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Abstract 
This report describes a solution to the problem of when isolation leads to human actions not 

being recorded or communicated. 

In recent years, computers have become much smaller and the field of machine learning is 

becoming more accessible. Sensors are now being used to upload data to the internet, 

removing the stage of people having to upload such data. 

Making use of these trends, this project has created a human activity prediction system for 

running, walking, and standing still (and any activity that is none of these).  The system is 

small, makes use of machine learning and has sensors to recognise the activity being 

performed.  

The learning process is fully described, from data collection to testing. The implementation of 

this system uses a Raspberry Pi and Sense HAT (using its accelerometer and orientation 

sensors). The Raspberry Pi runs a record script to collect data which is then placed into a 

more powerful computer to generate prediction systems using two Support Vector Machines. 

These two Support Vector Machines are then placed back into the Raspberry Pi to run a 

prediction script.  

This report documents the evaluation phase of the project, describing both the methods 

used to evaluate the system as well as the results created. The report also goes through 

alternative methods and shows via the evaluation why they are not suitable. Suggested 

future work that builds on the motivations and aims described within the report is noted. This 

future work includes both the hardware aspects as well as the machine learning process. 
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1. Introduction 

This project is called “Activity Recognition on Body data”. The motivation behind my project 
is that the data humans create often disappears and is not recorded or recognised. 

What this project can lead to are solutions to problems of isolation. One problem with 

isolation is that humans must call out when in need of others. A solution to this is to have a 

computer automatically send out a distress signal. A computer can send a message faster 

and reach more people than any human. What the computer needs is the signal to send the 

message. This signal can come from sensors that are always giving the computer data. This 

motivation is a subset of humanity’s aim to benefit from becoming cyborg organisms. The 

project is not a novel idea: already there are smart watch products like the iWatch (Apple, 

2019) and the Fitbit charge (FitBit, 2019), both of which categorise and record activity. One 

visible difference between my project and these current devices is that the sensor is worn on 

the thigh, not on the wrist. The activity is also recognised by a local system, rather than one 

where data are sent to a remote data centre, where the user has no control of what then 

happens to their data. 

I created two machine learning models that run on a Raspberry Pi with Sense HAT attached. 

All the data I used was personal data. The Raspberry Pi can recognize walking, running, 

standing still, and an activity that is not any of these, to an acceptable rate of accuracy when 

next to the user’s thigh. This can be done by putting the Raspberry Pi in a front pocket. 

Because the Raspberry Pi requires a power source, the user needs to carry an external 

battery as well as a micro USB-to-USB cable that connects the two. 

Over the course of the project, the aims and methods were evaluated, and the weighting of 

the aims evolved. For example, the initial plan involved a mobile front end that would be 

required to display the activity the computer was predicting. When the Sense HAT was 

chosen, this was no longer required. The Sense HAT already had an 8x8 RGB LED matrix 

that allows the program to display letters to represent numbers. This was enough to display 

what the project required, so a mobile app was no longer required. 

A large challenge of this project was picking the right machine-learning model for the activity 

prediction. The Support Vector Machine was chosen over K-means clustering as it provided 

better results in an initial evaluation. The evaluation for the models used mathematical 

measures that ran formulas on test data as well as a live evaluation of testing the machine’s 

prediction against the activity. This type of evaluation was not as detailed as the coding 

evaluation, as what was being tested was if it could predict the right activity to a rate that a 

human would keep using it, which does not need to be as detailed.  

Project management was achieved through weekly meetings with my supervisor. The 

workload changed considerably throughout the project. 

This report will start by going through important aspects of computer science that are 

needed to understand the project, before going through the main approach to the solution. 

After giving an overview of the solution, it will go into more detail. This is then followed by an 

evaluation where different methods and the results they bring are described. The report 

concludes with a description of possible follow on work.  
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2. Background 

2.1 Machine Learning 

This prediction system gains data from sensors and then needs to categorise these data into 

an activity. To create the dividing lines between activities, the machine learns the dividing 

line rather than the programmer hardcoding these lines. The benefit of machine learning is 

that human error can be taken out of the process.  

Humanity and machines have had a long relationship. Over much of that time, it has been 

one-sided, with humanity having the intelligence and machines following the laws of physics. 

That changed in the 1950s when research into Artificial Intelligence (AI) began (Turing, 

1950). As computational power has increased this has allowed research theory to be put into 

practice. In the mid-2000s a subset of AI started to gain popularity: Machine Learning. 

Google defines this as “A program or system that builds (trains) a predictive model from 

input data. The system uses the trained model to make useful predictions from new (never-

before-seen) data drawn from the same distribution as the one used to train the model” 
(Google, 2019). This changed the relationship between humans and machines, as machines 

were no longer unintelligent. They could change their behaviour depending on what data 

they were given. 

The emergence of the internet and knowledge sharing was a big factor in the rise of machine 

intelligence. As more people used the internet, they uploaded information and data onto 

remote servers, and as time went on, the data that was on these servers became vast. So 

vast that it was given the label Big Data. Big Data is defined as” very large sets of data that 

are produced by people using the internet, and that can only be stored, understood, and 

used with the help of special tools and methods” (Anon., 2019).  These “special tools and 

methods” include machine learning algorithms. Like humans whose understanding of a 

subject increases the more examples of a subject they come across, the machine learning 

algorithm benefits from the more examples it is given. There have been examples of this in 

the commercial environment with supermarkets can understand the behaviour of their 

customers to a more personal degree. As using these algorithms has led companies to 

make greater profits, a lot more research has been put into this field. This further research 

has allowed machine learning algorithms to be placed into simple packages for anyone to 

download and use.  

This is where this project comes in: as a result of 70 years of research and millions of 

pounds of investment on what information can be downloaded from the internet. 

2.2 K-means Clustering 

K-means clustering was one of the methods considered to classify the data into activity 

groups. K-means clustering is an algorithm that solves clustering problems. The main idea 

behind the algorithm was published in the late 1950s (Steinhaus, 1956). A clustering 

problem is when there are multiple data points within a domain of any dimension. The aim is 

to group the data points that are similar into the same group. It is an unsupervised problem 

as each point is not given a class. What is inputted into the algorithm is the number of 

classes = k. The algorithm is as follows: 

1. K initial “means” are randomly generated within the data domain. 
2. K clusters are created by associating every observation with the nearest mean. 
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3. The centroid of each K cluster becomes the new mean. 

4. Steps 2 and 3 are repeated until the means of every K cluster do not change. 

K-means clustering is one of the least computing intensive unsupervised problems (Hinton & 

Sejnowski, 1999). It was chosen to be included in this report as it was one method explored, 

through guidance from the project’s supervisor. 

2.3 Support Vector Machines 

Support Vector Machines was another method used to classify the data into activity groups. 

Support Vector Machines are supervised learning models with associated learning 

algorithms that take in data points and define them into different classes, making it useful for 

classification problems (Cortes & Vapnik, 1995). The classification problem works on data 

points of different classes and tries to work out the separating line between them. The 

Support Vector Machine solves this problem by constructing a hyperplane, mapping the data 

points onto this new hyperplane and then performing its classification there. The reason for 

creating the hyperplane is that it can create the distance between two points of different 

classes to be as large as possible. It was chosen to be included in this report as its needs in 

terms of computing were lower than an alternate method, neural networks (DeepAI, 2019), 

which might have been possible for this project. However, no work was done with neural 

networks so it cannot be confirmed.   

