implementation screenshot: pdfTable.java 33

4.16 - Implementation screenshot: pdfTable.java 34

4.17 - Implementation screenshot: pdfTable.java 34

4.18 - Implementation screenshot: pdfTable.java 35

4.19 - Implementation screenshot: pdfTable.java 36

4.20 - Implementation screenshot: pdfTable.java 37

4.21 - Implementation screenshot: pdfTable.java 37

4.22 - Implementation screenshot: pdfTable.java 37

4.23 - Implementation screenshot: pdfTable.java 37

4.24 - Implementation screenshot: pdfTable.java 38

4.25 - Implementation screenshot: pdfTable.java 38

4.26 - Implementation screenshot: pdfTable.java 39

5.1 – Questionnaire: question 1 results 42

5.2 – Questionnaire: question 2 results 42

5.3 – Questionnaire: question 3 results 42

 6

List of Tables

3.1 – Must have functional requirements 12

3.2 – Should have functional requirements 12

3.3 – Could have functional requirements 13

3.4 – Must have non-functional requirements 13

3.5 – Should have non-functional requirements 13

3.6 – Could have non-functional requirements 14

3.7 – Test case 2 14

3.8 – Test case 3 14

3.9 – Test case 5 15

3.10 – Test case 11 15

3.11 – Use case 1 16

3.12 – Use case 2 17

3.13 – Risk Assessment 22

4.1 – Implementation iterations 23

5.1 – Completed test case 2 40

5.2 – Completed test case 3 40

5.3 – Completed test case 5 41

5.4 – Completed test case 11 41

5.5 – Questionnaire: Question 1 results graph 42

5.6 – Questionnaire: Question 2 results graph 42

5.7– Questionnaire: Question 3 results graph 42

6.1 – Nielsen’s heuristics evaluation 44

 7

1. Introduction and Background

1.1 The problem
The School of Computer Science and Informatics at Cardiff University currently provides

students and staff with a coursework assessment timetable PDF that is developed by each

year group’s tutor. Despite there being a workflow (found in Appendix 1) of when in the prior

academic year these timetables are made, there is no specific outline for how they should

be made other than them generally being an Excel spreadsheet (Phillips H, 2019a). Since the

timetables are produced by a collection of people rather than just the one and are made

by hand, this means they are often inconsistent in layout and contents as well as being time

consuming to make. Additionally, this means altering the timetable if/when change requests

come through during the academic year also has to be done manually to produce the

corrected assessment timetable again.

The aim of this project is to create a dynamic system that is able to easily generate

coursework timetables for all years that are consistent, understandable and easy to use. This

will be achieved by creating a GUI for a Java program that automatically creates the PDF

timetables. The system will also create the timetables in a faster timeframe than when it is

done by hand allowing the examination officer(s) and the assessment and feedback lead

longer to analyse the time frames for assessments and any assessment bunching that occurs.

This will then hopefully reduce the number of change request forms that are created

throughout the academic year as they will be able make any relevant changes prior to the

timetables prior to being sent out to the students at the start of the academic year.

1.2 Background
1.2.1 Current timetable creation workflow
As previously mentioned, there is workflow that documents roughly how the assessment

timetables are currently made and the timeframe in which they are made. It first collects the

number, detail and dates of the assessment as part of the module review form in

February/March of the previous academic year and it is this information that is used to

create the timetables. Once the module leaders for the following academic year are

approved, lecturers are asked to confirm or alter their assessment dates. The assessment and

feedback lead will then examine the timetables to reduce bunching and ensure that the

assessment deadlines are suitable. As the preparation for the academic year starts the

timetables are then published in the exam share area allowing staff and admin to access

them when needed, whether that be for moderating, checking and setting assessments. As

students begin the academic year, the timetable for each year is then made available to

each year’s students via learning central. During the academic year, any changes that

need to be made to an assessment then have to go through the change request process,

requiring the assessment timetable to be re-made and shared again.

This current process of creating the timetable creates the following problems:

• Since the workflow does not address the layout of the timetable or what information

the timetable must contain, they are often inconsistent across the year groups and

from academic year to academic year since it is different people creating them

each time.

• The dates in the timetable can be/have been wrong in the past since the timetable is

copied from previous years and the assessment data is altered but other important

information, such as term dates are not.

• Due to the manual method of creating the timetable if an assessment is updated, the

timetable often is not. This means students and staff continue using the original

assessment timetable that is no longer correct.

 8

• Feedback periods for assessments often do not take into account times when the

university is shut and stuff are on holiday, i.e. over Christmas and Good Friday and

Easter Monday. Whilst the feedback timeframe is 4 weeks, it is counted as 20 working

days, therefore bank holidays etc. should alter the feedback timeframe.

1.2.2. Target user(s) and the need for the program
The target user(s) for this program would be those who help organise each year’s

assessments and provide students with the assessment information at the beginning of the

academic year. This includes the assessment and exam lead and the director and deputy

director of teaching for the School of Computer Science and Informatics. Whilst it is the head

tutor of each year group that currently makes the timetable, they would not be the target

user(s) for this program as the program would allow the assessment and exam lead to

automatically generate the timetable for all years in one go.

This program has been chosen to be implemented for various different reasons. The first

being to address the problems discussed in section 1.2.1 Current timetable creation workflow

of this report. Also, during the Periodic review for the School of Computer Science and

Informatics improving the assessment scheduling was put as an action to revise the process

for assessment information collecting and scheduling in the timeframe January 2019 (Phillips

H, 2019b).

Additionally, Cardiff University follows a set of Academic Regulations which requires the head

of the school to deliver to students in writing at the beginning of each session (i.e. the

beginning of each term/year) the following information regarding coursework: the form of

any coursework requirements, the deadlines and procedures for the submission of

coursework, if any electronic plagiarism detection will be put in place and the timing of any

viva voce that contributes to the overall assessment of a module (Cardiff University 2019,

p.100). Having this information be accurate and correct and less likely to change throughout

the academic year can also benefit Student Support at Cardiff University who offer

additional learning support. If they were to be given an assessment timetable at the

beginning of each term/academic year then they would know when the workload for

students is higher and therefore more likely to require additional learning support. They would

then know when more staff are likely to be required to ensure adequate support for students.

Furthermore, staff are encouraged to spread the assessment load in the Guidance on the

Nature and Volume of Assessment in Modules on Taught Programmes of Study (found in

Appendix 2) across modules to ensure an even spread for both students and staff. This also

allows students to submit work that accurately represents their knowledge, skills and

understanding of a module when the workload is spread evenly. However, making sure the

assessments are spread evenly throughout a term takes time, especially when year groups

start having optional modules and multiple different combination of modules need to be

taken into account. If changes to assessments are then needed this is even more time

consuming. With the assessment timetables and analysing being done in one time frame, as

seen from the workflow diagram in Appendix 1, and the timetables being made by hand by

multiple different people, the time available for the assessment and exam lead or

director/deputy director of teaching to ensure the workload is spread evenly is varied and

can sometimes not be adequate to make required or recommended changes before the

timetable is required to be shared to students and staff. The automatic creation of these

tables would then mean they are quicker to make allowing more time to alter them where

necessary.

 9

2. Approach

2.1 Choosing a development process
When approaching the development of this software I considered two development

methodologies: Waterfall Methodology and Agile Methodology. Waterfall approaches a

project in a sequential, linear approach. The progress of the project cascades down the

stages starting with requirements gathering, to system design, then implementation, followed

by testing, to delivery and finally ending with maintenance.

The distinct phases in Waterfall means that the next phase of the project can only begin

once the previous one has been completed. This also means that once a phase is

completed it is not possible to revisit it; to revisit a phase the only way is to restart from phase

one. Since clear milestones are set in phase one it makes tracking progress of a project easy

and is best used when requirements are not likely to change during development and when

there is a set time frame for delivering the project (LucidChart Content Team, 2017).

Agile on the other hand is common where flexibility and high collaboration is required during

the project. It also encourages frequent communication between the developers of the

project and those who will ultimately be using the deliverable. This is because agile

implements the deliverable in iterations allowing it to be incrementally accepted, making it

easier to make any changes from client feedback at the end of each iteration and change

the requirements throughout the project (Lonergan, K. 2016).

Having used both of these methodologies before I decided to combine them for this project

and use an iterative and incremental development methodology (Inflectra, 2015). Using this

Figure 2.1 Waterfall Model

(LucidChart Content Team, 2017)

Figure 2.2 Agile Model

(Pivotal Tracker, 2017)

 10

methodology, it allows me to have an incremental progression in my project whilst also

allowing an iterative process for the implementation of the software.

This model follows the waterfall model for the creation of the initial requirements and design

of the system but allows the flexibility of agile for implementing and developing the software.

Each of the cycles will be 1-2 weeks with testing and feedback from the user given at the

end of each cycle. Feedback from the previous cycle will then implemented in the next

cycle so that the software is constantly being improved as it is being developed. Once all

the requirements have been met, final user testing will be carried out and the deliverable will

be released.

In order to keep track of the iterations for this project and ensure code integrity is maintained

I will be using GitHub and uploading the source code to a repository at the end the software

development part of each short 1-2-week cycle.

2.2 Project Scope and Outcomes
The scope of this project is limited to The School of Computer Science and Informatics at

Cardiff University and the current way that information regarding the assessments is collected

and stored. The scope of this project does not allow for altering the amount of information

contained in the PDF timetable outputs but can be included for future works.

The main outcomes of this project are the following.

1. An application that can be used to automatically create assessment timetables in the

form of pdfs for all year groups in the school when given a csv file containing the

assessment data. This application should be able to run on the main three computer

operating systems: Windows, Macintosh and Unix and be self-explanatory to use.

2. Documentation of the overall project, including requirements, system design, the

implementation process, user testing, a full code base and other relevant or essential

information.

2.3 Assumptions
During this project the following assumptions are made:

• All hand in and hand out dates for coursework are during term weeks of a semester,

i.e. not in exam or recess weeks.

• Both semesters, Autumn and Spring are 12 weeks long. This excludes recess weeks

and exam weeks.

• The exam period in a term starts the week following week 12 in the relevant term.

• The exam period for Autumn exams is always 2 weeks.

Figure 2.3 Hybrid Model

(Darmawan, NB. 2014)

 11

• The recess weeks of a term are between week 11 and week 12.

• The start dates of a term is always a Monday.

• The user has access to all of the source code in order to download it to use the

program.

• The user has Java installed on their machine and are able to run Java programs from

their command line.

