
Deep Learning Guitar Tunings 

One Semester Individual Project  

Final Report  

 

Author: Deeon Roy  

Supervisor: Prof. David Marshall 

 

School of Computer Science & Informatics 

Cardiff University  

May 2019  

 

 

  



2 

 

Abstract 

Guitars can be tuned in a variety of tunings and take a master’s ear to be able to 
detect this just from listening to the audio. In this project I aim to investigate 

possible machine learning (ML) and deep learning techniques to detect guitar 

tunings from audio. This audio will not be clean audio, i.e. there will be other 

instruments playing alongside the guitar along with other noise. This project 

presents a robust solution, comparing what combination of audio transformations 

and ML techniques work best in efficiency and accuracy. 
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Chapter 1  

Introduction 

Strings resonate differently depending on frequency of the note plucked and string 

thickness, therefore having different harmonics when doing so. This is why, even 

when same note is played on a thick string, you can still hear the difference 

between that note being played on a thinner string. When tuning a guitar, the 

tension of the string is adjusted effecting the young’s modulus of the string and 

therefore the frequencies it produces when plucked at different frets. Open strings 

will have a particularly will have a distinctively different sound and harmonics 

associated with them. An assumption made in this thesis is that all the information 

necessary to classify tunings are audible, and therefore available in the time-

frequency domain. For the purposes of this thesis I will be using songs that contain 

primarily guitar and voice with little accompaniment. 

The project can be broken down into these steps:  

• Guitar audio gathered and tagged appropriately 

• Split the audio into equally length segments to gain a large amount of 

sample data 

• Use a variety of transformations into the spectral domain to test which ones 

work best with what algorithm.  

• Feed the samples spectrogram data into machine learning algorithms to 

classify the tuning.  

• Analyse data on how well the algorithm’s trained and adjust.  

 

Aim  

The aim of this project is to develop a machine learning approach that can predict 

guitar tunings on a given song. To prove the system works, the model will be tested 

on unseen audio data taken from other artists and free samples.  

Outcomes 

The project presents an efficient and robust machine learning architecture for exact 

classification of guitar tunings, that can be used in future for more advanced audio 

transcription. 

It also contains the development of a reusable toolset that performs pre-processing 

tasks and allows easy adjustment of network parameters alongside comparison and 

testing tools.  

The focus is to have it be robust for acoustic guitars with minimal accompaniment 

however with more time and resources the system could be made to work for all 

types of guitar with larger amounts of noise.  
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Chapter 2 

Background 

2.1 Context  

This chapter contains some background information necessary to understand for 

the context of the paper.  

The Fourier Transform  

The Fourier transform converts an audio signal that’s in the temporal domain, 
where the signal is a function of time, and converts it to the frequency domain. 

This break down of a signal into its fundamental frequency components allows for 

spectral analysis and frequency manipulation. This transformation is integral to 

analysis of audio data as it allows us to visualise a signal in the form of a 

spectrogram.  

In the context of this project we use the Short-Term Fourier Transform to plot 

frequency power against time.  

Short Term Fourier Transform (STFT)  

STFT is a lossless function so we don’t lose any relevant information and works by 
applying a sliding window that overlaps applies a 1D Fourier Transform over the 

frequency bins for each window. The STFT is a very basic transformation that is 

fast and not very intensive. We compare this method with other transformations 

into the frequency space throughout the project.  

Constant-Q Transform  

The constant-q transform is related to the Fourier transform and is based off the 

STFT. It is a transform designed for musical analysis as it gives higher detail for a 

large frequency range. Due to the STFTs linear scaling factor, it compresses the 

lower frequencies into a small space and means they’re less defined. Constant-Q 

uses logarithmically scaled frequency bins[1] and ensures the lower frequencies are 

well defined. This is important for detecting guitar tunings as noticing small 

differences in the way strings resonate is easier for the thicker strings. What 

determines the size of the bins is the Q factor, where: 

Q = centre frequency/bandwidth 

Cepstrum Analysis  

The Cepstrum of a signal is the result of taking the inverse Fourier Transform of 

the logarithm of the expected spectrum of a signal. It’s commonly used in the 
analysis of human speech. A Cepstrum contains information about the rate of 

change in different spectrum bands.  

Discrete Cosine Transform (DCT)  

The DCT is a lossy transform often used in image/video compression as its far 

simpler than FFT(Fast Fourier Transform). It works by converting a 2D matrix of 
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data into functions that represent the most frequent components in the matrix. By 

taking a subset of this data you can usually get the most important parts of data and 

reduce the amount of redundant data.  

Mel-Frequency Cepstrum Coefficients (MFCC)  

MFCCs main difference with a normal Cepstrum is the use of a linear Mel-scale 

that it tuned to the hearing of humans. MFCCs are calculated by performing STFT 

and then mapping the spectrum to the Mel-scale. Taking logs at the mel 

frequencies and applying a DCT on the Mel log powers gives us a spectrum where 

the amplitudes are the MFCCs. These MFCCs are then used as audio features. 

This is commonly used in speech recognition and analysis due to its lossy nature, 

reducing computation time while still keeping the most important features of audio.  

MFCC will be used as an alternative benchmark to Constant-Q and STFT to see if 

it’s feasible to cut down computation time and keep high accuracy with a ML 

model.  

Machine Learning  

Machine learning is a term used to describe several algorithms that share the same 

principle. Using training data to discover relationships between data sets that can 

then be applied to unseen data to make accurate predictions. Supervised ML 

algorithms are those where you have labelled training data to train the algorithms 

and is what will be used in this project. There are two main types of supervised ML 

problems: Classification and Regression. Classification is where the output value 

of the algorithm is a strict category, e.g. “red”, “blue”. Regression is where the 

output is a real value such as “pounds”, “weight”.  
 

