
Linear Programming When There is No Feasible

Solution

Iwan Munro - C1673143

May 15, 2020

Supervisor: Dr Richard Booth
Moderator: Dr Jose Camacho Collados

1

1 Abstract

Inconsistent linear programs (LPs) currently provide a dead-end in optimisation
problems, forcing manual intervention. Many real-life industrial problems can
be expressed as LPs (sometimes with large numbers of decision variables and
constraints). It is usually assumed that there is at least one feasible solution,
but sometimes due to manual error in formulating the problem or a misunder-
standing of the solution space, there might not be a feasible solution. In which
case, a way to automatically pinpoint these errors (e.g. finding some minimal
set of infeasible constraints) so the industrial partner can correct them, or have
an augmented LP returned to them, needs to be formulated. This project will
discuss how to pinpoint these errors and augment LPs that have no feasible
solutions.

2 Acknowledgements

I would like to thank Dr Richard Booth, my supervisor, for the continued sup-
port that he has provided particularly given the complications that Covid-19
has brought.

2

Contents

1 Abstract 2

2 Acknowledgements 2

3 Introduction 5
3.1 Aims . 5

4 Background 7
4.1 Similar Research . 7

4.1.1 Irreducible Infeasible Sets (IIS) 8
4.2 Agile Methodologies . 8
4.3 MoSCoW Prioritisation . 10
4.4 Linear Programming . 11
4.5 NumPy . 13
4.6 Gurobi Optimizer . 13

5 Approach 14
5.1 Alternative Designs and Final Algorithm 14

6 Implementation 17

7 Results and Evaluation 21

8 Future Work 24

9 Conclusions 25

10 Reflection on Learning 25

3

List of Figures

1 MoSCoW technique for project aims 6
2 The Agile Software Development Lifecycle 9
3 My Kanban board . 10
4 General Expression for LP in matrix format. 11
5 A Consistent Linear Program of 3x+ 2y ≤ 7, y ≤ 1, 3x+ 4y < 12. 12
6 An Inconsistent Linear Program of x ≤ 2, y ≤ 2, x+ y ≥ 5. 13
7 Pseudocode for final algorithm 16
8 Algorithm - Constructors and Data Structures 19
9 Algorithm - Decision for constraint removal 20
10 Inconsistent Linear Program Example. 22
11 Transformed Consistent Linear Program Example. 22
12 Cmd output for correct transformation. 23

4

3 Introduction

In industry, a common goal of companies is to maximise profits or minimise
costs. In order to do this they understand what is limiting these goals and
therefore what is the best combination of these limitations to achieve their goal.
How do they do this?

Linear programming is an optimisation method used to achieve the best
outcome in a mathematical model often expressed in real-life industrial prob-
lems in, for example, supply chains in the agricultural, or engineering industries.
Here they are used to compare the limitations of different resources (e.g. work-
force capacity, materials, etc) and find an optimal combination to maximise
or minimise the “objective function” which in this case would be the profit of
these items, hence a maximisation. Once the linear program (LP) has been
constructed the graph should have a portion of the graph which is considered
the feasible space, the part of the graph that represents possible permutations
of a problem, see figure 5.

This project will explore how to fix the LP when it doesn’t have a feasible
space, meaning that there is no solution to the problem. I previously discussed
about adding in limitations to the LP, and the problem tends to occur when,
for example, production goals are added which can lead to an inconsistent LP,
as in figure 6.

3.1 Aims

The aim of this project is to automatically turn infeasible LPs into feasible
versions so that the user can not only reach a solution, but also understand the
solution space in greater detail and develop an awareness into what created the
infeasibility.

In order to reach this goal I will have to segment my work and produce a
schedule. Whilst the waterfall method does offer some benefits and provides the
opportunity for a Gantt chart to be created, I will be using the agile method-
ology as I believe although I can produce a rough schedule, there are too many
unknowns. Given the nature of agile, breaking work into 2 week stints, it is
much more manageable and easier to be more detailed in planning.

For this project, I used the MoSCoW technique to decide the deliverables.
My brief was to find a solution to the problem of infeasibility within LPs so I
decided that the Minimum viable product (MVP), or what has to be completed
in order to consider the brief met is creating the algorithm theoretically. The
Should and Could haves are comprised of the practical side with a focus on
always working towards an MVP. Which, after creating the algorithm theoret-
ically, is to create the algorithm in code using various libraries. I don’t plan
to just complete the Must haves because I can’t truly estimate how long each
process will take and therefore cannot accurately estimate how much work I can
do so that’s why the Must haves include my MVP. I aim to complete the Must,
Should, and some Could haves.

5

Must
Theoretical side

• Write down the problem to be addressed.

• Write a method/algorithm as follows:

– Takes an input and decides whether it has a feasible solution.

– I.e. if the LP is already consistent then return it, if not identify which
constraints are conflicting.

– Has good time complexity.

Should
Practical side

• Find online dataset or generate them myself.

• Implement algorithms, maybe using Gurobi.

• Return whether a feasible solution exists, and if not, returns sets of con-
straints that are responsible for the infeasibility.

Could
Practical side extras

• Return automatically a new linear program that has a feasible solution,
minimally changed from the input.

– In this case, this will occur by completely removing constraints in-
volved in the inconsistency.