• The csv file is assumed to have at least the following information for each assessment

in the order listed: module code for assessment, module title for assessment, type of

assessment, contribution, assessment title, hand out week and hand in week. A

further two columns of information can be added into the csv file if necessary but will

not be required for making the pdfs.

• Each year group has a set year code that is used at the beginning of each module

code to distinguish which year group the module is studied in.

 12

3. Specification and Design

3.1. Functional and Non-Functional Requirements
Functional requirements specify what the system what the system does, and non-functional

requirements specify how the system works (Eriksson, U. 2012). For this project I will be splitting

the requirements into 3 different tiers: must have, should have and could have. Must have

includes requirements that without them there is no point in delivering the product and a

viable solution cannot be delivered without them. Should have requirements are ones that

are important but not essential, they may require some kind of temporary workaround for the

given delivery date that at a later point can be fixed with a better solution. Could haves will

contain requirements that are desirable but less important, i.e. they will have less of an

impact if left out compared to should have requirements (Agile Business. 2014).

The following requirements have been decided on after discussion with the client on what

they wish the main functionalities of the system to be along with additional desirable ones

that if not completed in this iteration of the project could be implemented in future work.

3.1.1. Functional Requirements:
Must have requirements:

Requirement Acceptance Criteria
The system must be able to take csv data as the input

for creating the timetable pdfs.

The user is able to enter the name of a csv file

containing all the assessment data that is then

used to create the timetables into the system.

The system must create pdfs containing each year

groups assessment timetable as the output.

The user will be able to save the timetable pdfs to

a directory on their machine.

The system must be able to let the user alter an

assessment’s hand in/hand out dates.

The system allows the user to enter all the relevant

information for updating the dates of an

assessment and create a new updated timetable

for the year group containing this assessment.

The system must let the user know when information

used in creating the table for an assessment is missing.

The pdf timetables will highlight any missing

information that is meant to be present.

The system must have a graphical user interface (GUI).

When the system is run a GUI is launched that

allows the user to enter all the required

information to create the assessment timetable

pdfs.

Should have requirements:

Requirement Acceptance Criteria
The system should take into account days the

university is closed when showing feedback dates on

the timetable.

If an assessments period falls over days the

university is closed or staff are on holiday, i.e.

Christmas and Easter, the typical 4 working weeks

feedback time will be extended (2 additional

weeks for Christmas and 1 additional week for

Easter).

The system should let the user generate and choose

which master’s modules they want included in the

master’s assessment timetable.

The user is able to click a button that shows them

all the master’s modules and select the ones they

want to be in the timetable. If they choose not to

select them, all modules are automatically

included.

Table 3.1

 13

The system should remind the user to alert staff

members and students of an updated table when

they update an assessment and create a new table.

Once the user has updated an assessment the

system will remind the user to upload the updated

timetable to the relevant places for both staff and

students and send an email out alerting people to

this change.

Could have requirements:

Requirement Acceptance Criteria
The system could be able to provide multiple different

formats of an assessment timetable with different

amounts of information in each format.

The user is able to choose between two versions

of the timetable. One contains the essential

information and the other contains essential

information as well as additional information that

could be considered useful.

The system could be linked to the change request

forms.

When staff require a change request form during

the academic year, the user can send it to that

member of staff from the system. Once it has

been filled in by the staff member and approved

by the user, the system will then automatically

create a new updated timetable.

3.1.2. Non-Functional Requirements:
Must have requirements:

Requirement Acceptance Criteria
The system must create an output of timetables that

are consistent in design and easy to use and

understand data from.

The layout and colour scheme for each year

group’s timetable is the same and they all contain

the same level of information. In user testing at

least 70% of users agree the timetable is easy to

use and understand.

The system must have a GUI that is easy to use,

learnable and overall user-friendly.

The GUI launched by the system adheres to Jakob

Nielsen’s user interface heuristics (Nielsen, J. 1994)

when being designed and scores at least 70% on

user testing.

The system must be reliable. The system will not fail at random intervals and will

always produce pdf timetables when given csv

data.

The system must be able to run on multiple different

operating systems.

The system can run on the 3 main operating

systems: Windows, Macintosh and Linux without

error.

Should have requirements:

Requirement Acceptance Criteria
The system should have a suitable response time for

creating the timetable pdfs.

The system is faster than creating the timetables by

hand.

When the user asks the system to create the tables

there should not be a significant delay (no more

Table 3.2

Table 3.3

Table 3.4

 14

than 10 seconds) in letting them know they have

been created.

The system code should be easily maintained and

updated in the future.

The system is comprised of code in classes and

each file does not exceed 1000 lines of code.

Could have requirements:

Requirement Acceptance Criteria
The system could have a feedback button to make

maintenance of the program easier.

The user is able to click a button that links them to

a feedback form regarding the system.

3.2. Testing
In order to see if the system requirements are met, I will be using a combination of test cases

and user testing. The requirements that I will be testing to ensure they meet the acceptance

criteria will be the ‘must have’ and ‘should have’ requirements. Since the could have

requirements are of the lowest priority for this project and are not deemed essential or of

high importance for the timeframe of this project, I will not be testing them in this report. The

requirements that require a step by step procedure to see if they meet their acceptance

criteria will be tested using test cases and those that can’t, i.e. seeing if users agree the GUI is

easy to use, will be tested through user testing.

3.2.1. Test Cases
Since there is large number of test cases, only the ones that primarily focus on the

functionality of the system achieving the aims set out earlier on in this report are shown in this

section. For the rest of the test cases please refer to appendix 3.

Test Case 02

Requirement: The system must create pdfs containing each year groups assessment

timetable as the output.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

1. The user inputs all the

required data into the GUI

text fields.

2. The user clicks the make

timetables button.

3. User opens the created

timetable(s).

The system lets the user know

the timetables have been

made and user is able to

open the pdf timetables with

a pdf reader.

Checker & Date of Check: Author: Nicole Kan

Test Case 03

Requirement: The system must be able to let the user alter an assessment’s hand

in/hand out dates.

Pre-condition(s): The user has the system downloaded on the machine they are using.

Table 3.5

Table 3.6

Table 3.7

 15

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

1. The user fills in the required

text fields in the GUI.

2. The user enters the details of

the assessment they wish to

change in the change

module section of the GUI.

3. The user clicks the new

timetable button.

The system lets the user know

a new timetable and user is

able to open the updated

timetable pdf.

Checker & Date of Check: Author: Nicole Kan

Test Case 05

Requirement: The system must have a graphical user interface (GUI).

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

1. User opens the

terminal/command line.

2. User changes to the

directory containing the

source code for the system.

3. User enters the compile

command as found in the

ReadMe.txt.

4. User enters the run

command as found in the

ReadMe.txt.

The system will open a GUI on

the user’s machine allowing

them to create the

timetables.

Checker & Date of Check: Author: Nicole Kan

Test Case 11

Requirement: The system should have a suitable response time for creating the

timetable pdfs.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

1. User enters all the required

information into the text

fields in the GUI.

2. The user clicks the make

timetables button.

The user is waiting less than 10

seconds between telling the

system to make the

timetables and being told

they have been made.

Less than 10 seconds wait

between choosing the

directory to save the

timetables in and being

PASS

Table 3.8

Table 3.9

 16

3. User opens the timetable(s)

created.

told by the system they

have been made.

Checker & Date of Check: Nicole Kan 16/04/2019 Author: Nicole Kan

3.2.2 User Testing and Ethics Approval
For the remaining requirements I will create a short questionnaire that asks the users for their

opinions on the given requirements. This questionnaire can be found in appendix 4 and the

results of it will be evaluated against the acceptance criteria for each requirement in the

evaluation section of this report.

Since I will be using human participation in this part project, I require formal ethical approval

from the university. Please refer to appendix 5 for the consent forms and information sheets

used in the testing part of this project.

3.3. Use Cases
The use cases below show and describe possible interactions between a user and the system

in order to achieve certain goals. These help to clarify and show how the requirements will

be used by a user. For all of the use cases there is one user who is described as an

Assessment System user, this refers to any of the target users mentioned earlier in this report.

Use Case 1

Use Case Name: Create assessment timetables.

User Type: Assessment System User

Description: The user will be able to input a csv data file into the system and have it

automatically create the assessment timetables for them.

Pre-conditions: User has the system downloaded on their machine.

User has Java downloaded on their machine.

User has the csv data file containing the assessments they wish to make tables from.

The csv data file is in the same directory as the system.

Post-conditions: The user now has assessment timetables for all year groups that were in the csv data

file saved in a directory of their choosing.

Basic Flow 1. User opens the system using the command line/terminal commands.

2. User enters all the required information into the field text boxes.

3. User clicks the make timetables button.

Alternative Flow: 1. User opens the system using the command line/terminal commands.

2. User enters the csv file name into the corresponding text field box.

3. User clicks the Generate Master’s modules button.

4. User selects which modules from the master’s year they wish to be in the

master’s timetable.

5. User enters all the other remaining necessary information.

6. User clicks the make timetables button.

System Boundary

Assessment

system user

Create assessment

timetables

Figure 3.1 Use Case 1

Diagram

Table 3.10

Table 3.11

 17

Use Case 2

Use Case Name: Changing an assessment’s dates.

User Type: Assessment System User

Description: The user is able to remake the timetable for a year where one of the assessments

hand in or hand out date needs to be changed.

Pre-conditions: User has the system downloaded on their machine.

User has Java downloaded on their machine.

User has the csv data file containing the assessments they wish to make tables from.

The csv data file is in the same directory as the system.

Post-conditions: The user has an updated timetable for the year containing the changed

assessment.

Basic Flow 1. User opens the system using the command line/terminal commands.

2. User enters the required information for making the timetables, i.e. dates, csv file

name etc.

3. User enters the information for the assessment they wish to alter.

4. User clicks the new timetable button.

Alternative Flow: 1. User opens the system using the command line/terminal commands.

2. User enters the csv file name into the corresponding text field box.

3. User clicks the Generate Master’s modules button.

4. User selects which modules from the master’s year they wish to be in the

master’s timetable.

5. User enters all the information required when making the pdfs usually.

6. User enters the information needed for changing an assessment.

7. User clicks the new timetable button.

3.4. Design
The design of this system has been decided by looking at the project brief and through

discussions with the client. The functionalities of the system have been clarified and prioritised

and can be seen in the requirements section.

To begin with I have created a draft of what the output of the timetable should look like. In

order to make this draft I have looked at previous year’s timetables. I have also looked at a

timetable that was the output of a Python script that was created by another member of

staff as a temporary solution to the timetable assessment making problem.