This projects problem is a multivariate classification problem, where the categories 

are the guitar tunings, e.g. “EADGBE”, “DADGBE”. 

  

K-Nearest Neighbour (kNN)  

A kNN is a very simple ML algorithm, that is useful for its low calculation and 

training time. It’s a non-parametric method that works by plotting data points on a 

plane. When classifying new data it will plot the point on the same plane and take 

the majority of its k nearest neighbours. K is the only adjustable parameter here 

and will directly effect the accuracy of the algorithm. Making k too large will cause 

the algorithm to pander to categories with the largest amount of points i.e. will 

classify the lesser used tunings as more commonly used tunings. However, making 

k too small will result in in-consistent results and may classify fringe data 

incorrectly.  
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[3] 

Support Vector Machines (SVMs) 

SVMs work by plotting each data item as a point on an n-dimensional space where 

n is the number of feature’s present. The value of each feature then becomes a 

coordinate on this plane, these are the support vectors. Classification works by 

creating a hyper-plane that differentiates the classes the most. The hyper-plane that 

new data falls into determines what class it’s classified as.  

SVMs tuneable parameters include: Kernel, gamma and C. The kernels are used to 

convert a low-dimensional space into a high dimensional one. This allows us to 

convert non-separable problems into separable ones. Gamma is the coefficient used 

in the Kernel selected and a high gamma will try to make an exact fit on the 

training data resulting in overfitting. C effects the error term, this is the trade off 

between a smooth decision boundary and classifying points correctly.  

Neural Networks (NNs)  

NNs are a framework for ML algorithms based on biological neural networks 

found in animal brains. They are represented as a graph of neurons (nodes) that 

take an input and have a set of output nodes. Data is taken in and depending on the 

value passed through in the previous node a value will be passed onto a subsequent 

node until it reaches one of the output nodes. 

Training an NN consists of adjusting the weights of each node in the graph. At the 

beginning of training, these weights will change drastically as it figures out the 

hidden relationships between data and their classification. As training progresses 

the weights will change less and less as it fine tunes the graph. Training is done 

over a series of epochs, where the same training set is passed through the network a 

number of times. The network adjusts it’s weights based of this training set every 

epoch to reduce loss.  

Measuring an NNs quality comes in the form of its loss function and accuracy. 

Where loss is the cost/error of a prediction, we are trying to reduce loss as much as 

possible, e.g. If a cat is 0 and a dog is 1, and we put an image of a cat into the 

network and it predicts 0.3, the loss is 0.3. Accuracy can be measured in a few 

different ways, in this project we will be looking at the Recall, Precision, F-1 and 

Accuracy scores to judge our network. Where Recall is the ability to find all 

correct predictions, Precision is the ability to not to label negatives that are 

positive, F-1 is an average of Precision and Recall and Accuracy is simply the 

number of correct samples predicted as a percentage.  

Deep Neural Networks (DNNs)  
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Deep neural networks are a general term for NNs with hidden layers between the 

input and output layers. The stack of hidden layers has their weights adjusted to 

produce a reliable prediction. Deep NNs typically have a longer training time and 

have one main downside of having the hidden layers being a black-box. This 

means the interpretability of the algorithm is largely unknown and means we can’t 
always see why it’s making the decisions it is. However, after training, when a 

model is created, the model is generally very robust and performs in real time.  

Convolutional Neural Networks (CNNs) 

CNNs are commonly used for DNNs where the hidden layers are replaced by 

Convolutional layers and Max Pooling Layers. The Convolutional Layers work 

exactly like they do in Computer Vision, where they reduce an image input into its 

most important features, these are then followed by the Max Pooling Layers. These 

Max Pooling layers work by taking the max of the reduced image matrix allowing 

us to obtain the important features of a more abstract data set and therefore 

reducing over-fitting. The final layer then uses this data to make a prediction.  

2.2 Tools and Software Used 

Python  

Python was the programming language used because of the number of packages 

available for Machine Learning and Visualisation. The ability to quickly test 

different techniques and visualise their data with ease was integral to completing a 

robust project in the time frame required.  

Sci-Kit Learn (sklearn)  

This python package is an all-round package used for machine learning. It contains 

many well-known algorithms with customisable parameters, along with tools for 

pre-processing, testing and visualisation in terms of any learning algorithm.  

Modules used for pre-processing include: LabelEncoder, OneHotEncoder, 

StandardScaler, StratifiedShuffleSplit and GridSearchCV. These modules were 

used to allow automation of training and testing sets, labelling the data 

appropriately and preparing them for machine learning use. It was also used to 

create balanced training and testing data sets.  

For testing and visualisation sklearn allowed easy creation of confusion matrices, 

classification reports and kept track of accuracy scores.  

Sklearn also allowed us to quickly implement kNNs and SVMs with its “plug-and-

play” modules and made saving our machine learning models and feature vectors 

for future use simple.  

Keras 

Keras is a high-level library for Deep Learning in python. It uses TensorFlow as 

backend, a framework for neural networks that is regarded as very future-proof.  

Keras is a commonly used library for deep learning for its extremely fast 

development time, while still giving accurate results and apt control over your 

network.  

Due to Keras’ high level nature you cannot look deep into array expressions and 
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optimise your network to up-most potential, like in PyTorch. However, due to its 

ease-of-use in implementing Deep learning models, it sufficiently reduced 

development time and allowed the experimentation of various methods in this 

project.  

