

DELINEATING REGIONS OF
INTEREST IN MRI/S PROSTATE
SCANS FOR CANCER DIAGNOSIS

Name: Daniel Morgan

Student Number: C1527793

Supervisor: Dr Frank Langbein

Moderator: Dr Jing Wu

Abstract
This report documents the implementation of a tool aimed at tackling the problem of

delineating regions of interest in MRI prostate scans for cancer diagnosis in order to aid

Radiologists in performing their job. It describes a tool that displays MRI scans and allows

for annotation. This report also documents the future of such tool and the ways in which the

application could be further expanded to incorporate tools that more effectively tackle the

problem area.

Acknowledgements
I would like to thank Dr Frank Langbein for his help, guidance and patience throughout this project.

Table of Contents
Abstract ... 1

Acknowledgements ... 1

1. Introduction .. 5

1.1 – Project Aims ... 5

1.2 – Personal Aims ... 5

1.3 – Target Audience ... 5

1.4 – Approach .. 6

1.5 – Assumptions ... 6

1.6 – Outcomes of the Project .. 6

2. Background ... 7

2.1 – Identified Problems .. 7

2.1.1 – MRI (Magnetic Resonance Imaging) ... 7

2.1.2 - DICOM .. 8

2.1.3 – The Project Problem .. 9

3. Specification .. 9

3.1 – Technologies Used ... 9

3.1.1 - PyDicom ... 9

3.1.2 - Matplotlib .. 10

3.1.3 - TkInter .. 10

3.1.4 - Justification .. 10

3.1.5 – Other Technologies ... 10

3.2 – Stakeholders in the Application ... 11

3.3 – Additional Features to Consider .. 11

3.4 – Aims and Research questions .. 11

4. System Architecture and Design ... 12

4.1 – Basic Functionality of the Application .. 12

4.1.1 – Viewing the MRI Scans .. 12

4.1.2 – Navigation Through the DICOM Stacks ... 13

3.1.3 – Annotation of MRI Scans ... 13

4.2 – Additional Functionality of the Application ... 14

4.3 – System Architecture ... 14

4.3.1 – Code structure and approach ... 14

4.3.2 – Interface Components .. 15

4.3.3– Back-end Components ... 15

4.3.4 – Class Diagram .. 16

4.3.5 – Information Flow ... 17

4.4 – User Interface ... 18

4.4.1 – Single Screen View Design .. 18

4.4.2 – Single View Screen in Application ... 19

4.4.3 – Dual Screen View Design ... 20

4.4.4 – Dual Screen View Design ... 20

5. Implementation .. 22

5.1 – Early Stages of Implementation ... 22

5.2 – Application Classes ... 23

5.2.1 – Main Class ... 23

5.2.2 – FolderBrowser Class .. 25

5.2.3– DicomObject Class.. 27

5.2.4– FigureView Component ... 28

5.2.5– Navigation Component .. 31

5.2.6– Annotation Component ... 36

6. Results and Evaluation .. 37

6.1 – How does the application meet required functionality? ... 38

6.1.1 - Requirement 1 – Display of MRI Scans .. 38

6.1.2 - Requirement 2 – Navigation through a DICOM stack .. 39

6.1.3 - Requirement 3 – Annotation of a slice .. 41

6.2 – Additional Features .. 42

6.2.1 – Synchronisation Functionality ... 42

6.2.2 – Dual Screen Functionality ... 43

7. Future Work .. 44

7.1 – Accessibility .. 44

7.2 – Draw Circle Functionality ... 45

7.3 – In-app Directory Viewer ... 45

7.4 – Annotation Correction ... 46

7.5 – Annotation Conversation ... 47

7.6 – Integration with Machine Learning .. 47

8. Conclusion ... 48

9. Reflection .. 51

9.1 – Implementation.. 51

9.2 – Project Management ... 51

9.3 – Communication .. 52

References .. 53

Figure 1 - Example of patient file structure .. 12

Figure 2 - Class diagram .. 16

Figure 3 - Information Flow diagram .. 17

Figure 4 - Single view Wireframe .. 18

Figure 5 - in app single screen view .. 19

Figure 6 - Dual view prototype ... 20

Figure 7 - in application dual screen view ... 20

Figure 8 - Main class initialisation ... 23

Figure 9 - initialisation of the application ... 23

Figure 10 - Initialisation of the FolderBrowser Component ... 24

Figure 11 - initial screen shown to the user .. 24

Figure 12 - The setup method ... 24

Figure 13 - initialisation of the FolderBrowser class ... 25

Figure 14 - FolderBrowser functionality ... 26

Figure 15 - Dicom Object instansiation ... 27

Figure 16 - DicomObject draw functionality ... 28

Figure 17 - matplotlib 'use' method .. 28

Figure 18 - FigureView instantiation variables ... 29

Figure 19 - figureview figure functionality .. 29

Figure 20 - Figure display in running application .. 30

Figure 21 - zoom functionality .. 31

Figure 22 - Dynamically changing the image and information shown in the applications Figure 31

Figure 23 - The Navigation bar displayed in the application window ... 31

Figure 24 - The navigation instantiation ... 32

Figure 25 - Example of navigation functionality within the Navigation class 32

Figure 26 - The initial steps of the synchronisation process ... 33

Figure 27 - Calculating if every slice is going in the same direction ... 34

Figure 28 - Check to see if the two slices are aligned ... 34

Figure 29 - Synchronisation Calculation for a given slice .. 35

Figure 30 - ͚“ǇŶĐhƌoŶise “ĐaŶs͛ ďuttoŶ ... 35

Figure 31 - Annotation class represented in window ... 36

Figure 32 - Annotation class represented in the window ... 36

Figure 33 - Yellow points on screen representing annotation .. 37

Figure 34 - Red box highlighting the area of the application that displays the MRI scan 38

Figure 35 - aspect ratio change on zoom .. 39

Figure 36 - Eǆaŵple of the ͚Pƌeǀious͛ aŶd ͚Neǆt͛ ďuttoŶs iŶ the appliĐatioŶ 40

Figure 37 - Example of a slice annotation in the application .. 41

Figure 38 - Example of an annotation in a CSV file ... 41

Figure 39 - DeŵoŶstƌatioŶ of the ͚“ǇŶĐhƌoŶisatioŶ͛ fuŶĐtioŶalitǇ ... 42

Figure 40 - Complete view of the application ... 43

Figure 41 - browseFolder method of the FolderBrowser class ... 43

1. Introduction

This report details the design, development and evaluation of an application that enables

users (specifically radiologists) to View prostate scans that are saved as DICOM files in order

to delineate any potentially dangerous regions within the scan. The application will enable

the user to then annotate any areas in a scan and save this annotation to an output CSV file.

This report will also detail future uses for the application including scope for integration

with systems researching machine learning techniques aimed at identifying and delineating

regions of interest in prostate scans.

1.1 – Project Aims
This project aims to deliver an application that makes the process of cancer diagnosis easier

through providing tools allowing a user to annotate and identify areas of interest within a

prostate scan. By doing this, the project will attempt to deliver an efficient and robust

system within which a user can operate without issue. The application should allow users to

view the scan images contained within a DICOM file, no matter what resolution or aspect

ratio this displays at. Upon display, a user should be able to easily identify any potential

areas of interest within the scan image, annotate this area and save to a location for future

reference. The project will also serve as a platform from which other systems will be able to

integrate with in order to further aid the user.

1.2 – Personal Aims
At the beginning of this project I had relatively little experience with python. I also had no

experience in medical imaging or image manipulation. This project will give me the chance

to develop my own personal skills in a new language as well as increase my knowledge in

the subject areas mentioned above. Project management skills will be crucial in the

development of this application. Due to the research that I will have to do in order to

understand the problem in the early stages of development, its essential that the

implementation makes good progress towards the later stages of the project. The

development of this application will also test my abilities to develop an effective user

interface that adequately tackles the problem.

1.3 – Target Audience
When considering the target audience of the application, we must think both long term and

short term. The future applications of this project will most likely be used in order to make

the process of delineating areas of interest in prostate scans far easier for Radiologists.

Therefore, in terms of functionality and interfacing, this application will be designed with

the human user, a Radiologist, in mind.

However, currently the scope of this application does not cover clinical use. The short term

uses of this application should also be considered. This application will be extended in the

future to include machine learning systems that will annotate potentially dangerous areas of

the scan for human review. Therefore, a secondary target audience to this project will be

researchers who are working towards solving that particular problem, as they will be able to

integrate their systems with this application. This means that the codebase will have to be

well documented, with a detailed explanation of how features were implemented. The

application will also have to be in a state where efficiency is the highest priority, as others

extending the project should not have to spend time attempting to solve speed and bug

issues within the application.

1.4 – Approach
In the early stages of the project, I attempted to set out a structured way to approaching the

problem. At first, I had no knowledge of any of the technologies listed in section 3.1 such as

Python, TkInter and image processing with matplotlib. I also knew nothing about medical

technologies like the DICOM file format. Therefore, I spent a large part of the early stage

researching the problem area (MRI, DICOM, etc) and attempting to further my knowledge in

Python. When I felt comfortable that my skills were a sufficient level of competency with

both the technologies used and the problem area, I began implementation of the

application. The final weeks of the project were then spent fixing bugs and documenting the

codebase as well as I could in order to write a concise and correct report.

1.5 – Assumptions
There are a few assumptions that this project takes into consideration. The main

assumptions are related to the nature of the DICOM file structure; however, this structure

tends to be a standard in all DICOM files. The main assumptions related to the DICOM

structure are –

1) The information acquired through interaction with the tags listed in the DICOM

module description is correct.

2) The information acquired through interaction with said tags is in the right location.

3) The information acquired is of the correct datatype required for use in elements of

this application (documented in section 2.1.2 of this report).

There are also some assumptions this application makes with regards to the user. These

assumptions may make the application less useable to a certain

 subset of users, however overall this application has taken ǁhat͛s assumed to be the vast

majority of the target audience into consideration. These assumptions are –

1) The user has access to the files on their local device.

2) The user has some level of IT literacy.

3) The project assumes that the user has no deficiencies with their eyesight such as

colour blindness, which would impair their ability to view annotations on screen.

1.6 – Outcomes of the Project
The broad outcomes of this project will be to develop an application featuring tools for

radiologists to delineate and identify regions of interest in an MRI prostate scan. Developing

an effective and efficient user interface is also of paramount priority. Another outcome

would be to develop a system can be further extended to include machine learning

techniques for identifying regions of interest, again in an effort to aid the Radiologist in

performing their job.

There are also personal outcomes of this project, such as developing personal skills in

different areas like time management and project management. Developing my own

knowledge in a programming language within which I have very little experience will also be

an important outcome.

2. Background
Prostate cancer is the second most common cancer in men worldwide. Recent statistics

published by the Prostate Cancer Research Organisation[1] show that 1 in 8 men living in the

UK will be diagnosed with Prostate cancer at some point in their life. As is true with all areas

of healthcare, improving diagnosis and treatment for prostate cancer could save many lives

and currently the mortality rate for males that develop prostate cancer is decreasing.

