

OPTIMAL JOB ASSIGNMENT FOR

A HOME-HELP SERVICE

Evdokia Mina

C1544038

School of Computer Science and Informatics

ABSTRACT

The aim of this project is to further research into the areas of Computational Optimisation with

Linear Programming to solve a variant of the well-known Traveling Salesman Problem in a

specific scenario. This scenario consists of a company that schedules home-help visits for elderly

patients, which requires the assignment of employees to elderly people in such a way that the total

distance travelled is minimal. Each employee starts their journey from their own house, visit

patients in their houses and finish where they started. The staff is made up of a fixed number of

support workers that need to visit a fixed number of homes. In addition, the job assignment should

be fair, meaning that each employee must have approximately the same amount of workload and

no employee must be left out (when the number of employees is less than or equal to the number

of patients). This paper explores the ways of developing and implementing an optimal solution.

For the sake of this paper, all data used is randomly generated and not related to real people or

figures of any kind.

ACKNOWLEDGEMENTS

This project would have not been possible without the constant help of Dr Richard Booth, who

provided me with the required knowledge and tools to evolve and succeed in my academic studies.

Moreover, he was always willing to resolve any issues or queries I had which is greatly appreciated.

3

TABLE OF CONTENTS

ABSTRACT ... 2

ACKNOWLEDGEMENTS ... 2

1 Introduction ... 7

1.1 Computational Optimisation and Linear Programming .. 7

1.2 Project Overview .. 7

2 Background Research ... 9

2.1 Travelling Salesman Problem ... 9

2.1.1 Introduction ... 9

2.1.2 Problem Explanation ... 9

2.1.3 Application .. 10

2.2 Multi Travelling salesman Problem .. 10

2.2.1 Introduction ... 10

2.2.2 Explanation ... 10

2.2.3 Application .. 11

2.3 Multi-Depot Multi Travelling Salesman Problem .. 11

2.3.1 Introduction ... 11

2.3.2 Explanation ... 12

2.3.3 Application .. 13

3 Approach ... 14

3.1 Project Structure.. 14

3.2 Main variables and assumptions ... 15

3.2.1 Overview and Formulation ... 15

3.2.2 Formulation Explanation .. 16

4 Implementation ... 19

4.1 Tools Used .. 19

4.2 Program Structure ... 20

4.2.1 Job Assignment Code Overview and Explanation.. 21

4.2.2 Database and Interface Development ... 24

5 Results and Evaluation .. 26

5.1 Testing and Results ... 26

4

5.1.1 Overview ... 26

5.1.2 Separated and Merged Constraints Testing .. 26

5.1.3 Employee and Client Range Testing ... 28

5.2 Results Evaluation .. 31

6 Future Work .. 32

6.1 Algorithm Development ... 32

6.1.1 Better Runtime Execution ... 32

6.1.2 Additional Algorithm Features ... 33

6.2 Further Interface Development ... 33

7 Conclusions ... 35

8 Reflection on Learning ... 36

References ... 37

5

TABLE OF FIGURES

Figure 1-Pre-assigned Employees and Clients ... 7

Figure 2- Correct Job Assignment .. 7

Figure 3-Pre-assigned Employees and Clients ... 8

Figure 4-Incorrect Job Assignment ... 8

Figure 5-Incorrect TSP, without subtour elimination ... 10

Figure 6-Correct TSP, with subtour elimination... 10

Figure 7 [6]- Example of a mTSP outcome .. 11

Figure 8 [7]- MDMTSP constraint illustrated .. 13

Figure 9- Project Structure .. 14

Figure 10- Subtour without fair workload constraint (6) .. 16

Figure 11- Subtour with fair workload constraint (6) ... 16

Figure 12- Subtour with constraint (7), Red node denoting employee, Black nodes denoting

patients .. 17

Figure 13-Subtour without constraint (7), Red node denoting employee, Black nodes denoting

patients .. 17

Figure 14-Subtour without constraint (8), Red nodes denoting employees, Black node denoting

patient .. 17

Figure 15-Subtour with constraint (8), Red nodes denoting employees, Black node denoting

patient .. 17

Figure 16-Subtour with constraint (8), Red nodes denoting employees, Black nodes denoting

patients .. 17

Figure 17-Subtour without constraint (8), Red nodes denoting employees, Black nodes denoting

patients .. 17

Figure 18-Subtour without constraint (8), Red nodes denoting employees, Black nodes denoting

patients .. 18

Figure 19-Subtour with constraint (8), Red nodes denoting employees, Black nodes denoting

patients .. 18

Figure 20 [9]- Branch and Bound example ... 19

Figure 21-Sequential Flow Diagram showing the calls between the three files 20

https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383258
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383259
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383260
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383261
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383262
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383263
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383267
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383268
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383269
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383269
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383270
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383270
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383271
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383271
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383272
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383272
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383273
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383273
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383274
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383274
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383275
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383275
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383276
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383276

6

Figure 22-UML diagram of the HomeHelpService_API file ... 20

Figure 23-UML diagram of the HomeHelpService file .. 20

Figure 24- UML diagram of the HomeHelpService_Database file .. 20

Figure 25-Expanded List, each name that can be expanded ... 25

Figure 26-Collapsed List, each name that can be expanded ... 25

Figure 27-Test code used to save results of Job Assigning Algorithm to a CSV file................... 26

Figure 28-Graph comparing merged and separated constraints ... 27

Figure 29-Close up of merged timings ... 27

Figure 30-Success rate using between 1-10 random clients ... 28

Figure 31- Successful VS Unsuccessful timings using up to 10 clients and employees 29

Figure 32- Comparing the average time when using up to 10 clients and up to 20 clients 29

Figure 33- Comparing the success rate when using up to 10 clients and up to 20 clients 30

Figure 34 - Potential example of clustering created using an online tool [18] 32

Figure 35-Login Screen .. 34

Figure 36- Main Screen .. 34

Figure 37- View Employees ... 34

Figure 38- View Clients .. 34

Figure 39- View Job assignments ... 34

LIST OF TABLES

Table 1-Timing results from running the optimisation algorithm using a random number of

clients between 1 and 10 each time... 27

Table 2-Detailed table of successful and unsuccessful times using up to 10 clients and employees

... 28

Table 3- Testing with up to 6 employees using r=20 ... 29

Table 4- Testing Accuracy for e=1, e=2, e=r-1 and e=r ... 30

https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383279
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383280
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383281
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383285
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383286
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383287
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383292
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383293
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383294
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383295
https://d.docs.live.net/bd192a4dbd6ed64f/University/2018-2019/Final%20year%20project/Reports/final_project.docx#_Toc8383296

7

1 INTRODUCTION

1.1 COMPUTATIONAL OPTIMISATION AND LINEAR PROGRAMMING
There are many computational optimisation problems that are explored daily by many scientists.

In this paper, we explore the use of computational optimisation and linear programming to

construct a model that solves a real-life problem. Computational optimisation is a mathematical

technique that consists of maximising or minimising (or even some more complex operations) of

certain functions for better decision making, which was inherited from applied mathematics [1].

Linear Programming was later introduced to solve special cases of computational optimisation

problems that are expressed as linear equations in order to produce the best results [2]. Linear

programming consists of constraints in the form of linear equations (e.g. 捲 + 検 半 ね) that deal with

equalities or inequalities in order to limit non-optimal solutions. In practice, these functions are

linear vectors on two-dimensional surfaces, also known as planes, where constraints are areas on

the surface. Vectors are later solved to find their intersecting coordinates within the given area.

1.2 PROJECT OVERVIEW
The lack of research in the specific variation discussed in this paper made this project a lot more

interesting. Not only was there not enough documentation on similar variations, but even less

documentation on an implemented complex computational optimisation model similar to the one

we explored. All employees must be assigned to all patients and a patient can only be visited once

and never again. Each employee must start and finish in their own house. The cost of travel must

be minimised and only one employee can be involved in each subtour generated. Imagine having

a set of employees 継 with the red circles denoting their location and a set of clients � with black

circles denoting their locations. An example of correct assignment would be as follows:

An example of an incorrect job assignment would be:

Figure 1- Correct Job Assignment Figure 2-Pre-assigned Employees and Clients

8

This project sought to develop and implement an algorithm to solve this real-world problem using

Integer Linear Programming. The algorithm should be able to find an optimal solution (or a

feasible solution) to this problem, taking into consideration the fair workload assignment.