LibRosa  

LibRosa holds invaluable tools for audio processing in python and is regarded as 

the default audio analysis library for python due to its large amount of features. It 

was used to create the various spectral representations of the audio data.  

 

2.4 Practical Applications 

This project has created a framework to be continued and used in further work in 

the field. A complete more robust product, accomplished with more time would be 

necessary for the following applications:  

Audio Transcription 

This work could be integrated into music transcription tools for professional and 

amateur artists allowing them to learn from music that has already been created. 

Currently transcription tools merely capture notes played but don’t contain the 

tuning the guitar was in and often don’t contain where the note was played on the 

guitar, which can heavily affect the sound and style of song. Due to the fact a note 

can be played on many places on the guitar, figuring out the tuning of the guitar 

before transcription is a necessary step to precise guitar transcription. The models 

developed here can be used to extend current applications already available.  

Capturing Style of Contemporary Music  

Research into capturing style of orchestral music has started to become popular and 

has had some success. However, due to the standard nature of how the instruments 

are played and tuned, fine details such as tunings of each instrument are not 

necessary. In contemporary music that uses guitars, different types/strings/tunings 

are used throughout and dictate the artists style and fingerprint. The product 

created here can be used in conjunction with other classification products for 

notation, and guitar type to build style profiles for music. Capturing style in this 

way has many applications including: Cultural preservation and remastering of 

old/damaged audio, Creative tool for artists allowing the model to fill in gaps in 

their music based off their style or to create new music based of artists that may 

have passed.  

Interactive Media 

There are many video games and interactive experiences that use music as the core 

element. Things like Rockband, Guitar Hero, BeatSaber etc. give you the task of 

imitating pre-recorded tracks for points. These tracks have to processed and 

programmed into the game by hand, meaning users can only play with tracks 

developers have decided to convert into the system. However, with the ability to 

detect tunings, further research into precise transcription could mean that you have 

a system that allows users to plug in their own music of choice into these 

interactive experiences.  
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Problems  

For the applications stated above, the main problems arise from needing high bit 

rate annotated samples that don’t contain much noise or polyphony. However, due 

to this product being able to detect tunings in noisy environments with relatively 

low-quality audio, it may mean that making precise predictions on transcription 

becomes substantially easier because of the new information that can be assumed. 

By obtaining tunings, using a combination of music theory and how strings 

resonate at different lengths, along with methods to separate signals to detect where 

notes were played without having clean source samples. 

These applications are discussed in more detail in Chapter 6.1 Further Work.  

Chapter 3  

System Overview 

3.1 Overview 

The project attempts to prove that using machine learning methods is feasible for 

solving the proposed research question. The initial focus is therefore to show that 

the solution has potential, followed by research into how the solution can be 

optimised for better performance. In order to accomplish this a framework has been 

designed as a test bed to compare and experiment different approaches to solving 

the problem in a machine learning space. The framework employs a library of 

functions that have been designed to be modular and abstract away all non-

essential details from the development framework. Resulting in a clean easy to 

understand system that streamlines development.  

This project has a strong focus on what combinations of data representation and 

machine learning model combine to achieve the best results and is thus broken 

down into 3 main sections: 

• Data Collection  

• Pre-Processing  

• Network Architecture/Configurations 

The framework has been designed to iteratively implement all 3 tasks and is outline 

in Chapter 4: Implementation.  

Project Structure  

During development, the optimisation of networks hinged on constant evaluation 

and performance of current solutions to the problem. This meant that the initial 

focus of seeing if deep learning methods had potential was answered very quickly 

and improvements could be made aptly. The outline of development is represented 

in these steps:  

1. Research: Researching NN architectures, Current solutions to similar 

problems, Data Representations, Pre-processing  

2. Data Collection: Obtaining data, downloading and sorting it.  
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3. Framework Development: Create a reusable platform that has all the tools 

to test various network architectures, data representations that logs 

findings.  

4. Experimentation: Perceiving performance of different network 

architectures with different data representations  

5. Optimisation: Changing hyper parameters of networks and pre-processing 

elements.  

6. Evaluation: Analysing differences in results and interpreting which 

changes allowed for the best solution.  

Steps 1-3 were done at the beginning of the project and were not iterated over 

again. With steps 4-6 were iterated over many times to achieve a good result.  

 

 

3.2 Data Collection 

Data collection for this project was rather simple, it consisted of using Joni 

Mitchell songs supplied by Prof. David Marshall. The Joni Mitchell song set 

proved invaluable in this project, as she uses a large variety of standard and 

irregular tunings. The folk nature of her sound also lends itself well as it 

consists mainly of guitar and voice with few other instruments. This along with 

free guitar samples lent itself well to the timespan of the project as training 

data on more noisy environments could prove time consuming. Once the data 

was downloaded it needed to be marked with the correct tuning, converted to 

wav and sorted into its appropriate tunings. Marking the data appropriately 

consisted of prefixing the filenames with the appropriate tuning. 

Due to the nature of DNNs, a large set of sample data is required to train. To 

artificially produce more sample data, audio files were split into small frames 

and overlapped with each other over a window. The system iterates over a 

directory containing appropriately named wav files and splits them aptly, 

prefixing the tuning name for labelling later on. Different configurations of 

audio frame and window size were experimented with in the project, to see if it 

had an impact.  

3.3 Pre-Processing  

Before the audio data is ready for use in the chosen networks, a large amount 

of pre-processing needs to be accomplished. How the data is processed before 

entering the network may heavily affect its performance and was experimented 

with to achieve the best results.  

