

Configurable User Interfaces with XML

Final Report

Author: James Briggs (1029537)

Project Supervisor: Dr Frank Langbein

Project Moderator: Dr Xianfang Sun

BSc (Hons) Computer Science

School of Computer Science and Informatics, Cardiff University

Date of Completion: 3rd May 2013

Final Report

1

Abstract

Hard coding user interfaces is a tedious and time consuming task which usually ties an

application to a specific platform or programming language. Many attempts have been

made to define a cross-platform markup language for creating user interfaces however

these are often tailored to a certain framework or designed for use within a limited

environment. For this project an XML based file format capable of abstractly defining user

interfaces and elements of application interactivity is proposed. This format allows user

interfaces to be rendered on any device or platform with a compatible API library. The

evaluation shows that this is a viable solution to the problem and that with future

development a system such as this could replace many traditional methods of creating user

interfaces.

Final Report

2

Acknowledgements

I would like to thank my supervisor, Dr Frank Langbein, for his continued support and

guidance throughout the course of the project and my moderator, Dr Xianfang Sun, for his

informative feedback on the initial project plan and interim report.

Final Report

3

Table of Contents

Abstract .. 1

Acknowledgements .. 2

Table of Contents ... 3

Table of Figures .. 7

1. Introduction ... 8

1.1 Project Aim and Objectives .. 8

1.2 Beneficiaries and Scope ... 8

1.3 Approach .. 9

1.4 Outcomes ... 9

2. Design ... 10

2.1 Interface Editor .. 10

2.1.1 Visualisation ... 10

2.1.2 Abstraction and Automation ... 10

2.1.3 Data Types ... 11

2.1.4 Static Architecture ... 12

2.2 API Library .. 13

2.2.1 Loading and Rendering .. 13

2.2.2 Connecting Signals ... 14

2.2.3 Data Types ... 14

2.2.4 Static Architecture ... 15

2.3 File Format.. 16

2.3.1 Elements .. 16

2.3.2 Slots ... 16

2.3.3 Slot Mappings .. 17

2.3.4 Connections ... 17

3. Implementation ... 18

3.1 Implementing the Interface Editor... 18

3.1.1. Development Tools ... 18

3.1.2. Creating an Interface .. 18

3.1.2.1 Window Visualiser ... 18

Final Report

4

3.1.2.2 Property Inspector ... 19

3.1.2.3 Element Classes ... 19

3.1.2.4 Element Factory ... 19

3.1.2 Signals, Slots and Slot Mappings ... 20

3.1.3 JDOM File Handling ... 21

3.1.3.1 Serialising ... 21

3.1.3.2 Deserialising ... 22

3.2 Implementing the API Library .. 22

3.2.1 Development Tools .. 22

3.2.2 Deserialising ... 22

3.2.3 Element Classes ... 23

3.2.4 API Entry Point ... 24

3.2.4.1 Encapsulation ... 24

3.2.4.2 GUI Class .. 25

3.2.4.3 Load method .. 25

3.2.4.4 Connect method .. 25

3.2.4.5 Display method .. 25

3.2.4.6 GetElementByID method ... 25

3.2.5 Signals, Slots and Slot Mappings ... 26

3.3 File Format.. 26

4. Results and Evaluation ... 27

4.1 Evaluation Strategy .. 27

4.2 System Experiments ... 27

4.2.1. Render an Interactive, Cross-Platform GUI .. 27

4.2.1.1 Setup .. 27

4.2.1.2 Execution.. 27

4.2.1.3 Results .. 29

4.2.2. Visual Interface Designer with XML Serialisation ... 29

4.2.2.1 Setup .. 29

4.2.2.2 Execution.. 29

4.2.2.3 Results .. 31

4.2.3. Implement two API Libraries .. 31

Final Report

5

4.2.3.1 Setup .. 31

4.2.3.2 Execution.. 31

4.2.3.3 Results .. 32

4.2.4. Emulate the Functionality of a DOM .. 32

4.2.4.1 Setup .. 32

4.2.4.2 Execution.. 32

4.2.4.3 Results .. 33

4.2.5. XML Event Signalling Mechanism ... 33

4.2.5.1 Setup .. 33

4.2.5.2 Execution.. 33

4.2.5.3 Results .. 35

4.2.6. Facilitate High Levels of Customisation, Flexibility and Expandability 35

4.2.6.1 Setup .. 35

4.2.6.2 Execution.. 35

4.2.6.3 Results .. 36

4.2.7. Produce Example Applications ... 37

4.2.7.1 Setup .. 37

4.2.7.2 Execution.. 37

4.2.7.3 Results .. 38

4.2.8. Create and Document XML Schemas ... 38

4.2.8.1 Setup .. 38

4.2.8.2 Execution.. 38

4.2.8.3 Results .. 39

4.2.9. Accommodate a Variety of Abilities ... 39

4.2.9.1 Setup .. 39

4.2.9.2 Execution.. 40

4.2.9.3 Results .. 41

4.3 Summary .. 41

5. Future Work ... 42

5.1 Future Enhancements .. 42

5.1.1 Additional API Libraries ... 42

5.1.2 Enhanced Element Set ... 42

Final Report

6

5.1.3 Mobile Support .. 43

5.1.4 Fluid Layouts .. 44

5.1.5 Security .. 44

5.1.6 Multi-threading.. 44

5.1.7 Network Integration .. 45

5.1.8 Live XML Serialisation .. 45

5.1.9 XML Schemas ... 46

5.2 Summary .. 46

6. Conclusions .. 47

7. Reflection on Learning ... 48

Table of Abbreviations ... 49

Glossary .. 50

Appendices ... 51

References ... 57

Final Report

7

Table of Figures

Figure A – Pseudo code for the serialisation tree traversal algorithm. 21

Figure B - Error encountered on Windows 7 and subsequent fix. .. 24

Figure C – An example application in the GUI Editor. ... 30

Figure D – The slots dialog showing 9 slots in the image processing application. 34

Figure E – The signal inspector showing a slot mapping assigned to a click signal. 34

Figure F – The example image processing application showing initial state and “Find Edges”.

.. 38

Figure G - Class diagram showing the relationship of data types in the API library. 51

Figure H - Sequence diagram showing interaction between a client application, API library,

ElementTree and wxPython. .. 52

Figure I - XML interface file used by the image processing application. 55

Figure J - Python code for the image processing application. ... 56

Final Report

8

1. Introduction

This section provides an introduction and overview of the contents of the report. The

project is reintroduced and amendments to the original aims and objectives are discussed

along with any extensions or new developments.

1.1 Project Aim and Objectives

The overall objective of the project is to address the problem of developing cross platform,

flexible user interfaces. As stated in the initial plan the XML markup language is used to

develop a standardised, flexible file format for encoding a user interface and associated

event handling. An approach analogous to HTML or XUL is adopted although the project has

a more concentrated focus on the layout and functionality of elements rather than their

appearance or theme. Platform independence and diversity are key considerations and as

such the system must both support a wide range of platforms and operating systems and

facilitate future expansion to them. The following list presents a condensed set of aims and

objectives derived from those in the Initial Plan and Interim Report:

 Create XML schemas describing the interface file format.

 Create lightweight yet practical API libraries for constructing and managing

interfaces within client applications.

 Develop a visual interface editor to allow the production of interfaces in a high level

manner.

 Develop a number of exemplar applications demonstrating the core functionality of

the system.

The majority of aims, objectives and requirements remain unchanged from the Initial Plan

and Interim Report. The most significant difference is the shift of focus from developing

schemas and multiple API libraries to developing a single yet flexible informal standard and

API library to set the standard for future implementations. More attention is devoted to the

overall architecture of the system and abstraction of the file format than low level technical

aspects.

1.2 Beneficiaries and Scope

As mentioned in the Interim Report this project has the potential to benefit a wide variety of

users with varying abilities. The foremost target audience is software developers with fairly

substantial background knowledge of programming and user interfaces. Nonetheless users

without a high level of technical expertise or user interface design skills can still benefit from

the project. Whilst developing full applications is the primary use case for the project it can

also be applied to a range of other scenarios. For example it could be used by researchers

requiring a quick and simple interface for a command line tool or algorithm. It could also be

used by designers as a prototyping tool without implementing any actual functionality.

Final Report

9

Within the current implementation the scope is limited to desktop applications. Whilst the

file format is not restricted to any particular platform the Python API library will only

function on desktop computers. The abstract nature of the file format allows it to be used

on any platform for which an API library exists. Platform compatibility is simply an

implementation issue rather than an issue with the overall architecture. The current

implementation does not include the full range of available user interface elements

however the architecture provides a large scope for expansion.

1.3 Approach

The agile development methodology is adopted throughout the course of the project. This

approach complements the exploratory nature of the project by embracing requirement

changes and differing circumstances at any stage [1]. It also suits the limited time scale well

as working software is delivered on a weekly basis rather than monthly. Agile emphasises

the importance of good design and technical excellence which are of key concern within the

project.

The various components of the system were implemented in a compartmentalised fashion.

The first stage of development involved outlining an informal draft XML specification and

creating the visual interface editor. The second stage involved refining the XML

specification, amending the interface editor as necessary and implementing the API library.

Within each stage development tasks were further subdivided. This helped improve the

overall quality of the system by ensuring that each component was fit for purpose before

commencing further development.

Incremental integration testing is used as it fits well with the agile methodology and the

accelerated development cycle required by the project. New features and functionality are

tested continually during implementation to ensure that they are fit for purpose and

function as required.

1.4 Outcomes

This project has produced three significant outcomes:

 A file format and architecture capable of encoding a user interface and event

bindings in an abstract, cross-platform method.

 A visual interface editor allowing full interfaces to be designed in a high level way.

Additionally the majority of the event scheme can be prescribed within the editor.

 An API library demonstrating the system functionality within client applications and

setting the standard for future API library implementations.

Final Report

10

2. Design

This section will outline the design of the chosen solution to the previously described

problem. The proposed solution is described at a high level and for the purposes of clarity is

split into three distinct parts: the interface editor, the API library and the file format. These

three components of the system could each be considered separate products and for the

purposes of maintainability are described separately.

2.1 Interface Editor

The Interface Editor is designed to simplify the process of creating a GUI and associated

interactivity by providing a clean and simple method of arranging elements, describing

slots/slot mappings and connecting slot mappings to signals. At a basic level the application

allows a user to describe the fundamental components of an interface in an abstract, visual

manner without the added complexity of functionality specific to a certain GUI framework.

This description can be stored and retrieved in a standard XML format without requiring the

user to write XML themselves.

2.1.1 Visualisation

Visualising components of an interface can greatly reduce the time spent on development

as well as shifting user focus from the intricacies of the interface or framework to the

usability and functionality of the interface in general. Various methods are used within the

editor to visualise the arrangement of elements and the interactivity. A visualisation of a

standard window is used to represent what the final interface will look like when rendered.

This window and elements within it do not react to events as they would normally. Elements

will only react to click-and-drag events which allow their position to be modified. Similarly

the window itself can only be resized. A simple and intuitive drag-and-drop style is used for

arranging elements. Dragging an element from the toolbox onto the window visualiser

surface places the element at the desired position. Further adjustments can be made to the

element by altering properties in the property grid. All changes made to elements via the

property grid are reflected in the window visualiser. Similarly the signal grid can be used to

assign slot mappings to element signals. An overall view of the interface is given by the

element tree which details each element within the interface, highlighting the hierarchy

created through component nesting.

2.1.2 Abstraction and Automation

Hard coding user interfaces is a notoriously laborious and time consuming process with the

added inconvenience of constricting the application to a specific programming language and

GUI framework. By adding a layer of abstraction above the GUI framework a versatile, cross

platform solution can be derived whereby no part of the system is coupled with any specific

platform or framework. The data types used to represent the visual parts of the interface

Final Report

11

are generalisations of elements which can be found in most common GUI frameworks such

as frames, text boxes and buttons. The properties associated with elements are also in a

generic form in order to avoid platform specificity. Similarly the methods for describing slots

and slot mappings are somewhat high level and implemented in a generalised manner,

abstract from any particular programming language. Many of the processes involved in hard

coding a GUI are automated within the editor. Each element has a certain set of defaults

potentially allowing certain simple interfaces to be created simply through the drag-and-

drop mechanism without changing any properties. Serialisation and deserialisation to XML

(loading and saving) is a completely automated process which at no stage requires the user

to manually edit the outputted file or produce their own XML. This removes the complexity

of learning the file syntax and manually writing XML.