• This could include some sort of protection to certain constraints, or even
a level of importance attributed to each one. In belief revision, typically
the most recently added constraint would be protected but given the con-
straints are added arbitrarily to the LP then this doesn’t help.

• If there are only 2 decision variables, then have the option of presenting
graphical form to the user via Desmos-like picture in order to explain the
process occurring in the background.

• User interface which can be used for this dialogue between the user and
the program about which constraints are more important than others.

Won’t have

• More advanced: slightly modify the constraints involved in the inconsis-
tency so that consistency is achieved (e.g. change x + y ≤ 4 to x + y ≤
5).

Figure 1: MoSCoW technique for project aims

6

4 Background

Before I compiled knowledge of the project past and present I needed to consider
my approach holistically. There are some constraints on the work that I will
be undertaking. Time. The amount of time I have to complete this project is
limited, hence there’s a need to be efficient with it. A piece of software that
I used, Gurobi, reduces some wasted time that I could have spent re-creating
founded knowledge but this piece of software does also bring some constraints.
Using this software means that I am bound to the infrastructure that it offers
which does reduce my freedom with my solution. I talk about this further when
discussing IISs. There are also some assumptions that I have made in order
to carry out my solution. Since my work is looking at the real-life industrial
examples, non-negativity is implied in my solution as well as all values being real
numbers as it is not possible to have anything but positive values for real-life
situations.

4.1 Similar Research

In order to understand further the length to which my project will be unique, I
first need to understand what research is currently available.

Whilst the lack of research in this area allows for an ease into novelty for my
solution, it also means that I don’t have a huge basis for my own research. I have
had to dig far deeper to find research to analyse and see different techniques that
can be applied to the solution that I am creating, but also to understand what
has already been accomplished by other people so that I can give the necessary
credit.

There are some other avenues that individuals have taken, tackling the prob-
lem from different angles. Some recent and some older, taking the approach
of Irreducible Infeasible Sets, approximations, regularization and duality theo-
ries. Erik Dravnieks paper [1] from 1989, although dated, provides a detailed
overview of multiple strategies using both the simplex method and IISs, partic-
ularly his depth into IIS showing the difference between isolated and overlapped
IISs which can increase the complexity of the problem greatly. What Dravnieks
segues into is relaxation which is also explored in Roodmans paper [4]. What
Roodman describes as ”the modeler is usually given no tools for doing further
analysis” is still partly a constraint with gurobi today which has the functional-
ity to create an IIS but writes it to a file. In this project my goal is to go a step
further and return to the user the optimal feasible region created by removing
constraints. Where my research differs with Roodmans is that his research is
preliminary to mine. This is accentuated by the age of the paper as we now
have tools which can determine infeasibility which gives me the ability to focus
my work on the post-analysis of the LP. Roodman does make good headway
into describing why the dual simplex method can be useful and how to relax
the LP in order to achieve feasibility. From the industrial perspective that I am
considering this problem, I think that there isn’t a noticeable difference between
the two routes (relaxing or removing) for the customer as both return to the

7

customer an solution and both are different from their input.
Other pieces of research considered the problem in it’s matrix format [2], [5]

and how correction could applied using matrix mathematics. All these pieces
have one thing in common. They are a very different route to the one that I am
taking as they are heavily theoretical, so whilst they provide a good insight into
the mathematical proof behind matrix correction as a solution for this problem
they do not venture into implementation. My goal is to, not only, create my
algorithm theoretically but to also establish an implementation of it that can
be used to solve a problem by someone without the mathematical knowledge
necessary to read these papers and understand these solutions. Where they do
intersect with my research is in the theory, which has helped me develop my
understanding of what is going to make my algorithm different, and also how
to justify my choice of algorithm.

4.1.1 Irreducible Infeasible Sets (IIS)

An IIS is a minimal set of constraints which is infeasible and becomes feasible
should one constraint in the set be removed. This is the case with one set of
infeasibilities for the model. In cases with more than one set of infeasibility then
there can be multiple IIS which also have the ability to overlap.

Kellner’s paper [3] focusses on the use of IISs in order to formulate a mini-
mum amount of constraints that would relieve the infeasibility from the model.
Also what Dravnieks [1] succinctly outlines as well. Although I am not using
IISs specifically my solution is very similar in nature to the concept. It has
been helpful to see their justifications for use of IISs and how they laid out their
research with respect to them. Part of my algorithmic approach, dealt with the
different ways to deal with isolated and overlapped IISs, which Dravnieks [1]
also explores in his research, but in my approach not using IISs gave me more
freedom to create a much simpler solution to the overlapping of inconsistencies
because of the constraint that gurobi created as I explained previously.