Figure 3-Pre-assigned Employees and Clients Figure 4-Incorrect Job Assignment

9

2 BACKGROUND RESEARCH

2.1 TRAVELLING SALESMAN PROBLEM

2.1.1 Introduction

The classic Travelling Salesman Problem (TSP) is one of the most studied and discussed

computation optimisation problems in the world. This problem was first mathematically

introduced by the Irish mathematician W.R Hamilton and the British mathematician Thomas

Kirkman [3]. Today, a lot of scientists use the Travelling Salesman Problem to formulate variations

of it and come up with different techniques on how to solve it. It is mainly used in transportation

and logistics applications and many other complex optimisation problems with additional

constraints. It consists of one salesman travelling from one specified city (or depot) to a set of

selected cities 系 in such a way that the total cost 潔沈珍 travelled is minimal.

2.1.2 Problem Explanation

The approach taken to solve this problem is also known as the Dantzig-Fulkerson-Johnson

formulation [3] but can be solved in many different ways. ��仔�仕��� ∑ 潔沈珍捲沈珍沈,珍樺�

s.t. ∑ 捲沈珍 = に, ∀件 樺 撃珍樺�
(1)

∑ 捲沈珍 判 |鯨| − な , ∀ 鯨 ⊂ 系, 鯨 ≠⊘ 沈,珍樺�,沈 ≠珍
(2)

捲 = {な, 件血 結穴訣結 岫件, 倹岻 樺 畦 件嫌 嫌結健結潔建結穴 ど, 件血 結穴訣結 岫件, 倹岻 樺 畦 件嫌 券剣建 嫌結健結潔建結穴
(3)

The 2-degree constraint (1) [4] shows that each city must only be visited once and never again,

where 撃 is the set of all cities. Subtour elimination constraint (2) [4] ensures that no subtours 鯨 are

included in the solution. The variable 捲沈珍 (3) is a binary variable that takes the value ど if an edge

is not selected and if な an edge is selected where the set 畦 consists of all possible edges 件, 倹 between

all the cities where 件 is the current city and 倹 is the next city to be visited.

10

2.1.3 Application

In application to this project, it is only one specified scenario where only one employee is used,

and all the patients must be visited. For the purpose of this project, the Travelling Salesman

Problem can be of help to the problem discussed in this paper by using the subtour elimination

constraint (2) but it is not an ideal solution.

2.2 MULTI TRAVELLING SALESMAN PROBLEM

2.2.1 Introduction

There have been further studies on how to improve the classical Travelling Salesman Problem and

the first variation is having multiple travelling salesmen (mTSP). Given a set of cities 系, there are 兼 salesmen that need to travel from one specified depot to all the cities. The objective remains the

same; the total cost travelled by all salesmen must be minimised. In addition, each city must only

be visited once by a salesman.

2.2.2 Explanation

Just like the classic TSP, the mTSP uses a set of cities 系, a set of travelling salesmen 兼 and a set

of all possible edges between the cities 畦. To solve this, we use following formulation [5]: ��仔�仕��� ∑ 潔沈珍捲沈珍沈,珍樺�

s.t. ∑ 捲怠珍 = 兼珍樺�
(1)

∑ 捲珍怠 = 兼珍樺�
(2)

∑ 捲沈珍 = な, ∀件 樺 撃珍樺�
(3)

Figure 6-Correct TSP, with subtour elimination Figure 5-Incorrect TSP, without subtour elimination

11

∑ 捲沈珍 = な, ∀倹 樺 撃沈樺�
(4)

憲沈 − 憲珍 + 喧 ∙ 捲沈珍 判 喧 − な, ∀に 判 件 ≠ 倹 判 券 (5) 捲 = {な, 件血 結穴訣結 岫件, 倹岻 樺 畦 件嫌 嫌結健結潔建結穴 ど, 件血 結穴訣結 岫件, 倹岻 樺 畦 件嫌 券剣建 嫌結健結潔建結穴
(6)

The cost of each edge travelled is denoted by 潔沈珍 where 件 is the current city and 倹 is the next city

to be visited with 件, 倹 = な denoting the depot. The constraints (1) and (2) ensure that exactly 兼

salesmen leave from and return to the depot. The degree constraints (3) and (4) are added to all the

cities to ensure exactly one salesman enter and leaves from the city. The constraint (5) also known

as the Miller-Tucker-Zemlin [5] constraint, is used to ensure only a maximum number of cities 喧

is visited by each salesman as subtours are now allowed. The variable 憲沈 indicates the position of

a node 件 in a subtour and 憲珍 denotes the position of the next node in the subtour. Finally, a binary

variable 捲 is still used to indicate whether an edge is selected or not.

Figure 7 [6]- Example of a mTSP outcome

2.2.3 Application

The discovery of the MTZ constraint is one of the most important parts of the background research

taken. This constraint explains how fairness takes place in such a way that all salesmen travelling

visit roughly the same number of cities while minimising the objective. In the problem discussed

in the paper, the salesmen represent the employees and the cities represent the patients in their

houses. However, it still includes one downfall; the single depot, which makes this solution not

ideal.

2.3 MULTI-DEPOT MULTI TRAVELLING SALESMAN PROBLEM

2.3.1 Introduction

Multi-Depot Multiple Travelling Salesman Problem (MDMTSP) is a variation of the well-known

12

Travelling Salesman Problem (TSP) and Multiple Travelling Salesman Problem (mTSP). It should

be pointed out, that there are many variations of the MDMTSP and each scientist that explores this

expresses it in a range of ways. For example, some scientists included vehicles capacities and

others don’t. Moreover, some add extra variables to indicate depot usage. The paper used to

explore this MDMTSP was not only the closest variation to this project but also well and simply

written which made it easily understandable. The MDMTSP consists of multiple salesmen and

multiple depots. A salesman can start its journey at any of the available depots, visit a set of cities

and finish back at the same depot. Each city can only be visited once by a salesman and only one

salesman can leave from and return to a depot.

2.3.2 Explanation

The MDMTSP consists of an additional set of depots 荊 along with the previously declared

variables for the mTSP in a slight different denotation; set of cities 蛍, set of all possible arcs 継,

cost denoted by 潔沈珍 and variable 捲沈珍. However, the variable 捲 not only takes the value ど if the edge 岫件, 倹岻 is not selected and な if the edge is selected but also takes the variable に in the case where a

salesman takes a trip from one depot to a city and back to the depot (also known as a return trip)

[7]. The following formulation [7] is a potential solution: ��仔�仕��� ∑ 潔沈珍捲沈珍沈,珍樺�

s.t. 捲(絞岫倹岻) = に, ∀倹 樺 蛍 (1) 捲(紘岫鯨岻) 判 |鯨| − な, ∀鯨 ⊆ 蛍 (2) ∑ 捲沈珍 + に捲(紘岫鯨 ∪ {倹, 健}岻) + ∑ 捲賃鎮 判 に |鯨| + ぬ, ∀ 倹, 健 樺 蛍賃樺�\�′沈樺�′

鯨 ⊆ 蛍{倹, 健}, 鯨, ≠⊘; 荊′ ⊂ 荊 (3) ∑ 捲沈珍 + ぬ捲沈珍 + ∑ 捲賃鎮 判 に |鯨| + ぬ, ∀ 倹, 健 樺 蛍賃樺�\�′沈樺�′ , 荊′ ⊂ 荊
(4)

捲沈珍 樺 {ど,な,に} ∀件 樺 荊, ∀倹 樺 蛍 (5) 捲沈珍 樺 {ど,な} ∀件 樺 蛍, ∀倹 樺 蛍 (6)

The constraint (1) is the normal 2-degree constraint that ensures every city is only visited ones and

never again by a salesman. Next, the constraint (2) ensures that no subtours within a subtour

solution are further generated. One of the most important constraints used (3) (Figure 8) eliminates

more than one salesman travelling the same subtour [7]. Thus, a solution including 件怠, 倹怠, … , 倹�, 件態 where 件 being the depot with 荊′ = 件怠 the first depot where the salesman has travelled

from, 倹 = 倹怠 the first visited city, 健 = 倹� the last visited city and 鯨 = {倹態, … , 倹�−怠} the set of cities

visited excluding the first and last cities [7]. The constraint (4) deals with return tours, which occur

when a salesman visits a city and immediately returns to the same depot [7]. Finally, constraints

(5) and (6) are responsible for the values 捲沈珍 take depending on the case (if it is a return tour) and

13

whether it is an active edge or not.

