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Abstract

Understanding expert gaze behaviour in the field of medical imaging is a challeng-

ing topic as a result of the multitude of complex interacting factors existing in hu-

man biology and influencing human vision. This study performs a visual and sta-

tistical analysis on data gathered from an eye-tracking experiment performed in the

University Hospitals KU Leuven in Belgium in 2018. The experiment recorded eye

movements of medical practitioners with varying degrees of experience as they ex-

amined mammograms, with the goal of discerning differences between the groups,

and identifying expert behaviour. The raw data was transformed into gaze infor-

mation which represented saccade eye movements, and then an agglomerate visual

analysis was performed, comparing and contrasting groups by applying scientific

statistical techniques to reinforce the observations.
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1 Introduction

1.1 Motivation

Human vision occurs as the eye focuses light onto the retina, where it is absorbed

by a layer of photoreceptor cells; rod cells and cone cells, which convert light into

electrochemical brain signals. Cone cells are responsible for high acuity tasks and

colour vision, while rod cells enable sight at night and in dim light. This underlying

mechanism is what enables visual attention and serves as an interface between the

outside world and the decisions humans make as they navigate through their envi-

ronments. It has been widely established that eye movements are a central feature

of human vision [1], with broad functionality including enhanced extraction of fea-

tures via microsaccadic motion [2] to high-level strategies for optimal information

gathering [3]. The latter aspect is of significant interest in radiology, and particularly

mammography screening, which are central themes of this report. Mammography

screening has been estimated to be responsible for between an 8% to 23% decrease in

breast cancer mortality rate during 1990-2002 [4]. Studying eye movements through

eye-tracking technology has been demonstrated as an effective tool for recognizing

causes of error [5], and advancing training methodologies for novice radiologists,

since training techniques such as gaze training and pattern recognition can employ

eye-tracking training data [6]. Discriminating and quantifying the characteristics

and strategies present in the gaze behaviour of radiologists when viewing mam-

mography images is therefore a fundamental step in establishing training techniques

with greater efficacy and in developing sophisticated diagnostics equipment to in-

crease the availability of effective patient care and tackle prevalent issues in global

health..

1.2 Studying and Modelling Vision

The process of analysing human vision is performed through investigating eye-

tracking data and constructing visual attention models as to deliver insight into the

observer’s mind. There exist a variety of visual attention models which focus on

specific subclass’ of eye movements like smooth pursuit [7], the optokinetic reflex

[8] or gaze shifts [9]. This report focuses on fixations and saccades, along with a dis-

cussion on their related models; saliency and saccadic models. Fixations are points

of interest where the fovea is concentrated on and where visual acuity is at its op-

timal. Saccades are rapid changes in eye position between two fixation points and
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FIGURE 1.1: Illustrates original stimulus in (a); (b) and (c) demon-
strate fixation maps and (d) and (d) display resulting saliency maps

following the application of a saliency model.

can be measured using two variables; saccade amplitude and saccade orientation.

Saccade amplitude refers to the distance between successive fixation points and sac-

cade orientation signifies the angle between the two points. The order of fixation

points and saccades which can be observed by a participant is labelled a visual scan

path. Saliency models utilize fixation data to output 2D static saliency maps for

understanding and predicting the salience of a visual scene.

However, saliency models have often been criticized for their failure to account

for inherent oculomotor biases in human eye movements, such as predicating their

conclusions on a hypothesis that eyes are likely to move in any direction [10]. To

remedy the shortcomings of saliency models, saccadic models emerged. As demon-

strated in Figure 1.2, which illustrates a saccadic model composed of three modules;

a bottom-up saliency map, memory mechanism function and viewing biases [11].

By integrating stochastic attributes and including factors which are neglected by

saliency research, saccadic models can integrate the intricacies of the human visual

system to predict visual scan paths with improved accuracy and can be tailored to

specific contexts such as varying scenes or tasks to mimic human behaviour and

mitigate viewing biases [12].

FIGURE 1.2: Le Meur’s Saccadic Model. Source: O. Le Meur and Z.
Liu, 2015.
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1.3 Aims and Objectives

1. The goal of the project is to complete two technical tasks, expand on the sec-

ond task by completing deeper analysis on the methodology used, as well as

providing a comprehensive analysis of the results gathered through written

investigation.

(a) Visualize the recorded fixation points of participants from the dataset

onto the mammography images, and report on findings.

(b) Calculate saccade amplitude d and orientation φ from the dataset and

construct visualizations including histograms and other formats to dis-

play differences between participant groups.

2. Using the resulting visualizations and new information, attempt to understand

and construct further visual and verbal analysis of the results, elucidating and

trying to understand the differences of results and their causalities as well as

evaluating the methodology used to visualize the data and attempt to measure

its utility for this sort of research.
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2 Background

This chapter discusses the origins of the motivation towards the analysis completed

in report, the experiment conducted to attain the data, and delivers comprehensive

insight into the landscape and history of eye-tracking research in the field of medical

imaging.

2.1 The Field of Medical Imaging

The discipline of medical imaging refers to the practice of producing images of the

interiors of a body in order to be interpretable for the human eye and computers,

with the purpose of aiding in diagnosis and developing treatments for diseases. Ex-

amples of medical imaging include x-ray, magnetic resonance imaging (MRI) and

medical ultrasonography along with many others. As medical imaging techniques

advance, they continue to support medical practitioners in detecting issues with

greater success and the practice has become a necessary preliminary step in deliver-

ing patient care.

The current practice of examining medical images is constrained with regards to

accuracy due to the reliance on human practitioners to observe the images, recent

studies cite a 30% false negative diagnosis frequency with a similar false positive

occurrence in particular fields of radiology [13]. This is largely due to the imperfect

nature of the human visual system: the complexity of human physiology means

accuracy is dependent on a number of variables. Some variables have not yet been

entirely revealed while other factors, such as the practitioners experience, age or

mood have been recognized by research, and their impact on performance has been

widely evaluated, for instance, fixation duration (the time spent on a specific point

on an image) decrease with age [14].

The risk of Inaccurate diagnosis poses a serious threat to global health. Patient’s

conditions can be mistreated or untreated, and this threat is further amplified by

the shortage of radiographers in certain regions of the world. In England the num-

ber of patients having to wait over 6 weeks for an MRI or CT scan has risen from

9,000 to 29,000 between 2017 and 2018 [15]. It is therefore imperative to conduct

a study which attempts to understand the differences in gaze behaviour of experts

and novices in the field of radiography, in order to better and faster train people

to experts and build sophisticated systems which assist practitioners in performing

accurate and efficient diagnosis.
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2.2 Purpose of Studying Gaze Behaviour

The field of eye tracking is a prominent scientific method for understanding gaze be-

haviour. Eye tracking provides a technique for recording subjects pupil movements

when observing a scene, thus providing insight into how the subject evaluates the

scene. Therefore, analyzing the observations from an eye tracking experiment has

the potential to deliver insight into the technique and errors exhibited by subjects.

A study by Voisin et al. [16] analysed quantitative metrics from eye tracking data in

a study which monitored six radiologists while evaluating the probability of malig-

nancy of forty mammographic images, utilising a Mirametrix S2 eye tracking device.

Relevant data such as fixation points, their associated duration and fixation- saccade

ratio was extracted, and they were able to demonstrate that gaze metrics were highly

correlated with a radiologists diagnosis errors.

2.3 Experience as an Independent Variable

This report will deliberately focus on the variable of experience. We explore the

impact of experience, controlling it as an independent variable, and observe its effect

on the dependent variable: medical practitioners gaze behaviour when examining

mammography images, which are low-energy X-rays of human breasts.

For this report, a dataset acquired from three groups of medical practitioners

with different degrees of experience in mammography reading experience was em-

ployed. These three groups were comprised of Expert Radiologists ("Experts"), Trainee

Radiologists ("Trainees") and Physicists. Experience as indicated by previous re-

search in the medical field when examining medical images is a deterministic factor

of performance. Krupinski et al. [17] studied the impact of training on viewing

behaviour with four pathology residents throughout their training period. After

completing the training, statistically significant improvements were seen through

an increase in efficiency, caused by a decrease in the number of fixation points and

re-visitations of already examined points.

2.4 Eye-tracking Experiment

The data was acquired from an experiment performed in the mammography reading

room of University Hospitals of the KU Leuven. It is comprised of 198 multi-lateral

oblique (MLO) views from 98 anonymised cases. The mammography images oc-

cur in the medio-lateral oblique (MLO) perspective which is an angled view from

a lateral projection. The participants were presented the 98 cases in random order

and asked to examine each image with their eye movements being tracked using a

SensoMotoric Instrument (SMI) Red-m eye-tracking device with a 250 Hz sampling

rate.
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FIGURE 2.1: Illustration of the experimental procedure: (a) MLO and
CC views of the left breast, (b) MLO and CC views of the right breast,

and (c) question asked to the radiologists after viewing (a) and (b).

The aforementioned participants were three expert radiologists, comprising of

eight, fifteen and twenty years of experience in mammography reading, referred to

as R1, R2 and R3 henceforth. Three trainee radiologists T1, T2 and T3, and finally,

two physicists, referred to as P1 and P2.

The experiment gathered gaze information from the raw-eye tracking data recorded

during the procedure. The data points included number of fixations per stimulus,

coordinates of fixations and duration periods. It is this catalogue of data which this

report will be conducting analysis on.

