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Abstract

The use of 3D data has been steadily increasing in the past years as more and
more affordable applications have been created that use 3D data. To create 3D
data from real life objects they need to be scanned from multiple angles and then
aligned using registration algorithms. Many of these algorithms exist but few
techniques exist for evaluating the effectiveness of these algorithms. The aim of
the project is to create a dataset of 3D deformed shapes which contain known
correspondences. The dataset can be used to evaluate algorithms that perform
registration techniques between different scans of the same object. I will be
improving upon the work I did previously as part of a CUROP project. The
improved work includes a larger dataset with higher accuracy of corresponding
points found between scans of the same object.
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1 Introduction

In the past few years, the use of 3D models of real-life objects has increased
significantly. This is partly due to how cheap and accessible many of the ap-
plications have become. For example, 3D printers, augmented reality and 3D
scanners have all become commercially available and cheap enough that they
may be seen in the average home.

The way that models of real-life objects are created is by taking multiple images
of the object from different positions, this is needed to parts of the object are
not occluded by others. Then a registration technique will be applied to align
the partial scans or images to form the complete 3D model. The registration
techniques usually find the corresponding points to allow for re-alignment to
take place.

Currently, most registration techniques require the object to be consistent across
scans. But other techniques, such non-rigid registration, allow for the scans to
have undergone local deformations when finding corresponding points. At this
moment in time, there are few datasets to test these techniques which leads to
the main problem of this project.

1.1 The Problem

The problem that this project aims to fulfil is the lack of real-life deformed 3D
models currently available for testing registration techniques (primarily non-
rigid techniques). Along with the scans the dataset also needs to have the
ground truth correspondences. This is so the predicted correspondences, from
the registration techniques, can be analysed.

The creation of the 3D models should be relatively simple and would be the
easier part of the dataset creation. The main problem would be finding the
correspondences between the scans because of the wide range of different defor-
mations the object can undergo. Articulation, bending, stretching and topolog-
ical changes are just a few examples. A method would need to be created that
accurately finds ground truth correspondences whilst being able to deal with
these range of deformations. For this reason, it is likely a method that relies
on texture information would be well suited as the texture remains constant
through most of these deformations.

1.2 Aims and Objectives

The main aim of this project is to create a dataset of deformed 3D scans that
will be used to test non-rigid registration methods. The dataset will include
ground truth correspondences for the registration methods to be tested against.

5



The following points are a breakdown of the steps needed to complete the main
aim of the project.

• Find a selection of suitable objects and prepare them for scanning.

– The objects will have to scannable by the 3D scanner and produce a
good range of different deformations.

• Scan the objects in a variety of different positions.

– Making sure that there are a range of deformations included and the
3D models produced are good quality.

• Find the correspondences between the different poses of the same object.

– From analysing the previous system, the most effective and appro-
priate method to do this can be decided. This method will likely
involve the analysis of the object’s texture.

2 Background

2.1 Background Theories

The following theories and ideas are essential to understanding this project.
They are not described in full, but the descriptions should give enough details
for the context of this project.

Non-rigid Deformations

Non-rigid deformations are a type of deformation where the structure of the
object is changed. This is different to transformations such as rotation and
translation as these just move the object around in space without changing
the structure of the object. Throughout the report, I will be categorising non-
rigid deformations into different distinct groups. These groups are articulation,
bending, stretching and topological changes (see Appendix C for details).

Correspondences

A correspondence is a pair of points that both describe the same location on
a pair of shapes. The set of correspondences between two shapes is a mapping
between each point on one shape to each point on the second shape. The more
complicated the deformation between the shapes the harder it becomes to find
the correspondences. Situations can also appear where a corresponding point
is no longer present as the scan could be incomplete, or the point is being
occluded.

Registration Techniques

Given one shape and a deformed version of that shape, registration techniques
aim to find the deformation or transformation that would bring both shapes
into the same coordinate system. This is a much easier problem if the shape
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has only undergone global rigid transformations such as rotation or translation.
The problem is further complicated when the shape has undergone some form of
non-rigid deformation. For non-rigid deformations, registration techniques aim
to create a set of deformations that align each surface of a scan to the surface
of the deformed scan [1]. From the set of local deformations, correspondences
between the two original scans can be predicted.

2.2 Current Datasets

There are currently a few datasets that exist with correspondences between
deformed objects. Two such examples are the TOSCA and FAUST datasets.
The issues with most existing datasets are the way in which the correspondences
are formed and the creation of the 3D models.

TOSCA

In the case of TOSCA and some other datasets, the 3D meshes are created
and deformed within a programme rather than deforming and then scanning
real-life objects [2]. If the vertices in the scans have unique labels, then finding
correspondences is just a case of finding matching labels.

Whilst this kind of data creation gives a good dataset for testing registration
techniques, it does not include many of the issues present in ‘real data’. Such
issues are; missing data, mesh inconsistencies and some deformations such as
changes in topology. The deformations are also limited by the programme used
to deform the mesh.

FAUST

FAUST is an example of a dataset that contains scans created from a 3D scan-
ner. However, the method used to find the correspondences does not provide
complete ground truths. To find the correspondences the scans are firstly aligned
to a common template. From this, the texture information is analysed to locate
the correspondences [3].

This method provided good results for the human models they used for their
scans. But this would be unsuitable for this project as their alignment method
likely takes advantage of the constraints of human movement. It would be bene-
ficial to have no constraints on movements so a larger range of deformations and
objects can be explored. An example of where their method faced constraints
was when it encountered stretching skin.

2.3 Previous Work

Previous work on creating a dataset of 3D deformed shapes was done during a
CUROP research project. The objects used in this dataset were firstly painted
white and then marked with coloured dots. These objects were then scanned
in a selection of different poses. To find the correspondences, faces were found
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in the model that contained colour used in the markings. Each marking could
then be described by its closest neighbour’s colours. The descriptions for each
marking are then compared to markings on a deformed scan. The markings
with the most similar descriptions are then matched.

From this alone, the results were not very accurate. One reason for this is likely
due to the lack of distinction between the markings. This was done to simplify
the process of locating the markings, but it meant that the markings neighbours
were easily repeatable. This caused around 25% of markings to be matched to
more than one other marking. To remedy this, a pruning algorithm was used
to remove the incorrectly matched points [4]. It would be beneficial to avoid
using this as it does not handle all surface deformations (e.g. stretching) and
can, therefore, cause correct correspondences to be pruned.

2.4 Improvements on previous work

From the analysis of the previous CUROP work, it is clear there are some areas
that need improvement. The following are areas that have been identified as
needing improvement to make sure the aims of the project are fulfilled as well
as possible.

The first thing that should be changed about the previous work is the objects
and their corresponding scans. The problem with the previous scans I created is
that they do not manage to include all the main types of non-rigid deformations.
Both stretching and topological changes have been missed from the previous
dataset.

The next problem that was noticed from the previous work is the lack of diversity
in the markings. All the markings were just a blob shape and were made up of
only four colours. Having such a low variety in markings made it a lot harder
to differentiate them from each other as the pattern of their neighbours could
easily be repeated. To correct this, a larger variety of markings will be added
to the objects, this can be done by adding more colours and possibly different
shapes. Doing this should make matching the markings between objects a lot
easier.

