

Student: Cyrus Dobbs

Supervisor: Dr Frank C Langbein

Moderator: David J Humphreys

EXPLORATION OF AI

EFFECTIVENESS WITHIN

THE GAME OF CASTLE

One Semester Individual

Project (CM3203)

40 Credits

TABLE OF CONTENTS

1 INTRODUCTION .. 1

1.1 PROJECT AIM AND SCOPE ... 1
1.2 INTENDED AUDIENCE ... 1
1.3 APPROACH CHOSEN TO SOLVE THE PROBLEM ... 2
1.4 IMPORTANT OUTCOMES ... 2

2 BACKGROUND .. 3

2.1 WIDER PROJECT CONTEXT .. 3
2.2 CASTLE RULES ... 3
2.3 ALGORITHM CHOICES ... 4

2.3.1 Information Set Monte Carlo Tree Search... 4
2.3.2 UCB ... 5
2.3.3 Comparison to other algorithms ... 5

2.4 RELEVANT EXISTING SOLUTIONS ... 5
2.4.1 Game state evaluation in Hearthstone ... 5
2.4.2 MCTS in Magic: The Gathering ... 6

3 DESIGN AND IMPLEMENTATION OF SYSTEMS .. 7

3.1 CASTLE GAME ENGINE ... 7
3.1.1 Game representation .. 8
3.1.2 Player representation ... 9
3.1.3 Moves.. 10
3.1.4 Setup and Run ... 11

3.2 ISMCTS IMPLEMENTATION .. 13
3.3 GAME STATE COLLECTION AND STORAGE ... 15

4 MACHINE LEARNING ... 16

4.1 SUPPORT VECTOR MACHINE .. 16
4.1.1 Data preprocessing ... 16
4.1.2 Support Vector Machine ... 18

4.2 CONVOLUTIONAL NEURAL NETWORK .. 18
4.2.1 Data preprocessing ... 19
4.2.2 Creating a convolutional neural network ... 19

4.3 CUSTOM EVALUATION FUNCTION ... 20

5 RESULTS AND EVALUATION .. 22

5.1 AI PLAYER EFFECTIVENESS ... 22
5.1.1 Lowest-card Strategy .. 22
5.1.2 Standard-ISMCTS .. 22
5.1.3 Evaluating-ISMCTS .. 23

5.1.3.1 The Model ... 23
5.1.3.2 The Player ... 23

5.1.4 Human interaction .. 24
5.2 GAME ENGINE .. 24

6 FUTURE WORK .. 25

6.1 IMPROVEMENT OF THE EVALUATION FUNCTION .. 25
6.2 IMPROVEMENT OF ISMCTS .. 25
6.3 DEVELOPMENT OF A MARKETABLE GAME .. 26

7 CONCLUSION .. 27

8 REFLECTION .. 28

9 REFERENCES ... 29

Figures

FIGURE 1: UCB ALGORITHM ... 5

FIGURE 2: GAME REPRESENTATION UML .. 8

FIGURE 3: PLAYER REPRESENTATION UML ... 9

FIGURE 4: CASTLE MOVES UML .. 10

FIGURE 5: SETUP UML ... 11

FIGURE 6: CASTLE ENGINE UML .. 12

FIGURE 7: MCTS STAGES ... 13

FIGURE 8: GAME STATE IMAGE REPRESENTATION ... 19

FIGURE 9: CNN STRUCTURE .. 20

FIGURE 10: CNN ACCURACY ... 23

FIGURE 11: CNN LOSS ... 23

Tables

TABLE 1: DATABASE EXAMPLE ENTRIES .. 15

TABLE 2: DATABASE EXAMPLE ENTRY ... 16

TABLE 3: SVM DATA ENCODING .. 17

TABLE 4: PLAYER WIN RATES (A BEATS B).. 22

file:///C:/Users/Cyrus/Desktop/Final_Report.docx%23_Toc40455884
file:///C:/Users/Cyrus/Desktop/Final_Report.docx%23_Toc40455888
file:///C:/Users/Cyrus/Desktop/Final_Report.docx%23_Toc40455889
file:///C:/Users/Cyrus/Desktop/Final_Report.docx%23_Toc40455890
file:///C:/Users/Cyrus/Desktop/Final_Report.docx%23_Toc40455891
file:///C:/Users/Cyrus/Desktop/Final_Report.docx%23_Toc40455893
file:///C:/Users/Cyrus/Desktop/Final_Report.docx%23_Toc40455894

1

1 Introduction
This chapter will focus on the pƌojeĐt͛s oďjeĐtiǀes, iŶteŶded audieŶĐe aŶd outĐoŵes. The
author will also lay out the fundamentals of their approach to the problem and briefly

introduce the game of Castle.

1.1 Project Aim and Scope
The aim of this project is to experiment with different AI agents that compete at the game

of Castle. The end goal is to have produced an AI agent that can compete with a human

player. While the scope of the overall problem could be a complete, marketable game, the

author instead chooses to concentrate their limited time available primarily on the AI aspect

of the game. With time being one of the biggest constraints on the project, producing online

capabilities and a graphical user interface (GUI) was omitted from the projeĐt͛s sĐope.
However, a working game engine with limited terminal-based UI is still necessary in order to

achieve the project͛s goal of producing a challenging AI agent.

The game selected for the project is called Castle1, a 2-4 player card game. This game was

chosen because in relation to other card games, Castle is not widely known and is,

therefore, lacking in prior work. From the context of functioning as an AI testbed, Castle

provides interesting learning opportunities due to its properties of imperfect information, as

players hide their cards from opponents, and randomness, caused by the shuffled deck of

cards. This makes it more difficult for the AI agent to determine a set of moves that will take

it closer to winning. Between humans, it is often played at a fast pace with each game not

lasting much longer than five minutes. This is helpful because it means many simulations

between AI players can be run in a short time frame.

1.2 Intended Audience
One potential audience could be students studying an AI course or perhaps taking on a

similar project. Equipped with this report and the source code they would be able to learn:

• How to implement an AI algorithm in the context of a game

• Basic information regarding the machine learning libraries needed to implement a

similar system

• Method for simulating and collecting data

Identifying potential student or research beneficiaries highlighted the need to hold the

source code in a public repository. This became particularly apparent to the author as

during development it was difficult to find similar projects for inspiration and guidance.

