
Cardiff University

Computer Science and Informatics

CM3203 Final Year Project

Reinforcement Learning for Autonomous Racing

Using Deep-Q Learning and FastSLAM2

Final Report

Author:

Benjamin Loki Hughes

Supervisor:

Dr Kirill Sidorov

Moderator:

Dr Matthias Treder

Contents

1 Abstract 2

2 Introduction 2

3 Reinforcement Learning 3

3.1 Bellman Optimality Equation . 3

3.2 Q-Learning . 4

3.3 Deep-Q-Learning . 4

3.3.1 Neural Networks . 5

3.3.2 The Deep-Q Algorithm . 5

4 SLAM 6

4.1 Extended Kalman Filters . 6

4.2 FastSLAM2 . 7

5 Implementation 8

5.0.1 Random Track Building . 8

5.0.2 Reward Function . 9

5.0.3 Deep-Q-Learning implementation . 9

5.0.4 FastSLAM2 implementation . 10

5.0.5 Sensor Model . 10

5.0.6 Ackerman Motion Model . 10

6 Results 11

6.1 SLAM . 11

6.2 Reinforcement Learning . 12

7 Conclusions and future work 12

8 Reflection 13

9 Acknowledgements 15

1

Reinforcement Learning for Autonomous Racing

Using Deep-Q Learning and FastSLAM2

Benjamin Loki Hughes

1 Abstract

This project sought to use Deep-Q Learning;

a Reinforcement Learning algorithm, to map

observations to actions for autonomous racing,

specifically to compete in the FS-AI 2019

competition. The model generated was able, after

training on random, simple, tracks, consisting

of spaced blue and yellow cones, as specified

in the FS-AI rules, to complete a lap on an

unseen track in a 2D simulation, following a good

racing line, proving itself as a working proof

of concept for such a system to be deployed in

the FS-AI competition for autonomous racing.

The model only assumes that cones within a 12

metre range would be detected, and triangulated

with some accuracy, accounting for noise. Given

previous work on the problem in creating a

stereo system to do this, it is reasonable to

assume this would be given in a real situation.

The model successfully deploys fastSLAM2

to transform these measurements, along with

odometry readings to create a probabilistic map

of its environment, to be given to a Deep Neural

Network to successfully dictate actions that allow

for a track to be completed.

2 Introduction

As autonomous cars become an increasing reality,

with advancements in Machine Learning, sensor

accuracy and computational power now being able

to support the ’self driving car’ vision, the Formula

Student Competition [FS,] has branched into this

field. As such, the Cardiff Racing team now operates

a FS-AI subgroup to tackle the problem.

As the setting for formula racing is much simpler,

and more predictable than pedestrian roads, the

problem is a simplified sub-case that a usual

driverless car might have to tackle. For example,

the car will not have to abide by road safety laws,

or accommodate for pedestrians, traffic lights etc.

The car simply needs to drive as fast as it can

around a track indicated by cones.Formally, the car

will need to drive 10 laps around a track specified

by blue and yellow cones for the inner and outer

track respectively. These cones are spaced at a

maximum of 5 metres apart, to form a 6 metre track

width [FS-AI, 2019].

As a team, thus far, we have a means

of detecting cones, using a trained Cascade

Detector [Zhu et al., 2006] and a Support Vector

Machine [Suykens and Vandewalle, 1999] (SVM),

and have a means for determining the distance of

the cone to the car, using stereo vision to triangulate

the cone in 3D space. Given the flat nature of the

racetrack environment, the problem can be further

simplified. Ignoring the vertical axis, the car may

decide on its actions based on only a distance and

angle in 2D space, as the 3rd axis would be only

of very slight variance, or none, in either case,

unimportant for action formulation.

A survey of the current self driving car models can

be explored in [Paden et al., 2016], they find, at

a high level, an autonomous car must adhere to

the following pipeline: first must some goal state

must be decided, this can be done dynamically,

or directly given. In our case, the goal is to

perform a lap (Drive a circuit and return to its start

position). Upon receiving a goal, or checkpoint, the

agent must use route planning to calculate a route

from its current pose to the goal pose, a survey of

such techniques can be found [Bast et al., 2016],

2

where classical A* or Dijkstra methods break

down due to the size of complexity of most maps

in such cases, more sophisticated graph searches

must be deployed, requiring a good estimation of

the environment. Once a route is decided, this

must be passed to a behavioural decision maker

which will decide on high level actions (e.g change

lane, overtake, follow road). This is then broken

into motions by some motion planning algorithm

to decide on the immediate action sequence (e.g

break, accelerate, turn 30◦). Finally, this action

is actuated by the vehicle, which, following this,

takes in further sensor readings to form its feedback

loop. Indeed AMZ Driverless use this pipeline as

their successful software implementation for FS-AI

Germany [Kabzan et al., 2019].

The results of these algorithms are completely

interpretable [Bibal and Frénay, 2016], and thus

preferable for trust in commercial self-driving cars

[Kaur and Rampersad, 2018]. However, given the

racing environment, the same risks (running over a

child etc) do not apply, and so the AI can favour

performance over interoperability. Deep Learning

techniques often wrestle with interoperability/

performance tradeoffs [Ishibuchi and Nojima, 2007]

in such critical cases as self driving cars. In this

project, I seek to exploit their accuracy for better

performance in motion planning through to action

formulation. This project seeks to use a Deep

Learning approach to suggest the control, from the

observations alone. This will take the place of

route planning, behavioural decisions and the motion

planning elements in producing a control u at time

t, given observations z as input. The observations in

this case are distances and angles to cones, detected

using the system previously designed, described.

This project, then, explores the use of Reinforcement

Learning for action formulation. Specifically, this

project investigates the use of Deep-Q-Learning,

developed by DeepMind [Mnih et al., 2015].

