Interim Report
Michael James

“Twitter-style” App for Group Communication

Supervisors Moderator
Professor A.D. Preece Professor N.J. Avis
Dr I.J. Grimstead

Abstract

“Twitter-style” App for Group Communication is a project investigating and eventually
implementing an anonymous communication application. The app allows users to
communicate anonymously; and could be used in a range of contexts where anonymous
communication may motivate users and give an insight to observer’s unspoken feelings. The
observers could potentially make changes to the organisations methods, improving service
to the users of the system. This document discusses the progress on the first few phases of
this project, identifying current solutions (similar systems) and potential systems that could
play as an important carrier for transporting messages. The discussion then progresses on to
testing different methods and first stages of design for the first prototype.

Contents
Introduction

Background
Similar Systems
iwall
Text2Screen

Similar Systems Summary
Potential Platforms
Analytics Tools
Wordle
Twitter Sentiment
Google Chart Tools
Approach
First Stages of Design
Testing for First Prototype
Create Anonymous Communication
Reporting Misuse
Public Display
Conclusion
References

Appendices
Appendix A - Current Systems

Appendix B - Anonymous Communication Bot Code

Appendix C - User Map Webpage Code
Appendix D - External Display Code

9-17
10-12
12-16
13
14-16
17
17-18
18-19

Michael James - “Twitter-Style” App for Group Communication - Interim Report

Introduction

This report discusses the progress on the first few phases of the project "Twitter-style" App
for Group Communication. The projects fundamental aim is to create anonymous
communication for groups of individuals that share something in common. Users of the
system will send messages to a central hub, a hub in which repeats the content of the
message to all users in the system. When a user receives a message they can reply if they
wish. The identity of the sender is stripped away from the message before it is sent to the
users of the system; hiding their identity. The original message is stored into a log, if misuse
has been reported, the administrator can refer to the log to identify the true sender that
inflicted the misuse. Entry to the system will be through SMS to offer cheaper access to the
system rather than using data rates. To encourage users in participating in the system, a
public display will be used; displaying activity on the system. Again the users identity
remains hidden. The display will be located in an area where the individuals using the
system pass regularly.

Once the basics of the system are sound and implemented, observers will be able to view
the conversations taken place within the system. Observers will view the conversations,
without a users true identity being revealed. The observer will use this knowledge from the
conversations to determine decisions; this concept could potentially work in various
environments, all with a similar goal in mind to improve their service/product.

It is a closed system and requires approval by an administrator or representative to access
the system. The environment where the system is used will determine the credentials a user
will need to present to the administrator or representative to gain access to the system. For
example a student at an educational institute will most likely present their student card, a
card with a passport sized photo and their unique student number for that institute.
Alternatively the system could be used within a hospital environment; patients will be
identified by their medical bracelet or alike, depending on the identification method used in
the hospital.

This document focuses on the details of the essential requirements defined in the initial plan
and how | plan on solving the problems these requirements address. The solutions will then
be taken onboard to help in the implementation of the first prototype. The essential
requirements will build a solid foundation for the system. Additional requirements at the
moment consist of how the activity on the public display will be appropriate and
represented; the document shows a few ways in which this could be accomplished through
analytics APIl’s. Most of the additional requirements will come later in the project when the
first prototype is complete; Improvements and ideas will be highlighted creating additional
requirements by myself and by users that will help test the first prototype; this will be
documented in the final report.

Background

The following section investigates systems that are similar to the “Twitter-Style” app for
group communication concept; investigating how they work, whether there is anything
to be learned from current systems that could be used to help design the system.
Furthermore the research looks into social platforms that could be used as the
transportation channel of messages.

Michael James - “Twitter-Style” App for Group Communication - Interim Report

Similar systems

Some research was spent on looking at similar systems that use public displays. The
closest systems available were text2screen systems. Text2screen systems are typically
designed for receiving SMS messages from users in bars, clubs, events and public spaces.
Users send an SMS message to a specific number, where the message is then displayed
on a public display; their identity is hidden from those viewing the public display.

iWall

A sophisticated and expensive package that retrieves SMS messages through a GSM
modem connected to the host (iwall. 2007-2011). A system aimed towards bars, clubs
and events. Messages are then processed on the iWall software where it determines
whether the text can be displayed through the moderation tools provided. The
moderation is interested in whether a number is allowed or whether the content of
the message is flagged as profanity. If approved the message will display on a flash
application, where the application will be set to full screen on an external display(s).

The software also allows users to optionally set an alias in the required format
“{prefix} alias”; their alias will be displayed along with their messages on screen.
Users of the system are then able to send direct messages to one another through
the @alias command followed by a message. These messages are private and are
not displayed on screen; the contents of the messages are logged for misconduct.
There are no analysis tools available for this system.

Text2Screen

A package that has similar functions as iWall, although the GUI and display output
are not as neat and professional as iWall (Text2Screen. 2010-2011). The system allows
administrators to create a list of banned words through its moderation tools
provided; to determine whether a text can be displayed on the public display(s).
Again this system also provides private messaging between users, like iWall; through
a mechanism that’s popular on Twitter @username. Users are assigned an alias;
their alias is placed on the public screen for all to see. Users can then use the alias to
send a direct message; the private messages are not displayed on the public display.
Again the system logs messages for misconduct that may be reported/discovered.
This system also does not apply any analytics to the content of messages to return
further knowledge on its users. The system is again aimed to draw in customers in
bars, clubs and events.

Similar Systems Summary

Research collected five different text2screen systems; the systems mentioned
previously are the only systems found that provide private messaging in an
anonymous fashion. The remaining systems provided only functionality to display
texts to a public display through moderation tools; for more information on the
remaining systems see (Appendix A). None of the systems provided analytics on the
conversations or comments made on the system. The closest form of analysis was
used to create a voting system, where users would vote A, B or C to a certain
qguestion, the results would be displayed on the public screen; this function
appeared on four of the five systems discovered.

