
Deep Learning Guitar Tunings

One Semester Individual Project

Final Report

Author: Deeon Roy

Supervisor: Prof. David Marshall

School of Computer Science & Informatics

Cardiff University

May 2019

2

Abstract

Guitars can be tuned in a variety of tunings and take a master’s ear to be able to
detect this just from listening to the audio. In this project I aim to investigate

possible machine learning (ML) and deep learning techniques to detect guitar

tunings from audio. This audio will not be clean audio, i.e. there will be other

instruments playing alongside the guitar along with other noise. This project

presents a robust solution, comparing what combination of audio transformations

and ML techniques work best in efficiency and accuracy.

Acknowledgements

Prof. David Marshall for excellent teaching in the field of DSP and the great

enthusiasm he brings to subject to motivate me to complete this paper.

3

Chapter 1

Introduction

Strings resonate differently depending on frequency of the note plucked and string

thickness, therefore having different harmonics when doing so. This is why, even

when same note is played on a thick string, you can still hear the difference

between that note being played on a thinner string. When tuning a guitar, the

tension of the string is adjusted effecting the young’s modulus of the string and

therefore the frequencies it produces when plucked at different frets. Open strings

will have a particularly will have a distinctively different sound and harmonics

associated with them. An assumption made in this thesis is that all the information

necessary to classify tunings are audible, and therefore available in the time-

frequency domain. For the purposes of this thesis I will be using songs that contain

primarily guitar and voice with little accompaniment.

The project can be broken down into these steps:

• Guitar audio gathered and tagged appropriately

• Split the audio into equally length segments to gain a large amount of

sample data

• Use a variety of transformations into the spectral domain to test which ones

work best with what algorithm.

• Feed the samples spectrogram data into machine learning algorithms to

classify the tuning.

• Analyse data on how well the algorithm’s trained and adjust.

Aim

The aim of this project is to develop a machine learning approach that can predict

guitar tunings on a given song. To prove the system works, the model will be tested

on unseen audio data taken from other artists and free samples.

Outcomes

The project presents an efficient and robust machine learning architecture for exact

classification of guitar tunings, that can be used in future for more advanced audio

transcription.

It also contains the development of a reusable toolset that performs pre-processing

tasks and allows easy adjustment of network parameters alongside comparison and

testing tools.

The focus is to have it be robust for acoustic guitars with minimal accompaniment

however with more time and resources the system could be made to work for all

types of guitar with larger amounts of noise.

4

Chapter 2

Background

2.1 Context

This chapter contains some background information necessary to understand for

the context of the paper.

The Fourier Transform

The Fourier transform converts an audio signal that’s in the temporal domain,
where the signal is a function of time, and converts it to the frequency domain.

This break down of a signal into its fundamental frequency components allows for

spectral analysis and frequency manipulation. This transformation is integral to

analysis of audio data as it allows us to visualise a signal in the form of a

spectrogram.

In the context of this project we use the Short-Term Fourier Transform to plot

frequency power against time.

Short Term Fourier Transform (STFT)

STFT is a lossless function so we don’t lose any relevant information and works by
applying a sliding window that overlaps applies a 1D Fourier Transform over the

frequency bins for each window. The STFT is a very basic transformation that is

fast and not very intensive. We compare this method with other transformations

into the frequency space throughout the project.

Constant-Q Transform

The constant-q transform is related to the Fourier transform and is based off the

STFT. It is a transform designed for musical analysis as it gives higher detail for a

large frequency range. Due to the STFTs linear scaling factor, it compresses the

lower frequencies into a small space and means they’re less defined. Constant-Q

uses logarithmically scaled frequency bins[1] and ensures the lower frequencies are

well defined. This is important for detecting guitar tunings as noticing small

differences in the way strings resonate is easier for the thicker strings. What

determines the size of the bins is the Q factor, where:

Q = centre frequency/bandwidth

Cepstrum Analysis

The Cepstrum of a signal is the result of taking the inverse Fourier Transform of

the logarithm of the expected spectrum of a signal. It’s commonly used in the
analysis of human speech. A Cepstrum contains information about the rate of

change in different spectrum bands.

Discrete Cosine Transform (DCT)

The DCT is a lossy transform often used in image/video compression as its far

simpler than FFT(Fast Fourier Transform). It works by converting a 2D matrix of

5

data into functions that represent the most frequent components in the matrix. By

taking a subset of this data you can usually get the most important parts of data and

reduce the amount of redundant data.

Mel-Frequency Cepstrum Coefficients (MFCC)

MFCCs main difference with a normal Cepstrum is the use of a linear Mel-scale

that it tuned to the hearing of humans. MFCCs are calculated by performing STFT

and then mapping the spectrum to the Mel-scale. Taking logs at the mel

frequencies and applying a DCT on the Mel log powers gives us a spectrum where

the amplitudes are the MFCCs. These MFCCs are then used as audio features.

This is commonly used in speech recognition and analysis due to its lossy nature,

reducing computation time while still keeping the most important features of audio.

MFCC will be used as an alternative benchmark to Constant-Q and STFT to see if

it’s feasible to cut down computation time and keep high accuracy with a ML

model.

Machine Learning

Machine learning is a term used to describe several algorithms that share the same

principle. Using training data to discover relationships between data sets that can

then be applied to unseen data to make accurate predictions. Supervised ML

algorithms are those where you have labelled training data to train the algorithms

and is what will be used in this project. There are two main types of supervised ML

problems: Classification and Regression. Classification is where the output value

of the algorithm is a strict category, e.g. “red”, “blue”. Regression is where the

output is a real value such as “pounds”, “weight”.

This projects problem is a multivariate classification problem, where the categories

are the guitar tunings, e.g. “EADGBE”, “DADGBE”.