2.5 Applications

The applications for the dataset produced in this project are rather limited.
The dataset itself will only likely be used to test registration techniques. These
registration techniques may be applied to a range of different fields. Medical
scanning, modeling, object reconstruction and object tracking a few examples
[5].

The method produced in this project for finding the correspondences between
scans may be used to find correspondences on other scans. But it would re-
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quire the objects of those scans to have had specific markings placed on their
surfaces.

2.6 Environment

The following list contains the main libraries and programming software that
was used in the project. If any other libraries or software were used, then they
will be mentioned later in the report.

MATLAB 2018b

MATLAB 2018b will be used for most of the coding for this project [6]. The
reason for this is that MATLAB provides many built-in libraries and functions.
These will allow for easy testing and implementation of new ideas.

Exact geodesic for triangular meshes

This library provides some useful functions for calculating geodesic distances
on meshes [7]. The geodesic distance can be described as the distance between
two points on a surface, where the path between them is only allowed to travel
along the surface. The use of geodesics will likely prove more reliable than using
Euclidean distances.

Artec Studio

The software that comes with the 3D scanner will also be used for the project
[8]. This software is essential in constructing the mesh from the data gathered
from the 3D scanner. This software will also be used to remove noise and other
unwanted artefacts from the scans.

Wavefront OBJ

The scans used in this project will be stored as wavefront obj files [9]. This is a
widely used file format for storing 3D meshes. Because of its wide use, existing
functions can be utilised for tasks such as reading and displaying the files. It
also allows for new scans to be easily inputted into the programme without any
unique formatting.

3 Approach

3.1 Gathering Data

Gathering the data for the dataset is the first step in the project. To gather the
3D scans the Spider 3D scanner from Artec 3D will be used [10]. The objects
selected will have to be relatively small because of the limitations of the scanner.
Each object will be scanned in a selection of ten different poses, each pose
containing a selection of different non-rigid deformations. Using ten different
poses will produce a variety of different deformations for each object.
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The objects will be marked with a variety of different markings consisting of
different colours and shapes. The marking will be star-shaped, ranging from
3 arms up to, and including 6 arms. The objects will likely be painted white
before the markings are placed. This will allow for a greater range of colours to
be used whilst still standing out from the background.

3.2 Handle Markings

To detect the markings on a scan a pipeline will be used. This pipeline will take
the scan data as an input and return the markings and their information. A
rough outline of how this pipeline will work can be seen in figure 1.

Figure 1: The method for detecting the markings and their details on a scan.

Locating Markings

The first step is to find the location of each marking on the mesh. These will
be found by looking for faces on the mesh which contain the colours used for
the markings. Linear Discriminant Analysis (LDA) will be used to classify
the texture of the mesh into separate classes for each marking colour and the
background colour [11]. This will be more reliable and versatile compared to
the thresholding method used previously. The textures from both scans may
need to be equalised to make sure their colours are as similar as possible.

Project Markings

As different shapes are used for the markings, they will need projecting onto a
flat surface before they can be analysed. The flat surface can then be treated as
an image of the marking. This was not needed in the previous implementation as
only colour was analysed. The projection step allows for a better analysis of the
marking, making it possible to determine more of the marking’s details. These
details include; centre, shape and whether it is a true marking or not.

Skeletonise Markings

The projected image will first be classified by the LDA classifier to produce a
simple binary image, where 1 is the marking and 0 is the background. To find
the number of arms on the marking some form of skeletonisation will be used
on the binary image [12]. From the skeleton the number of endpoints can be
found, these will represent the number of arms in the markings.

Finding Neighbours

After each marking and its details are found the last step is to find each mark-
ing’s closest neighbours. Instead of using Euclidean distances to find the closest
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points, geodesic distances will be used. This will prove more reliable to deforma-
tions and will not have the problem of looking at markings that are on separate
parts of the scan. The closest neighbours to each marking will be found in a
rotational order, this is to give the markings a unique pattern which is more
robust to deformations.

3.3 Correspondence Locating

After the markings have been detected, the corresponding markings will need
to be found between the scans. The overview of how corresponding markings
are found can be seen in figure 2. The previous step of detecting the markings
will be done to the two scans separately. Then, when both of their markings
have been found, their markings will be compared to find the corresponding
markings between scans.

Figure 2: The overview of the algorithm for finding the corresponding markings
between scans.

To find the correspondences similar markings have to be found. To find the
similarity between two markings the details of each marking will be compared.
Firstly, the edit distance between the closest neighbours will be found using the
Wagner-Fischer algorithm [13]. Markings can then be matched by the similarity
of their neighbours and if their colour and number of arms are the same.

3.4 Testing

To make sure the correspondences gathered are correct they will be compared
against the ground truth correspondences. The method and its predicted cor-
respondences can then be analysed. This will also allow the areas that are in
need of improvement to be found and changed.

I was given the opportunity to join a project that was part of the Shape Retrieval
Contest (SHREC) (see appendix C) for testing current registration techniques.
This project would include testing and evaluating current registration techniques
on the dataset created in this project. As this project uses the dataset for its
intended purpose it will provide a good opportunity to test how well the dataset
fulfils its requirements.
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4 Implementation

4.1 Data Gathering

Scans

Before any scans were taken the objects to be scanned were prepared. This
included painting the objects white and then adding the markings with a pen.
The first object had 6 colour markings but two colours were too similar so one
was taken away for the other 4 objects. Areas of the objects that were mainly
rigid (e.g. The mannequins head) were purposefully left unmarked as they were
not the focus of the dataset. Examples of the objects selected can be seen in
figure 3. These objects were selected to show all the main types of non-rigid
deformation. Covering the objects in flexible material allowed for stretching and
other complicated deformations.

Figure 3: From left to right you have the clothed mannequin, the stuffed clothed
mannequin, jersey mannequin, wooden hand and jersey hand.

Each object was then scanned using the 3D scanner in 10 different poses. During
the scanning, there were a couple of issues that became present. The main issue
was that parts of the objects were occluded and unable to be scanned properly
without moving the object (e.g. under the feet/arms).

In post processing, any holes were filled in to make the mesh watertight. Any
noise or unwanted features of the object were also removed in this stage. Some
meshes were left with occluded details and/or textureless areas from the scan-
ning and post-processing stages. Despite producing more complicated scans
these are good examples of problems faces in 3D scanning and provide a more
realistic dataset. After the post-processing, the scans were exported as obj files
with 80,000 faces.

Colour

As mentioned earlier an LDA classifier would be used to separate colours into
classes for each colour used for the markings. Some training data was needed
to be able to train the LDA classifier. To make this task easier and quicker a
GUI was created to collect the colours needed from the scans’ texture map (see
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figure 4). This makes it easier to collect new data if a different colour scheme
was used. The RGB values of the selected colour were saved into .txt files along
with their classes in another .txt file.

Figure 4: Colour picking GUI with coloured markings selected.