Researching these kinds of systems helped identify different use cases in the
projects system; identifying interactions different users will have. i.e. a system
administrator would have a different screen; a private screen that will display
incoming messages, those messages will then be moderated by the system
administrator or by automated moderation tools, removing any unwanted language

Michael James - “Twitter-Style” App for Group Communication - Interim Report

or misuse. The participant users of the system would submit a message and view an
abstract view of their message on a public display.

The system being designed is more closed than the text2screen systems; users must
be authenticated before using the system. l.e. a user may have to present “in
person” an identity card to the system administrator, where they will be approved
access or alternatively the user registers interest in using the system via a web
browser, their credentials are taken into consideration and used to determine
whether a user will receive access to the system.

Potential Platforms

This section will identify public application programming interfaces (API) that could
contribute to the development of the system. Using pre-existing methods available in an
API will be reliable as an external group operates the reflection service on the public
methods available. Furthermore the approach will increase functionality and save time in
implementation. This section will investigate public platforms available that could be
used to create the communication channel for the system.

The chosen platform will require full SMS integration to allow any user with a basic
cellular device to access the system. As a recommendation, users are required to create
an account solely for the purpose of using the system; this will ensure their messages are
not leaked to other users outside of the system.

Three popular social networking platforms were chosen: Twitter, Facebook and Google+.
All the platforms have public APls; their functionality and terms of service (TOS) are
compared against one another in Figure 1.

Features

Google +

Facebook

Twitter

Real Name Policy?

Aliases?

Private Accounts

Activity visible to
followers/friends

v/ Very strict policy, must use a
name that people will recognise
you by. (Google. 2011).

Very strict policy,
must use a name
that people will

recognise you by.
(Facebook. 2011)

No strict policy, most
users are identified by
pseudo name. (Twitter.
2011)

X | Real name identifier.

Real name
identifier.
Searchable by
username or email.
Not fully alias
friendly, cannot just
set alias.

Twitter typically allows
users to be identified by
their username. l.e.
@CSTweetBot.

v/ Minimum visibility with highest
security settings: display picture,
real name.

Minimum visibility
with highest
security settings:
display picture, real
name. Can also set
how the account
can be found on
search.

Account is searchable,
but activity is kept hidden
to those who are not
accepted.

v Circles to set who sees what.

Privacy settings can
adjust who views
what.

Public/Private.

Michael James - “Twitter-Style” App for Group Communication - Interim Report

Can user have second
account?

Adequate SMS
Integration

Sign up to social
network via SMS?

Extensive API

Features = possible
anonymity?

X | Against terms but hard for X | Against terms but Not | Users can have multiple
Google to enforce. hard for Facebook 'glfgg accounts, no strict rules.
to enforce. V4 Twitter Apps allows for
But If the system takes-off then multiple accounts to be
this maybe a problem. If the system takes- logged in at once. See
off then this maybe image.
Not a recommendation, user a problem.
would have to use their normal
account to use the system. Not a
recommendation,
user would have to
use their normal
account to use the
system.

X Notifications and send to feed. X | Very basic v/ | Close to full functionality.
Only available in India and USA. functionality. Users are unable to set

privacy, accept followers.

X Not available. Users need to sign X Users need to sign v/ Users can sign up to
up to Google + via google.com. up to Facebook via Twitter, via SMS.

facebook.com.

X Only get methods, no set v/ Practically full v/ Unable to accept
methods. No write access to functionality. followers via APl on
Google+. private account. Need to

visit twitter.com to
accept.

X With the basic API, the system X Real name policy. v/ Tweets can be picked up
would be unable to use Google+. Users must have from users and used to
Requires set methods (Write separate account. tweet on bots feed.
access). Friends would see

submission.

Figure 1: A table displaying a comparison between Google +, Facebook & Twitter

From the table analysis (Figure 1); it is clear to see that Twitter is the most suitable
social platform for the system, it has a more flexible terms of service allowing users
to have multiple accounts, user accounts are not identified by real-name, instead
they are identified by alias “Pseudo anonymous”. Users if they so wish can be
identified by real name, but for the purpose of this system, users will use alias.
Twitter also has an extensive public APl and has a highly functional SMS system.

Figure 2 shows a further investigation into Twitter and its functions. The table also
shows a comparison between two platforms Twitter and a totally new platform,
which will require all contacts, messages, distribution and many other features to be
implemented by myself on an Android application. A possible solution but will be
very time consuming to implement in comparison to the Twitter platform. Figure 2
determines whether the functions Twitter provides could be implemented on an
Android app, if so would it require a lot of time to implement?

Features

Twitter

v/ X Comments

Android Application
Comments

Notifications received via SMS? v

Available Analytics

User can set up SMS
notifications via Phone.
Function exists, no need to
implement.

v Can be implemented with API, but would require
more effort in implementing a function that can
be accomplished with the Twitter API.

There is a vast amount of
open source services for
raw text example: Wordle
java release by IBM. Plus
twitter specific analytics,
TweeSpeed, Twitter
Sentiment.

v/ Producing analytics on an android application
would require android specific packages
(limited). Therefore to make use of other
packages such as Wordle; the data collected will
be required to send raw data to a workstation to
be processed. Requires additional coding to send
data from phone to work station in comparison
to Twitter method.

Michael James - “Twitter-Style” App for Group Communication - Interim Report

Possible pseudo anonymity? v Auto generated id’s or v/ | Could use a similar system found in current SMS
Twitter id’s could become systems iWall or t2smobile Software. Requires
pseudo names. further coding for a feature that’s available on

twitter.
Can you send a follow request via v Friendships/create, minimal v Yes, again would require further coding,
API? amount of coding. additional following functionality.
Can you accept follow requests X Currently not available. v/ | Users number will be authenticated before
via API? Accounts will be created on account is created for user. Users account will be
the ‘fly’ or in bulk before a hard coded in retrieving messages from Bot.

user requests access. Could
use a script to automate
the creation (Selenium.
2011).