2.4 Human Computer Interaction 

A motivation for developing this solution came from looking at the Human - Computer 

interaction and its limitations. 

The internet has allowed humans to share information with the most common type of 

human-computer interaction being manual typing on a keyboard (Dix, et al., 2004). Through 

language we can convey thought, but there are some instances when humans cannot 

convey their thought through typing. One example is falling over. The person falling over 

does not convey they are falling over to the observer by typing a message. Most commonly, 

the person gives out a loud yelp and physically falls to the floor. To a human observer, it is 

not the loud yelp that tells them that the other person is falling over, as a loud yelp is used in 

multiple examples and is not exclusive to falling over. What is exclusive to falling over is the 

body movement. The buckling of the knees, the upright position of the body turning 

horizontal, with the shoulders falling to the ground, and the time taken to complete these 

actions. The human observer uses these body movements to recognise the action of falling 

that the person has taken. The observer can turn these observations into text and upload the 

text onto the internet. This means that a third person can read the text from the internet and 

relate to the action and understand the action of falling over. If an instance of falling over 

happens in front of a third person, they would not refer to the text, but they would still use the 

body movements as indicators. The point of this example is that the internet of text-to-data 

cannot fully map all reality. 

2.5 Internet of Things 

To record human activity, sensors can be used to upload data, removing the step of the 

human uploading the data. The internet has evolved from a state of inputting text to data 

centres. Alongside big data that can upload commercial transactions, there are also 

mechanical sensors that upload their readings onto the internet. This network of sensors is 

called the ‘Internet of Things’ (Ashton, 2009). The Internet of Things is defined in the 
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Cambridge dictionary as “objects with computing devices in them that are able to connect to 
each other and exchange data using the internet”. This removes the human component in 

the internet. The sensor can collect the data, send it anywhere on the internet to have the 

data processed, with instructions sent to another device that takes an action depending on 

the instructions  (Figure 1). Within these three stages, there can be multiple devices. Multiple 

machines can act on the readings of a single sensor, or multiple sensors can be taken into 

consideration before a single action is made. 

Figure 1. IoT Lifecycle 

 

What is most relevant to this project is the collection of data. The collection of data is what 

shapes the reality that the computer at the analysis phase of the IoT cycle then uses. If you 

use the metaphor that the computer is like a human brain, then the reality it perceives has to 

be at least comparable to that of humans to have any utility. Thus, when creating my project, 

careful consideration was put into what sensors were used and how the data were collected, 

so the computer had enough grasp of our world to perform the tasks I wanted it to perform. 

Computer systems can use a vast range of sensors, and they can have advantages over 

human senses with sensors recording light waves whose frequency causes it to escape the 

human eye. 

2.6 Competitors 

The problem detailed in this report has tried to be answered by several solutions that can be 

found. With this architecture of IoT sensing the world, it is inevitable that the sensors would 

point towards humans as currently the most intelligence and arguably the most complex 

object in the universe. A common aim of people is to be healthier, and not to be in pain or to 

die. Products have appeared to satisfy this aim. The main example relevant to this study is 

the Fitbit Charge line (FitBit, 2019). Fitbit is a company that owns a wide range of products, 

but I am going to focus on the Fitbit Charge as it is advertised as a tracker, so its main use is 

to track human activity for the benefit of that person. It uses the company’s own technology 

called Smarttrack which can recognize workouts or activities where there is continuous 

movement. It uses a 3-axis accelerometer to understand its users’ motions. It then uses 

secret algorithms to convert the data into usable information for the customer. 

2.7 Raspberry Pi 

The Raspberry Pi (RaspberryPi.org, 2019) is a computing device that can be used to carry 

out recording and prediction scripts whilst attached to the human body. It is a commercial 

computer with an educational aim. Its specifications are a 4× ARM Cortex-A53, 1.2GHz 

CPU, 1GB LPDDR2 of RAM, 2.4GHz 802.11n wireless, and uses a microSD card for 

storage. The length of the computer is similar to a credit card. As of May 2019, it cost around 
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£30. The operating system that the computer runs on is called Raspbian, a slightly modified 

version of Linux.  

The Sense HAT is a product also made by the Raspberry Pi foundation. It connects to the 

Raspberry Pi through the GPIO pins of the Raspberry Pi (HAT, 2019).  

The Raspberry Pi and Sense HAT were chosen because they allow all aims of this project to 

be completed. There were other hardware options that also could be used to complete the 

same aims. The main disadvantage of the Raspberry Pi and Sense HAT is that they have 

functionality not required for this project, and are therefore redundant. The features that are 

not used are: BlueTooth, 2.4GHz and 5GHz wireless, Ethernet port, CSI camera port, DSI 

display port, Magnetometer, Temperature, Barometric pressure, Humidity. Another option 

was to have obtained the specific features and to have built a mobile computer. Building a 

mobile computer means only the features used in the project would be present, for example 

the only sensors would be the accelerometer and gyroscope. The disadvantage of building a 

mobile computer is that is takes longer than buying commercially available hardware, such 

as the Raspberry Pi and Sense HAT. The time of this project was focused on the machine 

learning creation, so the hardware solution with the smallest amount of time was chosen. 

There may be other already created computers that fit the aims better than the Raspberry Pi, 

but the Raspberry Pi had a lot of documentation and software package support which 

allowed for straightforward programming.   
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3. Approach 

3.1 Definitions of activity recognition 

Activity Recognition is when the machine can predict the activity a person is performing. 

However, the term activity is too broad for this report, where the Cambridge Dictionary 

defines it as “the situation in which a lot of things are happening or people are moving 
around” (Dictionary, 2019). Within this report an Activity can only be performed by a single 

person. The activity must be physical. If someone was playing chess, then the activity being 

performed would be sitting down with minimal arm movement rather than playing chess.  

3.2 Aims 

In order to complete my solution to “Activity Recognition on Body data”, I needed to break 

this down into aims with different levels of priorities.  

Table 1. Project Aims 

Description Priority Achieved by Background support 

Be wearable/ not restrict the user to complete the 
activities that it is trying to identify 

Must Hardware  See section Human-
computer Interaction (p6) 

Display text that can be linked to an activity Must Hardware See section Human-
computer Interaction (p6) 

Be portable Must Hardware See section Raspberry Pi 
(p7) 

Identify that the wearer is standing still at a rate of at 
least 90% 

Should Software See section Machine 
Learning (p5) 

Identify that the wearer is running at a rate of at least 
90% 

Should Software See section Machine 
Learning (p5) 

Identify that the wearer is walking at a rate of at least 
90% 

Should Software See section Machine 
Learning (p5) 

Record the user standing still Should Software See section Internet of 
Things (p6) 

Record the user running Should Software See section Internet of 
Things (p6) 

Record the user walking Should Software See section Internet of 
Things (p6) 

Identify when the computer is not sure what the user 
is doing 

Could Software See section Machine 
Learning (p5) 

 

Giving each aim a priority shows that different approaches can be created to solve this 

problem. Every solution must be wearable, portable and display text. As the computer must 

be linked to an individual, it needs to be wearable and portable as humans are mobile thus 

the computer must be able to stay with the person. It must be able to display text as the 



10 

 

computer will need to give information to the benefit of the human user. All the aims marked 

with the “should” priority let the system record and predict an activity. As the project is called 

“Activity recognition”, it then needs to record and predict activity. It is not a must priority, 

however, as there could be other solutions to activity recognition, one solution being setting 

hard set classification within the sensor readings. However, in the Background section, these 

aims seem to be the more suitable option of using machine learning, with sensors uploading 

to a machine with no human input. The final aim of my solution “Identify when the computer 
is not sure what the user is doing” is marked as could. This is because it is not needed for 
activity recognition. What it is used for is to make the prediction more accurate and opens 

the possibility to recognise the (N+1)th activity. N being the number of activities recorded. 