Each object had their own colours which were collected from a range of different
texture maps. This was done to make sure the classifier was robust to the
slight changes between texture maps (see appendix A). Around 100 colours
were selected for each colour on each texture map. This totalled around 3000
colours for each object.

4.2 Handle Markings

The next thing to do after collecting the scans was to locate and analyse the
markings on them. This section describes how this was implemented in the final
project.

Classifying Textures

The first task was to detect the faces on the scan that contained colours used for
markings. To do this the LDA classifier was trained using the colours collected
from the texture map in L*a*b space. This space is based on the human vision
which increased the difference in the colours making them easier to classify. The
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accuracy of the training was around 98% which should be accurate enough to
use reliably.

The texture map was then classified to produce a map showing the classes
rather than colours. It became apparent that some areas of background were
getting classified as a marking colour. A common occurrence was that grey
areas (from shadows) were getting classified as a blue marking. To fix this, a
parameter was added to act as a threshold for classifying colours. If a colour’s
Mahalanobis distance to its closest class was below this threshold, then it was
given a null class. All null classes were treated as background, meaning the
background class could be removed. This made the classifier more reliable and
allowed the strictness of the classifier to be changed easily without gathering
new data.

Locate Markings

A high threshold was used to classify the texture map. This was done to reduce
the number of false positives and only detect areas strongly classified (e.g. mark-
ings). Each face on the scan was then labelled with the most occurring class
in their texture. If no classes were present it was labelled as the background
class.

Region growing was used to join touching faces of the same colour into face
clusters which represent markings. For each face cluster, the average point of
all vertices in the cluster was taken as the location of the marking. This would
cause errors if there are markings of the same colour close to each. For the data
that I collected the markings are relatively sparse, so this problem is unlikely
to occur.

Project Markings

After a position for each marking is found the next step is to project the marking
onto a plane. The average point and average normal for each face cluster are
used as the centre and normal of the plane. The vertex closest to the centre
of the plane is used to find the closest geodesic neighbours. The max distance
of the neighbours is given as a percentage of the furthest geodesic distance on
the scan and should be similar to the size of the markings. The closest geodesic
neighbours are then projected onto the plane.

After the closest vertices are projected onto the plane, they are triangulated into
faces. The transform between the projected faces and the faces on the texture
map are then found. The plane is then raster scanned with each point being
transformed to find its colour on the texture map. This ends up producing an
image of the projected faces, with black areas where no faces are projected. You
can specify the resolution of this image to increase the detail of the projected
faces.

At this point a few issues became present. When areas around markings had
few geodesic neighbours no faces were projected. This happened in sparse areas
of the mesh which were often the flat areas. To solve this, the faces in the
face clusters were projected as we know these faces have part of the marking
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present. Any touching faces within a certain area and with a similar normal
were also projected. The similar normal made sure only flat surrounding areas
were projected. Also, there were some markings being projected more than once
because some were split into many face clusters. To solve this the projections
were merged if they projected the same faces.

Skeletonise Markings

The projected image was then classified with the LDA classifier from earlier.
A lower threshold was used for this to try and keep as much of the detail of
the markings as possible. The projected image could then be turned into a
binary image with 1 as the areas where the colour of interest was detected and
0 everywhere else.

To combat some of the noise and incorrect results that were being projected
a few tests were added to make sure the marking was roughly the right shape
and size. The area that the marking covered was tested and if it was too small
or too large is was rejected. The ratio of the convex hull of the marking over
the area of the marking was also tested. This was to make sure the marking
was similar to a star shape and not a solid blob or a scattered distribution of
values.

Figure 5: Typical process for finding the number of arms on a marking. From
top left; classification, dilation, shrinking, skeletonisation and then trimming.

To find the number of arms of the markings binary image it was skeletonised
and the number of endpoints counted. Spurs produced from the skeletonisation
were removed if they were under a certain percentage of the size of the marking’s
skeleton. This way large parts of the skeleton, like the arms that made up the
marking, were not removed.
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Another problem that appeared was that some areas of the marking were not
joined up because the colour was too different for the classifier. This was cor-
rected by using morphological dilation to join parts of the marking together
[14]. To decrease the complexity of the marking after dilation a shrink factor
was used to the boundary of the marking. A visual representation of this process
can be seen in figure 5.

Before skeletonisation, the centroid of the classified projection was found. This
was used as an estimation of the centre of the marking. Using the projected
faces, the face and the barycentric coordinates of the centroid could be found.

Finding Neighbours

The final thing to gather is each marking’s closest neighbours. To do this the
geodesic distance is found from each marking to all other markings. Then
the closest n neighbours are kept, n being a user-specified value. To get the
neighbours in order, the start of the path to each neighbour is projected onto
the centre marking’s plane. The tangent plane is then used to find the angle that
each path’s first projected point has with the centre marking. The neighbours
are then ordered by the size of this angle. Each marking can now be described
by a sequence of their neighbours colour and number of arms in a rotational
order. Integers are used in the sequence and represent different colours and
number of arms.

4.3 Correspondence Locating

The next step was to find the correspondences between the scans by looking
for similar markings. To find similar markings, the number of arms and the
colour of their closest neighbours were used. Both were found earlier and are
represented by a sequence of integers. For each marking to be compared, the
edit distance between their sequences are found. These two edit distances are
found using the Wagner-Fischer algorithm and then added together. After all
markings were compared, each marking was matched with the marking that had
the lowest edit distance.

As the neighbours are described in order of rotation from the centre, the starting
point of the order was not consistent. For this reason, all the possible starting
points of this order are tried for one of the markings being compared and the
lowest edit distance is taken.

This currently caused too many false positives as the pattern of neighbours was
repeated or was similar enough that the markings were matched. To combat
this the markings being compared would only be compared if they were the
same colour. The colour detection was robust so this was unlikely to cause
any issues and would stop markings of different colours being matched. The
difference in the number of arms of the compared markings was added to the
edit distance. The detection of the number of arms was not robust enough to
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use in the same way as the colour of the marking due to the inconsistency in
the markings.

I also added a couple of optional parameters to see how they impacted the
marking matching. One of these was the number of matches each marking
could make. This allowed you to look for more potential matches. A parameter
that allowed you to select the maximum edit distance was also added. This
allowed you to get a set of results with higher precision.

4.4 Testing

To test the predicted correspondences, they were compared to the ground truth
correspondences. To do this, the closest ground truth points were found to
the predicted correspondences. If these closest ground truth points are corre-
sponding points, then the predicted correspondences are true positives. If the
closest ground truth points are not corresponding points, then the predicted cor-
respondences are false positives. The ground truth correspondences that were
missed are false negatives. From these results, the precision and recall were
calculated.

The main part of the SHREC paper was to evaluate registration techniques on
the dataset created in this project. Therefore by looking at this paper (ap-
pendix C), you can see how current non-rigid registration techniques performed
on this dataset. The correspondences from these were evaluated by looking at
the normal geodesic error between the ground truth and the predicted corre-
spondence.