K-Nearest Neighbour (kNN)

A kNN is a very simple ML algorithm, that is useful for its low calculation and

training time. It’s a non-parametric method that works by plotting data points on a

plane. When classifying new data it will plot the point on the same plane and take

the majority of its k nearest neighbours. K is the only adjustable parameter here

and will directly effect the accuracy of the algorithm. Making k too large will cause

the algorithm to pander to categories with the largest amount of points i.e. will

classify the lesser used tunings as more commonly used tunings. However, making

k too small will result in in-consistent results and may classify fringe data

incorrectly.

6

[3]

Support Vector Machines (SVMs)

SVMs work by plotting each data item as a point on an n-dimensional space where

n is the number of feature’s present. The value of each feature then becomes a

coordinate on this plane, these are the support vectors. Classification works by

creating a hyper-plane that differentiates the classes the most. The hyper-plane that

new data falls into determines what class it’s classified as.

SVMs tuneable parameters include: Kernel, gamma and C. The kernels are used to

convert a low-dimensional space into a high dimensional one. This allows us to

convert non-separable problems into separable ones. Gamma is the coefficient used

in the Kernel selected and a high gamma will try to make an exact fit on the

training data resulting in overfitting. C effects the error term, this is the trade off

between a smooth decision boundary and classifying points correctly.

Neural Networks (NNs)

NNs are a framework for ML algorithms based on biological neural networks

found in animal brains. They are represented as a graph of neurons (nodes) that

take an input and have a set of output nodes. Data is taken in and depending on the

value passed through in the previous node a value will be passed onto a subsequent

node until it reaches one of the output nodes.

Training an NN consists of adjusting the weights of each node in the graph. At the

beginning of training, these weights will change drastically as it figures out the

hidden relationships between data and their classification. As training progresses

the weights will change less and less as it fine tunes the graph. Training is done

over a series of epochs, where the same training set is passed through the network a

number of times. The network adjusts it’s weights based of this training set every

epoch to reduce loss.

Measuring an NNs quality comes in the form of its loss function and accuracy.

Where loss is the cost/error of a prediction, we are trying to reduce loss as much as

possible, e.g. If a cat is 0 and a dog is 1, and we put an image of a cat into the

network and it predicts 0.3, the loss is 0.3. Accuracy can be measured in a few

different ways, in this project we will be looking at the Recall, Precision, F-1 and

Accuracy scores to judge our network. Where Recall is the ability to find all

correct predictions, Precision is the ability to not to label negatives that are

positive, F-1 is an average of Precision and Recall and Accuracy is simply the

number of correct samples predicted as a percentage.

Deep Neural Networks (DNNs)

7

Deep neural networks are a general term for NNs with hidden layers between the

input and output layers. The stack of hidden layers has their weights adjusted to

produce a reliable prediction. Deep NNs typically have a longer training time and

have one main downside of having the hidden layers being a black-box. This

means the interpretability of the algorithm is largely unknown and means we can’t
always see why it’s making the decisions it is. However, after training, when a

model is created, the model is generally very robust and performs in real time.

Convolutional Neural Networks (CNNs)

CNNs are commonly used for DNNs where the hidden layers are replaced by

Convolutional layers and Max Pooling Layers. The Convolutional Layers work

exactly like they do in Computer Vision, where they reduce an image input into its

most important features, these are then followed by the Max Pooling Layers. These

Max Pooling layers work by taking the max of the reduced image matrix allowing

us to obtain the important features of a more abstract data set and therefore

reducing over-fitting. The final layer then uses this data to make a prediction.

2.2 Tools and Software Used

Python

Python was the programming language used because of the number of packages

available for Machine Learning and Visualisation. The ability to quickly test

different techniques and visualise their data with ease was integral to completing a

robust project in the time frame required.

Sci-Kit Learn (sklearn)

This python package is an all-round package used for machine learning. It contains

many well-known algorithms with customisable parameters, along with tools for

pre-processing, testing and visualisation in terms of any learning algorithm.

Modules used for pre-processing include: LabelEncoder, OneHotEncoder,

StandardScaler, StratifiedShuffleSplit and GridSearchCV. These modules were

used to allow automation of training and testing sets, labelling the data

appropriately and preparing them for machine learning use. It was also used to

create balanced training and testing data sets.

For testing and visualisation sklearn allowed easy creation of confusion matrices,

classification reports and kept track of accuracy scores.

Sklearn also allowed us to quickly implement kNNs and SVMs with its “plug-and-

play” modules and made saving our machine learning models and feature vectors

for future use simple.

Keras

Keras is a high-level library for Deep Learning in python. It uses TensorFlow as

backend, a framework for neural networks that is regarded as very future-proof.

Keras is a commonly used library for deep learning for its extremely fast

development time, while still giving accurate results and apt control over your

network.

Due to Keras’ high level nature you cannot look deep into array expressions and

8

optimise your network to up-most potential, like in PyTorch. However, due to its

ease-of-use in implementing Deep learning models, it sufficiently reduced

development time and allowed the experimentation of various methods in this

project.

LibRosa

LibRosa holds invaluable tools for audio processing in python and is regarded as

the default audio analysis library for python due to its large amount of features. It

was used to create the various spectral representations of the audio data.

2.4 Practical Applications

This project has created a framework to be continued and used in further work in

the field. A complete more robust product, accomplished with more time would be

necessary for the following applications:

Audio Transcription

This work could be integrated into music transcription tools for professional and

amateur artists allowing them to learn from music that has already been created.

Currently transcription tools merely capture notes played but don’t contain the

tuning the guitar was in and often don’t contain where the note was played on the

guitar, which can heavily affect the sound and style of song. Due to the fact a note

can be played on many places on the guitar, figuring out the tuning of the guitar

before transcription is a necessary step to precise guitar transcription. The models

developed here can be used to extend current applications already available.

