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Explainable Artificial Intelligence for Multi-Sensor Information Fusion

Jack Furby

1 Abstract

This project focuses on explanations on fu-
sion tasks using a newly introduced explain-
ability technique: VADR, for generating mul-
timodal explanations on multimodal data. To
demonstrate this, an efficient but state-of-the-
art Neural Network architecture was used as
part of a mid-fusion network performing ac-
tion recognition on a subset of UCF-101 with
audio and video streams. The novel approach
of applying VADR to a balanced mid-fusion
Neural Network had not been previously at-
tempted. To create the model, first, a fea-
ture extractor was created, which trained the
video and audio subnetworks together, before
using the subnetworks within a classifier for
training on the action recognition task. The
explanations, once applied to the Neural Net-
work provided (1) saliency maps of relevance,
separated by modality and temporal and non-
temporal information, and (2) the proportion
of relevance for each modality. The explana-
tions and proportion of relevance provided in-
sight into features the network had learned
and could be used by a human to better un-
derstand a prediction. The model produced,
despite the weak accuracy, could be retrained
with little to no modification to the underlying
code in order to provide a more concrete set
of results using VADR.

2 Introduction

In recent years artificial intelligence (AI) has seen large
advances mainly regarding Machine Learning (ML)
using Neural Networks (NN) in prediction and classifi-
cation tasks. One particular area that is being actively
researched is Multimodal Machine Learning (MML)
which would lend itself to allow an AI agent to better
understand the real world, that itself, is experienced
with multiple modalities by humans. In order for an
AI agent to understand the world as we do, it will
also need multimodal capabilities (Baltrušaitis, Ahuja,
and Morency 2019). Fusion is one such technique that
assists in this capability for AI agents and is when
multiple modalities are joined together before an over-
all prediction is made. MML enables relations to be
created between modalities which becomes useful in
"real world" scenarios if for instance a modality is miss-
ing or contains noise (D’mello and Kory 2015). This

would be the case if a sensor became disconnected or
poor environments conditions were encountered such
as a camera at night.

NN are regarded as black boxes and they are hard
to interpret the reason why a particular prediction
or classification occurred. The result of this is a lack
of trust in the output produced. Within a human
agent team, this lack of trust may lead to the hu-
man deciding against the agent, even if the agent is
correct. Explainable artificial intelligence (XAI) tech-
niques have provided ways of examining these models
with visuals, text, examples, and local explanations
(Arrieta et al. 2019). One type of XAI is to use decom-
position to work from an output back to the input and
thus produce a relevance saliency map of the input.
XAI, understandably, becomes harder when multiple
modalities are concerned due to the best-fit explana-
tion format changing based on the problem and input
modality.

An explanation technique called Video-Audio Dis-
criminative Relevance (VADR) developed by a couple
of researchers at Cardiff University applied XAI to
a video and audio NN to provide relevance of each
modality in addition to explanations for both temporal
and non-temporal information. This was introduced in
the paper Taylor et al. in press 2020 with myself as a
co-author. This paper explored the technique applied
to a mid-fusion model with unbalanced subnetworks.
The authors demonstrated when an input video with
an audio track, they were able to calculate the rele-
vance of each modality to the prediction in addition
to producing saliency maps for video and audio. I
have therefore used the same technique, but with the
novel approach of using balanced subnetworks which
explores an open question raised that the size of the
input modality does not affect the output relevance.

This project sets out to create a multimodal ac-
tion recognition classifier and then by using VADR,
explain, evaluate, and compare the classifier to the re-
sults the authors of VADR found. This paper is set out
with sections 3 and 4 detailing background material,
section 5 introduces the implementation and training
of the classifier, and section 6 to the end presents the
results, conclusion, and future work. This report is in
the format of a research paper.
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3 Background

3.1 Multimodel Machine Learning

MML is a branch of ML where instead of a single
modality contributing to an output, multiple modal-
ities are used. This enables the ability to relate
the modalities which, potentially, may capture reac-
tions between them (Baltrušaitis, Ahuja, and Morency
2019). It is also the case that additional information
may be captured that would be missed given a single
modality which is what is experienced in the real world
where information in one or more modalities may be
missing or containing noise (D’mello and Kory 2015).
For example in a CCTV system, audio can capture
information that is hidden or not in the direction a
camera is pointing.

