
1

Final Report

A Personal Diary App

Module: CM3203 One Semester Individual Project

Student Number: C1647731

Author: Jack Williams

Project Supervisor: Alia I Abdelmoty

Project Moderator: Philipp Reinecke

2

Abstract

Cognitive behavioural therapy (or CBT) is a talking therapy to help you manage how you

think and behave. [1] A personal diary is one of the methods used to help a patient

undergoing CBT. The purpose of a diary is to keep a record of different events or

experiences that happen on a daily occurrence. This is used by the therapist to gain a better

understanding of how a patient handles certain situations, and for patients to self-reflect on

their behavioural patterns. In this modern era, traditional paper diaries can be troublesome

due to the potential lack of confidentiality and impracticality of having one on hand at all

times. In this report I will be showcasing how a simple diary application can be used to

greatly improve the experience of a CBT patient.

One of the key advantages of a diary application is that, unlike paper diaries, the therapist

ǁould ďe aďle to iŶstaŶtlǇ aĐĐess all the patieŶt͛s eŶtƌies ǁhiĐh ǁill iŶĐlude aŶǇ tƌouďle theǇ
had that day with concurrent emotions felt during that time.

This report will outline the whole process of the development of the application, from the

design, approaches and implementation to testing and evaluation.

3

Acknowledgements

I would like to take this opportunity to thank all my friends and family for their support

during the entire project. It has been a tough few months for everyone and still, they were

there for me when I needed them to be.

I would also like to thank my amazing supervisor, Alia Abdelmoty, for guiding me through

my project, picking me up when I was down and constantly providing me with external

resources to guide me mentally and help with my project.

4

Contents
Abstract ... 2

Acknowledgements ... 3

Table of Figures ... 6

Introduction .. 8

Project Overview ... 8

Project Aims .. 9

Personal Aims .. 9

Background ... 10

The Problem .. 10

Existing Solutions .. 10

Existing Solutions State Transition Networks ... 16

Therapist Diary Research .. 18

Personas .. 21

Project Constraints .. 23

Approach ... 24

Planning .. 24

Learning .. 24

Developer Guides .. 24

Data Storage .. 25

User Interface Design .. 25

User Interface ... 26

Specification and Design ... 27

Functional Requirements .. 27

Non-Functional Requirements .. 29

Use Cases .. 30

Prototype .. 38

First Design .. 40

Final Prototype Design .. 49

Implementation .. 51

UML Class Diagram ... 51

Database ... 52

User Schema ... 52

System ... 54

Postman .. 54

Create New User ... 54

5

Login .. 56

Retrieve User... 59

Logout ... 61

Navigation ... 62

Navigation Overview ... 64

Add New Entry .. 65

Situation .. 67

Emotions ... 68

Worry .. 72

Final Entry Preview ... 75

My Entries ... 76

View an Entry and Publish .. 76

Refresh Entries .. 78

Delete an Entry ... 79

Search and Sort ... 80

Quick Add Entry .. 80

Implementation Conclusion .. 81

Results and Evaluation .. 83

Application Outcome Compared with Requirements ... 83

User Testing .. 85

User Test Results ... 87

Future Work .. 90

Conclusions ... 91

Reflection on Learning .. 92

References .. 93

6

Table of Figures

Figure 1 - CBT Thought Diary Application: Add a new diary entry ... 17

Figure 2 - CBT Thought Diary Application: View a previous diary entry. .. 17

Figure 3 - 'Hot Cross Bun' found at http://psychologytools.com/cross-sectional-formulation.html ... 20

Figure 4 - Initial ideas for colour schemes .. 39

Figure 5 - Application Logo ... 40

Figure 6 - Login Page ... 40

Figure 7 - Home Page Figure 8 - Menu Page ... 41

Figure 9 - Entries Screen Figure 10 - Single Entry... 42

Figure 11 - Situation Screen Figure 12 - Emotions Screen Figure 13 - Worry Screen 43

Figure 14 - Person Overlay Figure 15 - Location Overlay ... 44

 Figure 16 - Calendar Overlay's .. 45

Figure 17 - Application Information Screens .. 45

Figure 18 - Improved Home Screen .. 49

Figure 19 - Improved Entry Screens .. 50

Figure 20 - UML Class Diagram ... 51

Figure 21 - User Schema ... 52

Figure 22 - Example User and Entry .. 53

Figure 23 - Create User Route ... 54

Figure 24 - Mongoose 'pre' middleware ... 55

Figure 25 - User Hashed Password Example ... 55

Figure 26 - generateAuthToken function .. 56

Figure 27 - User Token Example ... 56

Figure 28 - New User Full Example ... 56

Figure 29 - Login Route ... 57

Figure 30 - findUserByCredentials Function ... 57

Figure 31 - User Log in Full Example ... 58

Figure 32 - Home Screen ... 58

Figure 33 - Get User Route .. 59

Figure 34 - Custom Authenticate Middleware .. 59

Figure 35 - Get User Postman Example .. 60

Figure 36 - Failed Logout Example .. 60

Figure 37 - Full Get User Postman Example .. 60

Figure 38 - Logout Route ... 61

Figure 39 - removeToken Function ... 61

Figure 40 - Logout Postman Example ... 62

Figure 41 - Navigation Container .. 62

Figure 42 - Home Screen Component ... 63

Figure 43 - HomeDrawerScreen .. 63

Figure 44 - Entry Screen Component .. 63

Figure 45 - EntryTabsScreen ... 64

Figure 46 - Navigation Overview ... 64

Figure 47 - Entry Help Screens .. 65

Figure 48 - Clear Entry Example .. 65

Figure 49 - Text Input Function Example .. 66

Figure 50 - AsyncStorage setItem ... 66

7

Figure 51 - Situation Screen .. 67

Figure 52 - DatePicker ... 68

Figure 53 - Emotions Screen ... 69

Figure 54 - AddEmotion Function ... 69

Figure 55 - SubmitHandler Function ... 70

Figure 56 - Duplicate Emotion Alert .. 70

Figure 57 - EmotionItem Display ... 71

Figure 58 - Remove Emotion Alert .. 71

Figure 59 - Remove Emotion Full Example ... 72

Figure 60 – Picker Component .. 72

Figure 61 - Full Picker Example ... 73

Figure 62 - onSubmit Full Entry ... 73

Figure 63 - Entry Validation Check .. 74

Figure 64 - Full Entry Validation Alerts ... 74

Figure 65 - Full Entry Preview ... 74

Figure 66 - Final Entry Preview useEffect Function .. 75

Figure 67 - Full Entry Example .. 75

Figure 68 - My Entries Screen ... 76

Figure 69 - Entries Flat List Display ... 76

Figure 70 - Custom Card Component .. 77

Figure 71 - Select Entry Button ... 77

Figure 72 - Route Values ... 77

Figure 73 - My Entries Entry Example ... 77

Figure 74 - Refresh Entries Button .. 78

Figure 75 - newEntryHandler Button .. 78

Figure 76 - newEntryHandler Function ... 78

Figure 77 - Delete Entry Icon .. 79

Figure 78 - Remove Entry Function ... 79

Figure 79 - Delete Entry Example .. 79

Figure 80 - Search and Sort Design ... 80

Figure 81 - Quick Add Entry Screen .. 80

Figure 82 - Hypothetical Quick Add Entry Example in My Entries .. 81

8

Introduction

As we continue to learn how every human is different physically, mentally and emotionally,

mental health becomes more and more prevalent in our society. This is an aspect of life that

has previously had a stigma surrounding it. Thankfully, it is finally being accepted as a

problem people face every day and is not something to be embarrassed or to hide away

from anymore. The overall goal of my project is to help control the way someone may feel

to lead a happier, healthier life mentally.

Project Overview

Diaries are used by millions of people around the globe. The uses for a diary are extensive,

ranging from jotting down a wish list to a simple calendar for work or pleasure – they can be

used for pretty much everything. This has led to techniques being developed to use them

from a medical standpoint.

Cognitive behavioural therapy (or CBT) is a talking therapy that is used to help change the

current way you think and behave to manage your problems. [1] CBT succeeds by following

the theory that your thoughts, feelings, physical sensations and actions are connected. Due

to this, negative thoughts could leave you with recurring issues in the future.

CBT can be used to treat a number or disorders (a more extensive list is available via [1]):

• Bipolar disorder

• Borderline personality disorder

• Eating disorders – such

as anorexia and bulimia

• Obsessive compulsive disorder (OCD)

• Panic disorder

A popular method to treat these disorders is to have the patient fill out a diary every day

throughout the course of their treatment. There are many different forms of diaries created

to treat different disorders. These different forms contain a range of questions asked by the

therapists for the patient to answer, depending on what disorder to treat. For example, an

activity diary will ask a patient to note down an activity they have achieved, rate the success

of that achievement and a pleasure rating from the activity. For my project, I will be

foĐusiŶg oŶ the ͚WoƌƌǇ DiaƌǇ͛ which takes a situation and breaks it down into different

sections.

• Phobias

• Post-traumatic stress

disorder (PTSD)

• Psychosis

• Schizophrenia

• Sleep problems – such as insomnia

https://www.nhs.uk/conditions/bipolar-disorder/
https://www.nhs.uk/conditions/borderline-personality-disorder/
https://www.nhs.uk/conditions/anorexia/
https://www.nhs.uk/conditions/bulimia/
https://www.nhs.uk/conditions/obsessive-compulsive-disorder-ocd/
https://www.nhs.uk/conditions/panic-disorder/
https://www.nhs.uk/conditions/phobias/
https://www.nhs.uk/conditions/post-traumatic-stress-disorder-ptsd/
https://www.nhs.uk/conditions/post-traumatic-stress-disorder-ptsd/
https://www.nhs.uk/conditions/psychosis/
https://www.nhs.uk/conditions/schizophrenia/
https://www.nhs.uk/conditions/insomnia/

9

Project Aims

The aim of this project was to create a user-friendly diary application which patients can

discreetly and effectively fill out for professional analysis from the therapist. This will allow

the patient to get the most out of their treatment. If the app was not user-friendly, the

information provided by the user may be tainted and ruin the whole focus of the process,

potentially leaving a patient to feel alienated and misunderstood. The application should

allow the patient to enter all aspects of the situation they are inputting into the diary,

allowing the therapist to see exactly how the patient was feeling at that time.

For the project to be user-friendly and efficient, I adopted a user-focused design approach.

This iŶǀolǀed ŵe usiŶg NielseŶ͛s ϭϬ heuƌistiĐ evaluation principles to evaluate the layout

aŶd peƌfoƌŵaŶĐe of the app͛s fuŶĐtioŶalities. [2]

These functionalities are:

• To allow the user to create a diary entry as straightforward as possible, without

taking away from the overall goal of the entry.

• To allow the user to clearly view their previous entries and choose which ones to

publish for the therapist to be able to view.

• To allow the user to express their thoughts and feelings through the different

questions and options within the form by adding as many emotions and ratings as

they feel necessary.

• To allow the user to quickly add any emotions they may be feeling without the need

to type out a full entry. This is particularly useful for a patient to understand their

range of feelings throughout the day, regardless of a situational trigger.

To keep the implementation part of the project manageable, I used an Agile based

approach, breaking each functionality into different chunks to not confuse both myself and

the overall flow of the application. [3]

Personal Aims

Through my time at university, I have learnt various programming languages, such as Java

and Python, and what they can be used for. One thing I have always wanted to be able to

achieve is the creation of a mobile application. I had no previous mobile application

development experience prior to this project and so used this opportunity to learn a

relatively new mobile application framework, React Native.

10

Background

The Problem

Currently, therapists that work exclusively via phone call or video chat have to use awkward

means to implement the diary method of treatment due to the lack of face to face contact.

Firstly, patients can find the use of a diary uncomfortable so the therapist has to make sure

the patient is actually filling the diary out which can prove difficult – this is for a few

reasons. The physical size of a diary can be hard to keep on your person at all times, leaving

patients no choice but to fill it out once they get home when the experience is no longer

fresh in their mind. Another reason is because of the embarrassment and stigma

surrounding filling a diary out whilst in public. When the patient is undergoing a situation

that they feel their therapist should know about, it could prove quite troubling to take out

their diary and fill it in. Another challenge is how the therapist sees the diary. This can range

from being scanned in through a printer, sent pictures of the physical diary or even getting

the patient to read it off over the phone whilst the therapist makes notes. This delay of

iŶfoƌŵatioŶ ďeiŶg ƌeĐeiǀed doesŶ͛t alloǁ the theƌapist eŶough tiŵe to fullǇ aŶalǇse aŶd
prepare for the session which has been paid for by the patient.

Because of this, patients need an easier way to communicate their diary entries prior to the

appointment allowing their therapist time to analyse and work towards helping the patient

recover – this is where my application would come in.

Existing Solutions

To begin my project, I thought it best to research the current programs that are available

and review them. I decided to download each application, highlight any features which

stood out, how it interacts with the user and how the app performed data entry tasks e.g.

writing an entry. Along with this, I will provide a personal rating out of 5 for the overall

performance of each app compared to the average rating provided by the App Store.