Researchers may also have an interest in this piece of work if their work overlaps with this

domain. Additionally, researchers may wish to further this project by adding to it

themselves. This further highlights the need for the authors͛ work to be lodged in an

accessible and public space.

1 https://en.wikipedia.org/wiki/Castle_(card_game)

https://en.wikipedia.org/wiki/Castle_(card_game)

It is the author͛s opinion that a game developer interested in implementing an AI player

may find it useful to leaƌŶ fƌoŵ this pƌojeĐt͛s AI plaǇeƌs.

1.3 Approach Chosen to Solve the Problem
Firstly, a game engine must be produced that can simulate a game of Castle. This engine will

be made in a way that makes player types and their strategies modular. By using this

approach throughout development of different AI players, the engine will be able to be

configured to play with different players with ease.

Secondly, an Information Set Monte Carlo Tree Search (ISMCTS) algorithm will be used to

produce an AI agent that can play the game from only a set of available moves and a game

end condition. The agent will have no game specific knowledge. Additionally, a rule-based

agent with a set strategy will also be produced. Thousands of simulations of games between

these two ͚players͛ will then be run in order to collect a database of game states. These

game states are snapshots of the state of the game at the beginning of each turn for the

ISMCTS player, including who won the game that the game state was taken from.

Using this database of game states, the author aims to experiment with various Machine

Learning (ML) libraries in order to produce a model for evaluating a given state. This can

then be used by the AI agents in order to get a value for how promising a state is.

1.4 Important Outcomes
A basic rule-based AI will be used as a benchmark for the different AI agents produced. The

win-rate of the various versions of AI against this benchmark will be used to evaluate the

success of chosen techniques. The most important outcome of this project is to have

produced a successful AI agent. The level of success observed from the benchmark tests will

serve as the evaluation of this success. Additionally, the success of the machine learning

aspect of the project will also be an important outcome, measured by the accuracy rate,

among other statistics. If the AI agents are not successful, it is important for them to be at a

stage of development that can easily inspire and support future work.

3

2 Background
Following on from the introduction, the background will give the reader more in-depth

knowledge of concepts fundamental to the project. The rules of Castle will be outlined

before describing the chosen algorithm, ISMCTS, used as the AI plaǇeƌ͛s ďasiĐ stƌategǇ.

ISMCTS will be briefly contrasted to other techniques before providing some relevant

existing solutions to similar problems.

2.1 Wider Project Context
In 1997, Deep Blue [1] beat the World Chess Champion Garry Kasparov in a landmark victory

for artificial intelligence. Deep Blue used minimax with alpha beta pruning and a heuristic

evaluation function in order to pick its moves. Moƌe ƌeĐeŶtlǇ, Google͛s DeepMiŶd2 has

produced AlphaGo and AlphaStar which both compete at the top match levels of Go and

StarCraft. While Chess has a state-space complexity of 1047, the Chinese game of Go is larger

at 10170 and StarCraft is even more complex still and has hidden information. This increase in

game size and complexity has meant we have had to move away from more traditional

searching methods. In a verǇ diffeƌeŶt appƌoaĐh to Deep Blue, Google͛s Ŷeǁ AIs utilise

reinforcement learning.

These advances in AI agents have great and far reaching applications to more practical

problems such as weather prediction and climate modelling. Many sectors are utilising AI in

order to automate processes while pushing for these systems to make better decisions than

humans. New AI systems are likely to dominate industry and aspects of society in the near

future and will bring with them new ethical challenges for us to overcome [9].

Video games are extremely useful as test beds and benchmarks for new AI. Togelius explains

how video games can test many aspects of intelligence and how in contrast to using robots,

they can be sped up in order to run thousands of simulations in very short time spans [2].

2.2 Castle Rules
Castle is a card game played between 2-4 people. The game starts by each player being

dealt 3 cards; we will call these the face-down Castle cards (FDCCs). They are to be placed

face down on the table remaining hidden to the players until the instance they are played.

Next, each player is dealt 6 cards to their hand, hidden from the opponents. The players

must then select 3 cards to be placed face up on top of their FDCCs; we will call these the

face-up Castle cards (FUCCs).

Players take it in turns to play a card of either the same or higher face value, from their

hand, than the last card played (suit has no bearing on the game). Once a card from their

hand is played, if that brings the number of cards in their hand to less than 3, they must

then pick up a card from the rest of the deck and add it to their hand. This way players

always have 3 cards in their hand until the deck has been completely depleted. If a player

cannot play a card because the value of the last played card is higher than any cards in their

hand, they must pick up the pile of discarded cards and add them to their hand. An

2 https://deepmind.com/

https://deepmind.com/

exception to this rule is if the player has a magic card in their hand, as these cards can be

placed on any card (regardless of their face value being lower than the last card played).

There are two types of magic cards:

• All the Ϯ͛s ƌeset the plaǇed pile to this value (the lowest possible), allowing the play

to continue.

• All the ϭϬ͛s ďuƌŶ the plaǇed pile. This means they are removed from the game and

the player then gets another turn to play any card in their hand.

Once the deck has been completely depleted, players can then have less than 3 cards in

their hand. Once a player has run out of all cards in their hand, they can then play one of

their FUCCs. The fact that the other players can see these FUCCs makes it important for

players to put the highest cards from their starting hand down as their FUCCs as this helps

to prevent opponents them from making them pick up the pile by playing higher cards. Once

a player has no cards in their hand, and no FUCCs, they can then choose a FDCC and try to

play it. If they cannot, they must pick up the pile. Play continues until a player wins by

having no cards in their hand, FUCCs or FDCCs.

Additional rules:

• A player can play multiple cards at once if they are of the same face value and either

all from their hand or all FUCCs.

• If a player plays the 4th card of the same face value onto the pile and they have been

played consecutively without any other cards of a different face value in between

then the pile is ͚burned͛ aŶd these Đaƌds aƌe Ŷo loŶgeƌ iŶ the gaŵe - in the same

fashion as when a 10 is played – and the player may take another turn.

2.3 Algorithm Choices

2.3.1 Information Set Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a heuristic search algorithm that focuses on sampling the

search space of the game using random moves to simulate many full games. The results of

the simulations are backpropagated up the tree in order to guide expansion of new nodes.

Information Set Monte Carlo Tree Search (ISMCTS) [5] is a modification to MCTS3 that

utilises Information Sets (IS). An Information Set is the current information available to the

player together with the set of possible permutations of hidden cards ;oppoŶeŶts͛ cards, the

deck, etc).