5 Results and Evaluation

5.1 Scans

Results

There were 50 scans produced in total. These were composed of 10 different
scans for 5 different objects. Each scan was done with the object under a
different deformation. The scans were exported with 80,000 faces to make sure
no details were lost. The objects were also marked with coloured markings to
help find correspondences between scans.

Evaluation

The produced scans included a range of non-rigid deformations which is what
was needed from the dataset. They also provide a good example of scans pro-
duced in real life scenarios. For these reasons, I believe that the scans themselves
can fulfil their purpose of being used to test non-rigid registration techniques.
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But the scans also needed to have their ground truth correspondences found
which is where a few of the problems of the scans are.

One of these problems is the markings used of the first object. These markings
were made up of 6 colours in 6 classes but two of these colours were too similar in
L*a*b colour space. These colours’ classes were then merged to leave 5 different
classes for colours (as seen in appendix A). I found this led to so some markings
being identified as having two colours. This was corrected for the other objects
as only 5 colours were used.

Another issue was the inconsistency in the colour of the markings between scans.
This was due to the background and the amount of ink from the pen being
used. If something consistent was used as markings (e.g. stickers or paint) then
detecting the markings would be much simpler. This could also be said about
the lighting during the scans as the lighting seemed to vary causing a change in
the colour of the texture. If some consistent lighting was used, then the scans
textures would not need to be equalised as they are currently. Both would make
finding the ground truth correspondences between scans a lot easier.

5.2 Markings

Results

The potential markings on the scan were detected by their colour and then anal-
ysed in different ways including finding the number of arms for each marking.
Detecting the number of arms on potential markings had a precision of 84.75%
and recall of 93.93%. These results were taken from 50 potential markings on 5
different scans.

After the false markings were removed from the potential markings the mark-
ings left were then analysed. The colour and the location for these predicted
markings were checked against the ground truth markings. They had a preci-
sion of 97.81% and recall of 95.71%. These results for the correct colour and
position were averaged from a selection of 5 scans. You can see an example of
the detected markings in figure 6.

Evaluation

The detection of the markings went well with most of the markings being de-
tected correctly. But there were a few that were missed or were given an incor-
rect colour or number of arms.

Most of these incorrect detections were caused by the variation of the markings.
For example, some markings were very small, and some were lightly marked
so only a fraction of the marking was detected. Both variations meant some
markings were indistinguishable from noise on the scan. These markings were
either ignored or the thresholds were changed, causing some noise to be accepted
as a marking. Problems like this could be fixed by marking the mesh with
uniform markings as described previously. Even with the large variation in
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Figure 6: Scans that have had their markings detected and plotted with coloured
points.

markings, the system is robust and correctly classifies most of them as seen
from the results.

5.3 Correspondences

Results

After finding the potential correspondences they were compared to the ground
truths. This allowed the precision and the recall to be found for the predicted
correspondences. In figure 7 you can see the main three algorithms used to find
correspondences throughout the whole dataset.

Figure 7: The average results for each object across their 10 scans. The three
methods in this plot are described in appendix B.
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Evaluation

The calculated correspondences in this project are produced from the markings
found and have no post processing, based on the topology of the scan, to refine
the results. This is good as it now only relies on the patterns of markings rather
than topological changes which are too varied in non-rigid deformations.

The current algorithm that is being used can still be altered in many ways to
produce different results. This can be seen in appendix B where the parameters
throughout the algorithm are changed. For example, having a low edit distance
threshold can increase the precision to 100%. But this reduces the recall meaning
the balance needs to be found that produces the best result. Figure 8 shows
how an example of how the correspondences can be altered by changing the edit
distance threshold.

Figure 8: A visual example of how correspondences can be altered by changing
the parameters. Left has a lower edit distance threshold compared to right.

Having only one marking match with one other marking seems to produce the
best results. This is because matching any more than one significantly reduces
the precision of the algorithm. Even though the recall increases the payoff
is not worth it. As you can see from figure 7 the recall never reaches near
100%. This is because the order of the markings is changed making the marking
almost unidentifiable from the other scan. The following are some reasons why
the markings may change between scans; the deformation of the object, the
markings misidentified, occlusion by the object and the markings could not be
found.

The final implementation still uses the Wagner-Fischer algorithm to find the
edit distance. A variety of different edit distance algorithms were tried but
none of them produced better results. For example, an edit distance using the
difference between the markings, rather than just a value of 1 for any edit,
was tried. The differences between markings were worked out by adding the
difference in colour and the difference in the number of arms. This did not
provide very good results as the problem was that the neighbouring markings
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were changing rather than being detected wrong. So, the difference between the
markings does not matter as they are likely different markings rather than just
incorrectly detected versions of the same marking.

5.4 Registration Techniques

Results

The results from testing registration techniques can be seen in appendix C.
There are a total of 7 different registration techniques tested on the scans pro-
duced in this project. The results were produced by comparing the produced
correspondences against the ground truths. The ground truths for the dataset
were created from an initial run with the automatic method and then corrected
manually.

Evaluation

The main trend from the results is that all techniques focused on certain types of
non-rigid deformation. These techniques would then struggle with other types
of deformations they have not been designed for. It is clear there is still no
technique that can easily deal with all types of deformation. Despite this, there
is still ongoing work in this area with new techniques being created and even
commercially available software. With this ongoing work, it may be possible
for a technique to be developed that deals well with all non-rigid deformations.
The detailed evaluation and conclusion of how these registration techniques
performed can be seen at the end of appendix C.

5.5 Comparison to Initial Plan

The final project did not change much from the initial plan for most of the
project. All the main aims of the project were reached and completed. For ex-
ample, creating the scans, finding the markings and finding the correspondences
between the scans were all completed. The final main aim of testing registration
techniques was done separately (see appendix C) instead of within this project.
The only extra aim to be completed was implementing a system to allow for
different colour markings and background to be defined. The other extra aims
were not necessary for the completion of the project and were not implemented
due to time constraints.

The timings were changed slightly from the initial plan as the SHREC paper had
to be completed within a deadline. All this meant was that implantation was
brought forward slightly so the ground truths could be found for the dataset.
Overall the initial plan was followed well with adjustments made when necessary
to increase the quality of the final project.
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5.6 Summary

Overall the dataset created in this project fulfils the needs it was made for. The
scans produced are detailed and show a varied range of non-rigid deformations
present in real life objects. The dataset has also proven useful in testing and
evaluating current non-rigid registration techniques. This did have to be done
with ground truth correspondences that were partially gathered manually which
leads to the main issues of the dataset.

The main issue is the correspondences that are found between scans. This
is because not all of them are found, and they are not 100% accurate. The
main reason this happens is because of the ambiguity of the edit distance. If
there is a misidentified or missing marking then it increases the chance that the
marking will match with another similar one rather than its true match. This
is sometimes unavoidable due to the occlusion caused by the objects.

To summarise, the scans produced are detailed and fulfil their intended purpose.
However, it may be beneficial to create the markings on the object using a
consistent method to reduce markings being misidentified. Doing this will likely
increase the number of correspondences found.

6 Future Work

In its current state the dataset it usable but there could be some more im-
provements to make it better. The main area that needs improvement is the
automatic method for finding the correspondences between scans.