Can accounts be created via API? X | Currently not available. N/A
Accounts will be created on
the ‘fly’ or in bulk before a
user requests access. Could
use a script to automate
the creation of accounts.
Selenium (Selenium. 2011).

Can you pick up followers v Statuses/home_timeline, v | All messages will be sent directly to the phone,
messages? Statuses/user_ where they will be received and processed.
timeline
Can you tweet via API? v/ | Statuses/update N/A

Statuses/update_with_med
ia

API call restriction? Ve 150 automated API calls per | N/A | Closed system, completely separate from third
hour (flexible depending on party API’s for communication, no API
kind of usage). Educational Restrictions.
license available.
Programming Language v | JAVA APl available, v/ | Android is written in JAVA, ran in Dalvik virtual
Experience? Twitter4) machine, optimised for mobile.

Figure 2: A table displaying a comparison between using the Twitter APl and Android platform.

The use of twitter would allow for a quick and effective communication model for
the system; twitter provides the basic requirements needed for the system. As
mentioned the user accounts will be created manually on the ‘fly’ when a user
requests access to the system. Alternatively the system administrator will make
accounts in bulk through a web-browser on twitter.com; accounts will be ready
waiting for new users to approach the system administrator for access. The method
has arrived; due to a minor inflexibility on the public Twitter APIl. On the other hand
this method may not prove to be a bad after all; as it will ensure all users are
authorised before accessing the system. Users will meet face-to-face with the
system administrator or representative where they will receive their account; based
on their credentials. The concept of registering a twitter account is relatively similar
to a user registering their mobile phone number into the system for the Android
direction. The system administrator will create a map between true identity and the
anonymous Twitter account.

When registering Twitter accounts, Twitter requires an email address an address
that is not currently assigned to an account. Therefore when new accounts are
created; new email addresses will need to be created. This brings in the complexity
of real-name policies again; Gmail, Hotmail, Yahoo and many other services require
real names. Therefore as a work-around, new email addresses will come from an
email-hosting server, a server that is most likely internal and has functionality to
create an unlimited amount of email accounts. The accounts will not receive any
mail, as notifications from Twitter via email will be turned off when each account is
created. The email account will be created for the sole purpose of being able to
create an account. Users may not have email addresses; this method will allow users

Michael James - “Twitter-Style” App for Group Communication - Interim Report

without email addresses to have access to the system. In the context of a hospital
this is most likely to be a common occurrence.

Twitter provides a very functional SMS system. The system allows users to register
and login; in the context of this system the users will only be required to login to
twitter via SMS. Users will not be required to register to Twitter via SMS as the
accounts will need to be created before the user attempts to access the system via
SMS. Users are able to login to Twitter and start following an account and start
receiving messages that account has sent (Twitter. 2011). In the example (Figure 3)
shows a user following CSTweetBot via SMS.

=

. Orange & 20:46 © 60% @™ ..__Orange 2 20:47 © 60% @™ ..__Orange 2 20:47 © 60% =

. Messages 3C 4 " Messages o{6 “ " Messages

with this phone.

Your password is correct!

" Reply w/ OK to confirm
Welcome to Twitter! Reply yot? \i,/an t 1o use Twitter

e o peglg. with this phone. You're all set up to use
Already on Twitter? Reply Twitter with this phons
with your USERNAME. :
(Std %sg rates apply. Type a Twegt anytime, just
Reply w/HELP for more.) You're all set up to use EE
— Twitter with this phone. follow CSTweetBot
mikejames64 Type a Tweet anytime, just (l
Hi, @mikejames64 send it to this number. You're now following
Reply w/ your password to follow CSTweetBot @CSTweetBot. Their
register this phone to your (l g’;iztso V;’g' gég?rnt;gt)éoﬁ-
Twitter account. You're now following o sto weetso
(Password is case @CSTweetBot. Their P-
sen§ltlye! Phone may tweets will be sent to you. CSTweetBot: Pervasive
capitalize the 1st letter) Send OFF @CSTweetBot Locks Al dayo o) j
P e—— to stop.

[c)e ED O ED O) D

Figure 3: A demonstration on how a user can login to twitter and start following a user.

The demonstration shown in (Figure 3); shows that the system could work using
Twitter to provide the SMS transfer of messages; satisfying the SMS requirements
for the system.

It is important to understand that the SMS system in twitter retrieves a smaller set
of tweets, this is to reduce the amount of SMS messages being sent. Figure 4 helps
visualise this. In the context of this system the user will only need to follow a single
account.

Michael James - “Twitter-Style” App for Group Communication - Interim Report

MikeJames64

Following: Tweets:
CSTweetBot Hello World
BBCBreaking
Tweet: “Hello World”
Follow CSTweetBot
SMS APP
4 ™ 4 N
MikeJames64 MikeJames64
CSTweetBot: Message CSTweetBot: Message

Hello World! CSTweetBot: Message
BBCBreaking: Message
BBCBreaking: Message
CSTweetBot: Message
BBCBreaking: Message
CSTweetBot: Message
CSTweetBot: Message
MikeJames64: Hello World

. @ Y N @ J

Figure 4: Shows how a SMS user receives fewer notifications than the twitter APP.

A work-around was considered that would solve the issue with the Twitter API
where requests cannot be accepted on the twitter API for a private account. The
work-around consisted of an automated script that logged into the TweetBot’s
Twitter account and viewed a list of follow requests, those requests are then
compared to a list of new users, if there is a match the script will approve access to
the system. The script would be written through JAVA using a free API called
selenium (Selenium. 2011). The API talks directly to Mozzila Firefox and allows the
script to interact with the browser like a normal user. Later research looked into the
Twitter terms of service to identify whether the use of selenium is against the TOS.
The research showed there are no direct rules, but the following rule could stop the
use of selenium to create accounts. It would most likely stop the Bot from accepting
friendship requests through selenium.