2.5 Previous Work

Eye-tracking research within the field of medical imaging has been a regular topic

of research topic in order to uncover how these medical practitioners perform vi-

sual search and recognition tasks. In this section, a thorough review is presented of

the available literature in the domain of eye-tracking in medical imaging. Thus far,

conducted research has revolved around three subject matters:

1. Identification of Practitioners Visual Search Patterns

2. Influence of Expertise and Experience on Performance

3. Impact of Training on Viewing Behaviour
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2.5.1 Identification of Practitioners Visual Search Patterns

Studies of such sort begun as early as 1981. Carmody et al. [18] studied 4 radiolo-

gists as they performed diagnosis on 10 chest x-ray slides, 4 of which were normal

and 6 abnormal. They were instructed to press a key upon finding a nodule and

wore a pair of glasses with a corneal reflection to make their eye movements mon-

itorable. The data recorded included eye movements and fixations, such as visual

dwell times. The study concluded that false negative errors were influenced both by

the visibility of a nodule as well as the scanning strategies employed by the radiolo-

gist.

Later Beard et al. [19] leveraged a more advanced Eye Mark Recorder Model

V on 3 CT scans, comprised of a single chest and multiple abdominal scans, with

the intention of understanding visual scan patterns used by radiologists when in-

terpreting the given CT scans. 4 radiologists and 1 radiology resident participated,

with each round of interpretations conducted by the radiologists, their scan patterns

were rendered manually from tape records and systematic sequential visual scan

patterns were discovered.

Suwa et al. [20] conducted an experiment using 20 CT scans, 10 being normal and

10 with pathologic lesions with 8 dentists leveraging an Eye-tracking system model

504. The intention of the study was to analyze whether dentists exhibit different

behaviour when observing pathologic vs normal images. The variables recorded

included time to discriminate, fixation points count, travel distance between fixation

points and average time per fixation. The findings revealed that there was indeed

a difference. Dentists tended to move sequentially when viewing a normal image,

whereas in the case of an image with a pathologic lesion they tended to focus on

suspected regions. Furthermore, the travel distance between fixations and minimum

gaze fixation time was longer for pathologic images.

Previous literature has also included studies involving mammogram analysis.

Kundel et al. [21] took gathered data in three independent institutions, employ-

ing experienced mammographers, mammography fellows and radiology residents

harnessing an Applied Science Laboratories (ASL) eye-tracking device and tasked

the participants with detecting cancers within the mammographs. The findings of

the experiment found that 57% of the cancer locations were fixated within the first

second of screening, leading to the conclusion that an initial detection of a cancer

happens prior to visual scanning and that greater expertise may be comprised of a

change to a scan-look-detect to look-detect-scan process.

Further studies revolving around mammography were conducted, one in partic-

ular involving Voisin et al. [16] devoted to analysing the association between gaze

patterns and performance in diagnostics in lesion detection. The participants were

given 40 mammograms, 20 being benign and 20 malignant and were tasked with

giving the probability of a malignancy existing within a given image. A Mirametric

S2 eye-tracking device was used and by tracking multiple gaze metrics including

number of fixations, duration of fixations, fixation/saccade ratio and saccade length



Chapter 2. Background 8

they discerned that these variables were highly correlated with a radiologists diag-

nostic errors.

Studies have also branched into colonoscopy videos. Almansa et al. [22] using

a ASL mobile eye-tracking device observed the relationship between gaze patterns

and adenoma detection rate. Using 11 endoscopists to watch three high-definition

videos from regular colonoscopies and tracking relevant data using the device, it

was revealed that participants who detected the largest amount of adenomas dis-

played a tendency to focus on the centre of the screen, thus their central gaze time

was significantly correlated with the amount of time the endoscopists spent on the

centre of the screen.

2.5.2 Influence of Expertise and Experience on Performance

Surgery

Law et al. [23] hypothesised that there would be distinctive differences in the gaze

behaviour between experts and non-experts of laparoscopic surgery. The group con-

ducted an eye-tracking study using five expert surgeons and five students. The sub-

jects were instructed to perform a virtual task: touch a small target with a virtual la-

paroscopic tool as quickly as possible and minimize error, this was done in 2 blocks

of 5 trials using a ASL 504 remote eye-tracking device. The study demonstrated that

the experts were significantly faster and more accurate and that novices spent longer

periods of time observing the tool than experts.

Another study revolving around laparoscopic surgery was conducted by Kocak

et al. [24] with eight experts, eight intermediates and eight novices, employing a

Cyclops Eye Trak saccadometer. The participants were tasked with performing three

common laparoscopic tasks, these included loops, rope and beans. The findings

revealed experts exhibit a lower saccadic rate than novices and experts also had a

higher peak velocity on average.

Ahmidi et al. [25] gathered 5 experts and 6 novice surgeons for an experiment

involving endoscopic sinus surgery. The surgeons were instructed to locate and

then touch using an endoscope a given anatomy in the sinus cavity. The experiment

found that expert surgeons gaze information contained structure for eye level recog-

nition which was not found in novices, and they also used a Hidden Markov Model

to develop a strategy for determining the expertise levels of surgeons.

In the same year Richstone et al. [26] published a study which included twenty-

one surgeons partaking in a laparoscopic surgery, eleven of the surgeons partici-

pated in the live surgery and 10 in the simulation. The participants wore a EyeLink

II eye-tracking device which recorded their blink rate, fixation rate, pupil metric and

vergence. They concluded that for both scenarios of live and simulation surgery, the

metrics recorded can be used to distinguish experts and non-experts reliably.

Khan et al. [27] employed twenty-two surgeons, two of which were experts and

twenty were novices in a study where the participants performed a surgical task and
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later watched a video while wearing a Tobii X50 eye-tracking device. For the study,

sixteen laparascopic cholecystectomy cases were used and a statistically significant

difference was revealed, demonstrating that a 55% overlap existed for experts be-

tween “doing” and “self-watching”, whereas only 43.8% for junior residents.

Medical Diagnosis

Nodine et al. [28] directed a study using 3 radiographers and 6 radiography trainees,

leveraging an ASL 4000 SU eye-tracking device in evaluating forty mammography

test cases, twenty containing lesions and twenty without. They participants were

simply instructed to decide a given case was either normal or abnormal. The obser-

vations concluded that the experienced radiologists had significantly better perfor-

mance regarding accuracy, although no significance in decision time was observed.

Similar to the study above, Tourassi et al. [29] observed in a study involving

three breast imaging radiologists and three trainees when tasked with evaluating 20

mammograms, that residents accuracy was lesser than that off an expert, and the

recall rate for both participants were similar on average.

There have been multiple studies involving CT images that focus on comparing

experts and novices when conducting diagnosis such as Cooper et al. [30], Mat-

sumoto et al. [31] and Mallet et al. [32]. Cooper et al. [30] discerned through a

study of three experts, one trainee and four novices, when observing stroke images

that, in the case of an acute stroke, trainee readers observed the region of interest

with the 34th fixation in contrast to the expert which noticed it in the first fixation.

Furthermore, for a chronic stroke case, novices spent a lesser time viewing the af-

fected area than experts. These factors determined the statistical significance that

was calculated, proving that experts performed better than trainees. The study per-

formed by Matsumoto et al. [31] also revolved around stroke cases, completed two

years later and involving twelve control subjects comprised of nurses, medical tech-

nologists, psychologists and medical students. Using twelve neurologists, they un-

covered that neurologists and the control subjects all gazed at salient points in the

images, however, it was only neurologists who gazed as visually low-salient areas

with clinical importance. Mallet et al. [32] employed twenty-seven experienced and

thirty-eight inexperienced radiologists to study twenty-three 3D CT colonography

videos. Their results revealed that experienced participants were better at polyp

identification, also there was no difference between the groups in the percentage of

pursuits and total examination period.

Further techniques of medical imaging were utilized for discerning differences

in performance between experts and novices, Manning et al. [33], Vaidyanathan et

al. [34] and Leong et al. [35] employed radiographs, dermatological images and

chest images. Manning et al. [33] with three distinct groups of eight experienced

radiologists, five radiographers and eight novice radiography students leveraging

an ASL 504 remote eye-tracker and various gaze metrics displayed that radiologists

and radiographers post training were better at performing diagnosis than novices.
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Vaidyanathan et al. [34] contrasted twenty-two dermatology experts and twelve

novices eye movements when observing thirty-four dermatological images. Their

findings were that experts employ weighing importance to regions following a brief

fixation whereas novices require several re-fixations. Furthermore, they reported

that saccade amplitude and median fixation duration were significantly higher for

experts than novices. Leong et al. [35] employed twenty-five participants from dif-

ferent specializations to examine and identify any fractures in thirty-three skeletal

radiographs. Using a Tobii 11750 eye-tracking device, they demonstrated that al-

though there was no statistical significance in the time spent between the disciplines

on viewing the radiographs, experts led a larger number of true positives.

2.5.3 Impact of Training on Viewing Behaviour

To determine the effectiveness of training on gaze behaviour in laparoscopic surgery

Wilson et al. [36] employed an ASL mobile eye-tracking device and thirty trainee

surgeons in an experiment which divided the participants into three groups, each

receiving a different training. The first group was displayed an experts eye move-

ments when performing a coordination task. The second group was given the same

option as the first but without a gaze cursor. The third group was only allowed to

examine their own performance and not given any video like the predecessors. A

preliminary statistical analysis validated that there existed no statistical significance

in the difference of performance of the groups. However, following the training, it

was proven that the first groups performance was significantly faster than the other

groups. The first group also spent significantly more time on target locking fixations.