For the purpose of this paper, MML will be in
regard to a NN which is an attempt to represent a
biological neural network. The NN will optimise its
parameters to a given environment in order to min-
imise its loss. One particular issue regarding MML is
data fusion in which one or more modalities are joined
together. This is potentially a difficult task due to the
possibility of modalities being of different dimensions
such as video being in the format of a 3D array while
audio, by default, will be a stream of data.

3.1.1 Fusion

The goal of fusion is to combine multiple streams of
data in a beneficial way (Roitberg et al. 2019). In
this paper, I am only going to be referring to model-
based fusion in which the fusion of modalities is built
directly into the model. In terms of a NN this will
often be achieved by some hidden layer of the network
(Potamianos et al. 2003). The alternative approach
to model-based fusion is model-agnostic fusion which
is when the fusion approach is not specific to the
ML method in use. Various model-agnostic fusion ap-
proaches has been used which can be split mainly into
early fusion, late fusion and hybrid fusion (D’mello
and Kory 2015). Due to the fact this paper covers
NN, model-agnostic fusion is not appropriate as the
NN itself can apply the fusion of the modalities.

Fusion of data can be applied at various stages of
a NN. Three of the main stages where this can occur
are early fusion, mid fusion, and late fusion.

Early Fusion is known as feature-level fusion. It
works by combining unimodal features before a learn-
ing method is applied (Snoek, Worring, and Smeulders
2005). Early fusion can still extract features from each
modality before combination. The difficulty with early
fusion is combining features into a single combined
representation. As all features are combined early
on, there is a single smaller network than mid or late

fusion. This aids in training the model as compared
to the equivalent mid or late fusion model, there will
be fewer parameters. Early fusion is how it is believed
biological brains achieve fusion to some degree (Hall
and Llinas 1997).

Mid Fusion combines separate networks at a fea-
ture map level. This means some early features from
the networks are taken into consideration for the final
output. After the joining of individual networks, addi-
tional layers will are added to the joint representation.
A simple method to combine the networks would be
to concatenate the individual network outputs (Roit-
berg et al. 2019). The point at which to join separate
networks will impact overall performance with Roit-
berg et al. 2019 noting the deeper the networks are
combined, the better the overall performance.

Late Fusion, otherwise know as decision-level fu-
sion, is used to fuse data streams in semantic space
(Snoek, Worring, and Smeulders 2005). Late fusion
will combine outputs after classification which will
make a final output based on individual classification
of each modality classifier (hard level) or scores (soft
level) (Ebersbach, Herms, and Eibl 2017). The over-
all output could, for instance, be based on a voting
system where each classifier makes a prediction, and
the most predicted class is used, or the output could
be based on the highest or average confidence.

3.2 Fixed Feature Extractors

A NN is comprised of two main parts; a feature ex-
tractor and a classifier (Ren et al. 2015). The roles
of these two components are well defined where, as
the name suggests, the feature extractor is designed
to extract the important features from an input while
the classifier will take the extracted features and map
them to an output. In the case of a convolutional
neural network (CNN), the boundary between the two
components could be between where the convolutional
layers and pooling end and the fully connected layer(s)
start.

The first layer of a feature extractor will be de-
signed to take an input, with each subsequent layer
representing more and more complex patterns. For a
CNN you may expect the first layer to capture lines
and the next layer moving onto basic shapes and edges.
If for instance a CNN was trained on cats and dogs,
as the network got deeper, the convolutional filters
would start to represent noses, ears, mouths, and tails,
etc.

One of the main drawbacks for NN, in general, is
the need for vast amounts of data and long periods
to train. (Hertel et al. 2015) proposed and tested the
ability to take just the feature extractor of CNNs and
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retrain the classifier section. This, therefore, would
not take as long to train and require a far smaller
dataset as (Hertel et al. 2015) stated, a number of
the features extracted in different feature extractors
were in-fact very similar. In this particular example,
the authors managed to yield greater accuracy when
using a pre-trained feature extractor. This can be
attributed to the original training for the feature ex-
tractor being on a far larger dataset than the classifier
in the subsequent fine tuning. This resulted in the
feature extractor having more defined features that
may have not been possible without training on the
larger dataset.