All the applications I chose to look over were of the highest rated and so the quality of the

application should be fairly high – containing good concepts and ideas for what congregates

a successful app.

The applications I reviewed varied from CBT focused diary apps to standard diary apps. This

allows me to get a feel of how different focusses vary in their technique to interact with the

user, as well as how the designs differ. Alongside this, I was interested to find what features

each app chose to implement i.e. adding a photograph, how it is presented to the user and

if it works well as an implementation.

Name: CBT Thought Diary

Author: Eddie Liu

Link: Available via: https://apps.apple.com/gb/app/cbt-thought-

diary/id1010391170#?platform=ipad

https://apps.apple.com/gb/app/cbt-thought-diary/id1010391170#?platform=ipad
https://apps.apple.com/gb/app/cbt-thought-diary/id1010391170#?platform=ipad

11

Description: This application aims to teach the user how their thoughts impact their

mood and behaviour. It mainly focuses on mood tracking via a range of

sŵileǇ faĐes fƌoŵ ͚Teƌƌiďle͛ to ͚TeƌƌifiĐ͛. OŶĐe a feeliŶg has ďeeŶ iŶputted,
the application asks for a title, what emotions do you feel and details of

what exactly is happening/has happened. The user is then prompted to

add aŶǇ Ŷegatiǀe thoughts theǇ͛ƌe feeliŶg, seleĐt a list of aŶǇ ĐogŶitiǀe
distortions they may have been experiencing, how can the user challenge

their negative thoughts and any alternative thoughts they may have felt.

Finally, after filling the entry in, the user is asked how they feel after:

Better than before, About the same or Worse than before. Once all this

has ďeeŶ eŶteƌed, it ĐaŶ ďe ǀieǁed iŶ the ͚EŶtƌies͛ list aĐĐessiďle oŶ the
home screen.

Stand out

Features:

The app contains instructions on how to use each section within the app.

OŶ the hoŵe page, the useƌ is pƌeseŶted ǁith aŶ ͚i͛ iĐoŶ, ǁheŶ pƌessed
displaǇs iŶfoƌŵatioŶ oŶ ǁhat a ͚Thought DiaƌǇ͛ is, aloŶg ǁith ǁheŶ aŶd
how to use one.

The step by step process of completing an entry with easy to follow

instructions and explanation along the way - some sections only require a

simple click of an emoji, emotion or feeling.

These eŶtƌies ĐaŶ ďe ǀieǁed fƌoŵ a siŵple ͚EŶtƌies͛ list aĐĐessiďle fƌoŵ
the home screen.

Daily notifications can be set up to remind you at a specific time of the

daǇ, ƌegaƌdless if Ǉou͛ǀe alƌeadǇ aĐĐessed the app that daǇ.
A siŵple ͚CoŶtaĐt Us͛ optioŶ is aǀailaďle thƌough the ŵeŶu ǁhiĐh ǁill take
you to the mail app on your phone and auto fill all necessary details to

send a query to the team.

By upgrading to the pro version which is either £4.49 per month or £35.99

peƌ Ǉeaƌ, Ǉou ƌeĐeiǀe the optioŶs: ͚Cloud “ǇŶĐ͛ to autoŵatiĐallǇ seĐuƌe
your data to the cloud so it can be accessed by other devices, ͚PassĐode
PƌoteĐtioŶ͛ to add a passĐode oŶto Ǉouƌ eŶtƌies aŶd ͚Eǆpoƌt EŶtƌies͛ to
share your entries with others or save them to a different platform.

My

Experiences:

WheŶ usiŶg the ŵaiŶ ͚Add EŶtƌǇ͛ featuƌe, iŶstead of pƌeseŶtiŶg ŵe ǁith a
massive list of individual sections I was required to fill out, it presented

theŵ oŶe at a tiŵe. This ŵeaŶt I ǁasŶ͛t oǀeƌǁhelŵed ǁith hoǁ ŵuĐh
was required of me and I could express myself better. I was also

presented with useful encouragement on why I should be filling out

certain sections of the entry, for example, after entering a title and

choosing a related emotion or emotions, you are asked for details –

speĐifiĐallǇ ͚What͛s goiŶg oŶ?͛. BeŶeath this ǁas the folloǁiŶg teǆt:
͚“oŵetiŵes, our thoughts are our worst enemies. It can be helpful to

analyse negative thoughts and see if they match up with what really

happeŶed.͛
I feel that users would be pleased to see this and feel a sense of

encouragement and comradery from within the app and be more willing

and open when filling in sections.

If I ǁas stuĐk oŶ a seĐtioŶ, ŵost of the tiŵe a sŵall ͚i͛ ďuttoŶ ǁas
available to provide me with more information. This included descriptions

12

of emotions and different examples of when you might feel them. This

could be very useful to patieŶts ǁheŶ Ǉou͛ƌe ƌeallǇ tƌǇiŶg to piŶpoiŶt theiƌ
exact thoughts and feelings at the time of the situation.

OŶĐe the eŶtƌies ǁeƌe saǀed, I ǁas aďle to see theŵ ǁithiŶ the ͚EŶtƌies͛
section of the application. Here I was shown the emoji I chose from the

ǀeƌǇ fiƌst ƋuestioŶ pƌeseŶted iŶ the Ŷeǁ eŶtƌǇ ͚Hoǁ aƌe Ǉou feeliŶg?͛.
Also, I was given the title I chose and the date of the entry. I feel as if

ŵoƌe iŶfoƌŵatioŶ Đould haǀe ďeeŶ displaǇed iŶ this seĐtioŶ as it doesŶ͛t
give the user much feedback on individual entries. Maybe allowing them

to sort their entries into different categories e.g. Date (newest to oldest

or vice versa) or grouped by emotion rating.

Overall, there are a lack of features when it comes to customising your

entries and visualisiŶg theŵ. Theƌe aƌeŶ͛t aŶǇ optioŶs to add a loĐatioŶ oƌ
image to the entries which are very important within a thought diary as it

helps to remember the exact situation, allowing you to recall how you

were feeling and how you were able to cope with it. When it comes to

ǀisualisiŶg the data, Ǉou aƌe oŶlǇ giǀeŶ the ͚EŶtƌies͛ seĐtioŶ. It ǁould haǀe
been useful to be given a chart or something similar to see the range of

emotions you were feeling over the course of a specified time span. Once

again, this would help the user to see if they are progressing at all and

keep them on the right track – or even change the way they are currently

dealing with their issues.

My Rating: 4.5/5

App Store

Rating:

4.8/5

Name: MindShift CBT - Anxiety Canada

Author: Anxiety Canada Association

Link: Available via: https://apps.apple.com/gb/app/mindshift-cbt-anxiety-

canada/id634684825

Description: This appliĐatioŶ is paĐked full of featuƌes that doesŶ͛t foĐus oŶ aŶǇ
particular problem – just general anxiety. It offers features from guided

meditation to helpful cue cards to the basic thought diary.

Users can set goals, learn lots of frequency asked questions and even

share your progress via email.

The app is completely free with no in-app purchases.

Stand out

Features:

When you are loading the application for the first time, you are asked if

Ǉou ǁould like ͚MiŶd“hift͛ to seŶd Ǉou ŶotifiĐatioŶs.
An account is required to be able to access the app where you have to

eŶteƌ aŶ eŵail, passǁoƌd, ŶiĐkŶaŵe, ďiƌth Ǉeaƌ aŶd the ĐouŶtƌǇ Ǉou͛ƌe iŶ.
There are many helpful tips scattered throughout the app. When filling in

the diaries, you are given advice on what each section means and how it

should be filled out. Along with this, for every type of anxiety that is

available, you can revise lots of information regarding it and show you

signs of the anxiety if you feel you could be experiencing it. These signs

are: Body – what we feel physically and emotionally, Mind – what we

https://apps.apple.com/gb/app/mindshift-cbt-anxiety-canada/id634684825
https://apps.apple.com/gb/app/mindshift-cbt-anxiety-canada/id634684825

13

think and Behaviours – what we do. Then any tips will help the user cope

with their emotions.

Users can make goals for themselves and schedule a completion date. For

example, complete the thought journal 3 times this week, then set the

date to Sunday that week.

The ĐeŶtƌe ďuttoŶ ǁithiŶ the app is a ͚QuiĐk ‘elief͛ ďuttoŶ ǁhiĐh iŶĐludes:
Take a breath – a 2 minute guided meditation, Shift your thinking – small

reminders to ease your mind, Ground yourself – little exercises to help if

Ǉou͛ƌe ĐuƌƌeŶtlǇ eǆpeƌieŶĐiŶg a heighteŶed attaĐk, Take a sŵall step –

little tips to take the next step towards feeling better and Get help – a list

of poiŶts that ĐaŶ help if Ǉou͛ƌe iŶ a Đƌisis aŶd ĐoŶtaĐt iŶfoƌŵatioŶ. This

app is designed for users living in the US and Canada, so the contacts are

not useful for anyone living outside of this area.

My

Experiences:

You ĐaŶ use the ͚ĐheĐk iŶ͛ featuƌe ǁhiĐh lets Ǉou eǆplaiŶ ǁhat͛s goiŶg oŶ
aŶd ƌatiŶg hoǁ aŶǆious Ǉou͛ƌe feeling. I feel this feature is a great

addition as it is quick and easy to fill out with the added bonus of being

able to track your mood throughout the day, week, month etc.

It also contains general information about different types of anxiety by

using the ͚MǇ AŶǆietǇ͛ seĐtioŶ. IŶ this, Ǉou get the iŶtƌoduĐtioŶ to that
type, the signs revolving around your body, mind and behaviours and any

tips to help cope. This is useful for all types of users. Ranging from people

diagnosed with anxiety to people feeling they are experiencing a form of

anxiety – all the information you need is within the app, broken up into

manageable chunks to not lose interest.

Being able to add your own goals from within the app makes it more

personal to the user. You are told helpful tips and suggestions as to what

goals you should aspire to achieve, but also given encouragement if you

have failed to do it.

Due to the app being free, all features are available right from the start.

This is very appealing as there are lots of useful features within the app

and there is no worry of any hidden fees or advertisements ruining your

experience.

My Rating: 4/5

App Store

Rating:

4.6/5

Name: Momento – Diary / Journal

Author: d3i Ltd

Link: Available via: https://apps.apple.com/us/app/momento-diary-

journal/id980592846

Description: A smart private journal which is used to capture and collect memories to

explore, relive and share your life story.

The app is free but offers a premium option for £2.49 a month, £14.99 a

year or for a gold subscription, £34.99 for a year. With the standard

subscription, you will receive: Export – Export data into plaintext,

Unlimited Feeds – Connect as many feeds as possible, Hourly Feed

https://apps.apple.com/us/app/momento-diary-journal/id980592846
https://apps.apple.com/us/app/momento-diary-journal/id980592846

14

Updates – Feeds updated hourly, Lock, Multiple Photos, Themes and

Formatting. With the gold subscription, support will be prioritised to you.

Stand out

Features:

It offers first time users a quick tour around the app, stating how the app

works and what different sections can offer.

Everything stored is either on your personal device or iCloud

The application can be synced with other social media to automatically

import any activities, photos, videos etc to the Momento app.

You ĐaŶ seleĐt a date ǀia the ĐaleŶdaƌ iĐoŶ aŶd add a Ŷeǁ ͚ŵoŵeŶt͛.
Within this, you can write a note, add a place, people, tags and photos. If

you allow the app to receive data about your location, this can be added

automatically granted you are where the ͚ŵoŵeŶt͛ happeŶed.
The ͚Eǆploƌe͛ page alloǁs Ǉou to seaƌĐh ǁithiŶ people, places, and tags

that Ǉou haǀe eŶteƌed iŶto the app ǀia a ͚ŵoŵeŶt͛
CaŶ gƌoup ŵeŵoƌies togetheƌ usiŶg the ͚EǀeŶts͛ featuƌe, oǀeƌ a speĐifiĐ
time period. This is useful for grouping holidays and other such events

together.

My

Experiences:

I found it was extremely easy and obvious what each button would

achieve. The layout of the app was very simple but effective in terms of

the interaction. This makes it much more enjoyable to use and visibly

appealing to see your data in a well-structured manner.

The search feature is useful for trying to find the required moments

within your timeline. This could come in handy to check progress and

compare similar situations.

In the task bar, there are 4 easy to see and read icons with a title. These

are the main pages you interact with within the application. In the middle

of this bar is a noticeably large plus for adding a new moment. This makes

it oďǀious to the useƌ that it͛s the ŵaiŶ fuŶction of the app.

The feeds page works with Facebook, Instagram, Twitter, and many other

social media apps. The purpose of this page is to link your account with

the Momento app, which then automatically pulls information from your

socials and straight into the app. With this new information, you can add

it as a new moment within your diary. The only problem is you can only

add 1 social media account using the free version of the app. With the

premium version, you can add as many as you like. I think this is a fair any

reasonable offer within the app as it is an uncommon feature which will

appeal to most, if not all its users.