4.2 Agile Methodologies

The Agile methodology is based around creating and responding to change, es-
pecially in an uncertain environment. This project involves a lot of elements that
cannot be accurately estimated. Hence the use of Agile. In Agile, the project is
broken down repeatedly until we find ourselves at small definable tasks that can
be estimated to a greater extent. The methodology encompasses an iterative
process which you can see in figure 2. Instead of having all the meeting, then all
the planning, so on and so forth, this iterative process allows for small amounts
to be done at one time, so a meeting to discuss some early requirements, this
then evolves into planning this small amount and then designing, developing,
testing and evaluating all whilst focusing on this smaller amount of work. [6]

8

Figure 2: The Agile Software Development Lifecycle

This process minimises time wasted on work that is not included in the final
release, therefore increasing the efficiency of my time. It also helps me to adapt
and react as the project changes. In other models, such as waterfall, as the
flexibility of the work is very limited the amount of wastage increases greatly,
because there is a lot of work done before the understanding is gained that the
part isn’t viable. Going down dead-ends is inevitable in projects as one tries
different routes to solve a problem, but by breaking it down this amount of
work done before the dead-end is found is greatly reduced. Another benefit of
breaking down work, is that the rate of completion is higher which aids as a
mental stimulus given you have finished more pieces of work even though they
are smaller in size.

Kanban is an agile framework which helps adhere to agile principles in order
to get work done. The essence of kanban revolves around visualising your work,
with a kanban board (figure 3), and optimising the flow of tasks from “To Do”
to “Done”. This board has not only helped me visualise my work, accompanied
with the MoSCoW prioritisation to decide which tickets get pulled in, but also
to communicate with my supervisor as to where I was in my project without
their need to consult with me. Inside each ticket I also have the ability to
comment which I used to track progress on different tickets especially when a
few days may go between actively working on a ticket which helped me start
in the right place each time eliminating unnecessary wasted time on catching
myself up. [9]

9

Figure 3: My Kanban board

4.3 MoSCoW Prioritisation

MoSCoW is a prioritisation technique and a part of the agile framework, DSDM.
I am using it to understand the relative importance of separate tasks so I can
realistically estimate how work I can manage. MoSCoW is an anagram which
stands for Must have, Should have, Could have, and Won’t have. One benefit
being that delivery to the customer is very clear. The customer can communicate
what definitely needs to be delivered and then prioritise the rest of the project
according to the other titles which are subjective and can be defined by the
customer. The crux of MoSCoW is flexibility in the requirements to be delivered.

Must haves are essential to the project. Put simply, the project is not worth
releasing if these requirements are not met. They underpin the main goal of
the task therefore everything in Must haves must be a critical task. Whilst the
must haves are the essential parts to the project, a team should not plan to just
complete the must haves as that would create a skeleton for the project. The
aim should be to complete at least the must haves and some should haves and
could haves.

Should haves and Could haves are quite similar hence the need for subjectiv-
ity in the description of each one to create that distinction. It should be possible
that the work in Must, Should, and Could have can be completed in the time,
but it’s not imperative that it must be completed. The slight difference of the
tasks in either of the categories are based on their necessity to the final prob-
lem. Should haves tend to be important whereas Could haves are more desirable

10

aspects. Could haves will have a lot less impact on the final solution if left out.
The last part, won’t haves, are tasks that will not be delivered in this time

frame. If someone were to pick up the project afterwards, after the remaining
should and could haves were completed, then this is where they would start.
They show the direction of the project and also help manage the expectations
that not all ideas can make it into production. This helps align the customer
with the development of the project as they understand that every new idea
they have cannot be made first priority as there is already an understanding in
place. [7]

4.4 Linear Programming

The requirements of a LP represented through linear relationships e.g. x1+x2 ≤
8, as represented by Ax ≤ b in figure 4, which are made up of decision variables
e.g. x1 + x2. The figure also expresses the objective function (cTx) which
attributes value to each variable i.e. 2x1 + x2, in this example variable x1

has greater value. The final part of the expression, x ≥ 0, is a non-negative
constraint. Simply put, the value of the variables in the solution cannot be
below 0.

max{cTx | Ax ≤ b ∧ x ≥ 0}

Figure 4: General Expression for LP in matrix format.

In order to have a solution LPs need to create a feasible region as you can see
in figure 5. The objective function is then used to find the optimal combination
of the variables with regards to the constraints. The problem that I will
explore is when there is no feasible region. In this situation the set
of constraints provided cannot agree on a region at all which leaves the LP
inconsistent, a good example of which is in figure 6. As you can see, if you take
any pair of constraints then you can find a feasible solution. It is only when you
consider all the constraints that the infeasibility is encountered. Therefore the
only way to create a feasible solution from an inconsistent LP is to augment the
LP is a way that reaches this.

11

Figure 5: A Consistent Linear Program of 3x+ 2y ≤ 7, y ≤ 1, 3x+ 4y < 12.

12

Figure 6: An Inconsistent Linear Program of x ≤ 2, y ≤ 2, x+ y ≥ 5.

4.5 NumPy

NumPy is a package within python specifically for scientific computing. As out-
lined earlier, time was a constraint during this project so I used some packages
to remove some to the trivial work so that I could focus on the unique parts.
Hence I used NumPy to solve simultaneous equations when separating out the
constraints.