2.1.3 Data Types

In order to implement the required functionality in a clean, maintainable, object oriented

manner a number of custom data types are implemented. All visual elements within the

application indirectly inherit from a superclass representing an element at the most generic

level possible. This class includes methods for controlling properties and signals as well as

the visual rendering of the element. From this superclass two additional classes are derived,

leaf element and branch element. A leaf element is one which cannot have children. This

subclass does not extend the superclass with additional member functions, instance

variables or properties but instead provides a method of distinguishing between element

types. The distinction between a leaf element and a branch element is that the latter may

have child elements contained within it. The branch element class extends the superclass by

including additional instance variables and member functions for handling the addition,

removal and retrieval of child elements. Declaring an instance of a branch element is

synonymous with creating the root node of an element tree. This form of composition helps

to provide a clear element hierarchy whilst gracefully accommodating varying types of

elements.

In order to simplify the serialisation/deserialisation of elements as well as many other

internal processes all properties are stored in a list structure defined within the element

superclass. Several different types of property are defined to represent the available data

types, such as string, integer and double. These property types all inherit from a property

superclass which defines abstract accessor and mutator methods as well as a method for

defining how the property type should be rendered within the property grid. Additional

metadata is stored with each property such as a “friendly” name which helps to explain the

purpose of a property in a more user friendly manner than the internal representation of

the name provides.

Each element can have a number of associated signals. A signal is equivalent to an event and

is represented by a simple data structure essentially associating a signal name with the

Final Report

12

name of a slot mapping. The slot mapping class is another simple container class storing the

mapping name, associated slot name and a list of parameter mappings along with

appropriate accessor and mutator methods. A slot mapping details which slot should be

called and the parameters which should be passed to it. The slot class is also a simple

container class storing the slot name and a list of parameters with their associated data

type. It allows functions within an application to be described in the most generic form

possible maintaining platform agnosticism. A slot is tantamount to an event consumer, the

entity which receives the signal from an element.

2.1.4 Static Architecture

Throughout the design of the editor, and indeed the entire system, an object-oriented

approach has been adopted. Object-oriented development has proven to be a viable

method of software development with many established conventions, practices and

patterns. A mixture of different object-oriented techniques has been applied where

appropriate. For the purposes of intelligibility and maintainability the editor is partitioned

into a number of logical classes and subsystems. Each class is stored in a separate file with

the appropriate name and extension in line with recommended conventions [1].

The application entry point Editor instantiates an instance of the EditorWindow class which

represents the main portion of the editor interface. The Editor class provides easy access to

the element, slot and slot mapping lists through a number of member functions and

accessor and mutator methods. This helps to control access and mutation of these

resources in addition to providing a central point at which they can be reached by

subsystems. From within the EditorWindow class dialog windows for controlling slots and

slot mappings are invoked. Each of these dialogs follows a similar, uniform pattern.

SlotsDialog provides a list of all the slots within the client application along with their

associated parameters. From this dialog new slots can be added and existing ones, along

with their parameters, can be amended or deleted. AddSlotDialog presents an interface for

creating a new slot by simply providing the name. Once a slot is created the main slots list is

updated and parameters can be added via the AddParamDialog. This dialog presents two

options for adding parameters: the name and data type. The data type is limited to the

available property types within the system as discussed in 2.1.3 Data Types.

Two helper classes are introduced to handle element IDs and application preferences. The

classes facilitate the delegation of trivial responsibilities and help to adhere to the

separation of concerns principle. The IDManager class stores all element IDs in use within the

application. Methods are provided for adding and removing IDs, resetting the class state,

checking whether an ID is available, and retrieving the next logical ID for a given element

type. All elements within the interface require an ID attribute from creation. The most

logical method of assigning default IDs is to append a number to the element type in a

superincreasing fashion, such as “Button1”, “Button2”. The use of such a class increases the

Final Report

13

computational efficiency and simplicity of the ID management process. The

PreferenceManager class allows the storage and retrieval of user customisable application

preferences relating to the editor. These preferences include font and window visualiser

grid size.

2.2 API Library

Arguably the most fundamental part of the overall system is the API library. This allows XML

interface definition files to be loaded and rendered within the client application. It also

handles the connection of user defined functions to events within the slot and signal

subsystem. The library has been designed with simplicity in mind and the ideal that the

developer should be able to focus on the core functionality of their application rather than

the trivialities and technical issues of the GUI and event handling. Figure H shows a

sequence diagram explaining how the client application and various components of the API

communicate.

2.2.1 Loading and Rendering

In order to load and display an interface an instance of the GUI class must be instantiated.

The load method must then be called passing the path to the interface file. The library

handles the parsing of all elements within the interface file including the element tree and

slot mappings. Similarly to the editor, elements are stored in a more abstract representation

implemented by the library as opposed to their native GUI toolkit forms. In accordance with

the adapter pattern the underlying components are stored as references within the

container class. This abstraction permits the use of any GUI toolkit. If the current toolkit

were to become unsupported it could simply be swapped out in favour of a different toolkit

without requiring modification of client applications. The choice of toolkit is determined by

the API library implementation and cannot be changed by the user.

Element access and manipulation methods are exposed through the API library. A Document

Object Model style is used to retrieve elements. The GUI class contains a GetElementByID

method which allows elements to be retrieved based on their ID. The underlying component

of each element can be retrieved through the API. Whilst this breaks encapsulation it also

facilitates lower level access to the toolkit component allowing more advanced users to

implement custom functionality or non-standard behaviour. This is not advised however as

functionality which works on one specific platform may not work universally. This practice

should only be exercised when the use of a single, specific platform is guaranteed.

Rendering of the interface is initiated by calling the display method. This method shows the

main window and invokes the main application loop allowing components to be rendered

and events to be handled.

Final Report

14

2.2.2 Connecting Signals

Whilst the interface editor handles the mapping of signals to slots the body of slot methods

must be written by the developer within the client application. This allows a greater degree

of freedom and flexibility as slot methods are not constrained in any way by the editor or

interface file. The method body can perform any of the functions available to the client

programming language and platform, the only condition being that the name and

parameters must match those described in the interface file.

The connection of the events of underlying components to slot methods is not handled

automatically by the library during interface loading. Instead the connect method must be

called passing an array containing all slot methods as a parameter. The library will then

match each slot mapping to a provided slot method, dynamically binding any parameters

where appropriate. Slot methods must be declared before calling the connect method.

2.2.3 Data Types

The API library includes many data types similar to those found within the editor (see Figure

G for a class diagram). The same set of elements is implemented following the same naming

pattern for properties. This ensures consistency throughout different subsections of the

system. A comparable pattern of inheritance is implemented within the library for elements.

Each element can inherit from either XElementLeaf or XElementBranch which in turn inherit

from the superclass XElement. The single distinction between XElementLeaf and

XElementBranch is that the latter must implement a GetContentComponent method to allow

for shortcomings within the GUI toolkit (see 3.2.3 Element Classes). XElementLeaf does not

add any additional functionality and is implemented solely for the purposes of consistency

and semantics. The element hierarchy has much less of a weighting within the library as it is

only used during the initial loading and processing of an interface file. As the element tree is

traversed the positions of nested elements are calculated relatively to the position of their

parent. Once this process is complete elements are stored in a flattened, non-hierarchical

manner. This permits efficient access to elements, which are indexed by their ID, with a

constant time complexity.

In order to maintain the most dynamic approach possible and facilitate run-time binding of

function parameters within the signals and slots subsystem element properties are stored

within a list rather than member variables. In order to ensure that the property list contains

data which is current internal responses to events must be implemented to handle external

state changes. For example when a user changes text in a text field this state change must

be reflected within the property list. Member functions unique to each element are used to

handle such scenarios. These functions are bound to the appropriate event of the

underlying component upon creation.

Final Report

15

An additional data type GUI is implemented to represent the entire interface. It contains all

of the elements, connections, slot mappings and connected methods needed to render the

interface and provide interactivity. Methods are provided for loading an interface file (Load),

connecting slot methods (Connect) and displaying an interface (Display). An additional

method GetElementByID is implemented to allow references to individual elements to be

retrieved based on their ID in a similar manner to the HTML DOM counterpart [2]. This is

useful in situations where a slot needs to mutate an element or multiple elements. The GUI

data type is the only data type within the library that must be specifically instantiated in the

client application. All other data type instances are held internally within the library and, in

the case of elements, are exposed via API methods.

In order to store the mappings of parameters to slots a SlotMapping data type is

implemented. This data type stores the associated slot name and a list of parameter

bindings. Each parameter binding is of the type SlotMappingBinding. This data type stores

the name of the parameter, a reference to the element and the name of property. A third

data type, Connection, allows slot mappings to be linked to the signals of an element. It

stores a reference to the element, a reference to the underlying event synonymous with the

signal and a reference to the slot mapping. Using this pattern slot mappings can be reused

as any number of elements can be connected to a single slot mapping. Using references to

elements and slot mappings rather than their string IDs helps to minimise the memory

footprint of the library whilst making the aforementioned resources quicker and easier to

access. All data types relating to the signals and slots subsystem are immutable from the

library user’s perspective and as such are not exposed via any API methods. Although

defined within the editor a data type representing a slot is not necessary as all the necessary

information is provided by the three above-mentioned data types and the slot methods

specified by the user.

2.2.4 Static Architecture

The static architecture of the API library is simpler than that of the editor. This is due in part

to the fact that it has fewer classes and that it does not have to allow for the same form of

interactivity as the editor. Each class is stored in a separate file for the purposes of

organisation and code maintainability. To facilitate portability and ease of use the library is

compiled into a module which can then be loaded into the client application using standard

module import techniques. This had the added benefit of disallowing permanent

modification of the library code ensuring that user’s stick to the standards and conventions

of the system. The API is architected using a black box approach whereby the internal

workings of the library are not exposed to the user. Instead the system can be

communicated with via API calls to perform actions such as loading an interface or

connecting events. The entire process of creating, rendering and receiving events from the

GUI is transparent to the client application.

Final Report

16

2.3 File Format

The file format used for storing interface definitions has been designed to be as generic and

flexible as possible. XML has been chosen as the most appropriate markup language for

implementing the file format due to its simplicity, flexibility and generality [3]. The

hierarchical nature of XML also makes it an ideal candidate for storing data as a tree

structure. The XML specification provides the basic syntax and structural elements of a

document upon which advanced data representations can be built. Many high performance

libraries exist for parsing XML documents. This enables elements within an XML document

to be deserialised within a client application into a native data structure. Similarly data held

within class instances in an application can be serialised into XML form. Any file loaded using

the editor or API library must adhere to this format otherwise successful loading and

rendering of the interface is not guaranteed. The file contains a root element xgui with a

further 4 mandatory elements within it: elements, slots, slot_mappings and connections.

2.3.1 Elements

The elements component of an interface file contains a hierarchical tree of elements within

an interface. Each element has a unique identifier (ID) associated with it which is used to

connect signals, map properties to parameters and perform the aforementioned functions

within the editor and library. Although no specific distinction is made between branch and

leaf elements, as is the case within the editor and library, it is implied. Any element may be

nested inside a branch element, such as a window, panel or group box, by locating it within

the elements element of the parent. This form of nesting is valid up to a depth of 10 to avoid

issues such as slow processing times and unnecessarily complex interface structures. The

consistency of element names is maintained throughout the system. Using canonical names

for elements makes it easier for the developer to become familiar with the system

particularly when switching between using the editor and editing interface files manually. It

also provides a clear abstraction from any GUI toolkit as well as simplifying the

implementation of the factory method pattern within the editor and library.

2.3.2 Slots

The slots element is only parsed within the editor and as such is not strictly required to

create a valid interface. Each slot represents an abstract view of a slot method within the

client application. A slot simply contains a name attribute and optionally a number of nested

parameters. The name of a slot is synonymous with the slot method within the client

application. Similarly each parameter is synonymous with an input parameter of the same

name.

Final Report

17

2.3.3 Slot Mappings

The slot_mappings element can contain a number of slot mappings describing which

element properties should be bound to particular slot parameters and to which slot the

mapping relates. Each slot mapping is referred to by a uniquely identifying name. Multiple

slot mappings can be defined for a single slot allowing slot methods to be reused whilst still

permitting different input parameters.

2.3.4 Connections

The connections element stores any connections between element signals and slot

mappings. Each connection contains an element ID, signal and slot mapping name. The

element ID refers to any element within the elements section. The signal is simply an

abstract text representation of the signal event such as click or text changed. These are

mapped to the events of underlying components within the library. The slot mapping name

refers to a slot mapping defined in slot_mappings which will be called when the signal is

emitted.

