

System for downloading up to date webpages for

offline viewing

Final Year Report

Cardiff University

School of Computer Science & Informatics

CM3203 ONE SEMESTER INDIVIDUAL PROJECT

Markuss Baumgarts
C1646173

Supervised by: Padraig Corcoran
Moderated by: Luis Espinosa-Anke

Abstract

The need for constant access to the web, forces us to pay mobile providers for data
plans when Wi-Fi networks are not available. The project aims to to develop a
cross-platform desktop solution that enables its users to save any public website on their
local machine for later offline viewing. The goal of the project is to provide a solution that
improves upon the already available similar products on the market. It explores the
necessary methods of successfully downloading and displaying a live webpage locally on the
users’ machine, whilst also explains the limitations constraining similar projects reaching
their optimal performance. As a result, a minimum viable product was achieved which was
able to successfully download and capture most of the tested webpages, with some
exceptions. Satisfying the set out goal of the project whilst also leaving room of
improvement for further development.

1

Table of Contents

Introduction 4

Background 5

2.1 Justification of the chosen target platform 5

2.2 Existing solutions 6

2.2.1 Built-in browser “Save-As” feature 6

2.2.2 HTTrack 6

2.3 Used Technologies 7

2.4 Node.JS modules 7

2.5 Model-View-Controller (MVC) pattern 8

2.6 Restrictions and Assumptions 9

Specifications and Design 9

3.1 System Requirements 10

3.1.1 Functional Requirements 10

3.1.2 Non-Functional Requirements 10

3.2 Website acquisition system 11

3.3 Project Structure 12

3.4 Process of adding a website to the system 13

3.4.1 Process of adding a website to the system with web crawling 14

3.5 User Interface 15

3.5.1 Wire Frame 16

Implementation 16

4.1 UI implementation 17

4.2 Main download function 18

4.3 Asset handling 19

4.4 Web Crawling 20

4.5 Error Handling 21

4.6 Unforeseen problems 22

4.6.1 Lazy-Loading issues 22

4.6.2 CORS 23

4.6.3 Images as container backgrounds 24

System Testing and Evaluation 26

5.1 Test Cases 26

5.2 Manual website test results 27

5.3 Meeting requirements 32

Future Work 33

2

Conclusions 34

Reflection 34

References 35

3

Introduction

It is no secret that arguably we have become dependent on the connection and the

resources that the internet provides for us. That’s why nowadays, we have Wi-Fi networks
covering practically the whole country. However, at times when we are commuting or are
out in the countryside we may not have access to these networks. And consumers have
shown desire for this constant access to these resources by paying mobile network
providers a considerable sum for data plans. “In about 95 percent of emerging markets,
people rely almost entirely on expensive prepaid mobile data, and many can only afford
250MB of data per month” [16]

To tackle this problem, a few years ago, almost everyone stored all their media
content locally on their mobile devices, which they transferred through USB from their
home computer. But as data is moving towards the cloud, this local storage method is
slowly dissipating. Now, we have Spotify, Netflix and other content providers that give us
instant access to their content. But even these services recognize the need to download
their content for local access. That’s why both of these platforms provide an offline mode,
where you can download and access their content on your device.

However, I have not seen a user-friendly solution for website viewing offline.
Recognizing the demand for constant access to data, this project will detail the process and
evaluation of creating such a program.

The overall aim of this project is to develop a cross-platform desktop solution that
enables its users to save any public website on their local machine for later offline viewing.
The goal is to provide a solution that improves upon the already available similar products
on the market, which after researching said products it was discovered that their
performance was left wanting.

Although web scraping is a relatively well known and simple concept, this project
does not aim to extract a single piece of information from a webpage. But to clone the
whole page and display it as faithfully as possible to the original version. The possible reason
why the already available solutions are not ideal, is because to actually capture a website
and display it locally as it would be shown on its server is no small undertaking. There are
multiple issues you have to consider to access all the rich content on the website. Even if
one tries to accommodate all the various different media variations and structures that you
can encounter on the web. There is no one full proof way on doing so and most likely all the
possible different cases will have to be coded explicitly. For example, not all of the images
are embedded in the tag, as some of them are displayed alternatively, and the source
of the file either defined in the JavaScript or in the styling of the website, requiring tedious
resource scrapping to access the image. Additionally, there are multiple other issues such
as: dynamically loaded data which is only provided once a user has triggered a specific event
e.g. scrolling to a certain section of the page. And some websites also employ client side
origin protection which aims to limit the origin from where the website can be accessed and
launched from.

Initially the scope of the project was to provide a robust solution to all available
public websites including such edge cases as social media platforms e.g. Facebook, Twitter,
etc. But after gaining a better understanding of the task and problems at hand. The scope of
the project was altered. In the end, the scope was readjusted to properly be able to

4

download and display the bbc.co.uk website which due to its complex and rich content,
would serve as a good benchmark for most of the applications one will encounter.

Background

2.1 Justification of the chosen target platform

There were three possible target platforms that were considered and would be

suited for this kind of a project:

● Mobile application
● Chrome extension
● Desktop application

Due to the plethora of possible use cases that such an application might have on

mobile - the project initially was heading towards the possibility of it being created for the
mobile environment. Not only would users be able to access the websites when a
connection is not available, but the application would enable them to save their mobile
bandwidth on commonly accessed websites.

 However, because of the projects nature, it would have to use a variety of native
mobile elements e.g. write access to local storage. Meaning that a hybrid solution like the
Ionic Framework would not be preferable in this scenario, because hybrid applications have
a limited local storage space of 10MB. [1] Creating a native mobile application, given the
time constraints and the scope of the project, would have been difficult to accomplish.

Google Chrome extension was another possibility. As such a solution would be
conveniently “bundled up” in the browser application, much like Safaris reading list. But,
disregarding the potential difficulties for local file management from a browser application –
if the project had headed that route, the application would have only been exclusive to the
Google Chrome users, thus alienating a lot of potential users.

Accounting for the ease of development, target audience, the chance of successfully
finishing the application in time and the fact that multiple well known applications such as
Spotify, Skype, Slack, WhatsApp, etc. use the electron framework for their desktop versions
- it was decided to create a cross-platform, hybrid desktop application utilising the Node.js
based Electron framework.

2.2 Existing solutions

Naturally the idea of saving websites locally for later use, isn’t a completely novel
proposition. Paid 3 rd party solutions notwithstanding, the user already has multiple free and
available solutions to save locally websites for later use.