3.3 Architecture 

3.3.1 Software Stack 

 

Figure 2. Prediction and Recording architecture 

 

Figure 3. Machine learning architecture 

 

The architecture approach to the solution can be split into three processes; Recording, 

Machine Learning and Prediction (Figure 3). The Recording process has the mobile 

machine’s sensors take in values at a rate of 0.5 second (for justification of 0.5 seconds see 
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Sub Section Refresh loop of section Evaluation). These values are sent into a dataset under 

respective headers of X, Y, Z, Pitch, Roll, Yaw. The name of these headers come from each 

dimension the sensor is recording. The dataset is then put into a machine learning capable 

computer. It is labelled with the correct activity that was recorded. This allows supervised 

learning to take place. Through the supervised learning two prediction models are created: 

the activity recognition model and the outlier model. These two prediction models are placed 

back into the mobile computer. For the prediction process, the sensors take in the values at 

a rate of 0.5 second. This is the same as the recording process. The inputs are then placed 

into two prediction models, one set of recording values at a time. The prediction models’ 
output is displayed via text. 

To transfer data between the mobile computer and the computer capable of creating the 

prediction model I chose the approach that the data needs to be manually transferred via 

portable memory rather than a request over the internet. The reason behind this choice was 

of privacy and of giving back data ownership to the user. If data were sent via the internet, it 

could be retrieved at any time the mobile machine was turned on. This leads to privacy 

concerns, as the central system could take personal data generated by the person 

performing the activities without their consent. Manual transfer of data is slower and involves 

mores steps but removes privacy concerns as the one using the mobile machine must hand 

over their data. 

The sensors come from X, Y, Z, Pitch, Roll, Yaw. The X, Y, Z values are the recording of G-

force acting on each axis. The Pitch, Roll, Yaw are recording on how much the object is 

rotated around the X, Y and Z axis. Through the Pitch, Roll, Yaw readings the orientation of 

object can be calculated. 

3.3.2 Hardware 

In Figure 4 it shows the hardware cycle of the machine learning process. The Raspberry Pi 

is needed for the recording and prediction. The High-powered Desktop computer is needed 

for the Support Vector Machine creation. The USB stick is needed for data transfer. 

 Figure 4 Hardware architecture 
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4. Implementation 
 

4.1 Hardware 

The aim of a wearable and portable computer was implemented by the Raspberry Pi. Being 

the size of a credit card, it could fit in a trouser pocket. The Sense HAT add-on was used in 

order to complete the aim “Display text that can be linked to an activity”. The Sense HAT has 
an 8x8 RGB LED matrix, which can be programmed for each LED. With this capability I was 

able to display letters on the matrix. The Sense HAT has a multitude of sensors, but the 

ones used for this study were the 3D accelerometer and 3D gyroscope.  

Another piece of hardware that was used was a 16gb Micro USB and a memory stick. The 

portable storage units were needed as the Raspberry Pi is used to record and predict 

activity, but the CPU is not powerful enough to create the models. So, these two devices 

were used to transfer data between the two computers. The specification of the computer to 

create the machine learning model are 8GB of RAM, i5-4690k CPU @3.5Hz with a Nvidia 

970 gtx Graphics Card. These specifications are much greater than the Raspberry  

Pi. It was used not only to compute the prediction models but also to create the code of the 

program. The Raspberry Pi only has two scripts for the two modes, one for recording and the 

other for predicting. 

4.2 Software 

Python was used as the programming language. This was because the Raspberry Pi 

supports Python and Python has modules that are useful for this project, a main example 

being Sklearn. The data was recorded in CSV file format. With the CSV format, I could read 

and write in Python, as well as it not taking that much data. The style of my data was two 

dimensional 6 * n, therefore I did not need the files to hold any other formatting styles, thus 

CSV was enough. 

Along with Python, 3rd party libraries were used. This was to give additional functionality. 

These libraries were installed via the command “Python –m pip install ‘PackageName’” using 

the module Pip. Pip is a module that is used to install other modules and version control. To 

make sure the programs worked on both the mobile computers and the powerful computer 

used to create the Support Vector Machine, the versions of all the packages needed to be 

the same. In order to do this, on the powerful computer, the command “Python –m pip 

freeze” was used to display all the versions. On the mobile computers packages were 

installed with the additional parameter to install the package to the same version as the 

powerful computer. The command to do this was “Python –m pip install ‘PackageName’== 
‘version number’”. 

Table 2. Python Modules 

Name Version Purpose within project 

Python 2.7.10 The main programming language 

Pip 19.0.3 Used to install these packages. 
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Pickle 2.0 Gives the ability to save/load prediction 
models to/from “.sav” file 

Pandas 0.24.1 Has data frame object that places the 
training data into a form that can be used 
with the support vector machines 

NumPy 1.16.1 Uses the array, argmax, bincount 
function to create the short-term memory 
in the predict function. 

CSV 2.7.10 The reader and the writer functions are 
used to take and place data to and from 
the .csv files 

Sense_hat.SenseHat 2.2 Has the ability has to take the sensor 
readings 

Sklearn 0.18 The Machine learning package that gives 
the support vector machines. 

 

Sense_hat.SenseHat is the only module that can be used to access the sensor readings of 

the Raspberry Pi. However, the modules Pickle, Pandas, Numpy, Sklearn give functionality 

that can also be found in other modules. The reason why these four modules were chosen 

was due to their popularity and documentation. These modules were found due to searching 

the required functionality in a Python environment. These modules were the first to appear. 

Their functionality was appropriate, so they are used. 

4.3 Activities 

This project records four activities: Standing Still, Running, Walking and an activity that is 

none of the three. To identify the difference between the activities, the activities must be 

clearly defined:  

1. Standing still has the user standing upright with both feet on the floor.  

2. Walking has the user moving forward with at least one foot on the floor.  

3. Running has the user move at a speed faster than a walk, never having both feet on 

the ground at the same time (Anon., 2019). 

4. An activity that is not one of the first three. 

Standing still was the first activity to be chosen as it is an activity where a good classifier is 

that all readings should be 0. Knowing the reading (0,0,0,0,0,0) equals standing still, then it 

can used to test the prediction models when the reading (0,0,0,0,0,0) is given to them. 

