
Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Individual Project – Using bots to expand the

functionality of Discord

Table of Contents
Introduction .. 4

Background ... 5

Why Discord? .. 5

Discord.py/PyPI ... 6

Default Python Packages ... 6

Other bots that try to solve a similar problem.. 6

2020. Statbot. .. 6

Mee6.xyz. 2020 ... 6

Code used by others .. 6

Summary ... 7

Design Implementation ... 8

Overview ... 8

Features Implemented .. 8

!setup (Initial Setup Command) ... 9

Code Breakdown .. 11

Implementation Issues ... 12

Evaluation .. 12

Registration System ... 13

Code breakdown .. 15

Implementation Issues ... 15

Evaluation .. 15

Contribution System .. 17

!addcontribution .. 17

!votecont ... 17

!mycontribution ... 18

!groupcontribution .. 19

Code Breakdown .. 20

Implementation Issues ... 21

Evaluation .. 21

Profanity Filtering .. 21

Implementation Issues ... 22

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Evaluation .. 22

Secondary Features ... 22

Code Breakdown ... 23

!del .. 23

Error Handling ... 24

How the design changed.. 24

Code Refactor .. 24

Test Cases ... 25

!setup Testing .. 25

!addcontribution ... 25

!votecont ... 26

!mycontribution .. 26

!groupcontribution .. 26

Contribution System .. 27

Overall Evaluation ... 28

Discord API Banning and Limiting. .. 28

Discord.py Rewrite .. 28

Future Possibilities .. 29

Conclusion ... 30

Personal Reflection on performance .. 30

Ethics... 30

How to Setup and run the bot ... 31

References .. 32

Appendix ... 33

Appendix A .. 33

Appendix B .. 34

Appendix C .. 35

Appendix D .. 36

Appendix E .. 37

Appendix F .. 38

Appendix G .. 39

Appendix H .. 40

Appendix I ... 41

Appendix J ... 42

Appendix K .. 43

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Figure 1: Screenshot showing Discord's Layout .. 4

Figure 2: Newly Created Discord Server ... 9

Figure 3: Discord Layout after !setup 4 (Admin Perspective) .. 10

Figure 4: Discord Layout after !setup 4 (Student Perspective) .. 10

Figure 5: Code segment which creates channels. ... 11

Figure 6: Shows how to edit permissions ... 12

Figure 7: Welcome DM by Bot ... 13

Figure 8: Student Registering with System ... 13

Figure 9: Registered_Students.csv ... 14

Figure 10: Code for Registration System .. 15

Figure 11: Using !addcontribution ... 17

Figure 12: Using !votecont command .. 17

Figure 13: Shows !myconribution command .. 18

Figure 14: Embed showing !groupcontribution .. 19

Figure 15: On reaction event code ... 20

Figure 16: Group Contribution Code .. 20

Figure 17: Profanity Filter .. 22

Figure 18: Code for !del ... 23

Figure 19: Breakdown of permissions .. 33

Figure 20: Student Contribution Record Naming .. 34

Figure 21: Structure of Contribution Records ... 34

Figure 22: My contribution Code ... 35

Figure 23: Test for !setup 4 .. 36

Figure 24: Test for !setup... 37

Figuƌe Ϯϱ: Test foƌ !setup !!͟£ .. 38

Figure 26: Test for !addcontribution @Student 1 Refactored Code -10 .. 39

Figure 27: !addcontribution @Student 1 Refactored Code -10 without Supervisor Perm 40

Figure 28: Test for !votecont @Student 1 -- Added Python script v2 – 14... 41

Figure 29: Test for !mycontribution ... 42

Figure 30: Test for !groupcontribution ... 43

file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437575
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437576
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437577
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437578
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437579
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437580
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437581
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437582
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437583
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437584
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437585
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437586
file:///C:/Users/Kiera/Documents/Indvidual%20Project/Report_c1613910.docx%23_Toc40437591

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Before the report, I just wanted to point out that I have a visual impairment. Most of the time the

screen is 300-400% scaled, therefore formatting of a large document like this can be an issue. I

apologise in advance if the formatting is slightly off.

Introduction
The main aim of the project was to create a system that would help with group monitoring- where

student contributions were recorded, and reports could be automatically produced. Some other

aims were to introduce some profanity filtering, automated setup of the system and an automated

permission system along with a login system to complement this. My aim from the initial plan was to

create this system by taking advantage of Discord (2020) and their API (Discord Developer Portal.

(2020)).

For this report, I will assume that the reader has some understanding of what Discord is and

a working knowledge of Python, Programming Technogies and a general level of knowledge for

creating systems.

Discord provides a way for users to collaborate and communicate, like Skype (Skype.com. 2020.) or

Microsoft Teams (Microsoft.com. 2020.), but offers far greater functionality. Discord uses a server

system, where anyone can create a server and customise it, these servers can currently support

250,000 people per server. These servers have two different channel types, Text Channels and Voice

Channels.

Here is the general layout of a Discord Server:

Furthermore, Discord also allows for Bots, which provides extra functionality and allows users to

take advantage of the API provided by Discord. As such, we can code these Bots to monitor student

participation , to read messages to check for profanity and to create a login system via the bot,

where until you have logged iŶ Ǉou ǁoŶ’t get peƌŵissioŶs foƌ that DisĐoƌd seƌǀeƌ.

Intended Features

• Implement Monitoring of Group work.

• Simple natural language processing.

Members

within Server

Various

Channels

within Server

The different

servers you

are part of.

(You can click

to navigate to

one)

Figure 1: Screenshot showing Discord's Layout

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

• Registration system for someone to join the Discord server, ensuring they are a verified

student.

• Automated permission system

• Logging of contribution system actions.

This project had many different features that needed to be designed and implemented, as such I

decided I would work and create them in an agile approach. Where, for each feature, I would focus

solely on that single feature, design it, implement it, test it, and then move onto the next desired

feature.

For this project, there are a significant amount of assumptions made. Firstly, because we are

using an API it is assumed that the API would not have some major rewrite or updates that would

daŵage/ďƌeak the sǇsteŵ that I’ǀe Đƌeated- moreover, this would also assume if this project were

be deployed some level of maintenance would need to occur to ensure that the code was at least at

the minimum supported level for the current API. Secondly, we are assuming that the Discord

Service and API itself is stable enough to have a system like this run- if the API were to break, or the

service go offline then this system would not function at any capacity. Moreover, the Discord API

deals with personal data, as such we are assuming that the API is secure enough to protect users

information, however there is no real way of me confirming this as they do not present the source

code for the API or have any documentation on how the backend of Discord works.

To summarise, the outcome of this project is to have a system which will assist group

monitoring, by recording participation levels, ensuring profanity is not used and have an elegant

solution for student registration and automatically control their permissions within the Discord

server. The aim was to achieve this by using the Discord API and Python.

Background
As mentioned previously, I will be using Python to manipulate the API for Discord. Here I will go

through the background and some of the Technogies I have used/explored for this project. I’d also
like to point out that before this project I had no experience with the Discord API.

Why Discord?

At first, I explored services like Skype, which would offer the communication side of what my project

aim needed but provided none of the features I was looking for, Group monitoring, profanity

filtering and a registration system for students.