Figure 8 [7]- MDMTSP constraint illustrated

2.3.3 Application

This is the closest approach to the project explored in this paper but is still subject to issues and

imperfections that lead to wrong solutions. The reason why this approach generates wrong

solutions is that it does not take into consideration that all depots must be used. Although, all cities

are considered by adding the 2-degree constraint (1) on the cities a lot of the time multiple depots

are left unused. In this project, all employees must always be used. However, adding a 2-degree

constraint on the travelling salesmen was not an option as it would generate an infeasible model.

An infeasible model can no longer be solved, and no solution is generated. Moreover, this approach

raises some logical programming issues. The constraints used (5) and (6), deal with variables being

binary and continues at the same time which programmatically is incorrect and needed to find

ways to overcome human subconscious assumptions. Finally, this solution did not take into

consideration having more than two travelling salesmen in a subtour which is again a problem for

the model we are trying to generate.

14

3 APPROACH

3.1 PROJECT STRUCTURE
The steps to be taken for the development of the project needed to be established. Now that the

problem has been identified and well understood, it was time to invent a plan on how to approach

this and solve it. All progress was logged using a Gantt chart to ensure constant development and

improvement.

The world of computational optimisation is constantly evolving and available tools on the market

that help with this process are always improving. The first stage of this project was to research and

identify the best tool that will be used to develop a decent solution to this problem. This tool needed

to be easily understood, so that development does not take a lot of unnecessary time. Moreover, it

needed to be well documented to be able to deal with complex constraints. Picking a well-fitted

tool would not only help the development process but also any future updates, making any project

alterations a lot more convenient.

Once the main tools for the development part of the project were identified, the next stage of the

project consisted of creating an algorithm with random numbers representing house positions. This

phase was extremely important as it is the base of this project and without it, we could not move

to the third stage which was making this algorithm more realistic by using dummy data that

includes real-life coordinates and randomly generalised names. This stage is continuously repeated

until the solution generated by the optimisation model is to a satisfactory level with all the

constraints taken into consideration.

After, it was time to bring the algorithm to more realistic standards using dummy data. As this is

a project regarding no real-life company or real-life people, all data generated is random and links

to no real situation. To show how this could be a real product that companies can use, a database

on the Computer Science School’s server was created to host the dummy data.

Next, it was time to create a small interface to present the results from the algorithm which included

a list of the assignments between employees and patients. To do so, the tools to be used to create

this needed to be explored and established.

When the final product is complete, the final stage consists of thoroughly testing it and evaluating

it. Each stage was repeated until the satisfactory level was achieved.

Figure 9- Project Structure

Computational
optimisation
tool reaserch

and
establishment

Construction
of base

optimisation
algorithm

Evolvment of
base algorithm

to a realistic
approach

Interface
Implementation

Testing Evaluation

15

3.2 MAIN VARIABLES AND ASSUMPTIONS

3.2.1 Overview and Formulation

As previously discussed, the aim of this project is to implement a way to assign multiple employees

(salesmen) to multiple patients (cities) in such a way that the total amount of distance travelled is

minimal. The set of employees is denoted by 継 and the set of patients by �. For this approach we

assume that the number of employees 結 = |継| and the number of patients 券 = |�| is always 券 半結. Let � = 岫撃, 継岻 be a directed graph where 撃 is a set of vertices such that 撃 = � ∪ 継 and 畦 ={岫件, 倹岻: ∀ 件 樺 撃, ∀ 倹 樺 撃} denoting all the arcs between all the vertices in 撃. The cost of an arc is

defined by 潔沈珍 where 件 is the beginning node and 倹 is the destination node. Furthermore, we define 芸 = 券/結 to be the maximum number of patients to be visited per employee. Each set of subtours

generated must include exactly one employee and a maximum of 芸 patients. All employees and

all patients must be assigned. Patients must be visited only once and never again. Each employee

must return to their homes (depot) so no employee can start at house 畦 and finish at house 稽.

We define a variable 捲沈珍 , ∀ 岫件, 倹岻 樺 畦 to be binary that takes the value ど if an arc is not selected to

be travelled and な is an arc is selected to be travelled. Moreover, we define a variable 憲沈 , ∀件 樺 撃

to be an integer variable where 件 denotes the node and has an upper bound (maximum value) of 芸.

This means that the variable 憲 can take values between {ど,な, … , 芸}. For a subset 鯨, 鯨 ⊆ 撃 we

denote 紘岫鯨岻 = {岫件, 倹岻 樺 畦: 件, 倹 鯨} [7] where 紘岫鯨岻 is the set of all possible arcs within 鯨.

We also define 建剣憲堅嫌 to be a set of all generated possible subtour solutions and 建 is one of the

subtours in 建剣憲堅嫌 where 建 ⊆ 撃 and 建 ⊆ 建剣憲堅嫌. It is to be noted that 建 = 撃 if and only if 結 = な

meaning that only one employee is available to be assigned to the patients. In addition, we define 荊 to be the set of employees used in a subtour 建 ,荊 ⊆ 建, 荊 ⊆ 継, 荊 ≠⊘. We denote 鯨戟券件剣券 to be the

set of all patients in a subtour 建 , 鯨戟券件剣券 ⊆ 建, 鯨戟券件剣券 ⊆ �, 鯨戟券件剣券 ≠⊘ . For a subtour 建 ={件怠, 倹怠, … , 倹槌 , 件椎} where 件怠, 件態, … 件椎 樺 継 and 倹怠, 倹態, … 倹槌 樺 � , we denote 倹 = 倹怠 the first patient

visited. Finally, we denote 荊′ = 件怠 the first employee in a subtour [7] 建.

After a lot of research, we introduce the following formulation: ��仔�仕��� ∑ 潔沈珍捲沈珍岫沈,珍岻樺�

s.t. ∑ 捲沈珍 = な , ∀件 樺 �珍樺�,珍≠沈
(1)

∑ 捲沈珍 = な , ∀倹 樺 撃沈樺�,珍≠沈
(2)

∑ 捲沈珍 = な , ∀件 樺 継珍樺�,珍≠沈
(3)

16

∑ 捲沈珍 = な , ∀倹 樺 継沈樺�,珍≠沈
(4)

件血 捲沈珍 = な ⟹ 捲沈珍 = ど, ∀ 件, 倹 樺 畦, 件 樺 継, 倹 樺 継, 件 ≠ 倹 (5) 件血 捲沈珍 = な ⟹ 憲沈 − 憲珍 + 芸捲沈珍 = 芸 − な, ∀ 件, 倹 樺 畦, 件 鞄 継, 倹 鞄 継, 件 ≠ 倹 (6) 捲(紘岫建岻) 判 |建| − な, ∀建 ⊆ �, 建 ≠⊘, |荊| = ど, |建| > な (7) ∑ 捲沈珍 +沈樺�′ ∑ 捲賃追 判 な, ∀倹 樺 �, 堅 樺 鯨戟券件剣券賃樺�\�′ , |荊| 半 に , |鯨戟券件剣券| > ど (8)

捲沈珍 = {な, 件血 結穴訣結 岫件, 倹岻 樺 畦 件嫌 嫌結健結潔建結穴 ど, 件血 結穴訣結 岫件, 倹岻 樺 畦 件嫌 券剣建 嫌結健結潔建結穴
(9)

憲沈 = {ど,な,に, … , 芸}, ∀件 樺 撃 (10)

3.2.2 Formulation Explanation

The aim of the project is to minimise the total cost travelled therefore the project’s objective
remains the same as TSP (section 2.1), mTSP (section 2.2) and MDMTSP (section 2.3) mentioned

prior.

The first four constraints (1), (2), (3) and (4) are the known degree constraints. Because this is a

directed problem, as we do care about which client is visited first, constraint (1) ensure that there

is only one arc going from a patient to another node in 撃. Constraint (2) ensures that there is only

one arc connecting two nodes. Similarly, constraint (3) ensures that only one employee enters

another node in 撃 where constraint (4) ensures that only one employee leaves from a node in 撃.

Next, constraint (5) eliminates the possibility of generating tours with an edge going from one

employee directly to another employee. Constraint (6) is the first meaningful constraint which

secures a fair workload. This constraint works by keeping a count of the number of patients in each

tour. Let’s assume that the maximum number of patients to be visited is 芸 = に, starting at patient ど 憲待 = ど then patient な will be 憲怠 = な , patient に in line will be 憲態 = に and as this is the

maximum capacity there cannot be a fourth patient in the tour as 憲戴 > 芸. It is essential to state

that this constraint is not subject to ensuring that the subtour generated is ‘correct’ just responsible

for the number of patients included.

