
Cardiff University

Final Report

Final Year Project

CM3203 – 40 Credits

BibTEX Web Database

Author

Mr Miles Budden

Supervisor

Prof. Frank Langbein

June 5, 2020

Abstract

When researching for a paper, report or other

written piece, the need for a place to store ref-

erences is universal. There are many existing so-

lutions for such a problem, however, many fall

short with required features. Be these multi-user

collaboration, the ability to self-host, or accurate

parsing of sources into references, few solutions

fill all of these requirements. This project aims

to produce a solution that can fulfil these require-

ments.

Contents

1 Introduction 3

1.1 Aims 3

1.2 Audience 3

1.3 Scope 3

1.4 Assumptions 4

1.5 Summary of Important Outcomes . 4

2 Background 4

2.1 Existing Solutions 4

2.1.1 Metadata extraction 4

2.1.2 Interface 5

2.1.3 Self-hosting 5

2.1.4 Conclusion 6

2.2 Problem Areas 6

3 Specification and Design 6

3.1 Requirements 6

3.1.1 Functional 6

3.1.2 Non-functional 7

3.2 Architecture Overview 7

3.3 Existing Tools 7

3.3.1 Database 7

3.3.2 PDF parsing and extraction 8

3.3.3 Front-end 8

3.3.4 Server 8

3.3.5 Architecture 8

3.3.6 Security 9

3.4 Data Flows 9

3.5 Database Design 9

4 Implementation 10

4.1 Metadata Extraction 10

4.1.1 PDF Extraction 11

4.1.2 PDF Metadata Consolidation 12

4.1.3 URL Metadata Extraction . 12

4.2 Server Back-end 13

4.2.1 Admin Console 13

4.2.2 Forms 13

4.2.3 Router 13

4.2.4 Views 13

4.3 Front-end 14

4.4 Browser Extension 25

4.5 Database 25

4.5.1 Search 26

4.6 Deployment 26

5 Results and Evaluation 27

5.1 Accuracy of Metadata Extraction . 27

5.1.1 Success criteria 27

5.1.2 Data set 27

5.1.3 Results 27

5.2 URL extraction success rate 28

5.2.1 Success criteria 28

5.2.2 Data set 28

5.2.3 Results 28

5.3 User Testing 28

5.4 Requirements 28

5.5 Development Retrospective 29

5.5.1 Positives 29

5.5.2 Negatives 30

6 Future Work 30

7 Conclusion 30

8 Reflection on Learning 31

9 Appendix 32

References 36

List of Figures

1 Manually adding a reference in

Mendeley 5

2 Docker architecture [16] 9

1

3 Data download 9

4 Data upload 10

5 Database Design 11

6 Landing page 16

7 Account creation page 16

8 Login 17

9 Application main page 17

10 Group view 18

11 BibTEX file download dialogue . . 18

12 Group actions 19

13 Reference view 19

14 PDF viewer 20

15 Editing a reference – 1 20

16 Editing a reference – 2 21

17 PDF upload 21

18 PDF upload success 22

19 URL upload 22

20 URL upload error 23

21 Manual upload 23

22 Autofilling manual upload fields . . 24

23 The admin console 24

24 Editing fields in the admin console 33

25 Extension popup 33

26 Extension options 34

27 Search filters 34

28 Scanned PDF 35

2

1 Introduction

1.1 Aims

The initial description given to this project was

as follows:

“BibTEX is a system to keep track of references

and include them in TEX/LATEX documents. It

keeps the information about the references in a

single file. This is problematic when more than

one person wants to edit the file and keep entries

synchronised. The idea of this project is to cre-

ate a web interface to edit a BibTEX database,

where individual entries are stored in a NoSQL

database. An interface to LATEX editing systems

(to create the BibTEX database for a specific doc-

ument), and searching and annotating the refer-

ences in the database are essential. Interfaces to

bibliography databases, journals, browser exten-

sions to enter references, etc. are also an option to

consider, to simplify editing and populating the

database. Ideally, the database would also hold

links to papers or the actual PDF files of the pa-

per and can extract the citation information from

those files directly. Potentially bibliography infor-

mation could be extracted directly from PDFs or

related web resources into the database instead of

manually entering these.”

From this initial brief, several initial aims can be

determined:

• The project should include a web interface.

• The user should be able to edit the BibTEX

entries from this interface.

• Individual entries should be stored in a

NoSQL database.

• The project should interface with LATEX

through the use of BibTEX.

• The user must be able to search and anno-

tate the entries in the database.

• There could be a browser extension to enter

data into the database.

• The system should hold references to the

PDFs or store the PDF.

• The system could extract information from

the PDFs.

1.2 Audience

Due to the technologies that this project will in-

tegrate with, and the specificity of the need to

manage citations and references, the target audi-

ence for this project is relatively small. There

are three main groups of people who require

the use of reference management software: stu-

dents, researchers, and academics. Of the mem-

bers of these groups, the proposed project would

only be of good use to those who use LATEX and

therefore BibTEX. On average, 26.8% of papers

submitted to journals are typeset in LATEX, al-

though this value is significantly higher for fields

such as mathematics (96.9%) and physics (74.0%)

[1].

Despite the relatively small audience, this is a

tool that is vital to collating and collaborating

on research and would, therefore, see extensive

use from any individuals from the specified de-

mographic.

1.3 Scope

The scope of the proposed project is limited by

three factors. The first is what is needed by the

audience. The brief clearly outlines the expecta-

tions of the project and therefore the aims. The

aims outline project of considerable complexity

and it would, therefore, be out of scope to add

features and functionality that are not present in

these aims.

The second factor is time. As shown in the initial

plan, there is a limited time frame for this project.

Included in this time frame is the report. There-

fore, the number of weeks available for the project

is limited which thus limits the scope of what can

be achieved.

3

The final factor that limits scope is my technical

ability. Although I regularly use and am experi-

enced with back end technologies, I have not used

front end technologies and frameworks in recent

years and therefore my knowledge is out of date

and limited. This limits the scope of the front

end as the development will be slower and involve

more out of date technologies.

Through these limitations, I expect to be able to

fulfil all of the aims specified in the required time

frame.

1.4 Assumptions

The main assumption that I make for this project

is that the end-user is using BibTEX to manage

their references. This is due to the fact that it

is specified that the website should export its ref-

erences at BibTEX and would, therefore, be diffi-

cult to use with other reference management tools

such as those built into MS Word. It would be

possible to integrate the project with Word, how-

ever, this is beyond the scope of the project.

The second assumption is that the only type of

reference that the user wants to be automatically

parsed is an academic paper. I made this assump-

tion as if it was any type of reference, then the

metadata parsing would have to be significantly

more complex and therefore beyond the scope of

the project.

1.5 Summary of Important Out-

comes

The brief outlines a tool that would be valuable

to researchers and students alike. Even if not all

of the aims are met by the deadline, it is impor-

tant that a usable piece of software is produced

that has the basic functionality to improve the

research flow. From the aims, the core function-

ality can be defined as the user being able to add

references to the database and to be able to ac-

cess them in such a way as to be easily addable

to a BibTEX database for use in a LATEX docu-

ment.

Asides from this requirement, the other features

mentioned, although they would add to the user

experience, are not required to use the prod-

uct and are therefore secondary to the aforemen-

tioned core functionality.

2 Background

2.1 Existing Solutions

BibTEX has existed for many years [2] and there-

fore it is natural that there are many tools to

interact with it [3]. Although many exist, there

are few that firstly, have a web interface, and sec-

ondly, are open source and are therefore available

to self-host. Of those listed, three offer up to date

web interfaces: Mendeley, EndNote, and Zotero.