2.2.1 Built-in browser “Save-As” feature

Although most modern day browsers already provide a built in “Save Page as”
feature which allows the user to download the index html and its associate files for any
given website. Specifically, Safari users having the “reading list” option. It was discovered

5

that there are number of areas that this feature falls short and where the projects proposed
solution “fills in the gaps”.

a) Apart from safari's reading list, the browsers save-as feature does not provide a

way to neatly organise your download content from one source. Instead the user
is given an html file and an assets folder along with it, leaving the organization
and structuring of the content up to the user.

b) It does not deal with dynamic content e.g. lazy loading. Which means that most
content (specifically images) only load when the user has scrolled to that specific
section of the page. If you were to take just a static html file, you would not be
able to see the images that have not loaded yet. (refer to section 4.6.1)

c) Some websites like http://www.reddit.com also employ CORS protection (refer
to section 4.6.2). Which doesn’t allow their websites to be display from a file:///
prefix. An unavoidable issue if you are using the browser save-as feature, and
then simply opening the downloaded index file from your local system.

2.2.2 HTTrack
A more robust already available solution is the HTTrack software. Although its

performance is better than just the basic “save-as” option, the interface on Windows is
outdated and complex for users.

Figure 1: Screenshot of the HTTrack windows GUI

Additionally, on UNIX based devices your only option to run the program is through the
terminal. And this specific solution apart from the organizational issues also suffers from all
of the aforementioned shortcomings of the browsers “save-as” features.

6

http://null/

2.3 Used Technologies

● Node.js - is an open source, cross-platform runtime environment for developing

server-side and networking applications. Node.js applications are written in
JavaScript, and can be run within the Node.js runtime on OS X, Microsoft Windows,
and Linux. [2] It is written in C++ and built upon the V8 JavaScript runtime. To extend
the performance of Node.js applications, it allows the use of native modules
(managed by the NPM – Node Package Manager) to create full pledged applications
that are not limited to JavaScript, if a problem requires the use of a low-level
solution. [3]

● Electron Framework - As it was decided to create a cross-platform desktop solution,

the whole project is based upon the Electron Framework. Electron is an open-source
framework based on the Node.js runtime, and thus lets you write cross-platform
desktop applications using JavaScript, HTML and CSS. [3] Essentially Electron uses
web page rendering (HTML + CSS) as the GUI of the application (by utilizing
Chromium’s rendering library on which Google Chrome is built on) and JavaScript as
the logic behind it. With various C++ API modules that allow to extend the system
with native operating system task capabilities (e.g. creating native dialogs, accessing
the file system). [4]

● Photon UI kit - Photon is a 3 rd party UI Toolkit for Electron which provides the GUI

with native layout options. It comes with fonts and CSS styling classes, so that one is
able to make their web application look like a native desktop application. The kit
allows the developer to display native elements such as a native looking file explorer,
application navigation, pane-view, etc.

2.4 Node.JS modules

As described earlier Node.js allows for the use of native modules. Hence, to be able to
effectively implement the specified functionality of the project, a number of open-source
node.js modules were used to save development time. E.g. using the “connect” or “Axios”
module to create HTTP requests rather than writing the request from scratch or provide
native functionality using the fs module to easily access the local file system.

● Cheerio

Cheerio parses mark-up and provides an API for traversing/manipulating the resulting data
structure. It allows to load, parse and query the downloaded html documents by their HTML
tags or CSS classes. [5]
● Axios

Axios is a promise based HTTP client for the browser and Node.js, which I used to make
asynchronous http requests to access and download all of the necessary media files. [6]
● PhantomJS

 PhantomJS is a headless web browser, which was used for page rendering, automation (i.e.
scrolling to the bottom of the page) and screen capture.
● Ytdl-core

7

YouTube downloading module, which given a URL allows to download the source video from
YouTube
● url

A built in node module which provides utilities for URL resolution and parsing. [7]
● connect

Extensible HTTP server framework for node [8]
● serve-static

Enables to serve static files from within a given root directory to serve html files through the
application from the local host [9]
● fs

The fs module provides an API for interacting with the file system in a manner closely
modelled around standard POSIX functions. [10]
● electron-prompt

Electron helper module to prompt for a value via input or select [11]
● rimraf
Essentially the UNIX command rm -rf for Node.js. Used to delete folders from the

saved_websites directory [12]

2.5 Model-View-Controller (MVC) pattern

The project will try to follow a Model-View-Controller (MVC) software design
pattern. In short MVC is a design pattern that separates the applications logic from the user
interface. MVC consists of three main components:
● Model – Which describes the behaviour regarding data, logic and rules. Essentially

where most of the applications logic is defined
● View – Displays the system status to the user. The UI of the application
● Controller – Acts as the ‘middleman’ between the View and the Model. It is

responsible for capturing user action events and then passing on the data to the
model.

Figure 2: Overview of the MVC design pattern [13]

A simple analogy for the MVC design pattern would be that of a customer ordering
food at a restaurant. The View is the menu, the controller is the server which takes

8

http://nodejs.org/

your order and informs the model (kitchen) about it. Then the kitchen (model) is
responsible for executing your order (request).

The reason for using a MVC design pattern for this project is that, it will have to deal

with asynchronous http requests. It is important not to suspend the application whilst a new
website is downloading. Meaning that whilst the model is busy downloading the website,
the user can still interact with the application and open or edit the already stored web pages
in the application. Although the use of MVC does increase the complexity of the application,
if this project would be developed further with multiple views and added functionality, the
MVC design pattern allows for a better scaling process, and code management.

2.6 Restrictions and Assumptions

To account for the difficulty of this project and that the system is going to be
developed by a “one-man team” within a limited time frame:
● The system will assume that there will be no user errors on the application. E.g. the

user will always provide valid links that lead to an accessible html document).
● The system will not be able to process websites, that require user authentication to

access their content.
● The range of media types that the application will be able to successfully handle, will

be limited to style sheet files, JavaScript files, embedded YouTube iframe videos,
pictures in the tag and background pictures for containers that have the
image source defined inline.

Specifications and Design

To fully understand the project, what it is trying to achieve and what was achieved at

the end, we must first specify the systems requirements and lay out the overall design of
the proposed solution.