6.1 Scans

In the future, it would likely be a good idea to increase the number of objects
used in the dataset. This could allow for a better focus on certain types of
deformations and for extreme deformations to be included. Plasticine would be
a good object to display some extreme deformations.

The next thing that could be changed included in the future is using consistent
markings. This would make locating the markings much easier and less prone
to error. If something like stickers were used it would also make marking the
object easier.

6.2 Finding Correspondences

The automatic method for finding correspondences could also be changed in
future work to improve the results produced. The main thing to aim for would
be increasing the recall of the found correspondences. This would be a difficult
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process because of how much the markings are changed due to the deformations
of the scans. It may be also possible to use the correspondences found by the
current method as a starting point to find the remaining ones.

The next future thing to work on would be to increase the speed of the automatic
method. At the moment it is very slow and sometimes takes as long as 10
minutes to run on one pair of scans. To increase the speed, the code could be
parallelised and perhaps some functions could be made to run on the graphics
hardware. Both of these would likely increase the speed of the code, but the
code would need to be made thread safe

It may also be a good idea to implement the automatic method in c++ rather
than MATLAB. This would likely increase the speed of the method and give a
wider range of libraries to choose from.

7 Conclusion

In conclusion, the project was a success. The dataset produced manages to
show a wide range of different deformations. The scans also contain a good
amount of detail and are a good example of scans produced by 3D scanning.
The dataset has also been used for its intended purpose of testing non-rigid
registration techniques (see appendix C). This proves that the main aim of this
project has been completed. It also proves that the dataset is of good enough
quality to be used in a research paper.

The project ran smoothly with the main aims and objectives being reached on
time. All of the main aims set out in the initial plan were completed but only
one of the three extra features were implemented. These extra aims were not
necessary for the project to be successful so missing them did not impact the
outcome of the project.

Despite most of the project going well, there were a few mistakes and errors
that should be changed in future work. It would be beneficial to increase the
number of correspondences found between scans. It would also be a good idea
to change how the objects are marked and processed before scanning.

8 Reflection on Learning

I believe this project has been a good learning experience for me. It provided
me with the opportunity to work with researchers in the field of registration and
help them with producing a paper. It encouraged me to carry out individual
research and put that knowledge into practice. It also enabled me to implement
and test many of the skills and knowledge learnt throughout the modules I have
taken.
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I gained knowledge of the field of registration and object retrieval which I was
able to put into practice. I also gained knowledge of computer vision and graph-
ics techniques throughout creating the automatic correspondence method. As
well as these my knowledge on algorithms and data structures have also been
tested and expanded upon throughout this project.

Not only have I learnt knowledge in these areas, but I have been able to expand
upon my transferable skills throughout the project. For example, this was good
practice for developing my time management as the whole project had to be
kept on track with a strict time schedule. Another skill that I developed was
my communication skills. This was developed from the meetings and discussions
I held with my supervisor.

In reflection, I think that this project has helped me develop my skills and
allowed me to put them into use. It was a good experience that has given an
insight into individual research work. It has also given me an appreciation for
the field of shape registration and related subjects.
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Appendix

A Colour Classification

Figure 9: Each objects colours after they have been classified. They are being
displayed in a*b of the L*a*b space they were classified in. The first object
(top right) had two colours in one class. This extra colour was removed later as
described in the report.
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B Correspondence Comparisons

Figure 10: The correspondence results from a variety of techniques described
in table 1. All of these results are averaged from correspondences between the
first scan and all other scans of the first object.

Algorithm Name Description of Algorithm

Initial First developed method after initially finding the
markings. Background is still a colour in LDA. Looks
at the 5 closest neighbours in euclidean distance.

Curop The previous method from the CUROP work.
Final Described in the implementation.
Final 2 Uses the 5 closest geodesic neighbours.
Final 3 Uses the 7 closest geodesic neighbours.
Final 4 Uses the 11 closest geodesic neighbours.
Final 5 The top 2 matches for each marking were used.
Final 6 The maximum allowed edit distance was set to 1.
Final 7 The maximum allowed edit distance was set to 5.

Table 1: This table describes the algorithms used in figure 10

C SHREC 2019
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Figure 1: Examples of objects in the dataset.

Abstract

The registration of surfaces with non-rigid deformation, especially non-isometric deformations, is a challenging problem. When

applying such techniques to real scans, the problem is compounded by topological and geometric inconsistencies between

shapes. In this paper, we capture a benchmark dataset of scanned 3D shapes undergoing various controlled deformations

(articulating, bending, stretching and topologically changing), along with ground truth correspondences. With the aid of this

tiered benchmark of increasingly challenging real scans, we explore this problem and investigate how robust current state-

of-the-art methods perform in different challenging registration and correspondence scenarios. We discover that changes in

topology is a challenging problem for some methods and that machine learning-based approaches prove to be more capable of

handling non-isometric deformations on shapes that are moderately similar to the training set.

CCS Concepts

• Theory of computation → Computational geometry; • Computing methodologies → Mesh geometry models; Shape anal-

ysis;

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.
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1. Introduction

Estimating the correspondence between two 3D shapes is a funda-
mental problem in Computer Graphics and Computational Geome-
try. Shape correspondence is closely related to surface registration;
where shape correspondence aims to identify corresponding points
or regions between two or more shapes, surface registration aims
to find a transformation to bring one shape into the same global co-
ordinate system a sanother shape. One of the applications of surface
registration is to facilitate 3D model retrieval; after alignment it be-
comes easier to compare shapes since the correspondence between
their elements is known. Shape correspondence is also necessary
in common applications such as modelling [KMP07], reconstruc-
tion [LSP08] and tracking [NFS15]. Many existing methods have
been proposed for computing shape correspondence [vKZHCO11,
TCL∗13]. Such approaches assume surface deformations to be ei-
ther: piecewise rigid, (near-)isometric and/or topologically consis-
tent. In the literature, there are only a few public benchmark shape
correspondence datasets that challenge these assumptions about de-
formations [BRLB14, CRB∗16, LRB∗16, AED∗18]. Previous con-
tests [CRB∗16, LRB∗16] used synthetic objects that produce de-
formations that are not realistic. [BRLB14, AED∗18] do capture
real-life objects, focusing on specific object categories (i.e., human
bodies and human faces), but neither benchmark suitably considers
the large range of deformation that an object may undergo simulta-
neously. Instead of directly generating correspondences, non-rigid
registration methods tend to produce a set of local transformations
that deform one surface to align with the other. Our benchmark can
also be used to evaluate such methods, by working out correspon-
dences based on the deformed shape.

We observe that there is presently no single standard benchmark
for comparing the performance of shape correspondence methods
under a large range of deformation conditions. This has motivated
us to provide a new benchmark that is divided into distinct sets,
each containing different types of deformation.

Organisation Our report is organised as follows: Section 2 de-
scribes the dataset we have constructed and our approach to eval-
uating the results of submissions. Section 3 describes the methods
we compare in this report. Section 4 evaluates the results obtained
on each test set. Finally, Section 5 concludes with a summary of the
findings of this track.