Of these, only Zotero is FOSS (free and open-

source software) and therefore available to self-

host. Although the source is available [4], there

is no documentation and therefore it would not

be feasible to easily deploy this. For the purposes

of identifying important features of existing solu-

tions, I shall be examining Mendeley as it is the

most fully featured and contrasting it against my

proposed solution.

2.1.1 Metadata extraction

The most useful feature of a reference manage-

ment system over a different form of storing ref-

erences such as a text file is the ability to add

references from unstructured data such as a PDF

or web-page automatically. Mendeley supports

this with four different methods of inputting data.

The first is the most simple. This is presenting

the user with a form that allows them to man-

ually enter the data. This provides little advan-

tage to entering references manually such as in a

text field. The only advantage that this beings is

that the reference management system can pro-

vide templates for common reference types such

4

Figure 1: Manually adding a reference in Mende-

ley

as an article or book. Mendeley provides this fea-

ture on their desktop application as can be seen

in Figure 1. This project will implement simi-

lar templates. The templates will be able to be

specified by an admin and presented to the user

as options when they wish to enter a reference

manually.

The second method is to import existing struc-

tured forms of data such as BibTEX files. Mende-

ley supports the importing of several data types

such as BibTEX, EndNote, and Research Infor-

mation Systems (RIS) files. This project will al-

low the user to upload BibTEX files. It will not,

however, allow other types of files. This is because

the specification provided does not require this.

This feature could be easily added however.

The third way to enter a reference would be

through uploading a PDF. Mendeley supports

this in a variety of ways. The user can either

use the browser extension, the website, or the

desktop application to do this. The desktop ap-

plication allows for multiple PDFs from a direc-

tory to be added at the same time to streamline

the uploading process. This project will allow

PDFs to be uploaded from the website. This will

only allow one PDF to be uploaded at a time but

could be changed to allow the upload of multiple

PDFs.

The final way is to enter a URL of a paper.

Mendeley supports this by adding a URL using

the browser extension, however, the desktop and

browser clients do not allow the user to enter a

URL. This project will allow the user to enter

a URL in two ways. The first is through the

browser extension. When the user is on the page

they wish to add, they can use the extension to

enter the page as a reference. In the main appli-

cation, one of the options for adding a reference

is to add a URL.

2.1.2 Interface

Mendeley is available on four platforms. These

are web, desktop, browser extension, and MS

Word extension. This project will only be avail-

able as two: web page and browser extension.

Due to the platforms that Mendeley is available

on results in a potentially better user experience

as it can leverage native user interface elements as

well as access to the local file system. This project

will only be available through a web interface and

therefore suffers some reduced user experience as

a result.

2.1.3 Self-hosting

As it is closed source, Mendeley is not available

to self host, even as a pre-packaged binary. The

closest feature it offers is the desktop client which

can store some data locally. This project, how-

5

ever, allows the user to host their own instance

and even compile the extension with a specific

target.

2.1.4 Conclusion

Although Mendeley has many fully featured

clients and more functionality than the proposed

project, the limitation that it cannot be self

hosted rules it out for many users. This project,

although lacking in a few of the features, allows

the user to self host and therefore fulfil a niche

that Mendeley does not fulfil.

2.2 Problem Areas

The solutions specified in section 2.1 as well as the

proposed solution can be decomposed into three

separate parts: entry of data, storage of data, and

retrieval of data.

Each of the solutions specified in section 2.1 al-

lows the entry of data in three ways. The first

is manual. This area will be relatively simple to

implement as only a form is required. The sec-

ond is through a given URL. The data at that

URL will have to be parsed and a paper retrieved.

This process is simplified by most papers provid-

ing metadata in a predefined format [5]. The final

method for data entry is to provide a PDF to be

parsed. This method raises several issues. The

first is extracting raw data from the PDF. This

raises such issues such as OCR (optical charac-

ter recognition) for papers that do not contain

embedded text as well as identifying contiguous

sections of text [6].

Although the BibTEX specification has a base

set of field types [7], users can add extra field

types for use with BibTEX alternatives such as

BibLATEX. Therefore, in order to store the ref-

erence data in a structured format, the use of

NoSQL document storage would be more suited

than traditional relational storage as the schema

of each reference is unknown.

As previously stated, the main way to retrieve

data from the database will be in the BibTEX for-

mat. In order to locate specific papers, the user

will need to search the database. The benefit of

sorting the references as structured data and not

as plain text is evident here as the user will be able

to construct more specific queries with regards

to differentiating between field names and val-

ues. As well as searching the references, the user

should also be able to search the full-text of the

referenced PDFs. This raises the aforementioned

issues with extracting text from PDFs.

3 Specification and De-

sign

3.1 Requirements

The requirements for this project are derived

from the project brief, aims, and discussion with

the supervisor. The requirements have been di-

vided in two ways. They have been divided into

functional and non-functional requirements. The

functional requirements specify what features the

project should have and then non-functional re-

quirements specify how the project should run.

They have also been divided into must, should,

and could haves. The must haves are features

are core features of the project and must be com-

pleted in order for the project to be considered

a success. The should have features are features

are ones that would benefit the project but are

not essential. These features are within the scope

of the project and are the difference between a

basic and good finished project. The final type is

the could haves. These would be great additional

features to the project but are likely beyond the

scope and timescale of this project.

3.1.1 Functional

• The system must be accessible from a

browser.

6

• The system must be able to determine be-

tween different users.

• The user must be able to add references to

the database.

• Multiple usersmust be able to edit the same

reference database.

• The usermust be able to view the references

for all databases they are a member of.

• The user must be able to search for refer-

ences.

• The user must be able to export a reference

as a BibTEX file.

• The administrator should be able to ap-

prove new accounts before they are used.

• The administrator should be able to view

and edit all data stored by the system.

• The user should be able to add a reference

by uploading a PDF.

• The user should be able to upload a refer-

ence by providing a URL.

• The user should be able to upload a ref-

erence/s by providing an existing BibTEX

file.

• The user should be able to add a user to a

group they are a member of.

• The user should be able to filter search re-

sults to specific BibTEX fields.

• The user should be able to search the full-

text of uploaded PDFs.

• The user should be able to edit the reference

once uploaded.

• The user could be able to add URLs by the

use of a browser extension.

• The user could annotate the PDFs in the

browser.

3.1.2 Non-functional

• When running in production, the system

must be available 99% of the time.

• The interface must be pleasant to view.

• The interface must be intuitive to use.

• Each page must load in no more than

1500ms (excluding loading of the first page).

• The application must be able to be accessed

securely.

• The application must be able to be viewed

in all modern browsers.

• The user should be aware of the state of the

system upon error.

3.2 Architecture Overview

The project is decomposable into three different

sections. These are the webserver, the PDF ex-

tractor, and the database. The separation of each

of these services into their own services benefits

the project in two ways. The first of these is

stability. If one of the services was to fail, the

others could continue to run. Although some ser-

vices rely on others, if there is no dependency,

the project could continue to function so some

extent. For example, if the PDF extractor were

to fail, the majority of the website will continue

to function.

The second benefit is that the project will be

modular. This allows sections of the project to

be changed with greater ease. For example, if

the database needed to be changed, a separate

database module could be added and would only

require small changes in the other modules.

3.3 Existing Tools

3.3.1 Database

In order to store the data, a document storage

database would be more suited than a traditional

7

relational database for reasons stated in section

2.2. The most common NoSQL database is Mon-

goDB. This would be suited to the storage of

the BibTEX data although it has two shortfalls.