3.3 Explainable Artificial Intelligence

Another shortcoming of NNs, which affects the ability
for humans to trust their predictions, is explainability.
A NN is inherently a black box given a NN is com-
prised of multiple nonlinear layers. Determining why
a prediction was made is itself a difficult task (Benitez,
Castro, and Requena 1997). XAI techniques have pro-
vided ways of examining these models with visuals,
text, examples, and local explanations (Arrieta et al.
2019).

One such way of providing an explanation is with
a saliency map which highlights the sections of input
with visual indicators for the sections that contributed
to the output. Local Interpretable Model-agnostic
Explanations (LIME) (Ribeiro, Singh, and Guestrin
2016) is an example of an algorithm that can provide
a saliency explanation and will approximate a predic-
tion with a black-box model using an interpretable
one i.e. linear models or decision trees. LIME aims
to offer a user an interpretable explanation of why
the output was what it was. It may not be globally
fidelity as this remains a complex problem, but it can
provide local fidelity.

A second method for XAI is Layer-wise Relevance
Propagation (LRP) (Bach et al. 2015) where a model
output is decomposed into the contributions of its
input (Montavon et al. 2017). This method is used
in Deep Taylor Decomposition (DTD). The original
authors of DTD demonstrated it with CNN where
the method would produce a pixel-wise heatmap as
the explanation. This is achieved by distributing the
output of a NN onto its respective input with respect
to the relevance. LRP and DTD relevancy output
will be equal to the relevancy of the model prediction.
Whereas LIME has positive and negative relevance,
DTD only provides positive relevance as one of its
constraints is to be consistent, that is the output has
the same relevance value as detected by the model.

DTD will perform one backward pass (go from a
prediction through a NN to the input), and on each
layer perform Taylor decomposition in a divide-and-

conquer manner. This is done as Taylor decomposition
becomes less accurate with additional layers due to
the difficulty in selecting a suitable root point, and
performing it on sub-functions alleviates this issue and
as such, DTD creates a more focused explanation.

4 VADR: Video-Audio Discrimina-

tive Relevance

VADR is a technique that provides a greater under-
standing of input modality contributions and tempo-
ral and non-temporal relevance to audio and video
models. Explanations produced are in the form of
saliency maps like those of DTD. This was demon-
strated in Taylor et al. in press 2020 on a mid-fusion
CNN performing action recognition. The saliency ex-
planations however separate modality, temporal and
non-temporal relevance from one another providing
insight into features a model has learned and as a
possible use case, focusing the relevance for a hu-
man to quickly identify the important part of an
input. VADR accepts a video input consisting of
frames over time which is stacked to create a tensor
of frames × height × width × channels, and audio
transformed into a spectrogram. Temporal relevance
will be removed from all other relevance which results
in the separation of these two relevance types. A video
consists of a number of frames and audio plotted with
changes in frequency over time, this separation of
temporal relevance is possible.

4.1 Proportion of Relevance

The relevance proportion of each individual modality
can be worked out with equation 1. This will assume
relevance is defined as the constant C which comes
from the gradient of the input (derived from loss),
multiplied by the input: R = c × x. As modalities
may be of different sizes, VADR will account for any
unbalance by weighting the proportion relevance by
the size of the modality feature vectors. The input
feature vectors XV,A are given as XS .

∑

RSweighted
=

∑

RS
∑

S∈V,A

CS

(1)

where

CS =

∑

RS
∑

XS

(2)

The purpose of this formula is to provide insight
into a model’s bias towards input modality. This for-
mula output is also used for selective relevance which
is what provides the saliency maps used in VADR
explanations. Equation 1 can find out relevance on a
per sample, class, or dataset basis.
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The authors of VADR demonstrated a proportion
of relevance with a two-stream mid-fusion action recog-
nition classifier on a subset of UCF-1011. The input
streams were for video and audio. Here they showed
audio and video were both relevant, with one or the
other modality becoming more relevant depending on
the class. In classes such as Hammering where audio
is expected to be highly related to the task, audio rele-
vance generally was higher than video relevance. This
was then switched for classes like ApplyEyeMakeup
where visual information is more descriptive than au-
dio information.