Final Report

18

3. Implementation

This section details the implementation process of the system based on the aforementioned

design. A low level, technical insight is given into how the system was developed in a

compartmentalised fashion. Splitting the system in this way makes initial development

simpler and makes future development more feasible. An important consideration

regarding the choice of tools and technologies throughout the implementation was

portability across different platforms.

3.1 Implementing the Interface Editor

The Interface Editor is one of the principle components of the system. It allows a user to

create an interface in a visual manner removing the intricacy of hand writing XML. The

editor hides much of the complexity behind developing an interface and associated

interactivity.

3.1.1. Development Tools

Java was chosen as the programming language and software platform for developing the

editor. Java offers significant benefits over other potential languages considered. In speed

benchmarks Java was shown to outperform Python, Ruby and Pascal in almost all tests

performed [4]. Java runs on almost all major hardware and software platforms through the

Java Virtual Machine without requiring modification or specifically targeted builds [5]. Less

tangible benefits of Java include the large user and support base, abundance of

documentation and rapidity of development. Much of the lower level and boilerplate

functionality of an application is handled natively by Java whereas this is not generally the

case when using languages such a C and C++. The Notepad++ text editor was used as the

principal tool for writing the editor code. The official Oracle implementation of the Java

platform and compiler (including the java and javac commands) was used.

3.1.2. Creating an Interface

3.1.2.1 Window Visualiser

The WindowVisualiser class extends the JInternalFrame class found within the Swing GUI

toolkit. JInternalFrame is a lightweight implementation of a standard JFrame implementing

much of the same functionality. The key difference is that a JInternalFrame is generally

added to a JDesktopPane rather than rendered as a standalone frame. A JDesktopPane

allows a virtual desktop to be created within an application. A limited subset of standard

frame behaviour is required within the editor. For example the user should not be allowed

to close, minimise or maximise the frame as this would disrupt the editor functionality.

WindowVisualiser imposes limits such as these whilst still maintaining the core functionality

of a JInternalFrame. Additional responsibilities such as performing window size calculations

and responding to drag-and-drop actions are also delegated to the class. The use of the

Final Report

19

native TransferHandler class allows components to be dragged from the component

toolbox onto the WindowVisualiser surface. A new element is instantiated via the

ElementFactory and positioned at the drop point.

3.1.2.2 Property Inspector

The property inspector is a highly customised implementation of a JTable. It presents

properties of the selected element in a tabular, key-value style allowing manipulation by the

user. Appropriate input components are used to manipulate the value based on the

property data type. For example a JComboBox with possible values of true or false is

presented for a Boolean property type. The JTable does not store any data; it simply

presents and facilitates editing of it. The underlying data is stored within an instance of the

PropertyTableModel which extends the AbstractTableModel. This data model links directly

to the properties of elements and is responsible for orchestrating retrieval and modification

of the underlying data.

3.1.2.3 Element Classes

The element superclass XElement defines the standard member variables and methods

required by all inheriting elements. This includes the component, a list of properties and a

list of signals. The component is a standard Swing component used within the window

visualiser. The list of properties and list of signals are both stored as a generic Map allowing

interoperability between concrete implementations such as HashMap or LinkedHashMap. In

this case LinkedHashMap is used as it preserves the insert order of list items maintaining

consistency across elements and allowing persistent, logical groupings of properties [6]. This

facilitates quick retrieval of properties and signals as they are indexed by their String ID. The

use of lists over member variables within subclasses allows for a higher level of dynamicity.

The problem of XML serialisation and deserialisation is mitigated as the same generic code

can be used regardless of the element subtype. All member variables are declared with

protected visibility allowing subclasses to access the data in full without the overhead of

invoking accessor or mutator methods. Additionally three abstract methods are declared

which subclasses are required to implement. The generateComponent method facilitates the

initial generation of the underlying Swing component. This is not done within the

constructor as properties are not provided until after object construction in certain

scenarios such as when creating an element instance from XML. The updateComponent

method updates the underlying component to reflect external property changes. This

method is essentially used to notify the object of a property change, usually originating from

the property inspector.

3.1.2.4 Element Factory

The ElementFactory is a simple implementation of the factory method pattern. The

implementation differs slightly from the standard factory method pattern as all variables

and member functions are declared static. This avoids unnecessary initialisation logic and

provides a quick, simple and global method of accessing the factory. Two member functions

Final Report

20

are defined for creating elements. The create method accepts an XML element as input and

returns a fully initialised instance of the appropriate subclass of XElement. Instead of

providing the element constructor with arguments this method calls the empty constructor.

Each property within the XML element is then pushed into the element instance. This allows

for a higher level of dynamicity as properties do not necessarily need to be known to the

editor beforehand. It also enables the reuse of identical initialisation logic across all element

types. The createDefault method creates an element instance based on the type provided

by a string argument. The element is initialised with hard-coded default values. This method

is used within WindowVisualiser for generating an element. To avoid the use of multiple

conditional statements two Map instances are declared. The first maps a string value

representing an element type to each class of element, the second maps a string value

representing a property name to each property type class. A static initialisation block is used

to instantiate and populate both of these maps removing the need for specific, external

initialisation. Class instances are dynamically instantiated based on a single lookup in the

element class map or property class map.

3.1.2 Signals, Slots and Slot Mappings

Each XElement can have a number of XSignal instances stored within a map. The XSignal

class is a simple container holding its own name and the name of the associated slot

mapping.

The XSlotMapping class essentially describes how properties of elements are mapped to slot

parameters. Slot parameters are stored in a map containing XParameterMapping instances

indexed by their name. Similarly to XSignal, XParameterMapping is a simple container

holding string values representing the element name and the appropriate property name.

All slot mappings within the system are stored in a static, globally accessible variable. This

enables reuse of slot mappings and avoids the complication of passing object references to

child dialogs. Besides standard accessor and mutator methods additional methods for

adding and removing slot parameters are provided. A toXML method is provided for creating

an XML representation of the class instance following a similar convention to the standard

toString method. This reduces the amount of code required when serializing the interface

into XML form as well as achieving further compartmentalisation.

Slots provide a generic, abstract way of representing a function within the client application.

They simply describe the semantics of a function, such as the name and parameters, rather

than what the function achieves. A language and platform agnostic view of functions is

taken. For example a parameter type is required regardless of whether the client application

is written in a loosely typed language like Perl or a strongly typed language like C#. The

system is designed such that parameter types are generalised to their closest equivalent

within the client application. For example if a C library were to be implemented the String

type could be mapped to the String data type provided by the C standard library or a

Final Report

21

character array. An enumeration is defined within the XSlot class canonically specifying the

available parameter types. A slot stores the slot name as a standard string. Parameters are

stored as a map associating the parameter name with a parameter data type. Similarly to

the XSlotMapping class a method is defined to serialize an XSlot instance into XML form.

Methods for adding and removing parameters are implemented to avoid breaking

encapsulation by exposing the underlying map.

3.1.3 JDOM File Handling

Although the Java platform includes several native XML APIs the community driven JDOM

library was chosen to handle XML documents. JDOM presents many benefits over the native

APIs. JDOM is written specifically for Java and as such makes use of many language specific

features. Where possible JDOM uses inbuilt data types such as String and standard

collection classes such as List and Iterator [7]. Another benefit is the class driven

implementation of the DOM. Creating new XML elements is a simple as instantiating an

instance of Element [8].

3.1.3.1 Serialising

The elements within an interface are stored in a hierarchical manner in the form of a simple

unordered tree. Instead of using a standard collection class a single root element, an

instance of XElementBranch, contains all of the elements within an interface either directly

or within child elements. When serializing elements into XML form a depth-first tree

traversal is performed using recursive methods. The generateXml method is called initially

providing the root element and a newly instantiated JDOM Element elements as

parameters. The appropriate data is appended to elements. If the hasChildren method

returns true a new JDOM Element elements is created to store child elements. The

generateXml method is called providing each child element and the elements element as

arguments. The hasChildren method is implemented by both XElementBranch and

XElementLeaf despite the fact that XElementLeaf can never contain child elements. This

simplifies the generateXml method by removing the need to check the superclass type via

getSuperclass in addition to checking whether the element has children.

generateXml(element, parent)
 new_element = new xml_element(element.type)
 for each property in element
 append property to new_element
 if new_element has children
 for each child in element
 elements = new xml_element(“elements”)
 generateXml(child, elements)
 append new_element to parent
Figure A – Pseudo code for the serialisation tree traversal algorithm.

The traversal algorithm (Figure A) has the desirable quality of preserving the insertion order

of elements. This helps to maintain consistency particularly when the interface editor and

manual editing of the XML file are used interchangeably.

Final Report

22

Slots and slot mappings are stored in a simple, linear map data type. Serialising these

elements is a simple case of iterating over each one and appending the results of the toXML

methods to the containing XML element. Serialising connections is a somewhat more

complicated process as connections do not exist as concrete or detached classes. Each signal

of each element is iterated over. If a slot mapping is defined for the signal, as determined by

the signals hasMapping method, a new connection element is generated.

The JDOM XMLOutputter class is used in conjunction with the standard java.io.FileWriter

to output the resulting byte stream to an XML file on disk. Despite the penalty on file size

the multi-byte UTF-8 encoding scheme is used. UTF-8 offers the benefits of an expanded

character set allowing any of the 110,000 Unicode characters to be represented as opposed

to the 128 offered by ASCII. The Unicode standard is designed to allow documents to be

used seamlessly across multiple platforms and programming languages [10]. XML output is

formatted in pretty-print style whereby elements are preceded by an amount of

whitespace, as decided by JDOM’s getPrettyFormat method, dependant on their depth

within the tree hierarchy [11]. This improves the readability of XML documents should

manual editing be desired.

3.1.3.2 Deserialising

Deserialisation works in a similar way to serialising. The SAXBuilder class is used to construct

a Document instance. SAXBuilder makes use of third party SAX parsers which offer a smaller

memory footprint and faster document construction times than other XML parsing methods

[12] [13]. The standard java.util.Iterator interface is used to iterate over all of the sub

elements within the document (elements, slots, slot mappings and connections). The same

tree traversal procedure that is used for serialisation is applied to deserialisation to maintain

consistency. The handleNode method is called recursively providing the XML element to

process, its parent node within the visual interface tree and its XElement parent.

3.2 Implementing the API Library

3.2.1 Development Tools

The Python programming language was used to implement an exemplar API library however

the structure could easily be applied to any programming language. Version 2.7.4 (the most

recent version at the time of development) of the official Python implementation is used. In

addition to this the ElementTree XML API (xml.etree.ElementTree), wxPython (wx) wrapper

and Python Imaging Library (PIL) are also used.

3.2.2 Deserialising

The API library only facilitates loading of an interface not permanent alternation. As such

interface files only need to be deserialised. The Element class within the ElementTree API

allows an XML files to be parsed in a similar way to JDOM making use of the native data

Final Report

23

structures within Python. The element hierarchy is traversed using the same tree traversal

procedure described in 3.1.3.2 Deserialising. The most significant difference is that the

library flattens the hierarchical structure by indexing elements by ID in a dict mapping type

rather than nesting them hierarchically. As a result elements cannot be dynamically added

or removed from the interface as this would require the hierarchy to be retained. As the

dict type is an implementation of a hash table API methods such as getElementByID are

generally more efficient as the average time complexity is O(1) with a worst case of O(n)

[14]. In the majority of cases hash tables are also more efficient on memory as recursive

tree traversal can often require large amounts of memory on the stack. When the

GenerateComponent method of an element is called it must be passed the containing branch

element as a parameter. When instantiating a wxPython widget a parent should be

provided unless it is the top level widget within the interface. Within the library this also

helps to determine the Z-order of components as well as their relative position within the

interface.

Slots do not need to be deserialised as the functions they abstractly describe exist within

the client application as standard functions. Sufficient information exists within the slot

mappings and connections elements to connect events of underlying components to the

signals and slots subsystem.

3.2.3 Element Classes

A superclass XElement contains a dict object for storing properties which simplifies the

deserialising process. Appropriate accessor and mutator methods are provided for changing

property values (SetPropertyValue), retrieving a property value (GetPropertyValue) and

checking whether and element has a property (HasProperty). The subclasses XElementLeaf

and XElementBranch inherit from XElement. All subclasses of XElementBranch must

implement a GetContentComponent method. This allows each subclass to return the

component which will contain child elements as this may not be the principal underlying

component. For example the underlying component of XWindow is an instance of wx.Frame

however child elements are stored within a wx.Panel instance. This overcomes problems

encountered in the initial prototype whereby certain components, such as wx.Frame, would

not render correctly unless child components were added to a wx.Panel instance (see Figure

B).