4.6 Gurobi Optimizer

Gurobi is the best mathematical programming solving software. Instead of
creating a framework for dealing with the LPs myself I decided to use the Gurobi
Optimizer to handle the objects, and create the base for which I would do my
post-processing upon. As is with the NumPy package, this part was trivial and
so a better use of my time was to work on implmenting the algorithm I had
written. [8]

13

5 Approach

As I was using a kanban board for this project, I started out by creating tickets
for all the work so that I could visualise the life-cycle of the project. I split
the project into three sections: Theory; Implementation; and Report writing.
Although these are 3 distinct parts, one of the main parts of Agile is to push
towards the MVP. Whilst first I needed to theorise my solution, research differ-
ent techniques, creating an algorithm to meet the goal, if I couldn’t implement
this then the wasted time would be costly. Hence, I spliced the sections, created
loops and I started by theorising solutions with the constraints further down
the process in mind. I would also take notes constantly to ensure that when I
wrote the report in full I wasn’t trying to remember parts of the project that
were dated, but I could refer to my notes and explain different challenges and
how I overcame them. For example, I wasn’t going to be using ISSs as gurobi
outputs them to a file which wasn’t very accommodating to continuity within
the program. Additionally, it gives no freedom in the manipulation of the ISS. I
am considering this problem with a case in mind (real-life industrial situations)
whereas most other pieces of research using ISSs had been considering a more
general format which didn’t consider the nuances and pitfalls of different uses.
One goal I had in mind was to not only isolate the constraints causing the in-
feasibility, but creating a feasible region by removing constraints and returning
the best solution within this new feasible region to the user.

An important part of implementing my algorithm was testing that it worked.
Initially, I had hoped that I would be able to acquire a dataset to use in this
example, but the specific nature of the problem lead to me not being able to
find a dataset that I could use. Instead I had to create examples to use myself
which took time that wasn’t intended for it. I will discuss the dataset further
when analysing results.

5.1 Alternative Designs and Final Algorithm

In order to create a “good” algorithm I need to define what a “good” algorithm
entails. I believe it should satisfy 4 properties:

• Defined inputs and outputs;

• Efficiency;

• Simplicity;

• Effectiveness.

For this problem the I/O’s are very simple, the algorithm itself should take an
inconsistent LP and then output a consistent LP that has a feasible region. The
algorithm must be clearly defined with good regard for detail where necessary.
It should also be efficient with regards to the size of the LP. How does the
algorithm scale? Does it have a time complexity that exponentially increases the
time taken to solve with huge proportions? This also ties into space-efficiency,

14

for the algorithm should not use more memory than is necessary. Is it simple?
Does the algorithm take a longer route than is necessary or is this the optimal
route given the algorithm. Finally, effectiveness considers the correctness of the
algorithm. Does it provide a correct solutions all the time?

After producing a “good” algorithm then I need to consider if this algo-
rithm is achieving optimality or just producing correct solutions. To achieve an
optimal solution, I need to consider what the algorithm needs to achieve. In
an industry setting, these inequalities all represent different needs within the
business, therefore the algorithm needs remove the least amount of constraints
in order to produce a feasible region.

I did not reach my final algorithm first, it was an evolution of several ideas.
One idea which would have had a large reduction in the overhead of the program
was a ranked list of the constraints that was user-determined. What would then
happen is an algorithm would simply remove constraints from the bottom until
feasibility was reached. I had a few issues with this. For one, even if the list was
in the order of individual rankings, how could multiple constraint ranking be
considered. Using an example of constraints = [1, 2, 3, 4, 5, 6], by this I mean
if the model could be solved by simply removing the constraint at rank 3 then
which is more important? Having rank 3 or having ranks 4, 5, and 6? I believe
it is a matter of definition which I go on to explain in my next section. My other
qualm with this implementation is the feasibility of the solution in the context
I am considering. How would such a ranked list be compiled? Would there be
a big board meeting to discuss the goals of the company and how it constraint
affected them and hence why it was more important than the others. Whilst
this is a theory and implementation based project I feel it pertinent to consider
the use case.

With regards to inequalities, infeasibility is caused by constraints of opposite
inequalities as any possible constraints with the same inequality will produce a
feasible region, however small. The problem therein lies with which constraint
to remove, so whether the objective function is a maximum or a minimum has
a large effect on the removals. In a maximisation function (e.g. MAXIMISE
X + 2Y), the constricting parts of the LP, those which limit and stop the LP
from being unbounded, are those creating a maximum bound (e.g. X+Y < 3).
Therefore the algorithm should remove the constraints creating a minimum
bound first (e.g. 2X + Y > 8) as the objective function is already telling the
algorithm to find the largest values of the variables. Figure 2, provides a good
example is which removing one of the maximum bound constraints (x < 2, y <

2) would create an unbounded LP which although does produce a feasible region,
this region should be finite.

One common industrial example for LPs are supply chains. In this con-
text, minimum bound constraints tend to be sales-orientated goals, for example
the minimum amount of a product one needs to produce in order to meet rev-
enue goals, whilst maximum bound constraints tend to be a limit on materials.
This example proves that it doesn’t help to remove the maximum bounding
constraints for they represent real limits which cannot be pushed easily.