憲待 = ど

憲怠 = な

憲態 = に 憲戴 = ぬ

憲待 = ど

憲怠 = な

憲態 = に

Figure 10- Subtour without fair workload

constraint (6)
Figure 11- Subtour with fair workload

constraint (6)

17

The following two constraints (7) and (8) are the lazy subtour eliminating constraints which are

added every time a solution is violated. To begin, constraint (7) is the well-known subtour

elimination constraint but this time works slightly differently to the classic TSP. A subtour solution 建 is checked to ensure that no subtours exist without any employees.

To continue, we added constraint (8) which is responsible for several inequalities. Firstly, it

eliminates solutions where an employee visits exactly one patient and pass through more than one

employee’s houses. Let’s assume subtour 建 = {結怠, 喧怠, 結態} where 継 = {結怠, 結態, 結戴}, then 捲�迭椎迭 + 捲�鉄椎迭 + 捲�典椎迭 = に > な, therefore such solutions cannot hold.

In a very similar way, this constraint is applied for cases with two or more employees and more

than two patients in a subtour 建. A solution including a subtour 建 = {結怠, 喧怠, 喧態, 喧戴, 結態} where 継 ={結怠, 結態, 結戴} then 捲�迭椎迭 + 捲�鉄椎迭 + 捲�鉄椎鉄 + 捲�鉄椎典 = に > な, therefore such solutions are forbidden.

結怠 喧戴

喧怠

喧態

Figure 12- Subtour with constraint (7), Red

node denoting employee, Black nodes

denoting patients

結怠 結態

喧怠

結怠 結態

喧怠

結怠

喧戴

 結態

喧怠 喧態

結怠

喧戴

 結態

喧怠 喧態

Figure 17-Subtour without constraint (8), Red

nodes denoting employees, Black nodes

denoting patients

Figure 16-Subtour with constraint (8), Red

nodes denoting employees, Black nodes

denoting patients

結怠 喧戴

喧怠 喧態

Figure 13-Subtour without constraint (7), Red

node denoting employee, Black nodes denoting

patients

Figure 14-Subtour without

constraint (8), Red nodes denoting

employees, Black node denoting

patient

Figure 15-Subtour with constraint (8),

Red nodes denoting employees, Black

node denoting patient

18

Furthermore, constraint (8) is used to eliminate all possible solutions that include more than two

employees within a subtour. If a subtour generated includes a solution such that 建 ={結怠, 喧怠, 結態, 喧態, 結戴} and 継 = {結怠, 結態, 結戴} then 捲�迭椎迭 + 捲�鉄椎迭 + 捲�鉄椎鉄 + 捲�典椎迭 + 捲�典椎鉄 = ね > な

which cannot be selected.

Finally, constraints (9) and (10) define the two variables used throughout the computational model.

Constraint (9) is the binary variable 捲 that takes the value 1 if an arc is selected or 0 if not. Then,

constraint (10) defines the variable 憲 that takes the values from 0 up to 芸, which is the maximum

number of clients to be visited.

It is important to note that the above formulation does not handle cases where the number of

employees is bigger than the number of clients. Additionally, the figures used to explain the

constraints do not show a complete job assignment but only how a subtour is handled; no

employees or clients are left alone in the final solution.

結怠

結態

結戴

喧怠

喧態 結怠

結態

結戴

喧怠

喧態

Figure 18-Subtour without constraint (8), Red

nodes denoting employees, Black nodes

denoting patients

Figure 19-Subtour with constraint (8), Red

nodes denoting employees, Black nodes

denoting patients

19

4 IMPLEMENTATION

4.1 TOOLS USED
To implement a computational optimisation model using integer linear programming we used

Gurobi [8] within Python. Gurobi is a computational optimisation tool used by many companies

across the globe to help find solutions automatically with zero to no user intervention. It states to

be one of the best products currently in the market as it is free for academic use, provides a lot of

help and documentation for Mixed Linear Problems as well as multiple language support including

Python, C, C++, Java, MATLAB, .NET and R. Moreover, this tool uses the branch and bound

technique to solve the linear models created by the users, such as the one we are studying in this

paper. To explain this technique further, when solving a Linear Problem, if the solution produced

is an optimal solution, which means that the solution is correct and within the constraint boundaries

set, then the branch a bound algorithm stops. Otherwise, the solution found is analysed and extra

constraints are added to exclude such a solution in the future. Suppose a value 捲 that must be an

integer but the optimisation model returns a value that is float such as に.ぬ, then we add some extra

boundaries such as 捲 判 に and 捲 半 ぬ to ignore these outcomes [9]. This variable 捲 is now a

branched variable and two sub-Linear Programs have been produced where when solved the better

of the two solutions is selected as it will continue to be optimal to the main optimisation model [9].

If no solution is feasible, then this heuristic technique of brunch and bound continues until an

optimal solution is found.

Figure 20 [9]- Branch and Bound example

To use this tool, we registered with Gurobi to allow the download of the Gurobi Software. We

ensured that we use this for academic reasons only. Then we installed the Gurobi library in python

using the “pip” command. To write and develop the code we used Visual Studio Code alongside

GitHub to keep track of changes in the code and have a backup in case of system failure.

Moreover, MySQL Workbench was used to manage the data stored by a potential company for the

algorithm to use. It is a tool that helps visualise relational data and provides many features such as

data modelling, server configuration, backups and others and help create, execute and optimise

complex queries [10]. In addition, to show the results the kivy [11] package was used within

Python. Kivy is an open source library that allows the development of interesting and

contemporary interfaces. It works well across many platforms as well as giving a lot of freedom

to the developer to create something interesting.

20

4.2 PROGRAM STRUCTURE
The following figures show how this project was structured and were generated using an

online platform [12].

Figure 21-Sequential Flow Diagram showing the calls between the three files

Figure 22-UML diagram of the HomeHelpService_API file

Figure 24- UML diagram of the

HomeHelpService_Database file

Figure 23-UML diagram of the

HomeHelpService file

21

In Figure 21 we can see that there are three main files; HomeHelpService_API,

HomeHelpService_Database and HomeHelpService. The HomeHelpService_API holds

everything that deals with the front end of the software. The HomeHelpService_Database is

responsible for attempting the database connection. Finally, HomeHelpService holds the main

algorithm which generates the subtours of all employees by making the job assignments.

Lastly, Figure 22, Figure 23 and Figure 24 show how each component is set up and how the classes

are constructed including the methods they use with the help of UML diagrams.

4.2.1 Job Assignment Code Overview and Explanation

To begin we initialise the number of employees and number of clients used. As the code is run on

a not so powerful computer, we set a limit of maximum employees and maximum clients to be など.

It is essential to note that each employee and each client have a different number to establish them.

For example, � = {ど,な,に,ぬ,ね,の,は,ば,ぱ} and 継 = {ひ,など,なな,なに} therefore 撃 ={ど,な,に,ぬ,ね,の,は,ば,ぱ,ひ,など,なな,なに} is a valid set of employees and clients but � = {ど,な,に,ぬ,ね,の,は,ば,ぱ}

and 継 = {ど,な,に,ぬ,ね} is not valid as 撃 = {ど,な,に,ぬ,ね,の,は,ば,ぱ} which eliminates the employees. Then

we generate random locations for each employee and client and store them in a dictionary where

the key denotes the node and the value is a tuple of x and y coordinates e.g. 健剣潔欠建件剣券嫌 ={{ど: 岫のな.ぱねどどな, なはば.どばどば岻, な: 岫なぱ.ぱなぬにのにぬ, ねぬ.にのどのば岻, に: 岫ぬば.ぱはばぬひはに, なぬな.はひなどなな岻} .

The cost is then calculated by computing the distance between each pair of points stored in a

dictionary such that 潔 = {岫ど,な岻: など, 岫ど,に岻: ね, 岫な,に岻: ぬ, 岫な,ど岻: など, 岫に,ど岻: ね, 岫に,な岻: ぬ}. The Google’s
Distance Matrix API [13] is used to automatically calculate the distance between two given points

by initiating a connection using a certified key provided by Google when creating an account and

a project on their cloud platform. However, the Google APIs have a usage limit as each connection

request costs money and the monthly free credit allowance provided by Google is limited. If no

credit is available in the Google account, then the distance is calculated using the known

hypotenuse function in python “券憲兼喧検. ℎ検喧剣建岫岻". The motivation behind using the Google API

is to gain a more accurate calculation of the distance as often enough distance between two houses

is not a straight line.