ISMCTS uses the current information set to limit the combinations of determinisations to

the possible states of the game – it then uses a single tree to run an iteration of MCTS for

each determinisation up to a limit. This limit can be a given number of iterations or a time

limit. A decision is then based on the proportion of times a move is traversed over all the

simulations.

3 https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

ISMCTS is an ͚any time͛ algorithm, meaning it can be for a given length of time and then

takes the best available move at that time. However, there are some potential issues with

ISMCTS. For example, classic ISMCTS does not utilise any game specific knowledge and this

could lead to some AI moves looking unrealistic and illogical to human players. However,

performance is largely proportional to how long the algorithm is run for.

2.3.2 UCB
MCTS encounters the exploration-exploitation trade-off ǁithiŶ its ͚eǆpaŶsioŶ͛ step. This
arises when needing to maintain balance between exploitation of successful known moves

and exploration of unknown moves. Kocsis and Szepesvari introduced a now commonly

used algorithm that handles this called the Upper Confidence Bound (UCB) algorithm [3].

Kocsis and Szepesvari recommend picking the move that returns the highest value from the

formula seen in Figure 1 (quoted from Wikipedia) [7].

• wi stands for the number of wins for the node considered after the i-th move

• ni stands for the number of simulations for the node considered after the i-th move

• Ni stands for the total number of simulations after the i-th move run by the parent

node of the one considered

• c is the exploration parameter—theoretically equal to √2; in practice usually chosen

empirically

2.3.3 Comparison to other algorithms
Another traditional algorithm used is minimax search with alpha beta pruning. However,

this presents challenges when applied to the game of Castle. One reason for this is that the

game tree for Castle is very large and this would present performance issues, likely making

this approach unfeasible. Additionally, minimax relies on heuristics in order to score states

or moves within the game. Unlike the game of chess, where it is fairly intuitive to produce

heuristics at least at a basic level; for Castle this is much more difficult and likely to be less

effective because there is no clear way to rank how a move ǁill iŶĐƌease a plaǇeƌ͛s ĐhaŶĐe of
winning. Classic MCTS removes the need for an evaluation function by always simulating the

game to a terminal state.

2.4 Relevant Existing Solutions

2.4.1 Game state evaluation in Hearthstone
Jakubik [4] used neural networks in order to evaluate game states from the game of

Hearthstone. They collected a training set by playing pairs of MCTS players against each

other and recording the results at each turn, along with logging who won the game. They

then used these results to train a neural network as an evaluation function using the Theano

Python library. The neural network was then evaluated using an AUC score. Both Jakubik

FIGURE 1: UCB ALGORITHM

and the author attempt to use neural networks to evaluate game states. However, in

contrast to the authors work, Jakubik does not implement the evaluation function within an

AI player and therefore provides no gameplay evaluation of its success.

2.4.2 MCTS in Magic: The Gathering
Cowling et al explored the use of ISMCTS in the game of Magic: The Gathering (MTG) [7].

They also choose to focus on enhancing the MCTS algorithm, however, they do this without

machine learning techniques. One method they explore is adding heuristics in order to

evaluate in more depth than the core MCTS method of back-propagation of simulated wins

allows. AŶ eǆaŵple of this is the additioŶ of ͚DisĐouŶted ‘eǁaƌd͛ ǁhiĐh iŶĐentivises the AI

to choose moves that win the game earlier because this prevents the opponent from being

able to draw a ͚lucky card͛ that can turn the game in their favour. They achieve this by

backpropagating values from custom functions rather than just a binary win/loss.

7

3 Design and Implementation of Systems
The following section will give an overview of the systems built to support the development

of the AI player.

3.1 Castle Game Engine
Firstly, the author needed to produce an application in order to run the game of Castle.

Being the sole user, the author needed to be able to configure the application to run from a

set of inputs: The type of players in the game, including which strategies they would

employ, and an end condition (number of games or a time limit). Executing thousands of

simulations, the system needed to be efficient, as any small increase in running time for a

single game would be noticeable in the overall running time. Another requirement was that

the author would need the flexibility to run the application from the command line of any

OS (Windows, Mac, Linux). This software needed to be modular enough that they could add

different AI agents as players. It also needed to have a core game state that would hold all

the information about the game. For these reasons, the author opted to follow the Model-

View-Controller4 design pattern. This approach demands the separation of concerns, in turn

producing low coupling and high cohesion, ultimately making it easier to change and

reconfigure as the project progressed. Java was chosen primarily because it was the

programming language the author has the most experience working with. However, it is also

suitable because it matches the requirements of being multiplatform and efficient.

The next 4 sections will give overviews of each part of the application with the support of

UML diagrams. These diagrams are high resolution and may require the reader to zoom.

4 https://en.wikipedia.org/wiki/Model-view-controller

https://en.wikipedia.org/wiki/Model-view-controller

3.1.1 Game representation

FIGURE 2: GAME REPRESENTATION UML

The gaŵe͛s state is a model within the MVC pattern and is represented by the GameState

object. The GameState holds the information about the game such as the Deck (made up of

Cards), the Discard Pile, the Players etc. The logic that alters the state of the game has been

extracted to the TerminalGameController. The TerminalGameController executes the main

loop of the game – cycling through players͛ tuƌŶs, ƌeƋuestiŶg a Move from them, and then

executing the move on the GameState – until a player has won. Extraction of the logic from

the GameState allows for future work to add different GameControllers, should that ever be

a requirement. The TerminalGameController, contains the GameState as well as the

GameView; responsible for allowing observation of the game. Currently the only

implementation of GameView is the TextGameView that renders the game to the terminal.

However, the system allows for a different GameView in the future – for example, a

different version of the current terminal view or even a GUI.

3.1.2 Player representation

FIGURE 3: PLAYER REPRESENTATION UML

Like the game, the player representation consists of a PlayerController that contains the

player number and the PlayerModel. PlayerController is an abstract class that is extended by

each type of player. For example, the LowestPlayerController is the rule-based AI strategy

that selects the move with the lowest card. This selection logic is within the

LowestPlayerController where it then passes the selected move to the GameController.

Where the AI controllers select the cards, the HumanPlayerController offers the potential

moves to the player through the terminal and then passes the player͛s selection to the

GameController for it to be executed, and then for the GameState to be changed

accordingly.