Data Representation  

The audio data needs to be represented in some relevant format for the 

networks to find relationships between the waveforms and guitar tunings. The 

simplest way would be to sample amplitude at regular spaced intervals at a rate 

at least twice the highest frequency of the waveform (Sample Rate). On the 

grounds of Nyquit’s Sampling theorem, any lower would lose perceptual 

quality. The most common sample rate being 44100Hz (CD Quality), which 
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captures good quality of audio without much redundant data. Data represented 

in such a way is described as an array of samples/frames.  

Using an array of samples is the rawest form of data representation, however it 

is very computationally difficult to create any meaningful relationships 

between audio presented this way and the harmonics of the strings played. 

This is why the audio data needs to be converted into the time-frequency 

domain. Pitch and harmonics are defined by the frequency of a sound, by 

transforming the data into the frequency space, relevant semantic features of 

the signal can be emphasised. This requirement of the project enabled 

experimentation into which representation offers the best performance.  

Here we experiment with 3 different time-frequency transformations to 

accomplish this:  

• STFT – lossless, basic baseline  

• Constant-Q – STFT with optimisations for musical analysis  

• MFCC – lossy representation that captures audio data perceived by the 

human ear.  

STFT serves as the baseline representation and works as a great benchmark 

to compare Constant-Q and MFCC implementations. MFCC has been 

included by virtue of its performance in similar audio-recognition tasks; 

particularly in voice-recognition. It performs particularly well in voice-

recognition tasks as the Mel-Frequency log scale is tuned to human 

perception of audio. This generally means that some musical information 

about the signal maybe lost; however, guitar maestro’s can often tell a 

guitar’s tuning just through ear so it’s possible that most of the relevant 

information for classification is still available. MFCC’s lossy 

representation also leads to it having a shorter computation time.  

All 3 of the representations have a set of parameters that can be tuned to 

emphasise the signal in different ways and will be experimented with.   

3.4 Network Architecture and Configuration 

The problem proposed is considered a multivariate classification problem, 

with the input shape being the array shape of the data representation e.g. 

Constant-Q’s input dimensions will be frequency bins x time. This varies 

between STFT, Constant-Q and MFCC, so the input shape needs to be 

variable. The output shape is the number of classifiable tunings, in our case 

4. Problems of this nature prove easy to evaluate as the accuracy of 

predictions is very clear cut. 

Grid Search  

The number of different networks being tested made it necessary to create 

an efficient and comprehensive system for hyper-parameter selection. 

Utilising a grid search allowed multiple parameter combinations to be 

tested without the need to manually change them. The grid search works 

by running all possible parameter combinations specified in a dictionary, 

performs cross validation and returns analytics on all the configurations 

tested. This was necessary to significantly reduce development time 

without hindering the integrity of the experiments. 
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Performance Metrics  

For a supervised network to learn the correct weighing’s of nodes, it 

requires accurate feedback on its performance. The feedback it receives is 

called the performance metric; this is what the network attempts to 

improve when adjusting its weights. 

The chosen metric for this problem was Categorical Accuracy. This is very 

simply the number of correctly classified samples and is calculated at the 

end of each epoch contrary to other common metrics used. This metric was 

chosen on the grounds that the dataset contained some samples that did not 

contain any guitar audio. The amount of “false samples” in each category 

was unknown and therefore could affect results more drastically if another 

metric was used, such as one that would incorporate precision. 

These sections of guitar absence could not easily be trimmed for silence as 

there was still voice and piano playing. To void these samples the data 

requires to be annotated with instruments and time stamps. This could be 

solved by using a musical instrument classifier, the proposed solution is 

discussed in Chapter 6: Further Work.   

Sequential Deep Neural Network  

There are 2 ways to build Keras models: Sequential and Funcitonal.  

Sequential models be the simplest of deep learning models used here. They 

do not allow the user to define models that connect to more than just 

previous and next layers like functional networks allow for. However, they 

are simple to implement and run, often producing good results with a fast 

training time. In the current implementation, no processing is performed on 

the data as it passes through the sequential model, allowing it to train much 

quicker compared to the CNN counterpart. 

Convolutional Neural Networks 

Convolutional neural networks are already heavily used in computer vision 

applications and have seen a lot of success. They work excellently to 

reduce over-fitting by abstracting data and finding only the most relevant 

features within image data. Overfitting was reduced further with the 

inclusion of some dropout layers. This was to increase the generality of the 

network, due to the training data being from a small selection of songs by 

the same artist.  Here we treat the spectral representations of the audio 

frames as the “images” and use a 2-D convolutional network.  

Chapter 4  

Implementation  

4.1 Overview  

A package called ml_gt has been created that includes methods for 

preprocessing, learning and evaluation. This library is then used to 

implement code used in experiments. A framework has also been designed 
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to streamline the experimental process.  

All of the machine learning approaches attempted use the same feature 

vectors and therefore meant that a streamlined system could be created as 

feature vectors would not need to be calculated multiple times, but saved 

as files to be used later.  

The target systems for this product are Windows and Linux systems with 

CUDA-capable GPUs. OSX is not targeted because its lack of Nvidia GPU 

utilisation, therefore taking substantially longer to train the networks.  

4.2 Data Preparation  

Input Files 

The audio files used in this project did not have naming conventions 

relative to guitar tunings. This was problematic, since the labels used in 

classification were determined by the filename. This meant changing 

filenames accordingly and sorting audio files into appropriate directories. 

Artists were put in separate directories and files were named with their 

tuning as a prefix. E.g. “EADGBE – All I Want.wav”. To keep everything 
consistent, all files were also converted to wav files before being put 

through the system.  