Final Report

24

Figure B - Error encountered on Windows 7 and subsequent fix.

The XWindow element is one of the most complex elements to construct within the system.

This is due to the fact that the underlying wx.Frame component uses integer constants to

represent different window styles. For example wxCLOSE_BOX renders a close button on the

window and wxSTAY_ON_TOP places the window on top of other windows [16]. Multiple styles

can be combined using bitwise and/or operators [17]. The complexity arises when the

decomposed window styles within the interface file need to be represented using

wxWidgets constants. As attributes such as closable and resizable are stored in Boolean

form this requires an initial window style to be declared upon which subsequent attributes

are appended by performing a bitwise and operation on the initial style and the desired

style.

To simplify API use subclasses of XElementBranch and XElementLeaf are extended with

member functions. These functions allow manipulation of the attributes unique to each

element. For example XImageBox includes GetImage and SetImage methods whereas

XTextBox includes GetText and SetText methods. Python’s use of duck-typing greatly

simplifies this style of implementation as casting or type checking is not necessary [18]. This

approach may not be as appropriate in languages with stricter type checking.

3.2.4 API Entry Point

3.2.4.1 Encapsulation

Although Python does not explicitly enforce class member visibility constraints, such as

public, private or protected, certain naming conventions can be used to convey the intended

visibility [19]. Name mangling is used to declare class members as private to preserve

encapsulation and avoid inadvertent errors introduced by the client application. Class

members prefixed with two underscores cannot be modified accidentally as the member

name is textually changed by the Python interpreter [20].

Final Report

25

3.2.4.2 GUI Class

A GUI class is introduced encapsulating all of the required class instances and API methods

within the library. This is essentially the single entry point of the API as all interactions must

be directed towards an instance of this class.

3.2.4.3 Load method

A Load method is defined which parses the XML file passed to it and generates all necessary

class and component instances. File parsing is not accomplished in the constructor in order

to facilitate future development. For example future versions could allow interfaces to be

programmatically constructed without requiring file parsing.

3.2.4.4 Connect method

The Connect method allows slot functions defined within the client application to be linked

to the signals and slots subsystem. This method stores the functions passed to it in a dict

object then iterates over each connection attaching the appropriate event. The Bind

function within wxPython is used to link the events of an underlying component to a private

DispatchEvent method within the library. A lambda expression is used to pass the wxPython

event object and matching slot mapping to the method. DispatchEvent effectively routes an

element signal to the appropriate slot with the desired parameters.

3.2.4.5 Display method

The Display method performs the final functionality required to render the interface and

initiate the wxPython events system. Displaying the interface is a simple case of calling the

Show method of the top level element. In order to respond to events the application event

loop must be started. This is achieved by calling the MainLoop method of the underlying

application. The event loop operates asynchronously for the duration of program execution.

The underlying wxPython application follows the default blocking behaviour running on a

single thread [21]. As a result any code included after calling the Display method will not be

executed until after the event loop has exited and interface rendering has ceased. Code

within slots is unaffected as it is executed from within the event loop. The decision to use a

single threaded approach rather than introducing multithreading stems from the

requirement for system simplicity. Multithreading requires additional code to handle

concurrency and synchronisation issues increasing the complexity of the codebase.

The use of a single threaded model introduces a fairly significant problem which was not

foreseen during the initial system design. Code which is particularly CPU intensive or incurs

significant time or resource overheads can interfere with the execution of the client

application. This results in poor performance or in extreme cases suspends the interactivity

of the interface indefinitely. See Error! Reference source not found. for further explanation.

3.2.4.6 GetElementByID method

The GetElementByID method is introduced to allow programmatic access to the elements of

an interface without breaking encapsulation. When called passing an element ID String it

Final Report

26

returns a reference to the appropriate element from the internal dictionary or None if no

such element could be found. It is analogous to the HTML DOM counterpart of the same

name which allows elements within an HTML document to be retrieved in a similar way

[22]. Initial iterations of the library stored elements in a hierarchical manner. This meant

that in the worst case all tree nodes would have to be traversed to try and find the

appropriate element leading to a time complexity of O(n). The latest iteration of the library

uses a Python implementation of a hash table which offers a more efficient approach (see

3.2.2 Deserialising).

3.2.5 Signals, Slots and Slot Mappings

A list of connections between signals and slot mappings is generated when an interface file

is deserialised. A connection stores references to the element it relates to, the slot mapping

which will be called and the event within the wxPython framework which the signal

represents. To simplify the association of signal names and underlying events the library

contains a dictionary mapping signal names to wxPython events such as click →

wx.EVT_BUTTON.

A list of slot mappings is stored relating functions passed to the library through the Connect

method with a set of parameter bindings. This allows the DispatchEvent method to pass the

appropriate parameter values to slot functions. When the DispatchEvent method is called a

dictionary is constructed mapping a parameter name to a value. The ** operator is used to

unpack the dictionary into an argument list which is passed to the appropriate slot [23]. The

use of argument list unpacking allows the parameter binding mechanism to remain as

dynamic as possible whilst still allowing functions to be written in a standard way using

parameters. The alternative would be to force users to write slot functions which accept an

array of values as an argument however this would not feel as natural as using parameters

for the majority of users in addition to increasing complexity.

3.3 File Format

The file format is designed with simplicity and extensibility in mind. All elements are clearly

distinguishable as each element has a different tag to signify its type. This offers more clarity

than using the same tag for each element and further specifying the tag as an attribute such

as <XElement type=”XButton”> as found with certain elements, like <input>, in the HTML

specification [24]. Attributes are used solely when specifying unique identifiers for elements

within the document. For example <XButton id=”button1”> or <slot name=”subtract”>. All

other data is stored within child elements, such as <width>200</width>, creating a clear

distinction between properties and identifiers. Originally a set of XML schemas were going

to be developed outlining the structural restrictions of an interface file however due to time

constraints this became infeasible.

Final Report

27

4. Results and Evaluation

This section of the report explains the various testing procedures employed to analyse how

well the system functions and the extent to which the project aims and objectives have

been met. The benchmarking and profiling procedures used to measure the performance

and efficiency of the final solution will be discussed in addition to a critical appraisal of the

extent to which the requirements outlined in the interim report have been met.

4.1 Evaluation Strategy

The evaluation aims to critically assess the system against all of the original functional and

non-functional requirements through a variety of experiments. Due to the exploratory

nature of the project a qualitative approach is adopted for the majority of experiments. This

allows the actual functionality to be evaluated rather than the intricacies of performance

and efficiency. The experiments each aim to evaluate a variety of aspects encompassing

both the high level functionality of the system and lower level, technical issues.

4.2 System Experiments

A series of evaluation experiments were performed based on the functional and non-

functional requirements specified in the interim report. These experiments provide both

quantitative and qualitative measures of how well the requirements have been met as well

as justifications for any requirements which have not been fully met or areas in which the

system falls short. These tests were conducted using multiple testing approaches. For

certain aspects a black-box approach was taken whereby only the system requirements

were taken into consideration, not the internal design of the system. For other cases grey-

box testing (a mixture of black-box and white-box testing) is used. This allows internal

elements of the system to be evaluated whilst still discussing them at a high level.

4.2.1. Render an Interactive, Cross-Platform GUI

4.2.1.1 Setup

The aim of this experiment is to demonstrate that the system can successfully render an

interactive user interface across multiple different platforms. Three approaches are taken to

demonstrate this. The first approach involves evaluating the stated system compatibilities of

the libraries and development platforms chosen to build the system. The second approach

offers an empirical analysis across multiple platforms observing the behaviour of the

system. The third approach discusses how the overall high level architecture facilitates cross

platform development and potential future expansion.

4.2.1.2 Execution

In order to determine whether the system is theoretically cross platform the operating

system compatibility of each of the external dependencies was researched. This involved

Final Report

28

examining vendor websites and documentation. Additionally licensing restrictions were also

researched to determine whether the system could potentially be released as open source

software. The following table details the platforms, technologies and libraries used within

each component of the system, the most common compatible operating systems and the

software licence.

Platform/Technology/Library Compatibility Licence

Java (official Oracle
implementation).

Windows XP and above, Mac OS X
10.7.3 (Lion) and above, Oracle
Linux 5.5+, Red Hat Enterprise
Linux 5.5+, Ubuntu Linux 10.04 and
above, Suse Linux Enterprise Server
10 SP2/11.x [25].

Proprietary but
unrestrictive licence
[27].

Swing Same as Java. Same as Java.

JDOM Same as Java. Apache-style open
source license, with
the acknowledgment
clause removed [28].

Python Debian, OpenSuse, Fedora,
Slackware, FreeBSD, OpenBSD,
OpenSolaris, Windows XP and
above, Mac OS 10 and above [26].

Python Software
Foundation Licence
[28].

wxPython Same as Python. Open source
wxWidgets Licence
[31].

XML Any platform capable of
interpreting text files in the given
encoding.

Open standard.

This table demonstrates that the system is theoretically compatible with a sufficient cross

section of operating systems to be deemed cross-platform. The list of operating systems

may not be exhaustive as only the platforms with which they have been fully tested on are

included. They may be compatible with other operating systems that are not listed however

this would have to be determined on a case-by-case basis.

According to the above table the system should be compatible with most common

operating systems. In practice however each operating system tends to have compatibility

issues unique to either the software or the operating system itself. To evaluate this the

system was tested on a number of different operating systems. This testing was conducted

as a black-box end-to-end test whereby certain scenarios involving a large number of paths

through the system were enacted and the results observed. The results were almost entirely

positive showing only minor visual differences across platforms.

Another aspect of the system to consider is whether the overall, high level architecture

facilitates cross-platform compatibility. Testing this is a non-trivial task which cannot be

Final Report

29

truly validated without implementing and thoroughly evaluating multiple API libraries across

a vast range of platforms. Hypothetically the system architecture facilitates a wide variety of

GUI toolkits. The XML file has been designed to serve as a layer of abstraction between the

interface layout and the GUI toolkit. As such the system is somewhat loosely coupled with

the GUI toolkit.

The architecture of the system has many parallels with HTML and web browsers. The

structure of the interface is described in a file which the API library parses within a client

application in much the same way that a browser parses an HTML file. It is the API libraries

responsibility to render the interface as accurately as possible on the user’s device in a

similar manner to how a web browser would render webpage.

4.2.1.3 Results

 The system follows many of the same patterns and conventions of HTML therefore

in principle it should prove equally diverse and universally compatible.

 The system is compatible with a wide range of the most popular desktop operating

systems.

 The architecture is flexible enough to support almost any device capable of

processing XML documents.

 The architecture greatly facilitates future development and expansion.

 As long as the underlying GUI toolkit does not radically differ from standard

conventions it will fit within the system architecture without requiring changes to

dependant classes.

4.2.2. Visual Interface Designer with XML Serialisation

4.2.2.1 Setup

This experiment aims to evaluate whether the visual interface designer has been effectively

implemented allowing interfaces to be created in a high level fashion. Additionally it

evaluates whether interfaces can be accurately serialised into XML form.

4.2.2.2 Execution

This experiment can be validated fairly simply. The most effective way of testing whether

the interface editor is capable of serialising visually designed interfaces into XML files is to

perform end-to-end tests. This involves creating an entirely new interface within the editor

including visual elements, slots and slot mappings. Additionally unit testing is used to ensure

that the editor accurately serialises the required data structures into valid XML.

Final Report

30

Figure C – An example application in the GUI Editor.

A simple image processing application (Figure B) was developed from start to finish using

solely the interface editor and a basic text editor for writing the Python client application.

The editor provided all of the required functionality to successfully create the interface.

Formally measuring and comparing the time required to produce an interface in the editor

against manually writing XML is a non-trivial task. As such the simplest approach was to

conduct user tests whereby a small selection of users were asked to complete tasks whilst

under observation and provide feedback. Due to time constraints only a small group of

users could be feasibly tested. These users have varying degrees of technical ability and

background knowledge relevant to the system. Users were asked to implement a simple

application encompassing features of the editor including designing an interface, creating

slots and assigning slot mappings to signals. The general consensus was that using the

interface editor is far more productive than hard coding interfaces using a specific toolkit

and programming language or manually writing XML. Users appreciated the interface

visualisation and instant reflection of property changes as visualising an interface from a

hard coded definition is often a laborious process. Advanced users in particular found the

lack of inbuilt XML editing capabilities surprising however agreed that it did not pose a

major problem.

Final Report

31

Simple unit tests were performed as part of the incremental integration testing strategy to

ensure that the editor functioned correctly. All of these tests succeeded showing that the

editor fulfils its purpose on a technical level.