3.1.3 Moves

FIGURE 4: CASTLE MOVES UML

Moves are the actions within the game that players can make. CastleMove is an abstract

class and serves as the interface by which the GameController makes use of the moves. For

example, the GameController only knows of the generic doMove method that is

implemented differently for each type of move. When the GameController calls doMove, it

passes the GameState to the move object, where it carries out the logic of the move on the

state of the game.

There are 2 types of abstract moves and 5 concrete moves:

• (Abstract) CastleMove - This is the highest-level move in the architecture and acts as

the interface to all the other moves with its abstract doMove method. The next 6

moves implement doMove.

o PickCastle – This move removes the 3 chosen cards from the players hand

and adds them to their FUCCs

o PickUp – This is used if the player cannot do any other move and puts all the

discarded cards into the players hand

o (Abstract) PlayCard – This is another abstract move with some

implementation of doMove. However, the next 3 moves add further

implementation while extending PlayCard.

▪ PlayFaceDownCastleCard - This move removes the chosen card(s)

from the players FDCCs and adds them to the discard pile

▪ PlayFaceUpCastleCard - This move removes the chosen card(s) from

the players FUCCs and adds them to the discard pile

▪ PlayHandCard - This move removes the chosen card(s) from the

players Hand and adds them to the discard pile

3.1.4 Setup and Run

Once the user executes the jar file from the

command line, they are presented with a series of

options in order to set up the application in the

desired configuration. The following options are

presented to the user:

1. The type of end condition:

1) No. of games

2) Time limit

3) Indefinite

2. The integer end condition value:

1) No. of games

2) Time in minutes

3. Print the games in real-time to the console:

1) True

2) False

4. Export the simulation results to CSV:

1) True

2) False

FIGURE 5: SETUP UML

5. Export the results to database:

1) True

2) False

6. Number of players:

1) 2

2) 3

3) 4

7. For each player, the type of player must be

selected. Some players require additional

configuration.

1) Human

2) ISMCTS

3) Customer Evaluation ISMCTS

4) Lowest-card strategy

5) Random decisions

8. Alternate which player goes first?

1) True

2) False

12

FIGURE 6: CASTLE ENGINE UML

13

3.2 ISMCTS Implementation
In this section, the author will expand on the high-level explanation of ISMCTS that was

presented in section 2.3.1 and then walk through the coded implementation used for this

project.

Figure 7 illustrates the four main stages to the MCTS algorithm. These steps are repeated for

a given number of iterations or until some other end condition is met (e.g. a time limit).

Selection: Move down the tree by traversing nodes selected by the UCB algorithm

until reaching a leaf node.

Expansion: Add a node to the tree corresponding to an available untried move,

selected at random.

Simulation: Run a simulation of a game from the expanded node by selecting

random moves until reaching a terminal state.

Back-propagation: Carry the result of the simulation back up the tree to update the

count of wins in the expanded and selected nodes for that iteration.

We used an end condition (maxIterations) of 3200 iterations consistent throughout

development and evaluation in order to ensure all test results were comparable.

public CastleMove getMove(GameState gameState) {

 Node rootNode = new Node();

 for (int i = 0; i < maxIterations; i++) {

 Node node = rootNode;

 // Determinisation

 GameState currentGameState = cloneAndRandomize(gameState);

A determinised game state is produced from the current state; all the locations of cards

unobservable to the player are randomised. This part of the algorithm allows us to take a

FIGURE 7: MCTS STAGES

random sample of game states from the set of possible game states that the player could be

in.

Next is the Selection stage. Starting at the root, we select child nodes via the UCB algorithm

(see UCB) until we reach a node with untried moves.

// Selection

List<CastleMove> availableMovesForSelection = getMoves(currentGameState);

while (!availableMovesForSelection.isEmpty()

 && node.getUntriedMoves(availableMovesForSelection).isEmpty()) {

 node = node.UCBSelectChild(availableMovesForSelection, exploration);

 doMove(node.getMove(), currentGameState);

}

In the next stage, Expansion, we add a node to the tree corresponding to a randomly

selected available move.

// Expansion

List<CastleMove> availableMovesForExpansion = getMoves(currentGameState);

if (!node.getUntriedMoves(availableMovesForExpansion).isEmpty()) {

 CastleMove move =

getRandomMove(node.getUntriedMoves(availableMovesForExpansion));

 int player = currentGameState.getCurrentPlayer();

 doMove(move, currentGameState);

 node.addChild(move, player);

}

We then simulate a game played out using random moves until reaching a terminal state.

// Simulation

while (!getMoves(currentGameState).isEmpty()) {

 doMove(getRandomMove(getMoves(currentGameState)), currentGameState);

}

Lastly, we reach Back-propagation. Here we work our way back up the tree updating each

node we traversed with the eventual winner.

// Backpropagate

while (node != null) {

 node.update(getWinningPlayer(currentGameState));

 node = node.getParentNode();

}

The ͚update͛ ŵethod iŶĐƌeŵeŶts a ͚ǁiŶs͛ ǀaƌiaďle ǁithin the node if the MCTS player wins –

this helps guide the UCB algorithm to eventually select the best move for the MCTS player in

the real game state.

3.3 Game State Collection and Storage
Gameplay data had to be collected and stored in order to train the machine learning

models. Data is collected from the point of view of one of the players, we will call this player

the observed player. The type of player to be observed can be chosen in the set-up of the

application. However, all the data collected for machine learning use was from games

between the ISMCTS player (observed) and the lowest-card strategy player.

A snapshot of the game state is taken at the start of the observed plaǇeƌ͛s tuƌn. Each row in

Table 1 represents one of these snapshots.

TABLE 1: DATABASE EXAMPLE ENTRIES

Cards are represented as numbers 2-ϭ4 ;JaĐk = ϭϭ, …, AĐe = ϭ4Ϳ. DECK_EMPTY aŶd WON aƌe
Boolean values. The author chose to collect an almost full set of data from the game state

with minimal formatting or manipulation. The reason for this was to leave all the data

processing to the machine learning scripts, allowing more freedom to try out different

methods of processing once the raw data has been pulled from the database. In addition, it

also saves any unnecessary computation in the event of the data being processed twice.

Storing all the data available, without omitting any on the assumption it is not relevant, is

the safest option because until experimenting with the machine learning techniques it is

hard to know what parts of the data will be of most use.