My Rating: 4.5/5

App Store

Rating:

4.2/5

Name: What's Up? - A Mental Health App

Author: Jackson Tempra

Link: Available via: https://apps.apple.com/us/app/whats-up-a-mental-health-

app/id968251160

Description: This application uses methods from cognitive behavioural therapy and

acceptance commitment therapy to help the user cope with mental

https://apps.apple.com/us/app/whats-up-a-mental-health-app/id968251160
https://apps.apple.com/us/app/whats-up-a-mental-health-app/id968251160

15

health issues relating to these methods, such as anxiety and depression.

This is a free app which accepts donations to maintain the functionality of

the app. In exchange, you receive more customizability with the colours

Ǉou͛ƌe aďle to use.
Stand out

Features:

A large list of: Negative thinking patterns and ways to overcome them,

metaphors to help cope with any negative feelings, different ways to

manage worries and positive steps to take to start feeling better.

You can protect your data using a passcode containing numbers and

letters.

You are able to synchronise your data onto other devices and back it up,

so it͛s Ŷeǀeƌ lost.
Taking part in a grounding game which has over 100 questions designed

to take your mind off of the stress and anxiety you may be feeling.

The ability to talk to other users by only using your nickname, so pretty

much anonymous communication. This is via a built-in forum.

My

Experiences:

The layout of the application stands out right away. Compared to the

others, it is significantly less appealing to navigate around. That being

said, it is still clear what each section of the app does and what it is trying

to achieve.

The app offers very customisable themes within the free version and even

more once upgrading to the premium version. Being able to customise

the colours used helps make the application feel more personal to the

user, as well as not having to look at the same thing day in day out if you

were to use this regularly.

Having a vast amount of information from within the app makes the user

not have to go scrolling through the internet to find the information they

need – more than likely it will be on the app. This improves app retention

time.

The one thing that makes this app stand out over the others is their built-

in forum. Just from the small time I spent looking through, there are many

cases of users reporting such sensitive information, including self-harm

and attempted suicide. The community within the app is strong and

supportive. The comments on the posts involving those in tough periods

of their lives are very loving and have a sense of comradery – very rare

online.

My Rating: 4/5

App Store

Rating:

4.5/5

16

Existing Solutions Conclusions

From the analysis of each application, they all follow a similar pattern in terms of the

vocabulary used. The applications never try to overcomplicate any explanations of

functionality and provide help on the more complex areas. These two points are important

to keep in mind when designing my application to be able to cater for a wider audience and

not deter anyone from using the app due to negligence of usability.

Another useful point to take away from these solutions is the colour schemes used. Most of

the CBT foĐussed apps ͚MiŶdshift͛ aŶd ͚What͛s Up?͛ use light, ĐalŵiŶg blue and white driven

designs. This makes the application more appealing to use and welcoming to the user.

I then ĐoŶĐluded that the ͚CBT - Thought DiaƌǇ App͛ ĐoŶtaiŶed the ŵost ƌeleǀaŶt and fruitful

source of information. Due to this, I decided to carry out a more extensive review of the

important function, adding a new diary entry, to get an understanding of what I feel I should

craft my application around and other features that are best left out. This can be found in

Appendix [1]: CBT Thought Diary App Heuristic Evaluation - Adding a new entry. These

conclusions will be used to help structure the functional requirements of my application,

which will be discussed in more detail later in the report.

Existing Solutions State Transition Networks

To gauge a feeling for how an app navigates through its different processes, I decided to

also use the ͚CBT – Thought DiaƌǇ App͛ to Đƌeate state tƌaŶsitioŶ Ŷetǁoƌks. A state tƌaŶsitioŶ
network, or state transition diagram, takes a set of data and displays the flow from different

data points. [4]

I will be breaking down the diagrams into three sections:

• Total Main States

• Total Secondary States

• Total Operations.

Total main states are indicated by the rounded boxes and large hollow arrows. These are

the screens which the user has to visit in order to complete the process.

Total secondary states are indicated by labels square boxes. These are either alerts

presented to the user or tasks the user can choose to add to the form, for example, adding

extra emotions.

Total operations are indicated by the numbered square boxes. The numbers are what state

that operation would take the user to if they were to select to proceed.

By totalling these values, it is clearer for developers to see the usability provided to a user

from what is seemingly a simple operation being performed. From the figures provided, it is

important to take away how free the user is to choose what action to perform next. This

way, they do not feel trapped on a screen and left dissatisfied with the process.

17

Figure 1 - CBT Thought Diary Application: Add a new diary entry

Total Main States: 4

Total Secondary States: 8

Total Operations: 14

Figure 2 - CBT Thought Diary Application: View a previous diary entry.

Total Main States: 4

Total Secondary States: 9

Total Operations: 17

18

STN Diagram Conclusions

As you can see from these mock-up “TN͛s of the ͚CBT Thought DiaƌǇ AppliĐatioŶ͛ aŶd the
supporting figures for total number of states and operations, implementing functions can

appear overwhelming for developers – more than one would think for such a seemingly

simple aspect of the application. The options you have from even a single screen, for

eǆaŵple ͚CaŶĐel͛ oƌ ͚DisĐaƌd͛, ĐaŶ seeŵ ǀeƌǇ Đoŵpleǆ, so it is iŵpoƌtaŶt to haǀe a Đleaƌ
pathway when first designing a mobile application. However, without these additions, the

user would sometimes be left stuck on a certain screen – reducing the overall usability of

the app. The number of different main states, indicated by the large arrows and rounded

boxes, only take you to a maximum of five different states – with a few temporary screens

presented when selecting an emotion, for example. If the application were to overuse the

number of states needed to visit, the effectiveness of the important functionalities listed

above would be drastically decreased. This is because of the time taken to complete certain

actions, such as adding a new diary entry, within the application would be higher, leading to

users potentially becoming impatient and not wanting to use the application.

Additionally, different routes to navigate the app are freely available for the user on each

main screen. This will make the application more fluid. The users may be at a heightened

emotional level, so catering to their current mental state is iŵpoƌtaŶt foƌ the app͛s likaďilitǇ.

Therapist Diary Research

Near the beginning of the project, I was introduced to Dr Cheryl Jones, who is a private

therapist treating CBT patients over video or voice calls. Dr Jones was kind enough to

provide both myself and Dr Abdelmoty with important information regarding current

therapy protocol that I have been using throughout the project. Within this information

contained the current diaries she uses for her patients and any others available diaries that

are in circulation. These diaries are the activity diary, anger thought record, health anxiety

thought record, obsessive compulsive disorder diary, social anxiety diary, thought record

sheet and worry diary. From each of these, I extracted the question titles and labelled the

name of the data, data type, value expected and range of information that the patient is

normally requested to fill out. A full list is available in Appendix [2]: Example Diaries -

Questions and Variables.docx.

I discovered that the two most valuable locations for information came from the Situation

and Trigger and Emotion and Rating sections. From these sections, I extracted this

information:

Questions Asked from

Diaries

Name of the

data

Data Type Value Range (If

Applicable)

Situation and Trigger

Where? Place Location Place name

and/or Place

Coordinates

19

When? Time Moment in

time

Date

(dd/mm/yyyy)

or Date and

Time

(dd/mm/yyyy

hh:mm:ss)

An amount of

time either in

seconds,

minutes

and/or hours

if it͛s time;

Days or even

weeks in

terms of date

Who with? Person A Person or

list of people

Plaintext

Persons Name

or title

Emotion and Intensity of emotion

What emotion did I feel

at that time?

Emotion Plaintext or a

list/wheel of

emotions

List List

dependent on

their initial

emotion

What else? Emotion Plaintext or a

more

extensive list

of emotions

List List

dependent on

their initial

emotion

How intense was it? Percentage Integer xxx% 0 – 100 %

By extracting this information, I was better able to determine which questions, asked of the

user, would be more complex to apply to the application - from a designing and developing

point of view. For the other questions in the document, the input required from the user is

just a siŵple plaiŶteǆt aŶd doesŶ͛t need to be developed any further.

Researching these points early on in the design process showcases essential aspects my

application requires, making me better equipped to plan a user-friendly design. An example

of this is providing the user with a simple calendar displayed when attempting to enter a

date and time. By discovering these design ideas early on in development, I can then

improve the efficiency of the implementation stage Although all the questions from different

diaries will be considered, the main and most relevant diary to use for the research of my project is

the worry diary. The worry diary takes inspiration from the cross-sectional formulation, more

ĐoŵŵoŶlǇ kŶoǁŶ as the ͚Hot Cƌoss BuŶ͛ diagƌaŵ, ǁhiĐh is shoǁŶ ďeloǁ.

20

Figure 3 - 'Hot Cross Bun' found at http://psychologytools.com/cross-sectional-formulation.html

Using this diagram, the worry diary extracts information from each of the ovals to create an

overall picture of what the patient went through and how they were feeling/what they were

thinking. The diary focuses on everything experienced within a certain situation. To extract

this information, certain questions need to be asked from within the diary.

Situation:

• Who were you with during the situation?

• What happened during the situation?

• When did this situation happen?

• Where did this situation happen?

Emotions:

• Emotion felt during the situation

• Rating of emotion out of 100. 0 being not at all, whilst 100 being the maximum

feeling.

Worry:

• What went through your mind during the situation?

• Type of worry?

o Hypothetical

o Practical

Prediction:

• What is the worry predicting will happen?

For the application, I will use these questions to help structure the format of the input via

the mobile screen. This is the simplest way to extract the most information without

overloading the patient or making the diary a hassle to fill out.

21

Personas

To be able to create a user-focused design application, it is important to consider the

aǀeƌage useƌ͛s Ŷeeds - personas are an integral part of this. By creating personas, it allows

you to think about different aspects of a design you may not think of when only considering

your own personal experience of the application. Some users may be technically capable but

struggle with other aspects my app offers, like the contents of a diary entry.

I will base these personas on the typical user of this application with the focus being on

therapist patients and mental disorders.

Primary Persona

Name: Owen Smith

Age: 19

Image source: https://unsplash.com/photos/OK7VpKfbb_c

Quote: ͞I Ŷeed a plaĐe I ĐaŶ doĐuŵeŶt all of ŵǇ thoughts aŶd feeliŶgs iŶ the moment to

ƌefleĐt oŶ theŵ lateƌ͟

Description: Owen is a full-time student that has been suffering with anxiety since he was

14. He has a diary at home and has been using it from time to time to roughly document

some situations, which helps him understand how he could have responded differently. He

is technically proficient and owns a smartphone which is kept on him throughout the day.

He is looking to find an application where he can start documenting situations where he

feels his anxiety is taking over more frequently and as they occur.

Goals:

• Increase the frequency of diary entries to help control his anxiety more

• Gain access to all previous entries to see any progress when dealing with similar

situations

• Note down where each event occurred to see if there is a trend that triggers his

anxiety

22

Secondary Persona

Name: Samantha Jones

Age: 34

https://unsplash.com/photos/6CgkUjUl4og

Quote: ͞I͛ŵ ǀeƌǇ foƌgetful aŶd ǁould like aŶ app I ĐaŶ use oŶ the go to doĐuŵeŶt ŵǇ
eŵotioŶs thƌoughout the daǇ͟

Description: Samantha is a busy social worker that goes through a lot of stress during the

day. She discovered a method of dealing with stress is to document how you are feeling into

a diary to get your thoughts out without having to rely on someone 24/7. “he isŶ͛t ǀeƌǇ
technical and would benefit from an easy to use application with simple steps to follow in

order to use it.

Goals:

• Quickly note down emotions without having to have a triggering event relating to it

• Easy to use application that doesŶ͛t oǀeƌĐoŵpliĐate a siŵple diaƌǇ eŶtƌǇ ďased off of
emotions and thoughts

Persona Conclusions

WheŶ ĐoŶsideƌiŶg ďoth of the peƌsoŶas togetheƌ, it͛s eǀideŶt that a siŵple, easǇ to use
application suits all parties. This involves making the format for a new diary entry to be fluid

from beginning to end, displaying to the user exactly what will be entered in the final entry.

Therefore, the app needs to have clear progression on how to fully complete an entry

without the user having to guess the next step or figure it out through trial and error.

It is also clear that all entries made need to be easy to view to allow for reflection. These

entries need to be accessible 24/7 and clearly laid out, implying a constant local or cloud

database should be used to accommodate this. The users would also benefit from being

able to search for particular entries based on the information placed within them. For

instance, the location or title of the entry. Along with a search feature, being able to sort the

entries would be a good function for the app to have i.e. in order of date of entry, similar

emotions grouped together or even the same locations.

23

Project Constraints

Taking on a project with this magnitude will be the most difficult challenge so far in my

entire academic history. It is important to not think of it as one large project, instead as little

manageable chunks to aim towards completing bit by bit. There is a lot of software and

documentation I have never used before, so planning enough time to research and learn

this for the project is crucial. Having a strict plan set out beforehand will give me enough

time to complete the main functionalities I planned to complete within the timeframe given.