The first is that although the project requires the

BibTEX data to be stored in a NoSQL fashion,

the project also needs to store other data such

as user information that is more easily stored in

a relational database. The second shortfall is

that with default settings, it has been shown to

have “read skew, cyclic information flow, dupli-

cate writes, and internal consistency violations”

[8] when using default settings.

A mature solution which supports both document

storage and relations is PostgreSQL. As one of its

field types, it supports JSONB [9]. This is a bi-

nary representation is JSON which supports other

features such as GIN and GIST indexes.

3.3.2 PDF parsing and extraction

There are several methods for extracting the

metadata from the plain-text of PDFs such as

the use of a Multi-Layer Perceptron [10] or Hid-

den Markov Models [11]. An evaluation of com-

mon implementations of these methods as well

as others [12] shows that an implementation of

Conditional Random Fields called GROBID [13]

results in the greatest accuracy of extraction of

fields such as the title, authors, and date. Mende-

ley outperformed GROBID in some areas however

the metadata extraction is not available outside

of Mendeley.

GROBID is suitable for the modularity aspect of

the project as it is entirely self-contained. Inter-

action with it is through an API it exposes over

HTTP.

3.3.3 Front-end

Due to the simplicity of the front-end of this

project, due to most of the interactivity com-

ing from the dynamic back-end, Foundation is a

suitable framework to use for front end develop-

ment as is has many, easily themeable compo-

nents.

In order to implement the interactive aspects of

the front end, JQuery is suitable. Although it

is now an old web technology, I have experience

using it and for the scope of this project, it is

suitable.

3.3.4 Server

In order for the project to serve different pages

to different users, the website must be dynamic.

There are many existing tools to do this. Django

is a mature and fully featured web framework for

Python that allows Python to interface with a

web server through the WSGI [14] or ASGI [15].

In order to serve this, Uvicorn can be used. This

is a fast web server designed for serving ASGI. As

well as the dynamic content from Django, static

content must also be served. Although Uvicorn

can do this, Nginx can be used to take load off

the Python server.

3.3.5 Architecture

In order to easily create isolated modules with

identical behaviour in all environments, Docker

is a tool to make containerisation on Linux sys-

tems easier. It provides the tooling to create con-

tainers that act as virtual machines for each of

the sections of the project as well with less over-

head than standard virtual machines as virtual

networking to network them together in a secure

way (see Figure 2). As well as this, there are sev-

eral tools which make development and deploy-

ment of these containers simpler. Docker Com-

pose allows for configuration files specifying which

containers should be run and how they should

behave. Docker Swarm and Kubernetes allowing

for complex deployments by allowing the user to

specify the resources needed and ability to run

the containers over a cluster instead of a single

host.

Each of the previously mentioned existing tools

8

Figure 2: Docker architecture [16]

are easily used inside of these containers. Tools,

such as GROBID and PostgreSQL, which usu-

ally have a complex deployment process are eas-

ily deployed using these containers as images for

Docker already exist for these tools which can be

used in containers, thus simplifying the configu-

ration process.

3.3.6 Security

Although the project would work using the previ-

ously mentioned tooling, it lacks security. Træfik

is a reverse proxy that adds HTTPS and HTTPs

upgrade to HTTP requests. It is more suited to

Docker than alternatives such as Nginx as it sup-

ports Docker auto-discover as well as automatic

negotiation with Let’s Encrypt, thus making de-

ployment much simpler.

3.4 Data Flows

Within the project, there are 2 main actions that

cause data to flow through the application. The

first of these is when the user uploads a reference

(see Figure 4). The system accepts three kinds

of reference upload which makes the possible flow

of data more complex than a single type of up-

load. As well as uploading data, the user must

also be able to download it. This process is much

simpler as there are only two methods (see Figure

3).

Figure 3: Data download

3.5 Database Design

As can be seen in Figure 5, the database for this

project comprises of multiple tables. Although an

in-depth, table-by-table breakdown can be found

in Section 4.5, I will do a high level overview. To

understand the database design, the design model

for the project must be understood. The most ba-

sic object in the project is the user. This object is

unique for each user. There are two types of user:

the admin and the standard user. The admin

user will also have access to the admin views (see

Section 4.2.1). Groups represent a single BibTEX

database. There is a many-to-many relationship

between users and groups. This many-to-many

relationship is implemented using a third table

that stores users’ memberships to groups. Each

group can store multiple references. These refer-

9

Figure 4: Data upload

ences are specific to a group. Each reference can

also have files associated with them.

Separate to the core reference storage and access

objects are the reference templates. These are

stored by having a many-to-one relationship be-

tween many fields to one reference type.

4 Implementation

4.1 Metadata Extraction

The extraction of the metadata is divided into two

parts. These are the extraction of partial meta-

data from the PDF and consolidation of the pa-

per’s full metadata. This division into two parts

came as a result of two factors. Firstly, extrac-

tion of the metadata is not always accurate, so by

consolidating it against an external source means

that any small mistakes can be corrected. Sec-

ondly, not all of the data required to form a full

10

Figure 5: Database Design

citation is present in the PDF. Examples of these

are the DOI, pages in the journal, and other meta-

data that is determined after the paper is type-

set.

4.1.1 PDF Extraction

The majority of this process is performed by the

GROBID service. As shown in Figure 4, The pro-

cess starts when the user uploads the PDF to the

server by a POST request. At his point, the server

performs two tasks. It saves the PDF accord-

ing to the file handling method specified in set-

tings.py. This configuration option allows for

storage formats such as file system storage and

S3 storage to be easily interchanged depending

on the deployment situation. The second action

that is performed is that the PDF is sent to the

GROBID service. The GROBID service runs in a

separate Docker container to the main web server.

The GROBID container and the webserver are on

a private, internal virtual network so that they

can communicate securely. The GROBID service

exposes an HTTP API to the webserver. The

server POSTs the PDF to GROBID for data ex-

traction. Specified in the POST request is that

GROBID should return what metadata it can ex-

tract as well as the full-text of the PDF. The full-

text is required for the search functionality.

If no error occurred, then GROBID will return

the metadata as well as the full-text. The web

server will save the full-text to the fulltext field

of the Reference table in the database (see Fig-

ure 5).

11

4.1.2 PDF Metadata Consolidation

Once the server has received the metadata, it can

begin to fill out the missing fields of the reference

as well as check that a mistake was not made by

GROBID when extraction the metadata.

The first step to this process is to query online

academic paper repositories to determine the DOI

or any other metadata. The first online source

that gets queried is Crossref. Crossref is queried

with the retrieved title of the paper as well as the

first author. Only the first author is used as often,

GROBID returns other names found on the cover

of the paper such as anyone the paper thanks.

The returned papers are iterated through. For

each of the papers, it is checked as to whether

the titles are similar. This is calculated by the

use of difflib in the Python standard library. If

the two titles have a similarity ratio of greater

than 0.9, it is deemed that the titles matched.

The similarity ratio is required as often, papers

had marginally different titles on the PDF copy

to those found on Crossref such as apostrophes.

Once a result is determined, the DOI is retrieved.

Using the DOI, the BibTEX can be found using

the DOI.org DOI resolved [17]

If Crossref does not return any valid results, arXiv

is queried. Crossref is queried before arXiv as is

it significantly faster to respond as well as often

having more complete citation data. A similar

approach is applied to the results of arXiv as to

those from Crossref. The method differs, how-

ever, when no DOI is found. Whereas results on

Crossref are guaranteed to have a DOI, those from

arXiv are not. If a matching paper is found but

does not have a DOI, then a citation is generated

from what metadata is returned.