Microsoft Teams was also another option, it too allows for bots and has an API, however,

after further research it seemed that the API for Microsoft Teams was more based around

Conversational Bots or bots that would automate tasks like graph creation. In comparison to

DisĐoƌd’s API, the MiĐƌosoft Teaŵs API ǁas aƌguaďlǇ ŵoƌe ƌestƌiĐtiǀe aŶd ǁould alloǁ foƌ less
functionality. I found that Microsoft Teams was intended to be a Chat-based workspace that

included the Microsoft Software Suite, it targets more towards collaboration and project

development. Microsoft Teams is very similar to Slack in terms of what their target demographic is.

Discord has established itself as an all-in-one solution for collaboration no matter the area,

from University work, to gaming. Discord provides a vast array of features that accommodate for all,

it allows one-to-one or group voice calls, screen sharing/video calls for up to 50 people at once, text

and voice channels, a very open API that would hugely extend functionality, most importantly,

Discord allowed for bots to control permissions for servers.

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Discord.py/PyPI
PyPI (2020.) or Discord.py is an API wrapper for Discord, that aims to make it easier to communicate

with the Discord API. It uses async and await and is updated on a regular basis. Using PyPI makes it

quick and easy to start communicating to the API using Python, it allowed me to focus on the

implementation of system and learn the API structure, rather than having to deal with the way in which

the API and Python would communicate to each other.

Discord.py also includes a module for logging, this logging module records errors reported by

the API. The module would provide information regarding API limiting/bans and some errors that

would occur when interfacing with the API.

Default Python Packages

For the project I used a vast array of packages that are built into python by default, from datetime

packages to .CSV handling packages.

Other bots that try to solve a similar problem

From research, there are Discord bots out there that have similar features to the bot I have

designed. However, all these bots are written on the old Discord.py Branch (I will go into the

Discord.py Rewrite later). This meant that a lot of the code for these bots would not assist me in the

understanding of the API. Furthermore, from my research it seemed that although there were other

bots that would provide one feature that was in my desired features for a bot, I could not find a bot

that had all the desired features that my bot would have.

2020. Statbot.

2020. Statbot is an activity tracking bot for Discord, using the old Discord.py branch it provides

statistics on users, showing how many messages they have contributed, time in voice rooms and a

leader board showing who has the most activity. Although for my project I would not be simply be

counting the messages and time spent in voice rooms and instead using a voting system to decide

who contributed what, it gave me an idea of what API requests could be accepted, even though it

was written on the old Discord.py branch.

Mee6.xyz. 2020

Mee6.xyz. (2020) is a Multifunction bot, providing many features, most notable for my project

though was the profanity filtering. Again, although it was written on the old Discord.py branch it

gave me some idea of how to approach profanity filtering when dealing with Discord. Looking at

large-scale bots like Mee6 may hold some ideas on how to deal with upscaling a bot to a large user

base.

Code used by others

The only code that I am using that is created by others are the Python packages mentioned

previously. The bot I created, including all the various functions is original code created by me. It was

quite difficult to find any code by others as I was using the new Discord.py rewrite, where all other

bots were using the old Discord.py branch. The only time I used code by others was to get an

understanding of how the API worked, I would take the old branch of code and then spend the time

converting it to the new branch, this gave me an idea of the structure, but I decided not to use this

code in my bot as doing the conversion myself did make the code very messy and hard to

understand from an outsiders perspective.

 In the coming years more development using the latest API rewrite may occur and as a result

more code using the rewrite available online, but right now, it seems that I am one of a few people

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

developing bots on the Discord.py rewrite and furthermore, the only one who has created a

Discord.py bot to serve the purpose of a contribution system for students.

Summary

To summarise, Discord was chosen because of its feature rich environment and how it has a very

open API which allows for many possibilities. When looking at what others have done to solve a

similar problem, one thing became clear, that although there were solutions for activity tracking, or

profanity filtering, there was not one bot that did them all. Moreover, from all the research I did I, I

did not find a bot that had a student registration system like I intended.

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Design Implementation
For this project, there are several features that have been implemented, as such, I will break down

each major feature and explain the important parts of the code for each.

Overview

The implemented system includes a registration system that will allow the user to log into the server

and then be given the respective roles within the server. It has a contribution system, where student

contributions are recorded and are presented in neat reports, showing information on hours spent

per contribution, total hours, and the date/time the contribution was made. Moreover,

contributions can be made either by students, where student must vote on a contribution within

their group in order to get it approved, or Supervisors can manually push through a contribution for

a studeŶt ǁithout the Ŷeed of a ǀote. BeĐause DisĐoƌd doesŶ’t haǀe this ĐoŶtƌiďutioŶ sǇsteŵ ďǇ
default, DisĐoƌd does Ŷot haǀe a log of ĐoŶtƌiďutioŶs, theƌefoƌe I’ǀe iŵpleŵeŶted a siŵple loggiŶg
system which records what supervisor pushed through what contribution, this is more of a proof of

concept and is not fully implemented. Finally, a profanity filter was added, where the bot takes in a

.txt file containing blacklisted words, if any of these words are used within the server a Supervisor is

notified of a possible infraction being made within the server.

For all the below implemented commands and features you can control the bot through the

public text rooms, unless advised otherwise. I opted to use a command structure as using a system

that used Natural Language processing is very difficult and most implementation of Natural

Language Processing just do not work well enough for a system like this.

Features Implemented

For each feature/command I will provide an explanation of what it does, then if that future has any

important code snippets. Following this I will talk about issues I had implementing this feature and

then finally the evaluation of that feature. I will have a completely different section for testing as I

believe this will be the easiest way to explain the functionality of the entire system. I have moved

from the original structure because the nature of Discord is very visual and difficult for new users,

therefore I have had to provide many screenshots showing how the system works.

How this section is structured:

- Feature/System

o Description of Feature/System.

o Snippet of any important/ noteworthy code.

o Evaluation

*I repeat this structure for each Feature/System. Testing is a different section of the report.

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

!setup (Initial Setup Command)

In Discord, when you create a Server, you must set up the rooms manually, this including all the

desired permissions, the role hierarchy, and the permissions for each group. This can take serval

houƌs to ĐoŶfiguƌe aŶd uŶdeƌstaŶd, as suĐh I’ǀe Đƌeate a setup feature that allows the bot to do all

this for you, removing the issue of human error and the need to understand the full permission

system of Discord.

Here is what a newly created Discord Server looks like:

As you can see in Figure 2 theƌe is oŶlǇ oŶe teǆt ƌooŵ ͞geŶeƌal͟ aŶd theƌe aƌe Ŷo ǀoiĐe ƌooŵs. This is
where normally you would have to spend the time creating and setting the permissions for each

room and permission groups for users. BǇ usiŶg ŵǇ ďot, Ǉou ĐaŶ eŶteƌ ͞!setup ϰ͟. ͞!setup͟ is the
ĐoŵŵaŶd, the ͞ϰ͟ is the aŵouŶt of gƌoups Ǉou ǁish theƌe to ďe. If Ǉou would like there to be 12

gƌoups, Ǉou ǁould use ͞!setup ϭϮ͟. This deals with creating all the groups, managing the permission

and creates the permission groups for you. It makes the setup process very quick compared to

someone who is brand new to Discord and has no understanding of how to configure Discord. Below

is Figure 3 that shoǁs ǁhat DisĐoƌd looks like afteƌ usiŶg ͞!setup ϰ͟.

