Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Individual Project — Using bots to expand the
functionality of Discord

Table of Contents

INEFOTUCTION ettt e e e e sttt e e e e e s bbb et e eeeeeseesssaasbbbeeeeesessansrreaeeeas 4
2 o] 4= o U Vo N 5
LA LY Yoo T e 5
DISCONT.PY/PYPI ..ttt ettt ettt e e ee e e e e e et e e e e e tba e e e e eatbeeeeeatbeeeeaabbaeeeaabbaee e s entbaeeeenaraeeesanres 6
Default Python Packagesccooeeiiiiiiiic e 6
Other bots that try to solve a similar Problemi.............uviiiiiiiiiiiiii 6
2020. SEALDOL. ..ottt et et e et e s st e e e e s e e e s arae e e e e 6
MEEB.XYZ. 2020 ..eeviieiiiiiieeieiiie ettt e eettee e ettt s e et e e e ettt e e ee bt e e e eat e ettt e e taa e e tan et e eaareeaaees 6
(@00 Te [T ULy =To I < 1Yo 1 o =T 3N 6
SUIMIMIAIY Lottt ettt e et tte s e ettt e s eba s e e eeba e e eabaa e eeasaaeeaasaaeeaesnnseanssnsaessnnseressnnserernnneeesnnnnns 7

(D TST=d o [y g o] (=T =T o1 €= o) o TN 8
L0 1Y oV PP PP 8
Features Implemented ... 8
Isetup (Initial Setup CommaNnd) ..o, 9
COdE BreakdOWN........eiiiiiiie it e e e s 11
IMPlEMENTAtION ISSUBS....ccci i 12
EVAIUATION ...ttt ettt ettt e s et e e st e e s e s e e e e s anreeeeeaaee 12
REGISTIatioON SYSTEM ...ttt e e e e e e e e e e aaa e e e eean s e eaaan s eenaeaes 13
Code BreakaOWN e e e e s 15
IMPlEMENTAtION ISSUBS....ccci i, 15
EVAIUATION ...ttt ettt e sttt e e s sab e e e ettt e e e e s bt e e e saabaeeeeaaes 15
Contribution SYStEM ..., 17
addCONTIIBULION ... et e e s 17

A 0] = Tolo] o | APPSR P PP PPR 17

LEa YV oloT Y] o101 4 ToT o TR 18

LFeq T] oToloT o Aul oYU uTo] o TER 19

COdE BreakdOWN.ttt ettt e ettt e ettt e s sttt e e st e e e e e eaabeeee s 20

TaaY o] (=T g TeY Y = L oY o I E YU TR 21

Y 1TV 14 To] o F PP PPTUPUPPTRR 21
oY =T a T YA 1 =T o= OO 21

FaaY o] (= g T=Y Y = L o o I E YU LR 22

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Y 1TV 14T o F ST PP PP T T UPPTPPPPPRRN 22
NY=TeleYaTe F- VA ST LU L 22
COdE BreakOOWN .coeeieiiiiiiie ettt ettt ettt e e e e ettt e e e e s s sabb bt e e eeesssaabbbaeeeeaeeeaeesaannes 23

1 1 PSPPI 23

Error Handling ..o 24
How the design changed............oooiiiiiiiii 24
(@0 Yo (=30 1=3 o Lot Lo] PP RUSTRSTRRI 24
=] A= 1= PP P PP 25
LY U J =Ty = S 25
JaddCONTIBULION et 25
o] 7=Tole T | PP PSP PP PRSPPI 26
0NV 7oTo T Y {1 oYU o o N 26

F e o TUT o ToloT 0 A o1 U] o o SN 26
(0o o 0| XU N a1 o Y2 =] o 4N 27
OVETAll EVAIUGTION ..eeiniiiiieiiiie ettt et e e s e e s st eee e sabeee e snneeee s 28
Discord API Banning and LimMiting.......ccoiiiiiiiiiiiiii e 28
DiSCOrd.PY REWIILE coeeeeeiie e 28
FULUIE POSSIDITIEIESeeeeeieieeiee ettt e e st e s e e s saneeeeeaaee 29
(60 3Tl (D11) PO PSP PRSP UTOTU PP OPPI 30
Personal Reflection 0N perforManCe.............uuuiiiiiiiiiiiiiiiiiiiiiieieererreeeee i ereerearaaaaereaarrrrrerarrrrrrrrrrrrne 30
23 o ol O P PP OO P PP P PP RPPPRPPN 30
How t0 Setup and run the DOtuuueiiiiiiiiiiiiiiiiii e aaaaaeasasasaaneeeesnnnnnnaan 31
RETEIEINCES ...ttt ettt e e s bttt e e sttt e e e bttt e e sttt e e e e s m b e e e e sbbae e e s nreeeeeeanee 32
1Y o] 1< o Vo L U 33
APPENAIX A e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaans 33
APPENAIX B oo e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaas 34
APPENAIX C o e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaens 35
APPENAIX D e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaans 36

AN o 01T T [RSP 37

AN o 01T T [S U RRRPE 38

AN o 01T 0T [C PRSP 39

AN o 01T T [PRSP 40

AN o 01T T [RSP 41

AN o 01T T [USRI 42

AN o 01T T [USSP 43

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

Screenshot showing Discord's LayOuULcccvviiiiiiiiiiiiiiiieeeeeeeeeeeee e 4
NeWIy Created DiSCOIT SEIVENuuuuuuiiiiiiiriiiiterereteeerrrrrrrrerrrrrrreaa...——————————————————————.————————————. 9
Discord Layout after !setup 4 (AdMin PErspective)eeeeeeeecceviieeeeeeeiiciiiieeeeeeeeeecvsnvnneens 10
Discord Layout after Isetup 4 (Student PErspective)cccceeeecvvrieeeeeeeeceiiiieeee e e eeeivvevveeens 10
Code segment which creates channels.cccccooi i, 11
Shows how to edit PErmMISSIONScccviiiiiiiiiii e 12
VT FoleT g YN B 1V, <1V = 1o | A PPPPPIN 13
Student Registering With SYstemcooviiiiiiiii 13
R R T =T Y U o 1Y) £ ok PPN 14

Code for Registration SYSTEMcccviiiiiiiiiiiiiiiii e 15
Using 1addcontributionooooeeeiiiic 17
Using Ivotecont COMMANccooeeieieicccee s 17
Shows Imyconribution cOMmMaNdcceeviiiiiiiiiiiii 18
Embed showing !groupcontributioncoooeeiiiiiiiiiiccccrr e, 19
ON reaction VENT COUEcvviiiiiiiiiiiiiiiieee e e e e e e e e e e e e e 20

Figure 16: Group Contribution COOEuuuuuiiiiiiiiiiiiiiiiiiiiiiierrrrrrrrereeeeaaeeaaaaaaaraaaeraerrrarrrrrrrrrrrrne 20

Figure 17:
Figure 18:
Figure 19:

PrOf NIty FilEOI e e e e e e e e e 22
(0o To [o gl o [IR OO PP PP SPPT 23
Breakdown Of PermMiSSIONSccceeeeeieeeeeee 33

Figure 20: Student Contribution RECOrd NamMiNG.........uuuuuuuuiuieriiiiiiiiiiiirieernerareraeees . 34

Figure 21:
Figure 22:
Figure 23:

Structure of ContribUtion RECOIS..........cuvuuiiiiiiiiiiieiiiciee e e e e eeaabaans 34
My CONtFIDULION COUE ... e s e an 35
TSt FOr ISELUP 4. eeaaaaaaaaas 36

T N T Ty o T KoY <1 1] o J N 37

Figure 25:

TSt FOr ISETUP L e aeas 38

Figure 26: Test for laddcontribution @Student 1 Refactored Code -10........cccccuurrrrrrrrrrrrenrrvennnnnnnnns 39

Figure 27:
Figure 28:
Figure 29:

laddcontribution @Student 1 Refactored Code -10 without Supervisor Perm 40
Test for lvotecont @Student 1 -- Added Python scriptv2 —14...........ceeeeeiieieeeeeeeeeeeeee, 41
Test for IMmycoNntribULIONccooeeeeeeeeeee e 42

Figure 30: Test for |groupCoONTribULIONuuuiiiiiiiiiiiiiiiiiiiiiieeiiirerrrerreere e aeraaeaaaaaaaaaaaarararrererrrrrrrnes 43

file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437575
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437576
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437577
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437578
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437579
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437580
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437581
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437582
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437583
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437584
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437585
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437586
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437591

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Before the report, | just wanted to point out that | have a visual impairment. Most of the time the
screen is 300-400% scaled, therefore formatting of a large document like this can be an issue. |
apologise in advance if the formatting is slightly off.