Capturing Style of Contemporary Music

Research into capturing style of orchestral music has started to become popular and

has had some success. However, due to the standard nature of how the instruments

are played and tuned, fine details such as tunings of each instrument are not

necessary. In contemporary music that uses guitars, different types/strings/tunings

are used throughout and dictate the artists style and fingerprint. The product

created here can be used in conjunction with other classification products for

notation, and guitar type to build style profiles for music. Capturing style in this

way has many applications including: Cultural preservation and remastering of

old/damaged audio, Creative tool for artists allowing the model to fill in gaps in

their music based off their style or to create new music based of artists that may

have passed.

Interactive Media

There are many video games and interactive experiences that use music as the core

element. Things like Rockband, Guitar Hero, BeatSaber etc. give you the task of

imitating pre-recorded tracks for points. These tracks have to processed and

programmed into the game by hand, meaning users can only play with tracks

developers have decided to convert into the system. However, with the ability to

detect tunings, further research into precise transcription could mean that you have

a system that allows users to plug in their own music of choice into these

interactive experiences.

9

Problems

For the applications stated above, the main problems arise from needing high bit

rate annotated samples that don’t contain much noise or polyphony. However, due

to this product being able to detect tunings in noisy environments with relatively

low-quality audio, it may mean that making precise predictions on transcription

becomes substantially easier because of the new information that can be assumed.

By obtaining tunings, using a combination of music theory and how strings

resonate at different lengths, along with methods to separate signals to detect where

notes were played without having clean source samples.

These applications are discussed in more detail in Chapter 6.1 Further Work.

Chapter 3

System Overview

3.1 Overview

The project attempts to prove that using machine learning methods is feasible for

solving the proposed research question. The initial focus is therefore to show that

the solution has potential, followed by research into how the solution can be

optimised for better performance. In order to accomplish this a framework has been

designed as a test bed to compare and experiment different approaches to solving

the problem in a machine learning space. The framework employs a library of

functions that have been designed to be modular and abstract away all non-

essential details from the development framework. Resulting in a clean easy to

understand system that streamlines development.

This project has a strong focus on what combinations of data representation and

machine learning model combine to achieve the best results and is thus broken

down into 3 main sections:

• Data Collection

• Pre-Processing

• Network Architecture/Configurations

The framework has been designed to iteratively implement all 3 tasks and is outline

in Chapter 4: Implementation.

Project Structure

During development, the optimisation of networks hinged on constant evaluation

and performance of current solutions to the problem. This meant that the initial

focus of seeing if deep learning methods had potential was answered very quickly

and improvements could be made aptly. The outline of development is represented

in these steps:

1. Research: Researching NN architectures, Current solutions to similar

problems, Data Representations, Pre-processing

2. Data Collection: Obtaining data, downloading and sorting it.

10

3. Framework Development: Create a reusable platform that has all the tools

to test various network architectures, data representations that logs

findings.

4. Experimentation: Perceiving performance of different network

architectures with different data representations

5. Optimisation: Changing hyper parameters of networks and pre-processing

elements.

6. Evaluation: Analysing differences in results and interpreting which

changes allowed for the best solution.

Steps 1-3 were done at the beginning of the project and were not iterated over

again. With steps 4-6 were iterated over many times to achieve a good result.

3.2 Data Collection

Data collection for this project was rather simple, it consisted of using Joni

Mitchell songs supplied by Prof. David Marshall. The Joni Mitchell song set

proved invaluable in this project, as she uses a large variety of standard and

irregular tunings. The folk nature of her sound also lends itself well as it

consists mainly of guitar and voice with few other instruments. This along with

free guitar samples lent itself well to the timespan of the project as training

data on more noisy environments could prove time consuming. Once the data

was downloaded it needed to be marked with the correct tuning, converted to

wav and sorted into its appropriate tunings. Marking the data appropriately

consisted of prefixing the filenames with the appropriate tuning.

Due to the nature of DNNs, a large set of sample data is required to train. To

artificially produce more sample data, audio files were split into small frames

and overlapped with each other over a window. The system iterates over a

directory containing appropriately named wav files and splits them aptly,

prefixing the tuning name for labelling later on. Different configurations of

audio frame and window size were experimented with in the project, to see if it

had an impact.

3.3 Pre-Processing

Before the audio data is ready for use in the chosen networks, a large amount

of pre-processing needs to be accomplished. How the data is processed before

entering the network may heavily affect its performance and was experimented

with to achieve the best results.

Data Representation

The audio data needs to be represented in some relevant format for the

networks to find relationships between the waveforms and guitar tunings. The

simplest way would be to sample amplitude at regular spaced intervals at a rate

at least twice the highest frequency of the waveform (Sample Rate). On the

grounds of Nyquit’s Sampling theorem, any lower would lose perceptual

quality. The most common sample rate being 44100Hz (CD Quality), which

11

captures good quality of audio without much redundant data. Data represented

in such a way is described as an array of samples/frames.

Using an array of samples is the rawest form of data representation, however it

is very computationally difficult to create any meaningful relationships

between audio presented this way and the harmonics of the strings played.

This is why the audio data needs to be converted into the time-frequency

domain. Pitch and harmonics are defined by the frequency of a sound, by

transforming the data into the frequency space, relevant semantic features of

the signal can be emphasised. This requirement of the project enabled

experimentation into which representation offers the best performance.

Here we experiment with 3 different time-frequency transformations to

accomplish this:

• STFT – lossless, basic baseline

• Constant-Q – STFT with optimisations for musical analysis

• MFCC – lossy representation that captures audio data perceived by the

human ear.

STFT serves as the baseline representation and works as a great benchmark

to compare Constant-Q and MFCC implementations. MFCC has been

included by virtue of its performance in similar audio-recognition tasks;

particularly in voice-recognition. It performs particularly well in voice-

recognition tasks as the Mel-Frequency log scale is tuned to human

perception of audio. This generally means that some musical information

about the signal maybe lost; however, guitar maestro’s can often tell a

guitar’s tuning just through ear so it’s possible that most of the relevant

information for classification is still available. MFCC’s lossy

representation also leads to it having a shorter computation time.