As mentioned in the Setup section (see Setup), there are configuration options to export

game states for storage. The game engine application supports exporting to CSV files or

instead uploading to a MySQL5 database located on the University network. Should the

application fail to upload to the database, the results will be exported to CSV files instead.

Additionally, a script was written in Java, separate from the main application, responsible

for reading the CSV files and uploading the data to the database.

The automation of this process is extremely useful in order to collect a mass of game states

to use for machine learning (see Machine Learning). Several instances of their application

were run on the University OpenStack system from a Linux shell. By using the terminal

multiplexer Tmux6, the author could leave the instances populating the database

indefinitely.

5 https://www.mysql.com/
6 https://en.wikipedia.org/wiki/Tmux

id HAND CASTLE_FU CASTLE_FD_SIZE OP_HAND_SIZE OP_CASTLE_FU OP_CASTLE_FD_SIZE TOP DECK_EMPTY WON

14 5,5,7,7,8,8,9,13 8,13,13 3 3 2,2,10 3 3 0 1

15 7,7,8,8,9,13 8,13,13 3 3 2,2,10 3 6 0 1

16 7,7,8,8,13 8,13,13 3 3 2,2,10 3 9 0 1

17 7,7,8,8 8,13,13 3 3 2,2,10 3 14 0 1

18 3,5,5,6,7,7,8,8,9,9,13,14 8,13,13 3 3 2,2,10 3 4 0 1

19 3,6,7,7,8,8,9,9,13,14 8,13,13 3 3 2,2,10 3 9 0 1

20 3,6,7,7,8,8,13,14 8,13,13 3 3 2,2,10 3 11 0 1

21 3,6,7,7,8,8,14 8,13,13 3 3 2,2,10 3 2 0 1

https://www.mysql.com/
https://en.wikipedia.org/wiki/Tmux

16

4 Machine Learning
In this section the author describes the steps taken to try to improve the AI employed

beyond the ISMCTS implementation. This will include high level explanations of the methods

used and how these methods were used in the context of the problem. Results and

evaluation from these methods will be left for the next section (see Results and Evaluation).

4.1 Support Vector Machine
The Python library Scikit-Learn7 (Sklearn) was used in order to train a model to predict if a

player would win or lose a game, given a certain game state. A Support Vector Machine

(SVM) was chosen due to its ability to generalise from labelled data. Jupyter Notebook8 was

the tool used to write and execute the Python code.

4.1.1 Data preprocessing
Due to the format of the data in the database not being valid input for Sklearn͛s ŵodels,

data preprocessing was needed. The data was split into features and corresponding labels.

The features are made from all the information gathered about the game state. The labels

indicate whether that game state was from a game in which the player won or lost. All the

features need to be normalized, so the numeric values fall between 0 and 1.

id HAND CASTLE_FU CASTLE_FD_SIZE OP_HAND_SIZE OP_CASTLE_FU OP_CASTLE_FD_SIZE TOP DECK_EMPTY WON

133 3,5,5,6,11,11 4,10,13 3 0 11,11 3 14 1 1

TABLE 2: DATABASE EXAMPLE ENTRY

Normalisation is achieved by encoding the data. The encoding process is described in Table

3 by taking the entry in Table 2 as input. The encoding function outputs a 1x23 array which

is then ready to be used as input to the SVM.

7 https://scikit-learn.org/stable/index.html
8 https://jupyter.org/

https://scikit-learn.org/stable/index.html
https://jupyter.org/

Output

Array Index Card Value
No of cards in players'

hand

Normalised

array value

0 2 0 0

1 3 1 0.25

2 4 0 0

3 5 2 0.5

4 6 1 0.25

5 7 0 0

6 8 0 0

7 9 0 0

8 10 0 0

9 11 2 0.5

10 12 0 0

11 13 0 0

12 14 0 0

- FUCC index Card Value of FUCC
Normalised

array value

13 0 4 3/13

14 1 10 9/13

15 2 13 12/13

-
Normalised

array value

16 3/4

-
Normalised

array value

17 0 (4/50)

- FUCC index Card Value of FUCC
Normalised

array value

18 0 11 10/13

19 1 11 10/13

20 2 0 0

-
Normalised

array value

21 3/4

-
Normalised

array value

22 1

Input

Deck

Empty

Is deck empty?

YES

Players

Hand

Players

FUCC

Players

FDCC

Op Hand

Op FUCC

Op FDCC

No of cards in player FDC

3

0 (4)

3

No of cards in opponent FDC

No of cards in opponents' hand

TABLE 3: SVM DATA ENCODING

4.1.2 Support Vector Machine
SVMs are supervised learning models that analyse labelled data for classification or

regression. The author used classification for this problem because the outcomes were

binary categories, win or lose. SVMs work by mapping the data to high-dimensional feature

spaces. The data clusters and boundaries form between different categories. These

boundaries can then be used to classify a given set of new features as either a win or a loss.

The two most important parameters to tune on an SVM is Gamma and C:

͞Intuitively, the gamma parameter defines how far the influence of a single training example

reaches, with low ǀalues ŵeaŶiŶg ͚faƌ͛ aŶd high ǀalues ŵeaŶiŶg ͚Đlose͛.
The gamma parameters can be seen as the inverse of the radius of influence of samples

selected by the model as support vectoƌs.͟ – scikit-learn.org9

͞The C parameter trades off correct classification of training examples against maximization

of the deĐisioŶ fuŶĐtioŶ͛s ŵaƌgiŶ. Foƌ laƌger values of C, a smaller margin will be accepted if

the decision function is better at classifying all training points correctly. A lower C will

encourage a larger margin, therefore a simpler decision function, at the cost of training

accuracy. In other words, ͚C͛ behaves as a regularization parameter in the SVM.͟ – scikit-

learn.org

Gamma was tuned ďǇ usiŶg “kleaƌŶ͛s ͚Plot ValidatioŶ Cuƌǀes͛ Đode10. This varies gamma

between a set of values; trains and cross-validates an SVM at each value and then plots the

accuracy results on a graph for comparison.

The author tuned C using the GridSearchCV method that comes with the Sklearn library. It

simply takes a range of parameters and then trains SVMs with all combinations. These SVMs

are all cross-validated and the accuracy stored. The combination with the highest accuracy

can then be obtained. However, overfitting can occur and skew results. Overfitting occurs

when the model does not generalise to data points outside of the training data. Instead it

͚ŵeŵoƌizes͛ tƌaining data rather than learning the data set͛s trends.