See 4.2.7. Produce Example Applications for further example applications and a more

detailed explanation of the image processing application.

4.2.2.3 Results

 The interface editor provides a convenient method for quickly and simply defining an

interface.

 XML interface files can be serialised/deserialised quickly, simply and accurately

whilst still allowing manual editing.

 In most cases it would be quicker to use the interface editor over manually writing

XML.

 The editor succeeds in instantly visualising an interface and reflecting property

changes immediately.

 The interface editor suits all user groups but appeals more to beginner and novice

users. Advanced users may be frustrated at the lack of built in XML editing

capabilities.

4.2.3. Implement two API Libraries

4.2.3.1 Setup

This experiment evaluates whether two cross-platform API libraries have been successfully

and efficiently implemented. The API library goals are tested to ensure that interfaces can

be accurately rendered within a client application without differing too much from their

representation within the editor. The library portability is briefly assessed to ensure it can

be used on an acceptably diverse range of operating systems.

4.2.3.2 Execution

The original requirements specification states that two API libraries were to be developed.

Due to time constraints however this proved infeasible and as a result only a single API

library for the Python programming language was implemented. Unit testing and end-to-

end testing ensure that this library fulfils the required role of exposing system functionality

whilst maintaining a clear abstraction from the underlying GUI toolkit.

The API library clearly demonstrates all of the methods required to render an interface and

handle events. The structure established by the library implementation should be applicable

to any programming language or platform; any arbitrarily chosen programming language

and GUI toolkit should prove to be equally viable as Python and wxWidgets. This

implementation essentially serves as an example of the principles and standards that other

library implementations should follow.

Final Report

32

It was initially envisioned that timings and benchmarks would be required to verify whether

a significant time penalty is incurred by using XML over hard coded interfaces. Naturally any

system which requires additional I/O operations and processing, in this case retrieving and

parsing an XML file, will incur a performance penalty. Through somewhat prolonged use of

the system it was observed that only a minimal delay is encountered during the start-up of

client applications. As such it was deemed unnecessary to conduct further timing and

performance analysis. Once the interface has been constructed within the client application

the responsibility of rendering is almost entirely passed to the GUI toolkit, platform and

operating system. Quite often the processes used are finely tuned for optimal performance.

Attempting to analyse and improve performance of the API library would be time

consuming an unnecessary. Certain scenarios, such as constructing particularly large GUIs,

may incur large time penalties however it is generally considered bad practice to create

interfaces with a large number of elements [27].

Thorough testing across operating system was not feasible due to time constraints however

the system was tested on 3 of the most common platforms: Windows 7, Linux Mint and Mac

OS X. The result of the testing was positive showing that the API library performed its

required functionality on all 3 platforms. Further, more extensive testing would be required

to fully evaluate compatibility.

4.2.3.3 Results

 Although only one API library was developed it sufficiently demonstrates the

functionality of the system.

 Development of further API libraries for a variety of programming

languages/platforms would render the system a more viable solution.

 The library functions well on the limited platforms tested.

 Further testing is required to ensure the system is compatible with other operating

systems. Theoretically the library should be compatible with many platforms as

described in 4.2.1. Render an Interactive, Cross-Platform GUI.

4.2.4. Emulate the Functionality of a DOM

4.2.4.1 Setup

This experiment analyses how effectively Document Object Model functionality has been

implemented within the API library and how well the overall architecture supports it. This

involves comparing parts of the system to analogous components within the HTML DOM

specification with which many similarities can be found.

4.2.4.2 Execution

Although it would be unwise to implement most of the features within the HTML DOM

specification certain methods and practices have been adapted for use within the project.

Most notably the GetElementByID method is used within the API library to retrieve an

element based on its ID string in an identical manner to its DOM counterpart. This is the

Final Report

33

only method within the API library which is directly based on the HTML DOM. As such the

API library cannot truly be compared to the full DOM specification which includes a much

richer set of methods and encompasses more aspects than simply the API definition. A

comparable pattern of inheritance is employed whereby all elements inherit from a base

class upon which additional functionality and responsibilities are added [28]. The approach

taken is more simplistic than the DOM as there are only two base classes from which

elements can inherit. The DOM specification describes a much larger number of element

types, most of which are not necessary in the context of the system [29].

4.2.4.3 Results

 The GetElementByID method is an effective method of programmatically accessing

elements within client applications.

 Implementation of additional DOM-based methods could enhance usability,

flexibility and efficiency.

 A similar inheritance structure to the one described in the DOM specification is used.

This further supports the inheritance choice as the DOM is a reliable convention.

 Full implementation of and compliance with the DOM specification are sacrificed in

order to maintain simplicity.

4.2.5. XML Event Signalling Mechanism

4.2.5.1 Setup

This experiment tests how well the signals and slots subsystem has been implemented. This

involves evaluating the flexibility and abstractness of the XML representation in addition to

evaluating the effectiveness and performance within the API library.

4.2.5.2 Execution

The signals and slots mechanism allows abstract events to be mapped to functions within

the client application. All of these mappings are stored within the XML file and can be

created simply and easily within the editor as shown in Figure D and Figure E. Slots allow an

abstract, language neutral definition of a function to be stored containing the function name

and any parameters along with their data type. Within the editor slot mappings can be

assigned to events allowing dynamic binding of element properties to parameters of slot

functions. This proved a very effective method of event handling as it provides a clear

overview of the functionality within the client application and allows slots to be reused.

Final Report

34

Figure D – The slots dialog showing 9 slots in the image processing application.

Figure E – The signal inspector showing a slot mapping assigned to a click signal.

Storing the entire event scheme in an XML file simplifies the client application as slots do

not have to be programmatically hooked up to signals. Instead the developer simply needs

to implement each of the slot functions and pass them to the API library in a single method

call. Similarly parameter bindings are handled entirely within the XML file and API library

meaning that no additional code is required to obtain the required values from elements.

The major drawback is that only a predetermined list of data types is available for slot

parameters. It is not possible to implement slots requiring custom data types as arguments.

Final Report

35

Another downside is that only slot input is handled by the library, not output. Slot methods

must handle all desired functionality including any manipulation of elements. Return values

cannot be used as the API library simply ignores them.

4.2.5.3 Results

 The XML format enables a wide variety of slot methods to be encoded.

 Custom data types cannot be used which may prove restrictive for certain use cases.

 Slots and parameters can be mapped in a simple high level manner within the editor.

 Handling output would be advantageous as the entire event mechanism could be

encoded in XML and handled within the API library.

4.2.6. Facilitate High Levels of Customisation, Flexibility and Expandability

4.2.6.1 Setup

This experiment aims to evaluate two closely related requirements:

 Create a flexible system built for expandability.

 Maintain a simplistic, consistent and lightweight approach.

This experiment evaluates the extent to which the system as a whole facilitates future

extension and whether the current implementation maintains a consistent and simplistic

approach. The overall aim is to identify the boundary after which it becomes impractical to

use the system over directly hard coding interfaces.

4.2.6.2 Execution

Quantifying the flexibility of the system is a challenging problem particularly when the lack

of rigorous testing is considered. As such a qualitative approach is taken whereby the

various technologies and practices used are evaluated.

The example applications created for this evaluation demonstrate that the system can be

used to create a diverse range of applications. One of the principle limitations of the entire

system is the element set. In order to ensure universal compatibility only a prescribed set of

elements can be used. Disregarding elements which are only available in a subset of GUI

toolkits limits the flexibility of the system however allowing elements on a per-framework

basis would undermine one of the foremost principles of the project. Solutions to this issue

are discussed further in 5.1.2 Enhanced Element Set. The internal functionality of slot

methods within client applications is not limited at all by the system. The functions

performed by slots are bounded solely by the programming language and platform.

One of the founding principles of XML is facilitating extensibility [28]. New element types

can be introduced to the file format without requiring excessive effort as long as the editor

and all API libraries are updated to handle the new element. Adding new elements to the

editor and API library is a simple case of extending from the correct base class

(XElementBranch or XElementLeaf) depending on the type of element. Although

Final Report

36

documentation for the system is lacking the required variables, methods and functionality

of new elements can be easily based on existing elements of the same type. The use of lists

for storing element properties within the editor removes the requirement for implementing

serialisation/deserialisation logic.

Throughout the implementation a simplistic and lightweight approach has been adopted.

The API library demonstrates how a minimalistic approach has been taken. All of the

required functionality has been implemented using the smallest number of methods

possible whilst still maintain separation of concerns. The file format does not include any

unnecessary data. For example property data types are determined within the editor or API

library rather than being specified within the file.

A consistent naming scheme for properties is used throughout the system mitigating the risk

of confusing or redundant terminology. For example the text property refers to the inner

text of any element including windows, text boxes, labels and buttons. This avoids confusion

often found in certain GUI toolkits where title, text, label and caption are often used to refer

to the text component of an element. Similarly conventions are used for class naming. Any

class which belongs to the system is prefixed with the letter X. This avoids problems such as

name conflicts as some platforms may already contain classes with names such as Button or

Slot (these classes would be named XButton and XSlot instead). This also avoids the

complication of using namespaces particularly for languages which do not support them

such as C.

It is not possible to identify a concrete boundary after which the system becomes infeasible

for a given use case. For certain purposes such as generic, linear applications the system

performs well. The system has also proven to be feasible for creating certain advanced

applications such as those which require advanced interaction with other libraries. Areas in

which the system may demonstrate inadequate performance include resource intensive

processing and applications requiring dialog boxes or child windows. Development of

applications requiring highly specific, non-standard behaviour from the GUI toolkit may not

achievable within the system.

4.2.6.3 Results

 The system can be used in a versatile range of applications.

 The limited element set may decrease flexibility however it helps to fulfil the more

important goal of universality.

 Slot functionality is not specifically limited by the API library.

 The use of XML and dynamic property lists facilitates and greatly simplifies expansion

of the system.

 A minimalistic approach simplifies the system hence lowering the barrier to entry.

 Consistency and conventions help to simplify the system use and mitigate

misunderstanding.

Final Report

37

 The system can be used to create a wide variety of applications however there is no

clear boundary separating feasible and infeasible applications.

 The system is not suitable for applications requiring non-standard elements or

behaviours.

4.2.7. Produce Example Applications

4.2.7.1 Setup

This experiment demonstrates the core functionality and versatility of the system via an

example application. The following three initial requirements are evaluated:

 Produce a small number of example applications.

 Allow both small/trivial and larger scale/complex applications to be created.

 Facilitate a high level of GUI customisation.

The example application demonstrates a fairly unique application in addition to showing

how the API library can interoperate with existing Python libraries. The example also

demonstrates how a large number of elements can be included within an interface and how

DOM style API methods can be used to implement the required functionality.

4.2.7.2 Execution

To demonstrate some of the core functionality and versatility of the system a basic image

processing application was created. This allows a user to load an image from a file and apply

basic filters to it using the Python Imaging Library. The entire interface was created using

the Interface Editor without any manual editing of the XML file needed. The XImageBox

accessor and mutator methods handle encoding and conversion of image formats allowing

images in PIL format to be used interchangeably with the wxPython image format.

The application suffers from stability issues when large images, typically above 1MB, are

processed. This is due to the threading issues as mentioned previously (see 3.2.4.5 Display

method). A multithreaded approach would allow long running or resource intensive

processes, such as image processing, to run in a separate thread to the main event loop.

Figure F shows screenshots of the application, Figure I in the appendices shows the XML

code used for the interface and Figure J shows the Python code behind the application.

Final Report

38

Figure F – The example image processing application showing initial state and “Find Edges”.

4.2.7.3 Results

 The system succeeds in rendering a versatile range of elements.

 The editor allows a fully interactive interface to be created without requiring manual

editing of the XML file.

 The API is simple to use requiring very few calls to load and render a fully interactive

interface.

 The signals and slots mechanism provides a simple and effective approach to

abstractly handling events.

 Performance issues exist that must be resolved before the system can be considered

viable for more resource intensive applications.

4.2.8. Create and Document XML Schemas

4.2.8.1 Setup

This experiment evaluates whether XML schemas and documentation have been

successfully produced for the system.

4.2.8.2 Execution

It was initially believed that the use of XML schemas would be fundamental to the project

however during the course of system implementation it was found that they were not

essential. The original intention was to use XML schemas to validate an interface file to

Final Report

39

ensure it conformed to the required standards as it was loaded via the editor or API. In place

of schema validation individual properties are validated as they are changed within the

editor. Although this limits dynamicity it greatly simplifies the editor backend and allows for

more intuitive user feedback. A significant investment of time would be required to

implement a method of parsing a schema file and dynamically checking conformance on a

per-property basis. A simpler approach may be to simply re-validate the entire XML file on

every property change however this is inefficient and would require backtracking if invalid

property values were provided. Additionally non-trivial re-engineering would be required to

implement this as the editor does not generate XML in real-time. Instead it is generated

from the ground up on each file save.