This is not the first attempt at using

Deep Reinforcement Learning for autonomous

driving [Wang et al., 2018], but as this is a

constrained problem, it requires a specially designed

solution.This technique poses the problem as a game,

where the agent will learn how to obtain the best

score, posed as a reward from the environment

using a deep neural network. For this the agent

needs a representation of its environment. Prior

work has tried to do this from immediate sensor

readings only, however, this representation does not

account for noisy measurements and is confined by

only the cones within range of the car. For this

project, I also use SLAM, specifically FastSLAM2

[Montemerlo et al., 2002] to allow the car to build a

representation of the map, as it discovers it, as well

as understand its pose in the map, and use this as the

input for its decision making and learning. This has

proven much more successful.

This project, following from the phrasing of the

problem, trains a Deep-Q algorithm in a 2D

environment, assuming cones are detected and a

distance and angle to the cone from the car is given

to the car. Here I provide the necessary background

into both Reinforcement Learning and SLAM, to

appreciate the Deep-Q algorithm and FastSLAM2

algorithm, before my implementation and results.

3 Reinforcement Learning

Reinforcement Learning (RL) is a branch of

Unsupervised Machine Learning, where optimal

actions, given an environment are learned

through reinforced behaviour [Sutton et al., 1998].

Behaviour, formally policy is learned through

interacting with the environment and having its

actions rewarded if they lead to some desirable

outcome, or penalised otherwise. This is formalised

as a reward cycle; An agent performs an action on

an environment and in return, receives a reward and

an observation. The goal of the learning process is to

reinforce the optimal policy for performing actions

on the agent’s environment to obtain the maximum

reward, the agent can then perform optimally, having

been sufficiently trained.

3.1 Bellman Optimality Equation

In RL, the agent must act on its environment

in states, where states are uniquely identifiable

permutations of the environment. The value of a

state is defined as the expected reward obtainable

from a state, where rt is the local reward obtained at

step t, multiplied by the dampening factor γ between

3

0 and 1 to dictate the rewards importance as γ is

decayed over time, far future rewards are worth

much less than immediate rewards, with a spectrum

in between [Lapan, 2018].

V (s) = E[
∞
∑

t=0

rtγ
t] (1)

If an action ai is performed in state V0 from a

deterministic set of actions A, then the Value will

be given as V0(a = ai) = ri + γVi. If an agent

is to perform optimally, it must choose an action a
such that the resulting value is the maximum possible

value. As such, value should be computed as

max
a∈A

(ra + γVa) (2)

Thus we get the Bellman optimality equation, by

iterating over the expected values of performing

action a over every state s and calculating it’s value

with the Bellman equation, then returning the action

that got to the best valued state.

V0 = max
a∈A

Es∼S[rs,a + γVs] (3)

As well as defining the value of a state, we can define

the reward from performing action a on state s as a

Q value Qs,a in terms of Vi.

Qs,a = Es′∼S[rs,a + γVs′] (4)

3.2 Q-Learning

This gives rise to the RL family of Q - Learning,

algorithms concerned with learning Q values for

state/action pairs. A classical example of such

an algorithm would be the value iteration method,

where every action/state pair value is iterated over

for the highest Q value. However, this includes

iterating over states that are of obvious no value

to the agent, or are not feasible. Instead, we

can update Q values through experiencing the

environment. Tabular Q-Learning addresses this

problem by instead sampling the environment for

state, action, reward, new state tuples (s, a, r, s′) and

learning from these experiences. The algorithm is

then the following:

1. Start with empty Q table

2. Act with the environment to gain (s, a, r, s′)
tuples

3. Make Bellman update

4. Check convergence conditions

5. repeat from 2 until convergence conditions are

satisfied

Here the convergence conditions are met if the

Q values are being updated with a value below

some convergence threshold. Q values are also not

directly updated, they are updated using a blending

technique, to ensure for smoother learning, with a

learning rate α. They are thus updated with the

following equation

Qs,a ← (1− α)Qs,a + α(r + γmaxa′∈AQs′,a′) (5)

For sampling actions, some method must be used

for deciding which actions to take. This form must

balance exploration vs exploitation. In other words,

the agent must exploit its trained knowledge of the

environment whilst allowing itself to explore new

actions. For this project a random action is chosen

with probability ǫ o, and (1 − ǫ) of exploiting it’s

model for an action. With ǫ being decayed at every

iteration, the agent will begin by exploring, then

as the model is trained, exploit progressively more.

This is known as the epsilon-greedy method.

3.3 Deep-Q-Learning

This solves the problem raised with the iteration

method concerning it’s need to iterate through

impossible states, but in representing Q values in

a state/action table, this algorithm will not extend

beyond simple environments, and is not feasible for

large or infinite state spaces, or indeed actions. To

account for this, rather than a table, the agent must

learn a function that maps state and action to a Q

value. To achieve this, we use a Neural Network

(NN) to approximate this transition. Though the

general algorithm is in fact an unsupervised learning

algorithm, we periodically grab training data to be

used in the supervised machine learning problem of

training this NN to approximate this function. Where

its output is trained to give the Q value for every

available action, from observed (s, a, r, s′) tuples.

4

3.3.1 Neural Networks

A Neural Network is an algorithm that very loosely

resembles a biological neural network. They

are used to approximate non-linear mappings, for

classification or regression problems. They consist

of layers of neuron models that sum up their inputs,

multiply them by some learned weight, add a learned

bias and put them through some non linear function.