An unexpected constraint has been the unfortunate global pandemic of COVID-19, better

known as Coronavirus. This has hindered me both physically and emotionally. First off, it has

made it impossible to perform my planned user testing where I wanted to get a population

of around ten random people to take part in some simple tasks to perform on my

application. I would then have made notes on the speed of completion and any

complications they came across. Instead, I am going to perform these tests on the tenants I

am currently residing with in Cardiff, which has significantly lowered the diversity of the

users testing my app.

Emotionally, this has been a very tough time for me. Along with family complications

unrelated to the virus, the Coronavirus has prevented me from seeing any of my family

which led to a drop in my mood, motivation and overall mental health. This set me back a

few weeks, but I managed to catch up on some work and hope to produce a final application

and report I can look back and be proud of.

24

Approach

Planning

As previously mentioned, I decided to adopt an Agile design and development methodology.

Normally, this methodology is for team management by breaking a project up into different

stages, building onto and improving the software at each stage. Since this is an individual

project, I had to adapt this methodology slightly to suit my situation better. To achieve this, I

set out a week by week work plan stated in my initial report. This broke down my project

into different chunks of achievable tasks which is good for gaining a sense of

accomplishment when a certain task is completed, rather than feeling overwhelmed by the

workload.

Using this work plan provided me with enough time to learn the basics of all the software

I͛ŵ goiŶg to use aŶd alloǁed ŵe to pƌogƌessively write my report so as not to leave

aŶǇthiŶg iŶ a ƌush at the eŶd. As I͛ŵ still leaƌŶiŶg the softǁaƌe, ĐoŶĐuƌƌeŶtlǇ I ǁill ďe
building my application, applying any knowledge learnt. Any more advanced functionalities

will be added only if time permits. BǇ doiŶg this, I͛ŵ alloǁiŶg ŵǇself to ďuild a fullǇ
functioning application before trying to make it too complex and not grasping the core

ideals of the app.

Along with a work plan, frequent communication was needed to be set up with the

therapist, Dr Cheryl Jones, to get consistent feedback on the progression of the app. This is

vital as Dr Jones is the closest connection to the interaction patients are currently dealing

with in terms of diary entries and their success. Through Dr Jones, I collated a collection of

both blank and example diaries to really get a grasp on the thoughts and feelings patients

encounter every day and how my app will help them in their journey. This is very useful for

organising where to place the different user inputs to match where patients input the most

detail and where the most useful information is located within a normal entry.

Learning

This project required me to take on challenges I had never experienced before. From

learning about the design approaches for applications, to learning new JavaScript

techniques and libraries. This was a vast amount of software development knowledge I

hadŶ͛t pƌeǀiouslǇ touĐhed upoŶ iŶ ŵǇ life. Heƌe aƌe the ŵaiŶ leaƌŶiŶg poiŶts I had to take
on.

Developer Guides

The developer guides for both of the main systems I am developing for are extremely

important to consider when designing a mobile application. These contain information

regarding every aspect of user interface design which I will use to create my user interface.

These guides contain all the information needed to create the most coherent layout

possible for an application. From the best colour schemes to use for certain interactions,

25

such as buttons, to form layouts and icons to use. By researching these integral details

thoroughly, it gives me the best chance to create a design people will not only find easy to

follow but more importantly an app people will want to use.

Data Storage

This application relies on being able to store lots of information safely and securely. As the

data that will be stored is very sensitive, data security is of the utmost importance. Along

with security, a rich supply of documentation is required as my lack of experience in this

field may hinder me later on in the application.

I have decided to use MongoDB to store my information. MongoDB is a NoSQL database

which utilises JSON styled documents to structure the documents within the database. [5]

MongoDB Atlas is a cloud database as a service which allows you to deploy MongoDB to the

cloud for easier data retrieval. [6] I will be using this to make it easier to view information

for testing.

To access this database, I will be using Nodejs to design routes to talk to the server. A route

is hoǁ aŶ appliĐatioŶ ƌespoŶds to a ĐlieŶt͛s ƌeƋuest. [7] For example, if the front end were

to request to view all information from a certain user, a GET request could be set up in

order to perform this request, retrieving the specified data from the database. will be set up

using Mongoose. Mongoose is used to manage relationships between data, schema

validation and translate the JSON objects from the objects in the code to the objects in

MongoDB and vice versa. [8]

User Interface Design

For user interface design, I will be using the software Axure. This software is for designing

prototypes of many different applications, ranging from web to mobile to desktop. [9] The

softǁaƌe alloǁs Ǉou to shape a ĐaŶǀas iŶto the size of aŶǇ phoŶe͛s diŵeŶsioŶs ĐuƌƌeŶtlǇ
available. This is useful to be able to get an idea of how your design will look on the majority

of phones currently available.

Then, by using the available shapes and user input interactions, such as buttons and text

fields, you are able to replicate an accurate skeleton of your desired application. Using this

allows me to see how my app could look once implementation begins, and how the entry

form flows from beginning to end – arguably the most important aspects of my whole

application.

Along with studying the guidelines for both iOS and Android systems, I will also be

heuristically evaluating my initial designs usiŶg NielseŶ͛s ϭϬ heuƌistiĐ eǀaluatioŶ pƌiŶĐiples.
[2] This allows me to design the best prototype possible before the development of my user

interface.

26

User Interface

MǇ appliĐatioŶ͛s ŵaiŶ goal is to alloǁ patieŶts of CBT theƌapǇ to haǀe the ĐoŶǀeŶieŶĐe of a
diary in the palm of their hand, to never miss an entry which could be analysed by the

therapist and take a step closer towards recovery. Due to this, there needs to be no excuse

Ŷot to fill iŶ the appliĐatioŶ͛s foƌŵ. Theƌefoƌe, the app Ŷeeds to ďe aǀailaďle foƌ eǀeƌǇ
available device possible. To solve this issue, I decided to use React Native. React Native is a

mobile application framework which allows you to build and develop projects for Android,

iOS and Web Applications. [10] The built-in native components for React, such as View and

Text, are directly mapped to platform specific syntax so your code can all be in one place at

a time and the software will convert it to whichever platform accesses the app.

27

Specification and Design

Functional Requirements

Must have
Requirement

Number

Requirement Acceptance Criteria

1. The system will allow the user to input

information regarding an overview of

the happenings within the situation:

Who with, what happened, when and

where.

• The user will have a range of input

formats to store this information e.g.

Text and live location.

2. The system will allow the user to input

information regarding the worry within

the situation: What if?

• The user will have the chance to talk in

as much or little detail as possible

3. The system will allow the user to input

information regarding their prediction

in the situation: What is the worry

predicting will happen?

• The user will enter textual information

regarding the prediction they feel might

happen in a situation.

4. The system will allow the user to input

information regarding their emotions

and intensity of emotions on a scale

• The user will enter as many or as little

emotions they were feeling at the time

• This will then be rated on a mutually

accepted scale

5. The system will allow the user to input

information regarding the type of

worry: Hypothetical or practical

• A hypothetical worry is regarding a

situatioŶ ǁhiĐh ĐaŶ͛t ďe fiǆed
• A practical worry is about a situation

where something can be done to deal

with them

6. The system will allow the user to enter

the date of the situation

• The default date when producing a new

entry is the current date

• The user can change the date to any day

prior to the current day

• Alongside the date of the situation, the

date of the entry is also recorded and

displayed

7. The system will be able to track the

users live location when using the

application

• When the user opens the application,

their current location is available to

them.

• During the addition of a new entry, the

patient could tag their current location

to help identify any links to their

triggers

8. The system will highlight areas that

aƌeŶ͛t Đoŵplete duƌiŶg eaĐh seĐtioŶ of
the entry

• The user will be prompted that an area

is incomplete and can decide whether

they want to continue or cancel and fill

that section in

28

9. The system will require each user

(patient and therapist) to set up a

password protected profile

• The system will block a user from access

to any content without the correct

security credentials

• Profiles will be used to link the patient

to the corresponding therapist,

preventing unauthorised access to

sensitive data

10. The user can view and edit previous

entries

• The user can select a day on the

calendar where all information of the

entry will be displayed: Time of entry,

text contents, emotion rating and any

photographs attached.

• They will also have the option to edit

any of the information.

11. The user can choose to publish certain

entries

• The user will do a diary entry as normal

and have the choice to make it

accessible to the therapist to access

• To publish, make sure the entry is

Đoŵplete aŶd seleĐt the ͚“haƌe͛ ďuttoŶ

• The user will be notified if they wish to

share the entry and when it has been

published

• The user will be able to see which

previous entries have been published

via the calendar view

12. Via the therapist view, the system will

be able to extract specific patient data

• The therapist will only be able to extract

patient data they have the access to –

otheƌ theƌapist͛s patieŶts ǁill Ŷot ďe
available

• The therapist will navigate to their

patient͛s page aŶd ǁill ďe shoǁŶ daǇs
where at least one entry has been

made. From there, they will be able to

extract data for that day

13. The user will be able to add

photographs to an entry

• The user can choose to add

photographs straight from their camera

or the camera roll already existing on

the device

Should have
14 The system should allow the user to

sort entries

• Each user should have the option to sort

the entries in a range of ways including

date

15. The system should allow the user to

perform a text search

• The patient or therapist should enter a

specific word – either a situation the

patient has been in or an object etc.

This allows the user to find a correlation

for certain words

Could have

29

16. The system could remind the user if

theǇ haǀeŶ͛t Ǉet filled out foƌ that daǇ

• The system could send a notification to

the useƌ͛s phoŶe Ŷeaƌ the eŶd of the
day if no entry has been made yet

Will not

17. The system will not allow you to view

aŶǇ otheƌ useƌ͛s diaƌǇ eŶtƌies

• Either within the patient view or

therapist view, no unauthorised access

to otheƌ useƌ͛s seŶsitiǀe data ǁill Ŷoǁ
be available

Non-Functional Requirements

Must have

Requirement

Number

Requirement Acceptance Criteria

1. The systems database is updated when

a new entry is added

• Regardless if the user has decided to

publish the entry for the therapist to

see, the database will update and store

the new entry

2. All entries, published or not, are always

accessible to the user

• Via the calendar view, users are able to

see all previous entries as it will be

stored locally

• Therapists will be able to view all

published entries

3. The application will provide help for

each screen

• Support provided to the user to help

navigate through the UI

4. The application will be easy to navigate • Following heuristic evaluation, the

usability of the UI will be reviewed

Should have

5. The response time of the application

should be a suitable standard

• This is mainly focussed on the

publishing of the entries to the

database as it is expected to be the

longest process within the application

• Elsewhere, the application should

appear to be seamless when

performing actions

Could have

6. The user could change the theme of the

application

• Allowing the user to change the colour

style of the application to their liking

• The colour change would make it more

personal to the user and could make it

easier for them to interact with certain

features

30

Use Cases

The following diagram͛s display all the main tasks the user or therapist will be able to

undertake. Beneath them are the corresponding use case tables which explore the

functionality further.

31

PatieŶt Use Case͛s

Use Case Name: Create a new entry

Description: The useƌ ĐaŶ Đƌeate a Ŷeǁ diaƌǇ eŶtƌǇ foƌ todaǇ͛s date oƌ aŶǇ date pƌioƌ.
Pre-condition(s): The date selected is not a future date.

Basic flow: 1. The user opens the application on their preferred device

2. The user logs onto their secure account

3. The user chooses to create a new diary entry

4. The user inputs information regarding the situation

a. Who

b. What

c. When

d. Where

5. The user inputs information regarding the worry

6. The user inputs information regarding their prediction

7. The user inputs information regarding their emotions

a. User selects from a list

8. The user rates their emotion intensity

a. User rates their emotion using a percentage

9. The user inputs information regarding the type of worry experienced

a. Hypothetical or practical

10. The user can choose to add photographs to their entry

11. The user indicates they are done, and the entry is saved

Alternate flow: 1. The user opens the application on their preferred device

2. The user chooses to view previous entries

3. The user selects to edit a previous entry

4. The user adds new information to the entry; hence a new entry is

made.

Basic flow STN:

32

Alternate flow STN:

Use Case Name: View previous entries

Description: The user can visit their previous entries and view them.

Pre-condition(s): An entry has previously been entered.

Basic flow: 1. The user chooses to view previous entries

2. The user selects their desired entry - the information contained

within this entry will then be displayed to them

Basic flow STN:

Use Case Name: Edit previous entries

Description: The user will have an option to edit information from every section

contained within the application. The user will also have the option to

delete the whole entry.

Pre-condition(s): An entry has previously been entered that can then be edited.

Basic flow: • The user chooses to view previous entries

• The user selects their desired entry

• The user selects to edit this entry

• The user can then edit:

a. The situation

b. The worry

c. The prediction

d. The emotion and emotion rating

e. The type of worry

f. The photograph

Alternate flow: 1. The user can delete the whole entry

2. The user is prompted to confirm deletion. Once this has been

confirmed, this current entry will no longer exist

33

Basic flow STN:

Alternate flow STN:

Use Case Name: Publish diary entries for the therapist to view

Description: The user can publish a single entry or multiple entries for the therapist to

be able to view. The therapist then uses these entries to analyse progress

for the next appointment.