2.1 – Identified Problems
As diagnosis is of paramount importance, we should ensure that Radiologists are equipped

with the most useful tools available to help them efficiently carry out their job. To

understand the tools needed for said job, we must understand the technologies that

Radiologists encounter in their day to day operations.

There is also additional scope to this project. Future integration with artificial intelligence will

have to be considered when designing a solution to this problem. Although the nature of the

artificial intelligence is not currently known, the user interface of the application will have to

have certain features that are automatable. Upon automation of these tasks, such as

highlighting an area in a scan that is potentially dangerous, the functionality of the application

must be extendable to allow for tools enabling review of said automation.

2.1.1 – MRI (Magnetic Resonance Imaging)
The main method of diagnosing prostate cancer is the use of MRI[2]. MRI uses an external

magnetic field to align protons that exists in the water nuclei of the tissue area in which we

are scanning. The results of this are captured in a matrix of pixels, describing the location of

the imaged plane in different shades of grayscale. There are different ways of sequencing

these images, such as the T1 weighted scan and the T2 weighted scan. These sequences can

also be separated by the orientation of the body. There are three kinds of orientations that

the scan can take, these are –

1) Coronal: Front to the back

2) Axial: Head to feet view

3) Sagittal: Left and right from a front on perspective

Once a scan sequence has taken place, these images are often saved in a File format called

DICOM.

From a user interface perspective, the direction in which these scan sequences are taken

can cause an issue. When considering additional functionality of this application, like

synchronisation between two stacks, there will be cases where each stack will have been

imaged from a different direction. In such a scenario, the stacks will not be comparable in

the patient space without a lot of extra work. This functionality must always be present,

however this must be considered and explained to the user if they do attempt to

synchronise two stacks taken from a different direction.

2.1.2 - DICOM
DICOM (Digital Imaging and Communications in Medicine)[3] is a standard medical imaging

format that allows medical professionals to meta data related to a specific scan slice. This

can store string values such as a patient ID, the type of scan and the date on which it was

taken. These values are stored in attribute tags retrievable through queries by programming

languages such as Python.

In the scope of this project, there are a few tags from within the DICOM file that will be

essential to functionality of the application. The most important tag we͛ll need to extract is

called the Pixel Array. This tag returns a NumPy array representing the raw bytes of the scan

image. We can use this array to display the scan image on screen. From a UI perspective this

is an interesting problem as this requires some additional functionality to plot the array as

an image, for this we will use matplotlib͛s image plot functionality, which takes an array and

plots each point in the array as a pixel on screen. This will generate the image that we will

use in the centre of the screen. Tags such as the patient ID and Scan Type will be used to

display information about each slice above the generated image.

Time permitted, there will also be tags that will be useful for additional functionality. Within

the DICOM there is an attribute named the ͚Image Plane Module͛. This module contains

information related to the PBCS (patient-based coordinate system). The patient-based

coordinate system refers to the 3-dimensional coordinates of the scan in the patieŶt͛s body.

The information contained within this module can be used, for example, to compare two

slices with regards to their position in the PBCS in an effort to see if the two slices are in fact

comparable. The DICOM tag that we need to extract to be able to do this calculation is the

͚ImagePositionPatient͛ tag. This tag returns the coordinates of the top left-hand pixel of the

image in the PBCS. As mentioned in section 2.1.1 one however, if the two stacks in question

in this particular scenario are taken from a different direction, the two stacks will not be

comparable, and we shouldn͛t attempt to synchronise.

There is also the case where a user will try to synchronise two stacks that come from

different patients, which may work with regards to two patients having similar properties

such as coordinate systems, however this shouldn͛t be allowed. To ensure that this isn͛t

happening, we can do two things. We can compare the patientID͛s to check if the user is

attempting to compare two different patients scans and we can retrieve a tag from the

DICOM called the ͚Frame of Reference UID͛, which uniquely identifies the frame of

reference for a specific scan series. As discussed, a patient will usually have multiple

subdirectories in their patient directory, all DICOM files in said subdirectories will have the

same Frame of Reference UID.

2.1.3 – The Project Problem
The main problem that this project is trying to tackle is the difficulty in displaying this

information to a radiologist with ease. The main issue radiologists face is that to view these

scans, they have to use a specially calibrated screen that will allow them to display the scan

in the highest possible resolution. The broader aim of this project, along with making that

job easier for radiologists, is to aid them in their efforts to identify and delineate potentially

malignant cells in a patieŶt͛s prostate. This will in turn make the process of diagnosis for a

patient far easier. The main way of doing this is to generate a program that will work on any

screen and allow them to use tools to easily highlight and delineate any areas in a scan they

believe to be potentially dangerous.

This project will also aim to develop an application which can be used in future to integrate

machine learning systems that aim to further solve the problem area. These systems will

likely attempt to identify regions of interest in the scans for human review. Another

problem we will encounter is to produce an application that is sufficiently extendable to

allow for this integration.

3. Specification
The application itself will be written in Python 2.7, however, to create it simply using native

python would be an extremely time consuming and demanding task, so this project will

make use of a few powerful external packages alongside Python that will make

development of said application far easier and the overall process more time efficient. The

three most important packages in question are PyDicom, Matplotlib and TkInter.

3.1 – Technologies Used
Throughout this project, a range of technologies have been used to tackle the problem

discussed in section 2.1.2. These technologies are all externally developed with licensing

allowing others to incorporate them in new projects.

3.1.1 - PyDicom
The integration with PyDicom[4] is essential to the completion of the project. The tool allows

python to read in any DICOM file and successfully extract any of the metadata contained

within the file format. For example, PyDicom will allow you to convert a DICOM file into an

object ;Ŷote, this ͚oďjeĐt͛ is Ŷot the saŵe as the DiĐoŵOďject discussed in section 4 of this

report). From this object we can extract the pixel array that details the scan image as

discussed in section 2.1.

3.1.2 - Matplotlib
When the pixel array has been extracted, there needs to be some method of displaying it.

Another external package I will be using is Matplotlib[5]. Matplotlib is, again, a python

package that comes with several tools based around image processing and plotting. One

specific feature of this package is the ability to create images from arrays. We can couple

the pixel array extracted using PyDicom with the plotting capabilities of matplotlib to create

an image of the patient scan. Matplotlib also provides tools for highlighting areas on an

image plot, such as drawing points, polygons and circles.

3.1.3 - TkInter
One final tool that will be used to create the user interface (front end) of the application is

TkInter[6]. TkInter is a popular UI toolkit that comes with several pƌedesigŶed ͚ǁidgets͛.
These widgets are common elements in user interfaces, such as buttons, radio buttons, text

entries and frames. TkInter also comes with a grid system that will be used to design the

layout for the application. TkInter has integration with matplotlib which will allows the use

of a matplotlib plot in a TkInter image widget.

3.1.4 - Justification
These three tools will allow for the creation of a robust and efficient application and will

make the way in which the project approaches the problem of creating an effective user

interface for radiologists to interact with, which in turn makes their job of delineating and

diagnosing prostate cancer easier. Without these three packages (or different variations of

them), this project would be both extremely difficult and time consuming.

With regards to future work, such as machine learning integration, these packages pose no

issues. The user interface technologies such as Matplotlib and TkInter will be easily

integrated with such systems and have functionality making the identification of the areas in

question automatable from the backend of the application. The main bulk of the application

being written in Python also allows for machine learning integration.

3.1.5 – Other Technologies
This project also makes use of technologies outside of the implementation scope. For

version control, the project will incorporate git[7]. This will allow me to prototype, bug fix

and implement new features without damaging an existing copy of the codebase. Trello will

be used as a ticket tracking system, from which I will base branches of the git repository

around. I will also be adopting an agile approach to development throughout the project. I

will first prototype a feature, implement and test it. I will then demonstrate the new feature

to my supervisor who will in turn give me feedback upon which I can refine and refactor

elements of the project.

3.2 – Stakeholders in the Application
As discussed in section 1.3, the main target audience of this application will be radiologists.

The aim of this project is to make the delineation of potentially dangerous and malignant

cells in prostate scans far more efficient and accessible for all that wish to do so. This

application has been developed for the desktop platform. The reasons for this are that

mobile would make the functionality of the application far harder to implement in a UX

design that makes sense, the same could be said for tablet also. A web application would

mean that internet access is always needed and while this ĐaŶ ďe assuŵed, it doesŶ͛t
necessarily mean that this is the best platform to host the application.

There are three crucial aims that the application needs to have in order to be an industry

usable product and one that suits the needs of a radiologist, these are –

1. To make it easy to display and view MRI scans.

2. To make it simple and efficient to navigate through a stack of DICOM͛s.
3. To make the annotation and identification of potential regions of interest far easier

for radiologists.

If these three pieces of functionality are met by the application then it should be of benefit

to radiologists, if any of these three are missing, then it will fall short of that which is

currently available for radiologists to use.

 3.3 – Additional Features to Consider
Extending upon the features discussed in section 3.2, there are several other features that

could also benefit the users of the application. The annotation of regions of interest is a

crucial aspect of this project and extensive tools should be made available in order to make

this more useful to a user. Examples of this could be the ability to draw and manipulate

polygons and circles on an image.

The ability to view two slices, or two separate stacks of scans at the same time is

functionality that will also be extremely beneficial to a radiologist and one that addresses

the problem in question. An extension of this is to include functionality that will allow the

user to ͚“ǇŶĐhƌoŶise͛ tǁo sepaƌate staĐks ;if this is possiďle iŶ eaĐh giǀeŶ ĐaseͿ. This
functionality is the most difficult to implement but will make one of the crucial aims of the

application, the ease of navigation through stacks, much more efficient.

3.4 – Aims and Research questions
It is clear that the overall aims of this project will be to develop a robust and efficient

solution to the problem of delineating regions of interest in MRI scans for the benefit of

radiologists by giving them the functionality to allow them to easily view, navigate through

and annotate prostate stacks and scans. This is aim is in my opinion, the most important, as

the base functionality of the application tackles this problem. However, there is also the

additional scope of integration with other systems in the future.

In order to assess and demonstrate the stated aim, this project will evaluate the

effectiveness of the user interface of the created application to determine whether or not it

can easily be used by radiologists in an effective and efficient manner. The interface and

robustness of this application should be prioritised over a more aesthetic user interface as

the key features the project, discussed in section 3.2, are what will determine the usefulness

of the application. In later sections this report will also discuss the ease in which the

application can be extended to incorporate other systems such as machine learning

algorithms aimed at solving a similar problem.

4. System Architecture and Design
This section will highlight the specification for the application, what it must and must not do. It will

look at high level aspects such as UX design, work approaches and external sources needed for

implementation. It will also justify approaches to solving the problem addressed in section 2.

4.1 – Basic Functionality of the Application
As discussed in sections 3.3, 3.4, for the problem to be solved the application must have

some base line functionality. This functionality will be the foundation upon which additional

more complex features can be implemented.

4.1.1 – Viewing the MRI Scans
The most basic level of functionality that this application must have is the ability to view

MRI scans generated from metadata within the DICOM files. The application will be

designed partially around the structure in which the TCIA[8] (cancer imaging archive) stores

patient prostate scans. This public data will be used throughout development and testing of

the application. As documented in section 2.1.1, there are different ways of performing said

MRI scans from which a radiologist will attempt to identify potentially cancerous cells within

a patieŶt͛s prostate. The TCIA structures the information in the same way for each patient.