Figure 2: Newly Created Discord Server

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

On the left-hand side of Figure 3 you can see all the rooms that have been created. By using the

command, the bot creates all the Desired group areas, dealt with the permissions, and also provided

some extra details on how to customise the server. Moreover, it created tǁo uŶiƋue ƌooŵs ͞Hoǁ-

to-Join-gƌoup͟ ǁhiĐh pƌoǀides iŶfoƌŵatioŶ oŶ hoǁ to ƌegisteƌ ǁith the ďot. The second unique room

is ͞ĐoŵŵaŶds͟, ǁhiĐh pƌoǀides a full list of ĐoŵŵaŶds that the ďot ǁill ƌespoŶd to.

Figure 3 is taken from the Administrator view, which allows you to see the entirety of the system.

Fƌoŵ the studeŶt’s peƌspeĐtiǀe, theǇ ǁould oŶlǇ ďe aďle to see theiƌ ƌespeĐtiǀe gƌoup aƌea. This is
achieved with a complex permission system that I implemented into the bot; I will go over this in

greater detail later.

Figure 4 Shows the view from the students perspective, as you can see they are only able to see their

own group area, they do not have access to view or type in the Group 2, 3 or 4 area as seen in Figure

3.

Figure 3: Discord Layout after !setup 4 (Admin Perspective)

Figure 4: Discord Layout after !setup 4 (Student Perspective)

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Code Breakdown

Figure 5 is a segment of code that creates the text channels, voice channels and the Category for

each of the groups. This is just how the channels are created, this is not the code that modifies the

permissions. The While loop will loop until the Counter is equal to the requested number of groups. I

am usiŶg this segŵeŶt of Đode to shoǁ the API ƌeƋuests, eaĐh ͞aǁait͟ seeŶ iŶ Figure 5 is an API

request.

On line 257 in Figure 5 is code that deals with the progress bar, this is just shown in the

command prompt where the bot is running to show the Administrator that the bot is still doing

work. This is important as on the last line in Figure 5 is time.sleep(10), this was implemented as the

bot was sending too many API requests and resulting in an API ban. As such, implementing a

progress bar for the Administrator to see was necessary, it shows when the system is sleeping to

avoid the API banning.

Figure 5: Code segment which creates channels.

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Implementation Issues

There were a few problems with implementing this !setup command, firstly is how !setup requires a

huge amount of API requests, which meant adding time.sleep(10) throughout the setup code to

prevent bans. For the !setup command it takes (13+9*Amount of Desired groups) API requests,

therefore if I wanted to create 15 groups, it would be 13 + 9 * 15 = 148 API requests. These 148

requests would be made within seconds without the time.sleep() and result in an instant API ban.

A secondary issue was how the API was written; it was counter-intuitive when dealing with

editing permissions.

In Figure 6 permissions are edited, the issue is that most permissions are edited in this format:

student_permissions.embed_links = True

However, permissions Mentionable (Allows others to @Mention that role) and Hoist

(Displays the role separately from others) are edited in a different way:

await L_role_name.edit(hoist=True, mentionable = True)

This caused a lot of confusion during implementation and took many hours for me to

understand why the API was not responding when I was trying to edit Hoist and Mention

Permissions using the other format. In my opinion, these permission for the API were created by

different people and rather than ensure consistency they decided to implement them in this way.

Evaluation

IŶ the iŶitial plaŶ, theƌe ǁas Ŷo ŵeŶtioŶ of haǀiŶg a ĐoŵŵaŶd like ͞!setup͟ this ǁas aŶ oǀeƌsight, at
the planning stage; I neglected how complex Discord was in terms of its permissions and structure,

as suĐh ǁheŶ I ƌealised this duƌiŶg iŵpleŵeŶtatioŶ I deĐided to iŵpleŵeŶt this ͞!setup͟ ĐoŵŵaŶd,
the idea being that it takes control out of the Administrators hands, reducing the opportunity for

human error. Moreover, through development it became clear that the initial setup of the Discord

server would be essential to how the rest of the system would work.

The ͞!setup͟ ĐoŵŵaŶd does haǀe soŵe issues, like hoǁ iŶteŶsiǀe it is oŶ the API, it ďy far

makes the most API requests out of all the created commands and did cause me to get API banned

on various occasions. As mentioned previously, I implemented time.sleep() throughout the code, to

slow down the rate that API requests made. From a time staŶdpoiŶt, this isŶ’t ideal. If tiŵe.sleep;Ϳ
ǁasŶ’t used the iŶitial setup it would take a matter of seconds, but then resulted in an API ban.

Figure 6: Shows how to edit permissions

How most

permissions are

edited.

How Hoist and

Mentionable

Permissions are

edited.

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Whereas now, the system will take minutes to finish the setup, this varies depending upon the

number of groups you wish to make. If you wish to create 20 groups, then the system would take

approximately 20 minutes to finish the initial setup.

I ďelieǀe iŵpleŵeŶtiŶg ͞!setup͟ ǁas esseŶtial to eŶsuƌing the smooth running of the bot for other

commands, although it does take time to run, it would still take much longer for someone to

manually setup the server themselves and understand how Discord permissions and structure

works.

Registration System

As mentioned previously in the !setup section, I showed how groups were only able to interact with

their own group and are unable to see other groups. In order to achieve this, I needed to implement

a registration system, where people would login and then be given their respective group role within

the Discord server.

When a Student joins the server, they are sent this DM by the bot:

Figure 7 shows the DM that a student would receive when they join the server, it provides

information oŶ hoǁ to ƌegisteƌ. IŶ this eǆaŵple, the studeŶts Ŷaŵe is ͞“tudeŶt ϭ͟, theƌefoƌe to logiŶ
in they would use !reg StudentNumber Student 1. This would then log them into the system, see

below for an example:

In Figure 8, Student 1 has registered and the bot has therefore given the respective role to the

Figure 7: Welcome DM by Bot

Figure 8: Student Registering with System

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

student ǁithiŶ the seƌǀeƌ, iŶ this Đase theǇ haǀe ďeeŶ giǀeŶ the ͞Gƌoup ϯ͟ ƌole. The registration

system works by comparing what the bot is messaged and what is stored within the .CSV, in this case

it is the Student name and their student ID. I am aware that there is no password, but for simplicity I

kept it as the student number. You could simply switch the student number for a password if desired

in the .CSV. The .C“V is Ŷaŵed ͞Registered_Students.Đsǀ͟.

Figure 9 is how the .CSV is structured. You can see that all the system does is compare the message

content sent by the student with the contents of the .CSV. The bot knows what role to give the

studeŶt ďǇ lookiŶg at the ͞Gƌoup ID͟ ǁithiŶ the .C“V, ͞!ϯ͟ ǁould iŶdiĐate the ďot to giǀe the ͞Gƌoup
3 ͞peƌŵissioŶ.