15

consts ⇐ list of constraints in model
for i in consts do

for j in consts do
Reduce i and j by amount of removed variables
if i == j then

skip
else if either constraint has been removed then

skip
else

solve i = j ⊲ Simultaneous Equations
if solution not in positive quadrant OR re-run = 1 then

if constraints inequalities are opposite AND both constraints
aren’t in the blacklist then

remove constraint that has opposite inequality to the obj OR
constraint that isn’t in blacklist ⊲ For a max obj remove “>” constraint

optimise model() ⊲ Looking for solution
if constraint removal creates unbounded model then

add constraint back to model
end if
if if solution found then

output variable values, obj value and consts removed
end if

end if
end if

end if
end for
if i at end of loop AND no solution found then

re-run ⇐ 1
re-run algorithm()

end if
end for

Figure 7: Pseudocode for final algorithm

In figure 7 you can see the final pseudocode for the solution that I theorised.
This is the product of many iterations of improvement, as I added in more
functionality but also as I spent time refining it. To break it down, generally,
from the pseudocode, the main data structure used in the list of constraints.
The use of the doubly nested for loop ensures that every constraint is compared
against every other one. What happens next are similar to catch statements.
Situations which can potentially break the algorithm and don’t add anything
in terms of functionality. This is in the form of checking if the constraint is
being compared with itself or whether either of the constraints has already been
removed from the model, by means of a separate list that I am keeping track of
that with. This then moves into the bulk of the algorithm, where the NumPy
module gets used to solve i = j. This is to work out if either of these constraints

16

plays a part in the infeasibility with respect to each other, so I’m finding out
if the result of the simultaneous equation (i.e. where the two lines intersect)
is in the positive quadrant (i.e. both x and y values are greater than or equal
to 0) or not. Then the next if statement decides whether a constraint will
be removed, based on the result for the previous check (if the two constraints
intersect outside of the positive quadrant) or whether the algorithm is being
“re-run” which I will explain last. The next check is another step in deciding
the eligibility for removal, this time I am finding out if both constraints have
opposite signs (i.e. ‘<’, ‘>’, ‘=’) and whether at least one of the them isn’t
in my blacklist, another list that I am keeping. The blacklist acts similarly to
the catch checks I have at the start of the algorithm, in that if any constraint
removal produces a unbounded result then they are added to this blacklist, so
that the situation doesn’t arise again. Now a constraint is removed but some
post-processing needs to be done as gurobi doesn’t do any pre-processing to
determine feasibility. As explained before, if the constraint removal pushes the
model into an unbounded state then it is added to the blacklist and re-add back
into the model. Any post-processing step is checking whether the model now
has a solution, if so then I can output it to the user and stop the program as
it has reached its goal. Otherwise, it carries on to the next pair of constraints.
The last part of the algorithm deals with multiple line infeasibility. What this
means is when 2 or more lines are creating infeasibility, with one or more then
finding this is not as simple as simultaneous equations so I re-run the algorithm
again but with a marker. This marker bypasses the need for the two constraints
to have to intersect outside of the positive quadrant but still performs all the
other checks on the pairing. A good example, is in figure 6 which shows an
inconsistent LP where my algorithm would remove the x+ y ≥ 5 constraint as
their is a multiple line infeasibility.

6 Implementation

This section will relate the approach to the literal implementation of my solu-
tion. The first decision I needed to make was the language that I was going to
write my program in. Between Java and Python, whilst Java is more compre-
hensive and has a better structure, I have a much greater proficiency in python
making it easier to manipulate which was of high importance, given my limited
knowledge on both gurobi and NumPy. As part of the iterative nature in agile,
I decided to get some hands on experience to how the gurobi optimizer works,
reading documentation and experimenting with different concepts. This helped
me understand what constraints gurobi might have and hence, refactor the way
my algorithm works in the first place. The documentation that gurobi provides
in quite extensive in some aspects, but it is incredibly hard to traverse which
leaves the reader unsure of the full functionality of the software. This coupled
with the lack of examples, mean that some issues took a great deal of time to
work through a solution to, for example, retrieving the sign that was inside a
constraint was a simple process but due to the lack of traversability meant that

17

I had to use external sources in order to just understand the full flexibility of
the software. The specific nature of the problem that I am exploring can also
can be considering a constraint. Whilst one way to look at the lack of interest
in the area, means that it’s easy to create unique work it also means, that there
isn’t a lot of support online to help troubleshoot issues or give examples with
regards to software. Despite these drawbacks, the gurobi software helps builds
the structure for which my algorithm will sit on top of. Without this, it would
take me lots of valuable time to create this structure, all that I needed to do
was familiarise myself with the software. Fortunately, NumPy in a very well
established platform that didn’t produce any problems and my use of it was
very limited. Again, it was just to streamline the process to avoid wasted time
on duplicated knowledge.

As the process then began to grow, I made sure that an MVP was always
the goal which lead to a few iterations of different parts of my code base. The
code was split into two main parts. The first being the construction of the
environment using the gurobi optimizer and then the second part would be my
work where my algorithm would perform on the output of the gurobi optimizer
in the first half. I am going to explore two places in particular: Data structures
with regards to efficiency; and how I decided on which constraints should be
removed first.