3.1 System Requirements

Requirements management is the essence of successful project outcome. Effective
requirements management goes a long way of eliminating most design mistakes and
reducing failures during the development process. That is why it is crucial to identify them at
an early stage. Requirements are divided into two parts, Functional and Non-functional. The
report follows the MoSCoW notation to group and prioritize the projects functional
requirements.

3.1.1 Functional Requirements
M (must have):
● Given an URL as an input, the system must download the necessary html file and

supporting asset files.
● The system must display the downloaded website in its User Interface

S (should have):
● The displayed local website should have the same styling and arrangement as the

online version

9

● Users should be able to delete the downloaded websites
C (Could have):
● The system could have an implemented web-crawler that gets the next 1-2 levels of

linked URLS from the main URL, allowing the user to navigate to the same domain
links.

● The system could have a primitive video handling mechanism for embedded video
files.

● The system could have a built in internet connectivity listener, that updates the
already downloaded websites once the user connects to the internet.

● The system could allow to query saved websites
W (Won’t have):
● The system will not be able to access content that is protected with some kind of user

authentication system.
● The system will not be able to accommodate the whole range of embedded media

files available online e.g. GitHub code snippets, flash containers, GIFs, etc.

3.1.2 Non-Functional Requirements
Non-functional requirements are used to govern the performance and the design of the
system. They do not specify how the system will execute tasks, but they are an important
aspect of any system design.

● The UI should have an intuitive minimalistic feel to it.
● The download of the webpage must not take longer than 10 seconds.
● The application should feel ‘responsive’ and not ‘sluggish’

10

3.2 Website acquisition system

The underlying system will have to heavily rely on HTML parsing and asset source
extraction to function as indented. The flowchart below provides a description of the basic
system functionality the application should follow once the user has entered the URL for the
website that they wish to download.

Figure 3: Flowchart of the underlying logic of the application

It is worth noting that this flowchart does not include the logic for web crawling the

associated links from the main provided page. But as one can see the the chart itself is
pretty self explanatory.

1. Once the user has entered the URL of the website that they wish to
download, the system should then be able to parse the index HTML in a way
so that, it is able to query original index file either by HTML tags or CSS
classes.

2. Then it should try to find all the instances of explicitly specified media types.
In this projects case those would be all the HTML , <link>, <script>,

11

<iframe> and <div> tags and then try to extract the corresponding assets
source URLs.

3. Once collected, the system should then try to download and save the assets
to the local system. If the download of an assets fails because the URL is
locally defined to the websites servers’ directory or somehow differently
invalid, then the system should attempt to fix the URL and try again. If the
download fails after the system has tried to fix the URL, ignore the asset and
continue until there are no more assets left.

4. Once the asset has successfully been downloaded to the local system, its
important to change the reference to the asset in the main index HTML file to
the local one.

5. Finally, once all the assets have been handled, the system should then save
the modified index HTML file locally and update the applications DOM
displaying to the user the newly acquired webpage.

3.3 Project Structure
Generally, once you create a Node.js application you are greeted with a very basic file

structure that most Node.js projects follow. In essence you have the following three files:
● a JavaScript file “index.js” - which is responsible for all the functionality of the

application.
● A HTML “index.html” file along with the corresponding style sheet, which provides

the user Interface of the application.
● And a “package.json” file which holds all the metadata of the project and a list of

the additional node modules that have been added to the project.
However, as this project is following the MVC design pattern, the application was split into
multiple different services, each responsible for a different part of the applications
functionality.
The resulting file hierarchy and the structure of the project is as follows:

Figure 4: Overview of the projects file structure

12

Ignoring the saved_websites directory, which is there to store and organise the local
files of all the downloaded websites.

Under src we have the:
● “assets” folder, which holds all the local assets for the application, such as

icons for buttons and images for placeholders.
● The css folder contains the “main.css” style sheet, which is the custom code

used to represent the user interface and “photon.css” which holds all the
classes for the aforementioned Photon UI Kit.

Under the js directory, we can see that the functionality of the system is divided into
five main files or services:

● Main.js holds all the boilerplate electron code which sets up the application
and its native events, such as restricting the window size, defining the main
HTML file location, native event listeners and so on.

● Renderer.js is the bridge between the UI and the apps functionality (The
Controller of the MVC design pattern). It listens for user input, and depending
on the required action, either passes it further to the next service (e.g.
submitting an URL as an input to the text box, the input URL would be passed
to download service afterwards) or executes minor actions that would
change the current state of the UI, such as deleting a website from the
system within its own scope.

● The main chunk of the work is done in the download_service.js (The model of
the MVC design pattern). Once it receives the passed URL from renderer.js it
is responsible for processing the URL, getting the index file, the associated
assets such as images, style sheets, etc. and managing the the local
references and files.

● Server.js is responsible for creating a local host server that all of the websites
are served from, to circumvent the CORS issue (refer to 4.6.2)

● Utilities_service.js holds various helper functions such as regex string
extraction, folder creation, etc.

● The template folder, currently only holds the main index.html (The View of
the MVC design pattern) file, but if there would be a need to add additional
views to the application, that is where they would be defined.

3.4 Process of adding a website to the system

To further reiterate how the different parts of the applications communicate with

each other. The UML sequence diagram below expands upon the previously discussed flow
chart on the how the system would download a website. And aims to explain in greater
detail how the MVC design pattern is applied to the application, outlining the interaction
with its three main components.

13

Figure 5: UML sequence diagram of adding a website to the system

Once the user has entered and submitted the URL from the View. The controller

aims to extract the base domain of that URL.

 For the URL “ https://www.pcmag.com/encyclopedia/term/43329/flowchart” the

extracted domain would be “ www.pcmag.com”.

 Then the system creates a folder with the domain as the folder name and passes all of this
information to the Model for the downloading process of the webpage. Once the Model
gets called with those parameters it follows the previously explained logic in the flowchart.
Once the webpage has finished downloading, the Model calls the Controller by the
populate_DOM_list function, which checks all the entries in the saved_websites directory
and creates or updates the list of websites that are then displayed in the View. Indicating to
the user that all of the processes have finished and that the webpage has been successfully
downloaded.

3.4.1 Process of adding a website to the system with web crawling

If level 1 web crawling is used. Level 1 meaning that only the associated links of the main,
submitted URL will be crawled and not the associated links of the crawled pages. Then the
system processes would be relatively the same, with the exception of recursively calling the
main download function for all the linked URLs in the main index HTML file.