Introduction

The main aim of the project was to create a system that would help with group monitoring- where
student contributions were recorded, and reports could be automatically produced. Some other
aims were to introduce some profanity filtering, automated setup of the system and an automated
permission system along with a login system to complement this. My aim from the initial plan was to
create this system by taking advantage of Discord (2020) and their API (Discord Developer Portal.
(2020)).

For this report, | will assume that the reader has some understanding of what Discord is and
a working knowledge of Python, Programming Technogies and a general level of knowledge for
creating systems.

Discord provides a way for users to collaborate and communicate, like Skype (Skype.com. 2020.) or
Microsoft Teams (Microsoft.com. 2020.), but offers far greater functionality. Discord uses a server
system, where anyone can create a server and customise it, these servers can currently support
250,000 people per server. These servers have two different channel types, Text Channels and Voice
Channels.

Here is the general layout of a Discord Server:

Various
Channels

Members
within Server

within Server

The different
servers you
are part of.
(You can click
to navigate to
one)

Figure 1: Screenshot showing Discord's Layout

Furthermore, Discord also allows for Bots, which provides extra functionality and allows users to
take advantage of the API provided by Discord. As such, we can code these Bots to monitor student
participation , to read messages to check for profanity and to create a login system via the bot,
where until you have logged in you won’t get permissions for that Discord server.

Intended Features

e Implement Monitoring of Group work.
e Simple natural language processing.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

e Registration system for someone to join the Discord server, ensuring they are a verified
student.

e Automated permission system

e Logging of contribution system actions.

This project had many different features that needed to be designed and implemented, as such |
decided | would work and create them in an agile approach. Where, for each feature, | would focus
solely on that single feature, design it, implement it, test it, and then move onto the next desired
feature.

For this project, there are a significant amount of assumptions made. Firstly, because we are
using an APl it is assumed that the APl would not have some major rewrite or updates that would
damage/break the system that I’ve created- moreover, this would also assume if this project were
be deployed some level of maintenance would need to occur to ensure that the code was at least at
the minimum supported level for the current API. Secondly, we are assuming that the Discord
Service and APl itself is stable enough to have a system like this run- if the APl were to break, or the
service go offline then this system would not function at any capacity. Moreover, the Discord API
deals with personal data, as such we are assuming that the APl is secure enough to protect users
information, however there is no real way of me confirming this as they do not present the source
code for the APl or have any documentation on how the backend of Discord works.

To summarise, the outcome of this project is to have a system which will assist group
monitoring, by recording participation levels, ensuring profanity is not used and have an elegant
solution for student registration and automatically control their permissions within the Discord
server. The aim was to achieve this by using the Discord APl and Python.

Background

As mentioned previously, | will be using Python to manipulate the API for Discord. Here | will go
through the background and some of the Technogies | have used/explored for this project. I'd also
like to point out that before this project | had no experience with the Discord API.

Why Discord?

At first, | explored services like Skype, which would offer the communication side of what my project
aim needed but provided none of the features | was looking for, Group monitoring, profanity
filtering and a registration system for students.

Microsoft Teams was also another option, it too allows for bots and has an API, however,
after further research it seemed that the API for Microsoft Teams was more based around
Conversational Bots or bots that would automate tasks like graph creation. In comparison to
Discord’s API, the Microsoft Teams APl was arguably more restrictive and would allow for less
functionality. | found that Microsoft Teams was intended to be a Chat-based workspace that
included the Microsoft Software Suite, it targets more towards collaboration and project
development. Microsoft Teams is very similar to Slack in terms of what their target demographic is.

Discord has established itself as an all-in-one solution for collaboration no matter the area,
from University work, to gaming. Discord provides a vast array of features that accommodate for all,
it allows one-to-one or group voice calls, screen sharing/video calls for up to 50 people at once, text
and voice channels, a very open API that would hugely extend functionality, most importantly,
Discord allowed for bots to control permissions for servers.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Discord.py/PyPI

PyPI (2020.) or Discord.py is an API wrapper for Discord, that aims to make it easier to communicate
with the Discord API. It uses async and await and is updated on a regular basis. Using PyPl makes it
quick and easy to start communicating to the API using Python, it allowed me to focus on the
implementation of system and learn the API structure, rather than having to deal with the way in which
the APl and Python would communicate to each other.

Discord.py also includes a module for logging, this logging module records errors reported by
the API. The module would provide information regarding API limiting/bans and some errors that
would occur when interfacing with the API.

Default Python Packages
For the project | used a vast array of packages that are built into python by default, from datetime
packages to .CSV handling packages.

Other bots that try to solve a similar problem

From research, there are Discord bots out there that have similar features to the bot | have
designed. However, all these bots are written on the old Discord.py Branch (I will go into the
Discord.py Rewrite later). This meant that a lot of the code for these bots would not assist me in the
understanding of the API. Furthermore, from my research it seemed that although there were other
bots that would provide one feature that was in my desired features for a bot, | could not find a bot
that had all the desired features that my bot would have.

2020. Statbot.

2020. Statbot is an activity tracking bot for Discord, using the old Discord.py branch it provides
statistics on users, showing how many messages they have contributed, time in voice rooms and a
leader board showing who has the most activity. Although for my project | would not be simply be
counting the messages and time spent in voice rooms and instead using a voting system to decide
who contributed what, it gave me an idea of what API requests could be accepted, even though it
was written on the old Discord.py branch.

Meeb.xyz. 2020

Mee6.xyz. (2020) is a Multifunction bot, providing many features, most notable for my project
though was the profanity filtering. Again, although it was written on the old Discord.py branch it
gave me some idea of how to approach profanity filtering when dealing with Discord. Looking at
large-scale bots like Mee6 may hold some ideas on how to deal with upscaling a bot to a large user
base.

Code used by others

The only code that | am using that is created by others are the Python packages mentioned
previously. The bot | created, including all the various functions is original code created by me. It was
quite difficult to find any code by others as | was using the new Discord.py rewrite, where all other
bots were using the old Discord.py branch. The only time | used code by others was to get an
understanding of how the API worked, | would take the old branch of code and then spend the time
converting it to the new branch, this gave me an idea of the structure, but | decided not to use this
code in my bot as doing the conversion myself did make the code very messy and hard to
understand from an outsiders perspective.

In the coming years more development using the latest APl rewrite may occur and as a result
more code using the rewrite available online, but right now, it seems that | am one of a few people

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

developing bots on the Discord.py rewrite and furthermore, the only one who has created a
Discord.py bot to serve the purpose of a contribution system for students.

Summary

To summarise, Discord was chosen because of its feature rich environment and how it has a very
open APl which allows for many possibilities. When looking at what others have done to solve a
similar problem, one thing became clear, that although there were solutions for activity tracking, or
profanity filtering, there was not one bot that did them all. Moreover, from all the research | did |, |
did not find a bot that had a student registration system like | intended.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Design Implementation

For this project, there are several features that have been implemented, as such, | will break down
each major feature and explain the important parts of the code for each.

Overview

The implemented system includes a registration system that will allow the user to log into the server
and then be given the respective roles within the server. It has a contribution system, where student
contributions are recorded and are presented in neat reports, showing information on hours spent
per contribution, total hours, and the date/time the contribution was made. Moreover,
contributions can be made either by students, where student must vote on a contribution within
their group in order to get it approved, or Supervisors can manually push through a contribution for
a student without the need of a vote. Because Discord doesn’t have this contribution system by
default, Discord does not have a log of contributions, therefore I've implemented a simple logging
system which records what supervisor pushed through what contribution, this is more of a proof of
concept and is not fully implemented. Finally, a profanity filter was added, where the bot takes in a
.txt file containing blacklisted words, if any of these words are used within the server a Supervisor is
notified of a possible infraction being made within the server.

For all the below implemented commands and features you can control the bot through the
public text rooms, unless advised otherwise. | opted to use a command structure as using a system
that used Natural Language processing is very difficult and most implementation of Natural
Language Processing just do not work well enough for a system like this.