Next, we create a computational optimisation model named “m” using the “Model()” function that

Gurobi provides. To continue, we established the two variables used; 捲 as a binary variable and 憲

as an integer variable with an upper bound of 芸. We then proceed by setting the objective which

minimises the total cost travelled as mentioned in section 3.2 of the paper. Later we set the first

six main constraints ((1), (2), (3), (4), (5) and (6) from section 3.2.1). We added these as part of

the main body of the code as we always want these constraints to be considered because a valid

solution can be generated using just these specifications without any lazy constraints. Once these

are added, we set the “LazyConstraint” parameter to be equal to な so that lazy constraints can be

added later when the model is optimised. A lazy constraint is an “extra” constraint that is used to

eliminate solutions when the output is not what was expected but they are not required as a valid

solution can be generated without them. Furthermore, cutting planes must be controlled so that no

feasible solution is dismissed. Cutting planes is a method used in Mixed Integer Linear

Programming in order to allow finding a new optimal point which is then tested for being an integer

solution that satisfies all inequalities [14]. A cut can be added to relaxed models as well [14].

However, we do not want this as it could eliminate valid solutions and substitute them with an

invalid one. In this computational model, the “Cuts” parameter is set to 0 to shut off all cuts. By

22

default, Gurobi sets the “Cuts” parameter to −な, which means that the optimisation model will

automatically choose whether it will shut off all cuts, perform a moderate cut, generate an

aggressive cut or a very aggressive cut [15].

Eventually, it is time to call the “optimise(subtourelim)” function where “optimise()” is a build in
method within Gurobi that helps solve the model and “subtourelim()” is a custom subtour

elimination callback method. The “subtourelim()” function checks if a Mixed Integer Linear

solution was generated and adds the lazy constraints (7) and (8) if necessary. It starts by getting

the edges that are active (have value な) and then calls a second custom function “subtour(edges)”
which takes the set of active edges as a parameter and performs a set of operations to get the

generated subtours in a form of a list. Assume a set of nodes 撃 = {ど,な,に,ぬ,ね,の,は,ば,ぱ} where 継 ={は,ば,ぱ} and � = {ど,な,に,ぬ,ね,の} , if a set of active edges is [岫ど, ぬ岻, 岫な, ぱ岻, 岫に, な岻, 岫ぬ, は岻, 岫ね, ど岻,岫の, ば岻, 岫は, ね岻, 岫ば, の岻, 岫ぱ, に岻] then the generated subtour is [[ぱ, に, な], [ば, の], [は, ね, ど, ぬ]] which is

returned by the “subtour(edges)” function. Henceforth, the patients and employees are separated

and stored into two lists 鯨憲券件剣券 and 荊 respectively. The tours generated are ultimately checked

for two cases; there are no employees (7) in the subtour or have more than one employee (8). It is

key to realise that only one of the lazy constraints is added at a time. Gurobi cannot handle multiple

inequalities and therefore only one lazy constraint must be added for each violated integer solution

as solutions cannot have ど employees and more than な employees simultaneously. To do so, an if

loop was used. Firstly, the generated subtour solution is checked for lack of employees. If it does,

in fact, have no employees then constraint (7) as mentioned in section 3.2.1 is added. On the other

hand, if the subtour generated includes more than one employee then constraint (8) mention in

section (3.2.1) is added. Otherwise, neither are added to the model as a correct subtour solution

was generated.

While implementing, we tried splitting the lazy constraint (8) into three separate scenarios as

follows: ∑ 捲沈珍 +沈樺�′ ∑ 捲賃珍 判 な, ∀倹 樺 �, |荊| 半 に, |鯨戟券件剣券| = な賃樺�\�′
(11)

∑ 捲沈珍 +沈樺�′ ∑ 捲賃追 判 な, ∀倹 樺 �, 堅 樺 鯨戟券件剣券賃樺�\�′ , |荊| 半 に , |鯨| > ど (12)

∑ 捲沈珍 + ぬ捲珍鎮 +沈樺�′ ∑ 捲賃鎮 判 ね, ∀倹, 健 樺 �, |荊| 半 に, |鯨戟券件剣券| = に賃樺�\�′
(13)

The solution was checked again in the same manner as before. The first split up constraint (11),

deals with scenarios where there is more than one employee but only one patient in the subtour.

The second one (12) deals with cases where there are more than な employee and more than に

clients in the subtour and lastly the third constraint (13) deals with scenarios where more than な

employee is used in a subtour and the number of clients is exactly two. The reason behind this was

to separate each violation even further using an if loop. In theory, the optimisation model would

work better as only one lazy constraint would be added for each specific violation but as will be

discussed below (Section 5), this only makes the program much slower for complex cases.

After, the status of the Mixed Integer Linear Programming model is checked. The current model

23

status is taken using the “status” method within Gurobi. This method returns a numeric code which

has different meanings [16]. If status returns a value of に, then an optimal solution has been found

and the list of subtours is returned as well as terminating the algorithm. In contrast, if the status

returned is not equal to に, then the solution generated is not optimal and the model needs to be

relaxed in such a way that the model produces a feasible solution. A feasible relaxation is an

optimisation model that minimises the amount of which the linear constraints of the main model

are violated [17]. In Gurobi, there are several options that one can choose from to perform the

relaxation. For this optimisation model, we decided to split the relaxation part of the code into two

parts; the first general relaxation and the second specified loop relaxation. The reasoning behind

this was to make the code more adaptable as well as almost guaranteeing a solution. Moreover, the

first relaxation takes less time as it is done more generally than the second loop relaxation which

if lucky a valid solution will be generated in a smaller amount of time, but it is less likely that a

correct solution will be generated. With this in mind, the best way to perform the first relaxation

was to use “feasRelaxS(relaxobjtype, minrelax, vrelax, crelax)”. Gurobi’s “feasRelaxS()” provides
a more generalised way of relaxing the constraint by modifying the model in such a way that a

feasible relaxation is created. The first parameter is set to “ど” which minimises the summation of

the magnitudes of the bound and constraint violations [17]. In other words, if a constraint is

violated by な.ど when it should be ど.ど, then it would contribute な.ど to the feasibility relaxation

objective [17]. As we deal with binary values, specifying the first parameter as “ど” or “に” does
not make much difference as “に” gets the total number of the bound and constraints violations

which would still contribute to the same to the feasibility relaxation objective because of な.ど +な.ど + な.ど = |な.ど, な.ど, な.ど| = ぬ. The integer values 憲 are very minimal compared to the binary

values 捲, which does not make drastic changes to the feasibility relaxation objective. Next, the

second parameter is set to “False” which is the type of feasibility relaxation to perform [17]. By

setting this parameter to “False”, the returned model is optimised in such a way that the solution

minimises the cost of the violation [17]. Although, setting this parameter to “True” can still
produce a valid solution this can be very expensive it minimises the original objective and will

take a lot of time. To continue, the third parameter is set to “False” to denote whether a variable

boundary can be violated. As we always want all constraint bounds to be taken into consideration,

defining this as “False” blocks such bounds from being violated. Finally, the last parameter is set

to “True” to ensure that variables 捲 and 憲 are relaxed so that a new solution can be found. However,

this can also relax the main constraints of the model, including the degree constraints of the nodes

which can lead to an incorrect feasible solution. Therefore, once the “optimize()” method is called

again each solution generated must be checked to ensure the results are as expected and if satisfied

the algorithm is terminated.

If the solution after the first relaxation remains incorrect, then the model moves onto a more

specified relaxation technique until a feasible solution is found. The code enters a while loop and

before the relaxation is applied the main degree constraints are added again. As previously the

“feasRelaxS()” relaxation technique has been applied to relax variables including the binary

variable 捲 responsible for the degree constraints, these need to be re-added so that no incorrect

solutions are generated. If they are not added a solution that is expected to be [[なね, は], [なぬ, ね, ば], [なに, に], [なな, ど], [など, な], [ひ, の], [ぱ, ぬ]] could end up in an infinite loop as it would

get stuck with a solution like [[なね], [は], [なぬ], [ね], [ば], [なに], [に], [なな], [ど], [など], [な], [ひ], [の], [ぱ], [ぬ]]
which means that no node is connected to another node and therefore no subtours are generated.