All 3 of the representations have a set of parameters that can be tuned to

emphasise the signal in different ways and will be experimented with.

3.4 Network Architecture and Configuration

The problem proposed is considered a multivariate classification problem,

with the input shape being the array shape of the data representation e.g.

Constant-Q’s input dimensions will be frequency bins x time. This varies

between STFT, Constant-Q and MFCC, so the input shape needs to be

variable. The output shape is the number of classifiable tunings, in our case

4. Problems of this nature prove easy to evaluate as the accuracy of

predictions is very clear cut.

Grid Search

The number of different networks being tested made it necessary to create

an efficient and comprehensive system for hyper-parameter selection.

Utilising a grid search allowed multiple parameter combinations to be

tested without the need to manually change them. The grid search works

by running all possible parameter combinations specified in a dictionary,

performs cross validation and returns analytics on all the configurations

tested. This was necessary to significantly reduce development time

without hindering the integrity of the experiments.

12

Performance Metrics

For a supervised network to learn the correct weighing’s of nodes, it

requires accurate feedback on its performance. The feedback it receives is

called the performance metric; this is what the network attempts to

improve when adjusting its weights.

The chosen metric for this problem was Categorical Accuracy. This is very

simply the number of correctly classified samples and is calculated at the

end of each epoch contrary to other common metrics used. This metric was

chosen on the grounds that the dataset contained some samples that did not

contain any guitar audio. The amount of “false samples” in each category

was unknown and therefore could affect results more drastically if another

metric was used, such as one that would incorporate precision.

These sections of guitar absence could not easily be trimmed for silence as

there was still voice and piano playing. To void these samples the data

requires to be annotated with instruments and time stamps. This could be

solved by using a musical instrument classifier, the proposed solution is

discussed in Chapter 6: Further Work.

Sequential Deep Neural Network

There are 2 ways to build Keras models: Sequential and Funcitonal.

Sequential models be the simplest of deep learning models used here. They

do not allow the user to define models that connect to more than just

previous and next layers like functional networks allow for. However, they

are simple to implement and run, often producing good results with a fast

training time. In the current implementation, no processing is performed on

the data as it passes through the sequential model, allowing it to train much

quicker compared to the CNN counterpart.

Convolutional Neural Networks

Convolutional neural networks are already heavily used in computer vision

applications and have seen a lot of success. They work excellently to

reduce over-fitting by abstracting data and finding only the most relevant

features within image data. Overfitting was reduced further with the

inclusion of some dropout layers. This was to increase the generality of the

network, due to the training data being from a small selection of songs by

the same artist. Here we treat the spectral representations of the audio

frames as the “images” and use a 2-D convolutional network.

Chapter 4

Implementation

4.1 Overview

A package called ml_gt has been created that includes methods for

preprocessing, learning and evaluation. This library is then used to

implement code used in experiments. A framework has also been designed

13

to streamline the experimental process.

All of the machine learning approaches attempted use the same feature

vectors and therefore meant that a streamlined system could be created as

feature vectors would not need to be calculated multiple times, but saved

as files to be used later.

The target systems for this product are Windows and Linux systems with

CUDA-capable GPUs. OSX is not targeted because its lack of Nvidia GPU

utilisation, therefore taking substantially longer to train the networks.

4.2 Data Preparation

Input Files

The audio files used in this project did not have naming conventions

relative to guitar tunings. This was problematic, since the labels used in

classification were determined by the filename. This meant changing

filenames accordingly and sorting audio files into appropriate directories.

Artists were put in separate directories and files were named with their

tuning as a prefix. E.g. “EADGBE – All I Want.wav”. To keep everything
consistent, all files were also converted to wav files before being put

through the system.

Splitting Audio Files

The function split_audio and split_folder found in ml_gt.preprocessing

have been used to create audio slices from the original long form audio. To

artificially increase the number of samples gained from a single song,

overlapping the split audio files with a window was experimented with. To

accomplish this scipy.io’s wavfile function was used to read and write wav

files. Once the wav file was read in the function would merely iterate over

the signal with a step size of (chunk size-window length) and write the wav

files, splitting the different tunings into folders and naming the files aptly.

Labelling

A function named create_labels was created to save a list of labels that

corresponded with the training data set so that all approaches could merely

import labels without having to create them each time. Sklearn’s
LabelEncoder function was used to encode labels into integer formats so

that sklearn could utilise them in its functions. For the deep learning

models, where keras was used, labels also needed to be one hot encoded

and are done using sklearns OneHotEncoder function.

4.3 Sample Pre-Processing

Data Representation

Using the labelled data generated by functions outlined in Data

Preparation, we need to now convert the raw waveforms into the time-

frequency space as mentioned previously. These transformed

representations act as the feature vectors used throughout the ML

algorithms. Librosa’s STFT, CQT and MFCC functions were used here.

14

Short Term Fourier Transform

The STFT function in Librosa is implemented well with good default

settings and is a good benchmark to work and compare off. STFT is a very

standard representation and doesn’t amplify any musical features making it
a great starting point. If the network can create successful relationships

between an STFT representation and the tuning, the more specified

representation should generate much better results.

Constant-Q

Librosa’s implementation of constant-q allows for many parameters to be

changed, however the most impactful parameters that could be changed

were, minimum frequency and number of frequency bins. Librosa’s default
min frequency is a C1, at 32.70~ Hz, however this was changed to an E, at

41.2~Hz (MIDI note 28). The reasoning is that on a standard guitar tuning,

the lowest string is E at 82.4~Hz and the likelihood of this being tuned a

whole octave down is unlikely. However, as the lowest string can often

characterise the rest of the tuning, it’s vital that detail in the lower
frequencies aren’t lost, hence the chosen minimum freq. The number of
frequency bins was experimented between 37-88. The range decided was

based on the fact that guitars up to the 12th fret have 37 different notes

whereas pianos, and what the western scale is based off have 88 different

notes.