Features Implemented

For each feature/command | will provide an explanation of what it does, then if that future has any
important code snippets. Following this | will talk about issues | had implementing this feature and
then finally the evaluation of that feature. | will have a completely different section for testing as |
believe this will be the easiest way to explain the functionality of the entire system. | have moved
from the original structure because the nature of Discord is very visual and difficult for new users,
therefore | have had to provide many screenshots showing how the system works.

How this section is structured:

- Feature/System
o Description of Feature/System.
o Snippet of any important/ noteworthy code.
o Evaluation

*| repeat this structure for each Feature/System. Testing is a different section of the report.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Isetup (Initial Setup Command)

In Discord, when you create a Server, you must set up the rooms manually, this including all the
desired permissions, the role hierarchy, and the permissions for each group. This can take serval
hours to configure and understand, as such I've create a setup feature that allows the bot to do all
this for you, removing the issue of human error and the need to understand the full permission
system of Discord.

Here is what a newly created Discord Server looks like:

Individual Project Testing v general

general -

‘WELCOME TO YOUR SERVER, KIE!

abeut Discord

Figure 2: Newly Created Discord Server

|”

As you can see in Figure 2 there is only one text room “general” and there are no voice rooms. This is
where normally you would have to spend the time creating and setting the permissions for each
room and permission groups for users. By using my bot, you can enter “Isetup 4”. “Isetup” is the
command, the “4” is the amount of groups you wish there to be. If you would like there to be 12
groups, you would use “Isetup 12”. This deals with creating all the groups, managing the permission
and creates the permission groups for you. It makes the setup process very quick compared to
someone who is brand new to Discord and has no understanding of how to configure Discord. Below
is Figure 3 that shows what Discord looks like after using “Isetup 4”.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Individual Project Testing v general

general)
how-to-join-group

commands

t cammand bo s fomation

Figure 3: Discord Layout after Isetup 4 (Admin Perspective)

On the left-hand side of Figure 3 you can see all the rooms that have been created. By using the
command, the bot creates all the Desired group areas, dealt with the permissions, and also provided
some extra details on how to customise the server. Moreover, it created two unique rooms “How-
to-Join-group” which provides information on how to register with the bot. The second unique room
is “commands”, which provides a full list of commands that the bot will respond to.

Figure 3 is taken from the Administrator view, which allows you to see the entirety of the system.
From the student’s perspective, they would only be able to see their respective group area. This is
achieved with a complex permission system that | implemented into the bot; | will go over this in
greater detail later.

Individual Project Testing v commands

° Group Monitor 857

commands & Possible Commands

Below are the commands supp

Student 2
L s

Figure 4: Discord Layout after Isetup 4 (Student Perspective)

Figure 4 Shows the view from the students perspective, as you can see they are only able to see their
own group area, they do not have access to view or type in the Group 2, 3 or 4 area as seen in Figure
3.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Code Breakdown

print("Creating Groups")
count e
count int(m_in):

count+-1

name "Group "+str(count)
message.guild.create_category(name)

progresscounter+-1

print("Progress: ",progresscounter,"/",progressbar)

category = discord.utils.get(message.guild.categorie ¢ name)
message.guild.create_text_channel("Group Text" » = category)

progresscounter

print("Progress: ",progresscounter,"/",progressbar)
message.guild.create_text_channel("Group Overview",category category)

progresscounter+=1

print("System sleeping for 1@ seconds. (Prevents Discord API ban or Limiting)")

time.sleep(1@)

print("Progress: ",progresscounter,"/",progressbar)
message.guild.create_voice_channel("Group Voice",category = category)

progresscounter+=1

print("Progress: ",progresscounter,"/",progressbar)
message.guild.create_role(name=name)

print("System sleeping for 1@ seconds. (Prevents Discord API ban or Limiting)")

time.sleep(1@)

Figure 5: Code segment which creates channels.

Figure 5 is a segment of code that creates the text channels, voice channels and the Category for
each of the groups. This is just how the channels are created, this is not the code that modifies the
permissions. The While loop will loop until the Counter is equal to the requested number of groups. |
am using this segment of code to show the API requests, each “await” seen in Figure 5 is an API
request.

On line 257 in Figure 5 is code that deals with the progress bar, this is just shown in the
command prompt where the bot is running to show the Administrator that the bot is still doing
work. This is important as on the last line in Figure 5 is time.sleep(10), this was implemented as the
bot was sending too many APl requests and resulting in an APl ban. As such, implementing a
progress bar for the Administrator to see was necessary, it shows when the system is sleeping to
avoid the APl banning.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Implementation Issues
There were a few problems with implementing

this Isetup command, firstly is how !setup requires a

huge amount of API requests, which meant adding time.sleep(10) throughout the setup code to

prevent bans. For the !setup command it takes

(13+9* Amount of Desired groups) API requests,

therefore if | wanted to create 15 groups, it would be 13 + 9 * 15 = 148 API requests. These 148
requests would be made within seconds without the time.sleep() and result in an instant API ban.

A secondary issue was how the API was written; it was counter-intuitive when dealing with

editing permissions.

L_role_name.edit(hoist=True,

progresscounteri=1

entionable = True)

print("Progress: ",progresscounter,"/",progresshar)

Supervisor_permissions

Supervisor_permissions.
Supervisor'_per‘mislsiuns .
Supervisor_permissions.
Supervisor_permissions.

Supervisor_permissions.

How most Supervisor_permissions.
.. Supervisor_permissions.
permissions are Supervisor_permissions.
Supervisor_permissions.

edited. Supervisor_permissions.

Supervisor_permissions.

Supervisor_permissions.
Supervisor_permissions.
Supervisor_permissions.

Supervisor_permissions.
Supervisor_permissions.
Supervisor_permissions.
Supervisor_permissions.
Supervisor_permissions.

Figure 6: Shows

discord.Permissions()

How Hoist and
Mentionable
Permissions are
edited.

view_audit_log - True
kick_members
ban_members = Tr
create_instant_
change_nickname
manage_nicknames
send_messages

vite = True

True

embed_links = Tr
attach_files = Tru
read_messages - True
read_message_history
mention_everyone = Tru
external_emojis Tr
add _reactions = True
connect = True

speak = True
use_voice_activation
priority speaker = True
stream True

True

True

how to edit permissions

In Figure 6 permissions are edited, the issue is that most permissions are edited in this format:

student_permissions.embed_links = True

However, permissions Mentionable (Allows others to @Mention that role) and Hoist
(Displays the role separately from others) are edited in a different way:

await L_role_name.edit(hoist=True, mentionable = True)

This caused a lot of confusion during implementation and took many hours for me to
understand why the API was not responding when | was trying to edit Hoist and Mention
Permissions using the other format. In my opinion, these permission for the APl were created by
different people and rather than ensure consistency they decided to implement them in this way.

Evaluation
In the initial plan, there was no mention of havi
the planning stage; | neglected how complex Di

ng a command like “Isetup” this was an oversight, at
scord was in terms of its permissions and structure,

as such when | realised this during implementation | decided to implement this “Isetup” command,
the idea being that it takes control out of the Administrators hands, reducing the opportunity for

human error. Moreover, through development

it became clear that the initial setup of the Discord

server would be essential to how the rest of the system would work.

The “Isetup” command does have some issues, like how intensive it is on the API, it by far
makes the most APl requests out of all the created commands and did cause me to get APl banned

on various occasions. As mentioned previously,

| implemented time.sleep() throughout the code, to

slow down the rate that APl requests made. From a time standpoint, this isn’t ideal. If time.sleep()
wasn’t used the initial setup it would take a matter of seconds, but then resulted in an APl ban.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Whereas now, the system will take minutes to finish the setup, this varies depending upon the
number of groups you wish to make. If you wish to create 20 groups, then the system would take
approximately 20 minutes to finish the initial setup.

| believe implementing “Isetup” was essential to ensuring the smooth running of the bot for other
commands, although it does take time to run, it would still take much longer for someone to
manually setup the server themselves and understand how Discord permissions and structure
works.

Registration System

As mentioned previously in the !setup section, | showed how groups were only able to interact with
their own group and are unable to see other groups. In order to achieve this, | needed to implement
a registration system, where people would login and then be given their respective group role within
the Discord server.

When a Student joins the server, they are sent this DM by the bot:

Pl Group Monitor [80F

Welcome Student 1!