These two methods had to be repeated and fine-tuned to get closer to the optimum

parameters.

4.2 Convolutional Neural Network
Keras, also a machine learning library for Python, was used to set up and train a neural

network. The author used Google Colab as the tool for writing and executing the code. The

primary reason for moving from the University OpenStack to Google is because Google

provide much more GPU power. A consequence of this meant having to copy the database

fƌoŵ the UŶiǀeƌsitǇ MǇ“QL seƌǀeƌ to Google͛s CloudSQL due to the limitations of the

University database being within the secure University network.

9 https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
10 https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html

https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html

FIGURE 8: GAME STATE IMAGE REPRESENTATION

4.2.1 Data preprocessing
As with Sklearn, neural networks within Keras also need the data to be preprocessed.

However, neural networks provide better results when fed image data. This meant that

game state entries stored in the database needed to be converted to images first. To reduce

the complexity of the input, the author reduced the information to just the player͛s hand,

face up castle cards (FUCC) and the number of face down castle cards (FDCC) plus the

opponent͛s FUCC and number of FDCC. This decision was made with the aim of preventing

the model from overfitting due to having too many inputs. The data was converted to an

image by using a binary 2-dimensional array.

Using the example entry shown previously in Table 2, it is represented by the 4x41 image in

Figure 8.

The data is split into a training set and a test set, using 80% and 20% respectively. The

training set was used to train the model, while the test set is used to test the accuracy of the

model. Due to the large amount of data collected, a 20% test set was over 200000 entries

and, therefore, enough to confidently test the model.

4.2.2 Creating a convolutional neural network
The convolutional neural network (CNN) created has five convolutional layers each followed

with max-pooling layers before a final fully connected layer. Krizhevsky et al (2012) found a

similar structure to be effective on the ImageNet set [8]. Dropout layers were introduced

after the model showed signs of overfitting to the training data. Like the SVM approach, the

CNN also categorises game states to a win/loss. This categorisation is done in the final fully

connected layer via a sigmoid activation function. Once trained, the CNN was exported to

use within the game engine. The summary of the CNN output from Keras is displayed in

Figure 9.

Model: "sequential_1"

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 4, 41, 5) 50

max_pooling2d_1 (MaxPooling2 (None, 2, 21, 5) 0

conv2d_2 (Conv2D) (None, 2, 21, 10) 460

max_pooling2d_2 (MaxPooling2 (None, 1, 11, 10) 0

dropout_1 (Dropout) (None, 1, 11, 10) 0

conv2d_3 (Conv2D) (None, 1, 11, 20) 820

max_pooling2d_3 (MaxPooling2 (None, 1, 6, 20) 0

dropout_2 (Dropout) (None, 1, 6, 20) 0

conv2d_4 (Conv2D) (None, 1, 6, 40) 3240

max_pooling2d_4 (MaxPooling2 (None, 1, 3, 40) 0

dropout_3 (Dropout) (None, 1, 3, 40) 0

conv2d_5 (Conv2D) (None, 1, 3, 60) 9660

max_pooling2d_5 (MaxPooling2 (None, 1, 2, 60) 0

flatten_1 (Flatten) (None, 120) 0

dense_1 (Dense) (None, 2) 242
===
Total params: 14,472
Trainable params: 14,472
Non-trainable params: 0

FIGURE 9: CNN STRUCTURE

4.3 Custom Evaluation Function
In order to import and make use of the created CNN, Java libraries ND4J 11and DL4J12 were

used. ND4J allows the creation and manipulation of n-dimensional arrays fundamental to

neural networks. DL4J provides the classes and methods needed to import and query

models. When the ISMCTS player is initialised, so is an Evaluator class. This is then called via

the evaluate method and returns a Boolean value - true if the player is expected to win, or

false if not.

11 https://nd4j.org/
12 https://deeplearning4j.org/

https://nd4j.org/
https://deeplearning4j.org/

This evaluation can be used in a multitude of ways. Currently, only one type of ISMCTS

player with a custom evaluation function has been added. This works by stopping the

simulation of games at a given depth, and then using the state the simulation ends on to

query the model. The result from the query is then backpropagated up the tree, as in the

standard ISMCTS implementation. The aim of this was to reduce the time it takes for the

ISMCTS algorithm to run, because it will not have to randomise gameplay for as long as it

takes to reach a terminal state. It was also thought that it could improve the effectiveness of

the algorithm, because the values that are backpropagated could be more accurate in rating

considered moves, if they originate from higher up the tree. Higher up the tree means there

have been fewer random decisions moving away from the originally considered state.

For other possible uses and implementations of custom evaluation functions, see Future

Work.

22

5 Results and Evaluation

5.1 AI Player Effectiveness
This following section will evaluate the effectiveness of the two implementations of the

ISMCTS algorithm as well as the benchmark player with a lowest-card strategy. This has

been done by playing many simulations of these players against each other and recording

the results, shown in Table 4.

 A
B Lowest-card

strategy

Standard

ISMCTS

Custom

Evaluation

ISMCTS

Random

Decisions
Human

22.5% 30.4% 91.2%

21540 games 20 games 1000 games

67.5% 46.7% 98.0% 60.0%

21540 games 30 games 100 games 5 games

69.6% 53.3%

23 games 30 games

9.8% 2.0%

1000 games 100 games

40.0%

5 games

Lowest-card

strategy

Standard

ISMCTS

Custom

Evaluation

Random

Decisions

Human

TABLE 4: PLAYER WIN RATES (A BEATS B)

5.1.1 Lowest-card Strategy
The lowest-card strategy beat a player making random decisions in 91.2% of the 1000

games played – using the binomial distribution the author calculated the probability of this

happening by chance to be p<0.0001. Therefore, this result is highly statistically significant

in rejecting the null hypothesis that the win rate for the lowest-card strategy would be no

higher than random decisions. This suggests that the lowest-card strategy is at least

somewhat effective in the game of Castle.

5.1.2 Standard-ISMCTS
The results between Standard-ISMCTS (S-ISMCTS) and the random player shows S-ISMCTS

winning 98% of games; an improvement on the lowest-card strategy results.

The null hypothesis that S-ISMCTS would be no more effective than the lowest-card strategy

is rejected by the results between the two strategies, where S-ISMCTS is winning just over

two thirds of games – this is also highly statistically significant with the probability of this

happening by chance being p<0.0001.