See below, the equation for a neuron’s outputs, on the

j th neuron on the lth layer, where σ is some non-linear

function, such as the Sigmoid, or ReLU . function.

alj = σ(
∑

wjk
l, al−1

k + blj) (6)

Over several, in the case of deep-learning,

many, layers, they have been shown to perform

classifications and predictions very accurately

in various non-linear domains. Each layer

then represents more abstracted and nuanced

representations. So data is classified into more

abstract ideas the deeper the network, until the output

layer gives an output of the probability of every

classification, the maximum of which can be taken

to be the classification.

To train a neural network, the network will, at every

iteration of learning produce an output after putting

the data through the current network. This output can

then be compared to the correct output to calculate

the model’s accuracy, and loss. The simplest of

which is a mean square error function, which can be

taken at every output, or over n outputs. Where y is

the result, and ŷ is the true classification.

L =
1

n

n
∑

i=1

(yi − ŷ)2 (7)

Weights and biases are then optimised through

calculating their partial derivative, with respect to

the loss function, this is essentially how much each

parameter impacts the loss. Then, exploiting the

chain rule to propagate the loss through the network,

we can use gradient descent for calculating more

optimal values using the following update equation,

for a given weight θ and learning rate α, typically

0.01.

θj ← θj − α
δ

δθj
J(θ) (8)

The network should converge, this way, on

locally optimal weights and matrices to approximate

some non-linear map that minimises loss and gives

the greatest accuracy. It can then be used to obtain a

classification of arbitrary samples.

3.3.2 The Deep-Q Algorithm

The full algorithm, then, is very similar to the tabular

method, but using a neural network to learn how

to map states to Q values for state/ action pairs.

There is another nuance to this algorithm, which is

its use of a replay buffer. The agent’s experiences as

(s, a, r, s′) tuples are stored in a fixed size buffer for

training. However, when the neural network trains

on these examples, they are not all taken for training.

For improved data distribution, to conform with the

notion of independent and identically distributed

(i.i.d), the replay buffer is sampled randomly to form

a batch of tuples. These are used as training data for

the NN in episodes. Thus the algorithm, as presented

by Deep-Mind is as follows [Mnih et al., 2015]:

1. Initialise parameters for Qs,a and Q̂s,a with

random weights, ǫ← 1.0, empty replay buffer

2. select random action a with probability ǫ ,

otherwise a = argmaxaQs,a

3. Perform action a and observe the the reward r
and the next state s′ to be stored in the replay

buffer

4. For sampled tuples in the reaply buffer,

observe r if the episode ended, else observe

y = r + γmax
a′∈A

Q̂s′,a′

5. Calculate the Loss and update the network

using Gradient Descent for Qs,a

6. Every N steps, copy weights from training

network to agent network

7. Repeat from step 2 until convergence criteria

are met

It is this algorithm that I use for my project, the

specifics of which I discuss under ’Implementation’.

5

4 SLAM

The Simultaneous Localisation and Mapping

(SLAM) problem is a fundamental problem in

robotics. This problem must be solved when an

agent’s state is not given to it, nor is a map of

its environment [Thrun et al., 2005] . The agent

most must use its controls u at every time-step

and sensor measurements z at every time-step

to estimate its pose (position and orientation) xt

and a representation of its environment, a map

m. A representation of the map is important for

additional tasks, such as path planning, as well as

being needed to rectify the agent’s pose estimation.

Representations are usually landmark-oriented.

That is, positions of heterogeneous landmarks are

correlated to form a map representation.

To complicate things, all measurements, intrinsic

or extrinsic for the agent carry uncertainty, that

is, measurements are noisy, that is imperfect, or

altered by the environment. The SLAM problem

is thus probabilistic, given that nothing can be

calculated with certainty if every measurement is

noisy. Thus the SLAM problem’s difficulties arise

from [Stachniss, 2013]:

1. Both agent pose and map are unknown

2. Errors the map and pose estimation are

correlated

3. The mapping between observations and

landmarks are unknown, where incorrect data

association (attributing sensor to landmarks)

can have bad consequences in the SLAM

estimations

Formally, the SLAM problem translates to

estimating the posterior of the pose and map, given

observations z1:t and controls u1:t :

p(xt,m|z1:t, u1:t) (9)

This formalisation is known as the online SLAM

problem, which differs subtly from the full SLAM

problem, in that the posterior is over the current pose

and map, and not the pose at every time-step:

p(x1:t,m|z1:t, u1:t) (10)

The current pose of the agent can be written

probabilistically as a posterior given the previous

pose and the command given. This is the

motion model; how the robot’s pose is updated

p(xt|xt−1, ut) Similarly sensor observations may

also be represented as a posterior given the pose of

the agent. This is the measurement model, and is

expressed as p(zt|xt)
Using these models, the SLAM posterior can be

computed recursively using the Bayes filter. Where

we apply Bayes rule to the SLAM posterior, and

adhere to the Markov Assumption, the assumption

that given an agent’s current state is the only state

that affects sensor readings, future, nor past states

supply additional information. The resulting Bayes

filter is presented here, see [Siegwart et al., 2011]

for full derivation.:

Bel(x) = ηP (zt|xt)

∫

P (xt|ut, xt−1)Bel(xt−1)dxt−1

(11)

Most SLAM algorithms, are based around

estimating this posterior. The most common of

which is the Extended Kalman Filter.

4.1 Extended Kalman Filters

The EKF algorithm citeeinicke1999robust

represents the SLAM posterior as a high dimensional

Gaussian function, where the mean µ represents the

most likely pose of the agent, and landmarks, and

the covariance Σ represents the correlations between

all variables, where N is the number of landmarks.

p(xt,m|ut, zt) = N (xt;µΣt)

xt = {st, θ1, . . . , θN}

µt = {µs,t, µθ,1,t, . . . , µθN,t}

Σt =











Σst,t Σstθ1,t . . . ΣstθN,t

Σθ1,st,t Σθ1,t . . . x2n
...