Please complete the registration process.

e.g. "Ireg c1613910 Kieran Parnell James - Must be formatted as: student
Number, First name, Last name, Middle Name(Optional)

Figure 7: Welcome DM by Bot

Figure 7 shows the DM that a student would receive when they join the server, it provides
information on how to register. In this example, the students name is “Student 1”, therefore to login
in they would use !reg StudentNumber Student 1. This would then log them into the system, see
below for an example:

Group Monitor

° Group Monitor B0

Welcome Student

Please complete the ation process

eg. "Ireg cl6 arnel matted as: student
Number, First na

o Student 1

Ireg c5132484 Student 1

Q Group Monitor [80%

Registration Complete for Student 1!

re in: Group 3
»een give the premissions to access your group within the

By joining this Server yo
Student Num

ve lost your role, you can

Figure 8: Student Registering with System

In Figure 8, Student 1 has registered and the bot has therefore given the respective role to the

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

student within the server, in this case they have been given the “Group 3” role. The registration
system works by comparing what the bot is messaged and what is stored within the .CSV, in this case
itis the Student name and their student ID. | am aware that there is no password, but for simplicity |
kept it as the student number. You could simply switch the student number for a password if desired
in the .CSV. The .CSV is named “Registered_Students.csv”.

A B C D E
Student Number |First Name Last Name Middle Name Group ID
€1613910 Kieran Parnell James 11
16123123 Joe Jones 12
c16332 Adam Jenkings Jones 11
c1615677 David Parnell 11
c1231233 Poppy Brown lle
€5132484 Student 1 13

Figure 9: Registered_Students.csv

Figure 9 is how the .CSV is structured. You can see that all the system does is compare the message
content sent by the student with the contents of the .CSV. The bot knows what role to give the
student by looking at the “Group ID” within the .CSV, “13” would indicate the bot to give the “Group
3 “permission.

Supervisors can also log into the system, they log in the exact same way as students do (As
shown above) but instead of the bot giving a group role, they are given “Supervisor”. The bot knows
to do this by looking at the .CSV, instead of “13” it contains “!le”, which is used to indicate that this
person is part of the supervisor role. Within Discord, the supervisor is given higher permissions over
students. Please see Appendix A for a breakdown of permissions.

Although Supervisors roles and Student group roles can be given through this registration system, |
decided not to make it possible for someone to login in as Administrator. Instead, the Administrator
that initially created the server is the only person who can give others Admin. This was because of
Security concerns, as anyone with Admin would be able to completely delete the server if they
wished.

Additionally, this is all done in a direct message conversation with a bot for security. The permissions
are set up in such a way that a Student is unable to type in the Server until they have registered with
the bot, thus preventing the student from accidently trying to log in through a public text room
within the server.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Code breakdown

ommand via DM. Please use the command \"!senddm'"")

arget_server_id)

rvisor Permiss.

Figure 10: Code for Registration System

In Figure 10 line 427 — 436 deals with formatting of the user input to get it ready to compare to the
.CSVfile. Then line 442-446 will give a role depending upon what is found in the ID field, in this code
segment it deals with giving roles to supervisors.

Implementation Issues

There were no major implementation issues when creating this system, the biggest concern was
security. Like mentioned before, | have made it so that it is not possible for users to log in via a
public room, however, what is uncertain is how secure the Discord APl is. Maybe dealing with
student ID is not a great idea and instead | should implement a system where students are given an
encrypted student ID and then once the bot receives that ID it has the key to see the actual student
ID, this avoiding the concern of the student ID being leaked from the API.

Evaluation

In the initial plan | mentioned that | would like a registration system like the one implemented, but
again | failed to apricate the complexity and importance that this was done correctly in my initial
plan. The registration system easily took the most time to implement, | had to fully understand how
Discord worked, pre-plan who had what permission and ensure there were minimal bugs. The
registration system assigns roles in the Discord server, as such, these roles would control what a user
could do and what they could see within the server. Moreover, this registration system is used for
both Students and Supervisors, so ensuring that the correct roles were given were essential.

Admittedly, this registration system is functional but it is not pretty, a solution to this would
be to use some sort of web dashboard that a user is given in order to register, rather than doing it
through Bot direct messages. From a code perspective, the registration system could become
computational complex if the user base were to grow. For example, if there were 100,000 students,
the registration system would take time to respond and give the correct role. This is because of the
way | implemented the system, it works by searching through all of the people in the
registered_student.csy, if there were 100,000 entries in this .CSV then it would take some time to

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

find the user. If this bot were to be deployed to a scale this large using something other than a .CSV
would be necessary.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Contribution System

| have implemented a contribution system, where students can add their own contributions that will
then be recorded by the bot and presented in reports. Supervisors can push a contribution through
for a student if they deem it necessary, but if a student wants to add a contribution then a vote is
held by the bot. For testing reasons, the vote is set to four people or higher must agree with the
contribution, but this could easily be changed to a percentage-based agreement rather than four
votes.

laddcontribution
“laddcontribution” is what Supervisors use to manually add a contribution by a Student, it does not

require a vote and will be added immediately. If a Student were to try and use this command the bot
will inform them that only Supervisors can use this command.

Hours spent on work. “-10”

The work they did. | ’ i
e work they did laddcontribution Refactored code -10 Doesn’t mean NEgatlve 10
hours, “-“is used for
Group Monitor [BOT .
@ Successfully Added contribution formattmg for the bot.

Figure 11: Using !addcontribution

In Figure 11 you can see how the command is used, it must follow the structure of:
“laddcontribution @MentionStudent WorkDone -HoursSpentOnWork”

Assuming the syntax is correct, and the bot replies with “Successfully Added Contribution”
then this contribution will be added. Contributions are stored in separate .CSV files for each
student, the name of the .CSV is the students unique Discord ID that is linked to their Discord
account, all these files are stored in the folder “contribution_records”(See Appendix B for an
example).

Ivotecont
“lvotecont” is what students will use if they wish to add a contribution, It must be done via this
voting command- this vote can either be for themselves or another student.

Kie

Ivotecont -- Added Python script v2 -- 14

Group Monitor (80T

Vote on 's contribution
Added Python script v2 --14 Hours

&

Vote passed for contribution by

Figure 12: Using !votecont command

Figure 12 shows how the voting works for students. Firstly, the student uses the command to create
a vote. The vote is then created by the bot. The voting is done by using a yellow thumbs up button,
ass seen above. Once this has reached at least 4 votes, the vote is considered passed and the
contribution is then added to the respective .CSV. If the vote is not passed, then the contribution is
not added.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Imycontribution
This will show the students personal contributions so far.

-, Kie

Imycontribution

Group Monitor (80T

Kie#2207's Personal Report

Here are your contributions so far

Added Python script v2 Hours Spent: 14

Refactor Code Script Hours Spent: 7

Rewrote main function Script Hours Spent: 1

Total Time Contributed: 22 Hours

Figure 13: Shows !myconribution command

Figure 13 shows the personal report for a student, this personal report will only show the
contributions for the person who typed the command. As you can see in the above figure, the
embed shows the date that each contribution was made, the actual contribution made, and the time

spent on that contribution. After the embed, the total amount of time contributed over all
contributions is displayed.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Igroupcontribution

Unlike “Imycontribution”, “Igroupcontribution” will post two embeds or three in the situation that
someone in the group has not contributed at all. The first embed will detail all the contributions
made to the group including the hours for each contribution and who it was contributed by. The
second embed displays the total contribution time for each student. Finally, the third embed
displays any students that have not contributed for that group, in the case all students have
contributed, embed three will not be posted.

- Kie

lgroupcontribution

o Group Monitor [E6H

Group 1's Report

ontribution so far!
Added Python script v2 Hours Spent: 14
Refactor Cod ipt Hours Spent: 7
Rewrote main function Script Hours Spent: 1
Created Python script for project Hours Spent: 4
Refactored code Hours Spent: 10

2 STuff Hours Spent: 5

Group 1's Overall Hours
Here are the total hours for each student
Total Hours: 22
Total Hours: 14

Total Hours: 5

No Contributions

These users have not yet contributed

No Contribution

Figure 14: Embed showing !groupcontribution

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Code Breakdown
“lvotecont” from a code standpoint only creates an embed message, sends it and adds a thumbs up
reaction. However, the real technicality starts when someone presses the thumbs up on the embed:

client.event
def on_raw_reaction_add(payload):

payload.emoji.name -

channel - client.get_channel(payload.channel_id)

message_for_count channel.fetch_message(payload.message_id)
reaction - get(message_for_count.reactions, emoji-payload.emoji.name)

reaction.count 3

Figure 15: On reaction event code

Due to API limitations | had to come up with a method that was not going to cause too many request
to be made, originally | was going to code it so that every few seconds it would retrieve the message
and see how many reaction were on it. Instead, | managed to create a system which used an
“@client.event” where if a new reaction was added, it would retrieve the message with the newly
added reaction, check it is the correct reaction and check if the reaction count was greater than
three.