Pre-condition(s): The user has finished their entry, filling it in as best as they can. The user is

also happy for the therapist to view what they have written.

Basic flow: 1. The user has just finished filling out their new diary entry and has

saved it

2. The user is then presented with their new entry where they can

choose to publish the entry

3. This then gives the therapist access to save it to their machine for

analysis

Alternate flow: 1. The user navigates to the previous entries page

2. The user selects a single entry or multiple entries they wish to

share with the therapist

3. The user chooses to publish their desired choice of entries

Basic flow STN:

34

Alternate flow STN:

Use Case Name: Sort diary entries

Description: The user can sort their diary entries using different sections of the form that

isŶ͛t a text entry e.g. emotion rating.

Pre-condition(s): The user has two or more entries for the sort to take effect.

Basic flow: 1. The user navigates to the previous entries page

2. The useƌ seleĐts the ͚“oƌt͛ ďuttoŶ

3. The user chooses their sort by type

a. Date – Newest first (default)

b. Date – Oldest first

c. Emotion tag chosen

4. The diary entries are then shown in the form of the sort by type

chosen

Basic flow STN:

Use Case Name: Search diary entries

Description: The user can perform a text search for words or phrases contained within

their diary entries.

Pre-condition(s): The user has at least one diary entry to be able to perform a search on.

Basic flow: 1. The user navigates to the previous entries page

2. The user selects the search option

3. The user types a search term into the search bar supplied

4. Matching entries are then displayed to the user

Basic flow STN:

35

Therapist Use Case’s

Use Case Name: View current patient list

Description: The therapist can view all patients they are currently caring for.

Pre-condition(s): The therapist has at least one patient assigned to their care.

Basic flow: 1. The therapist opens the application on their preferred device

2. The therapist logs onto their secured account

3. The therapist navigates to the current patient list found on the

home page

4. The therapist can now view every patient assigned to them

Basic flow STN:

Use Case Name: Add new patient to current patient list

Description: The therapist can add more patients to their existing list

Pre-condition(s): A patient is waiting to be assigned to a therapist and wants to participate

with the diary application.

Basic flow: 1. The therapist navigates to the current patient list found on the

home page

2. The therapist selects to add a new patient

3. The therapist enters the details to add a new patient to their list

4. The patieŶt has Ŷoǁ populated the theƌapist͛s list aŶd is ƌeadǇ to
be interacted with

Basic flow STN:

Use Case Name: Remove patient from current patient list

Description: The therapist can remove a patient from their current care list.

Pre-condition(s): A patieŶt has fiŶished theiƌ Đouƌse, deĐides theǇ doŶ͛t ǁaŶt to ĐoŶtiŶue, oƌ
the therapist wants to terminate the patient͛s care, giving them a reason to

be removed.

Basic flow: 1. The therapist navigates to the current patient list found on the

home page

36

2. The therapist finds the desired patient to removed either by using

the search function or scrolling through the list

3. The therapist selects the patient and has the option to remove the

patient from their list

4. The patient has now been removed, along with any of their diaries

saǀed oŶ the theƌapist͛s Đoŵputeƌ. The patieŶt is Ŷoǁ aǀailaďle to
be added to a different theƌapist͛s list if Ŷeeded

Basic flow STN:

Use Case Name: Search current patient list

Description: The therapist can search for a particular patient within an alphabetically

ordered list

Pre-condition(s): The therapist has at least one patient assigned to them

Basic flow: 1. The therapist navigates to the current patient list found on the

home page

2. The therapist can choose how to find the patient

a. Using the search function and typing in their name to bring

up corresponding patients

b. Manually scrolling through the list to find the patient

3. If the patient exists within the list, the therapist has been able to

find and retrieve this patient

Basic flow STN:

Use Case Name: Extract patient data for analysis

Description: The therapist can extract individual or multiple patient entries of which the

patient has published.

Pre-condition(s): The useƌ is oŶe of the theƌapist͛s patieŶts aŶd theǇ haǀe at least oŶe diaƌǇ
entry.

Basic flow: 1. The therapist navigates to the current patient list found on the

home page

2. The therapist selects the patient and chooses the synchronise

patient data option

3. The theƌapist is takeŶ to all of the patieŶt͛s eŶtƌies, ǁith the
newest entries being displayed first

37

Basic flow STN:

Use Case Name: View patient diary entries

Description: The therapist can view individual patient diary entries

Pre-condition(s): The patient has previously added an entry that has been published and the

therapist is able to extract

Basic flow: 1. The therapist navigates to their patient list

2. The therapist finds their desired patient either from searching their

name or scrolling through the list

3. The theƌapist seleĐts to ǀieǁ the patieŶt͛s eŶtƌies list
4. The therapist selects entry they wish to view - the information

contained within this entry will then be displayed to them

Basic flow STN:

Use Case Name: Sort patient diary entries

Description: The theƌapist ĐaŶ soƌt a patieŶt͛s eŶtƌies iŶ the saŵe ǁaǇ the patieŶt ĐaŶ
sort their own – aŶǇ seĐtioŶ that isŶ͛t a teǆt eŶtƌǇ.

Pre-condition(s): The therapist has patients assigned to them, the patient has at least two

entries and the entry consists of enough information to be able to sort.

Basic flow: 1. The therapist navigates to their patient list

2. The therapist finds their desired patient

3. The theƌapist seleĐts to ǀieǁ the patieŶt͛s eŶtƌies list
4. The theƌapist seleĐts the ͚“oƌt͛ ďuttoŶ

5. The therapist chooses their sort by type

a. Date – Newest first (default)

b. Date – Oldest first

c. Emotion tag chosen

6. The diary entries are then shown in the form of the sort by type

chosen

38

Basic flow STN:

Use Case Name: Search patient diary entries

Description: The therapist can perform a text search on the diary entries for patients

Pre-condition(s): The therapist has patients assigned to them and at least one diary entry

exists in their catalogue.

Basic flow: 1. The therapist navigates to their patient list

2. The therapist locates the desired patient

3. The therapist selects the search option

4. The therapist types a search term into the search bar supplied

5. Matching entries are then displayed to the therapist

Basic flow STN:

Prototype

As mentioned previously, I will be using Axure to create a prototype of how my application

will navigate around to different screens and interact with the user to deliver the best

results before I start with the implementation of the application.

BǇ usiŶg the use Đase͛s as the ŵaiŶ fuŶĐtioŶalitǇ Ŷeeded foƌ ŵǇ appliĐatioŶ, ŵǇ pƌototǇpe͛s
goal is to achieve each use case in a simple and coherent manner. Because the use cases are

using the functional requirements stripped down to the most basic form, it is a great

starting point to explore different ways of displaying the information to the user.

Font

The font chosen for this application is called Monterrat, a sans-serif font inspired by the

Montserrat neighbourhood of Buenos Aires. [11] I wanted to find a font that was capable of

being more interesting to look at compared to a standard font you can find on some

39

applications, whilst maintaining a professional look so users did not feel like the app was not

catered to certain age groups.

Colour Scheme

Figure 4 - Initial ideas for colour schemes

WheŶ ĐhoosiŶg a Đolouƌ sĐheŵe foƌ ŵǇ appliĐatioŶ, it͛s iŵpoƌtaŶt to ĐoŶsideƌ ǁhat the useƌ
will be accessing it for. They will most likely be currently in, or just coming out of a stressful

situation which has triggered their disorder and made them feel a certain way. When they

open the app, they should feel more relaxed and view the confinements of the application

as a safe space to talk about their emotions. This is what led me to these colour schemes I

created.

The colour scheme on the left is a light, tan colour with white and grey as the supporting

colours to outline interactable objects. The colour scheme on the right is sky blue with

similar supporting colours, which would also be used to highlight interactable objects. As

previously discussed, whilst concluding the existing solutions, the majority of the CBT

focussed applications opted for light blue and white as their primary colours - this was the

inspiration behind this design.

Blue has been found to generate feelings of tranquillity and produce a calming effect, whilst

tan gives off a warm, inviting feeling. [12] This means both of these would produce a

positive effect on the user whilst using the application.

#FCEϱCϱ

#FFFFFF #ϳFϳFϳF

#ϳFDϮFϴ

#AϲAϲAϲ #FFFFFF

40

Although both of these would have worked for the application, I ended up opting for the

sky-blue scheme. I feel as if it would have a more positive reaction as a main theme, whilst

clearly indicating interactive objects using the opposing colours.

Logo

DuƌiŶg the eaƌlǇ stages of ĐolleĐtiŶg iŶfoƌŵatioŶ fƌoŵ Dƌ JoŶes, I ǁas iŶtƌoduĐed to the ͚Hot
Cƌoss BuŶ͛ diagram used for data collection from the patients - this can be found in the

figure table as figure 3. I used this as inspiration, along with my chosen colour scheme to

create the following logo:

Figure 5 - Application Logo

It is Ŷot ϭϬϬ% aĐĐuƌate iŶ teƌŵs of hoǁ the ͚Hot Cƌoss BuŶ͛ diagƌaŵ fuŶĐtioŶs as the arrows

are not all pointing in the correct direction or location. Even with this, it will be recognisable

to patients of most CBT treatments. This is useful as people unfamiliar with this kind of

treatment will not be able to recognise this pattern, maintaining the discreteness desirable

for patients who may feel awkward or embarrassed by having this app on their phone.

First Design

Figure 6 - Login Page

41

Screen: Login Screen

Description: This is the first screen the user will be presented with, so it has to be

inviting. It clearly shows three options to choose from, enter your email

and password and log in, forgot your password option or sign up to the

application. By using this screen, the user will log into the database and

have access to any previously entered entries, enter new entries to be

stored and publish entries for their therapist to see.

 Figure 7 - Home Page Figure 8 - Menu Page

Screen: Home and Menu Screen

Description: The screenshot on the left is the home screen. It contains two methods to

enter a new entry. You can either use the emotions wheel to select how

Ǉou͛ƌe ĐuƌƌeŶtlǇ feeliŶg aŶd pƌess the ͚QuiĐk Add Mood͛ ďuttoŶ to add
that ŵood to Ǉouƌ eŶtƌies list oƌ ĐliĐk ͚Add Neǁ EŶtƌǇ͛ to ďegiŶ a ǁhole
new entry. The three lines in the top left bring up the menu which is

shown on the right. From here, you have a wide range of options to

choose from – the most important being the option to view all your

previous entries.

42

 Figure 9 - Entries Screen Figure 10 - Single Entry

Screen: Entries screen

Description: These screenshots show the entries screen and the screen you are

presented when you select an individual entry. Every entry entered up to a

certain amount will be displayed in the entries screen. You will then have

the option to either search for an entry title you may have previously

entered or sort in terms of entry date – most recent is the default view

when the screen is presented.

Once you have clicked an entry, you will be taken to an entries screen

where you can view every detail you entered. You have three options on

this page: edit, delete and publish. Selecting edit will allow you to edit any

details you may have gotten wrong from the current entry. Clicking delete

will completely remove the entry from the database. Finally, pressing

publish will then give the therapist access to view that entry and begin

analysis on it.

43

 Figure 11 - Situation Screen Figure 12 - Emotions Screen Figure 13 - Worry Screen

Screen: EŶtƌǇ Foƌŵ “ĐƌeeŶ͛s

Description: These screenshots contain the most important part of the application.

These are the three screens that make up the diary entry form and are

what the user will be spending most of their time on. Because of this,

these screens need to be as clear and concise as possible. If the user

struggles with conveying their thoughts and emotions through this format,

it could tarnish their treatment and stall their recovery time.

Each screen contains the opportunity to change the title and current date

and time. This gives the user the opportunity to change both if they feel

like they made a mistake or wish to change some details.

The situation screen is really looking to answer three questions to set the

sĐeŶe: ͚ǁheƌe did this happeŶ?͛, ͚ǁho ǁeƌe Ǉou ǁith?͛ aŶd ͚ǁhat
happeŶed?͛. BǇ aŶsǁeƌiŶg these ƋuestioŶs, the theƌapist ĐaŶ gaiŶ aŶ
understanding of what the situation was the patient was involved in

without hearing about their reaction to the event yet. The therapist can

use this to thiŶk of ǁhat theiƌ oǁŶ ƌeaĐtioŶ ǁould ďe aŶd if the patieŶt͛s
reaction was warranted.

The emotions screen takes inspiratioŶ fƌoŵ the ͚EŵotioŶ Wheel͛ that
therapists often use to help their patients describe their emotions best. It

takes the eight most basic emotions: anger, anticipation, disgust, fear, joy,

sadness, surprise and trust. Then extends them to more precise emotions.

Foƌ eǆaŵple, if the patieŶt ǁeƌe to Đhoose ͚“ad͛, theŶ this Đould ďe
extended, for example: lonely, vulnerable, despair, guilty, depressed or

hurt, and so on. The user is also asked to rate their emotion on a scale of

0-100%.

44

The worry screen is where the useƌ͛s ƌeaĐtioŶ to the situatioŶ ĐaŶ ďe
expanded on and explained. It is here where the therapist will see if the

reaction is within normal limits of how someone should normally react, or

is their disorder being triggered by this event.