There is a high-level directory which is usually named according to the patient ID. This

directory will contain 4 different sub directories, documenting the different variations of

scans performed on a patient. These subdirectories are then essentially the ͚staĐks͛ of
DICOMS that the user will be able to view and navigate through. The below figure

demonstrates the standard structure of a patient directory.

FIGURE 1 - EXAMPLE OF PATIENT FILE STRUCTURE

The first thing the application will need to do is extract these files from each directory. Upon

extraction, it will then use PyDicom to process each individual file and generate an image

from the pixel array contained within it. Matplotlib will then be used to display the image as

a plot on a figure.

4.1.2 – Navigation Through the DICOM Stacks

Another piece of basic functionality is to give the radiologist the ability to navigate through

the stacks documented in 3.1.1. To do this, each folder loaded into the application must

have its contents stored in an array for the application to allow easy navigation. Moving

through the array is not the difficult aspect of this functionality, more updating the plot

(displayed image) created based on the first instance in the stack. For memory and

efficiency purposes, the project must ensure that it does not create a new figure for each

iteration of the array. Instead it must create a foundation level figure upon which it will

draw each DICOM image when called.

The navigation tools will be a crucial part of the application as there are plans to include

functionality allowing a user to navigate through two stacks on the same screen, displaying

an instance of each stack side by side. This means that there has to be two separate

instances of essentially the same navigation, so again for efficiency purposes, the project

should have tools are designed to be instantiated more than once. Siŵple ͚pƌeǀious͛ and

͚Ŷeǆt͛ ďuttoŶs should eŶsuƌe that the iŶteƌfaĐe of the appliĐatioŶ staǇs iŶtuitive while also

being robust and useful to the user.

3.1.3 – Annotation of MRI Scans
One final piece of crucial functionality included is the ability to annotate the images

generated from each DICOM. Matplotlib provides extensive tools to make this functionality

reasonably easy to implement. The annotations are clearly displayed on top of each

individual image and will of course change when navigating through the stack. In other

words, annotations in one file should not appear in another (unless the user specifically

requests it).

There should however be functionalitǇ to ƌedƌaǁ ͚saǀed͛ aŶŶotatioŶs if the useƌ deĐides to
navigate back to any given slice upon which annotations have previously been drawn. This

will mean that the application will have to have some functionality that maps annotations to

the DICOM file on which they were drawn and attempt to redraw them on load.

Thought has also been given to the method in which the annotations will be saved. The best

method to do this would be to save a CSV file to each directory within the overarching

patient directory that documents the annotations drawn in that particular stack. The CSV

file should carry information about the annotation itself such as the type of annotation

(polygon, point, etc), the coordinates of the annotation and the PI-RADS score8 given to the

area annotated by the user. This again can be done using functionality contained within the

TkInter package such as a simple message box. The file should also contain information

about the specific slice in question, such as its position in the stack, the scan type and the

patient ID of the patient that the scan has been performed on.

4.2 – Additional Functionality of the Application
The functionality of the application documented in section 3.1 is the very basic functionality

of the application. There are additional features that could be included in the project to

make it more effective and usable for radiologists.

One piece of functionality the project could additionally have is the ability to view two

stacks in the same window. Them being in the same window is important as it adds to the

usability of the application as it would not require the user to take any additional measures

to view two images side by side. This functionality could be extended by including the ability

to synchronise two stacks to see which positions in stack A match that of stack B and visa

versa.

Once the application has the ability to synchronise two stacks, it will be possible to display

annotations from a specific slice in Stack A, in the synchronised B stack. This functionality is

in my opinion, stand out functionality and will be extremely beneficial to users, however,

this is possibly, along with the ability to synchronise the stacks, the most complex

functionality to implement as it goes beyond simple UX design and data structure

manipulation and is more to do with mathematical comparisons between two plots.

4.3 – System Architecture

4.3.1 – Code structure and approach
The application itself has been implemented according to object-oriented principles coupled

with the top down nature of python scripts. Due to the additional functionality (such as dual

screens), best practice is to ensure that each major part of the interface is its own object.

This allows for easy implementation of the dual screen functionality as the way in which

each object is instantiated has some control on its position within the application window.

This approach took several refactors to get correct, as when I began the project, I was in-

experienced with TkInter and Python.

One example to consider is that of the object that handles navigation through the stack of

slices. If the application is going to have functionality enabling two slices to be displayed

side by side, each displayed in a figure, each figure will require its own navigation

functionality. To do this, we can create a navigation object that is aware of which figure it is

attached to. Due to the nature of TkInteƌ͛s gƌid, duƌiŶg the iŶstaŶtiation of the navigation

object, the object could be structured to take in variables that determine its location on the

screen. This improves code efficiency and decreases the time spent on implementation of

simple features. It also has several functions that can be reused by both navigations in the

dual screen.

4.3.2 – Interface Components
The front end of the application requires a few different components in order to make the

navigation dynamic and responsive. The code has been implemented in such a way that all

components are aware of their position on the grid, an important feature when considering

that each component will have to be used twice. This was not initially the case, when

implementation of the interface began it was extremely static and not suited to use more

than once. High level descriptions of the components are as follows.

Navigation – Part of the basic functionality of the application is to allow the ability to

Ŷaǀigate thƌough a staĐk of DICOM“. The ŶaǀigatioŶ ĐoŶsists of a ͚pƌeǀious͛ aŶd ͚Ŷeǆt͛
button at its core. This initial plan for this specific object was for it to simply contain this,

however due to UX design issues circling around my interpretation of the TkInter Grid

layout, it also includes buttons to display two stacks side by side and synchronise said

stacks.

Annotation Tools – This object contains all of the tools involved with the annotation of

iŵages. These tools iŶĐlude aŶ ͚aŶŶotatioŶ ŵode͛ which enables click events on a canvas to

plot points. It also has buttons to draw polygons, save the annotations and delete

annotations.

Figure View – The object responsible for displaying the DICOM images. Each object in the

UX is bound to a specific figure view, either one or two. This is what makes implementation

of the dual screen functionality simple. This also contains a header that displays information

about each slice loaded in the view such as the patient ID, the scan type and the slice

numbers position in the stack.

Folder Browser – Essentially the start point of the application, makes use of TkInter tools to

navigate through the useƌs diƌeĐtoƌǇ͛s alloǁiŶg them to select a folder of choice to be

loaded into the application.

4.3.3– Back-end Components
The application also requires functionality that is not displayed on screen, instead controls

all components and the information that needs to be passed through them in order for the

front-end components to behave properly.

DicomObject – One of the main design decisions that has affected the way in which the

application works was the decision to make each DICOM file in a given stack its own unique

object. This object contains all the information about the DICOM that the application needs

and is the most important object in the project. IŶ the appliĐatioŶs sĐope, the ͚staĐk͛ is
essentially an array containing different instances of this object. This allows for easy

navigation through a directory and means that the processing of each DICOM file only has to

happen once. It also makes things like saving annotations far easier.

CSVOperator – The CSV operator is the object used to carry out all CSV operations by the

application. This writes all annotations to a csv file saved in the directory of the annotated

stack and defines the structure in which these annotations are written and displayed in the

file.

Main – The main object is the start point of the application. This stores crucial information

about the state of the application such as the currently displayed DICOM and the directory

in which the application has takeŶ the aƌƌaǇ of DICOM͛s fƌoŵ. It also controls the flow of the

application. This class is usually interacted with via the use of global variables and contains

methods to return certain aspects of the application that other objects may need to

interface with.

4.3.4 – Class Diagram

FIGURE 2 - CLASS DIAGRAM

Figure 2 - Class diagramFigure 2 describes how each class in the application interacts with

others. This diagram also contains some crucial methods contained within the application,

as well as what values they return. A good example of how the different classes interact

with one and other can be seen between the ͚MaiŶ͛ Đlass, which waits for a return off the

͚FolderBrowser͛ class before instantiating the ͚FigureView͛, ͚Navigation͛ and

͚AnnotationTools͛ classes, which in turn change the behaviour of the ͚FiguƌeVieǁ͛ Đlass. The

͚AnnotationTools͛ class can also interact with ͚Folderbrowser͛ again to Set up the dual

screen and change directory.

4.3.5 – Information Flow
The way in which information flows through the components listed in section 3.1.2 and

section 3.1.3 is crucial to both the efficiency in which the application runs and the user

experience. A key example of this can be seen in the way that the application saves

annotations to a specific DICOM file. This information must be passed through several

different components.

FIGURE 3 - INFORMATION FLOW DIAGRAM

As we can see from the diagram above, the user will begin the annotation workflow by

enabling ͚aŶŶotatioŶ ŵode͛ iŶ the AŶŶotatioŶTools Đoŵponent. This triggers a method in

the FigureView class making the Figure interactable by way of click event. The user will then

plot points on the figure by clicking different coordinates. These coordinates are then sent

back to the AnnotationTools component. UpoŶ saǀiŶg this iŶfoƌŵatioŶ usiŶg the ͚saǀe
aŶŶotatioŶ͛ fuŶĐtioŶalitǇ iŶ the AnnotationTools class, the annotation information is then

passed into the CSVoperator class which will save this into it in a file with all relevant

information. This information will also be sent to the specific DICOM object A which

represents the slice that has been annotated. The coordinates of the annotation and the

annotation type (polygon, point) get saved to DICOM object A. Then if the user revisits

DICOM object A, the navigation will call a method to redraw all saved annotations for the

given object. This is a prime example of how information flows through the application. Due

to the object-oriented nature of the project, this is simple to do using getters and setters in

each object.

The reasons for favouring a design like the one shown above are quite simple. The design

considers the specification of the project; Viewing DICOMs, Navigating through DICOMs and

annotating DICOMS. These three key pieces of functionality justify my decision to design this

case in this way, it clearly demonstrates the ability to meet all three points.

4.4 – User Interface
The initial stages of this project involved prototyping user interface designs for the

application. These designs were created using a wireframing application called Pencil[17].The

user interface was designed with the requirements of the application in mind. These

requirements specify that the application be efficient and practical, therefore there was no

need to include any needless aesthetics.

4.4.1 – Single Screen View Design
The single view design refers to the user interface while it is displaying a single DICOM

image. The below figure demonstrates the single screen view of the application.

FIGURE 4 - SINGLE VIEW WIREFRAME

The single screen view has three main components, each having their own individual

functionality. First, the figure(1) that displays the DICOM is clearly visible in the centre of the

screen. As it is probably the most important component, it is taking the centrepiece of the

screen is vital. Above the figure we see the information for the DICOM that is currently

being displayed in the centre of the screen, crucial for the user experience.

The other two components then take stage around the Figure in the centre. The navigation

bar (2) is placed directly below the Figure and is used for changing the image that is

displayed in the Figure as we navigate through the stacks. This component also contains a

combination box in the middle of the two buttons, labelled as ͚Previous͛ and ͚Next͛. This

combination box is to be used to pick a specific slice in the stack, making the navigation of

the application far more useful.