4.2 Selective Relevance

The relevance maps that makeup VADR explanations
are produced using a technique called Selective Rel-
evance (SR) which was introduced in (Hiley et al.
2020) as the solution to previous XAI techniques such
as DTD being unable to separate different types of
relevance (Hiley et al. 2019). DTD and other XAI
techniques, for example, worked well on images, but
when given a video would combine spatial and tem-
poral relevance, making it hard to identify exactly
what was important. SR builds on other relevance
methods such as DTD, but with the addition of sepa-
rating relevance over time. This is achieved by taking
the derivative of the relevance in each dimension. For
video, this would be over the x, y, and time dimensions.
Where the derivative changes dramatically over time,
the relevance is temporal. When removed from the
total relevance, temporal and non-temporal relevance
has been separated.

A technique that SR uses is to use a Sobel operator,
which is a handcrafted convolution, that will detect
edges in a selected dimension when passed over an im-
age. This will output a grey-scale representation of the
edges. If instead of passing the Sobel operator h′t over
an image, it is instead passed over the relevance map
R, the result will be a pixel-wise derivative Gt with
which, non-temporal relevance can be filtered from
temporal relevance by applying n standard deviations
represented by σ (Taylor et al. in press 2020).

Gt(R) = h′t ∗R (3)

Rt = {rijk|Gt(rijk) > σ} (4)

The n standard deviations σ to separate temporal
and non-temporal relevance are user selected. When
applied to the temporal edge map, any value which
is greater than σ is set to 1 and 0 otherwise. This

method can be applied to both 3D inputs (video) and
2D inputs (audio) as its only constraint is the size of
the dimension remains the same.

5 Implementation

For this paper, I have implemented an action recogni-
tion classifier which was achieved in two stages. The
first stage was to create a feature extractor heavily
based on (Korbar, Tran, and Torresani 2018). This is
a two-stream network with a subnetwork for the audio
and video modality. Each of the subnetworks, once
trained, was loaded into the second stage of the model
which transformed them into the classifier. This is
detailed more in section 5.2.

The implementation of the classifier was based on
the implementation in (Taylor et al. in press 2020). It
shares code for the dataset, video and audio transfor-
mations, and dataset processing method. The shared
code has been modified to allow the differences that
this paper exhibit in comparison to (Taylor et al. in
press 2020).

5.1 Feature extraction

The authors of Korbar, Tran, and Torresani 2018 cre-
ated a model to learn the connection between audio
and video from self-supervised learning. They aimed
to create a binary classifier for temporal synchronisa-
tion between audio and video but it was also adapted
for action recognition, where it was discovered that
their model also acted as a suitable feature extractor
for such tasks, offering an improvement in accuracy
compared to training from scratch. As this paper uses
a model for action recognition using audio and video
inputs, recreating this work would provide a suitable
classifier for XAI to be added and analysed.

5.1.1 Dataset

For the feature extractor to learn an accurate repre-
sentation of the dataset which would not be easily
misled by distortion in future examples, data was aug-
mented before feeding it into the feature extractor.
This has two main benefits as it helps stop a model
from overfitting to just the data it was trained on and
it artificially increases the size of the dataset. The
argumentation methods applied to audio and video
were the same as (Köpüklü et al. 2019a) and (Hershey
et al. 2017) which was also used in (Taylor et al. in
press 2020). This randomly flipped the input video,
performed a random crop, and normalised the video.
The audio was transformed into a Mel-spectrogram
with log-scaling. An additional modification to the

1UCF-101 is a dataset of 101 different activity categories taken from YouTube. See https://www.crcv.ucf.edu/data/UCF101.

php.
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input data converted the video to 16 frames for every
second at a resolution of 320 pixels by 240 pixels with
audio set to 16k samples per second. These two modi-
fications to the data were made to transform the data
into a consistent format that could easily be passed
through the feature extractor. The feature extractor
was trained on 1 second long clips.

As detailed in (Korbar, Tran, and Torresani 2018),
the feature extractor is trained on different difficulties
of samples in a method called curriculum learning, full
details of which are in section 5.1.3. This capability
required the dataset to be configured to not only fetch
data for training but also adapt the data retrieved
depending on the situation. A particular sample of
data can either be positive, easy or hard where easy
and hard samples are both negative. Positive samples
have in sync audio and video, easy samples take audio
and video from different clips and hard examples have
audio and video from the same clip although there
is at least half a second gap between the audio and
video.