You may not do any of the following while accessing or using the Services:
access or search or attempt to access or search the Services by any means
(automated or otherwise) other than through our currently available,
published interfaces that are provided by Twitter (and only pursuant to
those terms and conditions) (Twitter. 2011)

A message will be sent to Twitter in the following semester to determine whether
scripting via selenium would be against the TOS.

Figure 5 is used to help determine how the messages and friendship requests are
sent across Twitter. The diagram helps visualise how the Bot will strip a users
identity from a tweet and distribute the tweet for users to see.

Michael James - “Twitter-Style” App for Group Communication - Interim Report

and infact help research Facebook
aswell. It helped to identify
whether anonymous
communication can exist. It also
helped in the early stages of design

This diagram helped test twitter Other Users Key
\5 Friendship Requests

7 New Tweet detected

Tweet to stream

/VView TweetBots Tweets

Tweet & Strip
Identity

“Message”

Cannot be one way
user—>bot, Accounts are
protected need two-way follow
requests.

“Message”

Users are able to view submission t0

stream, therefore to remain truely
anonymous the user requires a seperate
account.
Users Followers
Each user accepts
bot, no other links.

Figure 5: A diagram showing the general connections and messages within the concept of
the system.

Implementing upon the twitter platform would allow users alternative access to the
system; if they do not wish to access the system via SMS they can access it via a
web-browser or a Twitter app on their mobile device. Creating more flexibility for
the systems users. Furthermore the use of Twitter would allow time to be invested
in implementing analytics tools for a public visual display, creating a ‘hook’
motivating new users to join in and take part in using the system. The analytics will
also be used to analyse the qualitative information allowing professionals to view
data and determine decisions upon the data provided in many different formats.

A further investigation of Twitter terms of service (TOS) was conducted. The focus
was on whether running automated programs on the twitter API are allowed. The
TOS suggests they are allowed, one point shows the following.

D. Do not store non-public user profile data or content. (Twitter.2011).

This is one rule that could affect the system, although by declaring the content of
the system is public to the system and is within the applications TOS; this therefore
should be within Twitters TOS.

Analytics Tools

Research was taken out in parallel with the research on Twitter to gather various
analytics tools that could analyse the collected tweets. The research showed many open
source packages that are specifically designed for twitter and general analytics tools that
operate on raw data.

Wordle

In the fortnight meetings of the project the concept of using a Wordle was
mentioned regularly and how it could be used on the public display. A feature like
this could entice new users to take part in the system and create a ‘hook’ for current

8

Michael James - “Twitter-Style” App for Group Communication - Interim Report

users to continue using the system. Wordle.net is a web-based application that
allows users to copy and paste text into a text area, where the Wordle algorithm will
generate a sophisticated word cloud (Feinberg.J, 2011). Words are arranged in various
directions and colours; they are randomly placed. The words are placed close
together, creating a collage effect, creating a wonderful visual display. The higher
the frequency of a word the larger it appears. Commonly users use Wordle’s to
display a summary of their tweets where links to generated Wordle’s are shared
over social networks or on their or website. It turns out Wordle.net does not have
an API, further research discovered the same algorithm used on Wordle.net has
been released in an IBM package. The designer of Wordle is an IBM employee. The
package is a JAR file, which is executed in the command line with a set of
parameters to set the input file (raw text), configuration (colours and arrangement
etc), dimensions and an output file to contain the Wordle; the output image is a
PNG file.

Twitter Sentiment

A public APl that uses the JSON query format to interact with the sentiment
interface (Twitter Sentiment. 2011). The APl analyses tweets given and processes the
tweets, determines different colours for different sentiments. Green means positive,
white means neutral and red means negative. This could prove to be a useful tool in
the third party analysis of the data, accessed by a professional (observer) and
determine decisions based on the results presented, to increase service, operation
or syllabus etc.

Google Chart Tools

A large set of charts that can display the data in various ways; pie charts, bar charts,
scatter charts etc, a large amount of the charts allow users to interact with the
charts, to identify further details. The charts are Java-script based and can be
accessed through the public APl available from Google. Not restricted to twitter and
could provide charts to professionals again to view statistics on certain topics.

Approach

This section focuses on the first stages of design to help identify actor’s interactions in the
system. These designs will most definitely be updated further along in the project to add
further functionality in the system. After design, the discussion will move onto current
solutions to the essential requirements of the project. The essential requirements will be
addressed in a practical manner, through small independent test programs, which will be
taken into consideration when formally designing the first prototype in the next phase of the
project.

The methodical approach the project has been taking is an iterative, agile approach. The
iterative part refers to how the project identifies new deliverables to be accomplished every
two weeks; so far this method has proven to be realistic, efficient and flexible with my other
activities. The project keeps a clear record of what has been accomplished through informal
documents and then adapted to be presented at each milestone in formal documents. The
project has almost taken a full lap, working through the phases of the project. The next
phase will be implementation of the first prototype with concurrent testing whilst being
developed. Small internal tests will be conducted on the first prototype. If approved by the
CS/IS Department, regarding ethical issues in testing the system with students. A live test
will be conducted, by making the system temporarily live with students, users feedback and
activity on the system will be taken into consideration, to identify new tasks for the project.
This is where the project will loop back to the start of the set of phases and begin the second
iteration. Research may need to be carried out on the new features to be implemented.

Michael James - “Twitter-Style” App for Group Communication - Interim Report

First Stages of Design

The background has highlighted issues and determined decisions. The project will use the
Twitter platform as a communication channel, through its publically available API. The
user accounts will have https enabled and protected tweets enabled, ensuring all data is
kept internally within the system.