A similar study was completed by Vine et al. [37] which intended to evaluate the

impact of gaze training in laparoscopic surgery without informing the participants

on the purpose of the training. Twenty-seven naïve participants were dispersed into

two groups, one a discovery learning group and the other a gaze training group.

The groups were tasked with moving foam balls into a cup using with only a single

instrument. A preliminary analysis revealed no statistical significance prior to train-

ing. However, afterwards the gaze training group was able to complete the task

significantly faster and displayed more accuracy than the discovery learning group.

Krupinski et al. [38] conducted a study in pathology with a ASL SU4000 eye-

tracking device. It monitored four pathology residents viewing behaviour over their

training period i.e. once a year for four years. In each experiment, the participant

was instructed to choose their top three locations they would like to magnify in

twenty breast core biopsy surgical pathology cases. Using fixation positions and

dwell times as metrics, they determined that residents had become more efficient

each year, displaying fewer fixations and fewer revisited locations.



11

3 Approach

This section of the report discusses the circumstances of the performed analysis,

details of the mathematical methods applied to achieve the objectives in the deliver-

ables, the suitability of the approach and justification of the techniques applied.

3.1 Extension of Previous Work

In order to discuss the approach used in this report, it is necessary to highlight that

the work conducted in this report is an extension of a prior analysis performed by

Lucie Lévêque in her PhD thesis ‘Analysing and quantifying visual experience in

medical imaging’ [39].

In her thesis, Lucie employed the same dataset as in this report and completed

an investigation of the impact of expertise and experience on gaze allocation, and

evaluated the performance of state-of-the-art saliency models. Through analyzing

the mean duration of fixation points across all the stimulus, Lucie generated com-

putational saliency maps to illustrate the directed attention of the participants and

to understand imperative areas of the stimuli. Additionally, a visual and statistical

analysis was included, deducing the presence of statistical significance between var-

ious participant groups and within participants in discrete groups, and argued that

gaze metrics can be utilized to quantify the extent of which trainees or physicists are

in agreement with experts in regards to where to focus on in images.
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FIGURE 3.1: Illustration of the saliency maps constructed for two pa-
tient’ cases: (a) patient 1, MLO and CC views of the left breast.

3.2 Limitations of Previous Work and Further Approach

While Lucie’s work was useful and the necessary preliminary data analysis of the

data, as she explicated in her conclusion; the analysis does not offer a complete

perspective on the information hidden within the data, and computer-generated
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saliency maps were judged insufficient to generate accurate scan paths emulating

human gaze behaviour [40].

To deal with these limitations, this report focuses on examining saccades. As

mentioned in Chapter 1, saccades are rapid, ballistic movements of eyes between

fixation points, and can be reduced to two components which this report will use to

perform statistical analysis on: saccade amplitude and saccade orientation.

3.3 Data Processing

The raw data itself was not undecipherable by a human reader. The complete cat-

alogue of data was scattered over multiple files and folders. Folders containing csv

files referenced the stimulus (mammograms) observed by the participants and con-

tained eye-tracking data gathered throughout the experiments (See Figure 3.2). The

stimuli were stored as bmp files in a separate folder from the csv files. Python was

employed with several libraries to assemble the images and data, and transform it

into accessible and manipulable formats.

The original data in csv files were as follows:

• Stimulus ID

• Participant

• Index

• Event Start Trial Time [ms]

• Event End Trial Time [ms]

• Fixation Point X [px]

• Fixation Point Y [px]

FIGURE 3.2: Screenshot of the sample csv file containing eye-tracking
data acquired in the original experiment performed at University

Hospitals of the KU Leuven.
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3.3.1 Gaze Data Plotting

The initial approach taken to perform the analysis was to visualize the gaze data.

This helped in developing a better understanding of the raw data and of the prob-

lem. Fixation points with their according index points were plotted superimposed

onto the stimuli, with legends to illustrate which participant performed the fixation.

FIGURE 3.3: Top: Original mammogram sample bmp image. Bottom:
Result of visualization of fixation points performed by Physicists P1

and P2 on the original mammogram.

By overlaying fixation points onto the stimuli, it helped in observing whether

any potential outliers or oddities existed within the data. Additionally, it aided in

contrasting gaze behaviour between participants as seen in Figure 3.3. However,
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as mentioned in section 3.1, Lucie Lévêque did extensive work with the fixation

points and stimuli, generating saliency maps and statistically analysing the means

of fixation time durations, therefore this report focused on another approach.

3.3.2 Saccade Analysis

The second approach was to derive quantitative values for the components of a sac-

cade eye movement: saccade amplitude and saccade orientation, and afterwards

perform visual and additional statistical analysis on the values across each partici-

pant group.

All the columns in the raw data was used apart from duration of fixations for this

task. Fixation Point X and Y along with their appropriate index points were vital to

calculate saccade amplitude and saccade orientation. The index points displayed the

order in which each fixation had occurred, and saccade amplitude and orientation

exist between two fixation points. A detailed explanation is given below:

• x, y coordinate fixation points: The coordinates of a single location where a

participant had fixated his gaze on

• Indexes of fixation points: The index values indicate the sequence in which the

fixation points were performed by a participant

• Saccade Amplitude d, expressed in degree of visual angle, is the Euclidean

distance between two consecutive fixation points Pt and Pt−1

• Saccade Orientation φ is the angle, expressed in degree, between two consecu-

tive fixation points Pt and Pt−1
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Saccade Amplitude d was calculated using the Euclidean Distance between sequen-

tial fixation points Pt(x2, y2) and Pt−1(x1, y1), defined as:

d =
√

(x2 − x1)2 + (y2 − y1)2 (3.1)

FIGURE 3.4: Example of a calculation for saccade amplitude between
two sequential fixation points.

Saccade Orientation φ was calculated using the angle between two fixation points

Pt(x2, y2) and Pt−1(x1, y1); defined as the arc tangent of theta θ:

φ = tan−1(Θ) (3.2)

Where θ:

Θ =
dy

dx
(3.3)

And where delta dy and delta dx:

dy = (y2 − y1) dx = (x2 − x1) (3.4)

Therefore, to derive the angle from two fixation points:

φ = tan−1(
y2 − y1

x2 − x1
) (3.5)
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FIGURE 3.5: Example illustration of saccade orientation calculation
between two consecutive fixation points.

3.4 Visual Analysis

The resulting quantities of saccade amplitude and saccade orientation data for each

participant group occurred in large amounts, rendering individual analysis implau-

sible. Therefore, to understand the data an agglomerate analysis was conducted,

employing visualization techniques to comprehend and distinguish differences be-

tween samples. The visualization techniques included histograms, mean plots with

error bars and polar plots.

The use of visual analysis methods e.g. histograms enabled the data to be inter-

pretable by the human eye and permitted the use of additional statistical techniques

to discern differences. Saccade amplitude and saccade orientation were both com-

pared separately for each group and individual, and then together on a polar plot

with a gaussian density function applied.

3.5 Comparing Histograms

Histograms were a reoccurring visual analysis technique leveraged frequently as

seen in Chapter 5: Results and Evaluation. In order to maximize the utility of

histograms, two histogram similarity comparison techniques were used to derive

quantitative metrics which measure how similar were two histograms to each other

and to discern the performance and gaze behaviour differences between participant

groups. The formulas are defined as:



Chapter 3. Approach 18

1. Histogram Intersection

D∩ = 1 −
∑i (min(h1(i), h2(i))

min (|h1(i)|, |h2(i)|)
(3.6)

This method simply takes (for each pair of bin values) the minimum value of

two histograms and sums them across all bins. The larger the measure is, the

more the two histograms are similar.

2. L=2 or Euclidean distance

DL2 =
√

∑
i

(h1(i)− h2(i))
2 (3.7)

This method simply squares (for each pair of bin values) the difference of two

histograms and sums them across all bins. Finally, the square root of the sum

reveals the similarity measure. The smaller the measure is, the more the his-

tograms are similar.

A caveat surrounding histogram similarity comparisons is there is an array of avail-

able methods, each with different advantages, and performances vary depending on

conditions. Therefore, it can be a complex task to select the optimal method. One

way around this, as seen in this report is through applying more than one approach

and observing whether there is consistency in the results.

3.6 Statistical Analysis

For identifying statistical significance in the differences discovered between partici-

pant groups, one-way Analysis of Variance (ANOVA) tests were employed. ANOVA

tests are a technique for comparing the means of two or more independent samples

with the assumption of normality and homogeneity of the variance. In addition,

the report uses independent t-tests throughout to further support the arguments

presented and to distinguish whether the observed analyzed valued between par-

ticipant groups are significantly different or whether they could have occurred by

chance.

Other than group-by-group comparison, for each group, individuals in groups

were compared with identical techniques as mentioned above. This was an impor-

tant step in order to evaluate whether any member of each group had displayed

any significant difference in their observation recordings which could of led to mis-

guided conclusions on the differences between parties.
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4 Implementation

This chapter discusses the technologies, libraries and techniques applied to imple-

ment the methods mentioned in the approach.

4.1 Environment

The scope of the project encompassed performing an in-depth visual and statistical

analysis on a dataset which had been collected in a previous experiment. Therefore,

no additional data collection was necessary, and the data had already been approved

for any ethical standards. The implementation was completed on a MacBook Pro

2016 2 GHz Intel Core i5 with 8 GB memory, running Python 3.7.1.