From the user’s perspective XML schemas do not present an intuitive form of

documentation particularly for users with a non-technical background. As such written

technical documentation would be a more effective means of explaining system use and

functionality over document schemas. The conventions and practices adopted within the

system are fairly self explanatory and can easily be learnt by observing examples. The self-

describing nature of XML further enforces this. Furthermore there are few situations which

would require the user to manually edit the XML file. This would be largely undertaken by

advanced users who would likely posses the technical capability to instinctively understand

the system. It is usually necessary to cater to the majority particularly when developing

under a strict time schedule as with this project.

4.2.8.3 Results

 Although the system fails to satisfy this requirement it has not had a profound,

negative effect on the overall functionality of the system and does not hinder

usability to an observable degree.

 It may be beneficial to produce XML schemas for future releases of the system

particularly as additional, more complex element types are supported.

 In the interests of community development and potential open sourcing a formally

prescribed standard would prove invaluable. This would enable third party

developers to create their own tools or libraries based upon the standard in much

the same way that tools have been created to support development with HTML.

4.2.9. Accommodate a Variety of Abilities

4.2.9.1 Setup

This experiment aims to evaluate whether users of varying abilities are accommodated

within the system. This is achieved by analysing the various demographics for which the

system is relevant and justifying the extent to which the system would benefit them.

Software design methodologies are considered to evaluate whether the system is

particularly suited to certain ones and at which stages within the software development

lifecycle it is beneficial.

Final Report

40

4.2.9.2 Execution

The intuitive design of the system accommodates a large and varied user base. The principle

demographic is expected to be experienced developers however the low barrier to entry

allows other participants in the software development lifecycle to engage. The following

table outlines some of the main users who could benefit from the system and to what

extent.

User Role Justification

User Interface Designer Captures requirements and
creates basic wireframe designs
based upon them.

Interfaces can be created at a
high level without involving any
low level technical knowledge.

Programmer Implement the programmatic
functionality of applications.

Slot methods are implemented
in the client application with
connections to signals being
created in the editor.

Tester Test whether an application
meets requirements.

Various aspects of the system
can be tested individually e.g.
the interface can be tested
separately from the
functionality.

Researcher Implement algorithms, evaluate
data sets and interface with
command line applications.

Quick and simple interfaces can
be created allowing focus to
remain on the functionality.

Student or Hobbyist Create a wide variety of
applications not necessarily
professionally.

The system has a very small
learning curve lowering the
barrier to entry.

In addition to offering a viable alternative to hard coding user interfaces the system also

doubles as a valuable Rapid Application Development tool particularly for the user design

and construction phases. The second stage of the RAD methodology, known as the user

design phase, involves interaction between analysts and users leading to the development

of models and prototypes of all system processes, inputs and outputs [27]. This fits well with

the functionality of the editor whereby all of the methods and inputs must be modelled as

slots however outputs are not taken into consideration. The visual designer could be seen as

a simple, high level prototyping tool with the added benefit of allowing prototypes to lead

to fully interactive interfaces mitigating the need to replicate the design during production.

Although many of the features of the editor present a high level view of an application low

level knowledge of the chosen programming language is still required in order to implement

the actual functionality. The system offers compartmentalisation in that certain teams or

individuals could work solely on the interface and user experience whereas others could

work solely on the programmatic functionality within the client application.

Final Report

41

4.2.9.3 Results

 The system allows users with a wide range of abilities to make effective use of the

system however certain users may find it more useful than others.

 To fully implement an application lower level knowledge of the chosen programming

language is still required in order to implement the slot methods.

 The system fits particularly well with projects adopting the RAD methodology

however doesn’t penalise users for choosing alternatives.

4.3 Summary

A number of key areas requiring improvement have been identified as a result of the

evaluation experiments. Despite this the project has shown potential and with further

development could provide a viable alternative to hard coding user interfaces within

production environments. It has been shown that there is a somewhat blurred boundary

after which the using system becomes infeasible. Certain constraints such as the closed

nature of the API library and the lack of support for custom data types make applications

requiring non-standard interaction with GUI elements or custom data types implausible.

Recommendations for future improvements based on this evaluation are described in 5.

Future Work.

Final Report

42

5. Future Work

This section discusses future enhancements and extensions that could be made to the

system. The outcomes of the evaluation highlighted many areas in which the system offers

sub optimal performance or lacks certain features. As a result many of the

recommendations suggested in this section are based upon the evaluation. Other

recommendations are solely features which may be appealing to developers in order to

improve the usability of the system or facilitate extra functionality. This section offers a

succinct starting point for anyone looking to further build upon the system produced during

this project.

5.1 Future Enhancements

It was found that some of the aims and objectives of this project could not be fully realised

due to time constraints. The following 9 recommendations highlight some of the key areas

in which the system is currently lacking covering both the editor and API library as well as

the overall architecture. These are the areas of development which have been considered

yet have not been acted upon due to the limited time available for project completion.

5.1.1 Additional API Libraries

Currently only a single API library has been implemented targeting the Python programming

language. In order for this project to be considered truly universal it is necessary to produce

API libraries for a variety of platforms and programming languages. The most rational

approach would be to target the most appropriate, popular programming languages in

order to cater for a large cross section of the development community. Java, C, C++ and C#

account for around 50% of the most popular programming languages in use today and as

such would be the most desirable languages to implement API libraries for [27].

Implementing libraries for traditionally non-desktop languages such as PHP may not be the

best strategy with the current system architecture despite their popularity. This is discussed

further in 5.1.3 Mobile Support.

5.1.2 Enhanced Element Set

The current element set includes most of the standard components required by a user

interface like text boxes, buttons and labels. This could be extended to include the full array

of components supported by each framework. This may introduce some consistency issues

for example if certain elements are not natively supported in all pertinent GUI toolkits. One

possible solution would be to implement composite elements within API libraries where the

underlying GUI toolkit does not natively support the element. For example the Microsoft

.NET framework supports a checked list box control which allows the user to check/uncheck

list items [28]. The Java SWING toolkit does not include a native element with these

Final Report

43

characteristics however it could be achieved by compositing checkbox and label instances

within a panel and encapsulating the behaviour of the element as a whole within a class.

A further, more complex enhancement would be to allow users to define their own

elements in a similar manner to user controls found in the Microsoft .NET Framework [29].

A new element could be created by the user by combining existing elements in the same

visual manner used to create full interfaces. A similar XML representation could also be

used. This would enable reuse of commonly occurring layouts, sticking to the DRY (Don’t

Repeat Yourself) principle, and would greatly expand the dynamicity of the system [30].

These custom elements could have user defined properties and signals although this may

prove to be a non-trivial feature to implement within the current architecture.

5.1.3 Mobile Support

One of the most predominant computing trends in recent times is the increased popularity

of portable devices such as tablet computers and Smartphones. Whilst the desktop

computer remains an important platform an increasing number of consumers are

purchasing Smartphones and tablet devices. Around 50% of the UK population currently

own a Smartphone or tablet computer [31]. Naturally it would be sensible to extend the

system to work on common portable device operating systems such as Apple iOS, Android

and Java ME. Implementing libraries for these 3 operating systems alone would provide

support for approximately 95% of all Smartphones and tablets [32].

Many of the elements within desktop GUI toolkits have a similar counterpart within each of

the aforementioned mobile platforms. For example the Android API includes input controls

such as buttons, check boxes and text fields which have much the same behaviour as their

counterparts in the wxWidgets toolkit [33]. Arguably this may be one of the most

challenging enhancements to fulfil due to the behavioural differences between desktop

computers and mobile devices. Whilst rendering interfaces on mobile platforms may not

prove particularly challenging re-engineering the slots and signals subsystem may turn out

to be a non-trivial task. This is largely due to the discrepancies between events within a

desktop environment and events on mobile platforms. The Android API defines many events

which are non-existent or uncommonly used within desktop applications such as touch and

gesture events. Supporting events of this kind whilst maintaining backwards compatibility

with desktop environments would require significant research into each platform in addition

to major re-engineering of the existing system. A simple solution would be to limit mobile

implementations of the system to use only the events available within the desktop APIs.

Whilst this would make the implementation simpler it would greatly impact the user

experience by imposing limitations on interactivity.

Final Report

44

5.1.4 Fluid Layouts

Fluid layouts are a concept originating from web design whereby the majority of elements

on a webpage are assigned percentage sizes instead of fixed sizes [34]. This allows

webpages to dynamically adjust to the user’s screen size creating a more user friendly and

visually attractive interface. Currently only fixed positioning and sizing is available within the

system meaning that an interface will be rendered in the same manner regardless of device.

The support of percentage based sizing and positioning would allow fluid interface layouts

to be created increasing the robustness of the system and facilitating future developments

within the market such as increasing screen sizes. It would also allow interfaces to be more

accurately rendered across multiple devices such as tablets and Smartphones.

5.1.5 Security

Currently interface files are stored in a simple, plain text XML format. Whilst this makes

creating and maintaining interfaces more straightforward it also introduces a potential

security flaw. If an end user were to access an interface file they would be able to freely edit

it potentially changing much of the behaviour of the client application. This could allow

users to bypass security mechanisms, such as login screens, or inadvertently break parts of

the client application.

One solution to this problem would be to generate checksums of interface files through the

editor or a command line application for advanced users. The outputted checksum could

then be verified within the API library by implementing a method such as

VerifyIntegrity(checksum) to ensure that the file has not been modified. Whilst solving

the security issue this naïve approach may introduce new problems such as limiting the

client application to using a single interface file. This may prove particularly troublesome

when a new version of an interface file is produced as it would also require a new version of

the client application to be distributed including the new checksum.

5.1.6 Multi-threading

As described previously the use of a single threaded approach within the API library can, in

some cases, greatly impact the performance and responsiveness of the interface (see

3.2.4.5 Display method). Introducing multi-threading capabilities to the API library would

alleviate most of the current performance issues and addition to allowing the system to be

used in a wider variety of resource intensive scenarios such as scientific computing. A

substantial number of alterations would need to be made to the API library to implement

this however ample documentation and support is available for the wxPython toolkit [21].

As a further extension multithreading could be built into the signals and slots mechanism to

allow certain slots to be run in separate threads or allow signals to trigger multiple slots

Final Report

45

running in parallel, synchronised threads. This could facilitate additional future expansions

such as distributed processing (see 5.1.7 Network Integration).

5.1.7 Network Integration

The original design goals of XML include simple usability over the internet [35]. This could be

leveraged within the system to provide a wide range of network connected services. The

most obvious use case would be automatic updates. On launching a client application or

during idle time an update server could be contacted to check for newer versions of the

interface. The new version could be automatically downloaded and put into use without

requiring modification or recompilation of the client application. A local copy of the

interface file would be stored for the sake of redundancy in case a network connection is

not available.

Additionally distributed processing features could be integrated into the system. This could

allow slow running processes to be distributed across a local network or across the internet

using technologies such as Apache Hadoop [36]. This could enable advanced scientific and

graphical processing such as distributed compilation as utilised by Valve Corporation’s

Source Engine for compiling game maps across a local network [37]. The concept of server-

side slots could be introduced whereby signals could invoke processes or methods on a

remote machine in a similar manner to Java Remote Method Invocation (RMI), possibly

making use of it [38].

5.1.8 Live XML Serialisation

Many popular Integrated Development Environments (IDEs) feature live translation

between code and a visual representation. For example the Eclipse IDE, when used with the

ADT (Android Development Tools) Plugin, provides seamless, two-way conversion between

visual, drag-and-drop based interface designs and XML. This allows advanced developers to

quickly move between using the visual designer and hard coding XML. It also allows novice

developers to see how changes in the visual editor are reflected within the XML. This is not

possible in the current system as the XML representation of an interface is only generated

once the document is saved and subsequently is not stored outside the scope of function. In

order to efficiently implement this functionality the XML structure would need to be held in

memory throughout the duration. Elements and attributes would need to be selectively

added, removed and modified using the DOM style techniques found within the JDOM

library. Synchronisation would need to be carefully implemented as to avoid discrepancies

between the visual representation and XML. This would be required to work bidirectionally

so that changes to either the visual representation or XML would be accurately reflected in

either view.