In order for the database to be able to store

these references in a way that can be effec-

tively searched, the references returned from the

aforementioned methods must be converted to a

Python object so Django’s ORM can write the

values to JSONB in the database.

4.1.3 URL Metadata Extraction

The first stage of loading metadata from a URL

is to load the web page. Many publishers forbid

bots from accessing their content, however, as this

is a single page load that must be actioned by a

user, it is not a bot. In order to stop the publish-

ers’ bot prevention mechanisms, the user agent of

Google Chrome is used for the request. Although

when given the direct link to the page, the page

is able to be loaded by sending a single request,

when a redirect link provided by the publisher

is used, a JavaScript redirect is used to prevent

scraping. This is only an issue with testing as this

is the only situation that commonly uses the redi-

rect link provided by DOI.org instead of the direct

link. In order to circumvent this, the JavaScript

must be run to successfully redirect. Selenium

and a headless version of Google Chrome are used

to run this JavaScript. This, however, only occurs

during testing as there is a large overhead associ-

ated with this and is unnecessary the majority of

the time.

Once the HTML from the page has been fully re-

trieved, three methods are used to try and extract

the data. The first is to test whether the page uses

the Dublin Core Element Set [5] in the header.

This is a known format of metadata tags that can

be easily parsed. It is checked whether any tags

start with dc:, which is the prefix used by Dublin

Core. If this format is used, the DOI is located.

Once located, it can be passed to the DOI.org

resolver and the full reference retrieved.

If the Dublin Core Element Set is not used, the

second method is to scan for a DOI in the page.

An assumption is made that the first DOI found

is that of the page as any references made would

likely be made after the principle paper. To locate

a DOI on the page, the following regular expres-

sion is used [18]:

10.d{4,9}/[-. ()/:A-Z0-9]+

12

Finally, if no DOI is found, it is assumed that

the paper does not have a DOI. In this case, an

attempt to read any data from the meta tags is

made. For each usual reference field, it is checked

whether there is a corresponding meta tag. For

example, is a meta tag has “author” as its name,

the contents of the tag are written to the “author”

field of the reference.

If none of the aforementioned methods work, then

an error will be thrown and the user notified that

there was an issue with the URL provided.

4.2 Server Back-end

The back-end of the project is implemented in

Python using the Django framework. The code is

split into two apps called syncref and references.

Syncref is the working title for the application.

The app contains the configuration of the project

as well as the code to interface with the ASGI

server Uvicorn. The majority of the code resides

inside of the references app. Amongst the con-

tents are the templates for the dynamic views,

the static files required by the front-end, the code

required for the metadata extraction, the admin

interface for the project, the forms required by

the project, the models for the database (see Sec-

tion 4.5), a router for the application, and the

dynamic views.

4.2.1 Admin Console

The admin console is generated by Django from

the models you specify in admin.py. Once a

model is specified, along with and configuration

options, all instances of the model in the database

can be edited. The admin interface is important

for two functions in this project which cannot be

done from the website. The first of these is ap-

proving users when they sign up. When a user

registers, their account is disabled by default and

needs to be activated. This allows the admin-

istrator control over who has an account if the

website is accessible to the internet. The second

function is the configuration of the field popula-

tor for the manual entry of references. When a

user manually enters a reference, they can choose

from a variety of standard reference types such

as article, and the fields are auto-populated with

fields standard to that reference type.

As well as these two functions, the admin console

can be used for general user management, man-

agement of references, and files. Although most of

this is possible from the website, the admin con-

sole allows these actions to be applied to multiple

entities for bulk actions.

4.2.2 Forms

Django forms were not extensively used in this

project in favour of manually POSTing data,

however, to handle file upload, it is simpler to

create a form. This is because the Django file

form converts the byte stream into a filehandle

which simplified the handling of files.

4.2.3 Router

There are two routers present in this project. The

main router is in the syncref app. This is the

first router that runs when a request is made to

the server. This router is responsible for directing

the request to one of two other routers: the admin

router as part of the standard Django module,

and the references router that handles routing for

the rest of the application.

This router takes a request and maps the path

specified to a view. During this mapping, it can

take arguments from the path and pass those to

the view as well.

4.2.4 Views

The initial view served to the client when they

first load the website is the index view. This

checks to see whether they are logged in. If they

are, they are redirected to the main app page. If

they are not logged in, then the website landing

13

page is served instead.

The sign-up view takes a POST request from the

client and creates an account if the fields of the

request are valid. Once an account is created, the

user is notified that they must wait for an admin

to activate the account if the REQUIRE ADMIN AUTH

flag is set in the settings file.

The login view, similarly, takes a POST request

and attempts to log the user in. It checks to see

if the is active field for the user is set to true.

This field of false by default but must be set to

true by an admin.

The next view of interest is the view to manually

add a reference. It iterates over every key and

value in the POST request. From this dictionary,

a reference in the database is created with this in-

formation. Once the reference has been created,

the user is redirected to the new reference. The

edit reference view follows a similar structure. It

differs, however, as when the key-values are sub-

mitted, the corresponding reference is updated to

match the new values, as opposed to creating a

new reference.

The next view is the PDF upload and parser han-

dler. The user submits a form containing the PDF

to the server. Using the aforementioned form,

a file pointer is passed to the metadata extrac-

tion function. This function calls GROBID with

the PDF and returns any extracted metadata as

well as the full-text of the PDF. The metadata is

then consolidated. This consolidated metadata is

stored as a reference in the database. The PDF

is also saved and linked to the reference. Once

the PDF is parsed and saved, the user is redi-

rected to the page of the reference. This view is

similar to the uploadPDFToReference view. This

view allows the user to upload a PDF but doesn’t

parse it. This is for the purpose of adding PDFs

to existing references.

A similar view to the PDF view is the URL view.

This allows the user to create a reference from

a submitted URL. The view accepts a POST re-

quest. It then attempts to extract the metadata

from the URL. If the extraction fails, then the

user is notified. If it succeeds, then a new ref-

erence is created with the metadata and the user

redirected to it. The next view is almost identical.

It allows the user to submit a URL but is CSRF

token exempt. CSRF tokens are used throughout

the site to ensure that requests are made from the

same origin as the tokens are only available from

the server. This view is exempt from them as

it is intended for use from the browser extension

which does not have access to CSRF tokens. In-

stead of a CSRF token, this view uses an API key

which can be accessed by the user from another

view. This API key is randomly generated us-

ing the cryptographically secure pseudo-random

number generator included in the Python stan-

dard library.

The export view allows the user to export a

BibTEX file for a given group. The export process

ensures that there are no references with the same

identifier in the same BibTEX file as this would

cause issues further on. The upload BibTEX view

allows the user to upload a BibTEX database to

a given group. This is significantly faster than

adding references from their sources such as PDFs

as the metadata is already structured and there-

fore does not need to extracted.

4.3 Front-end

The front-end is divided up into templates for

each view. Each template inherits from the base

template which means elements such as the nav-

bar only need to be edited in one location for the

change to reflect in all of the views.

When the user first loads the website, they are

presented with the landing page as can be seen

in Figure 6. From here, they can either log in

or register. If they choose to register, they are

presented with the create account page as can be

seen in Figure 7. Each input control states the re-

quirements that must be met by that element for

14

the form to be valid. If the user submits the form

with any invalid data, then they will be notified

at the top of the page along with the incorrect

fields being highlighted. Upon successful submis-

sion, the user will be notified that they must wait

for an administrator to verify their account and

then be redirected to the home page. If the user

chose to sign up, they will be directed to the login

page. As can be seen in Figure 8, the standard

login format of username and password is used.