14

https://www.pcmag.com/encyclopedia/term/43329/flowchart

Figure 6: UML sequence diagram of adding a website to the system with level 1 web crawling

Once the URL has been successfully downloaded, before calling the

populate_DOM_list function, the application would first check if the current page handled is
the original URL submitted by the user, and aim to extract all the <a> href links from that
page. Then it would loop through all the found links that have the same domain as the
original URL, and call the downloadURL function again with a different URL, directory folder
but the same domain. Until all of the links have been downloaded. Only then would the
system call the populate_DOM_list function to update the view and let the user know that
everything has finished downloading.

3.5 User Interface

It is important for the User Interface to have a clean, minimalistic look, with as few
options as possible to not confuse the user the first time they see the application.

Since any application built upon the electron framework in its essence is basically a
webpage. All of its UI is created through HTML and CSS. However, as the project is meant to
be a desktop application, regular CSS styling looked too much like a website and not a
desktop application. That’s why an electron specific UI kit, Photon was used. Photon kit
came as a separate CSS file with predefined classes and its own font package, which allowed
to significantly cut down on development time on the front-end of the application as well as
provided a native feeling to the overall UI.

Minimum windows size of the application was restricted to be precisely 800x600
pixels, so that the design would not have to account for screen sizes smaller than that.

15

3.5.1 Wire Frame
Before starting with the actual implementation, it is important to at least create a

rough sketch how the application should look using wireframes. Since most of the
functionality is either happening in the background or in the actual browser, it was
important to keep the design to a 1-page application.

Figure 7: Wire-frame design of the application

As previously mentioned, this wire frame is an example of minimalistic design, which

allows the user to easily understand the state of the system and does not confuse the user
with a multitude of baffling and intimidating options or parameters. Right now, the design is
a simple 2-pane display.

One the left side the user can see and search the list of the available downloaded
websites that they have added. And the right pane changes depending of the selected
website from the left pane.

The right pane shows the selected websites name, its preview of the form of a
screenshot, and 3 buttons beneath: Open, Refresh, Delete.

16

Implementation

Now that it has been defined how the system should function, behave and look, we shall
examine the actual implementation of the system in question.

4.1 UI implementation

As mentioned before, the whole UI is akin to a website, implemented solely by
HTML, CSS and utilising JavaScript to dynamically display the state of the system.

Figure 8: [Screenshot] Final design of the application

The list on the left is generated from the controller. It lists all of the folders in the
saved_websites directory, and then iterating through the found folders a list item is created
for each entry and then added to the unorganized list:

1. website_array.forEach(function (item, index) {
2. var li = document.createElement('li');
3. li.setAttribute("class", "list-group-item");
4. li.setAttribute("id", index);
5.
6. ul.appendChild(li);
7. li.innerHTML +=
8. '<img class="img-circle media-object pull-left" src="' + item.favicon + '" w

idth="32" height="32">' +
9. '<div class="media-body">' +
10. '' + item.title + '' +
11. '</div>';
12. });

17

The right pane is displayed in a similar way. Whenever the ‘click’ event is triggered on any of
the list items. The right pane is changed accordingly to match the index of the clicked
website.

1. //highlight selected item
2. target.setAttribute("class", "list-group-item selected_item");
3. let selected_item = website_array[target.getAttribute("id")];
4. //change the preview
5. document.getElementById("preview_title").textContent = selected_item.title;
6. document.getElementById("thumbnail").src = selected_item.thumbnail;

4.2 Main download function

Once the user enters the URL, through the controller that URL is then passed to the
download_services service downloadURL function.

1. // Variable assigned to the downloaded html through the cheerio module
2. // so that it would be possible to 're-appoint' external sources to local ones
3. var localHtml = null;
4.
5. const downloadURL = (URL, dir_folder, hostname, calledFromCrawler = false) => {
6.
7. (async function () {
8. const instance = await phantom.create();
9. const page = await instance.createPage();
10. var vWidth = 1080;
11. var vHeight = 1920;
12. await page.property('viewportSize', { width: vWidth, height: vHeight });
13.
14. const content = await page.property('content');
15. localHtml = cheerio.load(content);

The code snippet above, first calls an anonymous asynchronous function, that
initializes the phantom headless browser instance and sets the configuration for the website
to load in.

 It is important to note here the global variable localHtml , is set to equal to the
cheerio object, which parses the accessed HTML file and will be used to access and modify
all of the necessary index.html elements. Once the cheerio object is loaded, all of the asset
handling functions are executed (explained in more detail in section 4.3). Finally, once all
the necessary assets have been acquired and their references changed to local ones in the
index file. The new edited HTML file is saved to the system.

file_system.writeFile(dir_folder + '/index.html', localHtml.html(), (success) => { });

4.3 Asset handling

If all that was needed, would be the HTML index file, the application would already be
finished. However, for the web page to run locally as it would run online, assets such as
images, videos, JavaScript files and style sheets are also needed.

The first thing needed to access all of these assets is to parse them from the HTML file by
accessing the parsed cheerio object localHtml, and extracting from it the necessary
elements:

handleStyle(localHtml("link"), dir_folder);

18

handleImages(localHtml("img"), dir_folder);
handleBgImages(localHtml("div"), dir_folder);
handeJavascript(localHtml("script"), dir_folder);
handleVideo(localHtml("iframe"), dir_folder);

As all of these functions are relatively similar to each other, and they only differ in the
source attribute that’s being handled. As an example this report will only explain the
handleImages function.

1. function handleImages(images_raw, dir_folder) {
2.
3. dir_folder = dir_folder + "/images";
4.
5. if (!file_system.existsSync(dir_folder)) {
6. file_system.mkdirSync(dir_folder);
7. }
8.
9. images_raw.each(function (index, images) {
10. if (localHtml(images).attr("src")) {
11. let image_url = checkURL(localHtml(images).attr("src"));
12. if (image_url == null) {
13. //create a placeholder for file not found;
14. }
15. let extension = get_url_extension(image_url);
16. let file_name = dir_folder + "/" + index + "." + extension;
17.
18. downloadAssets(image_url, file_name);
19.
20. let local_html_name = "images/" + index + "." + extension;
21. localHtml(images).attr("src", local_html_name);
22. }
23. });
24. }

The function has two parameters: images_raw (which is an array of all the extracted
elements) and dir_folder (the current directory folder. Which in this instance its current
value would be ./saved_websites/www.example_website.com).