System Boundary

Assessment

system user

Update an

assessment’s dates

Figure 3.2 Use Case 2

Diagram

Table 3.12

 18

Figure 3.3 2018-2019 ComSc Year 3 assessment timetable

Figure 3.4 ComSc Year 2 assessment timetable from Python script

Figure 3.3. shows the assessment timetable for year 3 computer science students in the

2018/2019 academic year and figure 3.4 shows the assessment timetable generated by the

python script for year 2 computer science students in the same academic year. For the draft

design that I have made as the output for my assessment timetabling system I have tried to

take into account the things that make these two timetables difficult to use.

These being:

• Difficulty when reading and trying to use the timetable. This is particularly a problem

in figure 3.3 because the entire year has been put into one table meaning the font

size used has to be small in order to fit into the cells.

• Both timetables fail to give the user the corresponding module name for a module

code. This makes it difficult for students and staff to know what module a piece of

assessment is for. Whilst both the module code and module name are used in

learning materials in a module, it is typically referred to by the module name in

speech and general conversation regarding the module, making identifying the

module using a code from the timetable harder than it could be.

 19

As seen in the figure 3.5 above the system will also highlight any missing information from the

csv file that is needed to complete this table but currently not present. This is done to ensure

that all the timetables will be consistent in their layout and content and also hopefully

prevent having to update the timetable during term time for small changes that do not

affect an assessment’s dates. As in the previous timetable layouts this timetable shows the

hand out, hand in and feedback dates via week numbers. I have chosen to put in the dates

for the weeks as students often lose track of what week number they are on, especially after

a recess since they do not count towards the week count and the week count resumes from

what it was prior to the break. Whilst figure 3.4 shows that not having the dates in does make

the table more compact and smaller, it does make the timetable easier to use and

understand and since the year has been split into two tables it does not make the cells

crowded and hard to read.

Since the requirement of having the system produce multiple different versions of the

timetable is a ‘could have’ and therefore not a high priority for this project I have not

designed another format that the system could produce.

Following the timetable design, the layout for the GUI could then be planned out as the

table layout decided what information would need to be input by the user. For each

assessment it is assumed what information about it is stored in the csv, as mentioned in the

assumptions part of this report, meaning that the only information the user has to input to be

able to create the timetable is the term dates. The GUI also has to allow for users to change

an assessments dates and choose which master’s modules are put into the timetable if they

wish as these are part of the requirements for this system.

Figure 3.5 Initial timetable design

 20

Above is the initial design of the system that has been created in Balsamiq. It shows the

system having 3 panels, each of which is responsible for a different aspect of the system. The

panel on the left allows the user to choose the master’s modules that will be put into the

assessment timetable, the middle panel allows the user to actually create the assessment

timetables once they have input all the relevant term data and the right panel allows the

user to alter an assessment’s hand out or hand in date and create a new timetable for the

year containing that assessment. The initial design has been designed with Nielsen’s heuristics

(Nielsen, J. 1994) in mind and the final design of the system will be evaluated against these in

the Evaluation section of this report.

3.5. Java Vs Python
The programming language that will be used to implement this system has been decided by

multiple factors. The first being what programming language I thought would best be able to

fulfil the requirements and secondly by evaluating a small script that had previously been

written by another member of staff as a temporary solution but does not fulfil all the

requirements the client has requested in this project.

Despite Python being used in the temporary script and both Python and Java being platform

independent (Medium, B. 2019) I have chosen to use Java as the programming language for

this project. This is because I am slightly more familiar with Java than Python and I believe

that Java will allow me to fulfil the requirements in a more elegant, efficient way, especially

Figure 3.6 Initial GUI design

 21

in regard to the GUI which is one of the most important requirements for this project. The

importance of the GUI was highlighted by the temporary script as without a GUI it made it

difficult for anyone who had not written the code to understand what needed to be done to

make it create the timetables.

Additionally, although Python has a standard GUI library called Tkinter I have decided not to

use it as this would require the machine running the program to have the Tkinter package

downloaded in addition to Python (Tutorials Point. 2015) leading to some possible platform

compatibility issues if the user is unable to download the additional package for whatever

reasons, such as not having admin rights on a computer. With this in mind, Java has Swing

which is a GUI widget toolkit that is written entirely in Java and therefore platform

independent (Techopedia. 2011). Additionally, Java Swing only requires the machine to

have Java downloaded as the import of the Swing elements will be handled in the code

itself (javatpoint. 2014).

3.6. iText
Before starting to actually code my system I first had to make sure that there was some way

for me to create a pdf from a Java program. Having done some research I found iText which

is “A powerful PDF toolkit for PDF generation, PDF programming, handling & manipulation.

The preferred PDF engine for Java…” (iText, 2019a). I also found a couple of other PDF

generators that could be used with Java however I chose to use iText for 2 main reasons. The

first being that there are plenty of resources to help those using iText, for example they have

API documentation that covers all of the packages, classes, methods etc. that iText provides

and they have FAQ’s that are answered with code snippets that help you to fully understand

how the code works and what it does. The second reason for choosing iText is that it is free to

use. iText allows you a 30 day free trial but will automatically revert to their AGPL open source

version after this time frame. (iText, 2019b).

This means the iText Community code is freely available to use as long as the AGPL license is

used correctly. The restrictions are as follows:

• When distributing an application using iText, the full source code must be disclosed.

• Any modifications made to the iText source code must be made aware to iText.

• iText Community can only be used in an AGPL environment.

• iText, the iText copyright and AGPL license must be included in the output file

metadata, and the producer line must be retained in every PDF that is created or

manipulated using iText.

(iText, 2019c).

3.7. Risk Assessment
In any software engineering project, there is always an element of risk. By completing a risk

assessment prior to implementation and finding mitigations for them it allows me to achieve

the aims of this project as effectively as possible.

Risk Severity Likelihood Action to mitigate risk

Project requires technical knowledge

beyond my expertise level.

Low Medium Communicate with supervisor

regularly to ensure that requirements

for this project are within my expertise

or can be learned quickly. If not, then

the requirement giving me an issue

can be altered.

Initial plan with work plan

underestimates the time taken to

complete each stage of the project.

Medium Medium Weekly supervisor meetings to ensure

things are staying on track and

regular development milestones are

set to align with longer review

meetings. The cause of any timing set

 22

back will be discussed with my

supervisor and changes made where

necessary.

The implementation of the system

breaks after final release of

implementation.

Medium Medium Ensure all errors are handled properly

and do not break the functionality of

the system.

Poor feedback from user testing. Medium Medium Design the GUI and the layout of the

timetable with Nielsen’s usability

heuristics in mind (Nielsen, J. 1994).

Computer being used for

implementation of the system

crashes/is broken and code base lost.

High Low The code base will be uploaded to

GitHub every time a new

functionality is successfully

implemented.

Any personal extenuating

circumstances such as illness or an

increase workload.

Low Low The initial plan has allowed for spare

time and any assessment handouts

have been taken into account with

smaller targets around that time.

 Table 3.13

 23

4. Implementation

As mentioned in the Approach part of this report I chose to use an iterative approach when

implementing my system. This means that the screenshots of the code in the following section

are the result of the final iteration, however from the table below providing a brief overview

of what was done in each iteration, it can be seen to certain extent how the final

implementation was reached.

Iteration 1

18/02/2019 – 04/03/2019

• Got iText working with Java from the terminal/command line.

• Getting familiarised with the iText library and getting a java script to create a blank

table that is saved in a pdf document.

• Java script is able to read in and store data from the assessment csv data file.

• Initial GUI frame created but not linked to the java script.

Iteration 2

05/03/2019 – 18/03/2019

• Autumn term of an assessment timetable made for a single year group, holiday

days for feedback period not taken into account yet.

• GUI updated to have all required text fields, buttons and text added.

• GUI and java script linked up and main class created to be able to run the system

as a whole from the terminal/command line.

Iteration 3

19/03/2019 – 01/04/2019

• Missing information from the csv file is highlighted in the pdf timetables.

• The spring term table is now also made and added to the pdf output.

• System is made so that it produces a pdf for all year groups in the School of

Computer Science and Informatics.

• Functionality of choosing which master’s module to be used in producing the

master’s timetable added.

Iteration 4

02/04/2019 – 11/04/2019

• Length of feedback period now takes into account holiday days.

• GUI made to give feedback if any required text fields for a function is missing user

input.

• System allows the user to choose where they wish their files to be saved via a pop-

up window.

Code Practices
Throughout the implementation of this system I have used several coding practices to help

ensure I was writing readable code and to make the system as efficient as possible. These

include:

• Using an object-oriented approach that includes making use of encapsulation and

abstraction.

• Commenting my code so that if someone new is working on or looking at the system

code it will help them to understand any aspects they may be confused on.

• Reducing code duplication where possible, i.e. creating methods to carry out tasks

which will often need to be done in the system.

• Declaring variables that may need to be changed by the user at a later stage such

as each year groups code or variables that will used throughout multiple methods in

the class at the top of each class file.

Table 4.1

 24

Source Code
Since this system is comprised of over 1000 lines of code, I will not be discussing every single

aspect of the code but will instead focus on areas of the code that particularly contribute to

the functionality of the system. If you wish to look at the code in its entirety, please refer to

the source code zip file that has been uploaded with this report.

assessmentSystem.java
This class contains the main method and is what is will be run by the user when they wish to

use the system. It simply calls the GUI class and instantiates a new instance of it that is set to

visible and open on the user’s computer to allow them to actually use the system.

GUI.java
For this GUI class about half of the code is used to create the panels that form the GUI as well

as the creation and addition of the elements that make up the GUI, i.e. the text fields, labels

and buttons for each panel. This part of the code will not be discussed in this section as the

code itself is fairly self-explanatory and this report intends to focus more on the

implementation of features of the system.

The remainder of the class consists of defining the document listeners that are added to the

text fields upon creation as well as defining what the action listeners should do when the

event of a button being clicked activates them.

Since the system requires user input to be able to make the assessment timetables, the

system has been programmed so that if any of the required text fields are empty the system

will alert the user to this and not make the timetables until they have all been filled in. This has

been done by using document listeners that keep track of any updates, deletions and

insertions into these text fields. There are 2 separate document listeners in this system as there

2 sets of text fields that need to be filled in for different functionalities within the system. The

Figure 4.1

Figure 4.2

 25

first being the set of text fields that is required for the creation of all year groups timetables;

this consists of all the term dates input by the user as well as the name of the csv file

containing the assessment data. The second set consists of the text fields in the first set as well

as the text fields that need to be filled in by the user in order to change an assessment’s

hand out/hand in dates.