Supervisors can also log into the system, they log in the exact same way as students do (As

shoǁŶ aďoǀeͿ ďut iŶstead of the ďot giǀiŶg a gƌoup ƌole, theǇ aƌe giǀeŶ ͞“upeƌǀisoƌ͟. The ďot kŶoǁs
to do this by lookiŶg at the .C“V, iŶstead of ͞!ϯ͟ it ĐoŶtaiŶs ͞!le͟, ǁhiĐh is used to iŶdiĐate that this
person is part of the supervisor role. Within Discord, the supervisor is given higher permissions over

students. Please see Appendix A for a breakdown of permissions.

Although Supervisors roles and Student group roles can be given through this registration system, I

decided not to make it possible for someone to login in as Administrator. Instead, the Administrator

that initially created the server is the only person who can give others Admin. This was because of

Security concerns, as anyone with Admin would be able to completely delete the server if they

wished.

Additionally, this is all done in a direct message conversation with a bot for security. The permissions

are set up in such a way that a Student is unable to type in the Server until they have registered with

the bot, thus preventing the student from accidently trying to log in through a public text room

within the server.

Figure 9: Registered_Students.csv

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Code breakdown

In Figure 10 line 427 – 436 deals with formatting of the user input to get it ready to compare to the

.CSV file. Then line 442-446 will give a role depending upon what is found in the ID field, in this code

segment it deals with giving roles to supervisors.

Implementation Issues

There were no major implementation issues when creating this system, the biggest concern was

security. Like mentioned before, I have made it so that it is not possible for users to log in via a

public room, however, what is uncertain is how secure the Discord API is. Maybe dealing with

student ID is not a great idea and instead I should implement a system where students are given an

encrypted student ID and then once the bot receives that ID it has the key to see the actual student

ID, this avoiding the concern of the student ID being leaked from the API.

Evaluation

In the initial plan I mentioned that I would like a registration system like the one implemented, but

again I failed to apricate the complexity and importance that this was done correctly in my initial

plan. The registration system easily took the most time to implement, I had to fully understand how

Discord worked, pre-plan who had what permission and ensure there were minimal bugs. The

registration system assigns roles in the Discord server, as such, these roles would control what a user

could do and what they could see within the server. Moreover, this registration system is used for

both Students and Supervisors, so ensuring that the correct roles were given were essential.

Admittedly, this registration system is functional but it is not pretty, a solution to this would

be to use some sort of web dashboard that a user is given in order to register, rather than doing it

through Bot direct messages. From a code perspective, the registration system could become

computational complex if the user base were to grow. For example, if there were 100,000 students,

the registration system would take time to respond and give the correct role. This is because of the

way I implemented the system, it works by searching through all of the people in the

registered_student.csv, if there were 100,000 entries in this .CSV then it would take some time to

Figure 10: Code for Registration System

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

find the user. If this bot were to be deployed to a scale this large using something other than a .CSV

would be necessary.

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Contribution System

I have implemented a contribution system, where students can add their own contributions that will

then be recorded by the bot and presented in reports. Supervisors can push a contribution through

for a student if they deem it necessary, but if a student wants to add a contribution then a vote is

held by the bot. For testing reasons, the vote is set to four people or higher must agree with the

contribution, but this could easily be changed to a percentage-based agreement rather than four

votes.

!addcontribution

͞!addĐoŶtƌiďutioŶ͟ is ǁhat “upeƌǀisoƌs use to ŵaŶuallǇ add a ĐoŶtƌiďutioŶ ďǇ a “tudeŶt, it does Ŷot
require a vote and will be added immediately. If a Student were to try and use this command the bot

will inform them that only Supervisors can use this command.

In Figure 11 you can see how the command is used, it must follow the structure of:

͞!addĐoŶtriďutioŶ @MeŶtioŶ“tudeŶt WorkDoŶe -Hours“peŶtOŶWork͟

AssuŵiŶg the sǇŶtaǆ is ĐoƌƌeĐt, aŶd the ďot ƌeplies ǁith ͞“uĐĐessfullǇ Added CoŶtƌiďutioŶ͟
then this contribution will be added. Contributions are stored in separate .CSV files for each

student, the name of the .CSV is the students unique Discord ID that is linked to their Discord

account, all these files aƌe stoƌed iŶ the foldeƌ ͞contribution_records͟;“ee Appendix B for an

example).

!votecont

͞!ǀoteĐoŶt͟ is ǁhat studeŶts ǁill use if theǇ ǁish to add a ĐoŶtƌiďutioŶ, It must be done via this

voting command- this vote can either be for themselves or another student.

Figure 12 shows how the voting works for students. Firstly, the student uses the command to create

a vote. The vote is then created by the bot. The voting is done by using a yellow thumbs up button,

ass seen above. Once this has reached at least 4 votes, the vote is considered passed and the

contribution is then added to the respective .CSV. If the vote is not passed, then the contribution is

not added.

Figure 11: Using !addcontribution

The work they did.

Houƌs speŶt oŶ ǁoƌk. ͞-ϭϬ͟
DoesŶ’t ŵeaŶ Negatiǀe ϭϬ
houƌs, ͞-͞ is used foƌ
formatting for the bot.

Figure 12: Using !votecont command

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

!mycontribution

This will show the students personal contributions so far.

Figure 13: Shows !myconribution command

Figure 13 shows the personal report for a student, this personal report will only show the

contributions for the person who typed the command. As you can see in the above figure, the

embed shows the date that each contribution was made, the actual contribution made, and the time

spent on that contribution. After the embed, the total amount of time contributed over all

contributions is displayed.

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

!groupcontribution

UŶlike ͞!ŵǇĐoŶtƌiďutioŶ͟, ͞!groupcontribution͟ will post two embeds or three in the situation that

someone in the group has not contributed at all. The first embed will detail all the contributions

made to the group including the hours for each contribution and who it was contributed by. The

second embed displays the total contribution time for each student. Finally, the third embed

displays any students that have not contributed for that group, in the case all students have

contributed, embed three will not be posted.

Figure 14: Embed showing !groupcontribution

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Code Breakdown

͞!ǀoteĐoŶt͟ fƌoŵ a Đode staŶdpoiŶt oŶlǇ Đƌeates aŶ eŵďed ŵessage, seŶds it aŶd adds a thuŵďs up
reaction. However, the real technicality starts when someone presses the thumbs up on the embed:

Figure 15: On reaction event code

Due to API limitations I had to come up with a method that was not going to cause too many request

to be made, originally I was going to code it so that every few seconds it would retrieve the message

and see how many reaction were on it. Instead, I managed to create a system which used an

͞@ĐlieŶt.eǀeŶt͟ ǁheƌe if a Ŷeǁ ƌeaĐtioŶ ǁas added, it ǁould ƌetƌieǀe the ŵessage ǁith the ŶeǁlǇ
added reaction, check it is the correct reaction and check if the reaction count was greater than

three.

Figure 16: Group Contribution Code

For Figure 16 there is quite a bit going on, I will break it down loop-by-loop:

Loop on Line 594 – This loops through all people within the same server as the person who used the

͞!gƌoupĐoŶtƌiďutioŶ͟ ĐoŵŵaŶd.