Figure 6 shows a use case, a general use case showing general interactions a user will
make upon the basic version of the system. The use case is written at a high level of

granularity.
General Use Case

Environment: General Abstract View

Scenario: General interactions with the system

/
e

Delete Tweet

Map user to anonymou
witter Account

N

“86444” “Start”
Setup twitter SMS

Block Specific
Account

Follow Other
Account

- J

Figure 6: Use Case, General user interactions

Figure 6 helps capture many interactions with the system. The user will start its first
interaction with the system by requesting an account. As mentioned previously in research,
the user could either request the account in person or via a web browser. In the light of this;
| feel that the system will require a strict registration process; therefore a face-to-face
registration process is required. This interaction can be found in further detail in (Figures 7 &
8). As shown previously twitter provides a very functional SMS system (Figure 4) the user is
able to start/stop Twitter SMS and is able to create a follow request to the private account
CSTweetBot; the account will then start to receive Tweet updates from CSTweetBot.

The user is able to tweet, the tweets the user makes are visible to the Bot and the sender
only. The content of the tweet is copied and placed onto the Bots wall for all followers to
see. The final interaction is allowed in the system as the user can follow a User and read
their tweets but that is all. If the user were to @JimBob1 an account they are following, the
tweet wouldn’t appear on that users wall, as JimBob1 also needs to be following the user to
receive the mention. If the user receives a follow request from JimBob1 they will need to
deny it In order to stay within the TOS of the system. To enforce this rule the bot will need
to have a thread, which scans users profiles periodically to determine whether they have
made any followers. The user must have only one friendship and that is to the Bots account.
If the user is found having additional followers, they will receive a warning via a direct
message (DM) using the Twitter API. If the user is caught again, that friendship is blocked on
the bots account using the Twitter API. The account is no longer part of the system, the
account is not linked to the institution in anyway as the usernames created will be a

10

Michael James - “Twitter-Style” App for Group Communication - Interim Report

sequence of characters that do not mean anything, deeming useless to the user once their
outside of the system. This strict policy is in place to ensure users do not misuse the
anonymity the system brings to users. This method will protect the institution from any
complaints the user may have caused. The email address assigned to the account will also be
deleted; this will be done manually on the email-hosting server.

Figure 7 shows how a user account is issued; in the context of a school within university.
Interactions will be face-to-face as mentioned previously.

University Use Case

Environment: University Registration
Scenario: Student Registering to system

Pass o0
forename &

Map user to anonymou

N

‘V
-

Administrator

Check Credentials

Physically displa
student card
Create n
preset Accounts

_ J

Figure 7: Use Case, Student Registration

Student

Figure 8 shows a use case showing how a nurse within a hospital could approach a patient
within a ward and suggest whether they would like to participate in the group
communication system. The Nurse would then be able to map a preset account to the
patient through a set of credentials; these credentials will most likely be their forename,

family name, patient number and contact number.
Hospital Use Case

Environment: University Registration
Scenario: Patient Registering to system

4)

Map user to anonymou

e Request Account e

" Gain patient "
number Check Credentials
Createn
Patient preset Accounts N
Administrator

\ / Nurse

Figure 8: Use case, Patient Registration

11

Michael James - “Twitter-Style” App for Group Communication - Interim Report

Figure 9 shows how the system administrator will be able to create accounts for the system.
These accounts will be created prior to a user requesting access to the system. As
mentioned previously (Research) the administrator will have to create email accounts for
each twitter account. These accounts will be added to an email server that does not have a
names policy. Ideally this email server will be an internal email server allowing random
address names. The email address will be created for the sole purpose of creating a Twitter
account and will allow flexibility to users described in the previous use case Figure 8 where
users in this environment may not have an email address.

User Account Creation

Environment: General Use Case
Scenario: Creating user accounts.

4 I

email address, password username
& password
accept request

store details
create follow link to Bo

S
send request from bot

accept request i
set security preferences

Create usew_
define username create twitter account

create e-mail
accounts
define email address

Figure 9: Use Case, displaying account creation.

Administrator

Testing for First Prototype

To clarify, this section will explore elements of the system individually, elements that will
need to be implemented into the overall system to meet the essential requirements. This
section is very much a research section looking at how the essential requirements can be
met from practical point of view. By creating small programs will help structure the system
and will help gain knowledge on how the first prototype will be designed; design of the first
prototype will be found in the first few sections of the final report. The small programs will
show how each requirement has been tackled; if the test is successful it will later be adapted
and improved to later be joined with other test programs; creating the first final prototype
which will be created over the Christmas recess. This phase was conducted to ensure
security and the success of the first part of the project. The phase helped to further ensure
using the Twitter platform was the correct decision. These tests were conducted as soon as
Twitter appeared to be an appropriate, pre-existing platform for the system. If the tests
proved unsuccessful then there was still time to revert back to further research in Twitters
API or alternatively redirect to the Android approach where the project would take a
different direction.

Create Anonymous Communication

12

Michael James - “Twitter-Style” App for Group Communication - Interim Report

This program is written in Java using the Twitter4) API, the program is a successful
attempt in creating a basic anonymous communication application. The app talks directly
to a Twitter account CSTweetBot; the account plays the part as the bot. Two users follow
the Bot: MikelJames64 and Mikelames75. The test shows Mikelames75 sending the first
tweet. The tweet was sent before the application was turned on, which is the reason
why the tweet didn’t bounce back until four minutes later. After which Mikelames64
sends a tweet via SMS whilst the Bot is running. Prior to this MikeJames64 can see other
users submissions; they are received as incoming SMS from Twitter, Mikelames64 is
following the Bot via SMS therefore is able to receive new messages as they come in.
Once Mikelames64’s message has been sent MikeJames64 will then shortly receive a
copy of the message sent back to them informing the message has been picked up by the
Bot successfully and is now visible to all users on the system. The test shows (Figure
10,11) users can see other people’s tweets without knowing who sent them allowing the
users to conduct anonymous communication. For code listings see (Appendix B).

si_Orange & 22:11 72 %
CSTweetBot | EE—
This was sent by another user (SMS) - :
o (follow CSTweetBot l
" , , You're now following
CSTweetBot ‘) @CSTweetBot. Their
This was sent by one user (Online) tweets will be sent to you.
I Send OFF @CSTweetBot
w_to stop.