Splitting Audio Files 

The function split_audio and split_folder found in ml_gt.preprocessing 

have been used to create audio slices from the original long form audio. To 

artificially increase the number of samples gained from a single song, 

overlapping the split audio files with a window was experimented with. To 

accomplish this scipy.io’s wavfile function was used to read and write wav 

files. Once the wav file was read in the function would merely iterate over 

the signal with a step size of (chunk size-window length) and write the wav 

files, splitting the different tunings into folders and naming the files aptly.  

Labelling 

A function named create_labels was created to save a list of labels that 

corresponded with the training data set so that all approaches could merely 

import labels without having to create them each time. Sklearn’s 
LabelEncoder function was used to encode labels into integer formats so 

that sklearn could utilise them in its functions. For the deep learning 

models, where keras was used, labels also needed to be one hot encoded 

and are done using sklearns OneHotEncoder function.  

4.3 Sample Pre-Processing  

Data Representation  

Using the labelled data generated by functions outlined in Data 

Preparation, we need to now convert the raw waveforms into the time-

frequency space as mentioned previously. These transformed 

representations act as the feature vectors used throughout the ML 

algorithms. Librosa’s STFT, CQT and MFCC functions were used here.  
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Short Term Fourier Transform  

The STFT function in Librosa is implemented well with good default 

settings and is a good benchmark to work and compare off. STFT is a very 

standard representation and doesn’t amplify any musical features making it 
a great starting point. If the network can create successful relationships 

between an STFT representation and the tuning, the more specified 

representation should generate much better results.  

Constant-Q 

Librosa’s implementation of constant-q allows for many parameters to be 

changed, however the most impactful parameters that could be changed 

were, minimum frequency and number of frequency bins. Librosa’s default 
min frequency is a C1, at 32.70~ Hz, however this was changed to an E, at 

41.2~Hz (MIDI note 28). The reasoning is that on a standard guitar tuning, 

the lowest string is E at 82.4~Hz and the likelihood of this being tuned a 

whole octave down is unlikely. However, as the lowest string can often 

characterise the rest of the tuning, it’s vital that detail in the lower 
frequencies aren’t lost, hence the chosen minimum freq. The number of 
frequency bins was experimented between 37-88. The range decided was 

based on the fact that guitars up to the 12th fret have 37 different notes 

whereas pianos, and what the western scale is based off have 88 different 

notes.  

MFCC  

The main parameter that is controllable here are the number of mel 

frequency banks and number of MFCCs. Due to the nature of MFC, the 

lower frequencies are given a higher resolution regardless so stayed with 

the default number of frequency banks (128). The number of MFCCs 

however, effect the dimensionality of our feature space and therefore the 

networks performance, so lower numbers like 13 and 20 were 

experimented with. MFCC’s use of DCT to allows for lower numbers of 
coefficients as one of DCT’s properties is that it de-correlates and keeps 

most of the information in the first few coefficients. 

4.4 Parameter Selection  

Tuning hyper-parameters can hugely affect the performance of any ML 

algorithm. Although not all possible configurations were able to be tested, 

most popular configs were tested. 

GridSearchCV  

Sklearns GridSearchCV allowed for a streamlined method for testing 

multiple permutations of parameters while displaying their performance 

and return what the parameters were best wrt. a performance metric.  

The GridSearchCV() function takes a function of the model being used as 

the first parameter. This gives the ability to use custom models and meant 

that Keras models could be tested as well as the out-of-the-box sklearn 

networks (SVM and kNN).  

The parameter ranges that were tested are as follows: 
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 kNN 

Parameter Possible Values 

Weights  Uniform, Distance 

Neighbours 1, 2, 5, 10, 15, 20 

 

  

SVM  

Parameter Possible Values 

C Logspace(-1, 10) Steps = 13 

Gamma  Logspace(-9, 3) Steps = 13 

Kernel rbf  

 

DNN – Sequential Model  

Parameter Possible Values 

Layer Config [12], [12, 6, 6], [6 6 6], [6]  

Activation Relu, tanh 

Epochs 100, 150 

Batch Size 5  

 

CNN Model 

Parameter Possible Values 

Layer Config  [16, 16, 16], [16, 16], [16, 12], [12, 12], [12, 6], [6, 6] 

Activation  Sigmoid  

Final Activation  SoftMax  

Optimiser  Sgd  

Epochs 150, 200 

Batch Size  50, 100 

 

Kernel rbf was decided on as the first kernel to try, due to its common use 

for classification tasks with non-linear datasets. It performed well on the 

first run through and therefore did not need to be experimented with.  

Due to the high performance of the SVM and kNN classifiers, it was 

estimated that a large epoch and batch size would not be necessary and 

would take up unnecessary time. This is why they were kept to relatively 

low numbers.   

For the activation function (not including the final layer), two popular non-

linear activation functions were decided on, relu and tanh. Non-linear 

activations although are more difficult to train, achieve much better results 

as linear activation functions cannot learn complex mappings. 

Tanh was decided on over sigmoid as they have very similar shortcomings, 

while tanh being easier to train. Relu is the de facto default for NNs that do 
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not use reinforcement learning and is relatively easy to compute with good 

results.  