...
. . .

...

ΣθN,st,t . . . ΣθN,t











For a 2d environment, the mean µ will be of

dimension 2N + 3, where N is the number of

Landmarks, represented by (x, y) and the 3 spaces

are for the agent’s pose as (x, y, θ), similarly, Σ will

be of size 2N + 3 by 2N + 3.

6

The EKF is an extension of the Kalman Filter

citewelch1995introduction, where the KF is limited

to only linear motion and sensor models, the EKF

can take a non-linear function for motion and sensor

models, though is more accurate the more linear

they are, due to linearising the covariance. This is

naturally more powerful, and more usable for real

world scenarios. The motion model in the EKF then

is a function h(xt−1, ut) with covariance Pt, and the

sensor model is a function g(xt) with covariance

Rt. The EKF algorithm for updating the mean µ,

being the estimated pose and landmark locations,

and covariance Σ is:

Algorithm 1: Extended Kalman Filter

Input: µ, Σ, z, u
Result: updated µ and Σ

µ̂t = h(µt−1, ut)

Σt = Σt−1 + Pt

Gx = ∇xtg(xt, nt)

Σ−

t = GxΣ
−

t G
T
x +Rt

Kt = Σ−

t G
T
xZ

−

t

µt = µ−

t +Kt(zt − ẑnt)

Σ = (I −KtGt)Σ
−

t

For a complete explanation and derivation see

[Thrun et al., 2005], For this report the following

will suffice as an explanation. In line (1) the

predicted belief µ is calculated through applying

the motion model h to the current belief µ with

control u. The covariance is then updated with the

new covariance of the motion model in lines (2-

3). The EKF then calculates a Kalman Gain, this

specifies the degree to which new measurements

will be incorporated. Line 6 then manipulates the

mean, in proportion to the Kalman Gain Kt and the

deviation of the measurement z from the predicted

measurement ẑ. The new covariance matrix is

updated similarly to fully update the mean and the

covariance with the new measurement.

The EKF suffers mostly from the quadratic

complexity in the number of landmarks, as well

as sensitivity to data association, as it does

not have a mechanism for correcting bad data

association. Meaning the model is easily poisoned

if data association is ambiguous in an environment,

for example, an environment of homogeneous

landmarks.

4.2 FastSLAM2

FastSLAM2 is an example of a particle filter,

specifically, it is an implementation of a Rao-

Blackwellized particle filter [Grisetti et al., 2007].

Particles hold probabilistic hypothesis of the state;

pose and all landmark positions, contrast to

parameterised model, like the EKF, which estimates

a Gaussian [Montemerlo et al., 2002]. It takes

advantage of the sparsity in the needed updates in

a SLAM model; due to each update only changing

a small number of variables, the fully correlated

model only comes to be after a large amount

of observations, before this, landmarks are not

correlated. Similarly, commands only constrain the

pose of the robot from its last pose, and thus can be

treated separately from landmark locations.

FastSLAM2 calculates a subtly different posterior to

the standard SLAM posterior. Where the posterior is

usually over the pose p(xt,m|z
t, ut), in FastSLAM2

it is over the path p(st,m|zt, ut). With this,

following the Markov assumption, given knowledge

of the path, thse observation of a landmark will

not provide information of any other landmark.

Meaning, landmark positions can be calculated

independently. With this, the SLAM posterior can

be factored into a path posterior, and N landmark

posteriors. Which follows from the structure of the

SLAM problem exactly.

FastSLAM2 uses a particle filter to estimate the

path posterior, holding for every path hypothesis N
landmark posteriors, conditioned on that path alone,

which are estimated using EKFs. Every EKF then

tracks only a single landmark position, conditioned

only on a single robot path. Using M particles,

and N landmarks, there are N × M EKFs of low

dimensions, tackling the dimensionality problem of

using an EKF to hold a probabilistic model of the

the pose and every landmark. Each particle is in the

form:

Xm
t = 〈xt,m, µm

1,t,Σ
m
1,t, . . . , µ

m
N,t,Σ

m
N,t〉 (12)

The FastSLAM2 algorithm follows these steps:

7

1. Sample a new pose for each particle, given a

control

2. Update every Landmark EKF for the observed

landmarks

3. Calculate importance weights for every

particle

4. Draw new, unweighted particles using

importance resampling

The specifics of every step can be found

[Montemerlo et al., 2002], however, for the purpose

of this report, it is enough to understand the SLAM

problem, the basic steps, and that the result is a set

of particles, carrying hypothesis about the agent’s

path. Each one holding the estimate of the path,

and an EFK for every landmark, carrying a mean

and covariance of their positions correlated with the

path. The most likely of which is taken to be the path

and map.

It is important to note that this algorithm does not

suffer from scaling with N landmarks as and EFK

does, as it grows linearly. It also has a mechanism

for filtering bad data associations, as they should

only be considered by a small number of particles,

which will not corroborate future observations , they

are filtered out of the model.

5 Implementation

For this project I built a Pygame environment

in Python, based heavily on [rasmaxim, 2018].

This is the basic environment in which the agent

trains. I train the agent using the Deep-Q-Learniing

algorithm, using the FastSLAM2 algorithm

from [Sakai, 2019] to build a representation of the

map. The map is made up of cones which form

a random racetrack, these cones are represented

as a point, assuming that in reality, this would be

the centre of mass for the cones, from which the

stereo vision system would measure the distance

and angle to, this is what is assumed to be

given to the car for all cones within its sensor

range. The code for this project can be found:

https://gitlab.cs.cf.ac.uk/c1628696/reinforcement-

learning-for-ai-racing

Using Pygame and python made producing a screen

with objects very fast, as importing images, resizing,

producing shapes and dynamically changing the

environment is made easier with its inbuilt functions,

it also allowed me to manually control the car for

testing much faster than had I have built every part

from scratch. I did not employ any physics at this

point, that will wait until later experiments.