Finally, the Annotation Tools(3)component is positioned to the right of the figure. This

component will contain all functionality for annotating the image. This initial design does

not include functionality to plot a circle on the screen, this is because at the time this

1

2

3

feature was considered additional work. The Annotation Tools component also contains the

͚dual screen͛ and ͚Change directory͛ functionality. The ͚Dual Screen͛ functionality will be

used to view two slices side by side.

4.4.2 – Single View Screen in Application

FIGURE 5 - IN APP SINGLE SCREEN VIEW

The above figure shows the User Interface for the single view screen in the application. The

application contains all significant components outlined in the initial wireframes, however in

application all the tools available to the user appear below the Figure. This is due to the

nature of the dual screen view. The dual screen view would not fit in screen if the

Annotation Tools were displayed on the right-hand side of each figure. Having all tools

displayed directly below the Figure, from a UX perspective makes no difference at all. The

ability for the bottom bar of tools to shrink to fit the functionality of the dual screen works

perfectly in this case.

Another thing to note about the in-application interface is that some buttons are frozen out.

This is due to the functionality only being available in certain cases. For example, the ͚Sync͛
functionality is only available when the application has two stacks on either side of the

application. A case could be made to only display buttons when they are usable, however

for the purposes of the current application, making them unusable until certain conditions

are met works fine.

One final difference to note between the initial designs shown in Figure 4 is the addition of

the toolbar seen above the image displayed in the figure. This toolbar is a part of the

matplotlib TkInter backend package[19] and allows users to manipulate the figure a few

different ways such as zooming in on specific parts, panning the figure and an extremely

useful coordinates tracker aiding the user even further when annotating areas.

4.4.3 – Dual Screen View Design

FIGURE 6 - DUAL VIEW PROTOTYPE

The above figure shows the wireframes for the dual screen functionality. Although this

functionality was not part of the basic requirements of the application, it was important to

design the application with the view to implement this feature. As described in 4.4.2, the

implementation deviated away from the initial designs of the application, but the principles

of it still stand. The basic principle of the dual screen is that each side have access to the

same functionality as they would if viewed as a single screen, with the addition of the new

͚Synchronise͛1 button, allowing the user to synchronise the two stacks.

4.4.4 – Dual Screen View Design

FIGURE 7 - IN APPLICATION DUAL SCREEN VIEW

Figure 7 shows the in-application view of the dual screen functionality. Again, we see that

the design has changed from the original wireframes, this is purely due to screen space.

There must be enough room for the DICOM to be its original resolution, therefore there

could be a case where any components to the right of the main Figure would spill off screen

and no longer be usable. The ͚Sync͛ button1 shown corresponds to the ͚Synchronise͛ button

1

1

shown in 3.4.3. This functionality is available in this state due to the two slices being

displayed side by side.

5. Implementation
 In this section I will detail several components within the application, describe the design

roadmap of each part, document its specific traits and features and the overarching uses it

has within the project.

5.1 – Early Stages of Implementation
At the beginning of the project, much time was spent researching both the DICOM structure

and PyDicom. The very first stage of implementation attempted was to display a single

DICOM image in a TkInter window. PyDicom gives several different examples on how to do

this9 such as using external libraries like PIL and the stdlib TkInter module. The first

successful attempt used the stdlib module which simply reads in a DICOM file and plots the

pixel array as an image using Numpy[12]. This was a very simple implementation, but it would

soon become apparent that there would be broader issues using this, mainly to do with

making the program dynamic to allow navigation through stacks and the ability to annotate

the images in question, two major requirements of the project.

The decision was then taken to approach the problem of displaying the DICOM image using

the external python library Matplotlib. This library allows for plotting on a canvas within a

figure. This was perfect for the needs of the project as the image will be displayed on the

canvas and it allows for individual plotting of polygons and points on top of this. First

implementations of the project were, in my opinion, not very good. This was due to

inexperience with the packages in question, however I feel a lot of time was wasted during

this period.

In the following sections, I will document specific parts of the application that are crucial to

the functionality and usability of the application and that fit the requirements set out at the

start of this project.

5.2 – Application Classes

5.2.1 – Main Class
The ͚MaiŶ͛ class is the basis of the entire application. It sets up the flow of the app, creates

the window in which everything else is displayed and contains important information about

the global state.

FIGURE 8 - MAIN CLASS INITIALISATION

The above figure shows how the main class is instantiated. The tk.Tk in the parameters

passes a TkInter class into the main method of the application. This allows all TkInter

modules and tools to be used within the app. The first few lines initialise the app, set up a

container (named self.container), and configure settings for each row/column added to the

main window.

This functionality shows the foundations of the application. The first stage of

implementation did not function like this. Instead the app was set up outside of any class

scope. This resulted in the constant use of global variables which is considered by many to

be bad practice. It also disrupted the flow of the application. By designing the main class

method of the application in this way, the class can fully control the way in which the app is

set up before its even happened, whereas if it were to be implemented outside of the Main

class scope, many aspects of the application would be on display before they were needed.

We can see how the Main class is created and run in the following figure.

FIGURE 9 - INITIALISATION OF THE APPLICATION

The mainloop() command calls upon the tk.TK instance shown in figure 8 that creates the

TkInter class.

The first instance of any interactable components is that of the ͚ďƌoǁse ďuttoŶ͛ shoǁŶ
below.

FIGURE 10 - INITIALISATION OF THE FOLDERBROWSER COMPONENT

Figure 10 demonstrates how the first interaction for the user is set up. This will display a

button asking the user to open a directory from which they will load in the chosen stack of

DICOMS that they require.

The FolderBrowser object will be discussed in further detail later in the report, but the basic

functionality of the object is to read in a directory, if the directory contains files with the

.dcm(DICOM) file extension, then it will return a Boolean value of True and create an array

of processed DICOM files. The above code generates the screen shown below.

FIGURE 11 - INITIAL SCREEN SHOWN TO THE USER

This corresponds to the button ͞self.ďƌoǁse_ďuttoŶ͟ shown in figure 10. The button

executes the following method.

FIGURE 12 - THE SETUP METHOD

This is where the main bulk of the application is initialised. As we can see in figure 12, this

method waits on the FolderBrowser method to return true before it sets everything up,

otherwise it throws a warning error to the user that they have selected a wrong directory

using the tkMessageBox class.

The setup flow of the application was an extremely challenging task. From a UX point of

view, the application has to be on rails at this point for the user. If all widgets were loaded

without any information being passed to them, the UI would contain a lot of white space

and would not useful. There for, the decision was taken to create the browseFolder method

within the FolderBrowser class which allows for the application wait to until all required

information was loaded before displaying all relevant components on screen. One

potentially difficult piece of logic to consider was how the application would be made aware

that the DICOM array has been loaded and how to then retrieve this array. To avoid error,

the decision was taken for the return value of the browseFolder method to be a Boolean,

instead of returning the array containing the processed DICOM files. Instead, the

FolderBrowser class adopts object-oriented principles to allow for retrieval of the DICOM

array using a get function.

5.2.2 – FolderBrowser Class
The initial state of the app is completely dependent on the functionality of the

FolderBrowser class. The class itself is very simple, with limited but crucial functionality. It is

one if two classes within the entire application that doesŶ͛t have any UI elements contained

within, however the class is accessed through a UI element (the ͚OpeŶ DiƌeĐtoƌǇ͛ ďuttoŶͿ.

FIGURE 13 - INITIALISATION OF THE FOLDERBROWSER CLASS

As shown in Figure 13, the class is initialised with a very small amount of information, only

the Frame in which it belongs to. The self.dicomArray and self.directory variables are for use

within the other classes within the application. In particular, the directory variable is used

specifically by the CSVOperator class to write a CSV file to the same input directory, the

dicomArray will be for use in all classes within the app.

FIGURE 14 - FOLDERBROWSER FUNCTIONALITY

The functionality of the FolderBrowser class can be seen in figure 14. Here we loop over a

directory retrieved from the tkFileDialog class, a class that allows us to view directories on

the useƌ͛s local computer. We limit the files we consider to that of the eǆteŶsioŶ ͚.dĐŵ͛. This
is to avoid any error when loading the remaining components in the application. If no files

with this extension exist within the directory, the method will return false and the user will

be given another attempt to load a directory. The main method then accesses the

͚self.diƌeĐtoƌǇ͛ aŶd ͚self.diĐoŵAƌƌaǇ͛ thƌough the tǁo get ŵethods doĐuŵeŶted oŶ liŶes 5ϴϳ
and 590 in figure 14.

Something to pay attention to is what the dicomArray contains. As we can see on line 580,

we append a DicomObject to the array for each file in the directory. We pass in a filename

and a count to tell the object what position it is in the directory. Initial implementations of

the application did not work like this. Instead, the application would hold an array of

filenames, processing and manipulating whenever a particular file was needed. This is an

extremely inefficient way of designing the application and would lead to several problems

later in implementation relating to annotation and navigation. Instead, each file in a

directory gets turned into an object. Within that object, all relevant information needed is

stored. An example of how this impacts performance is through the navigation of the

application. Initially, when we navigated through the stack, we would iterate over the array

of filenames, pass the filename into a PyDicom method to process and change the Figure

Canvas to match that of the image generated from the new DICOM variable. This would

have to be done multiple times for the same file if it were revisited. As we will see in the

next subsection, the new structure of the DicomObject directly tackles this expensive way of

handling each file in a directory.

5.2.3– DicomObject Class
Early stages of implementation involved a much different way of handling each DICOM file.

Interactions with each file would involve processing the file using PyDicom on use. This was

extremely inefficient because if the same file was required more than once the application

would repeat the same calls multiple times. Another reason why this made things difficult

was the nature of the annotations. Unless there were some way to bind the annotations to

a specific DICOM file after ǁe͛ǀe Ŷaǀigated to a different file in the stack, then the way in

which the application used annotations would be missing a crucial part of functionality.

While annotations would still work as intended, consider the corner case of annotating a file

with the user then accidentally navigating to a different scan in the stack. In this case all

finished annotations would be lost from the screen. This could lead to them redrawing

annotations, meaning that you would have multiple of the same annotation (but not on

screen) in the CSV file and making the overall usability of the application much worse.

The final state of the application evokes a much cleaner and more efficient way of storing

each DICOM file. As we can see in section 5.2.2, figure 14; when a user has selected a

directory from which they wish to operate, the FolderBrowser.browseFolder method loops

over the directory appending a DicomObject to a list. We also pass the filename of the

DICOM and its position in the directory into the object.

FIGURE 15 - DICOM OBJECT INSTANSIATION

As seen in figure 15, the way in which the class handles the information passed to it is very

simple. First we save the filename for future use, then it processes the DICOM using the

͚dcmread͛ functionality of PyDicom, which essentially converts the file into a manipulatable

object. Then it extracts information from said object that it needs like the pixel array,

patient ID, etc. The object also has placeholder variables like polygons and points which set

up arrays to store annotations for that individual DICOM in and finally a variable that will

hold the position of the slice in a separate stack that corresponds to this DICOM, this

functionality will be discussed further in later sections.