4.5 Neural Network Architecture  

Training Parameters 

CNN  

Layer (Type) Parameters 

Input Input shape = Spectrogram Dimensions with added 

1st and 4th layers 

2D Conv Layer  Filters = 12, Kernel Size = 3, Activation = Sigmoid  

2D Max Pooling Layer  Pool size = (2, 2)  

2D Conv Layer  Filters = 12, Kernel Size = 3, Activation = Sigmoid  

2D Max Pooling Layer  Pool size = (2, 2)  

Flatten   

Dense  Units = 12, Activation = Sigmoid 

Dense  Units = (no. of tunings), Activation = SoftMax  

Figure X: CNN Architecture  

 DNN  

  

Layer (Type) Parameters 

Input Units = 12, Activation = relu, Input shape = 

Spectrogram Dimensions  

Dense  Units = 12, Activation = relu  

Dense Units = (no. of tunings), Activation = SoftMax 

 

Sigmoid Layer  

Sigmoid layers are used to normalise data, independently of each other. It 

will squash a vector into a range between (0,1), independent of each class. 

Sigmoid layers are often used as output layers for multi-label classification 

problems due to this. This is used to normalise the vector before applying 

the SoftMax layer.  

SoftMax Layer 

A SoftMax layer works very similarly to a Sigmoid layer in the way it 

converts a vector into a range between (0,1) however the sum of all values 

in the vector should equal to 1. A SoftMax layer was used for the output 

layer of the network as the problem is a multi-class classification problem 

where each input can only be 1 specific class. The sum of all vectors 

equalling 1 is useful here as when increasing the value of one output class 

the rest lower, highlighting one specific class, which may not happen in a 

Sigmoid layer.  

Loss Function  



17 

 

Categorical Cross Entropy was decided on for the use of the loss function. 

Cross Entropy loss is the measure of performance of a classification model 

which has a probability between 0 and 1 as output. Cross entropy loss 

increases as the predicted probability diverges from the ground-truth value, 

i.e. the perfect model would have a loss of 0. Categorical Cross Entropy 

loss, also called SoftMax loss, work by applying a SoftMax calculation 

before applying Cross Entropy. Cross Entropy is calculated for each 

individual class then a gradient expression is used to calculate a loss score 

that considers negative class probabilities and positive class probabilities.  

Dropout Layers 

Dropout layers are a regularisation technique for NN models that are used 

to help reduce overfitting. They work by “dropping out” random neurons 
in the network when training, setting some of the input vectors values to 0. 

This has the effect of meaning no one neuron is being relied on to classify 

the tuning. It was key to include these dropout layers due to the similarity 

of the training set. Using primarily Joni Mitchell tracks means that the 

network has a high potential to become fragile and pick up on different 

features to recognise the tuning, such as style of play when using a specific 

tuning. This was potentially dangerous due to the fact most tunings were 

found in the same albums.  

Setting the dropout layers probability to 0.4, a relatively large value, 

applying dropout to both convolutional layers seemed to suffice. This 

created a more robust network when tested on different artists and albums 

tracks.  

4.5 Evaluation  

A few logging features were created so that during and after training we 

could evaluate the systems performance. During training Keras’ 
CSVLogger is used to identify areas where the networks accuracy and loss 

reach optimal levels, by logging loss and accuracy over each epoch. This 

allows use to recognise when certain configurations reach peak 

performance much earlier/later than others.  

Alongside this txt files are created with parameter configurations for the 

spectral analysis, network and audio slice size. These txt files also include 

which files the network predicted wrong so that they can be inspected 

further. This was useful, as separation of the audio data was not 

implemented, meaning that the network may pick up audio with no guitar 

(just voice and piano for example) and identify it incorrectly. Inspecting 

the files that were classified incorrectly gives us a better idea of the 

networks performance.  

Before and after training all necessary files are saved using pickle, numpy 

and keras to .pl. npy and .h5 files respectively. These include the model, 

encoded layers, feature vectors etc. so that a model can be initialised 

without the need for retraining. Saving all the other necessary data also 

allowed for training of different network configurations without the need to 

recalculate feature vectors.  

4.6 Problems encountered  
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GPU Memory Allocation  

During the parameter evaluation for the CNN when using the grid search, 

CUDA threw an unexpected memory allocation error. This had happened 

previously when first implementing the CNN but was solved by changing 

the tensorflow config to allow for growth, utilising all the GPU’s available 

memory.  

The memory allocation error occurred late on in development, while the 

network had trained for many hours overnight. Initially this was a huge 

setback, however the issue was resolved by training the network in batches 

instead of at 1 epoch at a time.  

Chapter 5 

Results  

All experiments were conducted using the network parameters outlined in 

the Implementation section. Results were gathered using a windows 64-

bit System using a GTX 1060 6GB GPU, i7 6700 and 8GB RAM.  

Performance was evaluated in a number of ways.  

5.1 Grid Search Results 

SVM 

 

kNN 
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DNN  

 

CNN 

 

 

 

5.2 Summary of results  

What was discovered through the results was that the spectral 

representation of the audio data had very little impact on the final 

performance of the networks. However, MFCC achieved peak performance 

the quickest in all networks tested, with no spikes in the loss graph. The 

MFCC representation also being the fastest to compute feature vectors for 

makes it the ideal candidate for tuning classification tasks. 
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CQT – DNN

CQT – MFCC  

5.3 Evaluation of results 

It has been determined that the neural network architecture effects the 

accuracy of a model much more than spectral representation.  

Chapter 6  

Conclusion  

This project aimed to evaluate the feasibility of using machine learning 

techniques to detect guitar tunings from audio. It has been shown that is 

possible, with a variety of solutions being explored.  

The average time for training machine learning models was around 15 

minutes for the CNN, if cross validation was used 5 times and around 12 

mins for the normal DNN. Peak performance was reached early on for the 

deep neural network models, especially the regular non-Convolutional 

model. This suggests with more performance tweaks and better sample 

choice, that the Network models could yield better performance, possibly 

training quicker and with fewer resources, classifying data outside of the 

original training space (Joni Mitchell tracks) with higher accuracy.  