"Group" str(message.author.roles):

member message.guild.members:
indvidualCounter

each_role member.roles:

each_role GroupHolder:
my_id - member.id

filename "contribution_records

str(my_id)+".csv"

open(filename, 'r') myfilefinder:
items myfilefinder:
items = items.rstrip()
items =

items - items.split(",")
embed.add_field(name-member.name+" "+items[1],
indvidualCounter int(itemsl21)

Figure 16: Group Contribution Code
For Figure 16 there is quite a bit going on, | will break it down loop-by-loop:

Loop on Line 594 — This loops through all people within the same server as the person who used the
“lgroupcontribution” command.

Loop on Line 597- Then for each member within that server, loop through the roles that they have
associated with them.

If Line 599 — If the found person is in the same group as the person who used “Igroupcontribution”.
(This ensures that only people from the same group are presented in the report).

Line 603 -> 612 It will Try to open the contribution files for each student within that group, if an
error is returned with not being able to find the file, then this indicates that the user has no

"we,”

contributions yet. “if items == "":” on line 607 was used to deal with how each entry in the .CSV has a

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

blanks line before it, this happens because of how Python deals with appending to .CSV’s. “If items

nm,n

== """ meant that that loop would do nothing and therefore not add an empty entry to the report.

Line 610->612 Adds the student contribution information to the embed and counts uses a counter to
count up the number of hours for the total contributed hours.

The code for “Imycontribution” is simpler as you only have to find the information for the message
author, as such the file for the author is loaded and added to the embed. See Appendix C for this
code snippet.

Implementation Issues

Although there were no major issues with implementing the contribution system it did require a
deeper understanding of the Discord API, therefore in order to create this contribution system | had
to spend some weeks learning and testing the API for what it could and could not do. The only
noteworthy issue with implementation was how the Discord API searches for users, it seems to do
this linearly, where for large user bases this could become an issue.

The first implementation of a contribution system included having the bot record hours
spent in voices rooms and the total numbers of messages sent by users, but again this caused too
many APl request to be made. | also made the decision that hours spent in voice rooms and message
sent would provide any valuable information to the supervisor and that the contributions made
through the voting system help much more value.

Evaluation

Like other functions, in the initial plan | made it clear that | intended to create a contribution system
like this, but | again failed to appreciate its complexity. The system works from a functional
perspective, but if this system where to be upscaled there would be issues. Right now, the
contribution system works by searching the entire server for other users that have the same role,
then printing their contributions in a neat report. The issue here is how it needs to search through
everyone in the server, a easy solution to this would be locally storing which users are in which
group in the Discord server and then reading the file to get their User IDs, rather than searching the
entire server. The contribution system does require more error checking, I'll go over this issue later.

To summarise, the contribution system here can accept contribution votes by students or have a
contribution pushed through by a supervisor, then these contributions can be seen in neat reports
that the bot produces as embeds. You can see two different reports, either just your own personal
contribution to the group or your entire groups combination.

Profanity Filtering

| implemented a simple feature, where for each message sent within the Discord server, the bot
would grab the message content and check if any word in the message content contained any
banned words. These banned words are defined in the word_blacklist.txt, which is just a simple .txt.
If the message did contain a banned word, a Supervisor is altered.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

For demonstration, | have put the word “rubberducky” in the word_blacklsit, this is the bots
response:

- Kie
= rubberducky

Group Monitor B6F
Language warning for

@ |

Figure 17: Profanity Filter

As you can see in Figure 17 the bot “@Supervisor” by doing this the Supervisor gets a direct
notification. | decided to make it that the bot did not delete the original message and instead leave
that decision to the Supervisor.

Implementation Issues

The profanity filtering that the system currently uses is very simple and easy to implement, | did
however have issues with previous attempts at dealing with profanity. Originally | wanted some
natural language processing, but after some time spent with natural language processing it became
clear that it was a very complicated area and non-one had perfected it yet. Moreover, | opted for
this more simplistic system because | was concerned about the project becoming about natural
language processing rather than a contribution monitoring system.

Evaluation

There is not too much to talk about with this profanity filter, it does not do much other than flag a
Supervisor. During implementation, | tried some natural language processing tools, but found that all
have their own problems, mostly that none can understand context correctly. Therefore | opted to
only Notify the Supervisor and not delete the message because in my opinion having a profinaity
filtering system that is overly aggressive is much worse than having a passive profanity filtering
system.

Secondary Features

There are some other features that | have implemented that | would consider outside the scope of
the original initial plan, but | would like to bring some attention to. Firstly, | implemented a “!'help”
that would produce a list of possible commands that the bot would respond to. Secondly, |
implemented two commands “!HelpAddContribution” and “!HelpVoteCont” that provide more
detailed syntax information on how the command should be used/structured.

Within Discord, users can have their privacy settings set to “Not Receive messages from
people within a server”, this means that the bot would not be able to message them upon joining. In
the “how-to-join-group” it provides information and points out that people will need to disable this
feature to use the bot. After they’ve disabled this privacy feature, they can then use !senddm, that
will open a direct message conversation between the user and the bot.

When creating and testing the bot, there were many instances where | would need to delete
all the text/voice rooms and the roles because they were not setup correctly. At first, | did this
manually, but quickly realised that it was taking far too much time and as such | implemented two
commands to help with this process “!del” and “Idelrole”. “Idel” deletes all text and voice rooms
within the server, where “Idelrole” deletes all the roles within the server. Again, | had to be very
careful using these commands as they require a large amount of API requests to complete their

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

actions. To help prevent API bans when using these, | used time.sleep() to reduce the rate at which
APl requests were made.

All these secondary features can be used by anyone, including the functions that delete all
rooms and delete all roles. | am aware that this could be exploited by a student, but if the system
were to be deployed these would either be removed from the code or only be usable be an
Administrator. | only kept these features in the system to help show what tools | used to help
develop the system. Moreover, the “laddcontribution” command can only be used by a supervisor,
so this show that it is easy and possible to restrict commands to only be used by users who have the
specified roles.

Code Breakdown
Idel

tswith('(!del):

hold - []
count

"how-to-join-group')

@ seconds. (Prevents scord API ban or Limiting)")

print(“Deleting All Groups")
guild client.guilds:
channel guild.categories:
hold.append(channel)
discord.TextChannel.delete(channel)
group_cha_del discord.util 3
group_ov_del - discord.utils.g
group_voice_del = discord.utils.get(client.ge

discord.TextChannel.delete(group_cha_del)
[e eping for 1@ seconds. (Prevents Discord API ban or Limiting)")

Figure 18: Code for !del

The code is simple, it loops through all of the channels for each group and deletes them, each delete
is an APl request, therefore if there are 80 rooms, that will be 80 APl requests. This is why the use of
time.sleep() is so important when dealing with high API request functions.

Line 335 of Figure 18:
“help_text = discord.utils.get(client.get_all_channels(), name="how-to-join-group')”

Here, we are getting the unique ID for the room “’how-to-join-group”. In the Discord API, you cannot
delete a room just by using the name, you must first request all channels, find all the servers that
match the name you want to find, then using that name you can get the unique ID for that channel.
This is because in Discord you can have channels with the same name, therefore you can only delete
channels using their unique ID.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Error Handling

All the commands explained have some level of error handling to ensure that an error does not
completely crash the bot, however there is a lot of improvements that could be made. Due to time
constraints, | was unable to add a good level of error handling, for instance, if someone uses the
incorrect format for adding a contribution this contribution may still be added, but then when the
bot tries to produce a report it will get an error, this being because the structure of the contribution
was not maintained (This will become clear in the tests).

If a bad request is made to the Discord API it will not respond, it will not provide an errorin
most cases. This makes it very difficult to add a good level of error handling, in the best case the
Discord API will respond with “Bad Request” but provide no further details. | would assume that this
is because Discord doesn’t want their full backend being known by everyone as people may start to
exploit bugs that are found.