If there is an issue with credentials, the user will

be notified of the error. If the credentials are cor-

rect, then the user will be redirected to the main

page of the app.

As can be seen in Figure 9, the main page of the

application shows the user a variety of data. On

the left-hand column, the list of groups the user is

a member of is shown. Each of these groups can

either have just one member or if the user wishes

to collaborate, multiple members. In the main

column, all of the references from all of the user’s

groups are shown. If the user wishes to view any

one of these references, they can click on it. As

with the references, if the user wants to view any

of the groups they are a member of, then they can

click on the group’s name.

When the user clicks on a group name, they are

shown a list of all of the references that are stored

in that group (see Figure 10). This is similar

to the home view except for a few differences.

Firstly, controls have appeared at the top of the

list. These allow the user to either add a new

reference to the group or to export all of the ref-

erences from the group. If the user chooses to

export the references, they will be presented with

the browser download dialogue for a BibTEX file

containing all of the references in that group as

can be seen in Figure 11. As well as the controls,

the breadcrumb reflects that the user is now view-

ing a group as well as which group they are view-

ing. Finally, there are new controls at the bottom

of the list to edit the group as can be seen in Fig-

ure 12.

When a user wishes to view a specific reference,

they are shown the view shown in Figure 13.

They are shown the plain text data stored in the

reference as well as the BibTEX its self. In the

BibTEX code block, there is a button to allow the

user to copy the contents to the clipboard. Below

the BibTEX is the PDF if available. As can be

seen in Figure 14, the browser’s built-in PDF is

used to show the corresponding PDF. The Edit

Citation tabs allow the user to edit the reference.

This tab is shown in Figure 15. Each of the fields

is shown allowing the user to edit either the key or

value. The user may also choose to delete fields

or add more. As can be seen in Figure 16, the

user may also choose to upload a PDF if one does

not exist or if they wish to add additional PDFs.

They may also delete the PDF.

In order to upload a reference, the user has three

options. The first is to upload a PDF (as seen

in Figure 17). Once uploaded, if successful, they

are redirected to the reference with a notification

saying it was successful (see Figure 18). If the

metadata was extracted but no published paper

found, the extracted metadata will be shown but

a warning will be displayed.

The second option is to specify a URL as seen in

Figure 19. If the URL is parsed successfully, then

the user is redirected to the reference. If there was

an error, the error is shown as in Figure 20.

The final option is to manually enter the fields

as seen in Figure 21. The user can autofill the

form from templates specified by the admin as in

Figure 22.

The admin console is generated by Django from

the models specified in admin.py. The main view

for the admin console can be seen in Figure 23.

Each of the models are shown. If the user wishes

to edit any of the values stored in any of the mod-

els, they can choose the model and are shown

a view with editing options as seen in Figure

24.

15

Figure 6: Landing page

Figure 7: Account creation page

16

Figure 8: Login

Figure 9: Application main page

17

Figure 10: Group view

Figure 11: BibTEX file download dialogue

18

Figure 12: Group actions

Figure 13: Reference view

19

Figure 14: PDF viewer

Figure 15: Editing a reference – 1

20

Figure 16: Editing a reference – 2

Figure 17: PDF upload

21

Figure 18: PDF upload success

Figure 19: URL upload

22

Figure 20: URL upload error

Figure 21: Manual upload

23

Figure 22: Autofilling manual upload fields

Figure 23: The admin console

24

4.4 Browser Extension

In order to reduce development time whilst max-

imising the available users, it was important for

the extension to compile for multiple browsers. I

found an existing build system to base the exten-

sion off that allows Chrome, Firefox, and Opera

build targets [19]. The extension is split into

four sections: the popup, the options page, the

content script, and the background worker. The

popup is the small window that appears when the

user clicks the extension button at the top of the

browser window. This popup provides the main

controls of the extension as can be seen in Figure

25. The popup shows the user the page they are

going to submit to the server as well as the but-

ton to submit it. A link to the options page can

also be seen. If the user tries to submit the URL

without specifying the root location of the syncref

server and an API key, they will be notified. If

the page doesn’t contain any references, then the

extension will display an error accordingly.

The options page contains two text fields: the

syncref base URL and an API key (see Figure 26).

These ensure that the extension is communicat-

ing with the correct instance of syncref and for

the correct user. Due to the scope of the project,

it was simpler to use API keys as opposed to a

more conventional authentication method such as

OAuth. Once the user has entered these, the ex-

tension will no longer error when attempting to

submit a URL.

The popup and options pages are written using

HTML, CSS, and JS and behaves live a web page.

The third section is the content script. This is a

piece of JavaScript that is injected into the page

to extract the URL and title. The extension can’t

access information such as this so it needs to in-

ject JS in order to access it. The injected JS

communicates with the main extension by the

message passing interface that is standard across

browsers.

The final part is the background worker. This is

used to send the request to the server as it can’t

be cancelled partway by the user. A message is

passed from the popup to the worker with the

information to send to the server. The worker

attempts to send this to the server. Upon success

or error, the worker passes a status message back

to the popup to display to the user.

4.5 Database

Django interfaces with PostgreSQL through an

ORM. The models are defined as classes in mod-

els.py. The models correspond to the tables

defined in Figure 5. Each model is a class

that extends Django’s django.db.models.Model.

Django’s User model is also imported. This al-

lows the models to use the user model used for

authentication and session management.

The first model is Group. This represents a refer-

ence group. It contains a name, a description, a

creation date, and an admin. The creation date

is automatically populated when an object is cre-

ated from the model. The admin field is a foreign

key to the user table. The admin user has special

privileges over the group.

The next model is the GroupMembership model.

This is used to create a many-to-many rela-

tionship between users and groups. Although

Django’s ORM supports many-to-many, this is

a more verbose way of defining the relationship.

The model contains two foreign keys: a user, and

a group. There is also a date created field that is

automatically populated on creation.

The Reference model contains data about a spe-

cific reference. It contains the name, BibTEX

data, a creation date, group it belongs to, and

the full-text of the reference. The BibTEX field is

a special data type specific to PostgreSQL: JSON

field. This allows for the parsed BibTEX data to

be stored in an indexable way.

The ReferenceType model is used for the auto-

population of fields when the user manually en-

25

ters a reference. The ReferenceField model uses

this model as a foreign key. The Reference-

Type model represents a type of reference such as

“article” or “book”. The ReferenceField model

represents fields associated with those reference

types such as “title” or “author”.

The ReferenceFile model contains two fields: a

file field and a foreign key to a reference. This

model is used to store a file that is related to

a reference. The Django file field automatically

handles the file by the method defined in set-

tings.py.

The final model is the APIKey model. This con-

tains a foreign key to a user and a string of the

API key. The string must be unique as if there

was a duplicate, then it couldn’t be determined

which user it was if a user identified by their API

key in the browser extension.

4.5.1 Search

All search functionality in the application is han-

dled by one view. This includes features such as

the search suggestions when the user is typing

in the search box. The main search view has sev-

eral advanced controls that change how the search

function runs. These controls change flags in the

POST request sent to the search view endpoint.

The user is shown a list of all of the field names

for all of the references they have access to (see

Figure 27). This allows the user to quickly select

a field they wish to query. They also have the op-

tion to choose whether to search the full-text of

references and the group the reference is present

in as well.

Django uses search vectors to construct searches.

These vectors can be assigned weights to deter-

mine the weighting they have on the results. In

the case of syncref search, full-text results are

given a lower weighting than other vectors as it

is more likely for any given query to exist in the

full-text than in the metadata.