Walking and Running was then chosen because they are both different from standing still 

but also very similar to each other. Falling over was also chosen as an activity to record, 

being different to walking and running due to not being a continuous action. However, the 

results of this activity prediction were too low to include in this final implementation. The work 

used to try to predict the falling over activity was used in the creation of predicting the outlier 

activity. This was chosen to improve the prediction machine as will be described in the sub-

section 'improving the models’. 
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4.4 Recording 

The project, from a machine learning point of view, is a classification problem with 

supervised learning. The Recording script makes use of the joystick on the Sense HAT. The 

Record.py has a while loop that runs an iteration every 0.5 seconds (Figure 5). There is also 

a Boolean called “isRecording”. Only when “isRecording” is set to true, then the sensors are 
written to CSV. “IsRecording” is set to true as default but can be changed by moving the 

joystick on the Sense HAT. Moving the joystick down will turn the “IsRecording” to false, 

which stops the recording of sensors. Turning the joystick up again will turn the Boolean to 

true, which will re-start the recording. This while loop does not start as soon as the program 

starts. The while loop begins upon the first movement of the joystick up. Both the Record.py 

and Prediction.py script run as soon as the Raspberry Pi boots up. This is done by adding a 

line in the Raspberry Pi’s cron file to call the script to run on reboot. 

To create the training data, I performed the activities myself. The recording program writes to 

a file called “data.csv”. Before each recording session, the file “data.csv” has to be cleared. 

The activity would then be performed for a set amount of time. “data.csv” would be moved to 

the USB stick whilst changing the name to the activity that was performed. Figure 6 are six 

lines from “10minRun1.csv”. There are no column headers but the sensors will always send 

their data into the same column. Pitch is in column one, Roll is in column two, Yaw is in 

column three, X is in column four, Y is in column five, and Z is in column six. 

Figure 6 Extract of data.csv file 

6.432524 8.418149 143.9565 0.011601 0.077208 0.685763 

328.2209 55.08839 115.0223 0.241652 0.424316 0.217134 

308.3137 50.70705 79.6206 0.609994 0.800973 0.087487 

2.020355 107.0929 347.323 0.312028 0.479798 0.197394 

2.073489 190.2453 350.0914 0.497499 0.184522 0.116974 

26.64409 174.7224 8.241159 0.640538 1.151612 2.532741 

      

• To gather the data for the activity standing up, I would place the Raspberry Pi in my 

pocket and stand for 10 minutes to create ‘newStanding_edit.csv’.  

IsRecording = true 

While True: 

 If joystick.down: 

  isRecording = false 

 if joystick.up 

  isRecording = true 

 if(isRecording) 

  record sensor values 

 Wait for 0.5 seconds 

  

Figure 5. Recording Pseudocode 
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• To gather the data for the activity walking I put a mobile computer in my left and right 

pocket and walked mostly in one direction for ten minutes. This created two csv files, 

“leftLegWalk.csv” and “RightLegWalk.csv”. To broaden the range of readings of 

sensors, I placed the mobile computer in a pocket, and I would walk around in circles 

for ten minutes. For Five minutes the direction would be clockwise and for the other 

five minutes the direction would be anti-clockwise. This created 

“WalkinginCircles.csv”.  
• To gather the data of the activity Running data, the recording was similar to walking 

with two mobile computers running the record program in each front pocket. When 

running for 10 minutes, the route has sufficient turns that there was no need to record 

a “RunninginCircles.csv”. The two CSV files that were created were “10minRun1.csv” 
and “10minRun2.csv”. 

The training data were gathered before the Support Vector Machine training was fully 

implemented. This meant extra data for each activity was recorded for testing purposes in 

their own csv file. These CSV files are called: “stilltestdata.csv”; “walktestdata.csv”; and 

“runtestdata.csv”. But because of the training step used, the test data did not need to be in 

their own CSV file. This meant that the recording in these CSV was put in with the rest of the 

data. This meant for the three activities the total data points were: 1,826 for standing still; 

3,095 for walking; and 2,726 for running. 

4.5 Data Transfer 

Once the CSV file is created and renamed it is moved onto the USB stick. The USB stick is 

then safely ejected from the Raspberry Pi and put into the hard powered computer. Once the 

computer can access the CSV file it is transferred from the USB folder to the folder that 

includes the SupportVector.py file. Having the CSV files in the same folder as the 

SupportVector.py and SupportVectorOutlier.py files is needed as those files look for the CSV 

files in the same folder. Figure 7 shows file structure of the CSV and programs in the same 

folder. The program files on the Raspberry Pi are placed on the desktop folder. Using the 

crontab file line “@reboot python /home/pi/Record.py”. it runs the file on reboot, knowing 

where to look for the file. 

Figure 7 File Structure 
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4.6 Machine Learning 

After the recording, there is a pre-processing step in which I labelled the data with the 

relevant data as only one class was recorded per session. The seven * n matrix was then 

processed again so each row now had the difference between the current row and the 

previous one to create a seven * (n-1) matrix. Figure 8 shows an example of the conversion 

on an extract of data. 

Figure 8 Conversion of data 

6.432524 8.418149 143.9565 0.011601 0.077208 0.685763 

328.2209 55.08839 115.0223 0.241652 0.424316 0.217134 

308.3137 50.70705 79.6206 0.609994 0.800973 0.087487 

2.020355 107.0929 347.323 0.312028 0.479798 0.197394 

2.073489 190.2453 350.0914 0.497499 0.184522 0.116974 

26.64409 174.7224 8.241159 0.640538 1.151612 2.532741 

      

 

38.1791 46.67024 28.9342 0.230051 0.347108 0.468629 

19.9072 4.38134 35.4017 0.368342 0.376657 0.129647 

53.70666 56.38585 92.2976 0.297966 0.321175 0.109907 

0.053134 83.1524 2.7684 0.185471 0.295276 0.08042 

24.5706 15.5229 18.14976 0.143039 0.96709 2.415767 

 

Using the change of data is better than just the data as it shows the rate of movement. This 

array of rate of change was then split into 4:1 ratio of training data to test data. Both of these 

two data sets are further split into X_train, X_test, Y_test,Y_train. Data Sets X_train and 

X_test are a six * n matrix with the six columns being the six sensors. Y_test and Y_train are 

a one * n matrix, holding the class value for each row. Sciklit-learn SVM package is used 

with the lines below to create the class model.  

clf = svm.SVC(kernel='linear') 

clf.fit(X_train,y_train) 

What clf.fit() is doing is working out where to place the line in 6-dimensional space to 

differentiate the three activities. The model is then put under some evaluation with 

sklearn.metrics, printing the confusion matrix and classification_report. 

y_pred = clf.predict(X_test)  

print(confusion_matrix(y_test,y_pred))   

print(classification_report(y_test,y_pred))    

Please note the two train data were used in the clf.fit() function to create the Support Vector 

Model and the two test data were used in the evaluation lines. This is needed as testing 

should be done on data different to what was used to train the model. 

 

Conversion in the importChangeofData( csvname, classInput) function 
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For the other prediction model, the same data is used but not using the Class attribute, as 

the model is trying to put a line between what can be recognised and what cannot. I did not 

need to distinguish between the different classes. Therefore I did not need to break up my 

data into four sets, only two sets called inlinerdf_train and inlinderdf_test. The Support 

Vector Machine was created with the lines below. 

clf = svm.OneClassSVM(nu=0.1, kernel="rbf",gamma = 0.0001) 

clf.fit(inlinerdf_train) 

Once I created both models, I used the python module Pickle. This turns the model into a 

.sav file that can be transferred via the USB stick to the Raspberry Pi for its second script 

called predict. 

4.7 Prediction 

The predict.py script uses the pickle module to load the two models. The same sensors used 

to record are used again to record at the same rate of 0.5 seconds placing their recordings 

into arrays in a while true loop. After every other iteration, it works out the difference 

between the two readings. The change in readings is placed in the outlier prediction module. 