How the design changed

The final solution has the functionality of all the desired features as mentioned previously, but the
design changed multiple times throughout development. At first, | tried developing the Bot by taking
code created by others on the Old APl branch and convert that code to the new branch, however, by
doing this | quickly realised how hard it became to read the code and how inefficient it became
therefore | scrapped this approach and opted to learn the new Discord API branch and write all of
my own code.

The original design of the system allowed for the APl requests to be made instantly and as
often as they were needed, however, dude to APl banning and limiting being a reality | made the
system sleep through functions to slow down API requesting rates. Furthermore, the original Design
used Threading, it allowed the bot to reply to multiple people at once, yet, again this proved
problematic with making too many API request, as such | removed Threading from the final design.

The design for “Ivotecont” also changed, as it currently stands students vote by clicking on
the Thumbs Up reaction, whereas in a previous design student had to use “lvote yes” to indicate to
the bot that they were putting forward a yes vote. | was not stratified by students having to use
“lvote yes” therefore | came up with the bot posting an embed which it adds a reaction to, then
student click that reaction if they agree with the contribution- this was a much more elegant
solution.

Code Refactor

The process of creating this bot took months, therefore my understanding of the API grew, the code
for the first feature | implemented was very messy as | was inexperienced with the APl compared to
the last feature | added which was clean and short. In the end, | decided to refactor the entirety of
my code, | kept the functionality the same, but rewrote the code, removed unnecessary variables,
reducing the APl request by making two requests in a single request and | also made the structure of
the code easier to read. Moreover, | commented the code to the best of my ability so that someone
would be able to understand it in the future.

Even though | have refactored the code once, it needs to be done again. Although the code
is a lot better structurally compared to before, there is still opportunity to improve it further.
Currently, almost all of the code is within the same Main.py file, if | had time on my side | would take
each function and put them into their own .py file, allowing for the code to be more easily
understood.

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Test Cases

| did not have the time to create a full testing system or fully test every possible input for my bot,
however here are what | deemed as some of the most essential tests for my bot that showed its
functionality and tests that would cause the bot to produce errors due to bugs within the code that |

was unable to fix in time.

Isetup Testing

Test.N | Action Input Exected | Actual Test Test Screensho
o Result Output Result | Comments tin
Appendix
1 Using Isetup 4 | Creates | Created Pass As expected, | Appendxi
command rooms/ | rooms but progress D
correctly perms and bar in CMD
perms prompt
broken.
2 Using Isetup Bot Bot does | Pass Bot does Appendix
Command Does nothing. nothing in E
with no nothing. | Gets discord, error
value error displayed in
display cmd prompt,
on but operation
comman carries on.
d prompt
3 Using Isetup Bot Bot does | Pass Bot does Appendix F
command with | II”£ does nothing. nothing in
incorrect nothing | Gets discord, error
characters error displayed in
display cmd prompt,
on but operation
comman carries on.
d prompt
laddcontribution
Test.N | Action Input Exected Actual Test Test Screensho
o Result Output Result | Comments tin
Appendix
1 Using laddcontr | Contributio | As Pass N/A Appendix
comman | ibution n gets expected H
d @Student | added to
correctly | 1#2774 .csvand
Refactore | confirmatio
d Code - n posted.
10
2 Using laddcontr | Nothing As Pass N/A Not
Comman | ibution happens. expected supplied
d with no Bot error
value displayed
3 Using laddcontr | Nothing As Pass N/A Not
comman | ibution happens. expected supplied

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

d with 1323£”1” | Bot error
incorrect | £-"£ displayed
character
s
4 Use as laddcontr | Bot will As Pass N/A Appendix
expected | ibution state that Expected H
without @Student | only
Supervis | 1#2774 supervisors
or Role Refactore | can use this
d Code - command.
10
lvotecont
Test.N | Action Input Exected Actual Test Test Screensho
o Result Output Result | Comments tin
Appendix
1 Using lvotecont Bot As Pass N/A Appendix |
comman | @Student creates expected
d 1--Added | vote
correctly | Python
script v2 --
14
2 Using lvotecont Nothing As Pass N/A Not
Comman happens. | expected supplied
d with no Bot error
value displayed
3 Using lvotecont Nothing As Pass N/A Not
comman | 213sadad happens. | expected supplied
d with Bot error
incorrect displayed
character
s
Imycontribution
Test.N | Action Input Exected Actual Test Test Screensho
o Result Output Result | Comments tin
Appendix
1 Using Imycontrib | Bot As Pass N/A Appendix J
comman | ution displays expected,
d embed
correctly with
personal
contributi
on
lgroupcontribution
Test.N | Action Input Exected Actual Test Test Screensho
o Result Output Result | Comments tin
Appendix

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

1 Using lgroupcont | Bot As Pass N/A Appendix
comman | ribution displays expected, K
d embed
correctly with
group
contributi
on
Contribution System
Test.N | Action Input Exected Actual Test Test Screensho
o Result Output Result | Comments tin
Appendix
1 Using Ireg Bot gives | As Pass N/A Not
comman | c1231233 rolesand | expected supplied
d Poppy confirms
correctly | Brown as
message
2 Using Ireg Bot As Pass N/A Not
Comman replies expected supplied
d with no with
value “Invalid
Input”
3 Using Ireg Bot As Pass N/A Not
comman | 2431ad121 | replies expected supplied
d with 2esd with
incorrect “Invalid
character Input”
s

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Overall Evaluation

| would argue that the bot works great compared to the initial design, in fact it has some extra
functionality that was not defined in the initial plan was added. However, there are also some small
features that were not implemented but were in the initial plan. The question voting system is one
of those features. | decided to cut the question voting system due to time constraints, | instead
spent this time on other more essential parts of the system, like the “!setup” command that was not
previously part of the initial plan . Furthermore, in the initial plan | wanted to implement some level
of natural language processing for profanity filtering, but in the end decided against this, as in all test
| did with natural language processing the system would either be too aggressive with removing
messages or not do anything at all. Natural Language processing is still in its early stages and putting
it into a system like this and it added unnecessary complexity for something that was not required
for the bot to function correctly.

Finally, | wanted to add a full logging system, that would log absolutely everything done
within the Discord server, | only implemented this partially. When developing, | became aware that
Discord already logs actions, therefore implanting this again through the bot would make no sense,
instead | implemented a logging system that would log the bots actions, something that the Discord
logging system did not do. Moreover, a logging system that would log absolutely everything done
within a sever may be arguably useless, it would be very cluttered and hard to read.

Discord APl Banning and Limiting.

In my initial plan and at the start of development | was not aware that APl banning or limiting was a
reality, but | quickly learnt what it was. The problem with Discord’s API Bans/Limits is that they lack
any documentation on what is considered “Too Much” or an “Acceptable amount” of API requests.
After being banned a few times, | decided to contact Discord, they informed me that the amount of
acceptable APl request can vary depending upon the Gateway your Bot is using, but as a general rule
1,000 request an hour was an acceptable amount- this was not true. After many more bans and
talking to others on forums it turns out that there is no consistency on how many APl requests you
can make. | implemented a wrapper around my code that counted the number of requests made, by
doing this | learnt how many APl requests were getting me banned. Some days 600 API requests
would get me banned; other days 1,400 API request would get me banned. This made it very difficult
to program a bot and not knowing how many API requests would get me banned, in the end | opted
for the solution to slow the APl request down so much that they would be well below 400 request an
hour. This in turn caused the issue of “Isetup” not being instant and instead take a large amount of
time, scaling with the amount of groups you wish to make. Moreover, this is the reason that
threading was removed for the final design.

Discord.py Rewrite

From August 23™ 2015 to April 8™ 2019 there was only one branch for the Discord.py API, meaning
that there is four years of Documentation for this branch, however April 8" 2019 marked the date
that the new Discord.py rewrite was launched bring more functionality. For my project, | opted to
use the new rewrite branch as it offered more functionality, the negative side to this is how there
was only 9 months from when the rewrite was launched to when | started my project, meaning in
that time no one online had really used the rewrite branch yet.