Figure 4.2 above shows the relevant document listeners being added to these sets of text

fields. Since the term dates and csv file name need to be filled in for both functions, both

document listeners, listener and changeListener, are added to it. The additional text fields

required for changing an assessment’s dates then also have the changeListener added to

them.

The listeners themselves both follow the

same format when being defined

however differ in what variables used

elsewhere in the class they control. As

mentioned, these listeners are defined to

keep track of any insertions, deletions

and updates in a required text field. In

both listeners a Boolean value called

canEnable is used to keep track of

whether or not all of the relevant text

fields have been filled in. Each time an

insertion, deletion or update occurs, all

the text fields that have the listener

attached will be checked to see if it is

empty. If any of them are empty then this

value is set to false, otherwise it is true.

This canEnable value is then used to set

another Boolean variable that determines

if the functionality that requires the text

fields with the relevant listener attached,

i.e. creating all year groups tables for

‘listener’ and changing an assessment

and making an updated timetable for

‘changeListener’, can be run.

 Figure 4.3

 26

Within the GUI of this system there are 3 buttons, each of which have their own action listener

attached. Each action listener is defined by a class containing a method called

actionPerformed that determines what happens when an event activates that specific

action listener.

One of the functionalities of the system is allowing the user to choose which master’s

modules they wish to be included in the master’s timetable which requires all of the master’s

modules to be displayed to the user. Since this feature is optional and not necessary to be

completed for the timetables to be made, the system is designed so that the modules are

only shown to the user once they click the generate master’s modules button and is

completed via the code shown in figure 4.4.

Before the master’s modules are added to the GUI it will first set a Boolean variable called

mastersClicked to true so that when it comes to making the timetables it knows whether to

include all master’s modules or just the ones chosen by the user. Following this it will then

check to make sure the user has input the csv file name that it will collect the master’s

module codes from. If the user has not, then a pop-up dialog box will alert them to this and

ask the user to complete this text field in order to carry out this functionality.

If the csv file name is present, then it will go on to display all the master’s module codes to

the user in the GUI as check boxes. Since the module codes are read in from the csv file

using the master’s code of ‘CMT’, there is the possibility of repeated module codes for

Figure 4.4

 27

modules that have more than one assessment. This problem is solved by creating a second

array list (moduleCodes)that will eventually store all the master’s module codes with no

repeats. This is achieved by looping through all of the master’s assessments and checking if

the module code is in the second array list already. If it is not, then it is added, otherwise the

next master’s assessment is checked.

Now that there is a list of module codes with no repeats, the check boxes for these modules

can be created and added to the GUI. Each module code is represented with a checkbox

that has an item listener attached to it. This item listener for each checkbox indicates if it has

been selected or deselected and allows the system to keep an up to date list of which

modules the user has chosen to be included in the timetable. The addition of the

checkboxes also means that the GUI can now set a previously hidden label explaining what

to do with the checkboxes to be visible.

In order to make sure the GUI is up to date and that the user can now see these module

checkboxes once they click the generate master’s modules button, the GUI is revalidated

and repainted.

The two remaining buttons in the GUI are responsible for the actual creation of timetables

and are therefore very similar. The one that had the action performed method implemented

first out of the two was the button that when clicked makes the timetable pdfs for all year

groups.

To avoid any errors that may

occur from incomplete text

fields it will first ensure that all

the required text fields have

been filled in. This is done by

checking the Boolean variable

that is constantly being

updated in the document

listener attached to the text

fields required for this function

(the one called listener). In the case where this is not true, the system will show a pop-up

dialog box reminding them to complete all the text fields before trying to make the

timetables.

Figure 4.5

Figure 4.6

Figure 4.7

 28

A mechanism within java and swing that I had not used prior to this project is the

JFileChooser package. This package is how the user is able to be presented with a pop-up

screen that allows them to navigate to the directory they wish to save the timetable pdfs in,

and once they have selected a directory the file path to it is saved as a string to be used as

an argument later when calling the method that will create the pdfs.

The creation of the timetable pdfs themselves are handled by calling methods from within

the pdfTable.java class. Each year has its pdf created by looping through a list of all the year

groups names and year codes and creating an array list of that year’s assessment data and

then using this in the method that makes the timetable pdf. However, the master’s year is not

included in this list.

Since the master’s year has the option of restricting which modules are included in the table,

the creation of the pdf for it is handled differently. Firstly, it will check to see if the user has

chosen to restrict which modules are used to create the timetable. This is done by checking

the Boolean value that was set when the generate master’s modules button is clicked. If the

Figure 4.8

Figure 4.9

 29

user has not clicked it then the master’s module is made the same way as the other years

with all of the year’s modules being included in the timetable.

If the master’s button has been clicked however the calling of the method to create the

timetable pdf is altered. Despite the master’s modules button being clicked, there is still the

possibility of the user changing their minds and not actually wanting to restrict which modules

are to be included in the timetable. If this is the case, then the array list containing all the

selected module code check boxes will be empty and the method to create the timetable

pdf will again be called as before. If the list is found not to be empty, then the system makes

the assumption the user has chosen certain modules to be used in the creation of the

timetable pdf. Whilst the same method is still called for the actual creation of the timetable

pdf, the assessment data for the year must be altered to contain only the modules selected

by the user.

This is achieved in a similar fashion to generating the list of master’s module codes with no

repeats by creating a second array list that will eventually contain only the assessments for

modules chosen by the user. All of the assessments for the master’s year are still taken from

the csv file but rather than immediately using this in the timetable pdf creator method the

second array list that is created by gathering only the assessments for modules that match

those selected by the user is used.

Having made all the timetable

pdfs, the system will then let the

user know it has completed this

task and will reset the GUI.

Upon completion of the implementation for the make timetables button, the code for the

action listener of the button to update a timetable was then written. Since it follows the same

process and is therefore very similar, I will not be discussing all of it again, but instead the

areas in which it differs.

Once again, a Boolean

variable is checked to ensure

that all the required text field for

this function are filled in. However, this is not the same variable as before but is instead the

Boolean variable that is constantly being updated in the changeListener document listener.

Figure 4.10

Figure 4.11

 30

Where this action listener differs is in the calling of the method that creates the timetable pdf.

Since the pdfs do not need to be made for every year group, just the one having an

assessment updated, this method must first determine which year group it is making an

updated timetable for. The year group is determined by using a pattern and matcher

instance to check the module code of the assessment being changed against each year

group’s code. If a match to a year group is found, then the list containing the assessment

data for that year is created and the assessment to be updated is found and the dates

changed before calling the method to make the timetable pdf.

If this update of an assessment is within the master’s year then the user also has the option of

once again choosing which of the master’s modules are to be included in the timetable. If

the year that the changing assessment’s module code is the master’s year then the same

process of checking mastersClicked in the make timetables button action performed

method is used.

Figure 4.12

 31

Once the correct year group’s assessment data has been gathered, the changing

assessment is updated in the list to reflect the user’s input. With the assessment data list now

updated, the method to create the timetable pdf is called.

pdfTable.java
This class is responsible for the creation of the pdfs themselves. It contains the methods called

in the GUI class to create the timetables for each year group as well as additional methods

that are called internally to help aid the process of making the pdfs. In order to try and keep

this report concise, only the code which implements features of the system will be discussed.

The makeDoc method called in the GUI class to create the tables does not actually create

the term assessment tables that populate the pdf but instead calls two other methods

defined in this class that do. It does however create the document that these tables are

added to as well as adding in all the required metadata as outlined in the iText AGPL license

restrictions by calling the addMetaData method defined later on in this class. The assessment

tables for each term are added to the pdf document by calling methods that create a

single table for each term. Whilst both of the term methods are very similar in how they

create the tables, there are still different methods for each term because the two terms differ

in how they add cells to the tables and in the information required to make them.

Since both term methods are similar, I will be explaining the autumn term method more in

depth and only explaining how the spring term method differs from the this to avoid

repeated explanations.

Figure 4.13

 32

Having initialised all the variables that will be needed throughout the autumnTerm method

including the relevant term dates and fonts that will be used in the table, it will then go on to

create the table that will be populated with the autumn term assessment data. This table is

made to have 17 columns as designed in the Specification and Design section of this report.

There is a column for an assessment’s module code and assessment title plus one for each

term week (12) plus one for each week of a term’s recess (3) plus one column to represent

the exam period at the end of a term.

Since iText creates tables by adding cells one by one from left to right until the number of

columns in that row is equal to what it has been set to, I had to ensure that each row was

adding the correct number of cells to each row. This is because if too many cells are added

to a row then iText will automatically add the additional cells to a new row, and then when

the intended start of the next row is being added, it is instead however many additional cells

you had in the previous row along in its row. This then has a knock-on effect as each row will

continue to displace the next row and cells will not line up with the columns as intended. This

is also the case if not enough cells are added to a row.

To ensure I had the correct number of cells being added to the header row, which is the first

row added to the table, I used a for loop that is repeated a set number of times. However,

Figure 4.14

 33

before this is started the column header for an assessment’s module code and title is added

as the first cell to the table. The loop then adds in the term weeks and recess weeks for the

term, followed by the addition of one more single cell for the exam period at the end of this

term. Since the for loop adds in cells for each week number and recess week it had to be

able to determine which cell it was adding in so the correct text was added to it. This is done

by having two date variables that keep track of the start and end date of the working week

(i.e. the date of Monday as the start and Friday as the end) currently being added to the

table. These two date variables use a calendar instance that is updated each time a cell

representing a week is added to the table and compares these dates to the Christmas

holiday dates input by the user and formatted earlier on in the method to see if it should be a

recess or term week added to the table.

These start and end dates of the week are also used as contents within the week cells so that

when users are looking at the table once it has been created, they are easily able to see

which week number corresponds to which dates. The exam period cell added after this for

loop also uses the start date variable since it is assumed the exam period immediately follows

week 12 in a term and due to the way the dates are updated, at the end of the for loop the

start date will be equal to the date the exam period starts. The end date of the exam period

is assumed to be the Friday before the start of the spring term, which is a required input from

the user, so the exam end date is calculated using the user’s input.

Following the addition of the header row, the assessments for the year group this table is

being made for are then added in one by one as a row. The addition of assessments is done

by using a loop that is set to iterate as many times as there are assessments in the list of

assessments sent into this method.

Each assessment row starts with

its module code and title being

added as a cell. If either or both

of these are missing from the csv

file, the background colour of this

cell will be set to yellow at full

opacity so that when the user

looks at the timetable pdf it

knows the assessment is missing

some information. If both are

present then the background

colour is still set to yellow, but at 0

opacity so that it will not show up

in the table.