If it predicts that it is an outlier, the Raspberry Pi outputs “O” on its display and the recording 

is placed into a csv file called “outlier.csv”. If it predicts that it is not an outlier, then the other 

prediction model is used to predict what activity is happening. The prediction is placed into 

an array of length 5. Once the array is full, the Raspberry Pi displays a letter which is 

connected to the activity that appears the most in the array. After the prediction models are 

finished, the recording arrays are cleared so they can be used for the next set of readings. 

Table 3. Activity Map 

Activity Letter output 

Standing Still S 

Walking W 

Running R 

Outlier O 
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4.8 Improving the models 

When improving the Support Vector Machine Models the training data needed to improve. In 

order to do this the outliers recorded that were actually mis categorized and was one of the 

activities that must be placed back into the activity training data. This is done by clearing the 

outlier.csv file before a prediction session. The mobile computer then runs the prediction 

program whilst the user performs one of the three activities. Once the program ends, all 

points in the Outlier.csv file are false positives. These points can be transferred into the 

training data of that activity. Both Support Vector Machines must be re-trained. 

 

ShortTermMemory  = array of length 5 

Create ActivityMap 

While true; 

 Get Recording 

 If Secound recording: 

  Data point =  difference between recording 

  If Data Point == outlier: 

   return ͞O͟  

  Else: 

   Predict activity from data point 

   shorttermMemory.Add(activity) 

   if ShortTermMemory .length > 5: 

    delete oldest ShortTermMemory  item 

   if ShortTermMemory  == 5: 

    return ActivityMap (Activity that is the mode of ShortTermMemory) 

 

Figure 9. Prediction Pseudocode 
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5. Results and Evaluation 
 

5.1 Evaluation Methods 

Once fully completed my project was able to recognise the three activities and recognise 

when it was not sure.  

To evaluate the measure of my success, I wrote into the create Support Vector Machine 

script some evaluation measures which are: support, precision, recall, F1 score and the 

confusion matrix. In the model creation script, the data were broken up into training and 

testing data, the split being 4:1. The confusion matrix gives a visual representation as you 

can see how many items are recognised in the wrong category.  Other measurements as 

well as they put different values on different areas.  

Precision, which equals to 
௧௥௨௘ ௣௢௦�௧�௩௘௧௢௧�� ௣௥௘ௗ�௖�௧௘ௗ ௣௢௦�௧௩௘ is good when the false positives cost is high. 

In our situation of activity detection, it would be bad if the correct transaction gets detected 

as something else. Recall, which equals 
௧௥௨௘ ௣௢௦�௧�௩௘௧௢௧�� �௖௧௨�� ௣௢௦�௧�௩௘, highlights the importance of false 

negatives. This can be even more important than precision as it measures how many true 

activity points are not being detected, which is the whole point of the classifier.  

My final measure is the F1 score, which equals to 2 ×  ௣௥௘௖�௦�௢௡ ×௥௘௖���௣௥௘௖�௦�௢௡+௥௘௖���  , because it is a better 

combination method rather than the confusion matrix. This is because it gives more weight 

to false negatives and false positives whereas the confusion matrix mostly relies on true 

negatives. The support is the number of occurrences of each class that appear as a positive. 

As it prints the number, it can be compared to the number of rows within the test data to see 

how much they match. Once the Support Vector Machine is created the measures are 

printed out. All the measures are recorded for each activity. For each measure I made an 

average for all the activities to give a single number. This allowed me to see if one activity is 

easier to recognise in a classification method. 

Table 4. Final Confusion Table 

Actual  Predicted 

Standing Walking Running 

Standing 363 1 0 

Walking 4 576 46 

Running 0 79 461 

Table 5. Final evaluation metrics 

 Precision Recall F1-score Support 

Standing 0.99 1.00 0.99 326 

Walking 0.88 0.92 0.90 626 
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Running 0.91 0.85 0.88 540 

Avg / total 0.92 0.92 0.91 1530 

I also evaluated the models by performing one activity whilst recording the prediction and 

seeing how many times it was correct. This gave less information than the coded in 

measures, but it is the measure that the user will experience. The measure I was looking out 

for is how many times will the device predict the wrong number until the user gets fed up 

with it. However, this is not a standard measure as each person will get fed up at different 

rates and getting fed up is not a well-defined measure. But, adding the human factor into the 

testing stage is essential as this project is created to be used by humans. 

With these two types of evaluation I could try out different ways of recording and which 

classifier to use. 

5.2 Alternative methods 

This section of the report examines alternative methods and ways of implementation that 

were tested and how the implementation method stated in the implementation section was 

evaluated and chosen. 

5.2.1 Sensors 

There are a few decisions regarding certain values within the project. The number of sensors 

is six, being X, Y, Z, Roll, Yaw, Pitch. These sensors are needed to capture the human 

movement. The X, Y, Z sensors measure the g force in their relative dimension. Adding all 

these sensors gives the g force in the 3-dimensional world. The sensors Roll, Yaw, Pitch 

were added as they show the orientation of the device. Both sets were chosen as they give 

better results in the evaluation models compared to only one set of three sensors. Initially 

the orientation gives little information on the body movement as the device can achieve all 

range of orientation whilst standing still.  This is why I used the change of sensors readings. 

The change of orientation readings gives a better understanding of movement. A higher rate 

of orientation readings indicates a more exaggerated movement. 

For all six sensors – please refer to table 4 and 5 

Using only Sensors X,Y,Z: tables 6 and 7 

Table 6 X,Y,Z confusion matrix 

Actual  Predicted 

Standing Walking Running 

Standing 365 0 0 

Walking 18 595 54 

Running 2 121 375 
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Table 7 Sensors X,Y,Z evaluation metrics 

 Precision Recall F1-score Support 

Standing 0.95 1.00 0.97 365 

Walking 0.83 0.89 0.96 667 

Running 0.87 0.75 0.81 498 

Avg / total 0.87 0.87 0.87 1530 

 

Using only Sensors Yaw, Roll, Pitch: tables 8 and 9 

Table 8 Sensors Yaw, Roll, Pitch Confusion Matrix 

Actual  Predicted 

Standing Walking Running 

Standing 362 11 0 

Walking 9 530 88 

Running 2 185 343 

 

Table 9 Sensors Yaw, Roll, Pitch evaluation metrics 

 Precision Recall F1-score Support 

Standing 0.97 0.97 0.97 373 

Walking 0.73 0.85 0.78 627 

Running 0.80 0.65 0.71 530 

Avg / total 0.81 0.81 0.80 1530 

 

Looking at the results the acceleration sensors gave better results than the orientation 

sensors. But even the acceleration results were not as good using both sets of readings. The 
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difference between the separate acceleration and orientation results could be due to how 

acceleration and orientation movement was captured. Both work in a 3-dimensional space, 

whereas acceleration is the change of velocity and orientation is the rotation around a point. 

Velocity is more useful to movement than rotation. This could be why a competitor, the Fitbit 

charge, has an accelerometer but no gyroscope. 

5.2.2 Change of readings 

The benefit of using the change of readings is that the device can be fitted in any orientation 

on the person. Using the sensor readings would mean wearing the device upside down 

would change how the prediction machine will handle the readings. One issue with using the 

change of degree is that the orientation sensors range from 0 to 360 degrees. This means if 

one reading is 2 degrees and the next reading is 355 degrees the difference between the 

two are 353 degrees. However, the true difference is 7 degrees. The reason for this problem 

is the scale is not linear, after 360 degrees it should go to 1 degree. To resolve this, I created 

a simple correction function at the pre-processing stage. The correction function takes the 

two values as input and finds the difference. If the difference is more than 180 degrees it is 

the incorrect value, so the function returns (360 – difference). 