Outside of the Discord.py Official documentation, there is limited material out there using
the rewrite version of Discord.py, as such the learning process for how to use this new rewrite
branch was very difficult. Even the official documentation of the PyPl. 2020. Discord.Py. was very

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

vague, it does not clearly show what the API request do or what they will output. Moreover, | tried
to find Discord bots created by others, but for all the bots | found the source code for they were all
using the old Discord.py branch before the rewrite making them unless to help my understanding.
This affected the start of my project, | had to spend the first two months of the project teaching
myself this new Discord.py rewrite with limited examples online on how to use it, although in the
end | managed to fully complete the project, it did take valuable time away that could have been
spent adding error handling and fixing bugs within the current system.

Another Discord.py rewrite may happen again in the future and although Discord does
support these old Discord.py branches for a few years after the new rewrite it would mean that this
system is likely to be out of date within the next 5-10 years, in that time this bot may no longer have
any support and therefore no longer work. Additionally, If Discord were to ever end as a service,
then this code would no longer hold any value.

Future Possibilities

My understanding of Discord, the APl how a registration system might work and how a contribution
system might work has given my ideas and other features that could have been implemented but
were not part of my original plan.

There is a lot of room for improvement on this system, | would call this current system an
early proof of concept of how this system would work and be implemented. Things like the
registration system are not very user friendly, instead of using a direct message system with the bot
an online portal should be used to register instead.

At its current state, the bot is unable to scale to a large user base due to API limitations,
however | am aware that it is possible to have a huge user base. For example, Octave (bot.to.
2020. Octave - Bot.To.) is a music bot that is currently used in over 250,000 servers and they somehow avoid
Discord API bans. With more time and research it would be possible to create my bot in such a way that API
banning is prevented and the time.sleep() within the code could be removed along with reintroducing
threading. From what | have found, there does not seem to be an option for paying Discord for better API
request rates, but one solution that I did find is the idea of sharding (Dsharpplus.emzi0767.com. 2020) ,
where you split the bot of multiple gateways depending upon how many servers the bot is in. However,
documentation on how to implement something like sharding for Discord bots is very limited.

The Contribution system needs work too, right now you can view and add contributions but there is
no way to delete or edit the contributions made without an administer manually editing the .CSV files.
Moreover, while developing | realised that contribution isn’t just in the work or hours you do for the group,
but also the ideas and participation levels you have at meetings, therefore in the future it would be nice if this
contribution system could also record how many meetings people turn up to and record how much time they
spend in voice rooms or how many messages they send to record participation. Although arguable, this could
be exploited quite easily.

The bot is running through command prompt on windows, currently the bot does not reboot
or start on windows start-up. If this were to be deployed a system Administrator would have to
implement something that would restart the bot on request and after a specified amount of time.
Moreover, although this should work on Linux and Mac, some further testing would need to be done
to ensure that the bot does not run into issues and these operating systems.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Conclusion

To conclude, | am satisfied that the system | have developed provides a good proof of concept and
demonstrates a basic system for dealing with group contribution levels. Compared to the initial plan,
| completed most of what | stated | would, the features | did not complete were replaced with more
important parts of the system that | had not thought about during the initial plan. The system
records contributions, a registration feature, and some simple profanity filtering.

Some features are better implemented than others, the registration system is very robust
and from my testing has no bugs, whereas the contribution system has many bugs, when you
provide a command call that is not in the intended structure. What | have produced so far has
achieved what | was aiming for, a system that shows proof of concept.

The only major concerns | have about this system is how it would not be able to scale to a
large user base without some big changes to how the system works and how the code is structured.
In order to overcome these issues, | would have to learn an implement Technogies related to bot
sharding, where the bot is split over multiple gateways. Despite this, if you ignore the bugs, the
system would be sustainable for a small to medium size user base.

Personal Reflection on performance

This project has taught me a lot, especially how in the initial plan | did overestimate how much |
would be able to get done, although | completed almost everything mentioned in the initial plan, it
caused me to spend too many sleepless nights on this project. Additionally, if | were to do this
project again, | would be sure to do much more research. At the initial plan stage, | should have
already found out about the recent Discord.py Rewrite, then | could of adjusted my expectations and
intended features accordingly.

| also failed to apricate the complexity of what | stated in my initial plan, for instance, one of
my planned features was simply “Create a registration system”, at the time | had no idea what that
entailed and just assumed it would be easy. The registration system was complex as it was not just
the registration that had to be correct, but the structure and the permissions for the server too., if
Isetup did not exist then neither could the registration system. For future endeavours | will spend
more time thinking about features | purpose and just how complex some of these features may be
to implement.

From this project, | can say it has greatly improved my literacy with Python and | would feel
confident creating any bot for Discord- | now have a full understanding of the Discord.py API. For
future projects | will take more care in planning, in the initial plan | didn’t decide how the project
was going to be designed in terms of the methodology, a waterfall approach, iterative and so on.

Ethics

At the start of the project | did not fully understand how ethics would affect my project, my designed
changed due to ethics. At first, | did not understand the importance of ensuring data protection and
ensuring that | was not storing any personal information on someone that could be damaging. After
correspondence with the Ethics department | was able to increase my understanding of how my
design could be reshaped and fit the ethic guidelines. One of the ways | did this was when someone
joined the server, they get a direct message from the bot, within that message it contains ethics
information. | would argue that dealing with ethics did take away time | could have spent on creating
a more robust and feature rich system, but it was necessary.

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

How to Setup and run the bot

Here | will give a guide on how to get the bot running on your own server. | have added this at the
end of the report as | did not find it necessary in the main body of the report. For this setup | will
assume you are using Windows.

What you will need:

e Install Python 3.8.2 or higher: https://www.python.org/downloads/

e Install Discord.py 1.3.2. This can be installed by using "pip install discord.py" in command
prompt. You must install python before doing this.

e The code folder that was submitted with this report.

Step 0: Within the Discord application, create your own server. This can be done by pressing the
Green “+” within Discord.

Step 1: Go and use the developer portal to start an application for your bot:
https://discordapp.com/developers/applications

Step 2: After creation, you will need to invite the bot to you server. You can find this link in the
developer portal.

Step 3: In the code folder submitted with this report, open Main.py and at the very bottom of the
code you'll see: client.run("), between the “” you must put your Client key, again this can be found at
the Discord Developer Portal.

Step 4: Double Click Main.py to run it. If you want to see errors, call the file through command
prompt.

Step 5: If everything was done correctly, the bot will now be in your Discord server and be online.
Step 6: In the Discord server type “lhelp”, if the bot it working it will respond to this command.

You can go here for further help: https://discordpy.readthedocs.io/en/latest/discord.html

https://www.python.org/downloads/
https://discordpy.readthedocs.io/en/latest/discord.html

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

References

1.

2.

10.

bot.to. 2020. Octave - Bot.To. [online] Available at: <https://bot.to/bot/octave/> [Accessed 14
May 2020].

Discord. 2020. Discord — A New Way To Chat With Friends & Communities. [online]
Available at: <https://discord.com/> [Accessed 11 May 2020].

Discord Developer Portal. (2020). Discord Developer Portal — APl Docs for Bots and
Developers. [online] Available at: https://discordapp.com/developers/docs/intro [Accessed 1
Feb. 2020].

Discordpy.readthedocs.io. 2020. Creating A Bot Account — Discord.Py 1.4.0A
Documentation. [online] Available at: <https://discordpy.readthedocs.io/en/latest/discord.html>
[Accessed 14 May 2020].

Dsharpplus.emzi0767.com. 2020. Sharding - For When Your Bot Gets Huge. [online]
Available at: <https://dsharpplus.emzi0767.com/articles/sharding.html> [Accessed 14 May
2020].

Mee6.xyz. 2020. MEES6 - The Discord Bot. [online] Available at: <https://mee6.xyz/>
[Accessed 11 May 2020].

Microsoft.com. 2020. Chat, Meetings, Calling, Collaboration | Microsoft Teams. [online]
Available at: <https://www.microsoft.com/en-gb/microsoft-365/microsoft-teams/group-chat-
software?ef_id=CjOKCQjw-
_j1BRDkARIsAJcfmTGGi81CvCHhuMBL3jfzZ8R7_WFxQCpfxQYAP49LZzDylk2-
YoFdB7dQaAvqyEALw_wcB:G:s&0OCID=AID2000956_SEM_CjoKCQjw-
_j1BRDkARIsAJcfmTGGi81CvCHhuMBL3jfzZ8R7_WFxQCpfxQYAP49LZzDylk2-
YoFdB7dQaAvgyEALw_wcB:G:s> [Accessed 15 May 2020].