Firstly, the system creates a new folder to store all the created images. Then the
code iterates through the images raw array and checks if the “src” attribute is valid.

To properly save the image, one needs to know the proper extension .png, .jpeg, etc.
of the image, otherwise saving with the wrong extension might result in a corrupted file.So
the extension is extracted by using a get_url_extension helper function from utilities.js

1. function get_url_extension(url) {
2. return url.split(/\#|\?/)[0].split('.').pop().trim();
3. }

Finally, the extracted URL along with the file path where to save the images is passed

to the downloadAsset function, where the image is downloaded and saved locally on the
system. Then the global cheerio variable (which is essentially a parsed index.html instance)
is called to change the original reference to the image to the relative local one.

19

4.4 Web Crawling

One of the biggest gaps in the current solutions on the market, is that you can not

navigate away from the specified page that you have downloaded. To rectify this, this
project tried to implement a web crawling algorithm, that takes all the href links in the
anchor tags of the original URLs page source and downloads the web pages associated to
those links. The only problem is determining how far should one go crawling the associated
links. It was originally assumed that the application would be able to go at least 2-3 levels
deep. However, once only the first level was implemented the download time of bbc.co.uk
increased substantially. But even, if we only decide to crawl just through the first level of
associated links from the original URL, it still takes a substantial amount of time, to
download all of the links.

For http://www.bbc.co.uk/ , at the time of testing there were 160 associated links
found. A portion of the found links were links that the users usually never click e.g. privacy
policy. But filtering out the relevant links that the user might find useful would be outside
the scope of this project. Additionally, to try to decrease the crawling time, it was decided to
only crawl associated links that have the same domain as the source website. So this
implementation will only explore getting the “first level” of associated links from the source
website if those links are on the same domain as the source.

1. function collectInternalLinks(anchor_tags, dir_folder) {
2. displayDownloadProgress("Listing linked URLs");
3.
4. let internalLinks = [];
5.
6. anchor_tags.each(function (index, link) {
7. var found_link = localHtml(link).attr("href");
8.
9. if (found_link == null || getHostName(found_link) != hostName) return;
10.
11. internalLinks.push(localHtml(link));
12. });
13.
14. linked_url_count = internalLinks.length;
15. getInternalLinks(internalLinks, dir_folder);
16.
17. }

For each of the found anchor tags if the source link isn’t null or not from the same
domain as the original URL, then add that link to the internalLinks array.
When all of the links are collected the getInternalLinks function is called:

1. function getInternalLinks(internalLinks, dir_folder) {
2.
3. let regexSlpit = new RegExp("(" + hostName + ")");
4. internalLinks.forEach(function (foundUrl, index) {
5.
6. let url = foundUrl.attr("href");
7. displayDownloadProgress("Gettign linked URL: " + url);
8.
9. var dir_location = "/crawled_sites" + url.split(regexSlpit)[2];
10. var relative_dir_folder = dir_folder + dir_location;
11. if (!file_system.existsSync(relative_dir_folder)) {
12. shell.mkdir('-p', relative_dir_folder);
13. }

20

http://www.bbc.co.uk/

14. var refrenced_location = "/" + hostName + dir_location
15. localHtml(foundUrl).attr("href", refrenced_location + "/index.html");
16. downloadURL(url, relative_dir_folder, hostName, true);
17. });
18. }

Similarly, to the previously discussed handleImages function. The above code iterates
through all the previously collected anchor tags. Accesses their href attribute to get the URL
of the associated website. Then from line 9-14 creates a folder where to store all the
downloaded files. After the folder is created, it changes the source link in of the specific <a>
tag to the local destination and then recursively, calls the downloadURL function.

The downloadURL function has a calledFromCrawler parameter, which defaults to false, if
only 3 parameters are passed to the function.

const downloadURL = (URL, dir_folder, hostname, calledFromCrawler = false)

This is to ensure that crawling is executed only for the main page and not the associated
pages when they call the same downloadURL function.

if (!calledFromCrawler) { collectInternalLinks(localHtml("a"), dir_folder); }

Once this function has executed, all the subsequent calls to the downloadURL function,
regarding the gathering of associated links will have the calledFromCrawler parameter set to
TRUE. Thus making sure that only the main websites associated links are being crawled.

4.5 Error Handling

As this project is unlikely to be viewed by the general public, to save on development
time, the project was developed under the assumption that the passed URL will always be
valid and it was decided not to spend any time in handling user error cases.
But since, multiple http calls are involved in the process of cloning a website. Failure to
handle errors when a found assets URL is invalid might be considered a core error in the
functionality of the whole project.

The largest point of failure when trying to gather all the assets from the webpage, was that
sometimes the assets were locally or weirdly referenced e.g.

//ichef.bbci.co.uk/images/ic/$recipe/p07735m0.jpg

is an invalid link, but once the first two characters are removed it becomes a working URL.
Or

/images/ic/$recipe/t0234n34.jpg

is a locally references link, to make it valid, the host name has to be added in front of it. In
this case a valid image link would be

htttps://www.bbc.co.uk/images/ic/$recipe/t0234n34.jpg

21

That’s why the checkURL function was implemented. It checks whether or not the link
resembles the previous examples of broken links and tries to fix them by either adding the
https prefix or adding the domain name to transform the local link to a remote URL.

1. function checkURL(URL) {
2.
3. if (isUrlValid(URL)) return URL;
4.
5. let tempURL = "https://" + URL.substring(2);
6.
7. if (isUrlValid(tempURL)) return tempURL;
8.
9. tempURL = "https://" + regexDomainExtraction(original_URL) + URL;
10.
11. if (isUrlValid(tempURL)) return tempURL;
12.
13. return null;
14. }

The isUrlValid function is a regex expression that checks if a given URL is valid.

1. function isUrlValid(userInput) {
2.

var regexp = /(ftp|http|https):\/\/(\w+:{0,1}\w*@)?(\S+)(:[0-9]+)?(\/|\/([\w#!:.?+=&%@!
\-\/]))?/

3. return regexp.test(userInput);
4. }

The issue with this approach is that, every possible case of a broken link has to be explicitly
programmed.

4.6 Unforeseen problems

When first hearing of the project, I assumed that it was a fairly straightforward task,

with the biggest possible difficulty being capturing Facebook pages or acquiring videos from
YouTube. However, once the development of the application started, it was clear that even
getting one of the most fundamental webpages such as bbc.co.uk would prove to be a
difficult undertaking.