Figure 4.15

 34

Once the assessment title

and module code has

been added to the row the

cells for each week in the

term can be added. In

order to be able to

determine later on in the

method what type of cell

needs to be added the

hand out and hand in

information for an

assessment is processed

and separated into the

week number and term

identifier for each date.

Again, if any of this

information is missing the

background colour for cells

added in this row will be

yellow at full opacity to

alert the user to missing

information within the data

used to create the tables.

Because each assessment’s weeks are added in cell by cell later on using a count starting

from 0, the int variables representing the week number for hand out and hand in need to be

adjusted to take into account recess weeks. The loop following the addition of the

assessment title and module code is repeated 16 times and the count value is taken as the

week number of the cell being added to the row. So, a count value of 0 refers to week 1 in a

term, a count value of 1 refers to week 2 in a term etc. However, because there are 3 recess

weeks following week 11 (which has the count value of 10), that do not count towards the

term’s week count, week 12 in a term will actually be added when the count is 14. With this in

mind, if the hand out or hand in week number of an assessment is 12 it is altered to still be

shown as this in the table.

Figure 4.16

Figure 4.17

 35

In order to determine what type of cell to add to the table a series of checks are done using

if and else if statements. The first check is to see if it is a hand out cell that needs to be

added. This is the case if the term identifier for the assessment being added in this row is

autumn and the count of the loop is on is equal to the hand out week number. If this is not

the case, then it goes on to check if it is a hand in cell that needs to be added. This follows

the same principle of the hand out cell and a hand in cell is added if the term identifier is

autumn and the count of the loop is equal to the assessment’s hand in week number.

The addition of a hand in cell means that a feedback period must also be added to the

table immediately following the hand in cell. Whilst this is typically 4 working weeks, so 4 cells,

this can be altered in length if a staff holiday overlaps this feedback period. Using two

calendar instances, one that keeps track of the start date for the week being added, and

one that is used to calculate the start and end dates of a 4-week feedback period following

the hand in date, the length of the feedback period is adjusted as necessary. Calculating

the start and end date of the typical 4-week feedback period following a hand in provides

the dates necessary to compare against the staff holiday dates to check for any overlap. If

there is an overlap then the feedback period has an additional 2 weeks added to it, making

it 6 weeks in length.

Figure 4.18

 36

No matter the outcome of if the staff holiday overlaps the feedback period, there needs to

be a check to see if there are enough cells remaining in the row to add the feedback period

to ensure no additional cells are added to a row. If there are not enough cells remaining in

the row, then the rest of the row is taken as the length of the feedback period. Apart from a

hand in in week 12 which is handled separately and always set to 1 week for this term and

continued in the next term’s table, this does not affect the layout or shorten the feedback

period length due to the assumption that hand in must be during term weeks and not recess

weeks. This is because excluding week 12, the latest a hand in can be is week 11 which

leaves 5 columns to be added after this, 3 recess week cells, a week 12 cell and a cell to

represent the 2-week autumn exam period. Because this last cell represents 2 weeks, as long

as the hand in for an assessment is not week 12 taking the remainder of the row as the

feedback period when there are not enough remaining cells in a row will not shorten the

length. The only potential issue with this solution is that is makes the feedback period for hand

ins in week 10 and 11 appear to end at the same time. This is because the feedback period

for hand ins in week 10 will end halfway through the exam period, i.e. halfway through the

last cell in a row which is when feedback periods for hand ins in week 11 end. However,

because it is not possible to only apply a background colour to half of a cell and time

constraints not allowing the change of the exam period into 2 separate columns it has been

left as this for now.

Since the feedback period immediately follows the hand in, the cells for the feedback

period are added into the table within the same else if check for a hand in cell.

If it has been neither a hand out or hand in cell that needs to be added, then the method

will check to see if it is a shaded cell indicating the time frame given to compete an

assessment that needs to be added. In the autumn term there are two cases where this are

required. The first being when both the hand out and hand in term identifiers are autumn

and the count of the loop is in-between the hand out week number and hand in week

number. The second situation where this type of cell would need to be added in is when the

loop count is greater than the hand out week number and the hand out term identifier is

autumn but the hand in term identifier is spring. Failing these last checks, an empty filler cell

with no contents is added to the table to ensure the correct number of cells is being added

to each row.

Figure 4.19

 37

With the autumn term table

complete it is then added to the

pdf document along with a table

that acts as the key for module

codes.

As previously mentioned, the spring term method that creates the assessment table for the

spring term is very similar so only the differences between the two will be explained. The set

up and initial creation of the table with adding the header row in is the same with the only

thing differing from the autumn term method being the dates used to calculate the recess

weeks and exam period.

Where the spring method next differs, although only slightly, is in deciding what type of cell to

add into the table for each assessment.

The type of cell added to the spring term table is determined using the same system of if and

else if statements, however for hand out and hand in cells instead of checking the term

identifier is autumn, in this method it is checked to see if it is spring.

Figure 4.20

Figure 4.21

Figure 4.22

Figure 4.23

 38

The addition of a hand in cell once again means the feedback period must be added in

following it. This follows the same process as before with altering the length of the feedback

period where necessary, this time it is checked to see if it overlaps the Easter Bank Holiday

Weekend. If it does, then the feedback period is extended by 1 week to be 5 weeks in

length. Like in the autumn term there are checks in place to ensure no extra cells are added

to each row when the feedback period is added.

The spring term table does also have an additional else if statement in place that covers the

addition of feedback cells that follow on from the previous term. In order to check if these

need to be added the system will check if the hand out of the assessment was in the autumn

term along with the hand in of the assessment being in term week 12 of the autumn term.

Figure 4.24

Figure 4.25

 39

When this is the case the assessment requires the first 2 weeks of the spring term to be the

remaining length of the feedback period, where the first 2 weeks have been over the exam

period at the end of the autumn term. This also means the count of the week cell currently

being added to the table must be less than 2 otherwise the entire row for that assessment

would be added as feedback cells.

The last way in which the spring term method differs is in checking when to add the shaded

cells to show the timeframe to complete an assessment. There are again two situations in

which these cells need to be added but they differ from the autumn term. The first being

when both the hand out and hand in are in the spring term and the loop count is in-between

the hand out and hand in week numbers. The second is when the hand out of an assessment

is in the autumn term but the hand in is in the spring term, and the loop count is less than the

hand in week number.

The pdfTable.java class also contains an additional 3 methods:

• yearData – this reads in and creates a list of the assessment data for a specific year

group that is used when creating the tables

• moduleKey – this method creates and adds the module key table to the pdf after

each term table

• addMetaData – this adds in the iText copyright and AGPL license to the output pdf

metadata so that the restrictions of using iText are complied with.

Since these 3 methods are fairly self-explanatory and do not directly add to the term

assessment tables they will not be discussed further in this report. If you wish to look at these

methods in depth, please refer to the source code uploaded with this report.

Figure 4.26

 40

5. Results

Due to the combined Agile-Waterfall methodology used in this project, testing was

performed each time a new functionality or feature was introduced to the system. This

ensured that any new changes did not break any existing functionality and helped to

guarantee the pass of the final integration test cases made in the Design and Specification

section of this report.

Upon the completion of the implementation of the system both the test cases and user

testing were conducted, the results of which can be seen below.

5.1. Test Cases
As before, because there are a lot of test cases the ones that best show the completion of

the aims of this project are shown below with the remaining completed test cases found in

appendix 6.

Test Case 02

Requirement: The system must create pdfs containing each year groups assessment

timetable as the output.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

4. The user inputs all the

required data into the GUI

text fields.

5. The user clicks the make

timetables button.

6. User opens the created

timetable(s).

The system lets the user know

the timetables have been

made and user is able to

open the pdf timetables with

a pdf reader.

The system alerts the user

to let them know the

timetables have been

made. Files are saved as a

pdf and can be opened

with Adobe Acrobat

Reader.

PASS

Checker & Date of Check: Nicole Kan 16/04/2019 Author: Nicole Kan

Test Case 03

Requirement: The system must be able to let the user alter an assessment’s hand

in/hand out dates.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

4. The user fills in the required

text fields in the GUI.

The system lets the user know

a new timetable and user is

System lets the user know

a new timetable has been

PASS

Table 5.1

 41

5. The user enters the details of

the assessment they wish to

change in the change

module section of the GUI.

6. The user clicks the new

timetable button.

able to open the updated

timetable pdf.

made and the updated

timetable can be opened.

Checker & Date of Check: Nicole Kan 16/04/2019 Author: Nicole Kan

Test Case 05

Requirement: The system must have a graphical user interface (GUI).

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

5. User opens the

terminal/command line.

6. User changes to the

directory containing the

source code for the system.

7. User enters the compile

command as found in the

ReadMe.txt.

8. User enters the run

command as found in the

ReadMe.txt.

The system will open a GUI on

the user’s machine allowing

them to create the

timetables.

A Java GUI opens. PASS

Checker & Date of Check: Nicole Kan 16/04/2019 Author: Nicole Kan

Test Case 11

Requirement: The system should have a suitable response time for creating the

timetable pdfs.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

1. User enters all the required

information into the text

fields in the GUI.

2. The user clicks the make

timetables button.

3. User opens the timetable(s)

created.

The user is waiting less than 10

seconds between telling the

system to make the

timetables and being told

they have been made.

Less than 10 seconds wait

between choosing the

directory to save the

timetables in and being

told by the system they

have been made.

PASS

Checker & Date of Check: Nicole Kan 16/04/2019 Author: Nicole Kan

5.2 User Testing
For the requirements that focused more on the usability of the system I had to conduct some

user testing. This was done by creating a questionnaire that asked users for their opinions on

how easy it is to use and understand the timetable created by the system and the ease of

Table 5.2

Table 5.3

Table 5.4

 42

use of the GUI. The questionnaire was made on Google Forms and the link to it posted online

so has been completed anonymously by volunteers. Screenshots of the questionnaire can

be found in Appendix 4.

The results of the questionnaire will be compared to the initial acceptance criteria for the

requirements they test in the Evaluation section of this report to determine if the requirements

have passed or failed.

Question 1

It is easy to understand hand out/hand in dates and use the timetable.

Requirement tested: The system must create an output of timetables that are consistent in

design and easy to use and understand data from.

Results:

Question 1

Agree 14

Disagree 4

Total num.
responses

18

Question 2

Just by looking at the system I would know how to use it.

Requirement tested: The system must have a GUI that is easy to use, learnable and overall

user-friendly.

Results:

Question 2

Agree 13

Disagree 1

Unsure of the
question

4

Total num.
responses

18

Question 3

The system looks like it would be easy to learn how to use.