Loop on Line 597- Then for each member within that server, loop through the roles that they have

associated with them.

If Line 599 – If the fouŶd peƌsoŶ is iŶ the saŵe gƌoup as the peƌsoŶ ǁho used ͞!gƌoupĐoŶtƌiďutioŶ͟.
(This ensures that only people from the same group are presented in the report).

Line 603 -> 612 It will Try to open the contribution files for each student within that group, if an

error is returned with not being able to find the file, then this indicates that the user has no

contributions yet. ͞if iteŵs == "":͟ on line 607 was used to deal with how each entry in the .CSV has a

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

blanks liŶe ďefoƌe it, this happeŶs ďeĐause of hoǁ PǇthoŶ deals ǁith appeŶdiŶg to .C“V’s. ͞if iteŵs
== "":͟ meant that that loop would do nothing and therefore not add an empty entry to the report.

Line 610->612 Adds the student contribution information to the embed and counts uses a counter to

count up the number of hours for the total contributed hours.

The code for ͞!mycontribution͟ is simpler as you only have to find the information for the message

author, as such the file for the author is loaded and added to the embed. See Appendix C for this

code snippet.

Implementation Issues

Although there were no major issues with implementing the contribution system it did require a

deeper understanding of the Discord API, therefore in order to create this contribution system I had

to spend some weeks learning and testing the API for what it could and could not do. The only

noteworthy issue with implementation was how the Discord API searches for users, it seems to do

this linearly, where for large user bases this could become an issue.

 The first implementation of a contribution system included having the bot record hours

spent in voices rooms and the total numbers of messages sent by users, but again this caused too

many API request to be made. I also made the decision that hours spent in voice rooms and message

sent would provide any valuable information to the supervisor and that the contributions made

through the voting system help much more value.

Evaluation

Like other functions, in the initial plan I made it clear that I intended to create a contribution system

like this, but I again failed to appreciate its complexity. The system works from a functional

perspective, but if this system where to be upscaled there would be issues. Right now, the

contribution system works by searching the entire server for other users that have the same role,

then printing their contributions in a neat report. The issue here is how it needs to search through

everyone in the server, a easy solution to this would be locally storing which users are in which

group in the Discord server and then reading the file to get their User IDs, rather than searching the

entire server. The ĐoŶtƌiďutioŶ sǇsteŵ does ƌeƋuiƌe ŵoƌe eƌƌoƌ ĐheĐkiŶg, I’ll go oǀeƌ this issue later.

To summarise, the contribution system here can accept contribution votes by students or have a

contribution pushed through by a supervisor, then these contributions can be seen in neat reports

that the bot produces as embeds. You can see two different reports, either just your own personal

contribution to the group or your entire groups combination.

Profanity Filtering

I implemented a simple feature, where for each message sent within the Discord server, the bot

would grab the message content and check if any word in the message content contained any

banned words. These banned words are defined in the word_blacklist.txt, which is just a simple .txt.

If the message did contain a banned word, a Supervisor is altered.

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Foƌ deŵoŶstƌatioŶ, I haǀe put the ǁoƌd ͞ƌuďďeƌduĐkǇ͟ iŶ the ǁoƌd_ďlaĐklsit, this is the bots

response:

As you can see in Figure 17 the ďot ͞@“upeƌǀisoƌ͟ ďǇ doiŶg this the “upeƌǀisoƌ gets a diƌeĐt
notification. I decided to make it that the bot did not delete the original message and instead leave

that decision to the Supervisor.

Implementation Issues

The profanity filtering that the system currently uses is very simple and easy to implement, I did

however have issues with previous attempts at dealing with profanity. Originally I wanted some

natural language processing, but after some time spent with natural language processing it became

clear that it was a very complicated area and non-one had perfected it yet. Moreover, I opted for

this more simplistic system because I was concerned about the project becoming about natural

language processing rather than a contribution monitoring system.

Evaluation

There is not too much to talk about with this profanity filter, it does not do much other than flag a

Supervisor. During implementation, I tried some natural language processing tools, but found that all

have their own problems, mostly that none can understand context correctly. Therefore I opted to

only Notify the Supervisor and not delete the message because in my opinion having a profinaity

filtering system that is overly aggressive is much worse than having a passive profanity filtering

system.

Secondary Features

There are some other features that I have implemented that I would consider outside the scope of

the original initial plan, but I would like to bring some attention to. FirstlǇ, I iŵpleŵeŶted a ͞!help͟
that would produce a list of possible commands that the bot would respond to. Secondly, I

implemented two ĐoŵŵaŶds ͞!HelpAddCoŶtƌiďutioŶ͟ aŶd ͞!HelpVoteCoŶt͟ that pƌoǀide ŵoƌe
detailed syntax information on how the command should be used/structured.

Within Discord, users can have their pƌiǀaĐǇ settiŶgs set to ͞Not ReĐeiǀe ŵessages fƌoŵ
people ǁithiŶ a seƌǀeƌ͟, this ŵeaŶs that the ďot ǁould Ŷot ďe aďle to ŵessage theŵ upoŶ joiŶiŶg. IŶ
the ͞how-to-join-group͟ it pƌoǀides iŶfoƌŵation and points out that people will need to disable this

feature to use the bot. Afteƌ theǇ’ǀe disaďled this pƌiǀaĐǇ featuƌe, theǇ ĐaŶ theŶ use !seŶddŵ, that
will open a direct message conversation between the user and the bot.

When creating and testing the bot, there were many instances where I would need to delete

all the text/voice rooms and the roles because they were not setup correctly. At first, I did this

manually, but quickly realised that it was taking far too much time and as such I implemented two

ĐoŵŵaŶds to help ǁith this pƌoĐess ͞!del͟ aŶd ͞!delƌole͟. ͞!del͟ deletes all teǆt aŶd ǀoiĐe ƌooŵs
ǁithiŶ the seƌǀeƌ, ǁheƌe ͞!delƌole͟ deletes all the ƌoles ǁithiŶ the seƌǀeƌ. AgaiŶ, I had to ďe ǀeƌǇ
careful using these commands as they require a large amount of API requests to complete their

Figure 17: Profanity Filter

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

actions. To help prevent API bans when using these, I used time.sleep() to reduce the rate at which

API requests were made.

All these secondary features can be used by anyone, including the functions that delete all

rooms and delete all roles. I am aware that this could be exploited by a student, but if the system

were to be deployed these would either be removed from the code or only be usable be an

Administrator. I only kept these features in the system to help show what tools I used to help

deǀelop the sǇsteŵ. Moƌeoǀeƌ, the ͞!addĐoŶtƌiďutioŶ͟ ĐoŵŵaŶd ĐaŶ oŶlǇ ďe used ďǇ a supeƌǀisoƌ,
so this show that it is easy and possible to restrict commands to only be used by users who have the

specified roles.

Code Breakdown

!del

Figure 18: Code for !del

The code is simple, it loops through all of the channels for each group and deletes them, each delete

is an API request, therefore if there are 80 rooms, that will be 80 API requests. This is why the use of

time.sleep() is so important when dealing with high API request functions.