4.6.1 Lazy-Loading issues
The first issue was that most of the tested websites used lazy-loading. Lazy-loading is

used to decrease bandwidth and loading times by only requesting the necessary assets
when they are actually needed. Meaning that the content of the page would only load once
the user has scrolled to that segment of the page. The problem arises if one tries to capture
the html of said website. They will only be able to get the assets for the first segment of the
page that has loaded.

22

Figure 9: [Screenshot] Example of failing to capture lazy loading images

 The solution to this problem was to emulate user behaviour that would scroll down

to the end of the page. This required a headless browser such as PhantomJS which allows to
be programmed to emulate such action as fill in the input boxes if one knows the ID of the
input box or more importantly in this case - to simulate scrolling.

1. var scrollBottom = page.evaluate(function () { return document.body.scrollHeight; });
2. await page.property('scrollPosition', { top: await scrollBottom, left: 0 });

The above code snippet demonstrates how simulating that the user has scrolled to the
bottom of the page was achieved. Firstly, the page.evaluate() function returned the
rendered pages scrollHeight. The scrollHeight property returns the entire height of an
element in pixels, including padding, but not the border, scrollbar or margin. [14] Then on
the rendered page, the code sets the scrollPosition attribute to the returned scrollHeight
property, which allows to scroll to the bottom of the page.

Although this solution wouldn’t be sufficient enough for a website that utilises vertically
scrollable pagination, meaning that additional content is added at the end of the page once
the user has scrolled to the bottom. It is still a viable solution to the presented problem.

4.6.2 CORS
Additionally, some websites had implemented a Backend Cross-origin resource

sharing (CORS) restriction. CORS is a mechanism which aims to allow requests made on
behalf of you and at the same time block some requests made by rogue JS and is triggered
whenever you are making an HTTP request to:

23

● a different domain (e.g. site at example.com calls at anotherexample.com)

● a different sub domain (e.g. site at example.com calls api.example.com)

● a different port (e.g. site at example.com calls example.com:3001)

● a different protocol (e.g. site at https://example.com calls http://example.com [15]

In this case CORS refused to load certain assets if the website was launched locally

from the file:// prefix. Which happens by default if you simply try to open your HTML file on
your local machine. These websites would return an error which would look something like
this.

Figure 10: [Screenshot] Blocked CORS policy error message

There were two options to bypass this issue. One was to not acquire any of the

JavaScript files, but that would limit the functionality of the downloaded webpage. The
other was that the application couldn’t simply launch the web pages from the local machine,
it had to create a local host server, and then serve that html file through the created local
host server on the users’ browser.

1. var connect = require('connect');
2. var serveStatic = require('serve-static');
3.
4. const server_url = "localhost:8080/saved_websites/";
5. connect().use(serveStatic('./saved_websites/')).listen(8080, function(){
6. console.log('Server running on localhost:8080...');
7. });

All the saved websites will be served through the URL
http://localhost:8080/saved_websites/example_website/index.html

As this URL has the http:// prefix the CORS policy wont block it.

4.6.3 Images as container backgrounds

Another unforeseen issue was that some websites like the bbc.co.uk for
example, don’t use tags for their image content but they create a <div>
container and using inline style tags add the desired image as a background-image.

<div class = "top-story__image" data-image-recipe= "//ichef.bbci.co.uk/images/ic/$recipe/p076lhnj.jpg" style= "background-i
mage: url("//ichef.bbci.co.uk/images/ic/1040x585/p076lhnj.jpg");" data-reactid = ".ksq93l3yug.0.1.0.$hp-ts-0.0.0" ></div>

Figure 11: [Screenshot] a snippet form bbc.co.uk source code

Because of this a new function handleBgImages was needed that goes through every single
<div> in the given HTML file and searches every inline style property of those divs where the
CSS rule “background-image” is used.

24

http://www.example.com/
http://www.example.com/
http://www.example.com/
https://example.com/
http://example.com/
http://localhost:8080/saved_websites/example_website/index.html

1. const handleBgImages = (backgroundImg_raw, dir_folder) => {
2.
3. dir_folder = dir_folder + "/images";
4. backgroundImg_raw.each(function (index, div) {
5. if (div.attribs.style) {
6. let style_def = div.attribs.style;
7. if (style_def.includes("background-image")) {
8. count = count + 1
9. // returns url:(http://linktoimage.com) so we need to strip the string of 'url(

' and ')'
10. let backgroundImgURL = localHtml(div).css('background-image');
11. backgroundImgURL = backgroundImgURL.replace("url(", "");
12. backgroundImgURL = backgroundImgURL.slice(0, -1);
13. backgroundImgURL = backgroundImgURL.replace(/"/g, "")
14.
15. backgroundImgURL = checkURL(backgroundImgURL);
16. if (backgroundImgURL == null) {
17. //Show a placeholder
18. }
19.
20. let extension = get_url_extension(backgroundImgURL);
21. let file_name = dir_folder + "/" + index + "_bg." + extension;
22.
23. downloadAssets(backgroundImgURL, file_name);
24.
25. let local_html_name = "url('images/" + index + "_bg." + extension + "')";
26. localHtml(div).css('background-image', local_html_name)
27. }
28. }
29. });
30. }

The function itself is very similar to the previously discussed handeImages function, with the
small modification that instead of the src attribute the code has to look for CSS
‘background-image’ rule and then parse it (because the cheerio module returns the whole
rule) and extract the image source.

The only issue with this solution, is that it does not check external style sheet file properties,
meaning that, if the background image is not defined inline, then the application will not be
able to access it.

System Testing and Evaluation

Because it is difficult for a computer to verify whether or not a web page has been
downloaded successfully as the specification require. There were very few programmatic
tests that could be perform on the system to check its performance. However, to test and
verify that the system is actually capable of doing on what its intended to do and whether or
not the project has been successful, I performed test cases based on some of the projects
functional requirements. Additionally, I chose a few popular and content diverse websites
and checked whether or not the application was able to successfully download and display
them.

25

5.1 Test Cases

Below are a few test cases that were used to analyse whether or not the system has met its
functional requirements.

Test Case ID: 1 ● Test Purpose: Given an URL as an input, the system must download the
necessary html file and supporting asset files.

Preconditions: The system is connected to an active internet connection and the provided link is valid

Step
No.