Without delay, the relaxation is applied. This time the model uses the “feasRelax(relaxobjtype,

24

minrelax, vars, lbpen, ubpen, constrs, rhspen)” method. As previously mentioned, the

“relaxobjtype” remains set to “0” for the same reasons. On the contrary, the “minrelax” parameter

is switched to “True” so that a more complicated relaxation is performed by attempting to minimise

the initial objective of the model; the total cost travelled is minimal. In addition, the “vars”

parameter is defined using only the variable 捲. The reason for doing this is to ensure that the work

distribution remains fair and therefore the variable 憲 is unbothered. The following two parameters

are defined by taking the value “None” as “lbpen” and “ubpen” are the lower bound and upper

bound penalties to be applied respectively for violating the defined variables “vars”. Lastly, the

“constrs” parameter takes the linear constraints that can be violated but as we do not want any

constraints to be violated this is set to “None” alongside to “rhspen” which is also set to “None”
because there is no penalty to be applied as no linear constraints will be violated. Once the

relaxation is done, the degree constraints are added back again into the model before the

“optimize()” method is called again. Just as before, each solution is checked and if a valid one has

been generated the algorithm terminates and returns the assigned tours. It is must be noted that the

while loop can be altered to having a maximum number of loop iterations to limit the time but with

the possibility of an infeasible solution being generated and therefore no job assignment being

done. At this instant, the algorithm has managed to generate a valid solution by minimising the

main objective as well as ensuring all the constraints are met.

4.2.2 Database and Interface Development

The aim of this project was not only to create an algorithm that makes valid job assignments but

also to try to make this into a more realistic product.

To do so, a database was created on the Cardiff University’s School of Computer Science server.

This database holds one table including the employees’ information and one table holding the
clients’ information. The fields of the tables are an id, a first name, a last name, an optional email

address, a phone number and an address including two separate fields that hold the latitude and

longitude of the exact coordinates accordingly. For future use (that is not explored in this paper),

the “Employees” table also holds an extra field storing the gender of each employee so that clients

can request a male or a female helper to visit them. For demonstrating how this would work,

dummy data has already been added in the database which does not relate to any real people.

The interface class is created using the kivy library as mention earlier. The program begins by

attempting a connection with the Cardiff University’s server by accessing the “getDBData()”
method within the “useDatabase” class. If a connection is established, then the program retrieves

all the necessary data from both databases; employees and clients. Otherwise, random data is

generated. Once all the data has been retrieved or initialised, the main job assignment algorithm

(section 4.2.1) is called by calling the “runAlgorithm” function within then “useDatabase” class.

At this point in time, the assigned list of people’s ids is returned and can now be used for the front

end of this software. In the API code, an empty “TreeView” object is initialised. This object is

later updated and filled with the names of both employees and clients that show how the

assignment was done. This “TreeView” object is very similar to a drop-down menu using a more

hierarchical approach. Next to this object, there is a map view showing how the locations of both

employees and clients.

25

Figure 25-Expanded List, each name that can be expanded

represents an employee and the leaf nodes represent clients

Figure 26-Collapsed List, each name that can be expanded

represents an employee and the leaf nodes represent clients

26

5 RESULTS AND EVALUATION

5.1 TESTING AND RESULTS

5.1.1 Overview

All tests were carried out using an ASUS laptop running Windows 10 with an Intel Core i7

processor, RAM of 8 GB and four core processors. The algorithm was tested by running the code

thousands of times while altering the number of employees and clients used. Please note that the

code run did not attempt any unnecessary connection but only the pure original algorithm

responsible for the job assignment. A few lines of code were used to save the outputs of the

algorithm to a CSV file.

Figure 27-Test code used to save results of Job Assigning Algorithm to a CSV file

Moreover, as mentioned before, this paper only explores cases when 結 判 券 , where 結 is the

number of employees and 券 is the number of clients. The reason why we cannot explore cases

where 結 > 券 is because of the way the degree constraints are set, we force all nodes to have one

edge entering them and one edge leaving them. When 結 > 券 some employee nodes must be left

without any edges and the model we recommend will indicate these as incorrect solutions.

Furthermore, if we were to test the code using 結 = の then the random number of clients was chosen

such that 券 樺 {結, … , 堅} where r is the maximum number of clients. Assume that 堅 = など, then we

could test all possible pairings such as {結 = の, 券 = の}, {結 = の, 券 = は}, {結 = の, 券 = ば}, {結 = の, 券 =ぱ}, {結 = の, 券 = ひ}, {結 = の, 券 = など}. This line of code “n = random.randint(e, 10)” was used

to generate the random 券 every time the code was executed. Finally, be aware that the maximum

number of employees and clients used was normally 10 because Gurobi uses the heuristic method

of Branch and Bound (mentioned in section 4.1) which makes it a lot slower to test larger numbers.

5.1.2 Separated and Merged Constraints Testing

As mentioned previously (section 4), the algorithm uses some sort of relaxation technique to help

relax the constraints in such a way that a feasible solution is achieved even if no optimal solution

is found. Although this is not an ideal solution, it manages to almost guarantee that a solution is

generated; even if that means a lot of time. We tested the algorithm using the separate constraints

(11), (12) and (13) against the one merged constraint (8) mentioned in section 4.2.1. The following

tables show the average time and the maximum time taken to run the job assignment algorithm

500 times as well as the success percentage with a maximum number of clients to be 10. We define

a successful run to be a job assignment that has been solved immediately the first time or right

after the first relaxation.

27

MERGED

EMPLOYEE

NO.

AVERAGE

TIME (s)
MAX TIME (s)

SUCCESS

%

1 0.117713066 0.772914648 100

2 0.177376003 2.472691536 100

3 0.159596399 1.184180498 91.8

4 0.169446337 0.921843052 74.8

5 0.364574856 2.613068819 71.4

6 0.488716842 5.179524899 80

7 3.281622921 32.57843685 71.2

8 11.94707751 146.8120389 86.2

9 0.209590359 1.2178092 100

10 0.206706193 1.225807428 100

SEPERATED

EMPLOYEE

NO.

AVERAGE

TIME (s)
MAX TIME (s)

SUCCESS

%

1 0.140451313 1.115583658 100

2 0.198419548 2.467594862 100

3 0.17743153 3.87792778 90.4

4 0.219627829 2.359296322 74.8

5 0.417331936 3.78203845 84

6 1.820089893 32.02139783 80

7 1.29220625 12.13509536 69.8

8 2545.582845 12727.89875 80

9 0.210201814 0.550940752 100

10 0.25113149 0.590906143 100

Table 1-Timing results from running the optimisation algorithm using a random number of clients between 1 and 10 each time

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

T
IM

E
 (

s)

NO. OF EMPLOYEES

RANDOM CLIENTS UP TO 10 BASED ON

AVERAGE TIME

SEPERATED MERGED

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

T
IM

E
 (

s)

NO. OF EMPLOYEES

CLOSE UP OF MERGED TIMINGS

MERGED

Figure 28-Graph comparing merged and separated constraints

Figure 29-Close up of merged timings

28

We can clearly observe that although in most cases the average time is roughly the same, for highly

complex cases such as having 8 employees and 10 clients having separated constraints makes the

problem computationally harder at about 216 times slower. Given these points, the decision taken

was to keep the merged version of the constraints (8) as it seems to provide better and more

consistent results.

5.1.3 Employee and Client Range Testing

To explore the algorithm, even more, we compared the success rate when using up to 10 clients

and employees as well as the run time for unsuccessful and successful executions to analyse how

many cases were responsible for slowing down the algorithm.

10 CLIENTS

EMPLOYEE

NO.