When a query is retrieved, several vectors are cre-

ated. If the user has requested a full-text search, a

vector for the full-text is created. If specific fields

are requested by the user, then those fields are

used. If none are specified, then the default fields

specified by settings.DEFAULT SEARCH TAGS are

used. These fields are sent to a function to return

a search vector for each field. All of these vec-

tors are combined into a final search vector. The

SearchRank method is used to perform the actual

query. This returns all of the matches and a sim-

ilarity score to the original query. These results

are ranked by similarity and results that have a

very low similarity are filtered out. If the request

specified a JSON response, then the results are

returned as JSON, otherwise, they are rendered

for the user.

4.6 Deployment

Deployment is handled by the Docker-compose

configuration file and the project Dockerfile. The

Dockerfile specifies steps to build an image of syn-

cref. It installs the dependencies, copies the code

to the container, and collects all of the static files

and places them under a single directory.

The Docker-compose file defines several services

that are run for the project to function correctly.

The first service it defines is the Træfik service.

The flags on how Træfik behaves are given here.

Træfik is configured to accept any traffic on ports

80 and 443. It is also told where to store the

Let’s Encrypt certificates. The Docker socket

(/var/run/Docker.sock) is also forwarded to the

container. This allows Træfik to discover and

control Docker containers running on the host.

Træfik is given access to both the internal private

network and the public-facing network. Both net-

works are required as it functions as the reverse

proxy and forwards traffic from the public-facing

network to the private one.

The next service defined is the syncref service.

The location of the Dockerfile is given so Docker-

compose can start the service. Docker-compose

26

runs a shell script contained in the container.

This shell script waits until the database has

started before starting the application. The di-

rectory that the static files were moved to is then

mapped to a shared volume by all of the con-

tainers. Port 8000 is exposed so Træfik can for-

ward requests to it. The Træfik rules are then

defined for the service. options such as HTTP to

HTTPS redirection are specified along with how

to resolve the SSL certificate from Træfik. En-

vironment variables are then defined. These are

used to set up the administrator account when

the server starts.

The next service is the Nginx service. This is

given access to the static volume made avail-

able by syncref. Træfik forwards all requests to

/static/ to this service which can then serve

the static files without the Django server serving

them.

The penultimate service is the database. This

has a secure configuration. It is not available for

Træfik, meaning there is no risk of it being ex-

posed to the public-facing network. A volume is

defined that is mapped to the PostgreSQL data

folder so that the container can be stopped and

deleted with no risk of deleting the data.

The final service is the GROBID service. Like

the database, this is only accessible on the in-

ternal network as the security of the container

cannot be guaranteed as it is a community build

container.

Finally, the aforementioned Docker-compose vol-

umes and networks are defined so that they can be

automatically created when the Docker-compose

file is run for the first time.

This configuration allows for the project to be

easily deployed to any hardware with now worry

about dependencies. Docker-compose files can

easily be converted into Kubernetes files for

more advanced deployment across multiple hosts

should the project require this.

5 Results and Evalua-

tion

5.1 Accuracy of Metadata Extrac-

tion

5.1.1 Success criteria

To evaluate the accuracy of the metadata extrac-

tion from PDFs, a set of PDFs shall be passed

through the metadata extraction system. For

each PDF, it is determined if the metadata was

successfully extracted by searching Crossref and

arXiv for papers matching the extracted data. If a

match is found, then it is deemed that the meta-

data was extracted successfully. If no match is

found, it is assumed that the metadata was in-

correctly extracted.

The main limitation of this method is that the

paper could not exist on either repository. Due

to the volume of papers stored, however, makes

this unlikely. Unfortunately, there is not a better

method within the scope of this project.

5.1.2 Data set

The PDFs being parsed is a set of 331 PDFs of

scientific papers, the majority of which are from

popular publications.

5.1.3 Results

After parsing the 331 PDFs, there was a suc-

cess rate of 84.2% Although this is a satisfac-

tory percentage, I looked into why the papers that

failed did fail. The feature of a paper that had

the greatest effect on the parsing outcome was

whether the paper was a scan. Figure 28 shows

a sample of text from a scanned PDF. Although

OCR can usually recognise text like this, there

are anomalies. The other most common causes of

mal-parsing are unusual layouts, especially when

there are other names on the first page, ear the

top, that aren’t authors.

27

5.2 URL extraction success

rate

5.2.1 Success criteria

To evaluate the success rate of the URL data ex-

traction, a URL is deemed successfully scraped

if some metadata can be returned. Many URLs

do not contain enough metadata to full identify

the paper. In these cases, if some metadata such

as the author and title are returned, then it is

deemed a success. This compromise had to be

made as many of the URLs present in the data

set are not for papers.

5.2.2 Data set

The data set for this was a BibTEX database con-

taining 435 references with URLs. The URLs are

a variety of direct links, DOI.org links, and links

to PDFs.

5.2.3 Results

After attempting to load all 435 URLs, there was

a success rate of 76.6%. This is an acceptable

value as the majority of failures are not due to

not being able to parse a page containing a pa-

per. The most common error was the url field

of the reference was pointing to a PDF, and not

the web page of the paper. The URL parser is not

designed to handle PDFs; This role is reserved for

the PDF upload feature. Another common prob-

lem was dead links or links that returned a 404

error. Although these links should be discounted,

there is not way within the scope of the project to

do that for a data set of this size. The final issue

that many of the links were to websites that were

not papers. The URL parser assumes that the

user wishes to add a paper and is therefore not

reliable at extracting metadata from web-pages

that are not papers.

5.3 User Testing

In order to test the user experience of the project,

I used the project (once in a usable state) to man-

age the references for this project. This allowed

me to identify usability issues and useful features

that were not specified in the requirements. Ex-

amples of these are the breadcrumbs at the top of

every page. Although I did not initially include

them in the design, the similarity between the

home page and a group view, and the lack of feed-

back about which group is being viewed showed

that there was a requirement for them. Another

example is the copy to clipboard button by every

code snippet. Although it is not required and was

not in the original requirements, my workflow for

writing this report caused me to copy references

often, which got repetitive. The button was a

small snippet of code which saved me time in the

long run. Insights such as these are only available

when the user is relying on the software as then

they find the features or lack thereof that become

repetitive for the user.

The other advantage to testing it myself is a very

quick development cycle. If a bug was identified,

I could fix it right away and continue testing and

using the software.

5.4 Requirements

Of all of the requirements specified in Section 3.1,

only one was not met, and this was only cate-

gorised as could have. This was to be able to an-

notate PDFs. After research into this area, there

were no viable open-source methods to do this

in a browser. Implementing this would have been

possible but would have cut into the development

time of other more important features.

Although the functional requirements were simple

to identify whether they were fulfilled, the non-

functional requirements are more subjective. Be-

low are the requirements and my justification as

to whether they were met:

28

• When running in production, the system

must be available 99% of the time.

Although this requirement is specific to

long-term deployment which has not been

tested, tools required to achieve this per-

centage of SLA have been integrated into

the project. These include Docker which

would allow multiple instances of the

project to run in a cluster as well as Træfik

which allows for health to be monitored.

• The interface must be pleasant to view.

Although this dis subjective, the end user

can easily edit the colour scheme of the fi-

nal product by editing the variables.scss

file. When compiled, the colour variables

specified in this file as well as other stylis-

tic choices will be applied to the project.

Therefore, whatever the user defines as

pleasant to view can be configured.

• The interface must be intuitive to use.