Procedure: Response: Pass/Fail

1 The “add”
button was
clicked

The prompt box will appear. Pass

2 A valid URL
is submitted
to the
prompt box

Prompt box disappears, and after a while an entry is created
representing the newly added URL.

Pass

3 The browser
icon is
clicked

A browser window is opened and the downloaded website is
loaded.

Pass

Test Case ID: 2 ● Test Purpose: Users must be able to delete the downloaded websites

Preconditions: A website has already been downloaded and added to the list.

Step
No.

Procedure: Response: Pass/Fail

1 User click on
the website
from the list

The selected website is highlighted on the list and appropriate data is
shown on the right pane of the application

Pass

2 User clicks
the delete
button

The website is deleted from the list and all of the local files associated
with that instance have been removed

Pass

3 Entry is
removed
from the list

The next available item is selected on the list and displayed on the right
pane of the application

Fail

Test Case ID: 3 ● Test Purpose: Application is able to crawl the first level of associated links
from the source page.

Preconditions: A website has already been downloaded and added to the list with the web crawling
option enabled.

26

Step
No.

Procedure: Response: Pass/Fail

1 User opens
the
downloaded
website
from the list

A browser window is opened and the downloaded website is loaded. Pass

2 User clicks
on any link
that has the
same
domain as
the source
URL

The website navigates to the clicked URL, displaying all the required
data, styling and images

Pass

3 User goes
back and
chooses a
different link

The website navigates to the clicked URL, displaying all the required
data, styling and images

Pass

5.2 Manual website test results

The scope of this project mainly focused on properly downloading bb.co.uk with the
reasoning that if the application is able to handle such a complex website then it should be
able to handle most of the available websites with relative accuracy. However, for the sake
of evaluating the success of this project, it was decided to test popular websites with
different designs and see how well the application is able to handle these requests and how
well an already existing solution (in this case Google Chrome “Save-As” feature) would be
able to handle the same request. To avoid personalised content from the live version, some
websites which use user data and cookies have been run in an incognito mode.

● bbc.co.uk

Testing justification : The benchmark website that this project was tested against, which
provides a diverse and rich content.

27

Figure 12: [Screenshot] live version of https://bbc.co.uk

Figure 13: [Screenshot] Google Chrome “Save-As” representation of https://bbc.co.uk

28

https://bbc.co.uk/
https://bbc.co.uk/

Figure 14: [Screenshot] locally hosted version of https://bbc.co.uk

Observed Results:

Apart from the privacy cookie prompt at the top of the website, for which it is not
clear why does the text differs from the live version. The local version is very similar to the
live version with the exception of some icons and styling issues for the tab navigation. The
icons aren’t available because their source is referenced in an external style sheet document
and not the index.html file itself.

The “Save-as” feature failed to get the article images, because as previously
discussed BBC places their as a background image for a div container.

29

https://bbc.co.uk/

● Wikipedia
Testing justification : Wikipedia is one of the most popular websites with a unique and rich
content.

Figure 15: [Screenshot] Live version of https://en.wikipedia.org/wiki/Coca-Cola

Figure 16: [Screenshot] Google Chrome “Save-As” representation of

https://en.wikipedia.org/wiki/Coca-Cola

30

https://en.wikipedia.org/wiki/Coca-Cola
https://en.wikipedia.org/wiki/Coca-Cola

Figure 17: [Screenshot] Local version of https://en.wikipedia.org/wiki/Coca-Cola

Observed Results:

It is quite clear that in this case, that even though all the images are available, the
application has failed to properly display the downloaded webpage as it should be
displayed. It managed to get all the images, but failed to properly style the content.

● Amazon

Justification: It is the biggest ecommerce website, and its content rich page, provides an
excellent test case

Figure 18: [Screenshot] live version of https://www.amazon.com/

31

https://en.wikipedia.org/wiki/Coca-Cola

Figure 19: [Screenshot] Google Chrome “Save-As” representation of https://www.amazon.com/

Figure 20: [Screenshot] locally hosted version of https://www.amazon.com/

Observed Results:

 Apart from the fact that the local version couldn’t access the browsers location because
of no internet connection. It seems that the local version is practically indistinguishable from
the live version. The reason why the background image is different for the two screenshots,
is because it uses an image carousel, changing the background image over time.

32

https://www.amazon.com/

● Reddit

Justification: “The front-page of the internet” It is a content diverse and rich page.

Figure 21: [Screenshot] live version of https://www.reddit.com/

Figure 22: [Screenshot] Google Chrome “Save-As” representation of https://www.reddit.com/

33

https://bbc.co.uk/
https://bbc.co.uk/

Figure 23: locally hosted version of https://www.reddit.com/

Observed Results:

As with amazon, it looks like the local version is identical to the live version, with the
exception that it failed to capture the advertisement image on the right. On the
other hand, Google Chrome “Save-As” feature has completely failed to capture the
style of the page.

5.3 Meeting requirements

Referencing the previously laid out functional requirements, the developed
application met all of the Must have requirements. The Should have requirement “ The
displayed local website should have the same styling and arrangement as the online version”
has been partially met. As observed in the previous section, the application struggled to
faithfully replicate some of the tested webpages.

Additionally, the application has also met some of the defined could have
requirements, such as the ability to crawl the next level of associated links to the source
URL. Its partially able to handle embedded video files (restricted strictly to iframe), but it
has failed to meet the rest of the could have requirements, such as:

● The system could have a built in internet connectivity listener, that updates the

already downloaded websites once the user connects to the internet.
● The system could allow to query saved websites

Since at the beginning of the project it defined bbc.co.uk as its main test benchmark,

indicating that if it can successfully download and display it, then the application should be
able to handle most of the other websites found on the internet as they would fall under the
complexity of bbc.co.uk. That turned out not to be the case. Even though the project was
able to download bbc.co.uk almost flawlessly, with the exception of some obscurely defined
missing icons. It did struggle with other complex websites such as Wikipedia. Those cases

34

https://www.reddit.com/

notwithstanding, the application was able to successfully copy Amazon, Reddit and other
tested websites. Not to mention it out performed the existing “Save-As” feature of Google
Chrome in every one of the test cases.

It is just a matter of fine tuning the existing solution and adding additional edge
cases so that the application could also handle the websites it failed to capture in testing.
Overall there is a solid base that if improved upon could turn into a go to solution for
website offline viewing.