5.0.1 Random Track Building

For the trained model to be robust to all types of

tracks, the agent had to train on randomised tracks,

this way there is no bias in the shape of the track,

and the car learns to drive given a range of turns

and lengths. For this I needed a way to randomise

tracks. For this I employed the following technique,

following [Maciel, 2013]:

1. Create a random number n between 10 and 30

2. Create n random (x, y) points

3. Define a non-convex-hull of points This is

a shape that only includes the outer most

points [Gobor, 2017]

4. For every pair of points in non-convex-hull,

create a point at a random distance along the

line created by the two points, between the two

points

5. Perturb the point by some random distance,

with a 0.5 chance of being + or − along the

norm Note this step can be skipped for a simple

track as is shown in my results.

6. For every pair of points in the track, linearly

place cones at a pre-defined distance along the

line made by the two points

My implementation has a function for creating an

outer track as defined above, using the scikitlearn

function for defining the non-convex-hull, then takes

every cone in this track and creates an inner track by

copying this cone and moving it by a fixed amount

θ between 0 and 1 towards the centre with the

following movement equation.

x′ = (θ × (x− xcenter)) + xcenter (13)

y′ = (θ × (y − ycenter)) + ycenter (14)

8

I use θ = 0.75 as my distance. I use the

same technique for defining checkpoints for my RL

algorithm between the outer track and inner track

with θ = 0.5.

As a consequence of how FastSLAM2 defines

particle creation, the car must start its estimated

position at [x, y, θ] = [0, 0, 0] and so the track had

to start at (0, 0). This is a problem when randomly

generating tracks, as well as representing this in a

game world where (0, 0) is in the top left corner

and not the centre. To overcome this, the track is

generated in a normal coordinate space, where (0, 0)
is in the centre, it is then moved into the screen centre

by adding [W/2, H/2] to every point. Then moved

over to the car, by subtracting the starting midpoint

coordinates, so the whole track is shifted to make

the car’s position the start point, for SLAM to be

performed on it. Then, when everything it blited to

the screen, it goes through a function that displays it

by subtracting the vector added to move it to the car.

This way everything is displayed in the game space,

despite existing in a 0 centred environment.

5.0.2 Reward Function

During training, It is important that rewards are fed

frequently to the agent. This ensures that rewards

are not sparse, making training difficult, for example,

one approach here would have been to reward the

agent inversely proportionally to the time it takes

to finish the lap, to encourage speed. However it

would have taken the agent the whole lap to see

this reward, which, given random actions, would

have been probabilistically unlikely in any given

episode. To reward the car frequently, I create

checkpoints along the track. A checkpoint is placed

between every inner cone / outer cone pair. The

reward function then rewards the agent for being

within range of a checkpoint, to gain a reward from

that checkpoint. Once a reward is claimed from a

checkpoint, it cannot be claimed again, ensuring the

agent doesn’t stay in place for optimal rewards. If the

agent is not in range of any checkpoint it is penalised,

as it is now outside the track. The reward for each

reward is multiplied by 1
δt

where δt is the time since

the last checkpoint, to reward speed. The reward

function is the following, where the variable r refers

to cone i being within the car’s sensor range, and the

variable c referring to the reward from cone i having

been claimed:

r =











0 if conei ∈ cones(r & c)

(N − i)× 1
δt

if conei ∈ cones(r & not c)

−100 otherwise

(15)

This performs better than previous work, which

had only rewarded being inside the cone barriers

and velocity. This reward function rewards speed,

travelling in the right direction, and staying within

the cones.

5.0.3 Deep-Q-Learning implementation

The Deep-Q algorithm I implemented was initially

taken from [Kim, 2018] and edited, incorporating

a suggestion in [Lapan, 2018], of transferring

the network on every N steps, where in my

implementation N = 10, to allow for smoother

training. Then altering hyper-parameters following

experimentation.

To implement the neural network, I used the

Keras library with a Tensorflow backend. This

allowed for rapid prototyping, as it heavily abstracts

from the particulars of a neural network, but

is highly optimised. The network used, after

experimenting with hyperparameters, is a sequential

Neural Network with 4 hidden layers, of 600

neurons, with a RelU activation function, using

standard Stochastic Gradient Descent to optimise it

with a 0.001 learning rate and 10 epochs. It takes, as

an input, a 1280 × 700 sized 2D bitmap, generated

by the agent using SLAM2 on its sensor inputs.

The Algorithm lets the agent play 10, 000 episodes

of 10, 000 frames unless the car reaches a final state

in this time (Finishes a lap or drives outside the

cones). This, I found was enough time for the car

to drive through a randomly generated track. In each

9

episode, the car chooses an action with a probability

of 1 − ǫ, with a decaying rate of 0.995, from the

neural network, taking the max(Qstate,action) action,

or a random action. The simulation then performs

that action and feeds back a (s, a, r, s′) tuple, where

s and s′ are SLAM generated bitmaps of the state,

where no cone is represented by 0, yellow cones are

represented as 1s, blue cones are represented as 2s

and the car is represented by a 3. These 10,000

frames are put into a memory queue of length 20000,

where 100 samples are taken off randomly in every

episode to train the network on. The environment

is reset every episode, and should the car complete

a lap, a new track is generated for robust training.

Every 10 episodes, the network is transferred to the

agent.

The model is saved every 1000 episodes incase the

simulation fails, as it is a long training procedure,

and can then be used by car to make decisions in

new environments, it can also, continue to store

(s, a, r, s′) tuple to be trained offline, if required.