 Figure 14 - Person Overlay Figure 15 - Location Overlay

Screen: “ituatioŶ OǀeƌlaǇ͛s

Description: These two screens are used to input data from the situation screen. When

asked ͚Who ǁeƌe Ǉou ǁith?͛, the theƌapist ĐaŶ get a ŵuĐh ďetteƌ
understanding from this if a title is also used alongside a name. Because of

this, the patient will be asked for the relations of the person involved, with

the name being optional to support the anonymity of the situation.

The patient is also asked where they were during the situation. For this, a

map will be brought up and the patient can pinpoint where they were or

input the address if known using the postcode, which then brings up a list

of properties under the same postcode.

45

Figure 16 - Calendar Overlay's

Screen: Entry Calendar Overlay

Description: The purpose of these screens is to produce a calendar over the top of the current

entry screen they are located in. This is so the user has constant access to change

the date of which the situation at hand took place. The overlay is to not have to

take the user off of the current entry screen and panic them as to what

happened to all of their information they just entered.

Figure 17 - Application Information Screens

Screen: Information Screens

Description: Throughout the application, there are pages which introduce buttons with

the fuŶĐtioŶalitǇ ĐoŵŵoŶlǇ used ǁheƌe I͛d hope users would recognise

and be able to deduce what it is trying to achieve in terms of my

46

application. If they are confused about what anything does, there will be

aŶ ͚i͛ iĐoŶ iŶ the top ƌight of the sĐƌeeŶ to ďƌiŶg up the ĐoƌƌespoŶdiŶg help
screen explaining what each of the icons do. Along with help with the

icons, there will be help displayed as to what each section of the form

eŶtails aŶd hoǁ to ŵake the ŵost of Ǉouƌ diaƌǇ eŶtƌies. This ǁouldŶ͛t tell
the user exactly what to write in each section, as that could cause some

forced information, but give the user a push in the right direction.

Heuristic Evaluation

A heuristic evaluation is a method employed to inspect the usability for a piece of software,

helping to identify any usability problems in the user interface. [2] As to the focus of this

application is to be as efficient and user friendly as possible, performing this evaluation on

my initial application design was very important.

I ǁill ďe usiŶg Jakoď NielseŶ͛s ϭϬ heuƌistiĐ pƌiŶĐiples to peƌfoƌŵ this eǀaluatioŶ. [2]

Principles:

1. Visibility of system status

2. Match between system and the real world

3. User control and freedom

4. Consistency and standards

5. Error prevention

6. Recognition rather than recall

7. Flexibility and efficiency of use

8. Aesthetic and minimalist design

9. Help users recognize, diagnose, and recover from errors

10. Help and documentation

Severity:

1. Not a problem

2. Cosmetic – Only fix if time permits

3. Minor – Fix this issue at a low priority

4. Major – Fix this issue at a high priority

5. Catastrophic – Imperative to fix this issue

47

ID Evaluation1

Screen(s): Home Screen

Problem EŵotioŶ͛s Wheel takes up too ŵuĐh ƌooŵ aŶd the optioŶs aƌe too
vague

Heuristic(s)

Violated

Flexibility and Efficiency, Aesthetic and Minimalist Design

Severity 3

Description This page could lead to an inefficient completion of an entry due to

confusing the user. The user has no inclination that the emotion

ǁheel has to ďe Đoŵpleted foƌ the ͚QuiĐk Add Mood͛ oƌ ͚Add Neǁ
EŶtƌǇ͛ oƌ ďoth.
The screen is also crowded with multiple interactable elements. This

could make it difficult for the user to accurately fill out this form.

Solution Remove the emotion wheel from the home screen design to make it

clearer what options the user has once they log onto the application.

48

ID Evaluation2

Screen(s): Entry Screens: Situation, Emotion and Worry

Problem The eŶtƌǇ sĐƌeeŶs doŶ͛t giǀe eŶough feedďaĐk to the useƌ ƌegaƌdiŶg
length of form

Heuristic(s)

Violated

Show System Status

Severity 3

Description A ͚ĐoŵpletioŶ͛ peƌĐeŶtage is displaǇed at the top of the sĐƌeeŶ as
the user progresses through the form – this shows us a glimpse of

system status. By using the buttons at the bottom to progress

thƌough the foƌŵ, it Đould leaǀe the useƌ ǁoŶdeƌiŶg ͚hoǁ loŶg is

left?͛ aŶd ƌushiŶg the foƌŵ. This ǁould theŶ Ŷot ďe aŶ aĐĐuƌate
depiction of their entry.

Solution Replace the button navigation with highlightable tabs to show the

useƌ ǁhat page theǇ͛ƌe oŶ aŶd hoǁ loŶg theǇ haǀe left to fill out
before submitting.

Evidence

49

Final Prototype Design

Through the evaluation of the main screens of the application, here are the improved

versions of the screens which failed a heuristic evaluation. The rest of the screens are to

remain the same as they didŶ͛t fail a heuƌistiĐ.

Figure 18 - Improved Home Screen

Related

Evaluation ID

Evaluation1

Screen: Home Page

Improvements: The evaluation concluded that the emotion wheel took up too much

room for the hoŵe sĐƌeeŶ aŶd theƌe ǁasŶ͛t eŶough ĐlaƌitǇ as to ǁhat
the user can achieve or not. Because of this, I removed the emotion

wheel and replaced it with three simple options: add new entry, entries

and quick enter emotion. These will now be the three main

functionalities of the application.

50

Figure 19 - Improved Entry Screens

Related

Evaluation ID

Evaluation2

Screen: EŶtƌǇ Page͛s

Improvements: It was determined that the entry screens were too vague on the

completeness of the form. Because of this, I have replaced the button at

the bottom to progress the screen to top tabs. These tabs have the

three entry screens available at all times. This shows the user they only

have three sections to complete and can finish entering the form at any

poiŶt ďǇ seleĐtiŶg ͚FiŶish͛ at the ďottoŵ, ǁhiĐh is aǀailaďle iŶ eǀeƌǇ taď.

51

Implementation

Unfortunately, due to time constraints, not everything spoken about within this section has been fully implemented into the front end of the

application. I will now discuss the routes I have created and their intentions for the execution of the front end of the application. As previously

mentioned, these routes are very important to allow the front end of the application to be able to gather information from the database. [7]

UML Class Diagram

This diagram shows how the classes

within my application interact with each

other. To simplify this diagram, some

methods and classes have been left out.

By providing a UML diagram, it is easier

to picture the logical designs I discuss

within this segment of the report.

 Figure 20 - UML Class Diagram

Software used to design UML:

www.lucidchart.com

http://www.lucidchart.com/

52

Database

This database is using Node.js, MongoDB Atlas and the MongoDB object data modelling

library, Mongoose. Node.js is needed to establish a connection to a database, query the

database and manipulate the data by either inserting, deleting or updating. [13] MongoDB

Atlas is used to handle the responsibility of hosting, patching, managing and securing a

MongoDB cluster. [14] A MongoDB cluster is simply used to store a collection data in an

efficient manner by breaking a collection into shards. Each shard then contains a subset of

the sharded data. [15]

User Schema

“Đheŵa͛s aƌe used to oƌgaŶise data foƌ the dataďase to uŶdeƌstaŶd hoǁ data is goiŶg to ďe
constructed within a collection, like a skeleton of the database. [16]

The User Schema I have created is designed to set a user up with the ability to create

ŵultiple eŶtƌǇ oďjeĐts ǁithiŶ the ͚eŶtƌies͛ aƌƌaǇ. With the eŶtƌies aƌƌaǇ ďeiŶg stoƌed ǁithiŶ a
useƌ͛s pƌofile, it keeps these entries private and secure for only that user to see. At no point

ǁould a useƌ ďe aďle to ǀieǁ aŶ eŶtƌǇ fƌoŵ aŶotheƌ useƌ͛s eŶtƌies aƌƌaǇ stoƌed oŶ the
database. This is a key component of the application as it ensures the users safety and trust

in the application.

Figure 21 - User Schema

53

MongoDB Atlas automatically assigns each object inserted an object id, _id. This can be used

to distinguish different entry objects within the entries array. An entry will consist of ten

different sections where the user will be asked to fill in nine of these. The only section not

editaďle ďǇ the useƌ is the ͚iŶputDate͛ seĐtioŶ. This has ďeeŶ added to the sĐheŵa to
distinguish the therapist viewing the entry created by the user the time differential from a

patient experiencing a situation to when they are creating a diary entry. To have the most

accurate entry, it is most beneficial to both the patient and therapist to fill in the diary as

close to the situation as possible. The therapist can then use this information and feedback

to their patient if there is a ĐoŶĐeƌŶiŶg diffeƌeŶĐe ďetǁeeŶ ͚iŶputDate͛ aŶd ͚ǁheŶ͛, ǁhiĐh is
the field inputted by the user. Another advantage to this schema design is to be able to

input multiple emotions for each entry to describe how they are feeling. The user will also

enter a rating between 0-99 for any emotion that they have input regarding a situation

Below is an example of a user that has been created within the MongoDB Atlas database.

This user has entered a single entry.

Figure 22 - Example User and Entry

54

System

This section will demonstrate the different ways that the system interacts with the

database. I will talk about the routes I have created and what the intention was for the front

end to be able to execute. To show the results of the code I have implemented in the app.js

file located in the server folder, I will be using the Postman application.

Postman

Postman is an API (application programming interface) client that allows a developer to

send HTTP requests to a server and read the response. [17] This is beneficial because of its

efficiency, enabling test routes without the need to write code. With Postman, you can see

the seƌǀeƌ͛s ƌespoŶse to Ǉouƌ ƌeƋuest stƌaight aǁaǇ. Theƌefoƌe, it is siŵple to see the
information your front end will need to supply and the reply from the server that it will

receive.

The HTTP methods I have implemented are:

• Get – Method used to perform a read operation

• Post – Method used to add a new resource

• Delete – Method used to remove a resource [18]

Create New User

This ƌoute is a post ƌoute, ŵeaŶiŶg it͛s used to add a Ŷeǁ ƌesouƌĐe to the dataďase. IŶ ouƌ
case, used when signing up for a new account. In this route, the data being requested is the

name, email, password and entries but the only required data at this stage is the name,

eŵail aŶd passǁoƌd. This is ƌeƋuested fƌoŵ ͚ďodǇ͛ ǁhiĐh is ǁhat the fƌoŶt eŶd should seŶd
iŶ a J“ON foƌŵat. This useƌ͛s data is plaĐed iŶto a ͚useƌ͛ ĐoŶstaŶt aŶd a Ŷeǁ useƌ is Đƌeated
using the schema showcased earlier with the user data as the input. This new user is then

processed by the MoŶgoose ŵiddleǁaƌe ͚saǀe͛ ǁhiĐh is used to iŶseƌt the doĐuŵeŶt iŶto
the database.

Figure 23 - Create User Route

55

In the user schema, the MoŶgoose ŵiddleǁaƌe ͚pƌe͛ is used. This takes an execution of a

middleware method as its input and then, in my instance, calls the next function to call each

ŵiddleǁaƌe used oŶe afteƌ aŶotheƌ. IŶ this Đase, ďefoƌe the ͚saǀe͛ ŵiddleǁaƌe is eǆeĐuted,
call the current user in ƋuestioŶ usiŶg ͚this͛ aŶd ĐheĐk if the passǁoƌd has ďeeŶ ŵodified.
This will be true in the case of changing the password or signing up for the first time. The

password is then hashed using the bcrypt library. Bcrypt is a password hashing function

based off of the Blowfish block cipher. [19] A salt, which is a piece of randomised data, is

generated with a fixed number of rounds and is used as an additional input when hashing a

password. [20]

Figure 24 - Mongoose 'pre' middleware

Here is an example of a

useƌ͛s passǁoƌd pƌeseŶted
in the database.

Figure 25 - User Hashed Password Example

By doing this, the password entered by the user is encrypted before being stored in the

database. This is the safest way to protect a user from an attack. If a hacker were to access

the database, they will only find the plaintext of their email which without the password,

would be useless in terms of retrieving information on the database. The hacker would have

to attempt a brute force attack to find the data produced by the salt to hash the key in the

first place, which would take a long time.

After the password has been hashed, the generateAuthToken function is called on the

object produced by the outcome of user.save(). This is done by using the then() method

which returns a Promise. A promise in terms of JavaScript is an object that will be in one of

three states: fulfilled, rejected or pending. [21] If the user data exists, generate an

authentication token for the user, else return a 400 error which indicates a bad request.

The generateAuthToken function takes the current user in question and creates an

authentication token. It does this by using the JWT (JSON Web Tokens) library. This token

string is created by signing the user object and the type of access the user has to the

database, with a random secret key. The token and access level are then pushed into the

tokens array of the user. This authentication token is used by later routes to identify

different users safely and securely from each other.

56

Figure 26 - generateAuthToken function

Here is an example of how

the token and access level

is presented within the

database.