Change of readings - Please refer to table 4 and 5 

Using the readings 

Table 10 Unchanged Readings Confusion Matrix 

Actual  Predicted 

Standing Walking Running 

Standing 315 11 6 

Walking 52 939 57 

Running 28 206 330 

 

Table 11 Unchanged Readings evaluation metrics 

 Precision Recall F1-score Support 

Standing 0.80 0.95 0.87 332 

Walking 0.81 0.90 0.85 1048 

Running 0.84 0.59 0.69 564 

Avg / total 0.82 0.81 0.81 1944 

 



23 

 

Comparing the Unchanged readings to the difference of data shows a difference of 10 in the 

avg/total columns. The reason for this decrease is mostly likely due the orientation as stated 

in the previous paragraph. The flaw of recording different orientation readings for the same 

type of movement will cause errors. 

5.2.3 Refresh loop 

The Refresh loop is 0.5 seconds. This period of time allows for the device to move to 

another position so that the change of readings can pick up some difference in the sensors. 

If the refresh loop is too short, there would not be enough time for the movement to take 

place, meaning the difference between the readings would always be small. If the refresh 

loop is too long, then movements could be missed out. The activities of walking and running 

are also movements that happen in a loop, walking is just a cycle of one leg forward and 

then another. The decision for the time for the refresh loop must take in account how long a 

cycle of the activities will be. The two readings could be of the same place with the walking 

cycle, meaning the differences would be very small. I tested a range from 0.5 second to 1.5 

second with a step of 0.5 seconds. The result was 0.5 gave the best results. 

Refresh loop of 0.5 – please refer to table 4 and 5 

Refresh loop of 1.0: 

Table 12 Refresh loop of 1.0 Confusion Matrix 

Actual  Predicted 

Standing Walking Running 

Standing 170 1 0 

Walking 4 275 39 

Running 0 59 217 

 

Table 13 Refresh loop of 1.0 evaluation metrics 

 Precision Recall F1-score Support 

Standing 0.98 0.99 0.99 171 

Walking 0.82 0.86 0.84 318 

Running 0.85 0.79 0.82 276 

Avg / total 0.87 0.87 0.86 765 
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Refresh loop of 1.5 

 

Table 14 Refresh loop of 1.5 confusion matrix 

Actual  Predicted 

Standing Walking Running 

Standing 100 2 0 

Walking 2 199 31 

Running 0 36 140 

 

Table 15 Refresh loop of 1.5 evaluation metrics 

 Precision Recall F1-score Support 

Standing 0.98 0.98 0.98 102 

Walking 0.84 0.86 0.85 232 

Running 0.82 0.80 0.81 176 

Avg / total 0.86 0.86 0.86 510 

 

With these results it is interesting to note that even though the refresh loop of 1.0 and 1.5 

gives worse results than 0.5, the results of 1.0 and 1.5 are not too dissimilar. One thing to 

note, is that for each longer refresh loops, there are less data points due to using the same 

test data. 

5.2.4 Position of Mobile computer 

With only one machine to pick up movement of the body, comes the decision as to where to 

place the machine on the body. The decision was to put it in the front trouser pocket. The 

machine would then be in front of the upper thigh. There was no difference between which 

leg, the right or the left. The evaluation behind this decision came from both from the activity 

and my testing scheme. The activities I wanted to look at were walking, running and standing 

still. Looking at a human performing these activities, one will notice that the main difference 

of movement is within the limbs.  The short-list of areas for the sensor to be was on the 

wrists, ankles, or thigh. Out of these three areas, the thigh has the benefit of being near a 

pocket which allows it to be held in the same position. The other two areas needed to be 

attached via straps. The ability to hold the sensors in place on the human body is needed for 



25 

 

reliant testing data. If the mobile computer moves not with the body, it picks up incorrect 

data. This can be seen with the following test results.  

Thigh results – Please refer to table 4 and 5. 

Ankle results 

Table 16 Ankle Confusion Matrix 

Actual  Predicted 

Standing Walking Running 

Standing 194 3 0 

Walking 28 240 66 

Running 2 119 108 

 

Table 17 Ankle evaluation Metrics 

 Precision Recall F1-score Support 

Standing 0.87 0.98 0.92 197 

Walking 0.66 0.72 0.69 334 

Running 0.62 0.47 0.54 229 

Avg / total 0.70 0.71 0.70 760 

 

Wrist results 

Table 18 Wrist Confusion Matrix 

Actual  Predicted 

Standing Walking Running 

Standing 223 2 0 

Walking 2 181 27 

Running 1 47 165 
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Table 19 Wrist evaluation metrics 

 Precision Recall F1-score Support 

Standing 0.99 0.99 0.99 225 

Walking 0.79 0.86 0.82 210 

Running 0.86 0.77 0.81 213 

Avg / total 0.88 0.88 0.88 648 

 

From the results of positions, all work with the activity of standing. Standing has very little 

movement so the position does not matter much. The activity of walking and running have a 

lot of movement, with each body part moving a bit differently. Putting the sensor near the 

ankle gives the worse results, partially with the activity Running.  Putting the sensor near the 

wrist gives better results but not near the thigh. What is interesting to note is that the FitBit 

charge puts its sensors near the wrist. However, when the sensor is near the thigh it gives 

the best results. 

5.2.5 Choosing the Training model: K means clustering vs Support Vector Machine 

Once the training data was recorded, I had thousands of six digit coordinates ranging from 

(0,0,0,0,0,0) to (180,180,180,10,10,10). The problem was to put a classifier onto this graph 

and put a line to distinguish the parts of the graph which are a certain activity. For this 

solution, it was achieved by first using a linear Support Vector Machine to draw a plane 

within the graph to separate the three activities and then use an outlier Support Vector 

Machine to draw another plane to separate the three activities to outlier points. 

At first, I considered k means clustering. This was because I was trying to work out if this 

classification problem could actually be a clustering problem. The difference between 

classification and clustering is that classification draws separating vectors between your 

data, whilst clustering draws clustroids within your data. Clustroids mean the centre point in 

each cluster. As the number of activities to be recognised is set to three, it means three 

clusteroids could be placed into the graph to find three clusters. This solution was first tried 

manually and using a library. For the manual method all the data are imported into the panda 

dataobject which represents a six-dimensional graph. Three points within the range of the six 

axes are chosen at random to be starting clustroids. Then all the data coordinates are given 

an assigned centroid which is the one to which they are closest. When all data points are 

assigned, the centeroids are updated to become the average of all the points that were 

assigned. The loop of assigning the data points and updating the centroids continues until 

the centroids stay in the same place. This method however drew poor results. In order to 

make sure it was the clustering at fault and not a coding fault, I used the sklearn clustering 

function as well. When using the sklearn clustering the program is the same until the data is 

placed into a Panda Dataframe. But afterwards the Sklean.KMeans function is used with the 
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input (n_clusters = 3). It uses the method fit () with the dataframe as the parameter. Then the 

evaluation methods could be used. 

Both methods created poor results. My theory into why this is the case is because walking 

and running overlap too much in terms of movement and thus so would the sensor readings. 