MFCC

The main parameter that is controllable here are the number of mel

frequency banks and number of MFCCs. Due to the nature of MFC, the

lower frequencies are given a higher resolution regardless so stayed with

the default number of frequency banks (128). The number of MFCCs

however, effect the dimensionality of our feature space and therefore the

networks performance, so lower numbers like 13 and 20 were

experimented with. MFCC’s use of DCT to allows for lower numbers of
coefficients as one of DCT’s properties is that it de-correlates and keeps

most of the information in the first few coefficients.

4.4 Parameter Selection

Tuning hyper-parameters can hugely affect the performance of any ML

algorithm. Although not all possible configurations were able to be tested,

most popular configs were tested.

GridSearchCV

Sklearns GridSearchCV allowed for a streamlined method for testing

multiple permutations of parameters while displaying their performance

and return what the parameters were best wrt. a performance metric.

The GridSearchCV() function takes a function of the model being used as

the first parameter. This gives the ability to use custom models and meant

that Keras models could be tested as well as the out-of-the-box sklearn

networks (SVM and kNN).

The parameter ranges that were tested are as follows:

15

 kNN

Parameter Possible Values

Weights Uniform, Distance

Neighbours 1, 2, 5, 10, 15, 20

SVM

Parameter Possible Values

C Logspace(-1, 10) Steps = 13

Gamma Logspace(-9, 3) Steps = 13

Kernel rbf

DNN – Sequential Model

Parameter Possible Values

Layer Config [12], [12, 6, 6], [6 6 6], [6]

Activation Relu, tanh

Epochs 100, 150

Batch Size 5

CNN Model

Parameter Possible Values

Layer Config [16, 16, 16], [16, 16], [16, 12], [12, 12], [12, 6], [6, 6]

Activation Sigmoid

Final Activation SoftMax

Optimiser Sgd

Epochs 150, 200

Batch Size 50, 100

Kernel rbf was decided on as the first kernel to try, due to its common use

for classification tasks with non-linear datasets. It performed well on the

first run through and therefore did not need to be experimented with.

Due to the high performance of the SVM and kNN classifiers, it was

estimated that a large epoch and batch size would not be necessary and

would take up unnecessary time. This is why they were kept to relatively

low numbers.

For the activation function (not including the final layer), two popular non-

linear activation functions were decided on, relu and tanh. Non-linear

activations although are more difficult to train, achieve much better results

as linear activation functions cannot learn complex mappings.

Tanh was decided on over sigmoid as they have very similar shortcomings,

while tanh being easier to train. Relu is the de facto default for NNs that do

16

not use reinforcement learning and is relatively easy to compute with good

results.

4.5 Neural Network Architecture

Training Parameters

CNN

Layer (Type) Parameters

Input Input shape = Spectrogram Dimensions with added

1st and 4th layers

2D Conv Layer Filters = 12, Kernel Size = 3, Activation = Sigmoid

2D Max Pooling Layer Pool size = (2, 2)

2D Conv Layer Filters = 12, Kernel Size = 3, Activation = Sigmoid

2D Max Pooling Layer Pool size = (2, 2)

Flatten

Dense Units = 12, Activation = Sigmoid

Dense Units = (no. of tunings), Activation = SoftMax

Figure X: CNN Architecture

 DNN

Layer (Type) Parameters

Input Units = 12, Activation = relu, Input shape =

Spectrogram Dimensions

Dense Units = 12, Activation = relu

Dense Units = (no. of tunings), Activation = SoftMax

Sigmoid Layer

Sigmoid layers are used to normalise data, independently of each other. It

will squash a vector into a range between (0,1), independent of each class.

Sigmoid layers are often used as output layers for multi-label classification

problems due to this. This is used to normalise the vector before applying

the SoftMax layer.

SoftMax Layer

A SoftMax layer works very similarly to a Sigmoid layer in the way it

converts a vector into a range between (0,1) however the sum of all values

in the vector should equal to 1. A SoftMax layer was used for the output

layer of the network as the problem is a multi-class classification problem

where each input can only be 1 specific class. The sum of all vectors

equalling 1 is useful here as when increasing the value of one output class

the rest lower, highlighting one specific class, which may not happen in a

Sigmoid layer.

Loss Function

17

Categorical Cross Entropy was decided on for the use of the loss function.

Cross Entropy loss is the measure of performance of a classification model

which has a probability between 0 and 1 as output. Cross entropy loss

increases as the predicted probability diverges from the ground-truth value,

i.e. the perfect model would have a loss of 0. Categorical Cross Entropy

loss, also called SoftMax loss, work by applying a SoftMax calculation

before applying Cross Entropy. Cross Entropy is calculated for each

individual class then a gradient expression is used to calculate a loss score

that considers negative class probabilities and positive class probabilities.

Dropout Layers

Dropout layers are a regularisation technique for NN models that are used

to help reduce overfitting. They work by “dropping out” random neurons
in the network when training, setting some of the input vectors values to 0.

This has the effect of meaning no one neuron is being relied on to classify

the tuning. It was key to include these dropout layers due to the similarity

of the training set. Using primarily Joni Mitchell tracks means that the

network has a high potential to become fragile and pick up on different

features to recognise the tuning, such as style of play when using a specific

tuning. This was potentially dangerous due to the fact most tunings were

found in the same albums.

Setting the dropout layers probability to 0.4, a relatively large value,

applying dropout to both convolutional layers seemed to suffice. This

created a more robust network when tested on different artists and albums

tracks.