5.0.4 FastSLAM2 implementation

To give the most meaningful information forward to

the Deep-Q-Learning algorithm, I used FastSLAM2

to turn sensor measurements and commands into

a map representation, including every seen cone

location and the car’s relative position in that map.

For this, I used Atsushi Sakai’s implementation

found here [Sakai, 2019]. This implementation

serves as a reminder for its usefulness as well as a

well structured code base for easy manipulation and

understanding. I shan’t repeat how the algorithm

works from the background I shall only mention

my alterations, the sensor and motion models, and

the ability to capture different landmarks; blue and

yellow cones, in the sensor model.

The ability to represent different colour cones

comes from the labbeling process in the cited code

base. Here, when the measurement is compared

against the current model; update with observation,

it invokes either update landmark which

updates the landmark’s EKF using Cholesky

Decomposition [Nino-Ruiz et al., 2018], or creates

a new landmark with add new lm. When a landmark

is created, I label it, instead of with a single number

to later index it by, a tuple, that includes its index

as well as a label, 0 = yellow, 1 = blue. This

can can later be used to differentiate between blue

and yellow cones when building a bitmap of the

map. This is also given the cone detection tool in

place being able to feed this additional information,

having been trained to recognise blue and yellow

cones separately.

5.0.5 Sensor Model

The sensor model I use gives the car a distance

x and an angle θ from its centre to the cone’s

centre, if it is within the sensor range. It is

reasonable to assume this is given with good

accuracy, following from previous work done in the

FS-AI team for recognising cones, in stereo vision,

to also triangulate it’s position in space relative to the

camera. In my simulation then, it suffices to give this

information to the car, instead of simulating some

complex situation where this is employed, and so the

motion model is as follows; for every yellow, and

then blue cone in the separate list of cones, made

by the track generation algorithm, I measure the

distance and angle between it and the car:

dx = xcone − xcar

dy = ycone − ycar (16)

θ = tan
dy

dx
− θcar

If this is within the sensor range (in the model I

use a sensor range of 30) which translates into 10

metres, in reality the car has a larger range than this,

so this is a safe assumption, then it is added to the

list of [dist, θ] fed to SLAM as an observation. In

the simulation this is added to a noise matrix in the

form:
[

ǫ 0
0 ǫ

]

(17)

Where ǫ is a random number between 0 and 1.

This is to simulate natural noise in real sensor

measurements.

5.0.6 Ackerman Motion Model

As a motion model, I chose a simplified version

of the Ackerman Kinematic Model; the bicycle

model [Snider et al., 2009], given its simplicity, this

10

was easy to implement in a 2D simulation. A

control is given by two attributes (φ, a) where φ is

the steering angle and a is the acceleration. This is

realistic and appropriate for this purpose. Velocity is

then calculated, simply, as

v′ = v + a× δt (18)

The turning radius is calculated as L/ tanφ And the

angular velocity ω is calculated as v/r. The car is

thus updated by the following equations:

x′ = xcos(φ)− ysin(φ) (19)

y′ = ysin(φ) + ycos(φ) (20)

θ′ = θ(ω)× δt (21)

The cars position is now (x′, y′, θ′). And is

multiplied by a random noise matrix similar to the

sensor model to model the noise in the mapping

between commands and movement due to odometry

inaccuracies, slipping, skidding etc.

6 Results

6.1 SLAM

The SLAM2 implementation, discussed, works

excellently for estimating both the car’s pose and

the positions of cones. Below is an image of

the scatter produced by the particle filter, where

each blue spot is a pose hypothesis. The mean of

which converge accurately to the car’s true pose.

To further emphasise the need for SLAM, the

figure below shows the Dead Reckoning over time

as well as the SLAM estimated pose over time,

as a distance from the true pose. Note that the

dips in distance are accounted for by landmark

observations, which are probabilistically correlated

with the pose. It can be seen that with few, to

no, observations, pose uncertainty grows for the

SLAM model, while the Dead Reckoning is not

dependant on these, dips can also be accounted

for during certain turns where the Dead Reckoning

comes closer to the true pose by happenstance.

During the simulation, path estimates are shown

as blue spots, while pink spots show the Dead

Reckoning; the position that would be taken, had

SLAM not accounted for the noise, in the simulation

this is simulated noise, in reality this would

occur naturally from slipping etc. The difference

in Dead Reckoning estimations to the SLAM

estimations can be seen visually in all simulated laps.

Landmark estimates can also be seen as black

circles over the cones, accurately predicting the cone

locations, the circles here are from the most likely

particle, thus the most probabilistic position, from

the model. Shown below is an early shot, where

the discovered cones have a black circle over their

location to represent the SLAM estimate of their

respective positions. As these positions are then

held, irrespective of where the car is, or is detecting

at that moment, such landmark estimates are kept

as a map for the Deep-Q Learning Algorithm.

11

6.2 Reinforcement Learning

After 10 hours of training on a MacBook Pro 2015

15”, the car showed promising results. Using

the green checkpoints shown below, on with

algorithm described, with the simplified random

track generation. The car’s path can be seen

by the black path, while the SLAM path is in

blue, and the Dead Reckoning in pink. The car’s

racing line should also be noted in both these

examples as a good racing line [Kuhn, 2017],

accelerating in tactically relevant points.

This model was able to generalise to

unknown tracks as well, as shown, but was

confined to exclusively to the simpler tracks.

Later, a custom track generation algorithm was

developed in the team to represent more complex

tracks. However the model could not generalise

a complex track, where the track layout become

more ambiguous, an example of which is seen below.

Future work will focus on better track

representations to handle such cases. But the results

of training on simpler tracks are promising enough

to count this as a successful proof of concept, where

further parameter tuning of the model, and cost

function should converge on a more robust agent.