UNSUCCESSFUL

TIME (s)

SUCCESSFUL

TIME (s) UNSUCCESSFUL NO

SUCCESSFUL

NO

1 0.117713066 500

2 0.177376003 500

3 0.391671582 0.138866372 41 459

4 0.318786038 0.119134032 126 374

5 0.990753092 0.113752761 143 357

6 1.999260809 0.11108085 100 400

7 11.06523911 0.133193901 144 356

8 85.77666836 0.127491046 69 431

9 0.209590359 500

10 0.206706193 500

Table 2-Detailed table of successful and unsuccessful times using up to 10 clients and employees

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

S
U

C
C

E
S

S
 (

%
)

NO. OF EMPLOYEES

SUCCESS RATE USING UP TO 10 CLIENTS

SEPERATED

MERGED

Figure 30-Success rate using between 1-10 random clients

29

Figure 31- Successful VS Unsuccessful timings using up to 10 clients and employees

From the above results we can see that although the unsuccessful attempts are a lot less than the

successful ones, they do take awfully a lot more time, especially when we use 8 employees and 10

clients. To explore this further, we tested the algorithm by using up to 6 employees and up to 20

patients. However, when trying to use ば < 結 判 堅 − に employees where 堅 = にど the computational

power required is extremely high, making it a lot more difficult to test such cases. The algorithm

was run about 100 times for each number of employee and these were the results:

MERGED

EMPLOYEE NO. AVERAGE TIME (s) MAX TIME (s) SUCCESS (%)

1 1.887895392 55.6338582 100

2 6.544010937 149.1195877 100

3 0.589078774 5.082202435 80

4 2.035802148 98.02056432 56.56565657

5 2.773656948 27.3174026 44.03669725

6 14.07091473 67.05212283 31.57894737

Table 3- Testing with up to 6 employees using r=20

Figure 32- Comparing the average time when using up to 10 clients and up to 20 clients

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

T
IM

E
 (

s)

EMPLOYEE NO.

SUCCESSFUL vs UNSUCCESSFUL TIME

SUCCESSFUL

TIME

UNSUCCESSFUL

TIME (s)

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

T
im

e
(s

)

AVERAGE TIME

20 clients

10 clients

30

Figure 33- Comparing the success rate when using up to 10 clients and up to 20 clients

In conclusion, when using employees where 結 樺 {ぬ, … , 堅 − に} then the slower the algorithm gets.

More specifically, the closer we get to 堅 − に employees the executed average time gets

exponentially higher but as this could not be fully tested with a large range number of employees

such assumptions are not 100% accurate. However, we can see from the above figures that this is

not the case when using 結 樺 {な,に 堅 − な, 堅} as the chance of the algorithm being completely

successful by finding a solution either immediately or after the first relaxation is an outstanding

100%. To examine this further, we tested this with 堅 判 なに.

Table 4- Testing Accuracy for e=1, e=2, e= r-1 and e=r

As expected, this gives 100% accuracy. At this point, we can notice a pattern that the more clients

we use the slower the algorithm and the lower the success rate, this excludes using 結 樺 {な,に 堅 −な, 堅} employees as the average time is relatively low and the success rate is relatively high if not

100%.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

S
u
cc

es
s

%

SUCCESS RATE

20 clients

10 clients

EMPLOYEE

NO.
n

AVERAGE TIME

(s)
MAX TIME (s)

SUCCESS

(%)

1 9 0.25025756 3.13450861 100

2 9 0.393527513 2.210652828 100

8 9 0.203058455 2.213652134 100

9 9 0.233186067 1.013841629 100

1 10 0.117713066 0.772914648 100

2 10 0.177376003 2.472691536 100

9 10 0.209590359 1.2178092 100

10 10 0.206706193 1.225807428 100

1 11 0.15734372 2.043950796 100

2 11 0.164565022 1.750721931 100

10 11 0.150609552 0.528916359 100

11 11 0.154332888 2.367507219 100

1 12 0.462851535 6.280012846 100

2 12 1.437411141 42.92284346 100

11 12 0.226590777 1.126821756 100

12 12 0.259233869 1.570754051 100

31

5.2 RESULTS EVALUATION
Overall, the algorithm always manages to give a solution and is subject to all the constraints. The

assignment is completed correctly with the following deliverables being met; no more than one

employee in each subtour, all employees are used and all patients are visited, the total distance

travelled is minimised as well as keeping a fair workload for all employees. As demonstrated above,

the algorithm works better with a lower number of employees being about 5 and a fairly low

number of employees at about 20. The largest test run on the machine was 結 = の and 券 = のど that

took はねにぬ.にはに seconds which is more than な and a half hours. As we presumed, the algorithm

depends strictly on the locations of the employees’ houses in respect to the clients’ houses which

can cause the algorithm to take longer periods of time to execute. When locations were scattered

in a way where relationships are fairly easy to indicate, assignment happened relatively fast.

However, when locations had no correlation, relationships between vertices was difficult to

indicate which took longer time to complete. For example, when using ぬ employees and は patients

if each employee has 2 patients close to them this was an easy assignment. Otherwise, if one

employee has all 6 patients close to them and the other に employees were far, assignment was

more difficult to complete hence more time. Nonetheless, this was not always the case as some set

of locations abstractly scattered across the surface would generate a solution relatively fast but

others differentiating slight would take minutes or even hours. The reason for this, is the nature of

computational optimisation as it tries to find intersecting points which is sometimes difficult to

achieve within the given constraint area.

It is important to note that this is not entirely the algorithm’s fault. Due to its high complexity, it

requires an extreme amount of time and computational power to use a large number of employees

or clients which made it impossible for the machine that was used to run such tests. Ideally, a better

and more powerful machine should be used in the future to perform more tests to help understand

better when the algorithm performs slow including specific employee to client ratio comparisons.

32

6 FUTURE WORK

Some tasks initially set were not achieved due to the lack of appreciation for the complexity of this

project within the time period provided. The base problem explored in this paper turned out to be

more difficult than anticipated. Time restriction made it impossible to expand this algorithm into

an even more complex and intelligent solution by having extra constraint specification as well as

a more intuitive user interface.

6.1 ALGORITHM DEVELOPMENT

6.1.1 Better Runtime Execution

This project required a lot of research and a lot of programming trials. The bigger issue has been

resolved by finding and constructing the correct main constraints as well as the fitting lazy

constraints that are used to deal with inequalities that may arise. As mentioned previously in

section 4, solutions that are violated for a second time are still being explored by adding the main

degree constraints again, relaxing the model and then adding those constraints back into the model

until a feasible solution is generated. Nevertheless, this is not an ideal implementation as it has a

very big disadvantage; the execution time. As the number of employees and/or clients becomes

larger the time for the model to generate a solution becomes exponentially higher. A big company

with a lot of staff that provide home-help services to many areas might have to wait a lot of time

to make the assignments and will need very powerful machines to complete such computations.

A computational optimisation problem can be solved in many ways. Although a solution is

generated most times, deeper research and even potentially alteration of the constraints in a certain

way could lead to a more reliable optimisation model. In addition, the model can be expanded to

allow solutions where 結 > 券.

Another potential solution to this is to split up the employees and the clients using some sort of k-

means clustering. The k-means clustering will take a large set of employees and clients and will

return k clusters. This way the computational optimisation model can then be applied at each

generated cluster.

Figure 34 - Potential example of clustering created using an online tool [18]

33

The above Figure 34 demonstrates how a complex problem can be simplified. The red, green and

blue circles are the generated k clusters by applying some kind of clustering method. The clustering

to be used could be some agglomerative method which begins by having all employees and clients

as separate entities and then iteratively merge entities together into a cluster by getting the closest

ones until a satisfying number of clusters is created or until each cluster includes a satisfying

number of entities. Each circle represents an individual subproblem that can later be solved using

the algorithm explored in this paper.

6.1.2 Additional Algorithm Features

Once the algorithm is working perfectly and a lot faster, more constraint options can be added to

help make even more complex assignments. Such constraints evolve some more personal

requirements the employees or clients might have depending on the flexibility of the company

such as; a client might only want to be visited by female workers or an employee can only work

between どば: どど − なな: どど.

To implement the gender preferability, there could be an additional dictionary which holds key-

value pairs where the key indicates the employee and the value is a binary where ど indicates a

male and な a female. For instance, if there is a set of employees 継 = [ど,な,に,ぬ,ね,の] then a dictionary

indicating the gender would be 訣結券穴結堅経件潔建 = {ど: ど, な: ど, に: な, ぬ: ど,ね: な,の: ど} which shows that

employees {ど,な,ぬ,の} are male and employees {に,ね} are female. Identically, an additional

dictionary needs to be introduced to denote whether a client has any preferences on the gender of

the helper. Let’s assume � = [は,ば,ぱ,ひ] then 潔健件結券建�結券穴結堅経件潔建 = {は: な, ば: ど, ぱ: な, ひ: −な} which

shows that clients {は,ぱ} would prefer being visited by a female, client {ば} would prefer a male and

client {ひ} does not have any preferences. With a similar concept in mind, we can implement the

working times also. In this case, the value within the dictionary can be a list of binaries where each

indexed value represents the time period. Assume a set of employees 継 = [ど,な,に,ぬ,ね,の] then the

dictionary would be 建件兼結経件潔建 = {ど: [ど,な,ど], な: [な,な,ど], に: [な,ど,ど], ぬ: [ど,ど,な],ね: [な,な,な],の: [な,ど,な]}.