In a separate analysis, an S-ISMCTS player played against 3 lowest-card strategy players and

won 29.4% of games over a sample of 1000 games. This provides evidence it is still a more

effective strategy even when in a larger game. The probability of this happening by chance is

p<0.019, also statistically significant.

5.1.3 Evaluating-ISMCTS

5.1.3.1 The Model

After many different iterations of model structure, the best accuracy score produced was

~73%, shown in Figure 10. Typically, this is not regarded as a high score, although in the

context of this project it was sufficient to produce a successful player. Two main reasons for

struggling to reach a higher accuracy score could be: (i) because of the randomness in Castle

and (ii) the fact that the model is trying to predict a winner. The possibility of predicting a

winner accurately is low as the winner has not been determined at a given point, with

chance still playing a large part in the outcome of the game.

5.1.3.2 The Player

One of the first observations after running simulations with the Evaluating-ISMCTS player (E-

ISMCTS) was that games took at least ten times longer than with S-ISMCTS. This is likely due

to the ND4J aŶd DL4J liďƌaƌies͛ high use of ŵeŵoƌǇ aŶd theŶ Jaǀa͛s gaƌďage ĐolleĐtoƌ
slowing down computation as it clears unused memory. This is only an assumption and due

to time constraints, there was not enough time to do an investigation to be sure of the

source of the problem and to produce a solution. Therefore, it was only possible to run a

limited number of simulations with this AI.

The null hypothesis that E-ISMCTS would be no more effective than the lowest-card strategy

is rejected by the results between the two strategies, where E-ISMCTS, similarly to S-

FIGURE 11: CNN LOSS

FIGURE 10: CNN ACCURACY

ISMCTS, is winning just over two thirds of games – this is also statistically significant because

the probability of this happening by chance is p<0.017. Ideally, more simulations should be

run in order to gain a higher significance level.

In summary, the E-ISMCTS player has performed very similarly to the S-ISMCTS player over

the limited trials available. The author suggests that with more time to tweak the

implementation, the win-rate could be further improved and push ahead of the S-ISMCTS.

5.1.4 Human interaction
The author played 5 games against the S-ISMCTS player, managing to win in 2 of them. Due

to the very small sample of games and the use of only one human, no valid conclusions can

be made on the effectiveness of the S-ISMCTS player against human players. However, it

provides the opportunity to evaluate the S-ISMCTS player from a gameplay perspective. The

author observed that the AI made intelligible moves that did not look uncharacteristic of a

huŵaŶ plaǇeƌ͛s ĐhoiĐes. It ǁas apparent that the S-ISMCTS plays a very similar strategy to

the lowest-card strategy throughout the game. Although, it has already been established

that it is playing a better strategy (winning 67.5% of games) than the lowest-card strategy

but specific differences were not noticeable from the limited games played. The only

observed difference was in the choice of FUCC – a decision point that could have been

further analysed given more time. The end goal mentioned at the start of the report was to

have produced an AI capable of competing against a human player. By winning 3 out of the

5 games, it is reasonable to surmise that the S-ISMCTS player can compete with a human

player. However, the full extent has not been explored nor demonstrated beyond doubt. In

order to gain further confidence in the strength of the S-ISMCTS player, hundreds more

games would have to be played between the AI and various human players (see Future

Work).

Although it was not the aim of the present project, it is worth noting that the human

experience of playing the game against the AI did not feel authentic. The author suspects

the reason for this could be down to the user interface. Time limitations meant the only UI

was through the terminal, restricting the way the user views the game state, and their

ability to choose actions in an interesting way. The way in which players pick moves, i.e. via

a numbered list of options, is uninspiring. Without any graphics or animation, the game

feels uninteresting and very quickly monotonous.

5.2 Game engine
If this project were to be undertaken by the author again, unit tests would be produced

during development to be more certain that everything works as intended. In this case

hoǁeǀeƌ, the gaŵe eŶgiŶe͛s souŶdŶess has ďeeŶ pƌiŵaƌilǇ eǀaluated by observing games

between players to check that it plays correctly: Once the game engine was finished this was

always observed to be true. A method was also produced that periodically checks the

validity of the cards present within the game state, to ensure there is a full deck. This proves

that no cards were disappearing from the game or that extra cards were being added.

Between close observation and the validity checking method, it can be confidently assumed

that the game engine performs as intended.

25

6 Future Work
With the main parts of the project explained and the results evaluated, the author now

moves on to cover future work. This mainly focuses on exploring further improvements to

the E-ISMCTS, as this was the main focus towards the end of the project. However, we will

also briefly examine how the core ISMCTS algorithm could be modified to include game

specific knowledge as well as discussing the possibility of this implementation of Castle

being released as marketable game.

6.1 Improvement of the Evaluation Function
One of the main issues found with the E-ISMCTS algorithm is that it was extremely slow to

run simulations with – sometimes over ten times slower than S-ISMCTS. This could be

improved in the future to allow more efficient evaluation as the algorithm is further

improved. Given more time, investigation of memory usage by the DL4J and ND4J

frameworks could identify any issues caused by Jaǀa͛s gaƌďage ĐolleĐtoƌ. After a small but

conclusive amount of testing, the author found that querying the model within Java took

longer than in Python. Therefore, the evaluation function could be stripped out of the main

application entirely and produced in Python as a stand-alone system. This Python program

could still be run locally for very low latency.

There are also different approaches to the inner workings of the evaluation function that

could be explored. In the current implementation, all the model͛s predictions are given

equal weighting. However, this may not be the best approach because the predictions vary

in certainty. Instead, the activation value from the model͛s fiŶal laǇeƌ could be

backpropagated up the tree as this value can be used to assess how confident the model is

with a prediction. For example, if the activation value were 0.6, it is proposed that 0.6 be

backpropagated instead of 1 (a win) as in the current implantation. Another adaptation

would be to only accept predictions when the model is at a certain level of confidence, e.g.

< 0.4 or > 0.6. In the instance of the model not being confident in its prediction, the

algorithm would then carry on simulating for a given number of turns before querying the

model again. In principal, this means that the algorithm should run as S-ISMCTS unless the

model is confident enough in its predictions.

Furthermore, this project has focused on exploring Support Vector Machines and

Convolutional Neural Networks but there may be more suitable ML techniques available.