Requirement tested: The system must have a GUI that is easy to use, learnable and overall

user-friendly.

Results:

Question 3

Agree 13

Disagree 2

Unsure of the
question

3

Total num.
responses

18

Table 5.5

Table 5.6

Table 5.7

Figure 5.1

Figure 5.2

Figure 5.3

 43

6. Evaluation

6.1. Success of the software
Having conducted the user testing and completed the test cases it can be seen that the

system has received positive feedback in regard to its usability and manages to achieve the

initial goal of creating a system that is able to automate the process of making assessment

timetables. This in combination with all of the test cases passing and the acceptance criteria

of the must have and should have requirements being met indicate that the software

created in this project is a success.

Additionally, the problems regarding the current way the timetables are made have also

been addressed with the creation of this system further making it a success. First and

foremost, the system allows the timetables to be made in a much shorter timeframe allowing

for more time for bunching checks etc. prior to handing them out. This reduction in time to

produce a timetable along with the functionality of altering an assessment’s hand out/hand

in dates and creating an updated timetable also addresses the issue of not updating the

timetable when a change is confirmed. Whilst the system is not directly linked to the change

request forms and the process in which changes are approved, it does make it much easier

and quicker to create a new updated timetable meaning it is less hassle for those that are

responsible for alerting staff and students of the change.

By creating the system so that every year’s timetable is made the same way once the user

has input the academic year’s term dates into the GUI, they are no longer inconsistent from

year to year and are guaranteed to show the correct dates, unless there is a human error of

putting the incorrect dates in. The input from the user for holiday dates also allows the

timetables to now take into account holiday days and extend the feedback periods

accordingly.

However, something to take into consideration is due to the nature of testing for the usability

of the system it may not be an accurate representation of how users will actually feel about

the system. This is because instead of having them load the system themselves and being

able to actually use the system to create new tables, they were instead presented with a

screenshot of the system already loaded and asked if they would know how to use it and if it

would be easy to learn to use. As well as this, because the questionnaire was filled in

anonymously there was no way to determine how familiar they would have been with the

idea of an assessment timetable as a whole and their technical knowledge and experience

with systems like this previously, meaning they could have misinterpreted or misunderstood

the questions.

Despite this, the usability testing still passes what was set out in the acceptance criteria with

over 70% of users agreeing they would know how to use it just by looking at it and again over

70% of people saying the system looks like it would be easy to learn to use, indicating if they

were to actually use the system, it would still pass these usability tests. The only potential

failure in the usability testing would be the user not knowing how to load and run the system

using command line/terminal.

In regard to the test cases, since they were carried out by me and not potential users these

results have the potential to be biased. Since I was the one to code and create the system

this meant that I already knew how the system operated and therefore I was more likely to

know the best way to get the expected outcome. However, this was somewhat pre-empted

when writing the test cases since they have a step by step procedure on how to carry out

the test case and when testing the system it was these steps I followed as opposed to just

using the system without guidance to create the actual outcomes.

 44

An error in the system that was not discovered in the testing of this project but rather in the

use of the system after completion is that it is unable to handle assessment titles with commas

in. This is because the system splits the csv data file into array lists using commas as the

separators and when an assessment title contains commas it is splits up the text. This then

means the assessment data following this title is not read in correctly, thus stopping an

accurate assessment timetable to be made. This error is handled by a late addition to the

assumptions of this project of each field within the csv file not containing any commas.

6.2 Nielsen’s Heuristics
Following the usability testing, the GUI has been evaluated against Nielsen’s 10 usability

heuristics to ensure they were adhered to as part of the acceptance criteria for the must

have non-functional requirement of: “The system must have a GUI that is easy to use,

learnable and overall user-friendly.”. The table below evaluates this and shows that all 10

heuristics were applied. A screenshot of the GUI which these heuristics are evaluated against

can be found in appendix 7.

Heuristic Description System Evaluation

Visibility of system

status.

The system provides the user with

informative feedback about what is

going on.

The system has dialog boxes that will

appear once a user has performed an

action that may require confirmation,

i.e. the successful creation of the

timetables.

Match between

system and the real

world.

System should use user’s real-world

language, phrases and concepts familiar

to the user.

The system is written in English and uses

date formats that are very common in

day to day use.

User control and

freedom.

System is able to reverse their action if

needed and is fault-tolerant.

The user is able to delete and alter the

input into the text fields as they wish

prior to clicking the buttons that make

the timetables.

Consistency and

standards.

The system is consistent in design and the

phrases/words used.

The GUI is consistent in its layout with

the same font used throughout and

input style for the term dates.

Additionally, the timetables produced

all follow the same template.

Error prevention. System has error prevention in place to

eliminate situations where the user may

be error prone.

The system will alert the user when

there is missing information that is

required for making the timetables.

Recognition rather

than recall.

Object, actions and options of the system

are visible and clear to use and

understand.

There are no hidden features in the

GUI. All options of what can be done

using the system are clearly displayed.

Flexibility and

efficiency of use.

System can cater to both inexperienced

and experience users.

The GUI is designed to be simple and

straightforward to use allowing users of

all skill levels to use it.

Aesthetic and

minimalist design.

No irrelevant information in dialogues

and design of the system kept to a

minimum.

The system has not been unnecessarily

coloured and does not include any

additional requirements or features.

Help users recognize,

diagnose and

recover from errors.

Error messages in plain language to

precisely indicate the problem and help

user fix the error.

When the user does not enter all of

the required information the system

alerts them of this. Additionally, if the

user enters an incorrect csv file name,

it will let the user know that the file

cannot be found.

Help and

documentation.

Help and documentation for the system is

made easily available to the user.

The system has a README.txt file that is

incorporated into the download of

the system.
Table 6.1

 45

7. Future Works

Whilst this project has created a usable system and all of the initial must have and should

have requirements have been met, there is still the possibility for the system to be expanded

or improved in several ways. There are the should have features that were chosen not to be

implemented in this project due to time constraints as well as additional features discussed in

meetings that were chosen not to be pursued since they were not a priority for the basic

functionality of the system.

One of these features included the could have requirements is the ability for the system to be

able to create different versions of the timetable depending on the level of information the

user wished to be in the timetable. This feature would allow the user to choose a timetable

with additional information such as the weighting of the assessment, the lecturer who set the

assessment and the type of assessment to also be in the timetable. This feature could be

implemented by showing a pop up when the user clicks the make timetables button that

gives the user the two options, the basic timetable or the timetable with additional details.

The system would then make the timetables in the format that the user has chosen. This

feature was decided to not be added in since it would have created a fair amount of code

repetition for making the timetables, and it was decided that multiple formats of the

timetable was of a lower priority than other features within the system.

Another feature that was discussed but chosen to be implemented was having the system

be hosted as a website on the university servers instead of a standalone java application.

Implementing the system this way would have meant that the assessment data could be

stored in a database and dynamically updated as an assessment’s information is updated

and changed and even have the possibility of automatically being synced up with people’s

learning central timetables. Having the data saved and stored in a database would also

solve the earlier mentioned problem of the system not being able to handle commas in the

assessment title as it could be read into the database tables using a different method.

However, this was chosen not to be done as the use of this system is restricted to a small

group of users and hosting the website on the university servers would not allow control over

who has access to the system. Although, if this project was to be revisited in the future then

the system could be transferred over and made to have log in system that allows only

authorised users from the university network to log in. The log in system could be linked to

staffs pre-existing profiles and log ins so that they wouldn’t have yet another log in to

remember. This was not considered for the duration of this project as it would have been

outside the scope of the project and access to the university network for these profiles and

log ins would not have been granted.

One of the main motivations for creating this system was that making the timetables by hand

was time consuming and therefore when a change request came in during the academic

term it was time-consuming to create a new table and send it out to staff and students.

Therefore, a could have requirement that was set was linking the change request process

with the system. Whilst this has somewhat been achieved with the system produced in this

project allowing the user to create an updated timetable when adjusting an assessment’s

hand out/hand in dates, it is not fully linked with sending out the change request forms and

keeping track of whether the changes have been approved to automatically make the

updated timetable without user input. The system created in this project also only allows for

the change of one assessment within a year group, meaning if you require multiple

assessments to be changed the user has to update them within the csv file and then go

back to the system to make the timetable pdfs again.

Thus, if this project was to be continued then fully automating this system would be one of

the higher priority requirements. This could be achieved by further expanding the previously

mentioned future works idea of a log in system. The use of a log in system could be applied

 46

so that staff and students can use their university log in’s to view the timetable; but staff

would have access to another area that allows them to send a change request form to the

assessment and exam lead who has admin privileges allowing them to make new timetables

and update the timetable that everyone sees when they log in to the system. Since this

system would allow different types of users to communicate with each other, it could then be

programmed to keep track of the progress of an ongoing change request form and once

the exam and assessment lead has approved the change automatically create a new

updated timetable and replace and update all occurrences of the old timetable.

 47

8. Conclusion and Reflection on Learning

8.1. Conclusion
This project has been successful in achieving the initial aims outlined in the brief and

implementing the requirements set in the design phase of this project creating a useful and

helpful assessment timetable making system. All of the requirements that were prioritised to

be implemented in this project have been completed and pass their test cases and

acceptance criteria by using a combination of an Agile and Waterfall methodology. This

allowed for the initial planning of the project, including requirement analysis and system

design to be completed first, followed by the actual development of the project which was

carried out in short sprints, allowing for constant user feedback to improve the system.

In conclusion, the system developed achieves the goal of automating the creation of

assessment timetables for year groups within the School of Computer Science and

Informatics and is a standalone java application that can be run from the command

line/terminal of a machine with a GUI making the system easy to use. Despite there being a

couple of minor issues encountered it does solve the initial problem stated at the start of this

report as well as addressing problems and concerns that the current workflow of creating the

timetables had.

8.2. Reflection on Learning
Upon completion of this project I am able to look back and see how I managed it in terms of

project management and in terms of my technical knowledge throughout the 3 months this

project spanned.

Project Management

Since this is the biggest individual project that I had worked on I found it hard at times to

manage and gauge the progress I was making. Despite planning a workflow in the initial

report, this was quickly disregarded since it was made before all the system requirements

had been agreed upon and therefore did not take them all into consideration. However, in

the initial plan I specified I would meet my supervisor once a week to discuss progress and

answer any questions or address any concerns that had been raised in the week. By having

these weekly meetings, the lack of an official workplan timeline had less of an impact since

we would regularly discuss what the goals and targets for that given week would be based

on what had been completed the previous week.