As the results show, the activity standing still shows the best results. This is because 

standing still is very different and distinct from the other two activities. This means in the 

data, there is a clear separation between the two clusters, which standing still having the 

defined clustering shape. Walking and Running however, are one large cluster, with 

overlapping boundaries. Therefore, Support Vector Machines were chosen, as the difference 

of standing still and moving was an easy problem to solve, the harder problem was working 

out the difference between the different types of movement. Therefore, the problem turned 

into where to place the separating plane in the overlapping area of running and walking, 

confirming this problem as a classification. 

Below is a visualization of this problem, please note this is just for visualization purposes and 

is not accurate (Figure 6). The reason for this because a 6-dimensional graph is difficult to 

visualise so please use this 3-dimensional graph using only the accelerometer sensors. This 

method is used to understand the problem of there is no clear clustering. 

Figure 10. 2D visualisation of clusters 

  

 

 

 

 

 

Blue = Standing Still 

Red = Walking 

Green = Running 
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Table 20. Clustering Confusion table 

Actual  Predicted 

Standing Walking Running 

Standing 0 1826 0 

Walking 0 3087 8 

Running 735 1526 465 

 

Table 21. Clustering Evaluation metrics 

 Precision Recall F1-score Support 

Walking 0.00 0.00 0.00 1826 

Standing 0.48 1.00 0.65 3095 

Running 0.98 0.17 0.29 2726 

Avg/total 0.54 0.46 0.37 7647 

 

5.2.6 Creating the second outlier Support Vector Machine 

Using the Support Vector Machines gives better results than clustering but using only the 

Class Support Vector Machine gives too many false positives. When the user wearing the 

mobile computer performs an activity that is none of the three defined activities, the 

computer would still predict one out of the three activities. This is why the second Support 

Vector Machine is created using the sklearn.OneClassSVM function with parameters nu = 

0.1, kernel=”rbf”, gamma = 0.0001. This allows the mobile computer to predict an activity 

that is not one of the three activities. The default kernel is used due as the others are not 

appropriate. 

The evaluation methods of the outlier were different from the main Support Vector machine. 

The oneclassSVM draws a boundary around all the data points, and marks everything 

outside the boundary as -1, and everything inside the boundary as 1. This means the data it 

takes to train on are the same csv files as the Class Support Vector Machine, without the 

class attribute. This diminishes the advantage of the confusion matrix and Evaluation 

metrics. There are no test data of an approved outlier when creating the first outlier Support 

Vector Machine.  

The new evaluation methods were to split the inliner training data into inliner_train and 

inliner_test with a 4:1 split. The program uses inliner_train to train and once it is done it tests 
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on both the inliner_train and inliner_test. To find the optimal values for nu and gamma I 

started in the range of 0.05 to 0.2 with range of 0.5 for both. 

 

Table 22. Initial Outlier Results 

nu Gamma Pass Train 
% 

Pass Test% 

0.05 0.05 69 39 

0.05 0.1 68 28 

0.05 0.15 55 25 

0.05 0.2 52 24 

0.1 0.05 71 39 

0.1 0.1 66 30 

0.1 0.15 66 26 

0.1 0.2 63 25 

0.15 0.05 70 28 

0.15 0.1 61 20 

0.15 0.15 66 26 

0.15 0.2 63 25 

0.2 0.05 69 37 

0.2 0.1 62 28 

0.2 0.15 65 27 

0.2 0.2 67 24 
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These results show that the higher percentage of passing of both the training and testing 

data relies more on the gamma value. As the gamma value increases, the pass percentage 

drops. Looking at the nu column, the values 0.1 and 0.15 relate to the highest pass 

percentage. A new set of ranges is then derived with the aim of increased pass percentage. 

Nu has a range of 0.1 to 0.15 with step of 0.01 and gamma will have a range of 0.000001 to 

0.1 with step of gamma * 10. 

Table 23. Outlier Results 

nu gamma Pass 
Train % 

Pass 
Test % 

0.100000 0.000001 90 89 

0.100000 0.000010 89 89 

0.100000 0.000100 90 91 

0.100000 0.001000 89 88 

0.100000 0.010000 83 70 

0.100000 0.100000 65 31 

0.110000 0.000001 88 89 

0.110000 0.000010 89 88 

0.110000 0.000100 89 89 

0.110000 0.001000 88 89 

0.110000 0.010000 83 70 

0.110000 0.100000 68 27 

0.120000 0.000001 87 87 

0.120000 0.000010 87 87 

0.120000 0.000100 87 88 

0.120000 0.001000 88 87 

0.120000 0.010000 83 70 
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0.120000 0.100000 61 27 

0.130000 0.000001 86 87 

0.130000 0.000010 87 87 

0.130000 0.000100 86 85 

0.130000 0.001000 87 87 

0.130000 0.010000 82 69 

0.130000 0.100000 66 30 

0.140000 0.000001 85 86 

0.140000 0.000010 85 86 

0.140000 0.000100 85 87 

0.140000 0.001000 85 85 

0.140000 0.010000 82 70 

0.140000 0.100000 63 30 

0.150000 0.000001 85 88 

0.150000 0.000010 85 84 

0.150000 0.000100 85 85 

0.150000 0.001000 85 83 

0.150000 0.010000 81 69 

0.150000 0.100000 61 28 

 

From this table the best values, nu = 0.1 with gamma = 0.0001, were picked to be used to 

create the Outlier Support Vector Machine. 
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5.2.7 Failed outlier evaluation 

As different evaluation methods were used to test the outlier Support Vector Machine, one 

approach was worked on that ended up not being used. This approach that was used to try 

to train the outlier Support Vector Machine is a set of uniform points from (0,0,0,0,0,0) to 

(180,180,180,10,10,10) called “uniform.csv”. Once the outlier takes in a point and produces  

-1 for an outlier and 1 for not an outlier. Running the outlier on “uniforms.csv” the boundaries 

can be found, by connecting all the points that are -1 which are next to points that are 1. This 

creates two ways to predict outliers. The second Support Vector Machine can be put on the 

mobile computer or the boundary data could be put on the computer. With these two 

approaches evaluated putting the Support Vector Machine onto the mobile computer was 

chosen. This was because it did not hinder performance and could give more accurate 

readings. The boundary data would lose some information as not all points were put under 

the Support Vector Machine to process, namely the space between the uniform points. If the 

boundary data is not needed, then the code to build it is not necessary and can be removed 

from the solution.  
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6. Future Work 

The project was able to predict three activities to an acceptable level whilst also being able 

to recognise when it did not know the activity. However, several improvements could be 

made to both the hardware and software. On the hardware side, without the time limit I 

would be able to create a device that has a physically attached chargeable battery, with only 

the relevant sensors on board. The Raspberry Pi and Sense HAT had extra features that I 

did not need (for example, the pressure sensor.) Having to connect to an external battery 

meant it needed to be connected via wires which made it harder to place in a pocket. My 

device would also be smaller than the Raspberry Pi (due to not having the extra features), so 

it would be easier to fit into the trouser pocket. Beyond that, the device could be reduced in 

size and price so that it could be woven into trousers (or other tight-fitting clothes covering 

the thigh), turning the product from just a device to smart clothing. This would take a long 

time and might require a large amount of work. 