Figure 27 - User Token Example

Below is an example of how the user interface sends the data to the database and how all

the different methods mentioned affect the data.

Figure 28 - New User Full Example

Login

This route is also a post route, adding an authentication token to the user that is being

logged in. It does this by calling a function from within the UserSchema, once again –

findUserByCredentials. This function requests the email and password from the front end in

a JSON format.

57

Figure 29 - Login Route

The findUserByCredentials function uses the UserSchema blueprint to guide the search. The

search in question is findOne, usiŶg the eŵail oďjeĐt takeŶ fƌoŵ the ƌoute. If a useƌ doesŶ͛t
exist, then the user argument being passed into the ͚then͛ function will return null and so

declaring the if statement as (!user) will be true and the Promise is rejected. If a user is

found, a new Promise is created. Using the bcrypt library, the password entered in the front

end is encrypted in the same way and compared to the hashed password already stored. If

these hash values match, the response is true, and the user is resolved within the Promise

aŶd ƌetuƌŶed fƌoŵ the fuŶĐtioŶ. If the passǁoƌds doŶ͛t ŵatĐh, the Pƌoŵise is ƌejeĐted. This
is hoǁ ŵǇ appliĐatioŶ autheŶtiĐates useƌ logiŶs ǁithout ĐoŵpƌoŵisiŶg aŶǇ of the useƌ͛s
data by having a point where two plaintext passwords are compared. It then uses the user

retrieved to add the authentication token into the header.

Figure 30 - findUserByCredentials Function

This ƌoute has ďeeŶ fullǇ iŵpleŵeŶted iŶto the ŵaiŶ appliĐatioŶ aŶd ĐaŶ ĐheĐk if a useƌ͛s
information is correct based on the information provided on the log in screen. If the data

58

theǇ haǀe pƌoǀided doesŶ͛t ŵatĐh aŶǇ pƌofile fƌoŵ the dataďase, aŶ eƌƌoƌ ŵessage is

displayed informing the user that they have entered an incorrect email or password. If it is

correct, they are taken to the home screen. To confirm the correct user has been logged in, I

printed their details to the console and cross checked it with the database.

Figure 31 - User Log in Full Example

Afterwards, the user is navigated to the improved home screen, displaying all of the main

functionalities the application has to offer.

Figure 32 - Home Screen

59

Retrieve User

Unfortunately, this route and the following route, logout, could not be implemented within

the main system due to time constraints. Given this, the route was still set up and tested to

be successful using Postman.

When a user logs in, they are given a new authentication token which can be used to

retrieve unique users.

Figure 33 - Get User Route

This ƌoute is a get ƌoute, ŵeaŶiŶg it͛s used to peƌfoƌŵ a ƌead opeƌatioŶ. Read operations,

also known as retrieve operations, are used to gather specific information. [22] The

following route was first sent through a custom piece of middleware I created called

͚autheŶtiĐate͛.

Figure 34 - Custom Authenticate Middleware

In the authenticate middleware, it calls in the UserSchema blueprint and creates a new

constant using that model. Later, we can use that empty blueprint to invoke a UserSchema

function onto it, using a token as the argument input. This token is taken from the header

supplied from the front end of the application. Since we were not able to implement this,

here is how this information is being supplied to the backend through Postman, using the x-

auth header as an active token for the input.

60

Figure 35 - Get User Postman

Example

If a useƌ isŶ͛t fouŶd, the Pƌoŵise is ƌejeĐted, aŶd a ϰϬϭ eƌƌoƌ is seŶt ǁith the eƌƌoƌ ŵessage
͚Not ‘eĐogŶised͛. Heƌe is aŶ eǆaŵple with an empty x-auth header.

Figure 36 - Failed Logout Example

Else, if a user is found through the unique token, the temporary blank user model that was

earlier created is inserted into the get request called by the route. This is when the route

sends the user to the front-end using res.send(req.user).

Here is an example of this route working on Postman.

Figure 37 - Full Get User Postman Example

61

Logout

The logout route works the complete opposite to the login route. Where the login route

authenticates the user and generates an auth token, the logout route authenticates the user

and removes the auth token – as seen in the image below.

Figure 38 - Logout Route

This ƌoute is a delete ƌoute, ŵeaŶiŶg it͛s used to ƌeŵoǀe a ƌesouƌĐe. It fiƌst determines if the

authentication token provided matches an existing auth token from within the database. If

theƌe͛s a ŵatĐh, the ƌoute requests the user and invokes the custom function, removeToken

onto it – requesting the matching token as an argument, as per below.

Figure 39 - removeToken Function

This function takes the current user in ƋuestioŶ, usiŶg ͚this͛, aŶd updates the useƌ ďǇ pulliŶg
the token supplied from the route out of the token array stored within the user. This leaves

the user without any tokens in the array, meaning they cannot access any application

functionalities anymore.

62

Here is an example

of a successful

logout using

Postman to

showcase the code

implemented.

Figure 40 - Logout Postman Example

Navigation

React native offers many different styles of navigation. I have implemented three ways to

traverse around a mobile application - using stacks, drawers and tabs. A stack navigator

allows you to transition between screens where each new screen is placed on top of a stack.

A drawer navigator allows you to partially bring a screen on top of the current screen before

actually transitioning away from the original screen – like pulling a drawer out from the side

of the screen. The final navigation technique I have implemented is tabs, which is what most

users will be accustomed using when on mobile applications. Tab navigation presents all the

reachable screens either at the top or the bottom of the screen to press, highlighting what

sĐƌeeŶ Ǉou͛ƌe ĐuƌƌeŶtlǇ oŶ.

This image shows the main navigator from

mainNavigation.js called from the App.js. This contains the

way that every screen is linked. The core idea of the

navigation container is a stack from the login page to each

page you see in the screenshot. When a button is pressed

on these screens with the intention for navigation, the

screen is added on to the top of the stack. Once the user

has logged in and taken to the home screen, that becomes

the origin of the stack. It is from the home screen where

you can access every aspect of the application.

Figure 41 - Navigation Container

63

The component called from within the Home screen within the stack is the

HomeDrawerScreen. This component is where the second form of navigation is stored – the

drawer. Inside here is where the user can find their profile and settings screen.

Figure 42 - Home Screen Component

The components called within this HomeDrawerScreen, HomeDrawScreen,

ProfileStackScreen and SettingsStackScreen, are used to provide the navigator with

information regarding what to display on the screen, what to place inside the header of the

screens and to allow you to re-open the drawer from these screens.

Figure 43 - HomeDrawerScreen

The final navigation implementation is the tabs section that has been implemented for the

diary entry. This must be accessed initially from the HomeStack and uses the component

EntryTabsScreen.

Figure 44 - Entry Screen Component

64

The entry tabs screen holds information regarding all three of the entry screens: situation,

emotions and worry. The tabs have all been assigned a suitable icon and distinguishable text

colour to indicate what screen you are currently visiting.

Figure 45 - EntryTabsScreen

Navigation Overview

Here is an overview of how users can navigate around the app to access the three main

focuses.

Figure 46 - Navigation Overview

65

Add New Entry

From the home screen, you have the option to begin a new diary entry. If this is selected,

the thƌee taďs of ͚situatioŶ͛, ͚eŵotioŶs͛, aŶd ͚ǁoƌƌǇ͛ aƌe Đalled. It is iŶ these sĐƌeeŶs ǁheƌe
the user will spend most of their time on the application. Therefore, it is imperative to the

core goal of this app that these screens are simple to fill in, user friends and display clear

instructions as to what the different inputs do and what they are for. It is because of this

that I provided an information page for each of the three different screens. During my

research, I found that the higher rated applications contained information pages on what

each function did, so I adopted the same approach in my own application design. This

improves the user friendliness of the app, catering to the users looking to gain more

knowledge on what to put into an input box or just to clear up any confusion.

Figure 47 - Entry Help Screens

These three screens will help aid the user through what each input box is asking them to

achieve and different icon meanings.

Another function that all three screens share is the ability to quit the process from any

screen.

Figure 48 - Clear Entry Example

66

This small bin icon is located at the top left of each tabbed screen. By pressing this, you are

presented with an alert box which asks you if you wish to abandon the current diary entry

you are creating. Once this has been accepted, there is no way to retrieve the information

you have just inputted.

Each text box on the entry screens processes information in the same way. It is gathered

through one of the core components to React Native – TextInput. This component allows

useƌs to eŶteƌ teǆt iŶto a field. TeǆtIŶput ĐoŶtaiŶs aŶ attƌiďute Đalled ͚oŶChaŶgeTeǆt͛ ǁhiĐh
is invoked every time the text box is modified. I used this to create a function that processes

that ǀalue eǀeƌǇ tiŵe it͛s ĐhaŶged.

Figure 49 - Text Input Function Example

This function takes advantage of the useState hook available within React Native. Hooks

allows you to access core features of React without having to use classes. [23] The useState

hook lets Ǉou deĐlaƌe a state ǀaƌiaďle. This ŵeaŶs that ǁhilst ǁe͛ƌe oŶ a ĐeƌtaiŶ page, that
data is preserved. The only argument taken by the useState is the initial value, in this case

it͛s aŶ eŵptǇ stƌiŶg.

As the dataďase ĐouldŶ͛t ďe iŵplemented in time, an alternative method was used to be

aďle to pƌoĐess iŶfoƌŵatioŶ that Ŷeeds to ďe stoƌed ǁithiŶ the ͚MǇ EŶtƌies͛ seĐtioŶ of the
application. This method was using AsyncStorage. AsyncStorage is an unencrypted, key-

value storage system that is global to the app. By this, information can be sent and stored

using AsyncStorage, then this same data can be retrieved and displayed anywhere in the

application. This method is purely used to demonstrate what the application could be able

to achieve with the proper routes set up via the database. This could not be considered as a

peƌŵaŶeŶt solutioŶ as it doesŶ͛t offeƌ ĐoŶtiŶuous data stoƌage, ƌeŶdeƌiŶg diaƌǇ eŶtƌies
useless. Once a new entry was created, it would replace the old data placed within the

AsyncStorage.

Figure 50 - AsyncStorage setItem

67

Above is a screenshot of how data is being assigned within the situation screen. I am taking

advantage of a different hook – useEffect. This hook runs after every screen render and

update. Including the onChangeText attribute I spoke about earlier. Every time an entry box

is updated, the AsyncStorage is setting each item to the most up to date value and storing it

for later use.

Situation

The situation is the first screen you are presented with when starting a new diary entry.

Figure 51 - Situation Screen

The fields: entryTitle, when, who and what are the variables for the corresponding text

boxes which are titled: entry title, when did this happen, where did this happen, who with

and what happened. As previously mentioned, the text boxes will be using a combination

useState, useEffect and AsyncStorage methods to update and store the information. The

oŶe eŶtƌǇ field ǁhiĐh diffeƌs oŶ this sĐƌeeŶ is the ͚ǁheŶ͛ ǀaƌiaďle.

68

Figure 52 - DatePicker

When the date field is clicked, this calendar (as shown above) is presented. This is a

ĐoŵpoŶeŶt takeŶ fƌoŵ a ĐoŵŵuŶitǇ liďƌaƌǇ oŶ GitHuď Đalled ͚ƌeaĐt-native-datepiĐkeƌ͛. I
have set the minimum date to be at most seven days prior to the current day. Encouraging

the users to embrace the CBT process and input a diary entry as the situation occurs when

their emotions are most fresh in their mind. Additionally, to stop users incorrectly entering a

date from the future, the maximum date entered is the current date of use.

In the original design for the application, in the location field, the user was able to bring up a

map to enter the location of the event. This would have given the user a pin to move

around, defaulted at their current location or the option to enter a postcode and choose an

address from a drop-down list. Once again, due to the complexity of the Google Maps API

and the time constraint, this was removed from the final product. Instead, the user is

presented with a text box and can enter whatever they wish in this section. This can range

from an address to a vague description e.g. The Park. I was disappointed not to be able to

achieve this functionality but am proud to have thought of an alternative method.

Emotions

In the original prototype for this screen, I was going to use the emotions wheel to allow the

useƌ to iŶput iŶfoƌŵatioŶ ƌegaƌdiŶg ǁhat theǇ͛ƌe feeliŶg. This was a great idea in theory as

utilising the wheel to pinpoint their feelings is already a part of their diary entry routine, as

implemented by their therapist. When it came to develop the application, this proved too

difficult to implement and so the following design was chosen instead.

69

Figure 53 - Emotions Screen

This desigŶ alloǁs the useƌ to eŶteƌ aŶǇ teǆt theǇ ǁaŶt iŶ the ͚EŵotioŶ͛ seĐtioŶ aŶd a
number between 0-ϵϵ iŶ the ͚‘atiŶg͛ seĐtioŶ. This has aŶ eleŵeŶt of fƌeedoŵ ǁheƌe the
emotion wheel may constrict the user to a certain range of emotions. To add a new emotion

to the list, I Đƌeated a Đustoŵ ĐoŵpoŶeŶt Đalled ͚AddEŵotioŶ͛.