13 Dec 2011 21:57

(‘@CSTweetBot: This was
sent by one user (Online)

MikeJames75 I/

This was sent by one user (Online)
]

Figure 10: MikeJames75 Account on Web Browser

)

This was sent by another
user (SMS)

sent by another user

(@CSTweetBot: This was
(SMS)

oY D

Figure 11: MikeJames64 Account on SMS

Figure 12 shows output from the Java application; displaying Mikelames75’s tweet
coming into the system first, where it is then used to create a tweet on the Bots feed, the
same goes for Mikelames64’s tweet.

Detetected: MikeJames75:This was sent by one user (Online)
Sent: CSTweetBot:This was sent by one user (Online)
Detetected: MikeJames64:This was sent by another user (SMS)
Sent: CSTweetBot:This was sent by another user (SMS)

Figure 12: Application output in Netbeans

The application has no GUI, it creates the connection to Twitter where it then starts to
receive new tweets from followers through the “home_timeline” method, currently the
method has paging set to 20 tweets; collecting 20 tweets every 30 seconds. The home
timeline includes the Bots submissions as well, therefore to stop the bot from submitting
its own tweets; a condition is set; checking the screen name set to the tweet is a follower
and not the Bot.

13

Michael James - “Twitter-Style” App for Group Communication - Interim Report

Reporting Misuse

This test shows how users could report misuse in the system; the system administrator
will be able to identify the reported message using Twitters timeline; to track back and
identify the sender. Once the administrator has identified the sender they may need to
identify the true identify of the user, this will be done through a webpage that uses a
MySQL database to map a Twitter ID (Screen Name) to true identity, scripts to
communicate with MYSQL are written in PHP. To view snapshots of code see (Appendix
C). Once the true identity of the sender has been found; the administrator can then take
further action if required.

The scenario is as follows; MikeJames64 sends a direct message to CSTweetBot as seen in
Figure 12. The message notifies the administrator via email (Figure 13) that a direct
message has been sent. The administrator reads the content of the message and notices
it’'s a misuse report.

Lui..Orange 2 12:01 61% Figure 13: Administrators Email, containing misuse report

Mike James (@MikeJames64) has sent you a direct message on Twitter!

sent by another user Twitter dm-pf.gjrrg.obg=tznvy.pbz-c6bad@postmaster.twitter.com
(SMS)

A Dee 2011 1105 misuse| This was sent by one user (Online)
t nt by M imes (@MikeJames64) to you (@CSTweetBot

dm CSTweetBot misuse 2
This was sent by one user
(Online)

@3 DY send | Message reported
aw|E|R|TIv|u|1]ofP
Als|plFla|H]J]K|L]

__z|x]c]v]e|n|mE]

return

Figure 12: Mikelames64 reporting misuse via SMS

The administrator can then proceed to identify the user; using a user map, a web page. A
page in which holds the details for all the users in the system. The administrator can
search for Twitter accounts according to their TwitterID. When users are added to the
system they are added to the user map through the ‘Add User’ form (Figure 14). Figure
15 shows the administrator searching for MikelJames75 and shows the search result.
Alternatively the administrator can view all users by selecting View Map (Figure 17). The
administrator has the functionality to delete accounts from the user map. To
permanently delete a user from the system; the administrator would also need to log
into the Bots account on Twitter, ending the friendship to the user that’s misused the
system.

14

Michael James - “Twitter-Style” App for Group Communication - Interim Report

i Figure 14: User Map, add user to map form

MikeJames75 Search

Figure 15: Searching user map for MikeJames75

15

Michael James - “Twitter-Style” App for Group Communication - Interim Report

Figure 16: User Map web page, displaying all
users in the system.

16

Michael James - “Twitter-Style” App for Group Communication - Interim Report

Public Display

This test (concept) shows a way in which content can be displayed on an external display.
The display could be a large screen in public area with a web page displaying content; in
this case the web page is being displayed on a mobile phone, pointing to the web server
on a local network.

The test shows a Java application creating new content on a web page every minute. The
web page is local to the machine and the apache server points directly to a folder, which
the Java application has access to. The Java application updates the index.html directly.
Figure 17 shows the Java application editing a web page every minute; for each minute
that goes by a counter is incremented and the file is updated. For code listings see
(Appendix D).

=...Orange % 13:51 56% @™ ., Orange & 13:52 56 % =M
Untitled Untitled
192.168.0.106:8888/] 192.168.0.106:8888/]

1 2 .
uil..Orange % 13:52 56 % @™ 1. Orange % 13:52 56 %
Untitled Untitled
I 192.168.0.106:8888/ C I II 192.168.0.106:8888/ C I I

3 4

Figure 17: Showing the external display program on a web browser
Conclusion

The project so far has conducted research to identify which direction the project should
take. The project will use the existing public platform Twitter provides through their API. The
API can be manipulated to create the test programs previously discussed to meet the
essential requirements. The test programs will need to be improved significantly to
implement the first prototype; visible improvements already consist of improving the
security on the user map site. The map is still a concept and provides no security in who is
authorised to search, add and delete users from the map an update that will be required
before going live.

Once the first prototype has met a certain level of quality it will be used in a live test, at the
beginning part of the second semester within the CS&IS Department; as long as the
department’s ethics officer approves the test. The system will potentially be live for a matter
of a few days in which data will be collected containing all conversations. The data collected
will be used test analytics tools; helping to determine which forms of analytics are suitable
for the data being provided, does the data prove to be useless in certain analytics tools
researched? Or does it show something unexpected? This will be discussed in the final
report. At the end of the trial run the users will be given an online questionnaire or alike
allowing the users to give feedback on how the system can be improved for the final version
of the system. This hopefully will bring some new interesting, unpredicted features to the
table that could play an important part in the final version of the system. Some predictable
feedback may ask for pseudo anonymity to help with conversations readability and
additional methods of access such as email. Some users may like the analytics used on the
display and may encourage more analytics.