4.1.1 IPython and Jupyter Notebook

Python is a well-known general-purpose computer language with a respectable rep-

utation. However, I will justify the decision to rely on it for this project over other

languages prominent in this field of research for instance R. The primary reason for

selecting Python was the flexibility, extensibility and portability it offered, partic-

ularly when used with the Jupyter notebook tool, which offers an interactive ex-

perience for exploring data in one environment and facilitates seamless sharing of

results and code.

4.1.2 Libraries

The core libraries used to complete the bulk of the technical aspects of this research

project were the python libraries Numpy, Scipy and Maptlotlib.

NumPy

NumPy provided an extensive library for manipulating and working with large

multi-dimensional arrays as well as matrices, accompanied by a vast amount of

integrated mathematical functions to operate on the arrays which was imperative

for working with the dataset provided for this project. Alongside a providing a

larger number of tools and functions to manipulate data, NumPy’s arrays are more

compact than Python lists, therefore it was a crucial component for ensuring perfor-

mance of the implementation.
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SciPy

SciPy is an extension of NumPy in the sense that it provides additional tools for

the scientific computing which was performed and offered more nuanced and spe-

cific functions required to operate on NumPy array objects implemented during the

project.

Matplotlib

Matplotlib provided a plotting library which was built as an extension of NumPy

and SciPy libraries. It facilitated methods for implementing coherent, intelligible

and easy to manipulate data visualization models. The matplotlib library offered an

over decade old library with a vast collection of tools suited for deriving meaningful

data visualizations which was ideal for the technical aspects of the project which

largely consisted of plotting data in various formats.

4.2 Algorithms

This section discusses the Python implementation of the algorithms used to achieve

the agreed deliverables.

4.2.1 Data Processing

The algorithm for accessing and iterating through the data was implemented in such

a manner as to facilitate the possibility of future additions to the data set e.g. addi-

tional eye-tracking data, without having to modify the code. In the listing below a

for-loop was used which iterated through the data folders, extracted and stored each

participant groups data into discrete dataframes representing independent groups

i.e, d f _PP for Physicists, d f _RRR for Expert Radiologists and d f _TTT for Trainee

Radiologists.

1 f o r im_name in glob . glob ( ’ S t imul i eye−t r a c k i n g MLO/∗ .bmp ’ ) :

2

3 mammograph = im_name . r e p l a c e ( ’ S t imul i eye−t r a c k i n g MLO/ ’ , ’ ’ )

4 df_PP = pd . read_csv ( ’MLO−PP/ ’ + mammograph + ’ . csv ’ )

5 df_RRR = pd . read_csv ( ’MLO−RRR/ ’ + mammograph + ’ . csv ’ )

6 df_TTT = pd . read_csv ( ’MLO−TTT/ ’ + mammograph + ’ . csv ’ )

LISTING 4.1: Accessing the dataset

4.2.2 Plotting Fixation Points

In order to visualize the fixation points and get an initial understanding of each

participants gaze behaviour, inside of the loop which accessed the raw data and

stored it in dataframes, the dataframes were indexed to retrieve and plot the fixation

points. Additionally, to make it obvious who performed the fixation, the fixations
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were colour coded by participant in each group with index labels and a legend was

added to add clarify.

1 #Mapping colours to p a r t i c i p a n t names e . g . ’w’ or white to the f i r s t

P h y s i c i s t

2 c o l o r s = [ ’w’ , ’ b ’ , ’ y ’ ]

3 col_PP = df_PP . P a r t i c i p a n t . map( d i c t ( zip ( par t i c ipants_PP , c o l o r s ) ) )

4 col_RRR = df_RRR . P a r t i c i p a n t . map( d i c t ( zip ( participants_RRR , c o l o r s ) ) )

5 col_TTT = df_TTT . P a r t i c i p a n t . map( d i c t ( zip ( part ic ipants_TTT , c o l o r s ) ) )

6

7 p l t . f i g u r e ( f i g s i z e =( 5 0 , 100 ) )

8 img = p l t . imread ( im_name )

9 p l t . subplot ( 1 , 3 , 1 ) , p l t . imshow ( img , cmap= ’ gray ’ ) , p l t . s c a t t e r ( x=df_PP [ ’

F i x a t i o n P o s i t i o n X [ px ] ’ ] , y=df_PP [ ’ F i x a t i o n P o s i t i o n Y [ px ] ’ ] , c=

col_PP )

10 p l t . subplot ( 1 , 3 , 2 ) , p l t . imshow ( img , cmap= ’ gray ’ ) , p l t . s c a t t e r ( x=df_RRR [ ’

F i x a t i o n P o s i t i o n X [ px ] ’ ] , y=df_RRR [ ’ F i x a t i o n P o s i t i o n Y [ px ] ’ ] , c=

col_RRR )

11 p l t . subplot ( 1 , 3 , 3 ) , p l t . imshow ( img , cmap= ’ gray ’ ) , p l t . s c a t t e r ( x=df_TTT [ ’

F i x a t i o n P o s i t i o n X [ px ] ’ ] , y=df_TTT [ ’ F i x a t i o n P o s i t i o n Y [ px ] ’ ] , c=

col_TTT )

12

13

14 dfs = [ df_PP , df_RRR , df_TTT ]

15 p l o t s _ a r r a y = [ 1 3 1 , 132 , 133]

16 par t i c ipant_groups = [ par t i c ipants_PP , participants_RRR , part ic ipants_TTT ]

17

18 n = 0

19 s = 0

20 f o r x in dfs :

21 n = 0

22 ix_ ind = x [ ’ Index ’ ]

23 f o r i in ix_ ind :

24 subplot ( p l o t s _ a r r a y [ s ] ) , p l t . annotate ( i , ( x . i l o c [ n , 6 ] , x . i l o c [ n

, 7 ] ) , c o l o r = ’w’ )

25 n = n + 1

26 s = s + 1

27

28 b = 0

29 f o r group in par t i c ipant_groups :

30 l e g e n d _ o b j e c t s = [ ]

31 i = 0

32 f o r indiv idua l in group :

33 l e g e n d _ o b j e c t s . append ( Line2D ( [ 0 ] , [ 0 ] , marker= ’ o ’ , c o l o r = c o l o r s [ i

] , lw=0 , l a b e l =name_replacement ( group [ i ] ) , markersize =10) )

34 i = i + 1

35 p l t . subplot ( p l o t s _ a r r a y [ b ] ) , p l t . legend ( handles= l e g e n d _ o b j e c t s )

36 b = b + 1

LISTING 4.2: Visualizing the fixation points onto mammograms
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4.2.3 Efficient Iteration

While performance was not imperative in this project since the code only has to be

executed once to display all the visualizations and statistical analysis, there was a

noticeable difference in performance between iterative functions accessing the con-

structed dataframe objects. Using get_value(arg1, arg2) delivered significant im-

provements in speed over more common methods such as iterrows() or loc[arg1, arg2].

Initially this information was acquired through internet research [41], which doc-

umented get_value(arg1, arg2) as 20 times faster than itterows() and twice as fast

as loc[arg1, arg2], and when tested in the analysis conducted in the report, similar

performance was observed. Using get_value(arg1, arg2) was useful in this scenario

since the difference was noticeable.

1 x = l . get_value ( l . index [ i −1] , ’ F i x a t i o n P o s i t i o n X [ px ] ’ )

2 y = l . get_value ( l . index [ i −1] , ’ F i x a t i o n P o s i t i o n Y [ px ] ’ )

3 x_2 = l . get_value ( l . index [ i ] , ’ F i x a t i o n P o s i t i o n X [ px ] ’ )

4 y_2 = l . get_value ( l . index [ i ] , ’ F i x a t i o n P o s i t i o n Y [ px ] ’ )

LISTING 4.3: Improved performance for accessing and indexing

dataframes

4.2.4 Calculating Saccade Values

To derive saccade values of saccade amplitude and saccade orientation methods,

libraries were used therefore this simplified the overall process; SciPy provides a

Euclidean distance function which was employed to calculate saccade amplitude

and the atan2 function available in the popular math library was utilized to calculate

saccade orientation.

The more difficult segment of the work was mapping indexes to fixation points

and storing them in arrays which represented the person who performed the fixation

points, as the data in its initial state would contain dataframes for multiple partic-

ipants therefore it was difficult to distinguish which participant performed which

fixation or saccade. To tackle this, arrays were defined which captured each unique

individual in a group i.e. the Expert Radiologists in RRR (’R1’, ’R2’, ’R3’), then, for

each of the extracted individuals a new dataframe was constructed which stored

only the gaze tracking information contained in the csv which corresponded to the

individual for that particular stimuli.