4.5 Evaluation

A few logging features were created so that during and after training we

could evaluate the systems performance. During training Keras’
CSVLogger is used to identify areas where the networks accuracy and loss

reach optimal levels, by logging loss and accuracy over each epoch. This

allows use to recognise when certain configurations reach peak

performance much earlier/later than others.

Alongside this txt files are created with parameter configurations for the

spectral analysis, network and audio slice size. These txt files also include

which files the network predicted wrong so that they can be inspected

further. This was useful, as separation of the audio data was not

implemented, meaning that the network may pick up audio with no guitar

(just voice and piano for example) and identify it incorrectly. Inspecting

the files that were classified incorrectly gives us a better idea of the

networks performance.

Before and after training all necessary files are saved using pickle, numpy

and keras to .pl. npy and .h5 files respectively. These include the model,

encoded layers, feature vectors etc. so that a model can be initialised

without the need for retraining. Saving all the other necessary data also

allowed for training of different network configurations without the need to

recalculate feature vectors.

4.6 Problems encountered

18

GPU Memory Allocation

During the parameter evaluation for the CNN when using the grid search,

CUDA threw an unexpected memory allocation error. This had happened

previously when first implementing the CNN but was solved by changing

the tensorflow config to allow for growth, utilising all the GPU’s available

memory.

The memory allocation error occurred late on in development, while the

network had trained for many hours overnight. Initially this was a huge

setback, however the issue was resolved by training the network in batches

instead of at 1 epoch at a time.

Chapter 5

Results

All experiments were conducted using the network parameters outlined in

the Implementation section. Results were gathered using a windows 64-

bit System using a GTX 1060 6GB GPU, i7 6700 and 8GB RAM.

Performance was evaluated in a number of ways.

5.1 Grid Search Results

SVM

kNN

19

DNN

CNN

5.2 Summary of results

What was discovered through the results was that the spectral

representation of the audio data had very little impact on the final

performance of the networks. However, MFCC achieved peak performance

the quickest in all networks tested, with no spikes in the loss graph. The

MFCC representation also being the fastest to compute feature vectors for

makes it the ideal candidate for tuning classification tasks.

20

CQT – DNN

CQT – MFCC

5.3 Evaluation of results

It has been determined that the neural network architecture effects the

accuracy of a model much more than spectral representation.

Chapter 6

Conclusion

This project aimed to evaluate the feasibility of using machine learning

techniques to detect guitar tunings from audio. It has been shown that is

possible, with a variety of solutions being explored.

The average time for training machine learning models was around 15

minutes for the CNN, if cross validation was used 5 times and around 12

mins for the normal DNN. Peak performance was reached early on for the

deep neural network models, especially the regular non-Convolutional

model. This suggests with more performance tweaks and better sample

choice, that the Network models could yield better performance, possibly

training quicker and with fewer resources, classifying data outside of the

original training space (Joni Mitchell tracks) with higher accuracy.

The ml_gt library created takes already existing solutions and combines

them with modularity in mind. This provides a good abstraction for the

tools used in this project and has been designed in this way to allow easy

application into further work.

It is encouraging that simple off-the-shelf networks would yield such great

results in this task, especially as it was not expected that the simpler

machine learning techniques would perform so well. This is promising for

the prospects of future work as what has been found here can be taken into

more complex spaces with a strong base to build off.

21

Another approach to this project could have focused on designing an

optimised network, with possible encoder/decoder integration. However,

converting Keras code into pure TensorFlow or PyTorch proves a time-

consuming task due to the high learning curve presented, especially due to

the lack of documentation available compared to Keras. However, in

consummation, it has been proven useful to display that there is negligible

difference in the spectral representation used when the network has been

trained on a relatively small and simple data set.

As a whole this project has been a great learning experience, with much

unexpected success and many problems along the path. It has been

completed with a great deal of scope left for future work and created in a

way that should make it easy to adapt.

6.1 Further Work

Future work should first focus on the current problem and structure,

optimising the system for larger problem spaces. As explained before, this

work has also been designed to be used alongside current recognition and

classification solutions to improve them or create something new entirely.

Some possible avenues are discussed below:

6.1.1 Current Problem Structure

Optimise Processing Pipeline

Only the most popular network configurations were decided on for the

networks used in this project due to time constraints on training the data,

with the current hardware available. This has meant that possible more

niche configurations and larger networks were shied away from, that may

have been more optimal. Two possible solutions that could be used

separately or together are:

• Parallelise Time-Frequency Transformations:

There has been some work on performing FFT on multiple cores

in parallel for python[7]. This could be adapted to also perform

specific transformations such as MFC and CQT. This would allow

for multiple feature vectors to be created in a much shorter time.

• Asynchronous Pre-Processing: CUDA is currently used during

the training of deep network models to utilise the GPU and results

in faster training of the models. This however leaves the CPU

almost completely idle during the whole learning process. It

would be feasible to have the CPU perform pre-processing tasks

for current data with different parameter configurations or to

render time-frequency transformations for new data while the

networks are training. This would lead to optimal hardware usage

and allow for greater experimentation in a shorter amount of time.

Automated Annotation

One problem encountered during the creation of this product was the fact

that there isn’t any available audio data that is annotated with instruments

used at specific times. This has led to the network being trained on false

22

data, where there can be no guitar audio for a few seconds. This leads to

biases being created for non-guitar audio and can affect validation results.

With more time, a guitar recognition system could be created to isolate the

guitar audio from the tracks, automatically annotating where guitar parts

are found.

For this task I would propose using a VGG network architecture, a

relatively new CNN architecture seeing large success in classifying image

data. Although it is primarily used for images it has seen some success in

classifying spectral representations audio data, particularly in noisy

environments[8]. The VGG structure is very large comparatively and

generally needs a lot of data. Freesound is an example of a repository of

annotated audio data, taken from a variety of different environments, and

would be ideal to train the network. The structure of the system would

follow a similar system to the one created here: Extract data set from a

repository, Apply necessary pre-processing (clipping, spectral

transformations etc.), run through VGG network and validate.