In figure 8 we see the data constructs that I used to build my algorithm
around. A point I made earlier was that one element of a good algorithm is
efficiency. Efficiency is a relative term, as it is based on the problem that you
are solving. In this situation, as a baseline, I need to be able to iterate through
the constraints and solve simultaneous equations for pairs of constraints. These
are shown by the consts object that I create and the use of A and B matrices
for which the simultaneous equations can be completed. By keeping most of the
structures inside the loops, most of the structure are not kept past the duration
of their use. I also had the blacklist to make sure the algorithm didn’t get stuck
and removed lines list for the output of the problem. A complication that then
arose was what figure 6 outlines. When there is a multiple line inconsistency,
there is no short way to understand the infeasibility apart from solve them as
an LP. This is when I had to consider moving some variables into global. As I
explained previously, the way I checked for this was by re-running the algorithm
with a marker variable which you can see denoted by “re-run”. This then tells
the algorithm that it doesn’t have to seclude itself to finding inconsistency in
pairs of constraints that don’t cross in the positive quadrant. Re-running the
algorithm means, that I needed to add the blacklist and removed lines lists into
global as some constraints could be removed in the first phase and some in the
second phase.

Time efficiency combines both efficiency and simplicity. By being the sim-
plest version of the solution then it also satisfies being, subjectively efficient for
this problem. By using the agile methodology I have managed to iteratively

18

g l oba l s
r e run = 0
b l a c k l i s t = []
r emoved l ine s = []

m denotes the model
de f r e f a c t o r (m) :

g l oba l re run , b l a c k l i s t , r emoved l ine s

i n i t i a l i s i n g some ob j e c t s
cons t s = m. getConstr s ()
A = []
A1 = []
numVars = len (m. getVars ())
f o r o in range (numVars) :

A1 . append (0)
. .

f i l l the sim eq ’ s a r rays
f o r k in range (l en (m. getVars ())) :
A [0] [k] = m. ge tCoe f f (cons t s [i] , m. getVars () [k])
B [0] = m. getAttr (” rhs ”) [i]
A [1] [k] = m. ge tCoe f f (cons t s [j] , m. getVars () [k])
B [1] = m. getAttr (” rhs ”) [j]

Figure 8: Algorithm - Constructors and Data Structures

build up the project to its goal and then streamline it to ensure that time and
space were not used unnecessarily. The use of commenting has made this process
easier. By defining each part of the algorithm I pushed myself to understand its
specific function helping me decide whether there was a better way to execute
said functionality.

One problem I ran into was to do with accessing removed data. When
the model removes constraints, then I need to add in checks which stop my
algorithm now try to access that constraint. Not only did I add a line in to
make sure that if either of the constraints were previously removed then skip
over the comparison of them. Having removed a constraint also augments the
indexing used throughout the solution. Therefore, I added a statement at the
start of the loops. I subtract the amount of removed lines from each of the
enumerators in the for loops. This didn’t result in much more memory being
used, as I already had the removed lines list in global so I needed to find the
length of that and subtract it. This provides as an additional reason for why
removed lines needs to be in global memory.

19

se t o f c on s t r a i n t s found or the func t i on i s be ing re−run
i f match == 1 or re run == 1 :
checks that the i n e q u a l i t i e s are oppos i t e
i f cons t s [i] . getAttr (” sense ”) != cons t s [j] . getAttr (” sense ”) :
randomly pick a c on s t r a i n t to be removed
i f cons t s [i] . ConstrName in b l a c k l i s t :
rm index = j
e l i f c ons t s [j] . ConstrName in b l a c k l i s t :
rm index = i
e l i f (cons t s [i] . ConstrName and cons t s [j] . ConstrName) in b l a c k l i s t :
rm index = ”miss ”

e l s e :
i f modelsense i s −1 maximise , i f 1 minimise
i f m. getAttr (”ModelSense ”) == −1:
i f c ons t s [i] . getAttr (” sense ”) == ’< ’ :
rm index = j

e l s e :
rm index = i

e l i f m. getAttr (”ModelSense ”) == 1 :
i f cons t s [i] . getAttr (” sense ”) == ’> ’ :
rm index = j

e l s e :
rm index = i

Figure 9: Algorithm - Decision for constraint removal

Figure 9 is a perfect example of the iterative nature of agile. Building my
algorithm from the ground up, I started by relinquishing optimality in order to
create an MVP. As my solution grew I implemented how my algorithm decided
which constraint would be removed when there’s a match in order to increase
effectiveness and reach optimality. As explained in my approach, in the case
that I am exploring, there tends to be a grouping to constraints based on what
inequality they have. The figure shows the path for which the algorithm goes
through to decide which constraint should be removed. First I need to make
sure that either constraint is not in the blacklist and then if neither is, then I
can choose based on what the state of the objective function is. If I’m trying to
maximise then constraints such as, x+y ≥ 8, are going to be of less importance
and removed first.

Previously, I discussed the positives and negatives of using the gurobi opti-
mizer. One negative I discussed was the lack of comprehensive documentation
that the platform offers. This was highlighted again when trying to introduce a
UI into my program. Usability is very important when it comes to writing soft-
ware, for without it the user can find themselves unable to navigate it rendering

20

the work null. I worked with the objective function and constraints manually
input as I understood the system, but communicating this to a user without
technical experience could prove very hard. Unfortunately, after trying to get
the program to use input from a text file, I encountered error after error and
with the support for the software being sparse, I decided to refocus my efforts
elsewhere. It was important to learn that some parts of a project will not go to
plan and can end up being pushed outside the scope. My use of agile meant,
that these are reduced and the time spent on these efforts are reduced to a mini-
mum. One aspect of agile I found very helpful in these situations were “Spikes”.
Spikes are tickets in which there isn’t enough information know about an area,
hence the individual “spikes” and explores this and understands whether it is
feasible and can be within the scope. The result of the spike being whether the
ticket regarding the implementation of the idea will go ahead. I used spikes to
determine this in this situation and others alike.