Line 335 of Figure 18:

͞help_text = discord.utils.get(client.get_all_channels(), name='how-to-join-group')͟

Heƌe, ǁe aƌe gettiŶg the uŶiƋue ID foƌ the ƌooŵ ͞'how-to-join-group͟. IŶ the DisĐoƌd API, Ǉou ĐaŶŶot
delete a room just by using the name, you must first request all channels, find all the servers that

match the name you want to find, then using that name you can get the unique ID for that channel.

This is because in Discord you can have channels with the same name, therefore you can only delete

channels using their unique ID.

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Error Handling

All the commands explained have some level of error handling to ensure that an error does not

completely crash the bot, however there is a lot of improvements that could be made. Due to time

constraints, I was unable to add a good level of error handling, for instance, if someone uses the

incorrect format for adding a contribution this contribution may still be added, but then when the

bot tries to produce a report it will get an error, this being because the structure of the contribution

was not maintained (This will become clear in the tests).

If a bad request is made to the Discord API it will not respond, it will not provide an error in

most cases. This makes it very difficult to add a good level of error handling, in the best case the

DisĐoƌd API ǁill ƌespoŶd ǁith ͞Bad ReƋuest͟ ďut pƌoǀide Ŷo fuƌtheƌ details. I would assume that this

is ďeĐause DisĐoƌd doesŶ’t ǁaŶt their full backend being known by everyone as people may start to

exploit bugs that are found.

How the design changed

The final solution has the functionality of all the desired features as mentioned previously, but the

design changed multiple times throughout development. At first, I tried developing the Bot by taking

code created by others on the Old API branch and convert that code to the new branch, however, by

doing this I quickly realised how hard it became to read the code and how inefficient it became

therefore I scrapped this approach and opted to learn the new Discord API branch and write all of

my own code.

The original design of the system allowed for the API requests to be made instantly and as

often as they were needed, however, dude to API banning and limiting being a reality I made the

system sleep through functions to slow down API requesting rates. Furthermore, the original Design

used Threading, it allowed the bot to reply to multiple people at once, yet, again this proved

problematic with making too many API request, as such I removed Threading from the final design.

The desigŶ foƌ ͞!ǀoteĐoŶt͟ also ĐhaŶged, as it ĐuƌƌeŶtlǇ staŶds studeŶts ǀote ďǇ ĐliĐkiŶg oŶ
the Thumbs Up reaction, whereas in a previous design studeŶt had to use ͞!ǀote Ǉes͟ to iŶdiĐate to
the bot that they were putting forward a yes vote. I was not stratified by students having to use

͞!ǀote Ǉes͟ theƌefoƌe I Đaŵe up ǁith the ďot postiŶg aŶ eŵďed ǁhiĐh it adds a ƌeaĐtioŶ to, theŶ
student click that reaction if they agree with the contribution- this was a much more elegant

solution.

Code Refactor

The process of creating this bot took months, therefore my understanding of the API grew, the code

for the first feature I implemented was very messy as I was inexperienced with the API compared to

the last feature I added which was clean and short. In the end, I decided to refactor the entirety of

my code, I kept the functionality the same, but rewrote the code, removed unnecessary variables,

reducing the API request by making two requests in a single request and I also made the structure of

the code easier to read. Moreover, I commented the code to the best of my ability so that someone

would be able to understand it in the future.

Even though I have refactored the code once, it needs to be done again. Although the code

is a lot better structurally compared to before, there is still opportunity to improve it further.

Currently, almost all of the code is within the same Main.py file, if I had time on my side I would take

each function and put them into their own .py file, allowing for the code to be more easily

understood.

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Test Cases
I did not have the time to create a full testing system or fully test every possible input for my bot,

however here are what I deemed as some of the most essential tests for my bot that showed its

functionality and tests that would cause the bot to produce errors due to bugs within the code that I

was unable to fix in time.

!setup Testing

Test.N

o

Action Input Exected

Result

Actual

Output

Test

Result

Test

Comments

Screensho

t in

Appendix

1 Using

command

correctly

!setup 4 Creates

rooms/

perms

Created

rooms

and

perms

Pass As expected,

but progress

bar in CMD

prompt

broken.

Appendxi

D

2 Using

Command

with no

value

!setup Bot

Does

nothing.

Bot does

nothing.

Gets

error

display

on

comman

d prompt

Pass Bot does

nothing in

discord, error

displayed in

cmd prompt,

but operation

carries on.

Appendix

E

3 Using

command with

incorrect

characters

!setup

!!͟£

Bot

does

nothing

Bot does

nothing.

Gets

error

display

on

comman

d prompt

Pass Bot does

nothing in

discord, error

displayed in

cmd prompt,

but operation

carries on.

Appendix F

!addcontribution

Test.N

o

Action Input Exected

Result

Actual

Output

Test

Result

Test

Comments

Screensho

t in

Appendix

1 Using

comman

d

correctly

!addcontr

ibution

@Student

1#2774

Refactore

d Code -

10

Contributio

n gets

added to

.csv and

confirmatio

n posted.

As

expected

Pass N/A Appendix

H

2 Using

Comman

d with no

value

!addcontr

ibution

Nothing

happens.

Bot error

displayed

As

expected

Pass N/A Not

supplied

3 Using

comman

!addcontr

ibution

Nothing

happens.

As

expected

Pass N/A Not

supplied

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

d with

incorrect

character

s

ϭϯϮϯ£͟!͟
£¬͟£

Bot error

displayed

4 Use as

expected

without

Supervis

or Role

!addcontr

ibution

@Student

1#2774

Refactore

d Code -

10

Bot will

state that

only

supervisors

can use this

command.

As

Expected

Pass N/A Appendix

H

!votecont

Test.N

o

Action Input Exected

Result

Actual

Output

Test

Result

Test

Comments

Screensho

t in

Appendix

1 Using

comman

d

correctly

!votecont

@Student

1 -- Added

Python

script v2 --

14

Bot

creates

vote

As

expected

Pass N/A Appendix I

2 Using

Comman

d with no

value

!votecont Nothing

happens.

Bot error

displayed

As

expected

Pass N/A Not

supplied

3 Using

comman

d with

incorrect

character

s

!votecont

213sadad

Nothing

happens.