2. Dataset

For this track we have produced a new dataset from 3D scans of
real-world objects, captured by ourselves using a high-precision 3D
scanner (Artec3D Space Spider) designed for small objects. Each
object exhibits one or more types of deformation. We classify these
surface deformations into four distinct groups by level of complex-
ity:

0. Articulating – piecewise rigid deformation
1. Bending – isometric and near-isometric
2. Stretching – isotropic and anisotropic (e.g., Fig. 2a)
3. Topologically changing – heteromorphic (i.e., shapes of differ-

ent topology. e.g., Fig. 2c)

The dataset consists of wooden mannequins and wooden hands

Set name No. of pairs Model materials

Test-set 0 14 wooden hands
Test-set 1 26 clothed hands, clothed mannequins
Test-set 2 19 very stretched clothed mannequins
Test-set 3 17 all materials

Table 1: Test set structure.

that are articulated. To produce other types of deformation, we have
created clothes for the model from two materials. We use one mate-
rial that can bend but is resistant to stretching, and another that can
bend and stretch. To induce greater non-isometry, we use modelling
cl yaunderneath the clothing of the mannequ nimodel. Materials
and objects have been carefully selected to incrementally introduce
these deformation types so that the limitations (w.r.t. deformation
type) can be clearly identified. Because the dataset consists of real-
world scans, it contains geometric inconsistencies and topological
changes due to self-contacts. The real-scans also contain natural
noise, varying triangulation of shapes and occluded geometry (e.g.,
Fig. 2b). Some examples of models in our dataset are shown in
Fig. 1.

A total of 76 shape pairs were selected for the test sets (Ta-
ble 1). Test-set 0 contains 14 pairs of articulating wooden hand
objects. Test-set 1 contains 26 pairs of models, comprising clothed
humans and hands. Test-set 2 contains 19 pairs of models; the pair-
ings are between a thin clothed mannequin and a larger mannequin,
ensuring significant non-isometry. Test-set 3 contains 17 carefully
selected pairs that contain challenging geometric and topological
changes.

Information of the data underpinning the results presented here,
including how to access them, can be found in the Cardiff Univer-
sity data catalogue (http://doi.org/10.17035/d.2019.
0072003316).

2.1. Ground truth construction

To generate ground-truths, clearly drawn texture marks (e.g.,
Fig. 3) were made on the surfaces of the objects used. Correspon-
dences were initially automatically determined using the shape tex-
ture maps, and then manually corrected by multiple annotators to
ensure ground-truths were accurate for this track (see examples in
Fig. 4 of the obtained ground-truth).

2.2. Evaluation

Similarly to other shape correspondence benchmarks [CRB∗16,
LRB∗16], the correspondence quality of each method is evalu-
ated using the evaluation procedure of [KLF11]. The quality of
shape correspondence has been evaluated automatically by measur-
ing normalised geodesics between the ground-truth and predicted
correspondence. Specifically, let (xxxi,yyyi) ∈ X ×Y be a pair of corre-
sponding points between surfaces X and Y , the normalised geodesic
error εi between the predicted correspondence yyyi and the ground
truth position gggi on surface Y is measured as:

εi =
dY (yyyi,gggi)

area(Y )1/2
. (1)

c© 2019 The Author(s)
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(a) Non-isometric deformation due to inflation. (b) Geometric change caused by occlusion. (c) Topological change caused by self-contact.

Figure 2: Illustrations of some of the challenges in our dataset.

Figure 3: A photo of the real wooden hand used in the dataset after
markers were drawn.

The following measurements are used to evaluate the perfor-
mance of each method:

• An overall error measurement, for methods that complete all test
sets.

• Four plots (one for each test set) of cumulative geodesic error
to demonstrate the performance of methods for individual types
of deformation. This is also useful for participants that have not
submitted results for all test sets.

3. Correspondence methods

This section presents the approaches used to find correspon-
dences on one or more of the test sets. Seven methods were
evaluated using the benchmark, namely: traditional non-

rigid Iterative Closest Point (N-ICP) [BP13], anisotropic
non-rigid registration [DLRT19], deep learning-based shape
correspondence [GFK∗18], non-isometric partial functional
maps [VLB∗17], non-rigid registration with reweighted spar-
sity [LYLG18], genetic optimisation-based (near-)isometric shape

correspondence [Sah18], and a commercial non-rigid registration
tool [Rus18].

3.1. Traditional Non-Rigid ICP (N-ICP)

To provide an effective baseline to compare the performance of the
recently developed approaches we use a version of the well known
N-ICP method [BP13] that has extended the original rigid formula-
tion of ICP [BM92]. The method repeatedly applies the following
two steps until convergence. In the first step, it finds correspon-
dences between surfaces based on closest point matching, similar to
ICP. In the second step, to align surfaces the method minimises dis-
tances between correspondences; point-to-point distances are com-
bined with point-to-plane distances to speed up the convergence. It
also uses 1-ring as-rigid-as-possible regularisation to smooth local
deformations.

3.2. Non-Rigid Registration with Anisotropic Estimation

(R. Dyke, Y.-K. Lai, P. L. Rosin & G. K. L. Tam)

The method [DLRT19] follows the N-ICP framework that alter-
nately improves correspondences and local transformations. The
initial correspondences are obtained based on matching of local
geometric features (SHOT [TSDS10] is used). In order to ad-
dress (local) anisotropic deformations, the method iteratively es-
timates local anisotropy (represented as local principal directions
and principal scaling factors), which is then incorporated in an ex-
tended diffusion pruning framework [TMRL14] to identify consis-
tent correspondences, taking anisotropy into account when calcu-
lating geodesic distances. Local regions with substantial stretch-
ing may end up with very few correspondences identified due to
changes of local geometric features. To cope with significantly dif-
ferent input shapes, the method further introduces additional corre-
spondences by taking existing correspondences as landmarks.

3.3. 3D-CODED (T. Groueix, M. Fisher, V. G. Kim,

B. C. Russell & M. Aubry)

The method in [GFK∗18] takes a deep learning approach for
matching deformable shapes, and introduces Shape Deformation
Networks which jointly encode 3D shapes and correspondences.

c© 2019 The Author(s)
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(a) Test-set 0 (b) Test-set 2 (c) Test-set 3

Figure 4: Shape pairs from test-sets 0, 2 & 3 with ground truth correspondences visualised.

This is achieved by factoring the surface representation into (i) a
template that parameterises the surface, and (ii) a learnt global fea-
ture vector that parameterises the transformation of the template
into the input surface. By predicting this feature for a new shape,
correspondences between this shape and the template are implicitly
predicted. These correspondences can be improved by an additional
step which improves the shape feature by minimising the Chamfer
distance between the input and transformed template.

To learn a transformation between shapes, an encoder-decoder
architecture is trained end-to-end to optimise a regularised recon-
struction loss. 3D shape correspondences between two shapes X

and Y are found by first using the decoder to compute the param-
eters that deform the template to each of the two shapes. For each
point on shape X , its nearest neighbour is found on the template de-
formed to X . This template point has a known corresponding point
in the template deformed to Y , which is then used to find the nearest
neighbour in Y .