Future Work

It is quite apparent that even though the minimal viable product was reached in the

course of this project, there are various things that the project could improve upon given a
longer development time.
 This includes such improvements as:
● Broader asset availability – The biggest issue with these kinds of projects. The

application allows to save video files if the media is embedded in an <iframe> tag. If
the video is embedded in any kind of different way, the application will not be able
to display that video locally. So as a future possible solution the first priority would
be to allow not only for a variety of embedded video formats but also for a wider
range of different embedded media formats.

● Improved UI - UX guidelines suggest to always display the systems status to the
users. A possible future continuance would include adding a progress bar on the
download status. Currently the system doesn’t report to the user in any way, when
the webpage has finished downloading, especially in the case when web crawling is
used.

● Social Networks – Adding support for Facebook, Instagram, etc. would greatly
improve upon the applications use cases.

● Webpage Updates – In the design and specification stage, the report talked about
keeping web pages up to date when connected to an internet connection or
providing a refresh button in the UI, which would then update the websites local
files. Due to time constraints, these features were not implemented in the
application, and if future work were to take place, it would be recommended to add
said functionality to the existing solution.

● Paginated content – Currently the application has no way of loading paginated
content (vertical or sectioned) a necessary future improvement would be the ability
to scroll through a paginated feed.

Conclusions
In conclusion, the project has achieved its pre-defined goal, of creating an offline

website viewing solution that improves upon the already available similar products.
The application is capable of properly downloading and displaying most of the websites on
the internet. Some more successfully than others. Compared to the already existing
solutions, the application offers a way to organise the downloaded web page content,
circumvents issues such as lazy-loaded content and CORS restrictions. The program is able

35

to handle diverse embedded media types although with varying degrees of success. It also
enables the user to view and access the associated links of the website through web
crawling.

Overall, even if the project still has some issues with properly displaying some
webpages or accessing their embedded content - and its current representation of tested
webpages isn’t perfect, it succeeded in what it set out to do. And given enough time to
complete it, it is on the right track on providing the best offline viewing experience for static
web pages.

Reflection
At the beginning of the project, I was worried that the task at hand might be too

simplistic. Not fully realising the extent of the actual work needed to successfully implement
this project.

 The project not only made me realise that all of the meticulous planning “goes out
of the window” as soon as you encounter your first major problem - which is inevitable. You
realise that the scope of the project has to be changed so that the original image of the
finished product could cater to reality.

Technical skills such as a better understanding of the Electron framework, increased
proficiency in JavaScript and Node.js notwithstanding.

I feel like my project modelling prowess has increased exponentially over the course
of the project. Like most students undertaking similar work. Before starting the project my
exposure to designing a system before development was at most choosing the target
platform and outlying the general needed requirements.

However, I now realise the importance of actually laying out the general idea of how
the project should work in a flow-chart or a sequence diagram, instead of immediately
getting down to the implementation part of the project and designing the system “as you go
along”.

Additionally, through trying to download the passed websites. I developed a
mind-set of looking at a finished product and trying to deconstruct it and understand the
technology behind it. Gaining a better understanding of various technologies and structures
that hold most of the websites we visit daily. The project really made me value the holistic
process of any development progress.

References
1. Nick Raboy, 2015, Use SQLite In Ionic 2 Instead Of Local Storage , Nick Raboys

weblog, viewed 20 February 2019
< https://www.thepolyglotdeveloper.com/2015/12/use-sqlite-in-ionic-2-instead-of-lo
cal-storage/ >

2. TutorialPoints, Node.js – Introduction , viewed 10 March 2019
< https://www.tutorialspoint.com/nodejs/nodejs_introduction.htm >

3. Electron Documentation, viewed 29 February 2019
< https://electronjs.org/docs/tutorial/about >

36

https://www.thepolyglotdeveloper.com/2015/12/use-sqlite-in-ionic-2-instead-of-local-storage/
https://www.thepolyglotdeveloper.com/2015/12/use-sqlite-in-ionic-2-instead-of-local-storage/
https://www.tutorialspoint.com/nodejs/nodejs_introduction.htm
https://electronjs.org/docs/tutorial/about

4. Felix Rieseberg, Introducing Electron, Oreilly, viewed 29 February 2019
< https://www.oreilly.com/library/view/introducing-electron/9781491996041/ch01.
html >

5. GitHub Documentation, viewed 3 March 2019
< https://github.com/cheeriojs/cheerio >

6. GitHub Documentation, viewed 3 March 2019 <https://github.com/axios/axios >
7. NodeJS API Documentation, viewed 29 February

2019<https://nodejs.org/api/url.html#url_url >
8. GitHUb Documentation, viewed 25 March

2019,<https://github.com/senchalabs/connect#readme >
9. NPM Documentation, Serve-Static, viewed 27 April 2019

< https://www.npmjs.com/package/serve-static >
10. NodeJS API Documentation, File System, viewed 29 February 2019

<https://nodejs.org/api/fs.html>
11. NPM Documentation, Electron-Prompt, viewed 27 April 2019

<https://www.npmjs.com/package/electron-prompt>
12. NPM Documentation, Rimraf, viewed 15 April 2019

<https://www.npmjs.com/package/rimraf>
13. Harshadkumar B Prajapati, Reasearch Gate, viewed 2 May 2019,

<https://www.researchgate.net/figure/MVC-Design-Pattern_fig1_224398744>
14. W3SCHOOLS, HTML DOM scrollHeight Property , viewed 7 April 2019

< https://www.w3schools.com/jsref/prop_element_scrollheight.asp >
15. Bartosz Szczeciński, Understanding CORS, Medium blog post, viewed 11 April 2019

< https://medium.com/@baphemot/understanding-cors-18ad6b478e2b >
16. Nithya Sambasivan, Connectivity, Culture, and Credit, viewed 13 April 2019

<https://design.google/library/connectivity-culture-and-credit/>

37

https://www.oreilly.com/library/view/introducing-electron/9781491996041/ch01.html
https://www.oreilly.com/library/view/introducing-electron/9781491996041/ch01.html
https://github.com/cheeriojs/cheerio
https://github.com/axios/axios
https://nodejs.org/api/url.html#url_url
https://github.com/senchalabs/connect#readme
https://www.npmjs.com/package/serve-static
https://www.w3schools.com/jsref/prop_element_scrollheight.asp
https://medium.com/@baphemot/understanding-cors-18ad6b478e2b