Bot error

displayed

As

expected

Pass N/A Not

supplied

!mycontribution

Test.N

o

Action Input Exected

Result

Actual

Output

Test

Result

Test

Comments

Screensho

t in

Appendix

1 Using

comman

d

correctly

!mycontrib

ution

Bot

displays

embed

with

personal

contributi

on

As

expected,

Pass N/A Appendix J

!groupcontribution

Test.N

o

Action Input Exected

Result

Actual

Output

Test

Result

Test

Comments

Screensho

t in

Appendix

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

1 Using

comman

d

correctly

!groupcont

ribution

Bot

displays

embed

with

group

contributi

on

As

expected,

Pass N/A Appendix

K

Contribution System

Test.N

o

Action Input Exected

Result

Actual

Output

Test

Result

Test

Comments

Screensho

t in

Appendix

1 Using

comman

d

correctly

!reg

c1231233

Poppy

Brown

Bot gives

roles and

confirms

as

message

As

expected

Pass N/A Not

supplied

2 Using

Comman

d with no

value

!reg Bot

replies

with

͞IŶǀalid
IŶput͟

As

expected

Pass N/A Not

supplied

3 Using

comman

d with

incorrect

character

s

!reg

2431ad121

2esd

Bot

replies

with

͞IŶǀalid
IŶput͟

As

expected

Pass N/A Not

supplied

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Overall Evaluation
I would argue that the bot works great compared to the initial design, in fact it has some extra

functionality that was not defined in the initial plan was added. However, there are also some small

features that were not implemented but were in the initial plan. The question voting system is one

of those features. I decided to cut the question voting system due to time constraints, I instead

speŶt this tiŵe oŶ otheƌ ŵoƌe esseŶtial paƌts of the sǇsteŵ, like the ͞!setup͟ ĐoŵŵaŶd that ǁas Ŷot
previously part of the initial plan . Furthermore, in the initial plan I wanted to implement some level

of natural language processing for profanity filtering, but in the end decided against this, as in all test

I did with natural language processing the system would either be too aggressive with removing

messages or not do anything at all. Natural Language processing is still in its early stages and putting

it into a system like this and it added unnecessary complexity for something that was not required

for the bot to function correctly.

Finally, I wanted to add a full logging system, that would log absolutely everything done

within the Discord server, I only implemented this partially. When developing, I became aware that

Discord already logs actions, therefore implanting this again through the bot would make no sense,

instead I implemented a logging system that would log the bots actions, something that the Discord

logging system did not do. Moreover, a logging system that would log absolutely everything done

within a sever may be arguably useless, it would be very cluttered and hard to read.

Discord API Banning and Limiting.

In my initial plan and at the start of development I was not aware that API banning or limiting was a

ƌealitǇ, ďut I ƋuiĐklǇ leaƌŶt ǁhat it ǁas. The pƌoďleŵ ǁith DisĐoƌd’s API BaŶs/Liŵits is that theǇ laĐk
any documentation on what is considered ͞Too MuĐh͟ oƌ aŶ ͞AĐĐeptaďle aŵouŶt͟ of API ƌeƋuests.
After being banned a few times, I decided to contact Discord, they informed me that the amount of

acceptable API request can vary depending upon the Gateway your Bot is using, but as a general rule

1,000 request an hour was an acceptable amount- this was not true. After many more bans and

talking to others on forums it turns out that there is no consistency on how many API requests you

can make. I implemented a wrapper around my code that counted the number of requests made, by

doing this I learnt how many API requests were getting me banned. Some days 600 API requests

would get me banned; other days 1,400 API request would get me banned. This made it very difficult

to program a bot and not knowing how many API requests would get me banned, in the end I opted

for the solution to slow the API request down so much that they would be well below 400 request an

houƌ. This iŶ tuƌŶ Đaused the issue of ͞!setup͟ Ŷot ďeiŶg iŶstaŶt aŶd iŶstead take a laƌge aŵouŶt of

time, scaling with the amount of groups you wish to make. Moreover, this is the reason that

threading was removed for the final design.

Discord.py Rewrite

From August 23rd 2015 to April 8th 2019 there was only one branch for the Discord.py API, meaning

that there is four years of Documentation for this branch, however April 8th 2019 marked the date

that the new Discord.py rewrite was launched bring more functionality. For my project, I opted to

use the new rewrite branch as it offered more functionality, the negative side to this is how there

was only 9 months from when the rewrite was launched to when I started my project, meaning in

that time no one online had really used the rewrite branch yet.

Outside of the Discord.py Official documentation, there is limited material out there using

the rewrite version of Discord.py, as such the learning process for how to use this new rewrite

branch was very difficult. Even the official documentation of the PyPI. 2020. Discord.Py. was very

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

vague, it does not clearly show what the API request do or what they will output. Moreover, I tried

to find Discord bots created by others, but for all the bots I found the source code for they were all

using the old Discord.py branch before the rewrite making them unless to help my understanding.

This affected the start of my project, I had to spend the first two months of the project teaching

myself this new Discord.py rewrite with limited examples online on how to use it, although in the

end I managed to fully complete the project, it did take valuable time away that could have been

spent adding error handling and fixing bugs within the current system.

Another Discord.py rewrite may happen again in the future and although Discord does

support these old Discord.py branches for a few years after the new rewrite it would mean that this

system is likely to be out of date within the next 5-10 years, in that time this bot may no longer have

any support and therefore no longer work. Additionally, If Discord were to ever end as a service,

then this code would no longer hold any value.

Future Possibilities
My understanding of Discord, the API how a registration system might work and how a contribution

system might work has given my ideas and other features that could have been implemented but

were not part of my original plan.

There is a lot of room for improvement on this system, I would call this current system an

early proof of concept of how this system would work and be implemented. Things like the

registration system are not very user friendly, instead of using a direct message system with the bot

an online portal should be used to register instead.

At its current state, the bot is unable to scale to a large user base due to API limitations,

however I am aware that it is possible to have a huge user base. For example, Octave (bot.to.

2020. Octave - Bot.To.) is a music bot that is currently used in over 250,000 servers and they somehow avoid

Discord API bans. With more time and research it would be possible to create my bot in such a way that API

banning is prevented and the time.sleep() within the code could be removed along with reintroducing

threading. From what I have found, there does not seem to be an option for paying Discord for better API

request rates, but one solution that I did find is the idea of sharding (Dsharpplus.emzi0767.com. 2020) ,

where you split the bot of multiple gateways depending upon how many servers the bot is in. However,

documentation on how to implement something like sharding for Discord bots is very limited.

The Contribution system needs work too, right now you can view and add contributions but there is

no way to delete or edit the contributions made without an administer manually editing the .CSV files.

Moƌeoǀeƌ, ǁhile deǀelopiŶg I ƌealised that ĐoŶtƌiďutioŶ isŶ’t just iŶ the ǁoƌk oƌ houƌs Ǉou do foƌ the gƌoup,
but also the ideas and participation levels you have at meetings, therefore in the future it would be nice if this

contribution system could also record how many meetings people turn up to and record how much time they

spend in voice rooms or how many messages they send to record participation. Although arguable, this could

be exploited quite easily.

The bot is running through command prompt on windows, currently the bot does not reboot

or start on windows start-up. If this were to be deployed a system Administrator would have to

implement something that would restart the bot on request and after a specified amount of time.

Moreover, although this should work on Linux and Mac, some further testing would need to be done

to ensure that the bot does not run into issues and these operating systems.

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Conclusion
To conclude, I am satisfied that the system I have developed provides a good proof of concept and

demonstrates a basic system for dealing with group contribution levels. Compared to the initial plan,

I completed most of what I stated I would, the features I did not complete were replaced with more

important parts of the system that I had not thought about during the initial plan. The system

records contributions, a registration feature, and some simple profanity filtering.

Some features are better implemented than others, the registration system is very robust

and from my testing has no bugs, whereas the contribution system has many bugs, when you

provide a command call that is not in the intended structure. What I have produced so far has

achieved what I was aiming for, a system that shows proof of concept.