The hyperparameters were unchanged for all the tests.
The code used is available online from the authors of
3D-CODED [Gro18] and the pre-trained network called:
“sup_human_invY_network_last.pth” was used. An example
output of the deformed template using this method is shown in
Fig. 5.

3.4. Kernel Matching (M. Vestner, Z. Länher, A. Boyarski,

O. Litany, R. Slossberg, T. Remez, E. Rodolà,

A. M. Bronstein, M. M. Bronstein, R. Kimmel &

D. Cremers)

Kernel Matching applies the method proposed in [VLB∗17] using
the publicly available code [Lae17]. The algorithm solves a series
of linear assignment problems (LAPs) of the form

P
(k+1) = argmax

P∈Πn

〈P,αFY F
⊤
X +K

tk
Y P

(k)
K

tk
X 〉, (2)

P
(0) = argmax

P∈Πn

〈P,αFY F
⊤
X 〉, (3)

Figure 5: This figure shows an example output of the deformed
template using [GFK∗18].

where P is a permutation matrix, FX ,FY are matrices of pointwise
descriptors and K

tk
X ,K

tk
Y are the positive-definite heat kernel matri-

ces with diffusion parameter tk on shapes X and Y , respectively. In-
tuitively, the first term in Eqn. 2 describes descriptor similarity and
the second how well the neighbourhood information is preserved
by comparing heat kernels. With decreasing diffusion parameter
more emphasis is put on local neighbourhoods (cf. the ε-δ defini-
tion of continuity). The paper gives more details about connections
to quadratic assignment problems of the form

argmax
P∈Πn

E(P) = argmax
P∈Πn

〈P,αFY F
⊤
X +K

tk
Y PK

tk
X 〉, (4)

as well as interpretations in terms of kernel density estimation and
low pass filtering of correspondences.

c© 2019 The Author(s)
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By construction the algorithm yields bijections and is – in its ba-
sic variant – only applicable to pairs of shapes with consistent sam-
pling, in particular with the same number of vertices. In addition
solving the LAP becomes intractable for high number of vertices.

Thus a multi-scale approach is applied that overcomes both is-
sues: At each scale a subset of the vertices is sub-sampled (with in-
creasing density). The solution of each scale induces Voronoi cells
in the following scale, and sparse initial correspondences for the
next scale.

Since the Voronoi cells can directly be put into correspondence,
the vertices are matched between corresponding cells and thus a set
of smaller LAPs is solved instead of one big LAP. Notice that the
payoff matrices (Eqn. 2) of an LAP capture the correspondences
between the centres of all Voronoi cells. The different number of
vertices within corresponding cells can be tackled via slack vari-
ables. As a consequence the final matching is a bijection between
subsets of the vertices on X and Y . The fraction of unmatched ver-
tices is low and tends to appear in areas with inconsistent sampling.

Two sets of results were submitted for this method with different
parameters. The diffusion parameters for heat kernels remained the
same throughout the benchmark. After normalising the shapes to
have unit surface area, the diffusion parameters are set to

(log10(500), . . . , log10(500)
︸ ︷︷ ︸

3x

, . . . , log10(10), . . . , log10(10)
︸ ︷︷ ︸

3x
︸ ︷︷ ︸

10, logarithmic sampling

). (5)

Parameters for SHOT results As pointwise descriptors
SHOT [TSDS10] is used as described in the paper.

Parameters for SHOT & HKS results SHOT and HKS [SOG09]
are used as pointwise descriptors.

3.5. Reweighted Position and Transformation Sparsities

(K. Li, J. Yang, Y.-K. Lai, D. Guo, Z. Wu)

In order to cope with challenges of non-rigid registration, namely
high degrees of freedom and presence of noise and outliers,
[LYLG18] proposes a robust non-rigid registration method using
reweighted sparsities on position and transformation to estimate the
deformations between 3D shapes. Observing that large position and
transformation errors tend to concentrate on local areas, which can
be considered as sparse signals over surfaces, they formulate the
energy function with position and transformation sparsity on both
the data term and the smoothness term, and define the smoothness
constraint using local rigidity. The double sparsity based non-rigid
registration model is enhanced with a reweighting scheme to further
improve its robustness. The formulation is solved by transferring it
into four alternately-optimised sub-problems which have exact so-
lutions and guaranteed convergence. To cope with large differences
in source and target shapes, diffusion pruning [TMRL14] is ap-
plied to obtain initial correspondences based on matching of local
SHOT features [TSDS10], and further correspondences are intro-
duced during iterative optimisation based on closest points, similar
to the standard N-ICP framework.

Figure 6: Overview of the genetic algorithm [Sah18].

3.6. Genetic Isometric Shape Correspondence (Y. Sahillioğlu)

The method in [Sah18] exploits the permutation creation ability of
genetic optimisation to find the permutation matrix that encodes
correspondences between two point sets. To this end, Sahillioğlu
provides a genetic algorithm for the 3D shape correspondence
problem. The point sets to be matched are sampled from two iso-
metric (or near-isometric) shapes. The sparse one-to-one corre-
spondences produced by this algorithm minimise the following iso-
metric distortion function:

Diso(φ) =
1
|φ| ∑

(xi,y j)∈φ

1
|φ′| ∑

(xl ,ym)∈φ′

|dg(xi,xl)−dg(y j,ym)|, (6)

where dg(., .) is the normalised geodesic distance between two
points on a given surface and φ′ = φ \ {(xi,y j)} in the most gen-
eral setting. The optimal bijection φ∗ being sought minimises Diso
in the huge space of all N! possible bijections while matching
N points. Since a bijection is merely an assignment of a permu-
tation π of the target samples to the fixed source samples, the
proposed genetic algorithm efficiently seeks the optimal permu-
tation π∗ of indices that will be used as subscripts of {y j}, e.g.,
fixed x1,x2, ..,sN is assigned to y4,y3, ..,y29, respectively, and π∗ =
4,3, ..,29 (Fig. 6).

Having represented a permutation that defines a correspondence
as a chromosome, [Sah18] evolves with a fitness function that
yields the set of correspondences with minimal distortion using
carefully designed genetic operations. The algorithm with the same
parameters used in the original paper is able to compute corre-
spondences under articulated, isometric, and non-isometric defor-
mations of this dataset. Two sets of results were submitted for this
method with different levels of sparsity, one set that has relatively
sparse correspondences (∼100 per shape pair) and one set of ex-
tremely sparse correspondences (6 per shape pair). A random result
from each deformation type is shown in Fig. 7.
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Figure 7: Extremely sparse (top) and sparse (bottom) correspon-
dences produced by [Sah18] on some pairs.

3.7. RSDS Wrap 3.3

Wrap 3 [Rus18] is a widely used commercial software tool for
mesh processing that includes a wrapping tool that non-rigidly fits
one 3D shape to another. It is often used to wrap a well structured
base mesh around unstructured scanned data. This method accepts
pre-defined point correspondences between shapes to create con-
trol nodes on the source shape. For consistency, we also use the
diffusion pruning [TMRL14] method to generate an initial set of
correspondences for initialisation. A position for each control node
is then found so that it matches the target shape as closely as possi-
ble. The method runs iteratively where the density of control nodes
is increased per iteration. This leads to an approximation of the tar-
get shape with increasing accuracy per iteration.