1 p ar t i c i p an t s _ P P = df_PP . P a r t i c i p a n t . unique ( )

2 part ic ipants_RRR = df_RRR . P a r t i c i p a n t . unique ( )

3 part ic ipants_TTT = df_TTT . P a r t i c i p a n t . unique ( )

4

5 par t i c ipant_groups = [ par t i c ipants_PP , participants_RRR , part ic ipants_TTT ]

6

7 f o r group in par t i c ipant_groups :

8 f o r indiv idua l in group :

9

10 i f ind iv idua l in p a r t i c i p a n ts _ PP :
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11 l = df_PP . l o c [ df_PP [ ’ P a r t i c i p a n t ’ ] == indiv idua l ]

12 max_row = l [ ’ Index ’ ] . max ( )

13 l . se t_ index ( ’ Index ’ )

14

15 i f ind iv idua l in part ic ipants_RRR :

16 l = df_RRR . l o c [ df_RRR [ ’ P a r t i c i p a n t ’ ] == indiv idua l ]

17 max_row = l [ ’ Index ’ ] . max ( )

18 l . se t_ index ( ’ Index ’ )

19

20 i f ind iv idua l in part ic ipants_TTT :

21 l = df_TTT . l o c [ df_TTT [ ’ P a r t i c i p a n t ’ ] == indiv idua l ]

22 max_row = l [ ’ Index ’ ] . max ( )

23 l . se t_ index ( ’ Index ’ )

24

25 max_row = l [ ’ Index ’ ] . max ( )

26 l . se t_ index ( ’ Index ’ )

27

28 f o r i in l [ ’ Index ’ ] :

29 i f ( i < max_row ) :

30 x = l . get_value ( l . index [ i −1] , ’ F i x a t i o n P o s i t i o n X [ px ] ’ )

31 y = l . get_value ( l . index [ i −1] , ’ F i x a t i o n P o s i t i o n Y [ px ] ’ )

32 x_2 = l . get_value ( l . index [ i ] , ’ F i x a t i o n P o s i t i o n X [ px ] ’ )

33 y_2 = l . get_value ( l . index [ i ] , ’ F i x a t i o n P o s i t i o n Y [ px ] ’ )

34 i f ind iv idua l in p a r t i c i p a n ts _ PP :

35 amplitude = d i s t a n c e . eucl idean ( ( x , y ) , ( x_2 , y_2 ) )

36 saccade_amplitude_PP . append ( amplitude )

37 saccade_or ienta t ion_PP . append ( math . atan2 ( y_2−y , x_2−x )

)

38 individual_arrays_PP [ indiv idua l ] . append ( amplitude )

39 i f ind iv idua l in part ic ipants_TTT :

40 amplitude = d i s t a n c e . eucl idean ( ( x , y ) , ( x_2 , y_2 ) )

41 saccade_amplitude_TTT . append ( amplitude )

42 saccade_orientat ion_TTT . append ( math . atan2 ( y_2−y , x_2−x

) )

43 individual_arrays_TTT [ indiv idua l ] . append ( amplitude )

44 i f ind iv idua l in part ic ipants_RRR :

45 amplitude = d i s t a n c e . eucl idean ( ( x , y ) , ( x_2 , y_2 ) )

46 saccade_amplitude_RRR . append ( amplitude )

47 saccade_orientat ion_RRR . append ( math . atan2 ( y_2−y , x_2−x

) )

48 individual_arrays_RRR [ indiv idua l ] . append ( amplitude )

LISTING 4.4: Methods for calculating saccade values

4.2.5 Plotting Histograms and Lines of Best Fit

The most prominent method used in the analysis was data visualization using his-

tograms. Histograms are simple to implement with Python, and the Matplotlib li-

brary as they come as a built-in function. The histograms were normalized to avoid

visual distortions and maintain consistency throughout groups, with y and x axis

limits set as well. For each plot a line of best fit was plotted, this was really helpful
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in evaluating the histograms, as it made the disparities between different histograms

clear.

1 subplot ( 4 , 1 , 1 )

2 densi ty = s t a t s . gaussian_kde ( saccade_amplitude_PP )

3 n1 , x , _ = p l t . h i s t ( saccade_amplitude_PP , bins =100 , dens i ty=True ,

edgecolor= ’ k ’ , c o l o r = ’ #38597 e ’ , range =(0 , 1400) )

4 p l t . ylim ( 0 . 0 0 0 , 0 . 0 0 6 )

5 p l t . t i t l e ( ’ P h y s i c i s t s ’ , f o n t s i z e =14) , p l t . x l a b e l ( ’ Saccade Amplitude ’ ,

f o n t s i z e =14) , p l t . y l a b e l ( ’ P r o b a b i l i t y ’ , f o n t s i z e =14)

6 p l t . p l o t ( x , dens i ty ( x ) , c= ’ y ’ )

7 groups_best_ax . p l o t ( x , dens i ty ( x ) , c= ’ b ’ )

8

9 subplot ( 4 , 1 , 2 )

10 densi ty = s t a t s . gaussian_kde ( saccade_amplitude_RRR )

11 n2 , x , _ = p l t . h i s t ( saccade_amplitude_RRR , bins =100 , dens i ty=True ,

edgecolor= ’ k ’ , c o l o r = ’ #38597 e ’ , range =(0 , 1400) )

12 p l t . ylim ( 0 . 0 0 0 , 0 . 0 0 6 )

13 p l t . t i t l e ( ’ Expert R a d i o l o g i s t s ’ , f o n t s i z e =14) , p l t . x l a b e l ( ’ Saccade

Amplitude ’ , f o n t s i z e =14) , p l t . y l a b e l ( ’ P r o b a b i l i t y ’ , f o n t s i z e =14)

14 p l t . p l o t ( x , dens i ty ( x ) , c= ’ y ’ )

15 groups_best_ax . p l o t ( x , dens i ty ( x ) , c= ’ y ’ )

16

17 subplot ( 4 , 1 , 3 )

18 densi ty = s t a t s . gaussian_kde ( saccade_amplitude_TTT )

19 n3 , x , _ = p l t . h i s t ( saccade_amplitude_TTT , bins =100 , dens i ty=True ,

edgecolor= ’ k ’ , c o l o r = ’ #38597 e ’ , range =(0 , 1400) )

20 p l t . ylim ( 0 . 0 0 0 , 0 . 0 0 6 )

21 p l t . t i t l e ( ’ Trainee R a d i o l o g i s t s ’ , f o n t s i z e =14) , p l t . x l a b e l ( ’ Saccade

Amplitude ’ , f o n t s i z e =14) , p l t . y l a b e l ( ’ P r o b a b i l i t y ’ , f o n t s i z e =14)

22 p l t . p l o t ( x , dens i ty ( x ) , c= ’ y ’ )

23 groups_best_ax . p l o t ( x , dens i ty ( x ) , c= ’ r ’ )

24

25 groups_best_ax . legend ( ( ’ P h y s i c i s t s ’ , ’ Expert R a d i o l o g i s t s ’ , ’ Trainee

R a d i o l o g i s t s ’ ) , l o c = ’ upper r i g h t ’ )

26 subplot ( 4 , 1 , 4 )

27 p l t . y l a b e l ( ’ P r o b a b i l i t y ’ , f o n t s i z e =14) , p l t . x l a b e l ( ’ Saccade Amplitude ’ ,

f o n t s i z e =14) , p l t . t i t l e ( ’ Al l Groups ’ , f o n t s i z e =14)

28 his togram_f igure . show ( )

LISTING 4.5: Plotting Histograms and Gaussian Distribution plot

4.2.6 Euclidean and Intersection Distance Histogram Similarity

For deriving the Intersection distance of two histograms a simple function was im-

plemented which quantifies and compares the overlap or intersection between two

histograms. For Euclidean distance the SciPy method for calculating Euclidean dis-

tance was utilized on the histogram arrays.

1 def r e t u r n _ i n t e r s e c t i o n ( h is t_1 , h i s t _ 2 ) :

2 minima = np . minimum( his t_1 , h i s t _ 2 )

3 i n t e r s e c t i o n = np . t rue_div ide ( np . sum( minima ) , np . sum( h i s t _ 2 ) )
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4 re turn i n t e r s e c t i o n

5

6 #Histogram I n t e r s e c t i o n Distance

7 i n t _ d i s _ 1 = r e t u r n _ i n t e r s e c t i o n ( n1 , n2 )

8 i n t _ d i s _ 2 = r e t u r n _ i n t e r s e c t i o n ( n2 , n3 )

9 i n t _ d i s _ 3 = r e t u r n _ i n t e r s e c t i o n ( n3 , n1 )

10 p r i n t ( i n t_d i s _1 , i n t_d i s _2 , i n t _ d i s _ 3 )

11

12 # Euclidean I n t e r s e c t i o n Distance

13 euc_dis t_1 = d i s t a n c e . eucl idean ( n1 , n2 )

14 euc_dis t_2 = d i s t a n c e . eucl idean ( n2 , n3 )

15 euc_dis t_3 = d i s t a n c e . eucl idean ( n3 , n1 )

16 p r i n t ( euc_dist_1 , euc_dist_2 , euc_dis t_3 )

LISTING 4.6: Measuring the similarity of histograms

4.2.7 Plotting Mean Values and Error Margins

The mean values for saccade amplitude were calculated using NumPy and plotted

on a graph against other candidate means with a 95% error bar for showing the

confidence intervals.