On the software side, I would work to recognise additional activities. For my next activity I 

would like to classify falling over, as then the program would turn from being a health 

application to a safety application. In addition, the main problem in the project I wanted to 

solve was the classification problem, but with extra work it could have additional functionality 

to send information over the internet or Bluetooth. This would mean that if it could recognize 

falling over, it could then notify someone who could help the fallen user. With the connecting 

functionality it could connect to other applications, like the Apple Health app or a logger on 

the user’s computer. This would still be possible using the Raspberry Pi as it has Wi-Fi 

capabilities but a new Python module may be needed to send the CSV file over the Wi-Fi. 

To improve the model, the Raspberry Pi needs to stop the predicting script, and run the 

recording script. After the recording is done, the data are manually transferred to the PC 

where the models need to be re-created with the new data included. To improve this, I would 

like to improve the predicting script so that it could improve the prediction models alongside 

prediction. In order to do this, I would turn the outlier prediction model so that after a certain 

number of outliers recorded, it would turn a new Support Vector Machine model to try to find 

new activities from these outliers. On the next round of prediction, it would compare it 

against the new Support Vector Machine so that the new activity would show up as the 

activity and not an outlier. One problem to include this new activity recognition is that the 

activity map would need to be updated with the new activity. The current activity map allows 

the Raspberry Pi to show a letter that represents the activity. If a new activity was created, 

then there would be no logic to choose the letter to represent the activity. There would still 

be a need of manual updating. 

More work would include removing the personal bias. All the data recorded and tested was 

on my own body. This means the Support Vector Models would have a bias towards me. To 

remove this, the training data would increase as the Raspberry Pi would be on Record with 

multiple people of different body types. This means the prediction would give better test 

results on different people. To understand how large the problem of personal bias test data 

was gathered from another consenting person.  Below are the results with the support vector 

machines (created with my data) predicting the actions of test data (created with another 

person’s data). 



34 

 

Table 24 Personal Bias Confusion Matrix 

Actual  Predicted 

Standing Walking Running 

Standing 516 2 0 

Walking 2 193 348 

Running 2 235 345 

 

Table 25 Personal Bias Evaluation metrics 

 Precision Recall F1-score Support 

Standing 0.99 1.00 0.99 518 

Walking 0.45 0.36 0.40 543 

Running 0.50 0.59 0.54 582 

Avg / total 0.64 0.64 0.64 1643 

 

From these results we see that personal bias does indeed have an impact on this project. 

Not for the activity of standing still as that is an universal activity. The activity of running and 

walking show poor results. This is because the activity of walking and running are broad. 

Different people have different paces and styles of running and walking. To improve the 

model, all styles need to be included in the training data.   
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7. Conclusions 

In conclusion, my project was to create a solution that will support “Activity Recognition on 
Body Data”. My hypothesis was that a mobile computer with a machine learning classifier 

could recognise human actions. I then sought to find both the hardware and software 

solutions. The hardware solution must be both mobile and hold enough sensors to read the 

movement of the human body. The software solution must be able to classify the sensor’s 
readings. The hardware solution chosen was the Raspberry Pi with Sense HAT attachment 

connected to a mobile power source. The second hardware was a high-powered desktop 

with capabilities to create the classifier. The software solution became an architecture of two 

programs to run on the Raspberry Pi: Record and Predict. It also took control of the data 

management, pre-processing and classifying. 

Much of the work was with data management and pre-processing compared to the actual 

coding. A classifier was quick to produce, a good classifier took longer. The training data 

was improved by doing more examples of each activity and the classifier was improved by 

exploring different ways to classify each activity.  

The main motivation of this project was to capture the uncaptured data of human movement. 

The results achieved by this solution were acceptable. However, with the outlier activity it 

cannot work out the severity of the outlier. One motivation of this project was fall detection, 

when the machine could replace a panic button by calling a person if the user has fallen 

over. As the mobile machine does not know the difference between falling over and spinning 

around, it cannot send an emergency signal. One positive outcome of the outlier was 

removing false negatives in the exercise classifier. As the prediction machine holds the data 

points for all outliers, one can perform the classified activity (for example running). There 

should be no outliers in this period but if there are, the points can be placed in running 

training data. The ability to put false negatives back into the training process is very useful to 

create a more refined prediction model in supervised learning. Having less false negatives 

means the percentage of true negatives among all negatives increases. This means that 

even though the prediction machine cannot determine between the outliers, it is very good at 

determining if it is an outlier. 

Another motivation was to keep the prediction model on a local device and not have to send 

to an external data centre. This was achieved to a certain extent.  Once the two prediction 

models are created, then they can be moved via file transfer and do not need to be 

connected back to a central system. This achieves the goal as the prediction is done locally. 

However, to improve the prediction, both the prediction model and the outlier data 

(generated by the user) would need to come back to the central computer for the prediction 

models to be re-created. This has to be done manually so the user must give both their 

consent and physically give the memory card. No data are sent over the internet. This gives 

control back to the user and increases privacy as they only need the data shared if they 

decide that the prediction can be improved. 

With regard to the higher goal of exploring the benefits of cyborg organisms, I have 

broadened the scope of the human-computer interface via an attached computer that can 

recognise the physical activity that the human body is performing. This adds to the solution 

of one of the biggest problem two conversing objects can have: that of accurate 

communication. 
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8. Reflection on Working 

When starting the project, I had very little experience of machine learning and had not 

written a report of this size. Having little experience in machine learning meant I had limited 

knowledge of how I was going to implement a solution or know what problem I was trying to 

solve. I knew you could put a lot of data through an algorithm and it would produce some 

code that could tell you something about similar data, but I did not know the different types of 

machine learning algorithms. I thought everything was to do with classifying, with my 

knowledge stemming from the dog vs cat example: when sending a lot of pictures labelled 

cat and dog, the computer could tell the difference in new photos. Not knowing the difference 

between classifier problems and clustering problems was a hurdle in the first couple of 

weeks as I compared k-means clustering to support vector machines. I now know which 

solution should be used for which problem. 

In this project, unlike my other experience with coding problems, not all the work was in 

coding, but also in gathering training data. This meant I had to learn how to obtain training 

data correctly. Learning to obtain training data includes making sure the activity is performed 

correctly when the device is recording. It is also about how much data should be collected 

for training data and how much of a split of the data should be turned into test data. 

This is the first project I worked on a Raspberry Pi with the Sense HAT add-on, so working 

under the limitations of the smaller computer was new to me. Previously I would always code 

on a high-powerful computer, which meant I was never under any restriction in terms of 

computational power. With the aim of the computer being mobile, it brings along the 

limitation of being less powerful. I learnt to make sure all my different 3rd party Python 

packages were the same. I also had to learn the Linux crontab editor to run programs on 

reboot.  

Being a personal project and completed only by myself brought its own challenges. I had the 

freedom to do what I wanted but I missed the support structure of working in a group. I did 

have, and am thankful for, my half-hour weekly meetings with my supervisor, but this contact 

time percentage wise was small in regard to my overall work load. To complete my project, I 

needed to make use of my connections I had made at my time at university to motivate me. 

With little contact time and not needing to go to the university buildings, challenged my 

motivation to complete the project. What kept my interest up was going to optional 

intellectual meetings, both inside and outside university to keep my motivation high. 
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Appendix 
 

 

All training data will ďe attaĐhed within ͞data.zip͟ 

All the Đode will ďe attaĐhed with ͞Đode.zip͟ 
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