4. Results & discussion

Here we present quantitative results of the methods described in
Section 3. Figs. 8 to 11 show the geodesic error of correspondences
generated by each method on each test set. Fig. 12 shows the com-
bined results for methods that registered all test sets. Table 2 reports
the percentage (and where appropriate number) of correspondences
returned by each method. Table 3 shows the area under the curve

(AUC) of each method on each test set.

Sparsity of correspondence results Most methods evaluated here
compute a reasonably dense set of matches. The number of corre-
spondences returned by each method is reported in Table 2, 100%
indicates that a correspondence was found for all vertices of X . As
discussed in Section 3, [Sah18] submitted two sets of results, the
first set consisting of an average number of 98.3 (to one decimal
place) sparse correspondences, the other containing 6 correspon-
dences. Methods [LYLG18, DLRT19, BP13, Rus18] produce a de-
formed source mesh towards the target mesh. We use the following
strategy to work out the correspondences: For each vertex on the
deformed mesh, we work out its foot point when projecting it onto
the target mesh surface. This is usually located within a triangle,
and the barycentric coordinates are recorded. We also reject corre-
spondences that have a projection distance larger than the average
mesh edge length, as this indicates regions where surfaces are not

accurately aligned. We note that before rejecting correspondences,
we observe that the overall results of “all test sets” for [LYLG18]
& [DLRT19] were comparable.

Test-set 0 This set contains only articulated deformations. This is
the most simple type of deformation that we investigate. Thus we
expected most methods to perform well on this test set. However,
we discover performance varies across many methods, especially
when compared to the other test sets. Inspecting the shapes in the
dataset reveals that the surfaces are primarily comprised of smooth
surfaces that lack high frequency geometric details. For example
finger regions (cylinder-like surfaces) are symmetrically ambigu-
ous (see Fig. 13). This may affect the initial correspondences lead-
ing to a higher error rate. [LYLG18] performs well because the
large smooth surfaces fit the sparsity assumption.

Test-set 1 This test set contains shape pairs that bend either iso-
metrically or near-isometrically. In it, we observed the largest dif-
ference between the best performing method ([LYLG18]) and the
worst performing method (baseline N-ICP [BP13]). Shape pairs
also have large-scale deformations, which typical N-ICP methods
([BP13]) cannot handle as N-ICP requires two shapes to have a
good initial alignment to ensure optimal registration.

Test-set 2 We observe the fastest convergence to 100% from
[GFK∗18]. It should be noted that this test set contains only non-
isometric human models. [GFK∗18] demonstrates how the use of
a pre-trained network from some datasets may be generalised for
other datasets. With respect to the other methods, we observe that
SHOT-based approaches suffer significantly, when compared with
the results in test-set 0 and test-set 1. We expect that this is caused
by the non-isometry. As SHOT signatures are not well defined for
such non-isometric surfaces, the degradation in performance is rea-
sonable.

For [Sah18], the performance degrades on shape pairs of man-
nequins that possess bilateral symmetry (test-sets 1 and 2). Due
to self-occlusions during scanning, unnatural connections between
fingers of some hand models are present, causing some pairwise
geodesics to be inconsistent in test-set 0. As a purely geodesic-
based method, its performance is also affected by the unnatural
shortcuts present in hand models due to occlusions during capture.
We note that the performance of [Sah18] would have improved sig-
nificantly if such problematic pairs (symmetric flips and shortcuts)
were discarded.

Test-set 3 [VLB∗17] achieves notably worse results through the
combination of SHOT and HKS when compared with using SHOT,
whereas on the contrary for test-set 2 using SHOT and HKS per-
forms better. This demonstrates the instability of HKS under topo-
logical change. Topological changes appear to be challenging, and
likely to be beyond the assumptions of most methods. Therefore,
some methods did not participate in this test. However, for those
that participated in this test set, the overall AUC appears compara-
ble to other test sets. This is probably because, apart from topolog-
ical changes, this test set tends to have less distortion.
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Figure 8: Results for test-set 0.
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Figure 9: Results for test-set 1.
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Figure 10: Results for test-set 2.
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Figure 11: Results for test-set 3.

5. Conclusions

In this paper we have presented a novel dataset of real-world
scanned objects that cover a large variety of deformation types. Our
investigation has found that changes in topology is a challenging
problem for some methods.

Machine learning-based approaches prove to be more capable
of handling non-isometric deformations. However, they often re-
quire a high training cost, and may not generalise to arbitrary data.
Recent advances in non-rigid registration techniques that explicitly
model non-isometric deformation generally perform well in many
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Method Correspondences

[DLRT19] 99.02%
[LYLG18] 75.96%
[BP13] 49.64%
[Rus18] 93.99%
[VLB∗17] (SHOT+HKS) 92.31%
[VLB∗17] (SHOT) 92.39%
[GFK∗18] 100%

[Sah18] sparse 98.34
[Sah18] extremely sparse 6

Table 2: Sparsity of correspondence results given as either a per-
centage of the number of vertices comprising shape X or the num-
ber of correspondences, where appropriate.

scenarios. Though they do not perform as good as deep learning
techniques in non-isometric deformation, they do not require train-
ing, are generically applicable to unseen datasets, and are less sus-
ceptible to topological changes. There is also a need to develop
more reliable features for point-based correspondence on non-rigid
surfaces.

To summarise, our experimental results suggest that develop-
ing correspondence techniques that are generic, reliable to any
kind of seen/unseen deformation and surface, whilst handling noise
and topological changes, are still an on-going challenge. No sin-
gle technique is perfect, but the results also indicate an interest-
ing direction: combining the individual advantages of sophisticated
deep learning models and the advantages of generic non-rigid non-
isometric registration techniques may lead to a more useful and
generic correspondence technique that performs well in most sce-
narios, and would practically be applicable in downstream applica-
tions.

It is interesting to see how well a commercial solution compares
to the state-of-the-art methods.

Through this track we have discovered some challenges in fairly
evaluating the performance of shape correspondence methods. Tak-
ing intrinsic symmetries of shapes into account and reporting de-
tails, such as the sparsity of correspondences estimated, need fur-
ther investigation.

Further exploration of the robustness of shape correspondence
methods on partial real scans would be interesting, and our dataset
could be augmented to provide such challenges in the future.

Acknowledgements

We thank Emma Dyke and Beryl Noë for their help tailoring
clothing for the hand and mannequin models. This work has
been supported by the Cardiff University EPSRC Doctoral Train-
ing Partnership [grant ref. EP/N509449/1], and by the Scientific
and Technological Research Council of Turkey (TÜBİTAK) [grant
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Figure 12: Results for all test sets.

Figure 13: Wooden hand object from the dataset that illustrates the
lack of high frequency geometric details on the shape’s surface.
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