In my opinion, this piece of functionality is one of the best examples of how the project has

embraced object oriented principles, as everything within this class is accessible using

getters and setters, the DICOM itself is an object with all processing of information done

within the class itself rather than every time a file is called to use.

FIGURE 16 - DICOMOBJECT DRAW FUNCTIONALITY

A good example of the way in which information flows through the application can be seen

within the DICOM objects themselves. In Figure 16, we see three methods responsible for

drawing saved annotations to the figure. Upon navigation back to a slice, hence changing

the figure to the required DICOM, the navigation tools will call the drawAnnotations

functionality of the current DICOM. As the annotation tools object has an idea of which

figure is its parent, it can easily pass the figure into the method contained within the DICOM

object, allowing the object itself to draw information on the canvas. The information is

passed between three separate objects and the annotations are drawn on the figure at the

same time as the DICOM pixel array, meaning that the user does not have to wait any time

at all to see their annotations on screen.

5.2.4– FigureView Component
The FigureView component is responsible for the display of the DICOM image retrieved

from the pixel array we return from the DicomObject. The main functionality of this

component comes from the matplotlib package. However, in this project the package

behaves in a slightly different way to normal implementations as we have to make sure it is

aware that it will be implemented within a TkInter window. Below we can see how we do

this.

FIGURE 17 - MATPLOTLIB 'USE' METHOD

This ensures that we can use the required matplotlib methods for displaying the canvas

within the TkInter window. We must also Đall the ͚use͛ ŵethod of matplotlib before we

import Pyplot[13] (Matplotliď͛s specific python plotting package) as this is essentially saying

that Matplotlib requires certain backend functionality. This functionality will not be usable

within Pyplot if we have imported it before its aware we are using TkInter.

FIGURE 18 - FIGUREVIEW INSTANTIATION VARIABLES

As seen in figure 18, the FigureView component takes several parameters when we

instantiate it. These parameters are mainly used to define where the figure lies in the

window. This functionality is needed due to the dual screen option that the application

offers. This control is a good example of the dynamism in the application as well as showing

good object-oriented practices. The FigureView class is used more than once in the

application, therefore when it is instantiated, it is aware of what figure it is on the screen,

either one or two. This object behaves in such a way that the application can essentially

have as many figures as the user would need, however for the purposes of the current state

of the application this is limited to two.

FIGURE 19 - FIGUREVIEW FIGURE FUNCTIONALITY

Figure 19 shows how the display of the Figure is set up. This functionality is dependent on

the matplotlib.pyplot package (shown as plt in figure 19, line 607). We create the figure for

display using plt.figure() then add a subplot to it, which becomes the axes on the figure on

line 608. We then use the imshow method contained within the subplot object that takes an

array as an argument and displays this on screen according to the values contained within

the aƌƌaǇ. The ͚Đŵap͛ pƌopeƌtǇ of the iŵshow method defines what colour mapping we use

for the pixels in the array. In this case we use cm.bone, which is a standard colour map for

MRI scans. The ͚zorder͛ attribute is also used in order to allow for annotations to be plotted

on the same figure, over the image; this will serve as the bottom layer of the plot.

The use of the TkInter backend that the application calls in the imports can then be seen on

line 611 in Figure 19. This defines a canvas which will contain the figure generated on the

line above. We need this specific object (FigureCanvasTkAgg) as this is what will connect the

generic matplotlib canvas to the TkInter window. The lines following line 611 in Figure 19

define the position of the canvas in the window. The values used are, as described above,

pulled from the values passed in as parameters when we instantiate the FigureView object.

The resulting view created by this code can be seen in figure 20 below.

FIGURE 20 - FIGURE DISPLAY IN RUNNING APPLICATION

As shown in figure 20, the instantiation of the FigureView object results in a DICOM clearly

displayed on screen, with an axis defining the dimensions of the DICOM and a canvas in

which the user can interact with to annotate any potentially cancerous areas that they

might identify. Figure 20 also demonstrates information about the particular slice in

question shown as a header above the scan. This information is generated and displayed

within the FigureView component. The justification for this not being its own component is

due to it being of limited functionality and all the information we would need will be

contained within the FigureView component anyway. This is a simple addition to the class,

whereas displaying this as its own component would require extra UX functionality and

more code.

Directly above the main figure is a toolbar which is generated using functionality in

Matplotlib͛s TkInter backend. This toolbar is an extremely useful piece of implementation

for both the user and testing the application. This Allows us to zoom in on any part of an

image, changing the aspect ratio but crucially still keeping a clear indication as to what

coordinates the user is viewing on the axes. In terms of testing, the toolbar is also useful for

displaying what exact coordinates the user is hovering over with their mouse. This can be

used to check if annotations that appear in the output CSV file are correct. Below is an

example of the toolbars zoom functionality. As this figure shows, the aspect ratio of the

image has changed, however the user will still be aware of what area the zoomed image

resides in within the image coordinate system.

FIGURE 21 - ZOOM FUNCTIONALITY

Other classes within the application also make use of the generated Figure. Classes such as

Navigation and AnnotationTools will be made aware of which figure they interact with. This

allows them to interact with the FigureView class in ways such as changing the image

displayed on the figure and drawing plots. Each application class that belongs to a figure

gets instantiated with the figure number as a parameter. This gives it the ability to call

methods within the figure eǆteƌŶallǇ, suĐh as the ͚ChaŶgeDiĐoŵ͛ Method shoǁn below. Any

class that calls this method will pass a DICOM object into it, changing the display of the

figure to match that of the pixel array returned from the DICOM given in the parameters.

The ͚ĐhaŶgeAll͛ method is also a good example of how the information above the

applications figure is changed dynamically with every image.

FIGURE 22 - DYNAMICALLY CHANGING THE IMAGE AND INFORMATION SHOWN IN THE APPLICATIONS FIGURE

5.2.5– Navigation Component
The Navigation component handles the navigation between slices in the stack. The

component itself also contains functionality to create the dual screen used for comparing

stacks side by side as well as the functionality to synchronise said stacks. The Navigation

component is displayed directly below the figure in the window, as we can see in figure 23.

FIGURE 23 - THE NAVIGATION BAR DISPLAYED IN THE APPLICATION WINDOW

Deciding on how the UX of the navigation would work was one of the more difficult stages

in the implementation. In my opinion, it is also one of the weaker design aspects of the

application. I believe that despite the button names being intuitive and easy to use, the

buttons for the synchronisation and dual screen functionality do not belong in the same

component as buttons used for navigating through the stack, however the argument could

be made that the functionality of both does somewhat effect the way in which the user

interacts with the navigation.

FIGURE 24 - THE NAVIGATION INSTANTIATION

As Figure 24 shows, the way in which the navigation is instantiated is similar to that of other

UX components. The class is passed in the row and Colum position in the parameter,

required due to the dual screen functionality. We also pass the application figure in so it is

aware of which figure it will be operating on. The Dual Screen and Sync buttons shown in

Figure 23 ǁill ďe displaǇed depeŶdiŶg oŶ ǁhat iŶtegeƌ is passed iŶ as the ͚Ŷuŵďeƌ͛
parameter. This is because due to the functionality of the application, these will only need

to be displayed on the first instance of the navigation class (therefore will only be displayed

if ͚1͛ is passed iŶͿ.

FIGURE 25 - EXAMPLE OF NAVIGATION FUNCTIONALITY WITHIN THE NAVIGATION CLASS

Figure 25 demonstrates how the application handles navigation between slices. The first

thing to note is how the main component of the application is passed down to the method

using the ͚app͛ parameter passed to the component when we instantiate it. This allows us to

access the DICOM that is being currently displayed. It then uses a method within that

DICOM object that will retrieve the next position in the stack. The value returned from said

method is then used to ƌetƌieǀe the ͚Ŷeǆt͛ positioŶ iŶ the staĐk. Then it checks to see if the

number is not greater than the length of the stack itself before attempting to change the

figuƌe ǀieǁ ;This is used to see if ǁe͛ƌe oŶ the last sliĐe iŶ the staĐkͿ. Finally it clears the

canvas of any annotations performed to the currently loaded DICOM and changes the image

in the figure using the ChangeDicom method of the FigureView component (shown in Figure

22, section 5.2.4) passing in the next DICOM object in the stack. This process is repeated in

reverse for navigating backwards through the stack.

The way in which the application handles the dual screen mode is quite simple. When the

useƌ pƌesses the ͚Dual “ĐƌeeŶ͛ ďuttoŶ shoǁŶ iŶ figuƌe 23, we call a method in the Main

application that simply sets up the second screen in view creating new FigureView,

Annotation and Navigation objects. All classes are designed with this functionality in mind

using the parameters to determine their position on screen and in certain cases (such as

that of the Navigation class) effects what functionality they have access too.

Synchronisation Functionality

The ͚“ǇŶĐ͛ ďuttoŶ Đalls a ŵethod that synchronises the two stacks displayed on either side of

the application. This functionality is in my opinion additional functionality to the initial

requirements of the app, however it is functionality that massively increases both the

usability of the application and the effectiveness in which it meets the desired goal of

making the process of delineating potentially cancerous areas in MRI scans. When the user

clicks the ͚“ǇŶĐ͛ ďuttoŶ, it Đalls the ͚sǇŶĐ“ĐaŶs͛ ŵethod ǁithiŶ the Navigation class. This

method is responsible for the synchronisation of the stacks.

FIGURE 26 - THE INITIAL STEPS OF THE SYNCHRONISATION PROCESS

 The first lines in Figure 26 show the retrieval of two stacks from the Main class of the

application. The next step is to get the Image Position[14] of the first two slices in each stack.

Each DicomObject in the stack has a variable retrievable through the getImagePosition

method which corresponds to the image position of the DICOM scan in question (obtained

from the meta data within the file). The image position attribute is a matrix that details the

first pixel in the top left-hand corner of the DICOM file image. When attempting to

synchronise the two stacks in question we must obtain the direction that each stack

increases in. From here we can project points from one stack onto the other.

Before attempting to project points, it first checks to see if the two stacks are aligned

(comparable). If not aligned, this makes synchronisation much harder and this application

does not accept stacks that are not aligned with each other. To check if the two stacks are

aligned, first is has to calculate if each slice in the stack is going in the same direction.

FIGURE 27 - CALCULATING IF EVERY SLICE IS GOING IN THE SAME DIRECTION

Figure 27 shows how this calculation is performed. It loops over each stack, comparing

adjacent slices. First, it subtracts the image position of slice[k] from slice[k+1] to get the

difference between two slices. Then it calculates the dot product of the difference between

the two slices and the direction reference we calculate in Figure 18 (the difference between

slice[0] and slice [1]). We also multiply the norm of the two matrix subtractions. We check if

these two values are the same, or if not the same, virtually identical as sometimes there can

be slight mathematical errors. For the purposes of this application there is a 0.1 limit for the

difference between the two numbers. If this limit is met for every slice when we iterate over

the stack, it can safely be said that the stack increases in the right direction. This process is

repeated for the secondary stack. To perform these calculations the application makes use

of methods contained within the Numpy package, shoǁŶ as ͚Ŷp͛ iŶ Figuƌe 27.