1 # p l o t t i n g means

2 p l o t ( 0 , np . mean( saccade_amplitude_PP ) , ’ o ’ , markersize =10)

3 e r r o r b a r ( 0 , np . mean( saccade_amplitude_PP ) , yerr =(1 . 96∗np . std (

saccade_amplitude_PP ) ) /np . s q r t ( len ( saccade_amplitude_PP ) ) , l inewidth

= 0 . 7 , caps ize =7 , capthick = 0 . 5 )

4

5 p l o t ( 1 , np . mean( saccade_amplitude_RRR ) , ’ o ’ , markersize =10)

6 e r r o r b a r ( 1 , np . mean( saccade_amplitude_RRR ) , yerr =(1 . 96∗np . std (

saccade_amplitude_RRR ) ) /np . s q r t ( len ( saccade_amplitude_RRR ) ) , l inewidth

= 0 . 7 , caps ize =7 , capthick = 0 . 5 )

7

8 p l o t ( 2 , np . mean( saccade_amplitude_TTT ) , ’ o ’ , markersize =10)

9 e r r o r b a r ( 2 , np . mean( saccade_amplitude_TTT ) , yerr =(1 . 96∗np . std (

saccade_amplitude_TTT ) ) /np . s q r t ( len ( saccade_amplitude_TTT ) ) , l inewidth

= 0 . 7 , caps ize =7 , capthick = 0 . 5 )

LISTING 4.7: Mean value analysis

4.2.8 ANOVA and t-tests

For both one-way ANOVA and independent t-tests functions from the skipy library

were used. The data was printed out and captured in a results table in this report

then compared using verbal analysis.

1 # ANOVA t e s t comparing each group

2 p r i n t ( ’ANOVA t e s t r e s u l t : ’ , s t a t s . f_oneway ( saccade_amplitude_PP ,

saccade_amplitude_RRR , saccade_amplitude_TTT ) )

3

4 # Independent t−t e s t s f o r group−by−group comparison
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5 s t a t , p = t t e s t _ i n d ( saccade_amplitude_RRR , saccade_amplitude_PP )

6 p r i n t ( ’ Independent t−t e s t ( Expert R a d i o l o g i s t s | P h y s i c i s t s ) p−value = ’ ,p )

7 s t a t , p = t t e s t _ i n d ( saccade_amplitude_PP , saccade_amplitude_TTT )

8 p r i n t ( ’ Independent t−t e s t ( P h y s i c i s t s | Trainee R a d i o l o g i s t s ) p−value = ’ ,p

)

9 s t a t , p = t t e s t _ i n d ( saccade_amplitude_TTT , saccade_amplitude_RRR )

10 p r i n t ( ’ Independent t−t e s t ( Trainee R a d i o l o g i s t s | Expert R a d i o l o g i s t s ) p−

value = ’ ,p )

LISTING 4.8: Statistical analysis implementation

4.2.9 Polar Plots

Mapping and plotting saccade amplitude with its according saccade orientation was

a difficult feat to accomplish, particularly due to implementing the density distribu-

tion of the plot.

The saccade orientation and saccade amplitude values had to be transformed, as

can be seen on lines 3, 6 and 9. The original issue was that with the usage of polar

plots resulted in incorrect distance values as the functions used were not compatible

with polar plots, therefore the densities were computed on xy cartesian coordinates

and applied sin and cos transformations prior to calculating the z values.

1 p l t . f i g u r e ( f i g s i z e = ( 3 0 , 3 0 ) )

2

3 xy = np . vstack ( [ np . s i n ( saccade_or ienta t ion_PP ) ∗saccade_amplitude_PP , np . cos

( saccade_or ienta t ion_PP ) ∗ saccade_amplitude_PP ] )

4 z = gaussian_kde ( xy ) ( xy )

5

6 x2y2 = np . vstack ( [ np . s i n ( saccade_orientat ion_RRR ) ∗saccade_amplitude_RRR , np

. cos ( saccade_orientat ion_RRR ) ∗saccade_amplitude_RRR ] )

7 z2 = gaussian_kde ( x2y2 ) ( x2y2 )

8

9 x3y3 = np . vstack ( [ np . s i n ( saccade_or ientat ion_TTT ) ∗saccade_amplitude_TTT , np

. cos ( saccade_orientat ion_TTT ) ∗saccade_amplitude_TTT ] )

10 z3 = gaussian_kde ( x3y3 ) ( x3y3 )

11

12 # S o r t s the points by density , so t h a t the densest points are p l o t t e d l a s t

13 idx = z . a r g s o r t ( )

14 x , y , z = np . array ( saccade_or ienta t ion_PP ) [ idx ] , np . array (

saccade_amplitude_PP ) [ idx ] , z [ idx ]

15

16 idx2 = z2 . a r g s o r t ( )

17 x2 , y2 , z2 = np . array ( saccade_orientat ion_RRR ) [ idx2 ] , np . array (

saccade_amplitude_RRR ) [ idx2 ] , z2 [ idx2 ]

18

19 idx3 = z3 . a r g s o r t ( )

20 x3 , y3 , z3 = np . array ( saccade_orientat ion_TTT ) [ idx3 ] , np . array (

saccade_amplitude_TTT ) [ idx3 ] , z3 [ idx3 ]

21

22
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23 ax1 = p l t . subplot ( 3 1 1 , polar=True ) , p l t . s c a t t e r ( x , y , c=z , edgecolor= ’ ’ ,

alpha = 0 . 7 5 ) , p l t . t i t l e ( ’ P h y s i c i s t s ’ , f o n t s i z e =14) , p l t . c o l or b ar ( )

24 ax2 = p l t . subplot ( 3 1 2 , polar=True ) , p l t . s c a t t e r ( x2 , y2 , c=z2 , edgecolor= ’ ’

, alpha = 0 . 7 5 ) , p l t . t i t l e ( ’ Expert R a d i o l o g i s t s ’ , f o n t s i z e =14) , p l t .

c o l or b a r ( )

25 ax3 = p l t . subplot ( 3 1 3 , polar=True ) , p l t . s c a t t e r ( x3 , y3 , c=z3 , edgecolor= ’ ’

, alpha = 0 . 7 5 ) , p l t . t i t l e ( ’ Trainee R a d i o l o g i s t s ’ , f o n t s i z e =14) , p l t .

c o l or b a r ( )

26

27 p l t . show ( )

LISTING 4.9: Plotting saccade amplitude with orientation onto polar

plots
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5 Results and Evaluation

This section of the paper will consist of an analysis of saccade values i.e., saccade

amplitude and saccade orientation, which were derived from the dataset for each

participant for every group: Physicists (P1, P2), Expert Radiologists ("Experts": R1,

R2, R3) and Trainee Radiologists ("Trainees": T1, T2, T3).

Calculating and presenting saccade amplitude and orientation proved to be of

value. The methodologies used in this section to present the differences between the

participating groups provided insight into the possible characteristics which influ-

ence accuracy and overall performance of an individual when performing a diag-

nosis on a mammograph. While many of the reasons behind differences are only

possible speculations, they do coincide with current research in gaze behaviour.

5.1 Fixation Points

Using coordinates for fixation points and indexes present in the dataset, the analysis

for each of the 196 mammograph images included plotting for all participants their

fixation points, this was done for every group as demonstrated in Figure 5.1. The

fixation points were labelled with their corresponding indexes, the indexes recorded

the order in which the fixation points occurred in the sequence, additionally, the

name of the observer with the relevant colour was presented in the legend on the

top-right of the image.
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FIGURE 5.1: Examples of fixation plotting completed on images.
(Top) Physicists, (Middle) Expert Radiologists and (Bottom) Trainee

Radiologists. Done for all 196 images.
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5.2 Saccade Amplitude Group Comparison

FIGURE 5.2: Distribution of saccade amplitude values for each par-
ticipating group.
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All groups to display a similar general behaviour, which is a positive sign and

can be explained by the shared domain of expertise in medical imaging between

expert radiologists, trainee radiologists and physicists. For all groups, the distribu-

tions of saccade amplitude display a right skew, and a majority of their values lying

between 100-150px. There is an initial low frequency of saccades beginning at the

lowest x-axis value (0px), followed by a sharp rise with a peak occurring between

70-140px. Following the peak which consistently occurs at a less than 200px, there

occurs a steady decrease, therefore we can infer from this data that regardless of

medical speciality or expertise, there exists between parties a preference for shorter

saccades than longer, and that the majority of saccades will occur within a concen-

trated finite range in the lower end of possible saccades.

FIGURE 5.3: Overlay of the Gaussian line of best fit derived from each
participant group.

The experts display a distinguishing difference in gaze behaviour. Figure 5.3

presents the set of lines of best fit in an overlay. Experts performed a higher fre-

quency of shorter saccades relative to other groups, as can be seen in the fact that

they have the highest peak in a most concentrated area. This can be seen as an indi-

cator of expert behaviour and can likely be accounted by the difference in confidence

between the participants. Experts are likely to know where to look instinctively in

a consistent manner, and avoid making unnecessary saccades, whereas trainees and

physicists may speculate and make ineffectual movements with low efficacy. It is

also worth mentioning, that experts line of best fit extends further than other groups

indicating that they also performed few saccades which were noticeably longer than

other groups, however these were low in frequency therefore likely had little influ-

ence on the overall statistics.

Physicists and trainees exhibited a wider spread of saccades, their cumulative

saccades form a line of best fit which is both lower in frequency in the range of

saccades which experts performed (100-150px), and performed a larger number of
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saccades in the surrounding, but outside of the suggested expert range. Physicists

have a wider spread than trainees and experts, which suggests that trainees showed

more similar behaviour to that of an expert than physicists.

To strengthen the analysis further, quantitative metrics were calculated using

the histograms. Groups were compared in couples using Euclidean distance and

Intersection distance for deriving a similarity measure of the distributions as seen in

Table 5.1.

TABLE 5.1: Group histogram comparison using similarity measure-
ments of Euclidean distance and Intersection distance.