17

Michael James - “Twitter-Style” App for Group Communication - Interim Report

During the time of the live test, the user map tool will come into real-world use. The trial
may help highlight ways in which new users can be added in a faster and efficient fashion.
Moving away from a more manual system to a more automated system, which still has a
strict authorisation process found in the manual system.

Decisions will need to be made before the first prototype is created. We know that data is
going to be captured and later analysed but a question remains. How will the data be
stored?

-In araw format in a text file?

- Structured and easily accessible and portable through XML?

- Alternatively the data collected could be stored in a database, Oracle or MYSQL?

Again these questions will be discussed in the final report where another phase of research
and decisions will be made to determine the most suitable data storage mechanism. The
data needs to be stored as it will reduce the amount of API calls to Twitter and allow data
analysis.

Before the system goes live, moderation tools will need to be added to monitor for
profanity, this will ensure users of the system are not offended and will most definitely need
to be implemented in order to be approved for a live test in the CS/IS department.

Further questions need to be answered, what analytics or techniques will there be in the
first prototype to create the ‘hook’ for current users and to attract attention to bring in new
users? Will it be a Wordle? Or will a Wordle provide nonsense to the screen and prove to be
useless? A dummy run before the live test needs to be conducted to determine how useful a
Wordle is; this will be tested through a collection of conversations or feedback. If it is useful
how will it be displayed? Will writing to a local public html folder (discussed previously)
prove to be flexible or would it be better to upload the images by FTP/SFTP.

Will the Java application be extended to have a GUI or will it remain as a process that
collects data to be accessed through another medium? If it does remain as a process; the
application would become more distributed and will use an array of applications to access
the data for different actors of the system.

Once decisions have been made; the project will go into a detailed design phase utilising
UML and pseudocode to represent the systems functions, communication and processes.
The use cases designed so far will be updated according to the new features that will be
added into the system.

References

Android. 2011. What is Android? Available at: http://developer.android.com/
guide/basics/what-is-android.html [Accessed 1 November 2011]

Facebook. 2011. Terms. Available at: http://www.facebook.com/legal/terms [Accessed 31
October 2011].

Google. 2011. Your Name and Google+ Profiles. Available at: http://support.google.com/p
lus/bin/answer.py?hl=en&answer=1228271 [Accessed 31 October 2011].

iWall. 2007-2011. Home. Available at: http://www.iwall.com.ar/index.en.html| [Accessed 24
October 2011].

Feinberg.J, 2011. Home. Available at: http://www.wordle.net/ [Accessed 20 November
2011].

18

Michael James - “Twitter-Style” App for Group Communication - Interim Report

Selenium. 2011. Index. Available at: http://seleniumhq.org/ [Accessed 2 November 2011].

Text2Screen. 2010-2011. Overview. Available at: http://www.txt2screen.co.uk/text-
messaging-software-overview.htm [Accessed 24 October 2011].

Twitter. 2011. Getting Started with Twitter for SMS. Available at: http://support.twitter.co
m/forums/23786/entries/14589 [Accessed 30 October 2011].

Twitter. 2011. Terms of Service. Available at: http://twitter.com/tos [Accessed 31 October
2011].

Twitter Sentiment. 2011. General Information. Available at: https://sites.google.com/site
/twittersentimenthelp/ [Accessed 20 November 2011].

19

Appendix A

FireText — Text2Screen system, which has moderation tools in place to moderate users and
profanity. System has no analytics and private messaging http://www.firetext.com/

TextDemon — Text2Screen system, which has moderation tools in place to moderate users
and profanity. http://www.textdemon.com/

Text Messaging Live - Text2Screen system, which has moderation tools in place to moderate
users and profanity. http://www.textlive.com/

BotCode. java 2011-12-16

Appendix B
package TweetBot;

import twitter4j.Status;

import twitter4j.Twitter;

import twitter4j.TwitterException;
import twitter4j.User;

import java.util.*;

public final class Main extends Thread {

private TwitterAuthenticate twitterAuth;

private Twitter twitter;

private User user;

private Timeline timeline;

private List<Status>homeStatuses,userStatuses;

private Thread t;

private static final String CONSUMERKEY = "9Wy2Ge]8x6CYqg8dtuKvSnw";

private static final String CONSUMERSECRET =
"PXc7jD8tyCKiKMEWVBSZ4SiXoylRArZDMoexQHpoYs";

private static final String ACCESSTOKEN =
"407325608-1hw5hBuVKKdjD4Q73PV4E7kC3jQESALMKaFyTWIp";

private static final String ACCESSTOKENSECRET =
"yraW8ZEoJVhlkrroWxiDKRLMf2HCBUu1lXUZECzj7mU" ;

public static void main(String args[]) {

new Main().start();

ks
public void run(){

twitterAuth = new TwitterAuthenticate(CONSUMERKEY, CONSUMERSECRET,
ACCESSTOKEN, ACCESSTOKENSECRET);
twitter = twitterAuth.getInstance();
User user = null;
try {
user = twitter.verifyCredentials();
}catch(TwitterException te){
te.printStackTrace();
System.out.println(te.getExceptionCode() + "this is the error
code\n");
System.out.println("Failed to get timeline: " +
te.getMessage());
System.exi1t(-1);
¥
timeline = new Timeline(twitter);
UpdateStatus updateStatus = new UpdateStatus();

try {

- 1/3 -

BotCode. java 2011-12-16
while (true) {

List<Status> homeTimeline = timeline.getHomeTimeline();

//1terate through results and check whether tweet has
been tweeted by a user, if so then tweet onto Bots wall.

for (Status statusI : homeTimeline) {

if
(!statusI.getUser().getScreenName().matches(user.getScreenName())){
updateStatus.update(statusI,twitter);

ks
ks
Thread.sleep(30 * 1000);
ks
} catch (InterruptedException e) {
e.printStackTrace();