Final Report

46

5.1.9 XML Schemas

As mentioned previously no XML schemas currently exist for the XML interface format (see

4.2.8. Create and Document XML Schemas). XML schemas are useful for validating

documents to ensure they conform to the prescribed format. Validation could be used in

both the editor and API library to ensure that documents are valid before attempting to

parse them in order to avoid errors or invalid state. Although the interface editor is unlikely

to allow invalid XML files to be created advanced users may wish to manually write interface

files. This is prone to human error such as typing mistakes or misunderstanding of syntax.

5.2 Summary

A number of strategic enhancements to the system have been proposed in this section

which present a viable starting point for future development. Some of these enhancements

are fairly trivial to implement however others require a certain degree of system re-

engineering or more comprehensive analysis before commencing. Solutions to some of the

defects exposed within the evaluation have been addressed with plausible solutions to

render the system more robust and universal. Other features have been suggested which

are not critical but would offer developers more compelling reasons to use the system.

Final Report

47

6. Conclusions

This section offers a summative and objective conclusion of what has been achieved

throughout the course of the project. A number of aims and objectives were outlined within

the Interim Report. Each of these aims and objectives will be considered and the extent to

which they have been fulfilled described. The technical achievements of the project will be

discussed in addition to justification as to whether the project offers a viable alternative to

traditional methods of creating user interfaces.

One of the original aims was to produce XML schemas describing the required format for

interfaces. Due to time constraints this was not achieved however it did not have a

significant impact on the project. The goal of using schemas is to ensure that a common

standard for XML documents is adhered to. Whilst no technical schemas exist the principles

of standardisation have still been followed. Additionally the system demonstrably shows

that layouts can be accurately constructed from an XML file across all major desktop

platforms.

It was initially envisioned that two API libraries would be developed for both the Java and

Python programming languages. Due to limitations on time only one API library was

implemented targeting the Python language. This was essentially an arbitrary decision as

the same style of API could be implemented in any language. The remaining objectives

relating to the API have been fully achieved. A lightweight API has been implemented which

allows XML user interface definitions to be loaded and rendered with a minimal code

footprint. Certain aspects of the Document Object Model have been reproduced within the

API allowing a large degree of programmatic control over the interface.

A visual GUI editor has been successfully implemented as per the original aim. It allows

interfaces to be designed in an interactive, drag-and-drop fashion appealing to both novice

users and advanced users. Full interfaces and associated interactivity can be developed

almost entirely within the editor with only slot functions requiring implementation in the

client application. No explicit constraints are imposed on manually editing XML files allowing

advanced users the freedom to create or edit interfaces textually. A diverse range of

elements is offered allowing a high degree of customisation achievable through abstract

properties.

A small number of example applications were produced satisfying the original objectives.

These demonstrate the full range of elements available and exhibit the flexibility and

diversity of the system.

The envisaged merits of the project described in the Initial Plan and Interim Report have

been realised and a substantial starting point for continued development has been

suggested. Overall the project has fulfilled the principle goal of allowing cross platform user

interfaces to be described in XML format.

Final Report

48

7. Reflection on Learning

This project was one of the most substantial pieces of work I have completed throughout

my university career. I found the entire process of designing and implementing a system

from a simple specification an enjoyable and rewarding experience. I feel this project in

particular had the additional benefit of allowing me to actually put the system into use by

developing example applications. This project gave me the opportunity to develop and

acquire new skills which will prove beneficial in a future career in industry.

One of the principle lessons I learnt through completing this project is time management.

Developing a clear schedule with a number of definitive milestones before commencing the

project ensured that my aspirations were achievable in the given time frame. It also

provided me with a clear indication of project progress throughout and helped in identifying

situations in which I had fallen behind or had missed a milestone. Time management is a

beneficial skill to obtain holding particular value for potential employers. I have learnt the

importance and significance of developing a time schedule before commencing a project.

Initial research into software development methodologies gave a good insight into which

strategies are appropriate for certain projects. I feel that I have greatly enhanced my project

management abilities and view of how professional software projects are undertaken

through active adoption of the agile approach. This will be beneficial in any future career as

a large and increasing number of employers are adopting the principles of the agile

manifesto.

Regular meetings with my project supervisor helped me develop interpersonal and

communication skills. Due to the complex nature of the project it can be difficult to explain

the technologies and practices used. Conveying ideas to my supervisor helped to refine my

technical knowledge in addition to increasing my ability to articulate complex concepts, a

skill which is most desirable in industry.

The numerous technical obstacles I faced throughout the design and implementation helped

to refine my knowledge of both the tools and technologies directly involved with the project

and the wider high level concepts. One of the areas in which I feel I spent too much time

researching was XML schemas. Although this ultimately proved superfluous it helped me to

understand the true goals of schemas and when they are necessary. Researching various

different areas within the field of computer science helped to give me a clearer idea of

which areas particularly interest me and highlight ones which I may want to pursue a future

career in.

Overall this project has been a fulfilling experience from which I have picked up a high level

of technical knowledge. I have also developed many interpersonal skills which will prove

invaluable in the future.

Final Report

49

Table of Abbreviations

API - Application Programming Language

ASCII - American Standard Code for Information Interchange

DOM - Document Object Model

GUI - Graphical User Interface

HTML - Hypertext Markup Language

IDE - Integrated Development Environment

MVC - Model View Controller

PIL - Python Imaging Library

RAD - Rapid Application Development

SAX - Simple API for XML

UI - User Interface

UTF-8 - UCS Transformation Format - 8-bit

W3C - World Wide Web Consortium

XML - Extensible Markup Language

XUL - XML User Interface Language

Final Report

50

Glossary

Element - A GUI widgets within an interface such as a text box or button.

GUI toolkit - A set of widgets for use within applications requiring a GUI. The functionality of

the toolkit is exposed through an API. The toolkit also handles events, for example the

clicking of a button of selected value change of a dropdown box.

Java ME - Java Platform, Micro Edition – a Java platform designed for embedded devices

such as Smartphones.

JDOM - A Java implementation of the Document Object Model which uses XML parsers to

construct a document [39].

Signal - An event generated by interaction with an element such as click or text changed.

Slot - A function called when a signal is fired.

Slot Mapping - A dynamic mapping of element properties to the parameters required by a

slot.

Unicode – An industry standard for character encoding.

wxPython - A Python wrapper for wxWidgets. An alternative to the Tkinter toolkit (the de

facto GUI toolkit for Python).

wxWidgets - A GUI toolkit written in C++ for creating cross platform user interfaces.

Final Report

51

Appendices

Figure G - Class diagram showing the relationship of data types in the API library.

Final Report

52

Figure H - Sequence diagram showing interaction between a client application, API library, ElementTree and wxPython.

Final Report

53

<?xml version="1.0" encoding="UTF-8"?>
<xgui>
 <elements>
 <XWindow id="Window1">
 <width>370</width>
 <height>499</height>
 <text>Basic Image Editor</text>
 <resizable>False</resizable>
 <closable>True</closable>
 <minimizable>True</minimizable>
 <maximizable>False</maximizable>
 <elements>
 <XImageBox id="ImageBox1">
 <left>10</left>
 <top>10</top>
 <width>350</width>
 <height>300</height>

<imagesource>file:///C:/Users/James/Pictures/8b011e869ece11e28e8322000a1f9686_7.jpg
</imagesource>
 <halign>Middle</halign>
 <valign>Middle</valign>
 </XImageBox>
 <XButton id="btnLoadImage">
 <left>10</left>
 <top>320</top>
 <width>100</width>
 <height>30</height>
 <text>Load Image...</text>
 </XButton>
 <XButton id="btnEdge">
 <left>245</left>
 <top>445</top>
 <width>100</width>
 <height>30</height>
 <text>Find Edges</text>
 </XButton>
 <XButton id="btnEmboss">
 <left>135</left>
 <top>445</top>
 <width>100</width>
 <height>30</height>
 <text>Emboss</text>
 </XButton>
 <XButton id="btnContour">
 <left>245</left>
 <top>410</top>
 <width>100</width>
 <height>30</height>
 <text>Contour</text>
 </XButton>
 <XButton id="btnContrastDown">
 <left>245</left>
 <top>375</top>
 <width>100</width>
 <height>30</height>
 <text>Contrast -</text>
 </XButton>
 <XButton id="btnBrightnessDown">
 <left>245</left>
 <top>340</top>
 <width>100</width>
 <height>30</height>
 <text>Brightness -</text>
 </XButton>
 <XButton id="btnBlur">
 <left>135</left>
 <top>410</top>
 <width>100</width>
 <height>30</height>
 <text>Blur</text>
 </XButton>
 <XButton id="btnContrastUp">
 <left>135</left>

Final Report

54

 <top>375</top>
 <width>100</width>
 <height>30</height>
 <text>Contrast +</text>
 </XButton>
 <XButton id="btnBrightnessUp">
 <left>135</left>
 <top>340</top>
 <width>100</width>
 <height>30</height>
 <text>Brightness +</text>
 </XButton>
 <XGroupBox id="groupOptions">
 <width>240</width>
 <height>175</height>
 <top>315</top>
 <left>120</left>
 <text>Options</text>
 </XGroupBox>
 </elements>
 </XWindow>
 </elements>
 <slots>
 <slot name="incBrightness">
 <parameters />
 </slot>
 <slot name="decBrightness">
 <parameters />
 </slot>
 <slot name="incContrast">
 <parameters />
 </slot>
 <slot name="decContrast">
 <parameters />
 </slot>
 <slot name="blur">
 <parameters />
 </slot>
 <slot name="contour">
 <parameters />
 </slot>
 <slot name="emboss">
 <parameters />
 </slot>
 <slot name="findEdges">
 <parameters />
 </slot>
 <slot name="loadImage">
 <parameters />
 </slot>
 </slots>
 <slot_mappings>
 <slot_mapping name="btnLoadImage_Click">
 <slot>loadImage</slot>
 <bindings />
 </slot_mapping>
 <slot_mapping name="btnEdge_Click">
 <slot>findEdges</slot>
 <bindings />
 </slot_mapping>
 <slot_mapping name="btnEmboss_Click">
 <slot>emboss</slot>
 <bindings />
 </slot_mapping>
 <slot_mapping name="btnContour_Click">
 <slot>contour</slot>
 <bindings />
 </slot_mapping>
 <slot_mapping name="btnContrastDown_Click">
 <slot>decContrast</slot>
 <bindings />
 </slot_mapping>
 <slot_mapping name="btnBrightnessDown_Click">
 <slot>decBrightness</slot>
 <bindings />
 </slot_mapping>
 <slot_mapping name="btnBlur_Click">

Final Report

55

 <slot>blur</slot>
 <bindings />
 </slot_mapping>
 <slot_mapping name="btnContrastUp_Click">
 <slot>incContrast</slot>
 <bindings />
 </slot_mapping>
 <slot_mapping name="btnBrightnessUp_Click">
 <slot>incBrightness</slot>
 <bindings />
 </slot_mapping>
 </slot_mappings>
 <connections>
 <connection>
 <element>btnLoadImage</element>
 <signal>Click</signal>
 <slot_mapping>btnLoadImage_Click</slot_mapping>
 </connection>
 <connection>
 <element>btnEdge</element>
 <signal>Click</signal>
 <slot_mapping>btnEdge_Click</slot_mapping>
 </connection>
 <connection>
 <element>btnEmboss</element>
 <signal>Click</signal>
 <slot_mapping>btnEmboss_Click</slot_mapping>
 </connection>
 <connection>
 <element>btnContour</element>
 <signal>Click</signal>
 <slot_mapping>btnContour_Click</slot_mapping>
 </connection>
 <connection>
 <element>btnContrastDown</element>
 <signal>Click</signal>
 <slot_mapping>btnContrastDown_Click</slot_mapping>
 </connection>
 <connection>
 <element>btnBrightnessDown</element>
 <signal>Click</signal>
 <slot_mapping>btnBrightnessDown_Click</slot_mapping>
 </connection>
 <connection>
 <element>btnBlur</element>
 <signal>Click</signal>
 <slot_mapping>btnBlur_Click</slot_mapping>
 </connection>
 <connection>
 <element>btnContrastUp</element>
 <signal>Click</signal>
 <slot_mapping>btnContrastUp_Click</slot_mapping>
 </connection>
 <connection>
 <element>btnBrightnessUp</element>
 <signal>Click</signal>
 <slot_mapping>btnBrightnessUp_Click</slot_mapping>
 </connection>
 </connections>
</xgui>
Figure I - XML interface file used by the image processing application.