Group A Group B Euclidean Distance Intersection Distance

Physicists Experts 0.00321 0.88747
Experts Trainees 0.00367 0.86979
Trainees Physicists 0.00249 0.90334

From Table 5.1 we can see that all groups exhibit similar behaviour, which sup-

ports the previous statement of a general pattern existing between groups. Trainees

and physicists display the largest similarity (Intersection distance closest to 1 and

Euclidean distance is the smallest), this could be explained by their shared novice

level of experience in diagnosis. Whereas experts display the greatest contrast when

compared against both groups which signifies their aptitude.
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FIGURE 5.4: Graph of the mean values of saccade amplitude for each
participating group, averaged over all recorded saccades for all test

stimuli. Error bars indicate a 95% confidence interval.

TABLE 5.2: Mean values of saccade amplitude for each participating
group.

Participant Group Mean Values Standard Deviation

Physicists 216.0 142.3
Experts 205.9 149.3
Trainees 237.3 156.1

Figure 5.4 illustrates the mean saccade amplitude of each participant groups

given the dataset. The visualization indicates that there is difference between groups,

with experts displaying the lowest mean value for amplitude, followed by physi-

cists and finally trainees. The differences were further statistically analysed using an

ANOVA test, with saccade amplitude set as the dependent variable, and groups as

independent variable. The results of the ANOVA test are summarised in Table 5.3,

where the F-statistic (i.e., F) and its associated significance (i.e, p-value) and degree

of freedom (i.e., df) are contained.

TABLE 5.3: Results of the ANOVA test to evaluate the effect of partic-
ipating group on the length of saccade amplitude.

Factor df F P-value

Group 2 53.81 5.24e−24

These results demonstrate that the difference in the means of saccade amplitude are

statistically significant between the participating groups (i.e, p < 0.05). The result

is desirable as it indicates that there are notable variances in the gaze behaviour of

groups with different levels of experience, therefore, this proposes the opportunity

for further analysis to determine the factors influencing performance and validates
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the initial utility of gathering the data. In addition, the demonstrated differences

suggest that improved performance is correlated with shorter saccades as experts

displayed substantially shorter average saccades over the other groups.

Interestingly, trainees exhibit a longer resulting mean value than physicists and

experts. This may be partially because trainees dataset contained a larger quantity of

saccade amplitudes values than any other group, therefore, while they demonstrated

a similar frequency of saccade amplitudes within the shared focal range, they also

performed a larger amount of saccade amplitudes in the range beyond 150px, which

would have influenced the overall mean. On the other hand, experts low mean value

can be explained potentially by a lesser total number of saccades in the higher ranges

of saccade amplitude, therefore not influencing dramatically the mean to spike away

from the concentrated range.

Saccade amplitude comparison was also performed against individuals in their

assigned group. This was done in order to determine whether any significant dif-

ferences existed between members of groups, and if so, hypothesize the causality

behind the difference and analyze whether it could have impacted the analysis done

in this section.
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5.3 Physicists Saccade Amplitude Comparison

FIGURE 5.5: Distribution of the recorded saccade amplitudes of
physicists P1 and P2 individually.

The histograms and lines of best fit suggest homogeneity and consistency be-

tween the physicists. Both physicists display a wider spread, while like all other

participant groups, their predominant saccade amplitudes are concentrated around

100-150px. Both P1 and P2, and more often P1 had made regular large saccades

i.e., in the region of 400px to 1000px, this is particularly noticeable when contrasted

with experts. These large movements can be potentially accounted for by the lack

of expertise and experience of the physicists, therefore due to this uncertainty they

traverse larger parts of the stimulus.

The resulting Euclidean distance and Intersection distance values from the his-

togram similarity analysis in Table 5.4 below support the verbal analysis above. A

low Euclidean distance value, and a high Intersection distance value demonstrates
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TABLE 5.4: Physicists histogram comparison using similarity mea-
surements of Euclidean distance and Intersection distance.

Physicist Physicist Euclidean Distance Intersection Distance

P1 P2 0.00344 0.87551

that the physicists exhibited comparable gaze behaviour and no significant differ-

ences exist.

FIGURE 5.6: Graph of the mean saccade amplitude for each physicist,
averaged over all recorded saccades for all test stimuli. Error bars

indicate a 95% confidence interval.

TABLE 5.5: Mean values for the saccade amplitudes performed by
each Physicist.

Physicist Mean Values Standard Deviation

P1 219.04 135.97
P2 213.20 148.00

The mean values of the saccade amplitudes performed by the physicists when

reviewing all 196 images were calculated to help interpret the data and histogram.

The means at initial glance suggest that the physicists have similar gaze behaviour

as suggested above.

TABLE 5.6: Results of the independent t-test to determine statistical
significance between physicists.

Physicist Physicist P-value

P1 P2 0.5953
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Table 5.6 presents the results of an independent a t-test for determining statistical

significance, the results gave a p-value > 0.05, therefore no statistical significance ex-

ists between the physicists gaze behaviour. This may be because medical physicists

use physics to deliver clinical services in diagnosis and manage the technology used

in radiology. Therefore, while they also interact with mammograms as a primary

interest in their work, they do it for different purposes than radiologists and may

follow a protocol, or have had similar preliminary training for observing medical

images rather than relying on experience or intuition.
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5.4 Expert Radiologists Saccade Amplitude Comparison

FIGURE 5.7: Distribution of the recorded saccade amplitudes of ex-
pert radiologists R1, R2 and R3 individually.

The expert radiologists display a higher frequency in the concentrated area 100-

150px than physicists as mentioned in the group comparison, with a higher peak

than both physicists and trainees. Experts saccade amplitudes predominantly span
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the range of 100-150px. We can speculate that this consistency in behaviour between

all experts can be explained by the experts having developed a reliable observation

strategy through extensive experience, as well as similar lengths and conditions of

training in mammography screening.

TABLE 5.7: Expert radiologists histogram comparison using similar-
ity measurements of Euclidean distance and Intersection distance.

Expert Expert Euclidean Distance Intersection Distance

R1 R2 0.00301 0.89925
R2 R3 0.00320 0.89207
R3 R1 0.00257 0.89991

From evaluating the values present in Table 5.7 there does not appear to exist

any apparent disparities between radiologists, the Euclidean distance and Intersec-

tion distance metrics both returned values which signify similarity of gaze behaviour

between the experts. This therefore supports the above analysis of an existing con-

sistency present in expert behaviour.

TABLE 5.8: Mean values for the saccade amplitudes performed by
each expert radiologist.

Expert Mean Values Standard Deviation

R1 216.30 160.39
R2 202.69 148.95
R3 199.86 139.19

FIGURE 5.8: Graph of the mean saccade for each expert radiologist,
averaged over all recorded saccades for all test stimuli. Error bars

indicate a 95% confidence interval.
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TABLE 5.9: Results of the ANOVA test to evaluate the effect of expert
radiologist on the length of saccade amplitude.

Factor df F P-value

Experts 2 4.75 0.0087

The means of saccade amplitude values for each expert radiologist was calcu-

lated. From observing Figure 5.8 and Table 5.9 there is a suggestable difference in

radiologist R1 from the remainder of the radiologists. An ANOVA test was con-

ducted to validate whether any statistically significant differences were found.

A statistically significant p-value (i.e., p < 0.05) was found, therefore this indi-

cates that there was at least one participant in the group which influenced the overall

mean in a significant manner. However, since the ANOVA report does not explic-

itly state which member caused the statistically significance outcome, independent

t-tests were performed to compare individual radiologists.

TABLE 5.10: Results of the independent t-test to determine statistical
significance between expert radiologists.

Expert Expert P-value

R1 R2 0.0228
R2 R3 0.5952
R3 R1 0.0034

Table 5.10 above indicates that R1 displayed statistically significant different behav-

ior when compared with R2 and R3 (i.e., p-value < 0.05). Whereas the difference be-

tween R2 and R3 was negligible, therefore their performance was similar and may be

explained by them having a more similar background and catalogue of experience

and training.
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5.5 Trainee Radiologists Saccade Amplitude Comparison

FIGURE 5.9: Distribution of the recorded saccade amplitudes of
trainee radiologists T1, T2 and T3 individually.

The histograms reveal that trainees display a larger frequency of saccades out-

side of the concentrated 100-150px range, and particularly outside the experts range.

Additionally, the line of best fit in each trainee histogram displays more of a linear
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decrease from the peak frequency saccade amplitude, in contrast the histograms of

experts displays a more negative exponential decrease from the peak frequency sac-

cade amplitude. This is particularly applicable to T3, who also from observation,

displayed a considerably lesser number of saccades in the concentrated 100-150px

range than T1 and T2.

TABLE 5.11: Trainee radiologists histogram comparison using simi-
larity measurements of Euclidean distance and Intersection distance.

Trainee Trainee Euclidean Distance Intersection Distance

T1 T2 0.00393 0.86451
T2 T3 0.00483 0.83335
T3 T1 0.00360 0.86350

Inspecting Table 5.11 displays no significant disparities in the histogram similar-

ities between any of the trainees and validates highly consistent and similar gaze

pattern behaviour. For each comparison there resulted a low Euclidean distance

result value indicating similarity, and likewise a high Intersection distance value.

FIGURE 5.10: Graph of the mean saccade for each trainee radiolo-
gist, averaged over all recorded saccades for all test stimuli. Error

barsindicate a 95% confidence interval.

TABLE 5.12: Mean values for the saccade amplitudes performed by
each trainee radiologist.