PyPI. 2020. Discord.Py. [online] Available at: <https://pypi.org/project/discord.py/> [Accessed
11 May 2020].

Skype.com. 2020. Skype | Communication Tool For Free Calls And Chat. [online] Available
at: <https://www.skype.com/en/> [Accessed 15 May 2020].

2020. Statbot. [online] Available at: <https://top.gg/bot/491769129318088714> [Accessed 11
May 2020].

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Appendix

A

Appendix A

Global Permissions.

| Display Role Seperatly
L |Allow @everyone to @ role
| Full Administrator

| View Audit Logs

" |Manage Server

} |Manage Roles
Manage Channels
Kick Members

1 |Ban Memebers
Create Invite

Change Nickname
Manage Nicknames

5 |Manage Emojis

16 |Manage Webhooks

m-‘la\m&wlml_.

w

=
EEIE]

|k
R

17 |Read Text and See voice Channels

18 |Send Message

19 |Send TTS

20 |Manage Messages
21 |Embed Links

22 |Attach Files

23 |Read Message Histary
24 |Everyone Mentions
25 |External Emajis

26 |Add Reactions

27 |Connect

28 |Speak

29 |Mute Members

30 |Deafan

31 | Move Members

32 |Use Voice Activity

33 | Priority Speaker

34 |Golive (Screenshare).

36 | Category Permissions
37 |Display Role Seperatly
38 Allow @everyone to @ role
39 |Full Administrator

40 |View Audit Logs

41 |Manage Server

42 |Manage Roles

43 |Manage Channels

44 |Kick Members

45 |Ban Memebers

46 |Create Invite

47 |Change Nickname
48 |Manage Nicknames

Student Lecturer Adminstrator

Enabled

Disabled

Perms Hierarchy
Indivudal Room
Global

49 |Manage Emojis
50 |Manage Webhooks

51 |Read Text and See voice Channels

52 |Send Message

53 [Send TTS

54 |Manage Messages
55 |Embed Links

56 |Attach Files

57 |Read Message History
58 |Everyone Mentions
59 |External Emojis

60 |Add Reactions

61 |Connect

62 |Speak

63 |Mute Members

64 |Deafan

65 |Move Members

66 |Use Voice Activity
&7 |Priority Speaker

68 |Golive (Screenshare).

Figure 19: Breakdown of permissions

Takes Global Permission

Overides
Default

*Can stil see own group

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein
Appendix B
Indvidual Project > Bot Dev * contribution_records

Name Date modified Type

’n 230784196518346755.csv 13/05/2020 06:23 Microsoft Excel C...
’n 706632901118263298.csv 13/05/2020 09:31 Microsoft Excel C...

’n 708906437858033736.csv 13/05/2020 06:23 Microsoft Excel C...

on_record

Project

Figure 20: Student Contribution Record Naming

A B C
Created Python script for project 13/05/2020 09:31 4
Refactored code 13/05/2020 09:31 10

1
2
3
4
2
6

Figure 21: Structure of Contribution Records

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Appendix C

message. content. lower() [@! mycontributiong®B

hourscounter

my_id - message.author.id
filename - "contribution_records\\":str(my_id)+".csv"
embed discord.Embed(e=5 message.author)+"'s Personal Report",descr ion "Here are your contributions so far",color
open(filename, 'r') myfilefinder:
items myfilefinder:
items - items.rstrip()
items

items - items 1655)

embed.add_field(name-items[1], value-items[@8]+" **Hours Spent:** "+items[2] , inline
hourscounter (items[2])
message.channel.send(e embed)
message.channel.s Total Time Contributed: **"istr(hourscounter):"** Hours*")
FileNotFoundError:
message.channel You have no contributions yet)

Figure 22: My contribution Code

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Appendix D
Individual Project Testing general

general EAR -2
how-to-join-group

commands

group-overview FAR -3

Kie
!setup 4

Group Monitor 881

Setup complete!

Optional
f nt Sy

step 2 Change the o

This is so that | cannot 7 e the example of t should look below.

Figure 23: Test for Isetup 4

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

[&+] Command Prompt - main.py

. 1otvour

Yo Py
Supports Pyth

_event
await corof
File "C:\

Kie

#2207

Appendix E

voice will NOT be suppor
n
discord

Figure 24: Test for Isetup

py", line 3

12

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Individual Project Testing v general

general
how-to-join-group

commands

Kie
Isetup 4

This will ta

Setup complete!

Optional

u want S
step 1 Go t
step 2C
This

Kie
Isetup !!I"£

Appendix F

Stay connected to your server from

or on the go.

or on Twitter

Figure 25: Test for Isetup !I”£

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Appendix G

Individual Project Testing v group-text

haw-ta-inin-erann

Bot Dev * contributiol

> will NOT be

ontribution t 1 Refactored Code -10

Group Monitor (581
sfully Added contribution

Figure 26: Test for laddcontribution @Student 1 Refactored Code -10

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Appendix H

[¢+]Command Prompt - main.py

C:\Users\Kiera\Documents\Indvidual Project\Bot Dev>
C:\Users\Kiera\Documents\Indvidual Project\Bot Dev>
C:\Users\Kiera\Documents\Indvidual Project

:\Users\Kiera\Documents\Indvidual Project\Bot Dev>main.py

our Discord.py Versio

upports Discord.py 1.3.2

our Python ve on 3.8.2 (tags/v3.8.2:7b3ab59, Feb 25 2 :45:29) [MSC v.1916 32 bit (Intel)]
upports Python 3.8.

Logging Info
WARNING:discord.client:PyNaCl is not installed, voice will NOT be supported
:discord.client:logging in using static token
:discord.gateway:Created websocket connected to wss://gateway.discord.gg?encoding=json&v=6&compress=z1ib-stream
:discord.gateway:Shard ID None has sent the IDENTIFY payload.
0:discord.gateway:Shard ID None has connected to Gateway: ["gateway-prd-main-1bzv",{"micros":37842,"calls":["discord-
sessions-prd-1-68",{"micros":34180,"calls":["start_session",{"micros":31915,"calls":["api-prd-main-us-eastl-ct5k",{"micr
s":27527,"calls":["get_user"”,{"micros":2270},"add_authorized_ip",{"micros":1622},"get_guilds",{"micros":1451},"coros_wa
",{"micro 1}1}1}, "guilds_connect”,{"micros":2,"calls":[]}, "presence_connect",{"micros":591,"calls":[]}]1}]1}] (Session
9cd6cfc8472e8fa64128680469348a%€) .
End of Logging Info

=13

We have logged in as Group Monitor#9421

& Ko
—

laddcontribution tud Refactored Code -10

Group Monitor
Only Supervisors can use this command

Figure 27: laddcontribution @Student 1 Refactored Code -10 without Supervisor Perm

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Appendix |

m Individual Project Testing v group-text

wnal ~nntribitinn
e~ Command Prompt - main.py
how-to-join-group
t Dev>

Bot De

group-text

ing Info
ord.client:Py sta oice will N

ord.client:

lvotecont -- Added Python script v2 -- 14

Group Monitor 868
Vote on ‘s contribution
Added Python script v2 --14 Hours

&

Figure 28: Test for lvotecont @Student 1 -- Added Python script v2 — 14

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Appendix J

group-text

Imycontribution

Q Group Monitor 80T

Kie#2207's Personal Report

Total Time Contributed: 34 Hours

Figure 29: Test for Imycontribution

Author: Kieran Parnell 1613910
Supervisor: Frank C Langbein

Appendix K

Individual Project Testing v group-text

!groupcontribution [c~] Command Prompt - main.py

Create Invite

o Q Group Monitor B5%

Group 1's Report FO: ord.gatew
ding=j

Here is the overall 1p contribution so far! 7 ‘
rd.ga

Refactored Code Hours Spent: 1

Python Script Hours Spent:

Wrote a story Hours Spen

Python Script 1.0 Hours Spent: 2

We havi) Monit
ed to file: contribution_rec
ided to file: contribution_rec <
Group T's Overall Hours Added to file: contribution_recorc 419651

Here are the total hours for each student fddedsto:file: i contribution : 22901

Total Hours: 34

Total Hours: 2

These users have not yet contributed

No Contribution

No Contribution

Figure 30: Test for Igroupcontribution