7 Conclusions and future work

This project sought to use Deep-Q Learning;

a Reinforcement Learning algorithm, to map

observations to actions for autonomous racing,

specifically to compete in the FS-AI 2019

competition. The model generated was able, after

training on random, simple, tracks, consisting of

spaced blue and yellow cones, as specified in the

FS-AI rules, to complete a lap on an unseen track

in a 2D simulation, following a good racing line,

proving itself as a working proof of concept for such

a system to be deployed in the FS-AI competition for

autonomous racing. The model only assumes that

cones within a 12 metre range would be detected,

and triangulated with some accuracy, accounting

for noise. Given previous work on the problem in

creating a stereo system to do this, it is reasonable to

assume this would be given in a real situation. The

12

model successfully deploys fastSLAM2 to transform

these measurements, along with odometry readings

to create a probabilistic map of its environment, to

be given to a Deep Neural Network to successfully

dictate actions that allow for a track to be completed.

Future work should focus on the following areas

1. Producing a vector field of the agent’s

decisions in all locations of an un-seen track,

to better understand its current limitations.

2. Creating a better map representation from

the SLAM landmark estimations. A

suggestion is to calculate the track boundaries

mathematically and use these as the input for

the NN, rather that a bitmap of cones.

3. Continue improving the reward function to

generalise better. More emphasis should be

placed on accelerating, as well as staying

close to the racing line. A suggestion of an

improved function would be to calculate the

racing line numerically [Kuhn, 2017] whilst in

the simulation and reward the agent based on

how close it is to the racing map

4. Including physical limitations in the simulated

environment will train an agent more

realistically, work is currently being done

by the Cardiff Autonomous Racing (CAR)

team for producing such a simulation using

the Unreal Engine for capturing inertia, air

resistance etc as well as having a better, more

accurate model of the car to train. Training

in this environment will make for a far more

robust agent.

5. Better hyper-parameters could be found for

the Neural Network through taking a large

buffer during the training phase, storing this

and using it as a training set, whilst using

a graph search method to find the optimal

hyper-parameters [Bergstra et al., 2013] for

the network. This network could then be

trained in the usual fashion using Deep-Q

Learning.

6. CAR is currently producing a 10th scale test

environment for the competition algorithms,

immediate work should be to port this model

to this car for true performance testing. This

project proved as a proof of concept to

pursue this technique further for the FS-AI

competition, I believe the above suggestions

will produce a much more robust model for

competing.

8 Reflection

As discussed, I view this project as an overall

success. It would have been preferable to have

finished with a more robust model, capable of driving

the more complex tracks, but I understand this to be

the next phase of this project now, given the learning

curve and infrastructure needed to produce this first

stage, it is reasonable to have produced the work I

have, in my opinion.

I had not understood SLAM properly until this

project, meaning much time had to go into

understanding SLAM, including EKFs and particle

filters to truly understand the FastSLAM2 algorithm,

to the point I could implement functions myself,

as well as adjust others to purpose, this consumed

production time. Especially given my weaker math

background, though I pride myself on learning

what’s needed when needed, I cannot pretend I didn’t

spend many evenings trying to understand some of

the math prerequisites for this.This was difficult,

though was overcome in time, resorting to a white

board often to imagine it’s workings better.

I had previously understood Neural Networks and

had a good machine learning background, though

had not done Reinforcement Learning, and thus had

to learn both traditional methods and the newer Deep

Learning methods. This was a fun learning curve

that involved building simple projects to overcome

simple problems, such as cart-pole and Pac-Man.

This was a natural addition to my Machine Learning

knowledge and was not too difficult to understand or

implement.

Building the environment took very little time,

though in hindsight, more time should have been

given to produce better random-tracks, given the

impressive complexity of tracks later developed,

more time should have been given to produce a

more nuanced environment. The environment also

does not represent any physical forces, which are

13

things I planned on including, though didn’t due

to time restrictions and wanting to move onto the

algorithmic side of the project. This is a shame, and

is work I plan on completing in the near future.

My initial plan laid out a very reasonable and

achievable timescale, more effort should have been

made to stick to this plan. I naturally work in sprints,

neglecting work for sometime, then working through

days and nights other times. I learn again from this

project that I should pace myself through a project

and work consistently to meet milestones on time

and keep on top of the project.

Overall I am pleased with my personal progression

and achievements in this project and mark the results

as successful, given all limitations; time, background

and skill.

14

9 Acknowledgements

With thanks to: Dr Kirill Sidorov for support during

the project academically and personally, and David

Buchanan who designed an improved random track

algorithm for training on, as well as everyone who

calmed me down whilst stressing about this project

during the year.

References

[Bast et al., 2016] Bast, H., Delling, D., Goldberg,

A., Müller-Hannemann, M., Pajor, T., Sanders, P.,

Wagner, D., and Werneck, R. F. (2016). Route

planning in transportation networks. In Algorithm

engineering, pages 19–80. Springer.

[Bergstra et al., 2013] Bergstra, J., Yamins, D., and

Cox, D. D. (2013). Making a science of model

search: Hyperparameter optimization in hundreds

of dimensions for vision architectures.

[Bibal and Frénay, 2016] Bibal, A. and Frénay, B.

(2016). Interpretability of machine learning

models and representations: an introduction. In

Proceedings of the ESANN.

[FS,] FS. Formula student.

https://www.imeche.org/events/formula-student.

[FS-AI, 2019] FS-AI (2019). 2019 formula

student – artificial intelligence (fs-ai) rules.

https://www.imeche.org/events/formula-

student/team-information/rules.

[Gobor, 2017] Gobor, Z. (2017). Finding the convex

or non-convex hull of a random number of

vertices simple task? MECHEDU.