}
¥

}

}
package TweetBot;

import java.util.List;

import twitter4j.Status;

import twitter4j.Twitter;

import twitter4j.TwitterException;
public class Timeline {

private Twitter twitter;

public Timeline (Twitter twitter){
this.twitter = twitter;

}

public List<Status> getHomeTimeline(){

List<Status> temp = null;

try {
temp = twitter.getHomeTimeline();

} catch (TwitterException te) {
te.printStackTrace();
System.out.println(te.getExceptionCode() + "this 1is the error

code\n");

System.out.println("Failed to get timeline: " + te.getMessage());
System.exit(-1);
¥

return temp;

- 2/3 -

BotCode. java 2011-12-16
}

}

package TweetBot;

import twitter4j.Twitter;
import twitter4j.Status;
import twitter4j.TwitterException;

public class UpdateStatus {
public UpdateStatus(){

ks
public void update(Status status, Twitter twitter){
try {
System.out.println("Detected: " +
status.getUser().getScreenName()+": " + status.getText());
twitter.updateStatus(status.getText());
//No error returned in update therefore updated fine.
System.out.println("Sent: CSTweetBot:"+ status.getText());
} catch (TwitterException ex) {
System.out.println("error Updating Status");
¥
¥

- 3/3 -

MapCode.php 2011-12-16

Appendix C
<!--index.php-->
<html>
<head>
<title>Map Users - Twitter Style App</title>
<style>
.default{
text-align:center;
float:left;
margin-left:5px;
margin-top:5px;
background-color:#AFC7(C9;
font-family:calibri;
¥
.search{
text-align:left;
width:100%;
background-color:#2DA8D3;
font-family:calibri;
¥
</style>
</head>
<body>

<div class='search'>
<form name="search" method="post" action="index.php">
Search TwitterID<input type='text' name='search'
1d="search'width="25"/>
<input type='submit' name='submit' value="Search"> View Map
</form>

<?
//Search
include_once('connect.php');
i1f($_POST['search']!=null)
{
$id = $_POST['search'];
$result = mysql_query("select * from UserMap where TwitterID='$id'");
$n = mysql_num_rows($result);
1f($n==1){
print "<div class="default'><H1>Search Returned</H1>
Twitter
ID:
 ".mysql_result($result,@,"TwitterID")
"
Forename:
 ".mysql_result($result,@,"Forename")."

Surname:

".mysql_result($result,@, "Surname")."
Email:
 ".$email."

- 1/3 -

MapCode.php 2011-12-16

Delete</div>";

}

7>
</div>

<?
1f($_REQUEST['viewmap']==true)
{
$result = mysql_query("select * from UserMap");
$n = mysql_num_rows($result);
for($i = 0; $i<%n; $i++){
$email = mysql_result($result,$i,"Email™);
$twitterid = mysql_result($result,$i,"TwitterID");

print "<div class="default'>Twitter ID:
 ".$twitterid
"
Forename:
 ".mysql_result($result,$i,"Forename")."

Surname:

".mysql_result($result,$i,"Surname")."
Email:
 ".$email.

Delete</div>";

}
7>
<div class="default">
<form name="add-user" method="post" action="add.php">
<HZ2>Add User</h2>
Forename
<input type='text' name='forename
id="'forename'width="'25"'/>

Surname
<input type='text' name='surname'
id="surname'width="25"/>

TweetID
<input type="text' name='tweetid'
id="tweetid'width="'25"/>

Email
<input type='text' name='email' id='email' size='25'/>

<input type='submit' name='submit' value="Add to Map">
</form>
</div>
</body>
</html>

<!--add.php-->

<?php
include_once("connect.php");
$forename = $_POST['forename'];
$surname = $_POST['surname'];

- 2/3 -

MapCode.php 2011-12-16
$twitterid = $_POST['tweetid'];
$email = $_POST['email'];
$q = "INSERT INTO UserMap (email,forename,surname,twitterid)
VALUES('$email', '$forename’, '$surname’, '$twitterid')";

mysql_query($q);
header("location:index.php");

7>

<!--delete.php-->

<?php

include_once("connect.php");

$email = $_REQUEST['email'];

//$tweeterid = $_REQUEST['tweeterid'];

$q = "DELETE FROM UserMap WHERE email='$email'";
mysql_query($a);

header("Location:index.php");

7>

- 3/3 -

ExternalDisplay. java 2011-12-16

Appendix D

package externaldisplaydemo;

import
import
import
import
import

public

java.
java.
java.
java.
java.

i0.BufferedWriter;
i0.FileWriter;
i0.I0Exception;
util.logging.Level;
util.logging.Logger;

class Main extends Thread{

FileWriter fstream;

BufferedWriter out;

String fileName = "web/index.html";//MAMP server points to
.../ExternalDisplay/web

boolean flag = true;

public static void main(String[] args) {
new Main().start(Q);

ks
public void run()
{
int 1=0;
while(flag){
1++;
try {
fstream = new FileWriter(this.fileName);
} catch (IOException ex) {
Logger.getLogger(Main.class.getName()).log(Level.SEVERE,
null, ex);
ks
out = new BufferedWriter(fstream);
System.out.println("Changed page!");
try {
out.write("<h1l>" + i + "</h1>");
} catch (IOException ex) {
Logger.getLogger(Main.class.getName()).log(Level.SEVERE,
null, ex);

¥

try {
out.close();

} catch (IOException ex) {
Logger.getLogger(Main.class.getName()).log(Level.SEVERE,

- 1/2 -

ExternalDisplay. java 2011-12-16
null, ex);

}
try {
Thread.sleep(60 * 1000);

} catch (InterruptedException ex) {
Logger.getLogger(Main.class.getName()).log(Level.SEVERE,
null, ex);

}

- 2/2 -