The key indicates the employee and the list indicates when the employee can work. The list holds

three values where the first value denotes that the employee can work between ば: どど and なな: どど,

the second value shows that the employee can work between なな: どど and なの: どど and the last value

represents working between なの: どど and なひ: どど. If the indexed value is な then the worker can do

the specified shift, otherwise, they cannot work during that period. For example, employee ど can

only work between なな: どど and なの: どど where employee ね can work all three shifts and so on. Later,

some additional constraints can be added where certain nodes cannot exist in specified subtours.

6.2 FURTHER INTERFACE DEVELOPMENT
To make this project even more realistic and into a functional product that can later be sold to

companies, a better interface could be implemented. An interface prototype was created to

demonstrate a possible User Interface that the software can use. The following screens were

created using the prototyping tool “JustInMind” [19] which allows easy and fast development of

prototypes.

34

The first two screens, Figure 35 and Figure 36 show the login screen and the first screen the user

encounters after login is successful respectively. In “View Employees” screen (Figure 37) and

“View Clients” screen (Figure 38) the user can view all details associated with an employee or

client respectively. Users can also edit, delete or add entities and the database will automatically

be updated. In addition, the “View Job Assignments” screen (Figure 39) makes it easy for the

company to manage the assignments between its staff and patients. A “Refresh” button is available
to trigger the optimisation algorithm and recalculate the assignments. Each box holds the name of

the employee and the names of clients to be visited. When a box is selected then the route to be

taken is shown on the map on the right-hand side. Users can again edit, delete or add assignments.

Figure 36- Main Screen

Figure 37- View Employees
Figure 38- View Clients

Figure 39- View Job assignments

Figure 35-Login Screen

35

7 CONCLUSIONS

This project has explored what we consider to be one of the first (if not the very first) studies of a

more complex variation of the MDMTSP where all depots are used using complex parts of the

computational optimisation and integer linear programming world. Although mathematical models

do exist, very few computational models are available. We have managed to present a reasonable

solution and a working model for any number of employees 結 and clients 券 as long as 結 判 券. The

problem itself is NP-hard as it cannot be solved in polynomial time and is equivalent to the

Travelling Salesman Problem when only one employee is used as all instances of TSP can be

transformed to an instance of this problem explored, 劇鯨鶏 ∝ 喧堅剣決健結兼_結捲喧健剣堅結穴. Nonetheless,

large numbers of employees and/or clients require a lot of computational power, which makes the

job assignments a lot slower. The reason behind this, is the heuristic methodology of branching

and bounding and its recursive nature, as it tries to explore different solutions until one is found.

Optimisation models are getting more popular and a lot of time is spent into researching ways to

utilise them even further. We believe that optimisation techniques are the way into the future as

they can help automate a lot of procedures with minimal effort.

36

8 REFLECTION ON LEARNING

This project has been an amazing journey. I am proud to have explored such interesting areas of

the mathematical optimisation world and give back to the community by developing and

implementing the model discussed in this paper. To see how long ago the first optimisation

technique and the first problem was introduced to still being explored today is fascinating to me.

We as scientists have come far by resolving these problems and even further introducing and

exploring more complex ones.

Nonetheless, this has not been an easy journey. Optimisation techniques and Integer Linear

Programming was foreign to me and taking this project was a challenge on its own. I have spent

an incredible amount of time exploring other similar problems such as the TSP (section 2.1), the

mTSP (section 2.2) and the MDMTSP (section 2.3) but even the Classical Vehicle Routing

Problem (not explored in this paper) which ended up not being of any help. This shows how crucial

it is to detect which papers and problems explored by other scientists can be of help and rejecting

those that are not useful. In due time, I realised that the more I understood the problem the better

I could distinguish what I could use to explore this and what not. Even after finding helpful

documents and papers on similar issues, it took a lot of trial and error until a correct model was

developed which was not an easy attempt. The lack of documentation regarding similar variations

was minimal but close to none specifically on the variation explored in this project which made

this task even harder to complete. The major challenge was not only to come up with the

mathematical constraints but also to make them work in the model efficiently. An obstacle that I

had to overcome was finding the balance between the mathematics and the programming behind

this model as a lot of the times the code would not perform as expected.

As a result, I have gained an incredible set of skills that can be used in the future. I have developed

better research skills and expanded even further my programming skills by learning how to use

Gurobi as well as a brief overview of kivy which were both unfamiliar to me. I have also grown

to appreciate the computational optimisation world as it is widely explored by mathematicians and

computer scientists daily. I am confident that I have gained a deep understanding of this era and

will continue to keep up to date with future developments. Looking forward to seeing how far the

computational optimisation world can go.

37

REFERENCES

[1] W. T. F. Encyclopedia, “Mathematical optimization,” Wikimedia Foundation Inc.

[Online]. Available: https://en.wikipedia.org/wiki/Mathematical_optimization. [Accessed:

02-Apr-2019].

[2] Wikipedia: The Free Encyclopedia, “Linear programming,” Wikimedia Foundation Inc.

[Online]. Available: https://en.wikipedia.org/wiki/Linear_programming. [Accessed: 02-

Apr-2019].

[3] Wikipedia: The Free Encyclopedia, “Travelling salesman problem,” Wikimedia

Foundation Inc. [Online]. Available:

https://en.wikipedia.org/wiki/Travelling_salesman_problem#History. [Accessed: 31-Mar-

2019].

[4] “The Travelling Salesman Problem with Integer Programming and Gurobi.” [Online].
Available: http://examples.gurobi.com/traveling-salesman-problem/#demo. [Accessed:

07-Feb-2019].

[5] “Multiple Traveling Salesman Problem (mTSP) | NEOS.” [Online]. Available:
https://neos-guide.org/content/multiple-traveling-salesman-problem-mtsp. [Accessed: 21-

Feb-2019].

[6] X. Xu, H. Yuan, M. Liptrott, and M. Trovati, “Two phase heuristic algorithm for the
multiple-travelling salesman problem,” Soft Comput., vol. 22, no. 19, pp. 6567–6581, Oct.

2018.

[7] E. Benavent and A. Martínez, “A polyhedral study of the Multi-Depot Multiple TSP,” no.
Parragh 2010, pp. 1–34.

[8] “Gurobi Optimization - The State-of-the-Art Mathematical Programming Solver.”
[Online]. Available: http://www.gurobi.com/index. [Accessed: 18-Apr-2019].

[9] “Mixed-Integer Programming (MIP) Basics | Gurobi.” [Online]. Available:
http://www.gurobi.com/resources/getting-started/mip-basics. [Accessed: 19-Apr-2019].

[10] “MySQL :: MySQL Workbench.” [Online]. Available:
https://www.mysql.com/products/workbench/. [Accessed: 20-Apr-2019].

[11] “Kivy: Cross-platform Python Framework for NUI Development.” [Online]. Available:
https://kivy.org/#home. [Accessed: 10-May-2019].

[12] “draw.io.” [Online]. Available: https://www.draw.io/. [Accessed: 10-May-2019].

[13] “Developer Guide | Distance Matrix API | Google Developers.” [Online]. Available:
https://developers.google.com/maps/documentation/distance-matrix/intro. [Accessed: 10-

May-2019].

[14] W. T. F. Encyclopedia, “Cutting-plane method,” Wikimedia Foundation Inc. [Online].

Available: https://en.wikipedia.org/wiki/Cutting-plane_method. [Accessed: 18-Apr-2019].

[15] “Cuts.” [Online]. Available: http://www.gurobi.com/documentation/8.0/refman/cuts.html.

38

[Accessed: 09-May-2019].

[16] “Optimization Status Codes.” [Online]. Available:
https://www.gurobi.com/documentation/8.1/refman/optimization_status_codes.html.

[Accessed: 18-Apr-2019].

[17] “Model.feasRelaxS().” [Online]. Available:
http://www.gurobi.com/documentation/8.1/refman/py_model_feasrelaxs.html. [Accessed:

18-Apr-2019].

[18] “Create Maps : Scribble Maps.” [Online]. Available:
https://www.scribblemaps.com/create/#/lat=36.879620605027014&lng=-

40.78125&z=3&t=hybrid. [Accessed: 10-May-2019].

[19] “Free prototyping tool for web & mobile apps - Justinmind.” [Online]. Available:
https://www.justinmind.com/. [Accessed: 10-May-2019].