Sklearn provides many more functions that may be worth exploring such as Random Forests

as well as there being additional neural networks architectures to experiment with.

6.2 Improvement of ISMCTS
Game specific knowledge could be added as further improvement to the ISMCTS algorithm.

This could give the algorithm the ability to ͚remember͛ cards that have previously been

played by themselves and opponents in order to make better informed decisions by

narrowing the information set down.

An issue for ISMCTS ǁithiŶ the gaŵe of Castle is the gaŵe͛s laƌge state spaĐe. This Đould
mean the simulation stage is not sampling a very large proportion of the space. One way to

combat this would be to add bias to the simulation stage. This would direct simulation to

more likely states within the space in order to more accurately model game play throughs.

SD James [10] demonstrates how this approach can provide mixed results.

6.3 Development of a Marketable Game
As shown in the Evaluation and Results section, the current AI is already at a level that is

͚likelǇ͛ to ĐhalleŶge huŵaŶ plaǇeƌs. Hoǁeǀeƌ, if more human tests were carried out to

confirm this, it would open the possibility of a different approach, i.e. developing the parts

necessary to release the game to the public to play. These tests would need to cover

participants of varying abilities. A releasable game would require development of a GUI and

network capabilities, both of which are viable, albeit time consuming to produce.

27

7 Conclusion
The aim of this piece of work was to design, build and improve a Castle AI player as far as

possible within the given time frame. In order to achieve this, it was important to spend

time designing and implementing a game engine with a modular architecture. This time

investment was repaid later in the project by allowing easy configuration changes when

altering and testing the AI players. While a GUI was outside of the scope of this project, a

clear and easy to use console-based text interface was produced. It was useful for displaying

real time play between AI players and for the human player to use when playing against the

AI. However, being constrained to the terminal meant it did lack aesthetic qualities and was

uninspiring for the human to interact with.

The game engine code is written clearly and concisely, allowing the intended audience to

understand the way it works when read in combination with the UML diagrams and brief

explanations given in this report. Given more time the author would have preferred to make

further refinements to the code base. However, these refinements are not essential for the

overall aim of this project.

Moving on to the machine learning part of the project, the game engine ran and exported

results effectively, collecting over a million game states as training data. Having never used

Linux before this project, making use of the University Linux labs and Openstack Linux

Machines has prepared me for using the Linux operating system in industry after University.

Experimenting with some of Google͛s Đloud ĐoŵputiŶg modules such as Google Colab and

Cloud SQL has also been a good learning experience. Using these technologies to write and

run Python scripts remotely provided the computation needed to effectively train and test

two types of machine learning models, Support Vector Machines and Convolutional Neural

Networks.

It was disappointing to achieve a model accuracy of only 71%. However, this model score

did not translate into a poorly performing player. On the contrary, the E-ISMCTS player beat

the lowest-card strategy player in ~70% of games – very slightly higher than the S-ISMCTS

player. Both ISMCTS players performed well against the benchmark lowest-card strategy

player and the S-ISMCTS won 3 out of 5 games against a human player. These results are

evidence that the AI players have been improved to a suitable level that fits with the aim of

this project.

Although this project was successful against the chosen benchmark player, limited human

trials prevented proper comparisons with human play. Neither of the AI players built are

͚perfect players͛ and the author believes that with more time the E-ISMCTS player could

have been vastly improved, both in terms of speed and performance, in order to give

human players a more life-like game experience and challenge.

28

8 Reflection
A definite point for reflection is the time management of the machine learning exploration.

My model performances peaked at ~73% accuracy (see 5.1.3.1) early in the process and

because I assumed this was not high enough, I spent weeks trying to improve it with little

success. However, once I loaded the model onto the E-ISMCTS player, it showed promising

performance, suggesting that the time would have been better spent improving the player

as opposed to the model. Reflecting upon this, I should have focused more on testing and

refining the player instead of the model. I believe that my underlying assumption that basic

time management and planning is not necessary when working on a solo project caused me

to make this mistake.

If I were to do this project again, I would factor in time to write full unit test coverage. This

would have helped to prevent the situation I found myself in; collecting 4 million data points

over the space of weeks before I realised that the ISMCTS player had a bug which caused its

win rate to drop by ~15%, causing the data to be inaccurate and tainted. Had I found the

bug earlier I would have been able to collect many more data points of higher quality to

train the models with. Originally, I had thought that unit tests are only necessary for larger

applications with multiple developers. However, carrying out this project has taught me that

you cannot be sure everything is working properly even if you know the application well and

it is all your own code.

29

9 References

[1] Campbell, M., Hoane Jr, A.J. and Hsu, F.H., 2002. Deep blue. Artificial intelligence, 134(1-2), pp.57-83.

[2] Togelius, J., 2015, November. AI researchers, Video Games are your friends!. In International Joint

Conference on Computational Intelligence (pp. 3-18). Springer, Cham.

[3] Kocsis, L. and Szepesvári, C., 2006, September. Bandit based monte-carlo planning. In European conference

on machine learning (pp. 282-293). Springer, Berlin, Heidelberg.

[4] Jakubik, J., 2017, September. Evaluation of hearthstone game states with neural networks and sparse

autoencoding. In 2017 Federated Conference on Computer Science and Information Systems (FedCSIS) (pp.

135-138). IEEE.

[5] Cowling, P.I., Powley, E.J. and Whitehouse, D., 2012. Information set monte carlo tree search. IEEE

Transactions on Computational Intelligence and AI in Games, 4(2), pp.120-143.

[6] Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez, D.,

Samothrakis, S. and Colton, S., 2012. A survey of monte carlo tree search methods. IEEE Transactions on

Computational Intelligence and AI in games, 4(1), pp.1-43.

[7] Cowling, P.I., Ward, C.D. and Powley, E.J., 2012. Ensemble determinization in monte carlo tree search for

the imperfect information card game magic: The gathering. IEEE Transactions on Computational Intelligence

and AI in Games, 4(4), pp.241-257.

[8] Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing systems (pp. 1097-1105).

[9] Nyholm, S. and Smids, J., 2016. The ethics of accident-algorithms for self-driving cars: An applied trolley

problem?. Ethical theory and moral practice, 19(5), pp.1275-1289.

[10] James, S.D., 2016. The effect of simulation bias on action selection in Monte Carlo Tree Search (Doctoral

dissertation).