Trainee Mean Values Standard Deviation

T1 216.90 145.65
T2 242.34 149.45
T3 243.08 167.54
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TABLE 5.13: Results of the ANOVA test to evaluate the effect of
trainee radiologists on the length of saccade amplitude.

Factor df F P-value

Trainee 2 8.15 0.00029

Similar to the event with experts, from observing Graph 5.10 and Table 5.12

there is a suggestible noteworthy difference in the mean saccade amplitude values

of trainee T1 from T2 and T3.

To discern whether any of the trainees behaviour was significantly different from

the mean an ANOVA test was conducted, shown in Table 5.13. A statistically sig-

nificant p-value was computed (i.e., p < 0.05). This was not enough to arrive at a

conclusion that T1 was the cause of the significance, therefore, independent t-tests

were performed to validate this.

TABLE 5.14: Results of the independent t-test to determine statistical
significance between trainee radiologists.

Trainee Trainee P-value

T1 T2 0.00038
T2 T3 0.88632
T3 T1 0.00027

The resulting p-value confirmed that T2 and T3 were very similar i.e., p-value =

0.88632 (p > 0.05), this indicates not only that there exists no statistically significant

difference between them, but also its nearness to 1 suggests that their behavior was

substantially similar. Potentially explained by having similar levels of training and

experience. In the contrary, T1 displayed statistically significant different behavior

from both T2 and T3 (i.e., p-values < 0.05). T1 had a much lower mean of saccade

amplitudes, liking to that of an expert radiologist therefore the difference could be

speculated to be a result of T1 having more training than the other trainees and that

with more training T2 and T3 would expect their means to decrease.
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5.6 Saccade Orientation Group Comparison

FIGURE 5.11: Saccade orientation histogram distribution plots for
each group.

From an initial observation of Figure 5.11 there exists a shared pattern in the

orientation of each groups saccades, which can be more evidently seen by analyz-

ing the lines of best fit. A wave-like shape is formed for each group, with peaks

at around the 90, -90, 180, -180 and 0-degree angles. This is consistent with cur-

rent research on the human visual systems habitual tendencies for eye movements.

Humans display natural preferences for performing short saccades in a horizontal
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TABLE 5.15: Group saccade orientation histogram comparison using
similarity measurements of Euclidean distance and Intersection dis-

tance.

Group A Group B Euclidean Distance Intersection Distance

Physicists Experts 0.00801 0.88642
Experts Trainees 0.00867 0.88452
Trainees Physicists 0.01000 0.86149

direction compared to vertial saccades [42] [43]. However, while vertical saccades

occur less than horizontal ones, they are still highly frequent, whereas diagonal sac-

cades occur at the least frequency. This can be observed in the saccade orientation

distribution of all groups, each group display a clear preference for saccades with

orientations nearing the strict vertical or horizontal axis, although it is worth noting

that some groups display a more significant frequency in particular mentioned di-

rections than others i.e., experts saccade orientations at 180 degrees are much more

frequent than in the trainees cases.

The symmetries of the graphs also point to insight. It is interesting to observe that

in the scenario of the experts their distribution of saccades is flatter than that of other

members, particularly when compared with trainees, which may be explained by a

lesser amount of fixation points in the dataset of experts. Furthermore, experts form

a much more asymmetrical distribution than trainees and physicists who form a

comparatively symmetrical distribution. This may be partially explained by experts

using previous fixation points as a lead for deciding on the next area to observe,

whereas lesser experienced individuals may make sharper uninformed schematic

movements as well as more frequent re-visitations.

To substantiate the above evaluation, Euclidean distance and Intersection dis-

tance analysis was conducted for the saccade orientation histograms as seen in Table

5.15

The results support the above discussion: all groups displayed largely similar

behaviour i.e., very small Euclidean distance values and Intersection distance values

close to 1. This is likely due to the common behaviours humans exhibit in making

saccades. There does not exist a group couple which displays striking and decisively

different behaviour.
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5.7 Joint Saccade Amplitude and Orientation Group Com-

parison

FIGURE 5.12: Polar plots which display saccades, by mapping their
orientation angle with the according saccade amplitude, plotted as

the distance from the centre.

A key factor worth noting when examining differences in the polar plot is that

there is substantial difference in the amount of fixation points in the plots from group

to group. This is due to there being a varying number of participants in the groups

i.e., two participants in the Physicist group, and three in both Expert and Trainee ra-

diologists. Furthermore, each participant completed a different number of fixations

cumulatively over the entire study of the 196 images.
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The groups display differences in the concentration of saccades. For instance,

the trainees exhibit a more dispersed graph of mapped values, especially when con-

trasted with experts, whose points are noticeably more concentrated around the

centre of the polar plot with a higher density, meaning experts performed shorter

saccades more often, potentially because experts perform sharper and more consis-

tent gaze behaviour. The physicists display the most spread, with their distribution

forming a more gradual decrease in density from the centre, indicating that their

saccades occurred in frequency of amplitude and orientation in a more evenly dis-

tributed manner than the other participating groups.

The plot displays a notable pattern of conspicuous long saccades at a horizontal

180-degree angle across all groups, this is potentially explained by human preference

of making horizontal gaze movements mentioned above in Section 5.6. However, it

is also interesting to note that there exists a gap of medium length saccades in this

degree angle, particularly for Physicists and somewhat Expert Radiologists. An-

other similarity is there is a concentration of saccades in the centre, which again can

be potentially accounted for by the research stating humans preference for shorter

saccades.
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6 Future Work

While the sample size of expert radiologists used in this study is seen as adequate be-

cause of the high degree of consistency amongst expert readers [44], expanding and

improving on the sources, quantity and quality of data would be beneficial. Addi-

tionally, this report focused on investigating mammograms, however, other artefacts

from different medical imaging modalities, or practitioners from other medical disci-

plines could be added, such as nurses or general practitioners. Expanding the fields

of medical specialties encompassed in the study could reveal further insight into the

problem. Most importantly, variables such as gender [45], task at hand [46] or cul-

tural heritage [47] have been suggested to impose dissimilarities in human visual

perception. Observing additional controlled variables would have been highly con-

structive to the study, particularly to validate and reinforce conclusions which were

hypothesized, or an examination of the precise influence of these variables could be

performed.

The central theme of this report focused on statistical and visual analysis from

calculating saccade amplitude and orientation. However, more information still lies

to be learned through employing more sophisticated methods, in particular, the util-

ity of these values could be extended in future work through developing saccadic

models. Sophisticated saccadic models have been developed which are capable of

mitigating human biases, incorporating intricacies and calculating scan paths with

high performance. Le Meur et al. [48] were able to discern differences in gaze be-

haviour between participants from independent age groups i.e. adults, 8-10, 6-8, 4-6

and 2-year old’s, and then were able to leverage the observations to build an age-

dependent saccadic model for generating scan paths which accurately emulate age-

specific visual scan paths. The consequences of such sophisticated models would

be significantly beneficial, it would assist in the development of intelligent systems

that could aid radiologists, or independently perform diagnosis on medical images

in an expert-like accuracy. Progress in this form would not only support health care

facilities in general, but provide crucial support in areas where there is a shortage of

expertise or medical practitioners such as developing and remote areas.

Finally, this report substantiates the utility of employing saccade information in

understanding gaze behaviour and individuals characteristics. Therefore, since this

report can attest to the value of observing saccades, it can then be employed to as a

recommendation for applying gaze behaviour analysis in further research, not only

in different fields of medicine but expand into entirely different disciplines.
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7 Conclusion

Overall, the results attained from this project were positive and in-line with the

initial objectives and the desired deliverables were achieved. This dissertation in-

tended to investigate the gaze behaviour, with a focus on saccade eye movements,

of medical practitioners when viewing mammography images with experience as

the independent variable. The utility of studying the impact of experience on gaze

behaviour has been validated in the past in previous experiments, however, the re-

search conducted in this report reinforces its utility and additionally demonstrates

the differences in saccades agents exhibit when conducting diagnosis on the stimuli.

To improve the practice of diagnosis in clinical settings it is imperative to un-

derstand how medical experts function and how their gaze tendencies differ from

novices or inexperienced observers. The analysis in this report documents the sac-

cades experts perform when conducting diagnosis on the stimuli over a large sam-

ple size and contrasts them to trainee radiologists and physicists through applying

visual analysis techniques and the findings were reinforced by quantitative results

gathered from statistical evaluation. Therefore, the information discovered in the

analysis presented may assist in the establishment of improved practices in diag-

nostics and may be utilized to develop improved training resources as well as diag-

nostics system which can aid the discussed shortage of radiologists in areas around

the globe.
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8 Reflections on Learning

Throughout the period of completing this project I have acquired an innumerable

amount of skills which I will continue to hone and develop throughout my career. A

critical approach towards data and statistics has been enveloped in me, statistics can

at times seem intuitive yet without proper appraisal we can make incorrect assump-

tions and enact mislead decisions. Furthermore, a fond attitude towards data anal-

ysis as a choice of career, and a sincere interest in data science has been established

in me that I want to explore further. From my experience at university studying

Computer Science I have been involved in building complex systems and applica-

tions, data analysis contrasts these activities in that it is more of an exploratory field,

seeking to develop understanding and uncover mysteries lying within fragmented

artefacts. I have experienced growth in my professional practices including an un-

derstanding in the correct application of experimental techniques, report writing

and communicating with stakeholders. Finally, the development of a more critical

and analytical perspective will translate into other facets of life beyond career and

support me in making wiser decisions.
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