This is another subjective requirement. The

project had constant user testing through-

out its development and as a result the in-

terface is relatively streamlined. Further

user testing would have to be carried out to

verify this, but the project has been tested

for usability and therefore it can be assumed

that it is intuitive to use.

• Each page must load in no more than

1500ms (excluding loading of the first page).

In testing, the average page load was

500ms. The loading of the core page was

significantly faster, however, as the slowest

part to load was the MathJax library used

to display the LATEX commands present in

some references.

• The application must be able to be accessed

securely.

The use of Træfik to automatically nego-

tiate SSL certificates means that all com-

munication between the client and server is

secure. Internal services that should not be

exposed to the internet such as the database

are also on separate networks to prevent ex-

ternal access.

• The application must be able to be viewed in

all modern browsers.

The front-end library used has been tested

on and is supported by all modern browsers.

The limitation of browsers comes from the

use of flexbox in the project, meaning that

there is no support for IE 9, however, this

is not considered a modern browser.

• The user should be aware of the state of the

system upon error.

Django messages are used throughout so

that upon error, or success, the user is pre-

sented with a notification box at the top of

the page that notifies them of any system

information that is relevant to them, such

as a PDF failing to parse.

5.5 Development Retrospec-

tive

5.5.1 Positives

The choice to develop using a Docker based envi-

ronment was greatly advantageous to the project.

It reduced overheads associated with configura-

tion throughout the project. For example, the

two main environments this project was devel-

oped in was a Debian based environment and

an Arch based environment. Although these are

both Linux based, they have different package

systems and repositories. Once Docker was in-

stalled on both, the build process was identical.

It also prevented pollution of the host with tools

and packages specific to the project. Developing

in Docker also has the advantage that deploying

using Docker is much simpler as all of the Dock-

erfiles are already written.

29

The use of Django as a back-end framework saved

time in multiple areas. Creating and managing

the database tables was made significantly eas-

ier thanks to the Django ORM. The ORM also

comes with several predefined tables such as the

user table which saves time implementing basic

features such as authentication. Django also han-

dled other basic features that would have take up

development time to implement otherwise such

as sessions, WSGI/ASGI, the admin console, and

routing.

Along with Docker, Træfik was extremely helpful

with configuring the deployment of the applica-

tion. The automatic negotiation of Let’s Encrypt

certificates saved time on a task that can often

be time consuming to configure. Træfik also al-

lows an admin to monitor the health of all of the

Docker containers which would be useful in pro-

duction if a high SLA was of importance.

5.5.2 Negatives

Retrospectively, the largest negative during de-

velopment was my knowledge of front-end tech-

nologies. I decided to use JQuery as there wasn’t

much interactivity required for the front end and

I have experience using it. Although it did get

the job done, it is a large network overhead that

offers few features for managing a data dense

front-end. A more suitable framework would have

been React. This allows for much greater control

over data and components in the DOM. I did not

choose React as I did not anticipate the complex-

ity of implementing a field editor for references in

just JQuery.

Although Docker removed many development

overheads, it complicated debugging. Although

VS Code provides tooling to debug Django ap-

plications inside of containers, it required more

configuration that debugging a Django applica-

tion outside of a container. I initially started with

no debugger which significantly reduced develop-

ment speed as I was unable to get the Docker

based debugger to work. Although this slowed de-

velopment, Docker did reduce development time

in the long run allowing for me to implement

more features that were initially in question as to

whether there would be time to implement them

like the browser extension.

6 Future Work

The possible scope of this project makes it very

viable to continue development into the future.

There are many more features that can be added

as well as solidifying the existing code base. In

order to solidify the existing code base, a rewrite

of the front-end in a more up to date technology

such as the aforementioned React. This would

create a more solid base to implement more fea-

tures onto as the existing code grew organically

and is not suited to extension in a modular for-

mat.

As well as solidifying the existing code base, more

features can be added. For example, parsing of

more types of academic site such as PubMed.

This would not be too much more work as they

are a set format. The parsing of non-academic

sites could also be implemented. This would

increase the functionality beyond competitors

such as Mendeley if accurate parsing could be

achieved.

7 Conclusion

In conclusion, this project was a success. There

was a gap in the reference management software

market for FOSS software that is up to date and

feature rich. This project fills this niche and there

is little else available that competes in this area.

Of the requirements given, all bar one were met

and the requirement not met was not a core one.

Although I have identified issues with the de-

velopment process and tooling, the development

of the project on the whole was successful and

produced not just a working result, but a useful

30

one.

8 Reflection on Learning

This project was a steep learning curve of project

management and self management skills over a

long period of time. This was by far the longest

project I have undertaken alone and therefore re-

quired new skills to manage. The differentiating

factor between this project and other projects I

have done is that this one had to have a con-

stant level of work throughout due to the scope.

With other shorter projects, If there was a pe-

riod of less progress, the project was of small

enough scope that all outstanding work could be

completed shortly before the deadline. With this

project, if there was a period of reduced work,

the volume of features and functionality required

meant that it would be very difficult. In order to

circumvent this, I tired to adhere roughly to the

Gantt chart that was part of the initial plan. Al-

though the time estimated for some sections was

not accurate, it helped greatly to ensure that I

was not falling behind with where I should have

been at that point in time.

Another differentiating factor between this

project and others that I have undertaken that re-

quired a change in approach was this this project

was to a brief. For other projects I have worked

on, they have either been of my own choosing and

therefore could go I whatever direction I wanted,

or they had a rigid outcome. For this project, I

had to learn how to approach a much less rigid

set of guidelines without getting sidetracked into

working against the brief.

If I were to carry out a project like this again, I

would change how I structured my time with re-

gards to what had already been achieved. For

the first weeks of the project, the work I had

scheduled was simple and therefore I completed it

quickly. I should have therefore edited my sched-

ule accordingly. Instead, I just waited until my

next scheduled piece of work. Although in a per-

fect world, this approach would work, I failed to

acknowledge that outside influences would affect

the speed at which I could carry out work such as

exams.

As well as time management skills, I have learned

from mistakes made with the development pro-

cess. The first mistake that I made was testing.

Although there was constant time I did not im-

plement any unit testing or testing at a higher

level. Unit testing would have allowed me to

refactor code more easily and safely which would

help greatly with future development. User test-

ing would have helped as well as although my

small feedback loop of testing in the development

phase allowed for rapid change to the user expe-

rience, as I was the one building it, I knew how it

worked and therefore it was difficult to test intu-

itiveness as I already knew how it worked.

This project was also a perfect opportunity to

learn a new technology/language/framework. I

however, picked the safe option of a language and

framework I have already used before. Although

this was beneficial to the project, I did not learn

any new technical skills as the ones I used I al-

ready knew. This also had a detrimental effect on

the front end as my knowledge or relevant tech-

nologies was out of date. If I had of learned a new

skill for the front end, then the benefits would

have been twofold.

This use of the safe option extended into the use

of new frameworks specific to this project. For ex-

ample, for the metadata extraction from PDFs, I

did research into the effectiveness of existing so-

lutions but not how effective my own implemen-

tation could have been. Although it would be un-

likely that my implementation would have yielded

better results, I did not pursue this opportunity

and therefore did not find out. This has the two

negative effects of firstly, me relying on black-box

technologies that I do not fully understand, and

secondly that the project could have been better

if I had of succeeded on a more accurate imple-

31

mentation.

Through the completion of this project, I have

learned new skills but more importantly, it has

shown me which skills I can learn after completing

the project.

9 Appendix

The full code-base can be cloned from

git@github.com:pbexe/syncref.git and

git@github.com:pbexe/syncref-browser-

extension.git .