FIGURE 28 - CHECK TO SEE IF THE TWO SLICES ARE ALIGNED

If the direction of both stacks increases in a manner which is considered normal, the

application then checks to see if the stacks are aligned before performing the final step in

the synchronisation process. Simply, it performs the same calculation as is show in Figure

27, in this case on positions [k] and [k+1] in both stacks, shown by aDirectionRef and

bDirectionRef in the figure above. If the difference between these two points is again within

the 0.1 range, it can be said that the two stacks are aligned.

In the final stage of the synchronisation, we make use of the functionality of the

DicomObject class. We iterate over stack A and for each iteration of A, iterate over stack B.

Here we can check which slice in stack B is the ͚ďest fit͛ for a given slice in A. The first

calculation shown below is to get the position that slice[i] in stack A lies on the line:

pointA = np.add(stackA[0].getSliceLocation(), (i * aDirectionRef))

Then we loop over stack B, for each iteration we perform the logic shown in figure 29.

FIGURE 29 - SYNCHRONISATION CALCULATION FOR A GIVEN SLICE

Line 349, shows the calculation of the point in the B stack we want to project onto the A

line. To project onto the line, we calculate the following formula for point [k] in b.

(A[0] + dot(B[k]-A[0],d) * d) * (d/norm(d))

Where A[0] is the first point in the stack, dot is the dot product of point B[k] – A[0] and the

direction reference d of the A stack (the distance between point A[0] and A[1]). This is

shown in figure 29 using the variables bProject, normD and mult. The projected point B on

the A stack line is calculated on line 362. To compare it to point A along the A stack line,

compare the two values calculated on line 365 and 366. If the projected B point on line A is

less than the point we are comparing it to in stack A, and this distance is less than any other

point previously calculated, the application takes this point in Stack B as being directly

comparable to slice[i] in A. This value then gets added to the DIcomObject using the

͚set“ǇŶĐhƌoŶised͛ ŵethod. If Ŷo sliĐes iŶ the staĐk aƌe Đoŵpaƌaďle, aŶ eƌƌoƌ ŵessage ǁill ďe
displayed telling the user that this is the case. The user can then see what slice in the B stack

corresponds to any given slice in stack A by using the ͚“ǇŶĐhƌoŶise “ĐaŶs͛ ďuttoŶ, ǁhiĐh
takes the plaĐe of the ͚“ǇŶĐ͛ ďuttoŶ ;shoǁŶ iŶ figuƌe 23) demonstrated below.

FIGURE 30 - ͚SYNCHRONISE SCANS͛ BUTTON

As you can see, this is a considerable step up in complexity compared to other functionality

within the application and is one of the defining features of the project. Due to the

complexity of this, I consider it additional functionality to that of the initial requirements

and as previously stated, one that increases the overall usability of the application for

radiologists.

5.2.6– Annotation Component
The majority of the annotation functionality is contained within the Annotation class with

the exception of some annotation drawn from within the DicomObject class (section 5.2.3).

The instantiation of the Annotation class behaves in the same way as other UI components

documented within this report such as the Navigation class, where we pass in parameters

that represent the objects location in the window and the figure it is bound to (the figure

upon which it can draw).

FIGURE 31 - ANNOTATION CLASS REPRESENTED IN WINDOW

 The main body of the class consists of buttons, as seen in Figure 31. These buttons give the

user access to different tools. The UX design flow of this class was in my opinion the most

difficult phase to implement due to the functionality of certain buttons only being useful

when, for example, an annotation has been drawn on screen as is the case ǁith ͚Cleaƌ plots͛,
͚“aǀe AŶŶotatioŶ͛, ͚Dƌaǁ PolǇgoŶ͛ aŶd ͚CaŶĐel͛. Another case to consider is the ͚Delete
AŶŶotatioŶs͛ button, which needs annotations to be saved to the DicomObject to have any

effect at all. Figure 31 shows the initial state of the application, which only allows the user

to seleĐt ͚AŶŶotatioŶ Mode͛, eŶaďling them to annotate the DICOM image on screen.

The annotation functionality itself makes use of the ͚ŵpl_ĐoŶŶeĐt͛ method of matplotlib,

creating click events accessible on the canvas. When the user clicks any point of the Figure,

the data from this click event is stored, shown in Figure 32 below.

FIGURE 32 - ANNOTATION CLASS REPRESENTED IN THE WINDOW

As seen in Figure 32, we take the X-axis and Y-axis event data from the click event, and we

use a method called ͚sĐatteƌ͛ ǁhiĐh is paƌt of the ŵatplotliď package. This then draws a

siŶgle poiŶt oŶ the Figuƌe usiŶg the ͚dƌaǁ_idle;Ϳ͛ ŵethod, ǁhiĐh agaiŶ is a paƌt of
ŵatplotliď͛s liďƌaƌǇ aŶd is ƌespoŶsiďle foƌ ƌedƌaǁiŶg the Figuƌe, appeŶding any updates

which have beeŶ passed to it usiŶg the ͚sĐatteƌ͛ ŵethod. An example of this can be seen in

Figure 33.

FIGURE 33 - YELLOW POINTS ON SCREEN REPRESENTING ANNOTATION

Figure 33 also shows the results of the ͚Dƌaǁ PolǇgoŶ͛ fuŶĐtioŶalitǇ ǁhiĐh works in a similar

way to that of drawing points, however instead of using the ͚sĐatteƌ͛ ŵethod, we first create

a polygon object through matplotlib by passing the object a set of coordinates representing

the points along the polygon (drawn using the method shown in Figure 33). Then to display

the polygon, the application makes use of the ͚Add_patĐh͛ ŵethod, agaiŶ ǁithiŶ ŵatplotliď,
to draw this on the application Figure.

To save the annotations, the application makes use of a class called CsvOperator. This class

is the simplest within the project and is simply responsible for writing the annotations to a

C“V file ǁheŶ the useƌ ĐliĐks the ͚“aǀe AŶŶotatioŶ͛ ďuttoŶ shoǁŶ iŶ Figuƌe 32. The

CsǀOpeƌatoƌ Đlass uses aŶ eǆteƌŶal ŵodule Đalled ͚Đsǀ͛ ǁhiĐh haŶdles the writing of

variables to CSV files.

This functionality is a key example of how the project has met the initial requirements

needed to make this a useful and usable tool to radiologists. The initial requirement to

annotate and draw polygons is extended in my application by granting the annotator the

ability to enter the PI-RADS score of the annotated area. This leads to the annotations

having much more value then just highlighting coordinates when the radiologist is reviewing

the CSV file for annotations previously marked up.

6. Results and Evaluation

To judge whether or not the application holds up to the initial requirements set at the start

of the report the overall functionality has to be analysed and evaluated. In section 3.2, the

requirements outlined are to:

1. To make it easy to display and view MRI scans.

2. To make it simple and efficient to Ŷaǀigate thƌough a staĐk of DICOM͛s.

3. To make the annotation and identification of potential regions of interest far easier

for radiologists.

The following paragraphs will outline how these requirements have been met and which

parts of the application these requirements correspond to.

6.1 – How does the application meet required functionality?

6.1.1 - Requirement 1 – Display of MRI Scans

FIGURE 34 - RED BOX HIGHLIGHTING THE AREA OF THE APPLICATION THAT DISPLAYS THE MRI SCAN

As Figure 34 demonstrates, the MRI scan is clearly displayed on screen for the user to view.

There are three aspects to consider that I believe are crucial to making this a useful piece of

functionality for the user –

1) Does the image keep the original resolution?

The image does in fact keep the original resolution of the image contained within the

DICOM file. This can be proved by looking at the X and Y axis attached to the

applications figure. This describes the dimensions of the image and is not enlarged or

reduced at all. For this reason, the application meets the requirement of keeping the

original resolution of the image.

This however could be seen as a weakness of the application. As no limits to the

image size have been imposed, there could be a case where the first image is too

laƌge foƌ the sĐƌeeŶ. Theƌe is also the possiďilitǇ that ǁheŶ usiŶg the ͚dual sĐƌeeŶ͛
functionality, one image will overflow, hindering the extent to which this application

would be useful. This scenario has yet to be encountered, but in theory this is

possible.

We should also consider the aspect ratio of the image in question. The height and

width of the image on initial display is specified by the dimensions in the pixel data,

however the application will alter the aspect ratio of an image when the user zooms

in on a region. An example of this can be seen below.

FIGURE 35 - ASPECT RATIO CHANGE ON ZOOM

2) When annotating, will the user know what areas of the image they are

delineating?

Similarly, to the first case presented, the proof for this can also be seen in Figure 34

where the axis is clearly visible on screen. From this, the user will have a clear idea of

which coordinates in the image they are annotating, an important factor when

considering the contents of the output CSV file. Another scenario to consider is that

of the annotations themselves. Upon annotating the image, the user can visibly see

the area on screen highlighted by the yellow points or polygon around the area. This

visibility greatly aids the user when delineating regions of interest.

6.1.2 - Requirement 2 – Navigation through a DICOM stack
The second requirement documents the need for the user to easily navigate through stacks.

The navigation tools provided clearly give the user the ability to navigate through a stack.

The two buttons shown below are clearly labelled for the user to use intuitively, allowing

them to navigate to the previous or next slice in the stack.

FIGURE 36 - EXAMPLE OF THE ͚PREVIOUS͛ AND ͚NEXT͛ BUTTONS IN THE APPLICATION

The navigation functionality is always available other than when the user is currently in the

process of annotating a slice. This is for UX purposes, as they could essentially two slices and

only see them represented in one slice when viewing the output CSV file. This is an

important UX feature and is a clear example of how the navigation functions as intended.

We must also consider the speed in which users can switch between slices as a way of

evaluating the navigation of the application. The user can switch between the slices with no

noticeable delay in the display of the image in the centre of the screen. If the user holds

down the button for too long, it will still only count as one move in either direction in the

stack, for the purposes of this application I believe this behaviour to be desirable due to the

small margin for error when navigating.

One final thing to consider when looking at the navigation through stacks is the overall size

in memory of the stack of DICOM͛s we read in. If a stack is too large for the memory of an

average computer, then this application will be unusable. When analysing the test data

obtained from the TCIA, the average size of the DICOM stacks is anywhere between 16 to

256 slices. If we take the upper limit of the amount seen in these stacks, using the ͚sys͛
package in python, we can see the size of the processed DICOMS in the application in

system memory. A stack of 256 DICOM files will take up 2.2KB in system memory, a size all

modern computers can easily cope with.

A possible weakness of the application is that if the user wishes to navigate to a specific slice

in the stack, they must first navigate forward or backwards through the stack until reaching

their intended destination. This is in my opinion, a big flaw of the application and could

hinder its usefulness, however when accessing the actual requirements of the project, the

navigation works to its intended purpose.

6.1.3 - Requirement 3 – Annotation of a slice

FIGURE 37 - EXAMPLE OF A SLICE ANNOTATION IN THE APPLICATION

Figure 37 clearly shows that the functionality of the annotation mode works. As

documented in section 5.1.5, the annotation mode has several different tools that are

usable by the user, such as plotting points, drawing polygons and saving annotations to file.

If we look at the X and Y coordinates in the toolbar near the top of figure 37, this marks the

location of the annotation on the screen. Figure 38 below demonstrates the output in the

CSV file format of saving the annotation shown in Figure 37.