The ml_gt library created takes already existing solutions and combines 

them with modularity in mind. This provides a good abstraction for the 

tools used in this project and has been designed in this way to allow easy 

application into further work.  

It is encouraging that simple off-the-shelf networks would yield such great 

results in this task, especially as it was not expected that the simpler 

machine learning techniques would perform so well. This is promising for 

the prospects of future work as what has been found here can be taken into 

more complex spaces with a strong base to build off.  
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Another approach to this project could have focused on designing an 

optimised network, with possible encoder/decoder integration. However, 

converting Keras code into pure TensorFlow or PyTorch proves a time-

consuming task due to the high learning curve presented, especially due to 

the lack of documentation available compared to Keras. However, in 

consummation, it has been proven useful to display that there is negligible 

difference in the spectral representation used when the network has been 

trained on a relatively small and simple data set.  

As a whole this project has been a great learning experience, with much 

unexpected success and many problems along the path. It has been 

completed with a great deal of scope left for future work and created in a 

way that should make it easy to adapt.  

6.1 Further Work  

Future work should first focus on the current problem and structure, 

optimising the system for larger problem spaces. As explained before, this 

work has also been designed to be used alongside current recognition and 

classification solutions to improve them or create something new entirely. 

Some possible avenues are discussed below:  

6.1.1 Current Problem Structure 

Optimise Processing Pipeline 

Only the most popular network configurations were decided on for the 

networks used in this project due to time constraints on training the data, 

with the current hardware available. This has meant that possible more 

niche configurations and larger networks were shied away from, that may 

have been more optimal. Two possible solutions that could be used 

separately or together are:  

• Parallelise Time-Frequency Transformations:  

There has been some work on performing FFT on multiple cores 

in parallel for python[7]. This could be adapted to also perform 

specific transformations such as MFC and CQT. This would allow 

for multiple feature vectors to be created in a much shorter time.  

• Asynchronous Pre-Processing: CUDA is currently used during 

the training of deep network models to utilise the GPU and results 

in faster training of the models. This however leaves the CPU 

almost completely idle during the whole learning process. It 

would be feasible to have the CPU perform pre-processing tasks 

for current data with different parameter configurations or to 

render time-frequency transformations for new data while the 

networks are training. This would lead to optimal hardware usage 

and allow for greater experimentation in a shorter amount of time.  

Automated Annotation  

One problem encountered during the creation of this product was the fact 

that there isn’t any available audio data that is annotated with instruments 

used at specific times. This has led to the network being trained on false 
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data, where there can be no guitar audio for a few seconds. This leads to 

biases being created for non-guitar audio and can affect validation results.  

With more time, a guitar recognition system could be created to isolate the 

guitar audio from the tracks, automatically annotating where guitar parts 

are found. 

For this task I would propose using a VGG network architecture, a 

relatively new CNN architecture seeing large success in classifying image 

data. Although it is primarily used for images it has seen some success in 

classifying spectral representations audio data, particularly in noisy 

environments[8]. The VGG structure is very large comparatively and 

generally needs a lot of data. Freesound is an example of a repository of 

annotated audio data, taken from a variety of different environments, and 

would be ideal to train the network. The structure of the system would 

follow a similar system to the one created here: Extract data set from a 

repository, Apply necessary pre-processing (clipping, spectral 

transformations etc.), run through VGG network and validate.  

After the network is trained to classify different instruments, it will then be 

used to detect whether there is a guitar at different audio slices and 

annotate appropriately, meaning those slices without be taken out of 

training and validation sets.  

This would lead to unbiased model and be necessary for consequent future 

work into the subject.  

Time-Frequency Representations 

Although there has not been much difference between the time-frequency 

representations for this problem using the current data set. It is possible 

that when trying to identify non-folk artists or when trying to obtain 

precise transcription such as notes played and/or fret positions that the 

input data should be more optimised for musical analysis. It is proposed 

that the methods suggested below be implemented into the current pre-

processing library, through functions similar to other time-frequency 

transformation methods: 

• CQCC – Constant-Q Cepstral Coefficients are an effective way 

of representing data for musical analysis that address the 

shortcomings of MFCC. They are produced in a similar fashion 

to MFCC’s, with the Constant-Q power spectrum used instead of 

Mel-Frequency. CQCC will generally take longer to calculate, as 

the Constant-Q transform produces a geometric frequency basis 

while DCT expects an orthogonal basis[4].  

• Dynamic-Q – AnthemScore[5] is a piece of software for audio 

transcription into MIDI, that has achieved success in transcribing 

piano in particular. It uses a transformation they’ve penned 
“Dynamic Q”. There is no available paper on Dynamic-Q; 

however it’s been described as working by amplifying Q values 

in regions where nearby harmonics are detected.  

Increasing Q-Values has the trade-off increasing frequency 

resolution (So that detail about harmonics can be picked up more 

easily) at the cost of poorer time resolution.  

It is predicted that similar detail about audio harmonics maybe 

attained from using multiple constant-Q transformations with 
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different minimum frequencies and bin numbers as input into a 

CNN. This would work in a similar way to using RGB inputs for 

CNN’s where each different constant-Q configuration would be a 

separate channel. Some experimentation with Constant-Q could 

create a significantly more robust model, and be potentially used 

in more complex problem spaces.  

 

6.1.2 Applications into Other Work 

Precise Guitar Transcription 

Obtaining relevant semantic features from audio data has already been 

proven to be possible in this paper, along with others attempting to 

transcribe exact fret positions of guitar notes. Research has been completed 

in the area, but tunings are still required to be known before classification, 

and the research generally consists of one or few tunings used. 