[Grisetti et al., 2007] Grisetti, G., Stachniss, C.,

Burgard, W., et al. (2007). Improved techniques

for grid mapping with rao-blackwellized particle

filters. IEEE transactions on Robotics, 23(1):34.

[Ishibuchi and Nojima, 2007] Ishibuchi, H. and

Nojima, Y. (2007). Analysis of interpretability-

accuracy tradeoff of fuzzy systems by

multiobjective fuzzy genetics-based machine

learning. International Journal of Approximate

Reasoning, 44(1):4–31.

[Kabzan et al., 2019] Kabzan, J., Valls, M. d. l. I.,

Reijgwart, V., Hendrikx, H. F. C., Ehmke, C.,

Prajapat, M., Bühler, A., Gosala, N., Gupta, M.,

Sivanesan, R., et al. (2019). Amz driverless: The

full autonomous racing system. arXiv preprint

arXiv:1905.05150.

[Kaur and Rampersad, 2018] Kaur, K. and

Rampersad, G. (2018). Trust in driverless cars:

Investigating key factors influencing the adoption

of driverless cars. Journal of Engineering and

Technology Management, 48:87–96.

[Kim, 2018] Kim, K. (2018). deep-q-

learning. https://github.com/keon/

deep-q-learning.

[Kuhn, 2017] Kuhn, P. W. (2017). Methodology

for the numerical calculation of racing lines

and the virtual assessment of driving behavior

for training circuits for the automobile industry.

Transportation research procedia, 25:1416–1429.

[Lapan, 2018] Lapan, M. (2018). Deep

Reinforcement Learning Hands-On: Apply

modern RL methods, with deep Q-networks,

value iteration, policy gradients, TRPO, AlphaGo

Zero and more. Packt Publishing Ltd.

[Maciel, 2013] Maciel, G. (2013). How to

generate procedural racetracks. http:

//blog.meltinglogic.com/2013/12/

how-to-generate-procedural-racetracks/.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K.,

Silver, D., Rusu, A. A., Veness, J., Bellemare,

M. G., Graves, A., Riedmiller, M., Fidjeland,

A. K., Ostrovski, G., et al. (2015). Human-level

control through deep reinforcement learning.

Nature, 518(7540):529.

[Montemerlo et al., 2002] Montemerlo, M., Thrun,

S., Koller, D., Wegbreit, B., et al. (2002).

Fastslam: A factored solution to the simultaneous

localization and mapping problem. Aaai/iaai,

593598.

[Nino-Ruiz et al., 2018] Nino-Ruiz, E. D., Sandu,

A., and Deng, X. (2018). An ensemble

kalman filter implementation based on modified

15

https://github.com/keon/deep-q-learning
https://github.com/keon/deep-q-learning
http://blog.meltinglogic.com/2013/12/how-to-generate-procedural-racetracks/
http://blog.meltinglogic.com/2013/12/how-to-generate-procedural-racetracks/
http://blog.meltinglogic.com/2013/12/how-to-generate-procedural-racetracks/

cholesky decomposition for inverse covariance

matrix estimation. SIAM Journal on Scientific

Computing, 40(2):A867–A886.

[Paden et al., 2016] Paden, B., Čáp, M., Yong, S. Z.,

Yershov, D., and Frazzoli, E. (2016). A survey of

motion planning and control techniques for self-

driving urban vehicles. IEEE Transactions on

intelligent vehicles, 1(1):33–55.

[rasmaxim, 2018] rasmaxim (2018). pygame-

car-tutorial. https://github.com/

rasmaxim/pygame-car-tutorial.

[Sakai, 2019] Sakai, A. (2019). Fastslam2.

https://github.com/AtsushiSakai/

PythonRobotics/tree/master/SLAM/

FastSLAM2.

[Siegwart et al., 2011] Siegwart, R., Nourbakhsh,

I. R., and Scaramuzza, D. (2011). Introduction

to autonomous mobile robots. MIT press.

[Snider et al., 2009] Snider, J. M. et al. (2009).

Automatic steering methods for autonomous

automobile path tracking. Robotics Institute,

Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08.

[Stachniss, 2013] Stachniss, C. (2013).

Slam lecture series for university

of freiburg, germany. Available at:

https://www.youtube.com/watch?v=V9qQc5X7O0k.

[Sutton et al., 1998] Sutton, R. S., Barto, A. G.,

et al. (1998). Introduction to reinforcement

learning, volume 135. MIT press Cambridge.

[Suykens and Vandewalle, 1999] Suykens, J. A. and

Vandewalle, J. (1999). Least squares support

vector machine classifiers. Neural processing

letters, 9(3):293–300.

[Thrun et al., 2005] Thrun, S., Burgard, W., and

Fox, D. (2005). Probabilistic robotics. MIT press.

[Wang et al., 2018] Wang, S., Jia, D., and Weng,

X. (2018). Deep reinforcement learning

for autonomous driving. arXiv preprint

arXiv:1811.11329.

[Zhu et al., 2006] Zhu, Q., Yeh, M.-C., Cheng,

K.-T., and Avidan, S. (2006). Fast human

detection using a cascade of histograms of

oriented gradients. In 2006 IEEE Computer

Society Conference on Computer Vision and

Pattern Recognition (CVPR’06), volume 2, pages

1491–1498. IEEE.

16

https://github.com/rasmaxim/pygame-car-tutorial
https://github.com/rasmaxim/pygame-car-tutorial
https://github.com/AtsushiSakai/PythonRobotics/tree/master/SLAM/FastSLAM2
https://github.com/AtsushiSakai/PythonRobotics/tree/master/SLAM/FastSLAM2
https://github.com/AtsushiSakai/PythonRobotics/tree/master/SLAM/FastSLAM2