FIGURE 38 - EXAMPLE OF AN ANNOTATION IN A CSV FILE

Figure 38 highlights the CSV output of an annotation more accurately than it does in the

toolbar in figure 37, however, this output is accurate and without error, therefore a crucial

piece of functionality is proved. There is an issue with regards to the readability of this

output. The output has been designed with future work in mind that relates to reading it

back into the program, however this does not make it very readable for the user. The user

may not be able to tell what each column on a row means. For example, in Figure 38, the ͚1͛
before the ͚points͛ field relates to the PI-RADS score that the user has given the area marked

up. In the output file, there is no way of telling that this is the case.

The case could also be made that the annotation could work in a slightly more usable way. If

a user makes a mistake, they must clear all plots on the screen and redraw the correct

version of the annotation. This could work in a way that required less individual work from

the user. When considering the requirements of the application, despite these flaws in the

design, the user still has the ability to annotate and delineate areas of interest in a scan,

meaning that the key functionality of the application has been met.

6.2 – Additional Features

6.2.1 – Synchronisation Functionality

FIGURE 39 - DEMONSTRATION OF THE ͚SYNCHRONISATION͛ FUNCTIONALITY

Figure 39 demonstrates two different stacks side by side afteƌ the ͚“ǇŶĐhƌoŶisatioŶ͛
functionality has been used. The information above each figure shows that these two slices

are in the T1 and T2 axial scan stacks. The two slices in question are ones that have been

synchronised and correspond to the same area in the patient space.

This functionality is difficult to test. One way of telling if the two slices are in fact

comparable is visually. The two images clearly document the same area in the patient space,

however the left-hand space appears to view the area in a finer detail. This however is not a

reliable method of testing.

The chosen method of testing this functionality is to load in two of the same stacks. When

loading in two of the same stacks, it is natural to assume that position [n] in stack A would

directly correspond to the same position in stack B. In this instance, the application holds up

and loading in two of the same stacks will in fact result in position [n] in stack A

synchronising to position [n] in stack B.

6.2.2 – Dual Screen Functionality
The ability to view two stacks side by side is not crucial to meeting the requirements set out

at the start of the report and therefor can be considered as additional functionality. Testing

this feature is quite simple.

FIGURE 40 - COMPLETE VIEW OF THE APPLICATION

Figure 40 clearly shows the dual screen functionality working in app. It also clearly shows

two different scan types being shown either side of the screen along with the repetition of

the interface below the application figures. The only thing to consider when testing this

feature is the information being passed into the second screen, specifically the directory.

This works in the same way as the initial set up of the application. Figure 41 below shows

code that will reject the directory, return false and the main class will display an error

message if the user attempts to load in a directory that doesŶ͛t ĐoŶtaiŶ files ǁith the ͚dĐŵ͛
extension. This code also ensures that if a directory contains .dcm files along with other file

formats, only the former will be considered.

FIGURE 41 - BROWSEFOLDER METHOD OF THE FOLDERBROWSER CLASS

7. Future Work
In this report, I have outlined several reasons why I believe that the application has met the

intended requirements outlined at the beginning of this project. I believe it to be a robust

system that provides functionality that makes the process of delineating regions of interest

in stacks of MRI scans easier and more efficient for radiologists, however there is still work

to be done on the application to make it more useful. These features are things that I myself

intended to implement within the project, however I believe the way in which I worked at

the beginning of the project with a lot of time spent refactoring earlier implementations has

lead to time constraints towards the end of the project, therefore there was not enough

time to implement some key, additional features.

7.1 – Accessibility
The annotation functionality is in my opinion the most important feature within the

application and without this, it would simply be a program allowing for users to view DICOM

files, hardly useful by itself. Figure 33 shows how the annotation can be seen in the

application window as a yellow dot or line.

 Figure 33: Annotations in application window

Colour blindness effects 1 in 12 men and 1 in 200 women worldwide[15]. Some sufferers of

colour blindness are unable to see the colour yellow. This particular case of colour blindness

would render the annotation functionality in the app virtually unusable except for the

output in the CSV File. I believe a very useful feature to have would be to allow the user to

pick a specific colour somewhere in the RGB matrix that ensures that they would have no

problems seeing annotations on the screen. Another option would be to simply let the user

enter a text string allowing them to pick a colour of their choice. Even though these

examples would not be challenging things to add to the application, they would still require

great thought and most importantly time.

Consider implementing by allowing the user to enter a string of their choice as a value for

the colour. We would first have to tackle the issue of spelling mistakes, regex and language

differences amongst many others. After this, we would then have to consider how the user

perceives this functionality. What if they attempted to enter an RGB or hexadecimal value,

should the application still accept this method of colour picking? Finally, we have to

consider the capabilities of the tools we are using. If a user were to pick a colour that the

matplotliď ͚sĐatteƌ͛ aŶd ͚add_polǇgoŶ͛ fuŶĐtioŶalitǇ did Ŷot suppoƌt, theƌe ǁould still ďe

errors in displaying the plots on screen. All cases presented are solvable but would require

time in which to do so.

7.2 – Draw Circle Functionality
Another key piece of functionalitǇ that I didŶ͛t haǀe tiŵe to implement is giving the user the

ability to draw circles as an annotation. This could be incredibly useful in terms of allowing

the user to mark-up potential areas of interest, but for UX purposes I decided not to do this.

The reason I decided against the implementation of this feature was due to the nature of

Matplotliď͛s ͚ĐiƌĐle͛ fuŶĐtioŶalitǇ[16]. The way in which this part of the package works is by

passing it a simple XY coordinate. This then allows for a circle to be drawn with a

circumference specified in the actual code, meaning that the user can only specify where

they want the circle, not how large it is or how much of the scan area it covers. This severely

limits the functionality of the annotation as there could be cases where it is too big or too

small, requiring the user to have to guess where the circle will be drawn.

One way of implementing this feature would be to have a circle that scales according to a

drag function. This would mean that the user plots a point that they wish the circle to be

drawn around, the circle gets drawn with an intermediate circumference and the user is

then given the option to scale it as they please.

Due to the time taken to do this coupled with the fact that annotation currently already

exists within the application, I felt that this was quite a low priority feature to implement.

The most important feature to give the user is the ability to draw and save polygons to a

specific slice in the stack and to then allow them to view said annotation in an output CSV

file.

7.3 – In-app Directory Viewer
Another big flaw of the application is that there is only the ability to add two directories to

the window to analyse at one given time. A normal patient scan sequence consists of four

separate scans, within which there are multiple slices making up that scan sequence. These

scan sequences are all separate subdirectories of one overarching patient directory. Only

being able to add two different stacks at the same time to the application makes the

navigation through patient scans much less effective. The ability to load in the entire

patieŶt͛s directory, then select which of the subdirectories to display on either side of the

application is in my opinion a much more efficient way of navigating through the different

scan sequences.

The implementation of an in-application directory viewer would be in my opinion a

sufficient enough solution to this issue. The way in which such a feature would work would

be rather simple. The user would select a patient directory in the same way as they select a

specific folder to load in currently. This would then be displayed in the application with the

subdirectories listed in view. Each subdirectory would then be interactable, giving the user

the ability to click and select a folder which they wish to view in the application window.

This would grant them freedom to navigate through the patient scan sequences as they

please, leading to a much better user experience, one which would make this application

much more effective in tackling the problem outlined in section 2.

The way in which such a feature would work at the code level is similar to the way in which

the FolderBrowser class works in section 5.2.2. We could extend this class to contain UI

elements such as the viewer documented in the above paragraph. We could loop over the

parent directory, first checking if the subdirectory contains files with the desired file

extension (.dcm), then creating an array storing the contents of each file directory. Then,

have two sepaƌate aƌƌaǇs ƌepƌeseŶtiŶg the ĐuƌƌeŶtlǇ ͚loaded͛ staĐks ǁhiĐh ǁill ďe displaǇed
in view. When a user selects a folder that they wish to view, this will take the place of

currently loaded stack in that specific part of the window, be it stack one or stack two. We

would then loop over the filenames, for each filename creating a DicomObject documented

in section 5.2.3 and passing that into the currently loaded array in question.

There are two reasons why I have not implemented this in the application. The first reason

is again time. This was initially planned to be in the application, however time constraints

due to early implementations meant that I was only able to get the ability to load in two

stacks at the same time working. The second reason for this is the user interface. Firstly, the

ĐuƌƌeŶt useƌ iŶteƌfaĐe doesŶ͛t haǀe the ƌeƋuiƌed spaĐe to displaǇ soŵething like this. For

example, if a directory had 10 subdirectories (even though this is not normally the case),

extra implementation would be required to eŶsuƌe that this didŶ͛t spill oǀeƌ iŶto otheƌ aƌeas
of the view. Secondly, the ǁaǇ iŶ ǁhiĐh TkIŶteƌ͛s grid geometry works means that for this to

look in any way aesthetically pleasing it would likely have to come as a part of another

component to which it shouldŶ͛t ƌeallǇ ďeloŶg due to the sĐale of the UI eleŵeŶts iŶǀolǀed.
If I were to have one or two more days left in my implementation schedule, I feel with more

thought given this could be easily implemented and would greatly increase the usefulness.

7.4 – Annotation Correction
One of the biggest flaws in the application relates to the way in which the annotations are

removed from a slice. The program gives three different ways to delete annotations. To

cancel the current annotation, removing new annotations from the figure, to remove all

current annotations on screen but not delete them from the object itself, oƌ to do a ͚deep
delete͛, ƌeŵoǀiŶg aŶŶotations on screen and in the object. Consider a user plotting a point

on screen in the wrong area while drawing a polygon around an area. If the user incorrectly

plots a point on accident, they will have to either clear all plots on the screen or cancel the

current annotation if there are previously saved annotations on the slice. This means more

work for the user if they make a simple mistake and greatly reduces the usefulness of the

annotation functionality.

One way in which this issue could be solved would be grant the user the ability to remove

individual plots on the screen. There could be a button allowing the user to click and delete

any plot that they wish, even entire polygons if all points in the polygon are deleted. This

feature would mean that simple mistakes would not require the user to go through the

entire process of re plotting points that were correct with the exception of the mistaken

plot.

One way in which this could work would be to allow the user to click a plot on the

application figure that they wish to remove. This click event would work in a similar way to

that of the way in which users plot points on the screen, except instead of plotting the event

data for the X and Y coordinates on the figure, we would loop through the array of current

points plotted on the figure to find the coordinates closest to the given deletion points,

remove them from the array and redraw the points on the canvas. The redraw functionality

is extremely fast, so the useƌ ǁouldŶ͛t ŶotiĐe this happeŶiŶg iŶ the background.

The reason this hasŶ͛t ďeeŶ iŵpleŵeŶted is oŶĐe agaiŶ tiŵe. The implementation would

likely take half a day, however the complexities of the functionality would take longer than

this to work out in my opinion, as there are many things that need to be considered from a

logic and UX point of view. For example, what if the user wishes to remove a single plot that

is saved within the DicomObject. If a point is saved within a DicomObject, then it would

have been added to the output CSV file. Alongside removing this from the object, we would

then also have to delete the faulty annotation from the output CSV file. This is crucial

functionality however and if I had more time would be the highest priority feature that I

would attempt to implement.