What is proposed here is that a solution is created that can obtain relevant 

semantic data such as: guitar type, exact fret positions and intonation of 

notes; from audio data in which we have no information on.   

The methods laid out in Automatic Tablature Transcription of Electric 

Guitar Recordings Estimation of Score – and Instrument Related 

Parameters[6] are a good base for extracting exact fret position. The paper 

describes a solution for transcribing guitar tabs based on isolated guitar 

recordings; more importantly it also transcribes polyphonic guitar 

recordings. It works by having a lookup table of possible notes for a 

frequency and their positions based on the tuning. Once features are 

extracted from note onset, offset and pitch, they are passed through an 

SVM and plausibility filter to predict fret positions.  

The plausibility filter effectively exploits known theory about guitar 

playing to reduce the amount of possible fret combinations and give 

weighting to the most probably position combinations. i.e. it may exclude 

combinations of notes where difference in fret position is greater than 4; 

and give more weight to positions that are closer together when notes are 

played quickly. 

The main limitations of the solution proposed in this paper is that the guitar 

tuning must be known before transcription can be executed, and it requires 

knowledge on instrument construction for optimal results. 

Combining the methods used here along with the system created in this 

project, it should be feasible to create a robust and thorough system that 

can transcribe unknown, non-annotated guitar recordings. This type of 

transcription opens the door to a plethora of further uses that have 

previously been very difficult tasks to complete, such as:  

• Capturing Style from Contemporary Music for Audio 

Synthesis  

• Automatic Gamification of Guitar  

• Cultural Preservation and Remastering of Damaged/Old 

Audio Tracks  
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Capturing Style from Contemporary Music for Audio 

Synthesis 

Solutions exist to synthesise music using AI from genres and artists 

commonly found in harmony textbooks, such as music from Bach or The 

Beatles. However, these already have a lot of theory behind them to be 

utilised to optimise the solutions, and in terms of classical music, things 

like the musical structure and tunings of instruments are very stagnant and 

are experimented with less often. To have a general system to capture style 

and utilise it in full automation for contemporary music containing real 

instruments is unseen.  

 

By utilising a robust guitar transcription system, which would in theory be 

able to transcribe, to a certain accuracy, most given guitar recordings 

(enabled by the use of a tuning and instrument construction classifier), the 

ability to automatically annotate audio data with high detail is available.  

 

Having a dataset so large, with precise annotations, allows a style 

dictionary to be formed from the data that has been processed. This opens 

the door for the use of dictionary learning approaches to be used to transfer 

style from one artist/genre to another. Although notes played may be the 

same, what decides the style of the piece is often the intonation of how the 

artist plays those notes and what effects are applied. There are already 

methods on how to apply an array of musical effects to audio, such as 

vibrato, tremolo, delay etc. to waveforms. The style transfer should work 

by taking a transcribed recording then find the best match between notes 

played between the recording and the style it needs to be transferred to. i.e. 

if you recorded C, D, E and wanted to transfer to Jimmy Hendrix’ style, 

the system would search for the closest recorded data of in terms of timing 

and notes used by Jimmy Hendrix. Then some DSP techniques should be 

applied to add/subtract appropriate articulation that was used in Jimmy 

Hendrix’s feature such as vibrato or sound properties such as changing an 

acoustic recording to sound like it was played on an electric. Important to 

note that Neural Style Transfer[9] has also yield good results in converted 

paintings and images into different art styles in recent years, and that a 

combination of both dictionary learning with some Neural Style Transfer 

applied for enhancement may provide optimal result. The worry with 

solely using Neural Style Transfer is that dissonance can be created easily 

within audio if small parts of the sound are adjusted incorrectly, so a more 

structured, predictable approach is desired.  

Finally, using the semantic data and style banks created previously, there is 

the ability to synthesise completely new audio and restore possibly 

damaged audio. As seen in this project, and in many applications of CNN’s 

throughout the audio processing field, computer vision techniques display 

much success when applied to spectrograms of audio. It is suggested that 

some adaptation of Inpaiting techniques (usually used for restoring old 

pictures or getting rid of items from images) are utilised to clean up old; 

damaged recordings. The ability to capture semantic data from new un-

annotated recordings due to the transcription system, also means that the 
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inpainting techniques could be utilised as a creative tool. Artists could 

allow it to learn their style and clean-up their audio or fill in gaps/extra 

notes that they may not have thought of.  

 

The techniques discussed here can also be applied more generally, to many 

different instruments and lay out a thorough design model for extracting 

and utilising semantic data in music.  

Chapter 7  

Reflection on Learning  

Extracting guitar tunings from audio using machine learning techniques 

has been an invaluable learning experience across an array of domains. A 

large amount of time has been spent researching topics in the problem 

space of the project: DSP, Machine Learning, Deep Learning & CNNs. 

While having a novice level understanding of Machine Learning 

beforehand, the completion of this project given me a large amount of 

understanding and practice in the area and can see myself transferring 

those skills into non-DSP related fields with ease. By attempting to create a 

general use package as the foundations for my project, I can say that I’ve 
been able to apply the things learnt throughout my computer science career 

into a professional product and this has made me a lot more comfortable 

when handling Python as a whole.  

As a result, the work done here has strongly developed my skills in 

researching concepts that are out of my comfort zone and allowed me to 

learn about niche topics specifically required for this field. 

During this time, I have grown to appreciate the depth of feature extraction 

via signal processing and endeavour to go deeper with the skills I’ve learnt 
throughout. In all honesty, I feel extremely lucky to have delved into this 

research area, eagerly awaiting what future work I’ll be involved in.  
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