After the network is trained to classify different instruments, it will then be

used to detect whether there is a guitar at different audio slices and

annotate appropriately, meaning those slices without be taken out of

training and validation sets.

This would lead to unbiased model and be necessary for consequent future

work into the subject.

Time-Frequency Representations

Although there has not been much difference between the time-frequency

representations for this problem using the current data set. It is possible

that when trying to identify non-folk artists or when trying to obtain

precise transcription such as notes played and/or fret positions that the

input data should be more optimised for musical analysis. It is proposed

that the methods suggested below be implemented into the current pre-

processing library, through functions similar to other time-frequency

transformation methods:

• CQCC – Constant-Q Cepstral Coefficients are an effective way

of representing data for musical analysis that address the

shortcomings of MFCC. They are produced in a similar fashion

to MFCC’s, with the Constant-Q power spectrum used instead of

Mel-Frequency. CQCC will generally take longer to calculate, as

the Constant-Q transform produces a geometric frequency basis

while DCT expects an orthogonal basis[4].

• Dynamic-Q – AnthemScore[5] is a piece of software for audio

transcription into MIDI, that has achieved success in transcribing

piano in particular. It uses a transformation they’ve penned
“Dynamic Q”. There is no available paper on Dynamic-Q;

however it’s been described as working by amplifying Q values

in regions where nearby harmonics are detected.

Increasing Q-Values has the trade-off increasing frequency

resolution (So that detail about harmonics can be picked up more

easily) at the cost of poorer time resolution.

It is predicted that similar detail about audio harmonics maybe

attained from using multiple constant-Q transformations with

23

different minimum frequencies and bin numbers as input into a

CNN. This would work in a similar way to using RGB inputs for

CNN’s where each different constant-Q configuration would be a

separate channel. Some experimentation with Constant-Q could

create a significantly more robust model, and be potentially used

in more complex problem spaces.

6.1.2 Applications into Other Work

Precise Guitar Transcription

Obtaining relevant semantic features from audio data has already been

proven to be possible in this paper, along with others attempting to

transcribe exact fret positions of guitar notes. Research has been completed

in the area, but tunings are still required to be known before classification,

and the research generally consists of one or few tunings used.

What is proposed here is that a solution is created that can obtain relevant

semantic data such as: guitar type, exact fret positions and intonation of

notes; from audio data in which we have no information on.

The methods laid out in Automatic Tablature Transcription of Electric

Guitar Recordings Estimation of Score – and Instrument Related

Parameters[6] are a good base for extracting exact fret position. The paper

describes a solution for transcribing guitar tabs based on isolated guitar

recordings; more importantly it also transcribes polyphonic guitar

recordings. It works by having a lookup table of possible notes for a

frequency and their positions based on the tuning. Once features are

extracted from note onset, offset and pitch, they are passed through an

SVM and plausibility filter to predict fret positions.

The plausibility filter effectively exploits known theory about guitar

playing to reduce the amount of possible fret combinations and give

weighting to the most probably position combinations. i.e. it may exclude

combinations of notes where difference in fret position is greater than 4;

and give more weight to positions that are closer together when notes are

played quickly.

The main limitations of the solution proposed in this paper is that the guitar

tuning must be known before transcription can be executed, and it requires

knowledge on instrument construction for optimal results.

Combining the methods used here along with the system created in this

project, it should be feasible to create a robust and thorough system that

can transcribe unknown, non-annotated guitar recordings. This type of

transcription opens the door to a plethora of further uses that have

previously been very difficult tasks to complete, such as:

• Capturing Style from Contemporary Music for Audio

Synthesis

• Automatic Gamification of Guitar

• Cultural Preservation and Remastering of Damaged/Old

Audio Tracks

24

Capturing Style from Contemporary Music for Audio

Synthesis

Solutions exist to synthesise music using AI from genres and artists

commonly found in harmony textbooks, such as music from Bach or The

Beatles. However, these already have a lot of theory behind them to be

utilised to optimise the solutions, and in terms of classical music, things

like the musical structure and tunings of instruments are very stagnant and

are experimented with less often. To have a general system to capture style

and utilise it in full automation for contemporary music containing real

instruments is unseen.

By utilising a robust guitar transcription system, which would in theory be

able to transcribe, to a certain accuracy, most given guitar recordings

(enabled by the use of a tuning and instrument construction classifier), the

ability to automatically annotate audio data with high detail is available.

Having a dataset so large, with precise annotations, allows a style

dictionary to be formed from the data that has been processed. This opens

the door for the use of dictionary learning approaches to be used to transfer

style from one artist/genre to another. Although notes played may be the

same, what decides the style of the piece is often the intonation of how the

artist plays those notes and what effects are applied. There are already

methods on how to apply an array of musical effects to audio, such as

vibrato, tremolo, delay etc. to waveforms. The style transfer should work

by taking a transcribed recording then find the best match between notes

played between the recording and the style it needs to be transferred to. i.e.

if you recorded C, D, E and wanted to transfer to Jimmy Hendrix’ style,

the system would search for the closest recorded data of in terms of timing

and notes used by Jimmy Hendrix. Then some DSP techniques should be

applied to add/subtract appropriate articulation that was used in Jimmy

Hendrix’s feature such as vibrato or sound properties such as changing an

acoustic recording to sound like it was played on an electric. Important to

note that Neural Style Transfer[9] has also yield good results in converted

paintings and images into different art styles in recent years, and that a

combination of both dictionary learning with some Neural Style Transfer

applied for enhancement may provide optimal result. The worry with

solely using Neural Style Transfer is that dissonance can be created easily

within audio if small parts of the sound are adjusted incorrectly, so a more

structured, predictable approach is desired.