7.5 – Annotation Conversation
 While outlining the additional features that could be implemented in this project in section

4.2, I discussed the possibility of implementing a feature that upon synchronisation of two

stacks would allow for conversion of annotations between the two. This feature would allow

a user to see annotations placed in one slice show up in another. I attempted to implement

this feature, however due its complexities and the remaining time I had left to implement, I

did not manage to get it into the finished product.

I Believe this feature would be extremely useful to a user. The synchronise stack

functionality is a crucial bit of additional functionality, however coupled with this, I believe

the application would be an extremely powerful product. The way in which this would be

implemented is using an affine transformation by where we convert two dimensional

coordinates into 3 dimensional, in the scope of this project, patient-based coordinate

system coordinates. We could then invert these coordinates based on a comparison slice in

a separate stack, and project the 2D coordinates of an annotation in a specific slice into the

2D coordinates of the comparison slice.

Not getting this feature in was one of the biggest failings in the entire project, however I

believe if someone where to extend this project, it would be a simple enough

implementation given enough time. This feature also does not affect way in which the

application meets the initial requirements.

7.6 – Integration with Machine Learning
Machine learning algorithms are impacting and progressing many areas of medicine.

Currently, applications that are aimed at cancer diagnosis are being considered and

developed by researchers world-wide in an attempt to speed up the process of not only

identifying cancerous areas but diagnosing at what stage the cancer currently is. This

application was developed with this in mind. The integration with a machine learning

algorithm would be, in my opinion, an extremely useful and impactful feature.

The way in which such a feature could work would be to have part of the program that

sends the stack of DICOMS for analysis. During this analysis, a machine learning algorithm

would attempt to identify potentially dangerous or malignant cells in the patient scans and

then annotate them accordingly. From here we could demonstrate this to the user in two

different ways. Due to the functionality of the DicomObject class documented in section

5.2.3 of this report, the application has the ability to save annotations to a specific slice

object for future use in the application. The machine learning algorithm could also add

annotations to this application, so that the user could navigate through the stack seeing

what areas in the slices the algorithm has annotated for review. This could also be

implemented by making the algorithm produce an output CSV file, which would then be

either displayed to the user or fed back into the application, from which the slices that have

been annotated in the file would be displayed with the annotations on them. This would

mean that the user would only have to view the slices that have been annotated instead of

navigating through the entire stack.

I have not implemented this feature due to the complexities and skills required to do so.

Currently, this functionality is out of the scope of this project and far beyond any

implementation that I have ever attempted. This would have to be its own project with its

own individual requirements and time schedule. However, I do believe that this could be

easily integrated into the current application and would of course greatly aid a radiologist in

identifying and delineating potentially cancerous regions within a scan.

8. Conclusion
Throughout the project there have been many stages of implementation. The final

application produced is one that I believe to have met all intended requirements at the start

of this project. These requirements, as documented in section 2.3 are –

1. To make it easy to display and view MRI scans.

2. To make it simple and efficient to navigate through a stack of DICOM͛s.
3. To make the annotation and identification of potential regions of interest far easier

for radiologists.

This report has clearly defined how the application delivered has met these requirements to

a good standard and has shown that the project delivered adequately solves the problem of

delineating regions of interest in MRI scans effectively. The project is robust and has been

designed in such a way that allows for very little user error. It has an intuitive design, with all

buttons being labelled according to their purpose. The aesthetics of the user interface have

been sacrificed for a more efficient and purposed build; however this efficiency is crucial to

the usefulness of the application.

The DICOMS are displayed clearly in view, meeting requirement 1. The annotation features

provided by the application allow the user to identify areas of interest with ease, upon

which the annotations will be saved to an external CSV file enabling analysis outside of the

application. The annotations are clearly displayed on screen and also contain vital

information about the patient and the score on the PI-RADS scale that the radiologist

believes the annotated area to be. The navigation serves its intended purpose well and

allows the user to navigate through a stack of DICOMs with ease. In my opinion, the final

state of the codebase is in a good, well documented condition. The code runs efficiently, a

major requirement of the application.

In terms of additional functionality, the application has some extremely useful and powerful

features that were not expressed in the initial requirements. Firstly, the dual screen

functionality of the application allows users to view to separate, or identical, stacks side by

side. This allows them to more efficiently carry out their job, which is in my opinion, the

main purpose of creating this application. Another useful piece of additional functionality is

the ability to synchronise stacks of DICOMS in terms of their relation within the patient

space is one that I believe to have greatly enhanced the usefulness of the application. This

will allow radiologists to identify an area in one scan sequence, then compare it in the same

region of another scan sequence. This feature will enhance their ability to delineate areas of

interest, therefore is an additional feature that solely increases the effectiveness of the

application in tackling the initial problem.

I do however believe that I could have done more in terms of additional features. Far too

much time was spent refactoring old functionality, however in certain instances this was

needed. In the middle stage of development, the application was at a stage where features

tackling the main requirements were nearly fully implemented, however the overall flow

and efficiency of the application was very poor. Also, as highlighted in my future work

section (section 6), there are a few things that could have been in the app to improve the

way in which it tackled the initial requirements, such as the in-application folder browser

and the single point delete feature (section 6.5).

To conclude, I believe that the application effectively meets the requirements set out at the

start of this project by clearly displaying the DICOM images in view, allowing the user to

efficiently navigate through a stack of DICOM slices and annotate and delineate areas of

interest within said slices. The use of additional features such as the dual screen

functionality and the ability to synchronise scans aids the effectiveness of the application in

tackling the problem. There are issues with the application such as the way in which a user

removes plots, but the overall state of the application is one that allows for very little user

error. All in all, it is a robust system that effectively aids a radiologist in delineating areas of

interest in MRI scans and furthering the effectiveness in which they can diagnose prostate

cancer.

9. Reflection
Throughout this project I have set personal goals on which to reflect upon come the projects

conclusion. In sections 1.3 and 1.6, I described aims and outcomes that relate to my

personal goals for the project. In this section, I will reflect upon my performance with

regards to implementation of the application and personal skills developed throughout this

project.

9.1 – Implementation
From a personal point of view, I believe that I could have implemented the application in a

more efficient way. In my opinion, I spent a lot of time implementing in an in-efficient way

which impacted the way in which I worked towards the end of the project. When I began

implementation, I was nervous about my abilities to effectively develop the application and

spent a lot of time worrying when I could have been researching and implementing. When I

had gotten over this stage, I found that I thoroughly enjoyed developing the application. I

also spent a lot of time developing with bad coding practices in early stages of the

application. This led to me spending a lot of time refactoring that could have been spent

developing additional features. In my opinion, the way in which I developed the application

could have been better but was a great learning process as it will likely affect the way I

approach future projects. Its also taught me to be more confident in my abilities and instead

of worry about a problem, to spend the time tackling it instead.

I have learnt a lot about the problem area and the technologies involved in solving it on this

project. I have acquired experience in a new programming language, how to effectively

design a program from the ground up and how not to, experience with Medical imaging and

image manipulation in general and gained confidence with my abilities as a developer.

However, I know that coupling the knowledge I now possess with the technologies used in

this application with more time to implement features, this application could be extremely

powerful and up to industry standard solutions that currently exist.

9.2 – Project Management
At the beginning of this project, I had no knowledge or experience with project

management at all. Throughout this project, I have had to demonstrate and exercise project

management techniques in order to effectively develop the application. A good example of

this is the use of Trello. I used Trello, a ticketing website, to track what aspects of the

application I had implemented and those that I had not. To do this, I set up specific boards

for front-end, user interface tasks such as designing wireframes and a board for back-end

tasks such as developing the algorithm for slice synchronisation. This tool helped me stay on

track with regards to implementation and follow a structured guide, in turn helping me

develop my project management skills.

I also use GIT, an industry standard version control tool in order to keep separate

implementations organised. Each major implementation featured in its own unique branch,

again a massive part of project management. These two features greatly improved my

knowledge in project management and have had a positive impact on the overall product

delivered in this project.

9.3 – Communication
Finally, this project has helped me develop my communication skills with regards to

technical conversations. Throughout the project I had regular meetings with my supervisor

in order to explain what new features I had implemented, what problems I was encounter

and to absorb information they had with regards to the subject area. This has helped

develop the way in which I approach and understand technical conversations and will help

me a lot in the computing industry. I also found that trying to explain to others that were

unfamiliar with both the subject area and computing in general extremely useful as it

reinforced my own understanding on the topic and this project.

References
1. https://prostatecanceruk.org/prostate-information/about-prostate-cancer

2. http://casemed.case.edu/clerkships/neurology/web%20neurorad/mri%20basics.htm

3. https://www.dicomlibrary.com/dicom/

4. https://pydicom.github.io/

5. https://matplotlib.org/

6. https://wiki.python.org/moin/TkInter

7. https://git-scm.com/

8. https://wiki.cancerimagingarchive.net/display/Public/PROSTATE-DIAGNOSIS

9. https://radiopaedia.org/articles/prostate-imaging-reporting-and-data-system-1?lang=gb

10. https://pydicom.github.io/pydicom/stable/viewing_images.html

11. https://github.com/pydicom/contrib-pydicom/blob/master/viewers/pydicom_Tkinter.py

12. https://www.numpy.org/

13. https://matplotlib.org/api/pyplot_api.html

14. https://dicom.innolitics.com/ciods/mr-image/image-plane/00200032

15. http://www.colourblindawareness.org/colour-blindness/

16. https://matplotlib.org/api/_as_gen/matplotlib.patches.Circle.html

17. https://pencil.evolus.vn/

18. https://matplotlib.org/gallery/user_interfaces/embedding_in_tk_sgskip.html -

19. http://dicom.nema.org/medical/dicom/2016e/output/chtml/part03/sect_C.7.4.html

https://prostatecanceruk.org/prostate-information/about-prostate-cancer
http://casemed.case.edu/clerkships/neurology/web%20neurorad/mri%20basics.htm
https://www.dicomlibrary.com/dicom/
https://pydicom.github.io/
https://matplotlib.org/
https://wiki.python.org/moin/TkInter
https://git-scm.com/
https://wiki.cancerimagingarchive.net/display/Public/PROSTATE-DIAGNOSIS
https://radiopaedia.org/articles/prostate-imaging-reporting-and-data-system-1?lang=gb
https://pydicom.github.io/pydicom/stable/viewing_images.html
https://github.com/pydicom/contrib-pydicom/blob/master/viewers/pydicom_Tkinter.py
https://www.numpy.org/
https://matplotlib.org/api/pyplot_api.html
https://dicom.innolitics.com/ciods/mr-image/image-plane/00200032
http://www.colourblindawareness.org/colour-blindness/
https://matplotlib.org/api/_as_gen/matplotlib.patches.Circle.html
https://pencil.evolus.vn/
https://matplotlib.org/gallery/user_interfaces/embedding_in_tk_sgskip.html
http://dicom.nema.org/medical/dicom/2016e/output/chtml/part03/sect_C.7.4.html