An important part of the software life-cycle is testing. Testing is the way
to verify the functionality of your program and in my case make sure, that
it completes the process that I made it to do. In my case, this is by feeding
in inconsistent LPs which should then be returned and written out to cmd as
consistent. I planned to find a dataset in order to have a broad spectrum of
testing data but unfortunately, again, due to the nature of the problem I could
not find a suitable dataset so I had to resort to creating data samples myself,
which resulted in samples being small in number and in size. This lead to my
program not being as heavily tested as I had hoped, but I still created enough
examples to test my program in different ways and increase its resilience.

7 Results and Evaluation

I have used figures 10-12 in order to depict the life-cycle of an LP over the course
of my program in a graphical manner. Figure 10 shows a LP by the following
configuration.

• Objective Function: MAXIMISE x+ 3y

Constraints:

– x+ 2y ≥ 8, “c0”

– 2x+ y ≤ 5, “c1”

– y ≤ 2, “c2”

– x ≤ 2, “c3”

– 2x+ 5y ≥ 14, “c4”

21

Figure 10: Inconsistent Linear Program Example.

Whatever route we take we are going to have to remove at least 2 constraints
to gain a feasible solution for this example. Based on my description earlier of
taking the specific use case I am analysing, I would remove both of the greater
than or equal to constraints. This would leave behind 3 constraints with a
feasible solution. Figure 11 shows the transformed LP with a feasible region.
This optimal solution is shown by the blue line intersecting with the region at
x = 1.5, y = 2.

Figure 11: Transformed Consistent Linear Program Example.

22

Figure 12: Cmd output for correct transformation.

Figure 12 shows the output that my program gives to the user after having
executed my algorithm on the inconsistent LP. As you can see it has removed
both c0 and c4 which are the same, as I removed theoretically and found the
optimal solution of x = 1.5, y = 2.

This is one of many permutations of constraints that I used to test my
solution. These tests proved paramount to the growth of the program and
creating a more robust structure to deal with bugs, singing the praises once
again of the agile framework, as I could use the tests to integrate solutions
whilst I was still building the platform, turning my program into a test-driven
environment rather than reactive which can lead to large augmentation of the
solution. Testing is a key part of building the credibility of a program. If a
program has not been tested, then how can you confidently know that it has
met it fundamental aim without bugs and errors. An example of this, was the
bug which resulted in the addition of the reduction of the for loop enumerators
with respect to the amount of variables removed. If I had not extensively tested
this, by increasing the size of the infeasibility, I would have assumed that the
program was fully functional given the example I had at the time.

To provide an objective view on whether I met my brief, I must return to
the aims and deliverables that I set out in the first place, see figure 1. Whilst
I produced an acceptable solution and met many of the goals that I set out
to meet, my solution is lacking aesthetically. I did not manage to produce
much in the way of a UI and hence my solution is a bit clunky. The manual
reconfiguration needed to test different problems, does not lend itself to the
average user but one who understands the software and its notation to, at least,
a basic level. Whilst the lack of a visual element suggests a lack of work, I am
confident in the solution that I have provided, from the algorithm that I have
formulated to the implementation of it. Due to the incomprehensive nature of
the documentation and support for the gurobi optimizer, even though I tried
to integrate this with my solution, I couldn’t make it work after having used
multiple examples with multiple different formats. Bringing the configuration
in from a file is the only option, for using input() is not feasible in terms of
scalability. The core of the work is strong, but lacks an aesthetically pleasing
exterior. Taking into account the time frame in which this took place, also

23

brings light to the complexity of the solution, so with more time the solution
could grow to produce a more well-rounded result.

Whilst reviewing the program holistically, I did notice a threat to the opti-
mality of the solution, but it was infeasible to change the course of the project
and amend it by this point. It can be argued, as rather trivial as the user
would still have a “good solution” and there are many cases where it would
still produce an optimal result however given the presence of cases where only
a good solution can be found the algorithm cannot be considered optimal. The
nature of the removal of constraints when checkout for multiple line inconsis-
tencies, means that there is the opportunity for a constraint that doesn’t make
the LP infeasible could be removed. In the use case, this could be considered
an unnecessary worry given the representation of minimum bound constraints
in a maximum objective function and vice versa, but as I outlined previously
the optimal solution is one where the least amount of constraints are removed
to create a feasible solution. I will discuss an alternate solution in the future
work section but the infancy of the idea shows an inability to correctly discern
if it is practical.

8 Future Work

Hofstadter’s Law of ‘Everything takes longer than you think’ certainly holds
true once again. I went above and beyond the minimum MVP that I could
produce but, as discussed previously, the minimalistic UI creates the illusion
of a lack of work. Time proved to be a tough element to control and looking
to the future of this project, the focus is on the front-facing element. Creating
a intuitive and easy-to-use UI, so that the gap between the average and the
learned user can be breached for wider use of the system. The two main parts
include adding a graphical explanation of what the program has achieved, in
order to help the user understand how the feasibility was found, as in figures 10
and 11. Desmos does have a REST-API which I explored in the latter stages
of development, but due to the complexity of the idea I had to leave it out of
scope. The other was the addition of being able to take the LP configuration
from a file. Whilst I explored the use of this and attempted to integrate it into
my solution I could not get it to work. This would be a huge step in helping
an average user use the program but an important point to make is that this
doesn’t change the fundamental functionality. It is a functional improvement in
order to increase the usability.