32

Figure 24: Editing fields in the admin console

Figure 25: Extension popup

33

Figure 26: Extension options

Figure 27: Search filters

34

Figure 28: Scanned PDF

35

References

[1] F. Brischoux and P. Legagneux, “Don’t for-

mat manuscripts,” The Scientist, vol. 23,

no. 7, p. 24, 2009.

[2] O. Patashnik, Bibtex.web, Sep. 2011. [On-

line]. Available: https://web.archive.

org/web/20110927042356/http://www.

tex.ac.uk/tex-archive/bibliography/

bibtex / base / bibtex . web (visited on

05/25/2020).

[3] Comparison of reference management soft-

ware. [Online]. Available: https : / / en .

wikipedia . org / wiki / Comparison ˙ of ˙

reference˙management˙software (visited

on 05/25/2020).

[4] D. Stillman, Zotero Data Server. [Online].

Available: https://github.com/zotero/

dataserver (visited on 05/25/2020).

[5] DCMI: Dublin Core Element Set, v 1.0:

Reference Description. [Online]. Available:

https : / / www . dublincore . org /

specifications / dublin - core / dces /

1998-09-01/ (visited on 11/04/2019).

[6] C. Ramakrishnan, A. Patnia, E. Hovy, and

G. A. Burns, Layout-aware text extraction

from full-text PDF of scientific articles,

May 2012. doi: 10.1186/1751-0473-7-7.

[7] O. Patashnik, “BibTEXing,” pp. 9–11, 1988.

[Online]. Available: http : / / www . ctan .

org / tex - archive / biblio / bibtex /

contrib/doc/.

[8] K. Kingsbury, MongoDB 4.2.6, May 2020.

[Online]. Available: http://jepsen.io/

analyses / mongodb - 4 . 2 . 6 (visited on

05/25/2020).

[9] PostgreSQL Documentation: 12:

8.14. JSON Types, 2020. [Online]. Avail-

able: https : / / www . postgresql . org /

docs / current / datatype - json . html

(visited on 05/27/2020).

[10] S. Marinai, “Metadata extraction from

PDF papers for digital library ingest,” in

Proceedings of the International Confer-

ence on Document Analysis and Recog-

nition, ICDAR, 2009, pp. 251–255, isbn:

9780769537252. doi: 10 . 1109 / ICDAR .

2009.232.

[11] B. G. Cui and X. Chen, “An improved

hidden markov model for literature meta-

data extraction,” in Lecture Notes in Com-

puter Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 6215 LNCS,

Springer, Berlin, Heidelberg, 2010, pp. 205–

212, isbn: 3642149219. doi: 10.1007/978-

3-642-14922-1˙26.

[12] M. Lipinski, K. Yao, C. Breitinger, J. Beel,

and B. Gipp, “Evaluation of header meta-

data extraction approaches and tools for

scientific PDF documents,” in Proceedings

of the ACM/IEEE Joint Conference on

Digital Libraries, New York, New York,

USA: ACM Press, 2013, pp. 385–386, isbn:

9781450320764. doi: 10 . 1145 / 2467696 .

2467753. [Online]. Available: http://dl.

acm.org/citation.cfm?doid=2467696.

2467753.

[13] Deep Learning models. [Online]. Available:

https://grobid.readthedocs.io/en/

latest/Deep-Learning-models/ (visited

on 05/27/2020).

[14] How to deploy with WSGI. [Online]. Avail-

able: https://docs.djangoproject.com/

en/3.0/howto/deployment/wsgi/ (visited

on 05/27/2020).

[15] Specifications — ASGI 2.0 documentation,

2018. [Online]. Available: https://asgi.

readthedocs . io / en / latest / specs /

index.html (visited on 05/27/2020).

[16] App Containerization. [Online]. Available:

https://www.docker.com/resources/

what-container (visited on 05/27/2020).

[17] DOI Content Negotiation. [Online]. Avail-

able: https : / / citation . crosscite .

org / docs . html % 20http : / / citation .

crosscite . org / docs . html (visited on

11/03/2019).

36

https://web.archive.org/web/20110927042356/http://www.tex.ac.uk/tex-archive/bibliography/bibtex/base/bibtex.web
https://web.archive.org/web/20110927042356/http://www.tex.ac.uk/tex-archive/bibliography/bibtex/base/bibtex.web
https://web.archive.org/web/20110927042356/http://www.tex.ac.uk/tex-archive/bibliography/bibtex/base/bibtex.web
https://web.archive.org/web/20110927042356/http://www.tex.ac.uk/tex-archive/bibliography/bibtex/base/bibtex.web
https://en.wikipedia.org/wiki/Comparison_of_reference_management_software
https://en.wikipedia.org/wiki/Comparison_of_reference_management_software
https://en.wikipedia.org/wiki/Comparison_of_reference_management_software
https://github.com/zotero/dataserver
https://github.com/zotero/dataserver
https://www.dublincore.org/specifications/dublin-core/dces/1998-09-01/
https://www.dublincore.org/specifications/dublin-core/dces/1998-09-01/
https://www.dublincore.org/specifications/dublin-core/dces/1998-09-01/
https://doi.org/10.1186/1751-0473-7-7
http://www.ctan.org/tex-archive/biblio/bibtex/contrib/doc/
http://www.ctan.org/tex-archive/biblio/bibtex/contrib/doc/
http://www.ctan.org/tex-archive/biblio/bibtex/contrib/doc/
http://jepsen.io/analyses/mongodb-4.2.6
http://jepsen.io/analyses/mongodb-4.2.6
https://www.postgresql.org/docs/current/datatype-json.html
https://www.postgresql.org/docs/current/datatype-json.html
https://doi.org/10.1109/ICDAR.2009.232
https://doi.org/10.1109/ICDAR.2009.232
https://doi.org/10.1007/978-3-642-14922-1_26
https://doi.org/10.1007/978-3-642-14922-1_26
https://doi.org/10.1145/2467696.2467753
https://doi.org/10.1145/2467696.2467753
http://dl.acm.org/citation.cfm?doid=2467696.2467753
http://dl.acm.org/citation.cfm?doid=2467696.2467753
http://dl.acm.org/citation.cfm?doid=2467696.2467753
https://grobid.readthedocs.io/en/latest/Deep-Learning-models/
https://grobid.readthedocs.io/en/latest/Deep-Learning-models/
https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/
https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/
https://asgi.readthedocs.io/en/latest/specs/index.html
https://asgi.readthedocs.io/en/latest/specs/index.html
https://asgi.readthedocs.io/en/latest/specs/index.html
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://citation.crosscite.org/docs.html%20http://citation.crosscite.org/docs.html
https://citation.crosscite.org/docs.html%20http://citation.crosscite.org/docs.html
https://citation.crosscite.org/docs.html%20http://citation.crosscite.org/docs.html

[18] A. Gilmartin, DOIs and matching regular

expressions, Aug. 2015. [Online]. Available:

https://www.crossref.org/blog/dois-

and - matching - regular - expressions/

(visited on 05/29/2020).

[19] Bharani, A template for building cross

browser extensions for Chrome, Opera &

Firefox. 2019. [Online]. Available: https:

/ / github . com / EmailThis / extension -

boilerplate (visited on 05/31/2020).

37

https://www.crossref.org/blog/dois-and-matching-regular-expressions/
https://www.crossref.org/blog/dois-and-matching-regular-expressions/
https://github.com/EmailThis/extension-boilerplate
https://github.com/EmailThis/extension-boilerplate
https://github.com/EmailThis/extension-boilerplate