These meetings also helped a great deal if I was to fall behind on a weekly target that had

not been met. In cases where this happened my supervisor and I would discuss how big of

an impact this would have on the project timeline and what areas it would affect. If it was

going to hinder the overall completion of the project then potential ways to solve it would be

discussed, however in the majority of if not all of the cases where targets were met later than

intended it did not affect the overall completion of the system. Taking notes in the meetings

is a large factor in why this was the case. Since I took notes in every meeting nothing was

forgotten, and I would be able to refer back to them when I was unsure of how to tackle a

certain problem that had been discussed in meetings. These notes have also helped me to

write this report as I was able to refer back to problems and discussions that happened right

at the beginning of this project that I might have otherwise forgotten.

I think that the weekly meetings in combination with my use of version control for the cycles

of implementation also helped a lot to ensure this project was completed in time. For this

project I chose to use GitHub via GitKraken to ensure my code was backed up and

implement some kind of version control. I chose to use this method as I have used it in

 48

previous workplaces and have found it to be very effective and easy to use. Additionally,

because I have used it before it meant that I did not have a steep learning curve with it

allowing me to focus more on the actual implementation of the code for this project.

I believe that my time management skills have also been improved throughout this project.

For my weekly meetings I had to ensure I was on time and for the development of the

project itself I would have to manage my time wisely when I fell behind to ensure it would all

be done in time. In particular, my time management skills for implementing features of a

system have improved. Prior to starting I was fairly ambitious about the timeframe in which I

could complete the implementation and did not factor in enough time for unexpected

errors or just certain features taking longer to implement than expected. Having discussed

this with my supervisor throughout the project I believe that I will be now be much more

realistic with the time I give myself to complete a certain area of implementation and if I am

to fall behind, I would now know much better how to handle it and manage to catch up.

Technical Reflection

As mentioned in the Implementation section of this report I chose to use java since it is a

language that I am familiar with and comfortable using. By choosing Java I believed it would

cut down some time spent on learning new languages and processes which led to some

amount of over-confidence in how quickly I would get the system completed, causing me to

sometimes fall behind schedule.

Something which took me longer to solve then I factored in was getting the external pdf

creator library to work with java from the command line. Since all the tutorials from iText

themselves showed the library being used in conjunction with java via an IDE such as Eclipse

and I had never used an external library in conjunction with java from the command

line/terminal before I had to research how to do this. However, since I had never done this

before I wasn’t quite sure what to look up when trying to get iText to work with java. This

meant the research for finding the solution of adding the iText jar files to the class path when

compiling and running the java files took longer than expected.

Additionally, using java meant that I would use swing to create the GUI for this system. Whilst I

had briefly used swing a couple years prior to this project I had not had to design an entire

system from scratch and format the layout how I wanted it to be. This meant that I had to

familiarise myself with the different ways in which the GUI could be formatted and whilst

there was an option that maybe would have allowed me to have more freedom creating

the layout of the GUI, I ultimately decided to go for the one I did since I was able to

understand how it worked in shorter time span allowing me to spend more time on the

implementation of making the timetables.

Although certain areas of the technical aspect of this project did take longer than projected

and I feel this was the main area I struggled with in the technical development of this project

it helped me to develop my and improve my research skills and creative thinking skills as if I

was unable to find a solution in the route I was currently taking I would have to explore

alternative ways to solve my problem and see if that would work instead.

 49

References

Phillips, H. 2019a. Meeting with Kan, N. 31 January 2019a.

Phillips, H. 2019b. Email to Kan, N. 26 March 2019b.

Cardiff University 2018. Academic Regulations Handbook. Available at:

https://www.cardiff.ac.uk/__data/assets/pdf_file/0009/432666/ARH-2018-19-English-

Complete.pdf [Accessed 18/04/2019]

LucidChart Content Team. 2017. What the Waterfall Project Management Methodology Can

(and Can’t) Do for You. Available at: https://www.lucidchart.com/blog/waterfall-project-

management-methodology [Accessed 18/04/2019]

Kevin Lonergan. 2016. The Pros and Cons of Agile and Waterfall. Available at:

https://www.pmis-consulting.com/agile-versus-waterfall [Accessed 18/04/2019]

Pivotal Tracker. 2017. What is agile project management? Available at:

https://www.pivotaltracker.com/campaigns/what-is-agile [Accessed 19/04/2019]

Inflectra. 2015. What is Waterfall and Hybrid Development? Available at:

https://www.inflectra.com/methodologies/waterfall.aspx [Accessed 19/04/2019]

Nico Budi Darmawan. 2014. Balance Between Agile and Waterfall Software Development.

Available at: http://www.nicobudidarmawan.com/2014/03/balance-between-agile-and-

waterfall.html [Accessed 19/04/2019]

Ulf Eriksson. 2012. Functional Vs Non Functional Requirements. Available at:

https://reqtest.com/requirements-blog/functional-vs-non-functional-requirements/

[Accessed 19/04/2019]

Agile Business. 2014. MoSCoW Prioritisations. Available at:

https://www.agilebusiness.org/content/moscow-prioritisation [Accessed 19/04/2019]

Jakob Nielsen. 1994. 10 Usability Heuristics for User Interface Design. Available at:

https://www.nngroup.com/articles/ten-usability-heuristics/ [Accessed 19/04/2019]

Barry at Medium. 2019. Why Use Java That Requires Even More Lines Of Code Than Python.

Available at: https://medium.com/@trungluongquang/why-use-java-that-even-requires-

more-lines-of-code-than-python-7805703e4763 [Accessed: 19/04/2019]

Tutorials Point. 2015. Python – GUI Programming (Tkinter). Available at:

https://www.tutorialspoint.com/python/python_gui_programming.htm [Accessed

19/04/2019]

Techopedia. 2011. Java Swing. Available at:

https://www.techopedia.com/definition/26102/java-swing [Accessed 19/04/2019]

javatpoint. 2014. Java Swing Tutorial. Available at: https://www.javatpoint.com/java-swing

[Accessed 19/04/2019]

iText. 2019a. iText Homepage. Available at: https://itextpdf.com/en [Accessed: 23/04/2019]

 50

iText. 2019b. iText Free Trial. Available at: https://itextpdf.com/en/free-trial [Accessed:

23/04/2019]

iText. 2019b. AGPL License. Available at: https://itextpdf.com/en/how-buy/agpl-license

[Accessed: 23/04/2019]

 51

Appendices

Appendix 1

Number, detail and dates

of assessment collected

as part of module review

form.

Assessment timetable created

/ analysed from information

collected, changes made as

appropriate

Lecturers asked to confirm

assessment dates / modify

possible if essential

Assessment timetable

created / analysed for

bunching etc.

Assessment timetables published in exam

share area to admin and academic staff

for use in setting, checking and

moderation of assessments

Assessment timetables published

to students via learning central.

Any alterations have to go through the

change request process. – Assessment

timetable updated

C
h

a
n

g
e

s fe
e

d
fo

rw
a

rd
 to

 in
fo

rm
 a

sse
ssm

e
n

t d
a

te
s fo

r th
e

 su
b

se
q

u
e

n
t

y
e

a
r

 Work Packet 6.3 - Improve assessment scheduling

Processes / activity

Module Review –

February / March

Module leaders

confirmed for following

academic year

Academic year

preparation

Start of academic

year

During the academic

year

Trigger for activity

 52

Appendix 2

ASQC Approved July 2011

Guidance on the Nature and Volume of
Assessment in Modules on Taught Programmes
of Study

For staff across the University involved in taught programmes of study.

Purpose: • To help schools develop a better balance between formative and
summative assessment;

• To assist schools in reducing the volume of summative assessment;
• To help staff introduce a wider variety of suitable assessment

methods within programmes of study; and
• To improve the alignment between teaching, learning and

assessment.

1. Background

“A number of factors have conspired to increase the number of
assessment tasks students are required to complete. … The
result is a significant increase in assessment load for students
and marking load for staff.” [1]

1.1. This guidance has been put together to help staff develop and/or revise assessment

strategies within and across modular programmes of study. It has been developed
through the University’s ‘Assessment Matters’ project and has been endorsed by
Senate.

1.2. The role that assessment plays in supporting and shaping learning cannot be

underestimated. Its importance has increased, particularly at a time when more
students are adopting strategic approaches to learning. The introduction of
modularisation and adoption of a learning outcomes based approach have both
contributed to an increase in the volume of summative assessment that students
undertake and a consequent increase in staff marking loads.

1.3. Following the Guidance will benefit student learning and help ensure that students

can develop the high level knowledge, understanding, and skills from engagement
with their studies. It will help academic staff to improve the quality of their teaching
and assure staff that assessment is testing the learning that students have acquired
through teaching and engagement with their studies. It will also help the University
to demonstrate the high quality and standards of our awards.

1.4. Reducing the volume of summative assessment will give staff more time and space to

provide better feedback to students on academic work and to amend the balance
between formative and summative assessments. It should result in an academic
experience that places more emphasis on learning and that provides students with
better and more varied learning opportunities.

1) Hornby W. (2005) Dogs, stars, Rolls Royces and old double-decker buses: efficiency and effectiveness in

assessment. In Reflections on Assessment Volume 1 . QAA, p. 11 [WWW]

<www.enhancementthemes.ac.uk/documents/assessment/Reflections_on_Assessment_Volume_1FINAL.pdf>

[Accessed 21/02/11]

 53

Appendix 3

Test Case 01

Requirement: The system must be able to take csv data as the input for creating the

timetable pdfs.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

1. The user inputs the name of

the csv file they wish to

make the timetables from

into the file name field.

2. The user inputs all the other

necessary data into the GUI.

3. The user clicks the make

timetables button.

4. User opens the timetable(s)

created.

The system lets the user know

the timetables have been

made and user is able to

open the pdf timetables with

a pdf reader.

Checker & Date of Check: Author: Nicole Kan

Test Case 04

Requirement: The system must let the user know when information used in creating

the table for an assessment is missing.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

1. The user inputs the required

text fields in the GUI text

fields.

2. The user clicks the make

timetables button.

3. User opens the timetable(s)

created.

If there is any missing

information for an assessment

in the timetable it will be

highlighted.

Checker & Date of Check: Author: Nicole Kan

Test Case 06

Requirement: The system should take into account days the university is closed when

showing feedback dates on the timetable.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

 54

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

1. User enters all the required

information into the text

fields in the GUI.

2. The user clicks the make

timetables button.

3. User opens the timetable(s)

created.

Any assessment that has

feedback overlapping the

holiday dates input by the

user has been adjusted from

the standard 4 weeks to 6

weeks if over the Christmas

Holiday and 5 weeks if over

the Easter Weekend.