The only major concerns I have about this system is how it would not be able to scale to a

large user base without some big changes to how the system works and how the code is structured.

In order to overcome these issues, I would have to learn an implement Technogies related to bot

sharding, where the bot is split over multiple gateways. Despite this, if you ignore the bugs, the

system would be sustainable for a small to medium size user base.

Personal Reflection on performance
This project has taught me a lot, especially how in the initial plan I did overestimate how much I

would be able to get done, although I completed almost everything mentioned in the initial plan, it

caused me to spend too many sleepless nights on this project. Additionally, if I were to do this

project again, I would be sure to do much more research. At the initial plan stage, I should have

already found out about the recent Discord.py Rewrite, then I could of adjusted my expectations and

intended features accordingly.

I also failed to apricate the complexity of what I stated in my initial plan, for instance, one of

ŵǇ plaŶŶed featuƌes ǁas siŵplǇ ͞Cƌeate a ƌegistƌatioŶ sǇsteŵ͟, at the time I had no idea what that

entailed and just assumed it would be easy. The registration system was complex as it was not just

the registration that had to be correct, but the structure and the permissions for the server too., if

!setup did not exist then neither could the registration system. For future endeavours I will spend

more time thinking about features I purpose and just how complex some of these features may be

to implement.

From this project, I can say it has greatly improved my literacy with Python and I would feel

confident creating any bot for Discord- I now have a full understanding of the Discord.py API. For

futuƌe pƌojeĐts I ǁill take ŵoƌe Đaƌe iŶ plaŶŶiŶg, iŶ the iŶitial plaŶ I didŶ’t deĐide hoǁ the pƌojeĐt
was going to be designed in terms of the methodology, a waterfall approach, iterative and so on.

Ethics

At the start of the project I did not fully understand how ethics would affect my project, my designed

changed due to ethics. At first, I did not understand the importance of ensuring data protection and

ensuring that I was not storing any personal information on someone that could be damaging. After

correspondence with the Ethics department I was able to increase my understanding of how my

design could be reshaped and fit the ethic guidelines. One of the ways I did this was when someone

joined the server, they get a direct message from the bot, within that message it contains ethics

information. I would argue that dealing with ethics did take away time I could have spent on creating

a more robust and feature rich system, but it was necessary.

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

How to Setup and run the bot
Here I will give a guide on how to get the bot running on your own server. I have added this at the

end of the report as I did not find it necessary in the main body of the report. For this setup I will

assume you are using Windows.

What you will need:

• Install Python 3.8.2 or higher: https://www.python.org/downloads/

• Install Discord.py 1.3.2. This can be installed by using "pip install discord.py" in command

prompt. You must install python before doing this.

• The code folder that was submitted with this report.

Step 0: Within the Discord application, create your own server. This can be done by pressing the

GƌeeŶ ͞+͟ ǁithiŶ DisĐoƌd.

Step 1: Go and use the developer portal to start an application for your bot:

https://discordapp.com/developers/applications

Step 2: After creation, you will need to invite the bot to you server. You can find this link in the

developer portal.

Step 3: In the code folder submitted with this report, open Main.py and at the very bottom of the

code you'll see: client.run(''), ďetǁeeŶ the ͟͞ Ǉou ŵust put Ǉouƌ Client key, again this can be found at

the Discord Developer Portal.

Step 4: Double Click Main.py to run it. If you want to see errors, call the file through command

prompt.

Step 5: If everything was done correctly, the bot will now be in your Discord server and be online.

Step 6: IŶ the DisĐoƌd seƌǀeƌ tǇpe ͞!help͟, if the ďot it ǁoƌkiŶg it ǁill ƌespoŶd to this ĐoŵŵaŶd.

You can go here for further help: https://discordpy.readthedocs.io/en/latest/discord.html

https://www.python.org/downloads/
https://discordpy.readthedocs.io/en/latest/discord.html

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

References
1. bot.to. 2020. Octave - Bot.To. [online] Available at: <https://bot.to/bot/octave/> [Accessed 14

May 2020].

2. Discord. 2020. Discord — A New Way To Chat With Friends & Communities. [online]

Available at: <https://discord.com/> [Accessed 11 May 2020].

3. Discord Developer Portal. (2020). Discord Developer Portal — API Docs for Bots and

Developers. [online] Available at: https://discordapp.com/developers/docs/intro [Accessed 1

Feb. 2020].

4. Discordpy.readthedocs.io. 2020. Creating A Bot Account — Discord.Py 1.4.0A

Documentation. [online] Available at: <https://discordpy.readthedocs.io/en/latest/discord.html>

[Accessed 14 May 2020].

5. Dsharpplus.emzi0767.com. 2020. Sharding - For When Your Bot Gets Huge. [online]

Available at: <https://dsharpplus.emzi0767.com/articles/sharding.html> [Accessed 14 May

2020].

6. Mee6.xyz. 2020. MEE6 - The Discord Bot. [online] Available at: <https://mee6.xyz/>

[Accessed 11 May 2020].

7. Microsoft.com. 2020. Chat, Meetings, Calling, Collaboration | Microsoft Teams. [online]

Available at: <https://www.microsoft.com/en-gb/microsoft-365/microsoft-teams/group-chat-

software?ef_id=Cj0KCQjw-

_j1BRDkARIsAJcfmTGGi81CvCHhuMBt3jfz8R7_WFxQCpfxQYAP49LZzDylk2-

YoFdB7dQaAvqyEALw_wcB:G:s&OCID=AID2000956_SEM_Cj0KCQjw-

_j1BRDkARIsAJcfmTGGi81CvCHhuMBt3jfz8R7_WFxQCpfxQYAP49LZzDylk2-

YoFdB7dQaAvqyEALw_wcB:G:s> [Accessed 15 May 2020].

8. PyPI. 2020. Discord.Py. [online] Available at: <https://pypi.org/project/discord.py/> [Accessed

11 May 2020].

9. Skype.com. 2020. Skype | Communication Tool For Free Calls And Chat. [online] Available

at: <https://www.skype.com/en/> [Accessed 15 May 2020].

10. 2020. Statbot. [online] Available at: <https://top.gg/bot/491769129318088714> [Accessed 11

May 2020].

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Appendix

Appendix A

Figure 19: Breakdown of permissions

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Appendix B

Figure 20: Student Contribution Record Naming

Figure 21: Structure of Contribution Records

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Appendix C

Figure 22: My contribution Code

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Appendix D

Figure 23: Test for !setup 4

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Appendix E

Figure 24: Test for !setup

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Appendix F

Figure 25: Test for !setup !!͟£

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Appendix G

Figure 26: Test for !addcontribution @Student 1 Refactored Code -10

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Appendix H

Figure 27: !addcontribution @Student 1 Refactored Code -10 without Supervisor Perm

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Appendix I

Figure 28: Test for !votecont @Student 1 -- Added Python script v2 – 14

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Appendix J

Figure 29: Test for !mycontribution

Author: Kieran Parnell 1613910

Supervisor: Frank C Langbein

Appendix K

Figure 30: Test for !groupcontribution