5.1.2 Architecture

The feature extractor uses two sub NN using Mo-
bilenet V1 architecture (Howard et al. 2017) which,
as much as it is not state-of-the-art in terms of per-
formance, has fewer parameters to train, and thus
converges faster and can run on less powerful devices.
The complete architecture is detailed in figure 1. The
loss function used to create the feature extractor is
contrastive loss which is distance-based. This works
by the output of each sub NN feeding into this func-
tion with the value of the loss denoting how different
they are from each other. Contrastive loss makes it
possible to produce two networks with similar outputs,
with the benefit to this feature extractor is being able
to match audio and video for the same action. This
loss function is detailed in equation 5 where Y true is 1
if the sample is positive else 0 and D is the Euclidean
norm. For training, the margin was set to 0.99. The
loss, like a standard NN, is backpropagated, although
this time through each of the sub-NN.

contrastiveLoss = Y true×D2 + (1− Y true)

×max(margin−D, 0)
(5)

Y true =

{

1 if sample is positive

0 otherwise
(6)

Figure 1: Two Mobilenet V1 sub networks with con-
trastive loss
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5.1.3 Training

The feature extractor was trained on a subset of UCF-
101 with 51 classes which featured both audio and
video modalities. The dataset was split into train,
validation, and test subsets with the ratio 70:20:10 re-
spectively. Only train and validation was used during
training of the feature extractor, the validation subset
of the dataset was not used.

As the authors of (Korbar, Tran, and Torresani
2018), the feature extractor trained used curriculum
learning which is to say training started with an eas-
ier task before moving on to a harder one. In this
case, the feature extractor started training with only
positive and easy samples for a set number of epochs
before adding in hard samples. The training ran for a
total of 130 epochs with the first 50 epochs only using
positive and easy samples with a 50:50 probability of
each sample type being used. After this point, hard
samples were added with a probability of 50:25:25 for
positive, easy, and hard samples respectively.

The learning rate was set to 0.01 and reduced by
a factor of 10 on the 40th, 55th, 65th, and 70th step.
Weight decay was set to 0.9, 0.9, and 0.1, respectively,
and batches were made up of 16 samples. The model
was implemented in Pytorch2 and trained on a single
NVIDIA 1080ti GPU. Training took 4 hours and 48
minutes with a final validation loss of 0.2919. At this
point, the loss does not equate to much, but during
training, it should be noted that the loss over time
decreased for both the train dataset split and the test
dataset split which is a good sign the feature extractor
has not overfit.

5.2 Action recognition

For action recognition, a total of two classifiers were
trained. Section 5.2.1 to 6 discusses the second of
the two classifiers as the first classifier heavily overfit
on the dataset. This resulted in a seemingly good
accuracy of 89% but as all similar models (Korbar,
Tran, and Torresani 2018, Taylor et al. in press 2020)
achieved a lower accuracy while making use of a larger
dataset for the feature extractor, it became clear the
classifier had picked up on some feature(s) that in-
flated its accuracy. A NN overfits because the model
discovers additional features than are required for it
to function correctly Hawkins 2004. This could be the
case by including poor training data such as including
a ruler in all positive example images for medical diag-
nosis while negative samples never include a ruler, or
overfitting could be attributed to the training method
used. Between my two classifiers, the change was with
the size of each subset of the dataset. The first clas-
sifier mistakenly used a train:validation:test split of

70:10:20 instead of the corrected split of 70:20:10.

5.2.1 Model

The action recognition classifier uses the same mo-
bilenet V1 architectures as trained in section 5.1 for au-
dio and video. The final layer of each sub-network over-
wise know as a feature vector were concatenated to-
gether with an additional fully connected layer added
after to make it a mid-fusion model. The fully con-
nected layer was of size 51 to match the number of
action classes in the dataset. Each feature extractor
feature vector size is 1000 which makes it possible to
evaluate the relevance of each input modality with a
balanced network. It was found that an unbalance did
not seem to cause an issue in (Taylor et al. in press
2020) and with my classifier architecture, it will be
possible to verify that. The classifier architecture can
be seen in figure 2.

Figure 2: The model uses two pre-trained MobileNet
V1 architectures as feature extractors with the output
concatenated and passed through one additional fully
connected layer.