With more time I would also be able to delve deeper into the theory of the
algorithm, as my base knowledge of the systems now lends me the opportunity
to gain more depth in the theory knowing the limitations of the software. What
remains as a algorithmic goal inside this project is to not remove any constraints
from the LP at all, but augment them to still create a feasible region but without
removing any constraints. The heart of this lies at prioritisation which I briefly
looked at in my implementation, but decided it didn’t deliver enough value
given the time constraint. Prioritisation resides within the push to create a more

24

functional UI, so that the user can have a more tailored experience, especially in
edge cases where the user might want to flip the decision process for constraint
removal. The future of this project would be to take the general case that I have
formed and bring specifics in to deal with a far greater amount of use cases.

With regards to improving the current solution that I have in place, focussing
on the issue I described within my results I have one other solution theorised.
An incremental adding solution by which all of the maximum bound constraints
in a maximisation problem are added (i.e. x + y ≤ 5 in MAXIMISE 3x + y).
As discussed earlier this is not where the infeasibility is encountered, it is when
constraints with the opposite inequality are added. Therefore, the incremental
part is adding the rest of the constraints one by one and checking the feasibility
of the function after each one is added. If it’s infeasible then make note and carry
on till all constraints are either added or noted. Whilst this way is theoretically
sound, the notion of checking the feasibility after every iteration is long and the
inefficient time use makes it almost impossible to use it for larger LPs.

9 Conclusions

In conclusion, with respect to the aims set out in the introduction, “to automat-
ically turn infeasible LPs into feasible versions”, this project reached its original
aim. The program lacks a wide usability pool, but includes all the necessary
functionality needed. I managed to complete in full the theoretical portion,
creating an algorithm which takes an inconsistent LP and returns one with a
feasible region, and whilst some parts of the practical side did not go to plan, it
was still a success. I have an implementation of the algorithm that I created and
correctly augments LPs and also tells the user which constraints were removed,
so they can understand what was creating the infeasibility. I have learnt that
a problem can have many different solutions, all of which are valid. I have also
explored other areas in order to understand the boundaries of the solution that
I have implemented and without the time constraint I could include more of
these explorations to give a more rounded user experience.

10 Reflection on Learning

During this project I have gained a more specific knowledge on the subject area
and also learnt some transferable skills. Not only has this project expanded
my knowledge, but also my soft skills which will prove invaluable in the future.
My ability to independently study has grown significantly, from translating the
needs of the customer into deliverables, including parts which cannot be within
the scope of the project. From the beginning, I have had to be time-conscious
and evaluate where time should be best spent to ensure the best possible out-
come. Research has also been a focus of this project and I have had to research
an area, where I had basic knowledge. I also had to interpret other people’s
work and use it to reinforce the specialism and need for the research that I was

25

undertaking. A skill in which I have seen significant growth. This has allowed
me to coherently translate my physical work into a report format so that it
could be understood by others.

Ultimately, I have thoroughly enjoyed the project and the challenge that it
gave me from start to finish to signify the culmination of my degree at Cardiff.

26

References

[1] E. W. Dravnieks, Identifying minimal sets of inconsistent constraints in lin-
ear programs: deletion, squeeze and sensitivity filtering. PhD thesis, Car-
leton University, 1989.

[2] V. GORELIK and T. ZOLOTOVA, “Approximation of the improper linear
programming problem with restriction on the norm of the correction matrix
of the left-hand side of the constraints,” DEStech Transactions on Computer
Science and Engineering, no. optim, 2018.

[3] K. Kellner, M. E. Pfetsch, and T. Theobald, “Irreducible infeasible subsys-
tems of semidefinite systems,” Journal of Optimization Theory and Appli-
cations, vol. 181, no. 3, pp. 727–742, 2019.

[4] G. M. Roodman, “Note—post-infeasibility analysis in linear programming,”
Management Science, vol. 25, no. 9, pp. 916–922, 1979.

[5] A. Vaganov, “Regularization and matrix correction of improper linear pro-
gramming problems,” in Mathematical Optimization Theory and Operations
Research: 18th International Conference, MOTOR 2019, Ekaterinburg, Rus-
sia, July 8-12, 2019, Revised Selected Papers, vol. 1090, p. 283, Springer
Nature, 2019.

[6] A. Alliance, “What is agile?.” https://www.agilealliance.org/agile101/. Ac-
cessed: 2020-05-11.

[7] A. B. Consortium. “Chapter 10: MoSCoW Prioritisation”
https://www.agilebusiness.org/page/ProjectFramework 10 MoSCoWPrioritisation
Accessed: 2020-05-11.

[8] “Gurobi.” https://www.gurobi.com/products/gurobi-optimizer/. Accessed:
2020-05-12.

[9] D. RADIGAN, “What is kanban?.” https://www.atlassian.com/agile/kanban.
Accessed: 2020-05-11.

27