Final Report

56

import xgui
from PIL import Image
from PIL import ImageFilter
from PIL import ImageEnhance
import wx

Instantiate a GUI instance
gui = xgui.GUI()

Define the slots

def loadImage():
 dlg = wx.FileDialog(gui.GetElementByID("Window1")._component,
message="Choose a file", defaultFile="", style=wx.OPEN | wx.CHANGE_DIR)
 if dlg.ShowModal() == wx.ID_OK:
 path = dlg.GetPath()
 gui.GetElementByID("ImageBox1").SetImage(Image.open(path))
 print path
 dlg.Destroy()

def incBrightness():
 im = gui.GetElementByID("ImageBox1").GetImage()
 en = ImageEnhance.Brightness(im)
 en.enhance(2.0)
 gui.GetElementByID("ImageBox1").SetImage(im)

def decBrightness():
 im = gui.GetElementByID("ImageBox1").GetImage()
 en = ImageEnhance.Brightness(im)
 en.enhance(0.5)
 gui.GetElementByID("ImageBox1").SetImage(im)

def incContrast():
 im = gui.GetElementByID("ImageBox1").GetImage()
 en = ImageEnhance.Contrast(im)
 en.enhance(2.0)
 gui.GetElementByID("ImageBox1").SetImage(im)

def decContrast():
 im = gui.GetElementByID("ImageBox1").GetImage()
 en = ImageEnhance.Contrast(im)
 en.enhance(0.5)
 gui.GetElementByID("ImageBox1").SetImage(im)

def blur():
 im = gui.GetElementByID("ImageBox1").GetImage()
 im = im.filter(ImageFilter.BLUR)
 gui.GetElementByID("ImageBox1").SetImage(im)

def contour():
 im = gui.GetElementByID("ImageBox1").GetImage()
 im = im.filter(ImageFilter.CONTOUR)
 gui.GetElementByID("ImageBox1").SetImage(im)

def emboss():
 im = gui.GetElementByID("ImageBox1").GetImage()
 im = im.filter(ImageFilter.EMBOSS)
 gui.GetElementByID("ImageBox1").SetImage(im)

def findEdges():
 im = gui.GetElementByID("ImageBox1").GetImage()
 im = im.filter(ImageFilter.FIND_EDGES)
 gui.GetElementByID("ImageBox1").SetImage(im)

Load, connect and display the GUI

gui.Load("../image_editor.xgui")
gui.Connect([loadImage, incBrightness, decBrightness, incContrast, decContrast,
blur, contour, emboss, findEdges])
gui.Display()
Figure J - Python code for the image processing application.

Final Report

57

References

[1] K. Beck and e. al., “Principles behind the Agile Manifesto,” [Online]. Available:

http://www.agilemanifesto.org/principles.html. [Accessed 3rd May 2013].

[2] Sun Microsystems, Inc, “Code Conventions for the Java Programming Language,” Oracle

Corporation, 1999 20th April. [Online]. Available:

http://www.oracle.com/technetwork/java/codeconv-138413.html. [Accessed 4th April

2013].

[3] Mozilla, “Mozilla Developer Network - document.getElementById,” 10th August 2012.

[Online]. Available: https://developer.mozilla.org/en-

US/docs/DOM/document.getElementById. [Accessed 10th April 2013].

[4] World Wide Web Consortium, “Extensible Markup Language (XML),” 24th January

2012. [Online]. Available: http://www.w3.org/XML/. [Accessed 11th April 2013].

[5] Debian Project, “x64 Ubuntu : Intel® Q6600® quad-core - Computer Language

Benchmarks Game,” [Online]. Available:

http://benchmarksgame.alioth.debian.org/u64q/python.php. [Accessed 13th April

2013].

[6] Oracle Corporation, “Oracle and Java - Features & Benefits,” [Online]. Available:

http://www.oracle.com/us/technologies/java/features/index.html. [Accessed 13th

April 2013].

[7] Oracle Corporation, “LinkedHashMap (Java Platform SE 6),” [Online]. Available:

http://docs.oracle.com/javase/6/docs/api/java/util/LinkedHashMap.html. [Accessed

15th April 2013].

[8] J. Hunter and B. Mclaughlin, “JDOM: Mission,” The JDOM Project, [Online]. Available:

http://www.jdom.org/mission/index.html. [Accessed 17th April 2013].

[9] H. E. Wes Biggs, “Simplify XML programming with JDOM,” IBM, 1st May 2001. [Online].

Available: http://www.ibm.com/developerworks/java/library/j-jdom/. [Accessed 17th

April 2013].

[11] Unicode, inc, “What is Unicode?,” 12th December 2011. [Online]. Available:

http://www.unicode.org/standard/WhatIsUnicode.html. [Accessed 18th April 2013].

[12] J. Hunter and B. Mclaughlin, “Format (JDOM v2.0.4),” The JDOM Project, 2012. [Online].

Available:

Final Report

58

http://www.jdom.org/docs/apidocs/org/jdom2/output/Format.html#getPrettyFormat(

). [Accessed 18th April 2013].

[13] J. Hunter, B. McLaughlin, D. Schaffer, P. Nelson, A. Rosen and R. Lear, “SAXBuilder

(JDOM v2.0.4),” The JDOM Project, [Online]. Available:

http://www.jdom.org/docs/apidocs/org/jdom2/input/SAXBuilder.html. [Accessed 19th

April 2013].

[14] “Simple API for XML,” Oracle Corporation, [Online]. Available:

http://docs.oracle.com/javaee/1.4/tutorial/doc/JAXPSAX.html. [Accessed 19th April

2013].

[15] Python Software Foundation, “TimeComplexity - Python Wiki,” 25th August 2012.

[Online]. Available: http://wiki.python.org/moin/TimeComplexity. [Accessed 20th April

2013].

[17] J. Smart, R. Roebling, V. Zeitlin, R. Dunn, S. Csomor, F. Montorsi and B. Petty,

“wxWidgets: wxFrame Class Reference,” wxWidgets, 20th April 2013. [Online].

Available: http://docs.wxwidgets.org/trunk/classwx_frame.html. [Accessed 21st April

2013].

[18] J. Smart, R. Roebling, V. Zeitlin, R. Dunn, S. Csomor, F. Montorsi and B. Petty,

“wxWidgets: Window Styles,” wxWidgets, 20th April 2013. [Online]. Available:

http://docs.wxwidgets.org/trunk/overview_windowstyles.html. [Accessed 21st April

2013].

[19] Python Software Foundation, “Glossary - Python v2.7.4 documentation - duck-typing,”

[Online]. Available: http://docs.python.org/2/glossary.html#term-duck-typing.

[Accessed 21st April 2013].

[20] G. v. Rossum and B. Warsaw, “PEP 8 - Style Guide for Python,” Python Software

Foundation, 18th April 2013. [Online]. Available:

http://www.python.org/dev/peps/pep-0008/. [Accessed 21st April 2013].

[21] “9.6 Private variables through name mangling,” Python Software Foundation, [Online].

Available: http://docs.python.org/release/1.5/tut/node67.html. [Accessed 21st April

2013].

[22] “Non-Blocking GUI - wxPyWiki,” wxPython, 18th June 2009. [Online]. Available:

http://wiki.wxpython.org/Non-Blocking%20Gui. [Accessed 23rd April 2013].

[23] “document.getElementById - Document Object Model (DOM) - MDN,” Mozilla

Developer Network, 10th August 2012. [Online]. Available:

Final Report

59

https://developer.mozilla.org/en-US/docs/DOM/document.getElementById. [Accessed

23rd April 2013].

[24] “4.7.4. Unpacking Argument Lists - More Control Flow Tools - Python v2.7.4

documentation,” Python Software Foundation, [Online]. Available:

http://docs.python.org/2/tutorial/controlflow.html#unpacking-argument-lists.

[Accessed 24th April 2013].

[25] Mozilla Developer Network, “<input> - HTML - Mozilla Developer Network,” Mozilla

Foundation, 2nd April 2013. [Online]. Available: https://developer.mozilla.org/en-

US/docs/HTML/Element/Input. [Accessed 26th April 2013].

[26] Oracle Corporation, “What are the system requirements for Java 7?,” [Online].

Available: http://www.java.com/en/download/help/sysreq.xml. [Accessed 18th April

2013].

[27] Oracle Corporation, “Licensing and Distribution FAQs,” [Online]. Available:

http://java.com/en/download/faq/distribution.xml. [Accessed 3rd May 2013].

[28] J. Milutinovich, “Frequently Asked Questions,” The JDOM Project, [Online]. Available:

http://www.jdom.org/docs/faq.html. [Accessed 3rd April 2013].

[29] Python Software Foundation, “Python Setup and Usage - Python v2.7.4

Documentation,” [Online]. Available: http://docs.python.org/2/using/index.html.

[Accessed 18th April 2013].

[30] Python Software Foundation, “Python 2.7 license,” [Online]. Available:

http://www.python.org/download/releases/2.7/license/. [Accessed 3rd May 2013].

[31] wxWidgets, “Licence - wxWidgets,” [Online]. Available:

http://www.wxwidgets.org/about/newlicen.htm. [Accessed 3rd May 2013].

[32] J. Cooney, “Developer UI,” 29th October 2006. [Online]. Available:

http://jcooney.net/post/2006/10/29/Developer-UI.aspx. [Accessed 2nd May 2013].

[33] Mozilla Developer Network, “element - Document Object Model (DOM) - MDN,” Mozila

Corporation, 1st May 2013. [Online]. Available: https://developer.mozilla.org/en-

US/docs/DOM/element. [Accessed 2nd May 2013].

[34] Mozilla Developer Network, “Node - Document Object Model (DOM) - MDN,” Mozilla

Corporation, 1st May 2013. [Online]. Available:

https://developer.mozilla.org/en/docs/DOM/Node. [Accessed 2nd May 2013].

Final Report

60

[35] World Wide Web Consortium, “Extensible Markup Language (XML) 1.0 (Fifth Edition),”

26th November 2008. [Online]. Available: http://www.w3.org/TR/REC-xml/#sec-origin-

goals. [Accessed 30th April 2013].

[36] G. B. Shelly and H. J. Rosenblatt, in Systems Analysis and Design, Boston, Course

Technology Inc, 2011, pp. 146-147.

[37] R. S. King, “The Top 10 Programming Languages - IEEE Spectrum,” IEEE Spectrum,

October 2011. [Online]. Available: http://spectrum.ieee.org/at-work/tech-careers/the-

top-10-programming-languages. [Accessed 29th April 2013].

[38] Microsoft Corporation, “CheckedListBox Class (System.Windows.Forms),” [Online].

Available: http://msdn.microsoft.com/en-

us/library/system.windows.forms.checkedlistbox.aspx. [Accessed 29th April 2013].

[39] Microsoft Corporation, “Varieties of Custom Controls,” [Online]. Available:

http://msdn.microsoft.com/en-us/library/ms171725.aspx. [Accessed 29th April 2013].

[40] J. Atwood, “Coding Horror: Curly's Law: Do One Thing,” 1st March 2007. [Online].

Available: http://www.codinghorror.com/blog/2007/03/curlys-law-do-one-thing.html.

[Accessed 29th April 2013].

[41] Ipsos MediaCT Germany, “Mobile Internet & Smartphone Adoption,” Google Inc.,

January 2011. [Online]. Available:

http://services.google.com/fh/files/blogs/Final_Mobile_Internet_Smartphone_Adoptio

n_Insights_2011v3.pdf. [Accessed 29th April 2013].

[42] NetMarketShare, “Mobile/Tablet Operating System Market Share,” March 2013.

[Online]. Available:

http://www.netmarketshare.com/report.aspx?qprid=8&qptimeframe=M&qpsp=170&q

pch=350&qpmr=100&qpdt=1&qpct=3&qpcustomd=1&qpcid=fw619349&qpf=1.

[Accessed 29th April 2013].

[43] Google Inc., “Input Controls - Android Developers,” [Online]. Available:

http://developer.android.com/guide/topics/ui/controls.html. [Accessed 30th April

2013].

[44] K. Knight, “Fixed vs. Fluid vs. Elastic Layout: What’s The Right One For You?,” Smashing

Media, 2nd June 2009. [Online]. Available:

http://coding.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-layout-

whats-the-right-one-for-you/. [Accessed 30th April 2013].

Final Report

61

[45] The Apache Software Foundation, “Welcome to Apache Hadoop,” 26th April 2013.

[Online]. Available: http://hadoop.apache.org/. [Accessed 30th April 2013].

[46] Valve Corporation, “VMPI - Valve Developer Community,” 4th January 2013. [Online].

Available: https://developer.valvesoftware.com/wiki/VMPI. [Accessed 30th April 2013].

[47] Oracle Corporation, “Remote Method Invocation Home,” [Online]. Available:

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html.

[Accessed 30th April 2013].