Finally, using the semantic data and style banks created previously, there is

the ability to synthesise completely new audio and restore possibly

damaged audio. As seen in this project, and in many applications of CNN’s

throughout the audio processing field, computer vision techniques display

much success when applied to spectrograms of audio. It is suggested that

some adaptation of Inpaiting techniques (usually used for restoring old

pictures or getting rid of items from images) are utilised to clean up old;

damaged recordings. The ability to capture semantic data from new un-

annotated recordings due to the transcription system, also means that the

25

inpainting techniques could be utilised as a creative tool. Artists could

allow it to learn their style and clean-up their audio or fill in gaps/extra

notes that they may not have thought of.

The techniques discussed here can also be applied more generally, to many

different instruments and lay out a thorough design model for extracting

and utilising semantic data in music.

Chapter 7

Reflection on Learning

Extracting guitar tunings from audio using machine learning techniques

has been an invaluable learning experience across an array of domains. A

large amount of time has been spent researching topics in the problem

space of the project: DSP, Machine Learning, Deep Learning & CNNs.

While having a novice level understanding of Machine Learning

beforehand, the completion of this project given me a large amount of

understanding and practice in the area and can see myself transferring

those skills into non-DSP related fields with ease. By attempting to create a

general use package as the foundations for my project, I can say that I’ve
been able to apply the things learnt throughout my computer science career

into a professional product and this has made me a lot more comfortable

when handling Python as a whole.

As a result, the work done here has strongly developed my skills in

researching concepts that are out of my comfort zone and allowed me to

learn about niche topics specifically required for this field.

During this time, I have grown to appreciate the depth of feature extraction

via signal processing and endeavour to go deeper with the skills I’ve learnt
throughout. In all honesty, I feel extremely lucky to have delved into this

research area, eagerly awaiting what future work I’ll be involved in.

26

Bibliography

[1] Benjamin Blankertz. The Constant Q Transform.

 http://doc.ml.tu-berlin.de/bbci/material/publications/Bla_constQ.pdf

[2] Furui, Sadaoki. (1981). Cepstral analysis technique for automatic

speaker verification. Acoustics, Speech and Signal Processing

https://www.researchgate.net/publication/3176892_Cepstral_analysis_tech

nique_for_automatic_speaker_verification

[3] A Complete Guide to K-Nearest -Neighbours with Applications in

Python and R.

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

[4] Massimiliano Todsico, Hector Delgado, Nicholas Evans. (2017)

Constant Q cepstral coefficients: A spoofing countermeasurefor automatic

speaker verification

https://www.sciencedirect.com/science/article/pii/S0885230816303114

[5] AnthemScore

https://www.lunaverus.com/

[6] Christian Kheling Et. Al (2014) Automatic Tablature Transcription of

Electric Guitar Recordings Estimation of Score – and Instrument Related

Parameters

http://www.dafx14.fau.de/papers/dafx14_christian_kehling_automatic_t

ablature_trans.pdf

 [7] Hagit Shatkay. (1995) The Fourier Transform - A Primer

https://pdfs.semanticscholar.org/409e/109c551767c296792ffa9f6d40a73

9c96ee7.pdf

[8] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F.

Gemmeke, Aren Jansen, R. Channing Moore, Manoj Plakal, Devin Platt,

Rif A. Saurous, Bryan Seybold, Malcolm Slaney, Ron J. Weiss, Kevin

Wilson (2017)

https://arxiv.org/abs/1609.09430

[9] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge. (2015) A Neural

Algorithm of Artistic Style

https://arxiv.org/abs/1508.06576

DIGITAL GUITAR TUNER

https://arxiv.org/ftp/arxiv/papers/0912/0912.0745.pdf

http://doc.ml.tu-berlin.de/bbci/material/publications/Bla_constQ.pdf
https://www.researchgate.net/publication/3176892_Cepstral_analysis_technique_for_automatic_speaker_verification
https://www.researchgate.net/publication/3176892_Cepstral_analysis_technique_for_automatic_speaker_verification
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://www.sciencedirect.com/science/article/pii/S0885230816303114
https://www.lunaverus.com/
http://www.dafx14.fau.de/papers/dafx14_christian_kehling_automatic_tablature_trans.pdf
http://www.dafx14.fau.de/papers/dafx14_christian_kehling_automatic_tablature_trans.pdf
https://pdfs.semanticscholar.org/409e/109c551767c296792ffa9f6d40a739c96ee7.pdf
https://pdfs.semanticscholar.org/409e/109c551767c296792ffa9f6d40a739c96ee7.pdf
https://arxiv.org/search/cs?searchtype=author&query=Hershey%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Chaudhuri%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Ellis%2C+D+P+W
https://arxiv.org/search/cs?searchtype=author&query=Gemmeke%2C+J+F
https://arxiv.org/search/cs?searchtype=author&query=Gemmeke%2C+J+F
https://arxiv.org/search/cs?searchtype=author&query=Jansen%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Moore%2C+R+C
https://arxiv.org/search/cs?searchtype=author&query=Plakal%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Platt%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Saurous%2C+R+A
https://arxiv.org/search/cs?searchtype=author&query=Seybold%2C+B
https://arxiv.org/search/cs?searchtype=author&query=Slaney%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Weiss%2C+R+J
https://arxiv.org/search/cs?searchtype=author&query=Wilson%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Wilson%2C+K
https://arxiv.org/abs/1609.09430
https://arxiv.org/search/cs?searchtype=author&query=Gatys%2C+L+A
https://arxiv.org/search/cs?searchtype=author&query=Ecker%2C+A+S
https://arxiv.org/search/cs?searchtype=author&query=Bethge%2C+M
https://arxiv.org/abs/1508.06576