2Pytorch is an ML framework for rapid development in Python. See https://pytorch.org/.
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5.2.2 Training

For training, the classifier was fine-tuned with the
same subset of UCF-101 as the feature extractor. Each
of the subnets weights was loaded in from pre-trained
models, but due to the small size of UCF-101, the
weights for the video stream were not suitable and
would result in the model achieving a maximum of
around 6% accuracy. Instead, weights from a pre-
trained Mobilenet V1 classifier trained on Kinetics3

was imported from Köpüklü et al. 2019b. The audio
stream weights were still suitable from the feature ex-
tractor that was trained in section 5.1, although this
does have a negative impact on the overall accuracy.
The subnet weights were frozen during training for
action recognition with the exception of the feature
vectors and the additional fully connected layer af-
ter fusion. Fine-tuning used cross-entropy loss and
stochastic gradient descent.

The learning parameters for this stage of training
remained mostly the same as the feature extractor
with the exception of the learning rate being set to
0.1, and decay steps at the 55th, 80th, 90th, 100th,
110th, 120th and 130th epoch. The batch size was set
to 32 and training ran for 140 epochs. This achieved
an accuracy of 49.94% on the test hold-out dataset
split which, although it is lower than other research
has achieved, still demonstrates it has learned repre-
sentation of the data as random guessing would reach
an accuracy of around 1.9%. Every sample the model
used was positive.

6 Results

The overall accuracy the classifier achieved in com-
parison to other researcher papers is shown in table
1. The accuracy comparison is made between a selec-
tion of NN that have different architectures trained
to perform action recognition with UCF-101. All of
the NN includes the fusion of video and audio. As
mentioned previously, the classifier detailed in this
paper is not expected to reach state-of-the-art per-
formance. Compared with other models that used
fusion for visual and audio information on UCF-101,
the classifier achieves a lower level of accuracy. This
can be attributed to the training of the feature ex-
tractor on UCF-101 as the audio subnetwork did not
contain a diverse set of features. This particular point
is more clearly seen when applying VADR to the re-
sults. I have also included a larger NN in table 1.
This was trained using visual and optical-flow streams
and demonstrates the accuracy expected with larger
models.

Table 1: Method comparison

Method Accuracy

AVTS (Korbar, Tran, and Tor-
resani 2018)

87%

MobileNet + VGGish (Taylor
et al. in press 2020)

81.5%

Two-Stream I3D (Carreira and
Zisserman 2017)

93.4%

Two-Stream MobileNet 49.94%

Figure 3: Per class accuracy on subset of UCF-101

Out of the 51 classes, the classifier performs best on
BandMarching, BasketballDunk, FrontCrawl, Bowl-
ing, rafting, and PlayingSitar with all but PlayingSi-
tar and Rafting achieving 100%. PlayingSitar and
Rafting were both above 90%. All of these classes’
accuracy can be attributed to the training data either
only containing samples from a particular direction
and/or the class visuals being distinct compared to
other classes. In comparison, ApplyingLipstick and
ApplyEyeMakeup both had similar visual streams and

3Kinetics is a dataset of 600 different activity categories each with at leaset 100 samples. See https://deepmind.com/

research/open-source/kinetics.
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thus their accuracy was 11% and 35% respectively. A
full breakdown of per-class accuracy can be found in
figure 3.

Figure 4: Mean modality relevance for our model on
subset of UCF-101

For further analysis of the classifier, an additional
technique called VADR explanations was added. I
have used a modified implementation of VADR from
(Taylor et al. in press 2020) for this section. Figure
6 shows the class-wise relevance between audio and
video. This was calculated with equation 1 to get
the proportions of audio to video in regards to the
contribution to the prediction. From this, note the
relevance is very much dependant on the video stream
and in contrast, the authors of VADR found much
higher audio relevance in their model. The different
results I found were due to the audio feature extractor.
As it was trained on a very small dataset, the features
it represents were not diverse which resulted in several
classes that a human would expect to be audio strong
ending up reversed. The strongest cases of these in-
clude classes with instrument playing. If the classifier
model was retrained using an audio stream trained
on a larger dataset such as Kinetics, the audio stream
would be expected to shift closer to results the authors
of VADR achieved and an overall accuracy similar to
(Korbar, Tran, and Torresani 2018), depending on the

model architecture.