Checker & Date of Check: Author: Nicole Kan

Test Case 07

Requirement: The system should let the user generate and choose which Master’s

modules they want included in the Master’s assessment timetable.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

1. User enters the csv file name

containing the assessment

data into the file name text

field.

2. User clicks the generate

master’s button.

3. User chooses the master’s

modules they want in the

master’s timetable.

4. User enters all the other

required information into the

text fields.

5. User opens the master’s

timetable created by the

system.

The master’s timetable

contains only assessments

from the modules selected by

the user in step 3.

Checker & Date of Check: Author: Nicole Kan

Test Case 08

Requirement: The system should remind the user to alert staff members and students

of an updated table when they update an assessment and create a

new table.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

 55

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

1. The user fills in the required

text fields in the GUI.

2. The user enters the details of

the assessment they wish to

change in the change

module section of the GUI.

3. The user clicks the new

timetable button.

The system shows a dialog

box to let the user know a

new timetable has been

made and reminds the user

to alert the relevant staff and

students to the new updated

timetable.

Checker & Date of Check: Author: Nicole Kan

Test Case 9

Requirement: The system must be reliable.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Each csv file used in the test case follows the assumed level of

information found in the Assumptions section of this report.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

1. The user inputs the required

information in the GUI text

fields.

2. The user clicks the make

timetables button.

3. User repeats steps 1-2 9 times

with a different csv file each

time.

The system produces

timetable(s) for all the csv files

mostly without failing or

crashing. A success rate of at

least 75% is achieved.

Checker & Date of Check: Author: Nicole Kan

Test Case 10

Requirement: The system must be able to run on multiple different operating systems.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

1. On a windows machine the

user inputs the required

information in the GUI text

fields.

2. The user clicks the make

timetables button.

3. User opens the timetables

created.

4. On a Macintosh machine

the user inputs the required

The user is able to create and

open the timetables on all 3

machines with no error.

 56

information in the GUI text

fields.

5. The user clicks the make

timetables button.

6. User opens the timetables

created.

7. On a Unix machine the user

inputs the required

information in the GUI text

fields.

8. The user clicks the make

timetables button.

9. User opens the timetables

created.

Checker & Date of Check: Author: Nicole Kan

Test Case 12

Requirement: The system code should be easily maintained and updated in the

future.

Pre-condition(s): The user has the system downloaded on the machine they are using.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

4. For each file in the source

code of the system the user

opens the file and checks

each file is no longer than

1000 lines.

Each file has less than 1000

lines of code.

Checker & Date of Check: Author: Nicole Kan

 57

Appendix 4

 58

 59

Appendix 5

Consent Form

 60

Assessment Timetable and Scheduling System Information Sheet and Consent

Information

You are invited to take part in user testing for an ongoing project. Before you decide if

you wish to take part please read the following information about the project and your

consent in taking part in this user research.

What is the purpose of this testing?

This purpose of this testing is to see if the output (a pdf document) of an assessment

timetable and scheduling system is clear and easy to understand. As well as if the user

interface of the system is self-explanatory and easy to use.

You will be shown a screenshot/image of a pdf timetable and the system itself and

asked to choose how strongly you agree with the statement in front of you. i.e. The

timetable is easy to understand with the choices: strongly agree, agree, indifferent,

disagree, strongly disagree.

It is part of a student’s undergraduate final year project in the Cardiff Uni School of

Computer Science and Informatics and is not funded.

What does participating consist of?

Participating in this user testing consists of being asked a series of multiple-choice

questions about your opinion on various factors about the screenshots that will be shown

to you. If you wish to know further information please email KanNW@cardiff.ac.uk.

If at any point you wish to withdraw your consent and information from this questionnaire

for any reason see What if I want to remove my information? below.

If you are still not satisfied with this answer then please email KanNW@cardiff.ac.uk.

Why have I been chosen?

As a volunteer you have responded to our request for participants to take part via a

mailing list or seeing a link posted by the student conducting the project online.

How will data be collected and stored?

The data collected will be kept confidential. The information will be collected via the

Google Form you complete and stored securely on a Cardiff University installation of

OneDrive that is protected via a username and password combination.

We may share the data we collect with researchers at other institutions, but any

information that leaves Cardiff University will have your personal details removed. In any

sort of output we might publish, we will not include information that will make it possible

for other people to know your name or identify you in any way.

The data collected will be stored by the student for the duration of the project which

ends when the student conducting this project has graduated (19th July 2019). However,

it will be stored for 5 years and the duration of the project by the supervisor. (Helen

Phillips, PhillipsHR@cardiff.ac.uk)

What if I don’t want to remove my information?

Your participation in this study is entirely voluntary and you may exit/close the google

form at any time you wish without having to give a reason. However it is not possible to

ask for the data you have given us to be removed after completing the questionnaire

since no identity information is attached to the data we are collecting.

Complaints regarding this study

In the first instance you should contact the leader of the project:

 61

 Nicole Kan

 KanNW@cardiff.ac.uk

If you are still unhappy, please contact the relevant Ethics Committee:

 Cardiff School of Computer Science & Informatics Ethics Committee

Email: comsc-ethics@cardiff.ac.uk

The data controller is Cardiff University and Data Protection Officer is Matt Cooper.

CooperM1@cardiff.ac.uk. The lawful basis for the processing of the data you provide is

consent.

Who has reviewed the study?

The study has been reviewed and approved by the Ethics Committee of the School of

Computer Science and Informatics, Cardiff University. Application number:

Further information

If you require further information about the project please contact Nicole Kan using

KanNW@cardiff.ac.uk.

 62

Appendix 6

Test Case 01

Requirement: The system must be able to take csv data as the input for creating the

timetable pdfs.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

The user inputs the name of the

csv file they wish to make the

timetables from into the file

name field.

The user inputs all the other

necessary data into the GUI.

The user clicks the make

timetables button.

User opens the timetable(s)

created.

The system lets the user know

the timetables have been

made and user is able to

open the pdf timetables with

a pdf reader.

System does not throw any

errors and makes the

timetable. User is able to

open timetables made

with the system.

PASS

Checker & Date of Check: Nicole Kan 16/04/2019 Author: Nicole Kan

Test Case 04

Requirement: The system must let the user know when information used in creating

the table for an assessment is missing.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

4. The user inputs the required

text fields in the GUI text

fields.

5. The user clicks the make

timetables button.

6. User opens the timetable(s)

created.

If there is any missing

information for an assessment

in the timetable it will be

highlighted.

An assessment with no

hand out or hand in date

in a year’s timetable had

the row highlighted in

yellow.

PASS

Checker & Date of Check: Nicole Kan 16/04/2019 Author: Nicole Kan

Test Case 06

Requirement: The system should take into account days the university is closed when

showing feedback dates on the timetable.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

 63

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

4. User enters all the required

information into the text

fields in the GUI.

5. The user clicks the make

timetables button.

6. User opens the timetable(s)

created.

Any assessment that has

feedback overlapping the

holiday dates input by the

user has been adjusted from

the standard 4 weeks to 6

weeks if over the Christmas

Holiday and 5 weeks if over

the Easter Weekend.

Feedback periods in the

timetables are adjusted

depending on the dates

input by the user.

PASS

Checker & Date of Check: Nicole Kan 16/04/2019 Author: Nicole Kan

Test Case 07

Requirement: The system should let the user generate and choose which Master’s

modules they want included in the Master’s assessment timetable.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

6. User enters the csv file name

containing the assessment

data into the file name text

field.

7. User clicks the generate

master’s button.

8. User chooses the master’s

modules they want in the

master’s timetable.

9. User enters all the other

required information into the

text fields.

10. User opens the master’s

timetable created by the

system.

The master’s timetable

contains only assessments

from the modules selected by

the user in step 3.

The master’s timetable

had a smaller table with

only the modules selected

in the GUI present.

PASS

Checker & Date of Check: Nicole Kan 16/04/2019 Author: Nicole Kan

Test Case 08

Requirement: The system should remind the user to alert staff members and students

of an updated table when they update an assessment and create a

new table.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

 64

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

4. The user fills in the required

text fields in the GUI.

5. The user enters the details of

the assessment they wish to

change in the change

module section of the GUI.

6. The user clicks the new

timetable button.

The system shows a dialog

box to let the user know a

new timetable has been

made and reminds the user

to alert the relevant staff and

students to the new updated

timetable.

A dialog box opens with

the text: “Table Updated.

Please remember to email

out the updated timetable

to staff and students.”

PASS

Checker & Date of Check: Nicole Kan 16/04/2019 Author: Nicole Kan

Test Case 09

Requirement: The system must be reliable.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Each csv file used in the test case follows the assumed level of

information found in the Assumptions section of this report.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

4. The user inputs the required

information in the GUI text

fields.

5. The user clicks the make

timetables button.

6. User repeats steps 1-2 9 times

with a different csv file each

time.

The system produces

timetable(s) for all the csv files

mostly without failing or

crashing. A success rate of at

least 75% is achieved.

The system was able to

produce timetables for all

csv files given to it.

PASS

Checker & Date of Check: Nicole Kan 16/04/2019 Author: Nicole Kan

Test Case 10

Requirement: The system must be able to run on multiple different operating systems.

Pre-condition(s): The user has the system downloaded on the machine they are using.

The user has java downloaded on the machine they are using the

system on.

The user has the system open.

The csv file with the assessment data in is in the same directory as the

code for the system.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

10. On a windows machine the

user inputs the required

information in the GUI text

fields.

11. The user clicks the make

timetables button.

12. User opens the timetables

created.

13. On a Macintosh machine

the user inputs the required

The user is able to create and

open the timetables on all 3

machines with no error.

All 3 machines allowed the

system to run and produce

the timetables and open

them.

PASS

 65

information in the GUI text

fields.

14. The user clicks the make

timetables button.

15. User opens the timetables

created.

16. On a Unix machine the user

inputs the required

information in the GUI text

fields.

17. The user clicks the make

timetables button.

18. User opens the timetables

created.

Checker & Date of Check: Nicole Kan 16/04/2019 Author: Nicole Kan

Test Case 12

Requirement: The system code should be easily maintained and updated in the

future.

Pre-condition(s): The user has the system downloaded on the machine they are using.

Test Case Steps

Steps Expected Outcome Actual Outcome Pass/Fail

1. For each file in the source

code of the system the user

opens the file and checks

each file is no longer than

1000 lines.

Each file has less than 1000

lines of code.

Each file has less than 1000

lines of code.

PASS

Checker & Date of Check: Nicole Kan 16/04/2019 Author: Nicole Kan

 66

Appendix 7