Despite the shift in video relevance, the classifier
does seem to be starting to use the audio stream on
action classes with more distinct sounds, such as Cut-
tingInKitchen, Bowling, and FrontCrawl while classes
such as SkyDiving are on the lower end of audio rel-
evance due to irrelevant or noisy audio. In the case
of Skydiving, the audio in most of the video samples
have music as the audio track.

Figure 5: Boxplot audio modality relevance per class
on the subset of UCF-101

Exploring audio relevance further we can start to
analyse why some classes have higher audio relevance
than others. Figure 5 shows us a bit more about the
distribution of audio relevance per class. Video rele-
vance has not been displayed as it is just the inverse of
the audio relevance. From this boxplot, we can see a
general trend towards a larger range of maximum and
minimum audio relevance as class accuracy decreases
when referring back to figure 3. The average accuracy
of classes under 8% audio relevance is 58.4%, between
8% and 9.5% relevance is 44.6% and relevance above
9.5% has an average accuracy of 38.1%. It should be
understood, the correlation between audio relevance
and class accuracy does not mean causation. As the
classifier struggles to identify features using the more
relevant video feature extractor, it appears to be rely-
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ing more on the weaker audio feature extractor and
it would appear as if this often does not benefit the
classifier’s prediction. This is an artifact of using a fea-
ture extractor trained on UCF-101. It is not possible
to draw any concrete, generalised, audio vs video ef-
fect on overall accuracy from this classifier. Referring
back to the authors of VADR, their model showed a
different story where audio was more important that
video for approximately half of the classes.

Applying VADR explanations to the classifier al-
lows us to explore the features that impact the pre-
diction most. On average the classifier seems to use
temporal and spatial information equally from video
information as the value of σ was set at 2.0. Audio
appears to be more spectral with a σ value of 0.25 but
considering the low relevance of this modality, with
the classifier, it is difficult to tell if this is indeed the
case. The temporal and non-temporal results were
unexpected in comparison to the VADR paper as the
author’s results shown much higher spatial relevance
in the visual modality and higher temporal in the
audio modality. Both the classifier detailed in this
paper and the VADR paper uses the same pre-trained
video subnet and thus you would expect very similar,
if not the same relevance for that modality. The pri-
mary difference in the visual modality is very selective
spatial relevance. The authors of VADR found almost
all spatial information relevant to the reduction of
temporal relevance. Temporal relevance as much as
it was not as important, proved useful in terms of
an explanation as it successfully would highlight the
movement of the subject such as a boxing swing, or a
diver jumping off a cliff.

In comparison figure 6 and figure 7 shows the rele-
vance with the classifier demonstrated in this paper.
In figure 6, the temporal relevance is primarily over
the diver as he jumps and falls with spatial relevance
highlighting the shape of the diver, the diver’s feet,
and shorts. Highlighting feet and shorts goes to show
the model has picked up features that relate to a few
classes in the dataset, but not necessarily a feature a
human would identify as relevant. For this particular
example, audio shows little to no audio features that
would be useful for a human. This is expected, as over
this particular example there is music playing as the
audio track.

In figure 7, video temporal relevance highlights
movement of the person’s arm as highly relevant, in
addition to the hammer and the piece of wood being
hit. Spatial relevance, similarly to the diver, displays
the shape of the subject being relevant with the arm,
hammer, and piece of wood as most relevant in this ex-
ample. Audio relevance is interestingly picking up the
impact of the hammer which paired with the fact ham-
mering, as a class, gets reasonably high accuracy with
higher audio relevance, it would suggest the model

has started to pick up the impact sound as a feature.
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Figure 6: Cliff Diving with VADR explanation. The selected frame is from 0.6 seconds in from the start of
the sample.

Figure 7: Hammering with VADR explanation. The selected frame is from 0.6 seconds in from the start of
the sample.
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7 Conclusions and future work

The goal of this paper was to explore XAI for Multi-
Sensor Information Fusion. The model created was
a classifier on a subset of the UCF-101 dataset using
the 51 classes that contained video and audio. The
classifier trained successfully converged on a solution,
able to achieve a reasonable, although on the lower
end of the spectrum, level of accuracy using audio and
video streams for input. The classifier used mid-fusion
to combine the modalities and each of the subnetworks
is efficient in terms of required compute which will
enable the classifier to run on less powerful hardware.
If the model was to be retrained on a larger dataset,
this project has provided the required code to begin
the process.

VADR, a recently introduced method to provide
reasoning for both temporal and non-temporal expla-
nations was applied to the classifier, which allowed
us to explore the features the model had discovered.
This classifier primarily used video as the most rele-
vant modality and then temporal and non-temporal
information, approximately, equally.

There are still areas for future work which are
outlined in the following:

1. As discussed in section 6, audio relevance is
much lower than desired due to training the
feature extractor on UCF-101. The aim of the
feature extractor for this project was to improve
the overall accuracy of the classifier. This was de-
signed to use transfer learning in which a larger,
but a similar task is originally learned before
being mapped over to the final task (Raina, Ng,
and Koller 2006). Producing a new feature ex-
tractor, trained on a larger dataset would result
in a classifier with higher accuracy, and with
much more conclusive results can be made. The
work in this paper sets a functional codebase for
this and Kinetics would be a suitable dataset
for training.

2. Further development to optimise the implemen-
tation for training would offer a few speedups
when creating the feature extractor and classi-
fier. At this time, training can only make use
of a single GPU and has a slow pipeline for
providing data to the GPU. Adding multi GPU
support, in theory, could yield between 1 and 2
times speedup for training, and improving the
data pipeline would mean the GPUs are not left
idling for long periods of time. This work would
not affect the overall outcome but will speed
up getting there and avoid the approximate of

30 days to train the feature extractor with the
current configuration.

3. We know that modalities are related to each
other with one of the earliest works in the area
looking at audio-visual information is speech
Mcgurk and Macdonald 1976. Therefore if one
or more modalities are missing, then the remain-
ing modality or modalities should still be used to
give a good prediction. Further research looking
at the relevance shift if one modality is miss-
ing or noise added would provide insight into
model resilience and how relevance changes to
new, challenging situations.

4. Creating a live demo of the classifier with VADR
would make the research more accessible to
people without a technical background in the
subject area. This could also demonstrate the
lower compute requirements if the demo was per-
formed on a device such as an NVIDIA Jetson
Nano4.

8 Reflection

Generally, this project has been a success. Section 5
has created the groundwork for a more robust classifier
to be trained in the future, and have added explana-
tions using VADR in section 6 which assists in human
understanding. That said, The classifier I produced
did not use a robust feature extractor which would
have lead to greater accuracy with the classifier and
VADR explanations.

The feature extractor detailed in section 5.1 was
originally trained on Kinetics600 in an earlier itera-
tion, but unfortunately during development a few of
the design choices I made caused issues, and as such, I
was unable to get the model to converge. The largest
of these was in the transformations of the training
data and by the time I had realised there was an issue,
there was no longer enough time to make a correction
and start training again. The training was set to last
90 epochs, and on the hardware configuration I had
access to, this would take approximately 30 days to
complete.

Adding VADR to my model’s output turned out
to be a larger task than I initially envisioned. I had
access to and used a pre-existing implementation of
VADR which, without, I would have never been able
to complete myself before the deadline. I still faced a
major challenge when adding this to my classifier as
the output originally to myself looked correct, but in
comparison to the original work for VADR, contrasted
significantly. After a deeper look into the difference,

4A single board computer capable of running NN. See https://developer.nvidia.com/embedded/

jetson-nano-developer-kit.
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no issue was raised with the VADR implementation
and thus the difference was down to different features
the two classifiers had learned.

Going into this project I already had some ex-
perience in ML and in particular in Reinforcement
Learning where an agent learns from experiencing an
environment over and over again, maximising some
reward function. The switch to MML and XAI, all
within a framework I had not used before (my previ-
ous experience had been in an alternative to Pytorch),
resulting in having to rapidly learn new skills and read
up on some recommended literature. This experience
was a challenge at times, but a very useful extension
to my knowledge in the field.

Overall I am pleased with what I have produced
throughout this project. I have made significant
progress despite only reaching the initial goal in com-
parison to my initial plan. The target goal was to
make an addition to explainability for multimodal
data fusion which would have likely taken the form
of a second model. The work required to reach the
initial goal turned out to be more challenging than
initially thought and so it became the entire project.
If I was to also work on the target goal, then I would
have ended up with two semi-formed solutions.
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