This custom component works the

same as the situation screen where

every time either of the text boxes are

modified, the corresponding variable

state is updated to match the text

inputted. When the user feels they are

ready to submit their emotion, they

pƌess the ͚Add EŵotioŶ aŶd ‘atiŶg͛
button. This invokes the submitHandler

function, using both the emotion and

rating as the argument.

Figure 54 - AddEmotion Function

70

This function creates a new unique key

and puts the variables through a

validation check. The initial check is to

see if the emotion can be valid by being

over the length of two as no emotion

can be smaller than three letters. The

rating is also checked to see if it has a

length of at least one but no bigger than

two – giving the user a range of 0 to 99.

The keyboard presented to the user

when entering the rating is numerical,

stopping them from entering an illegal

character. If the data presented fails to

pass this check, the user is informed to

enter a valid emotion.

Figure 55 - SubmitHandler Function

After this initial check, the emotion and rating are then attempted to be added to the

emotions array. The new emotion, rating and unique key are made into an object and at the

same time the current emotions in the array are called. I then created a loop to cycle

through and add one to a count variable created, initialised at zero. When the new emotion

is being compared to the current emotions, if the new emotion matches with any of the

current emotions, the count is incremented by one. If the count remains at zero, it is a valid

entry and is added to the beginning of the emotions array. If the count does not equal zero,

then an alert is presented, explaining to the user why the entry is not valid i.e. that emotion

has already been entered.

Figure 56 - Duplicate Emotion Alert

To display the emotions array list created, a flat list is used. A flat list takes an array of items

and displays one after another with the stylings created. To style the emotions in an

efficient way, I created another custom component – EmotionItem.

71

Figure 57 - EmotionItem Display

This takes the array of emotions and displays the emotions and rating inside a container

with a bin icon next to it. The significance of the bin icon is it invokes a custom function

pƌessHaŶdleƌ usiŶg the eŵotioŶ͛s uŶiƋue keǇ to identify which row has been selected.

Figure 58 - Remove Emotion Alert

This fuŶĐtioŶ ǁaƌŶs the useƌ theǇ͛ƌe aďout to delete aŶ eŵotioŶ aŶd if theǇ ǁaŶt to
pƌoĐeed. If the useƌ seleĐts ͚Ok͛, theŶ the filteƌ ŵethod is used oŶ the current array, creating

a new array, filtering out the emotion row that has been removed using the corresponding

key.

72

Below is an example of how this would be displayed to the user.

Figure 59 - Remove Emotion Full Example

Throughout this process, the useEffect hook has been working with AsyncStorage to keep

the current information being inputted up to date. This is the same technique used on the

situations page and the only purpose of this is for demonstration purposes only. Given more

tiŵe, this iŶfoƌŵatioŶ ǁould haǀe ďeeŶ pƌoĐessed iŶto the ͚eŵotioŶs͛ seĐtioŶ of the
UserSchema blueprint.

Worry

The worry screen is the final tab available to choose and the final entry point for the user.

Similar to the situation page, this page is predominantly made up of text input boxes. There

is one input section where the requirement is to recognise the type of worry and so the user

can only choose from one of two options: hypothetical or practical. Originally, this was going

to be done using radio buttons but due to the complexity of implementing this on React, I

opted foƌ the ďuilt iŶ ‘eaĐt Natiǀe ĐoŵpoŶeŶt ͚PiĐkeƌ͛.

Figure 60 – Picker Component

This component displays the ĐuƌƌeŶt ǀalue to the useƌ, staƌtiŶg off ǁith ͚Please seleĐt a tǇpe
of ǁoƌƌǇ͛ ǁhiĐh ŵatĐhes the use“tate ǀalue of aŶ eŵptǇ stƌiŶg, oƌ ͚͛. WheŶ the ǀalue is

73

changed, the changeTypeOfWorryHandler is called and updates the value to the

corresponding picker item value. As mentioned earlier, this is using the useState hook and

taking advantage of the real time update on value changes from the onValueChange

property of the Picker component. This value is now stored.

Below is how this information is displayed to the user.

Figure 61 - Full Picker Example

Located at the bottom of the worry tab screen is the final submit button to commit the

entry to be pushed into the diary entries array. This is a design choice which may confuse

the user at first by causing them to wonder where they should go to locate the final entry

submission. To first locate this, the user must click each tab of the form and explore the

different screens. By not being able to submit the diary entry on every tab will prevent the

user from rushing to complete an entry, missing some of the functions of the app. When this

button is clicked, an onSubmit function is called.

Figure 62 - onSubmit Full Entry

74

The onSubmit function uses AsyncStorage to retrieve every item currently stored inside the

local storage and performs a simple validation check on every value. This final validation

check before submitting an entry first checks to see if either the entry title or the date is

empty. If either of these two fields are empty, the user will not be able to submit the form

as these are the minimum required input fields. If any other field is empty, a warning is

displayed to the user asking them if they still wish to proceed with the submission of the

entry.

Figure 63 - Entry Validation Check

This is how the information will be displayed to the user regarding any alerts sent from the

validation.

Figure 64 - Full Entry Validation Alerts

Once the user submitted an entry, they will be taken to a final preview screen which

displays all the information they have inputted into the format of a single entry.

Figure 65 - Full Entry Preview

75

Final Entry Preview

This screen retrieves all of the information from AsyncStorage via the getItem method, using

the string value we assigned it to from the screen it was collected from. By using the same

combination of useEffect, useState and AsyncStorage, I am able to demonstrate what the

application could achieve given a functioning route to the database.

Figure 66 - Final Entry Preview useEffect Function

In this instance, I have placed an empty array as the second parameter for useEffect. This

stops the useEffect from constantly being called, taking up valuable memory resources

whilst visiting this page. Below is an example layout of what a final entry would consist of

through the whole form.

Figure 67 - Full Entry Example

76

My Entries

View an Entry and Publish

Fƌoŵ the hoŵe sĐƌeeŶ, theƌe is aŶ optioŶ to ǀieǁ ͚MǇ EŶtƌies͛. IŶside this seĐtioŶ, Ǉou aƌe
presented with a full list of your entries. For demonstration purposes, I have added some

data inside the array which is used to display the information already to show the desired

outcome.

Figure 68 - My Entries Screen

To display the entries, I am using the same method used to display information from the

emotions tab. This was achieved by taking an array of entries and using that as the data

input of a flat list. Continuing to use the same method as emotions, I created a custom

ĐoŵpoŶeŶt Đalled ͚EŶtƌǇIteŵ͛ ǁhiĐh takes iŶ a siŶgle item from the entries array, a

pressHandler function and the navigation object used to navigate to a new screen.

Figure 69 - Entries Flat List Display

Inside the component, I have made a custom Card component to style the box and give the

useƌ the illusioŶ that it is iŶteƌaĐtiǀe, as ǁell as displaǇiŶg the ĐoƌƌespoŶdiŶg eŶtƌǇ͛s title aŶd
input date, using the items within the component to pass as props to the component itself.

77

Figure 70 - Custom Card Component

The entry card has a TouchableOpacity applied to it so when it is pressed, a method is

called. This is vital to be able to actually view the entry in its full form.

Figure 71 - Select Entry Button

When the Card component is pƌessed, it Ŷaǀigates the useƌ to the ͚“eleĐtedEŶtƌǇ͛ page,
passing the item object into the screen with it. This means that the page being navigated to

will have access to all the properties within the item object by setting the parameters of the

current route to their designated values and can display it.

Figure 72 - Route Values

Once the user navigates to their entry of choice, they are shown the entry in full.

Figure 73 - My Entries Entry Example

Although this function has not been implemented within this project, the user would

normally process any published entries thƌough this sĐƌeeŶ ďǇ pƌessiŶg ͚Puďlish͛ iŶ the top
right of the header.

78

Refresh Entries

This functionality would normally be used to process any changes made to the database.

Since this was never fully implemented, I will be demonstrating the intended goal of this

button using useEffect, useState and AsyncStorage.

If the user has entered a neǁ eŶtƌǇ, autoŵatiĐallǇ ƌetƌieǀiŶg it fƌoŵ the ͚MǇ EŶtƌies͛ page
may cause some problems. During development, when the useEffect hook was used to

retrieve the information automatically, empty cards would be placed onto the screen before

the data had a chance to be received. To remedy this, a refresh button was put in place.

Figure 74 - Refresh Entries Button

useEffeĐt is used as Ǉou aĐĐess the ͚MǇ EŶtƌies͛ page to ƌetƌieǀe the eŶtƌǇ iŶfoƌŵatioŶ fƌoŵ
AsyncStorage.

Figure 75 - newEntryHandler Button

When the refresh button is pressed, the AsyncStorage will hold the values that are used for

displaying the entries. The newEntryHandler function is called using these values as the

input.

Figure 76 - newEntryHandler Function

This function is used to first validate that there is a new entry within AsyncStorage. Due to

the eŶtƌǇ title ďeiŶg a ƌeƋuiƌed eŶtƌǇ fƌoŵ the ͚Add Neǁ EŶtƌǇ͛ fuŶĐtioŶalitǇ, ĐheĐkiŶg if this
value is null is the ďest ǁaǇ to ĐheĐk foƌ a Ŷeǁ eŶtƌǇ ǁaitiŶg to ďe iŶseƌted. If theƌe isŶ͛t a
Ŷeǁ eŶtƌǇ, the useƌ is pƌeseŶted ǁith a siŵple aleƌt saǇiŶg ͚No Ŷeǁ eŶtƌies͛. If there is a new

79

entry available, the entry information is placed inside a new object and is placed at the top

of the previous entries listed.

Delete an Entry

To delete an entry, I am once again using the same technique used when deleting an

emotion. The entry key is identified from within the EntryItem component and is used as

the argument to call the pressHandler function.

Figure 77 - Delete Entry Icon

The pressHandler function alerts the user that they are about to delete an entry and asks for

their confirmation. Once the user has confirmed the entry to be deleted, the filter method

determines which of the current entries in the list has the corresponding key and therefore

needs to be removed.

Figure 78 - Remove Entry Function

Heƌe͛s aŶ eǆaŵple of how it would look to the user.

Figure 79 - Delete Entry Example

80

Search and Sort

Once again due to time constraints, the original functional requirements of searching and

sorting entries was not able to be implemented into the application, but it has still been

designed into the screen.

Figure 80 - Search and Sort Design

To search, the user would type text into the box provided and the entries will be proceeded

to be filtered so the entry title matches the text. To sort, the user would have pressed the

icon located in the top right of the screen and applied their desired sort. These sort options

would have been to sort by the date of the entries i.e. latest to earliest or vice versa.

Quick Add Entry

Currently, the Quick Add functionality does nothing apart from demonstrate how the idea of

a quick entƌǇ Đould ǁoƌk ďǇ ĐoŶtaiŶiŶg just the useƌ͛s ĐuƌƌeŶt eŵotioŶs. This ǁoƌks iŶ the
saŵe ǁaǇ that the eŵotioŶs aƌe iŶputted oŶ the ŵaiŶ ͚Add Neǁ EŶtƌǇ͛ foƌŵ, shoǁiŶg the
useƌs eŵotioŶs as theǇ iŶput theŵ iŶ a taďle foƌŵat aŶd theŶ pƌess the ͚“uďŵit QuiĐk EŶtƌǇ͛
button.

Figure 81 - Quick Add Entry Screen

81

The iŶteŶded fuŶĐtioŶalitǇ of the ͚“uďŵit QuiĐk EŶtƌǇ͛ ďuttoŶ is to plaĐe it iŶ the saŵe
location as normal entries – the ͚MǇ EŶtƌies͛ page. IŶstead of aŶ eŶtƌǇ title like a normal

entry, it would just be a generic title of the day of the entry and the specific date

underneath. Here is a mock-up as to how I would have liked it to look.

Figure 82 - Hypothetical Quick Add Entry Example in My Entries

Implementation Conclusion

During the implementation processes, there were a number of struggles that I needed to

overcome. This includes applying multiple navigation methods within the application i.e.

drawer, stack and tabs. The documentation regarding the knowledge as to how I could

incorporate this method together was lacking and so I needed to use trial and error to arrive

at my desired outcome. Another struggle was the initial database setup. This proved more

difficult than first imagined due to, once again, lack of documentation. React Native is a

fairly new software and so help and guidance is limited at this point in time. Through

tutorial videos and articles online, I managed to garner enough knowledge to get it up and

running successfully.

UŶfoƌtuŶatelǇ, I ĐouldŶ͛t fullǇ aĐhieǀe the dataďase. Hoǁeǀeƌ, thƌough the appliĐatioŶ, the
user is able to sign up a new account, adding their profile information into the database -

hashing their password and assigning them a unique authentication token. To expand upon

this, I would have liked to utilise the authentication token to identify users to help perform

other tasks, such as adding a new entry or viewing a previous one.

Some other implementations that ǁeƌe oƌigiŶallǇ plaŶŶed ďut I ǁasŶ͛t aďle to fullǇ aĐhieǀe
were a map visual for location and the use of an emotion wheel when the user is entering

their emotion. Both of these ideas seemed to be good in the design phase but during

82

implementation, proved too difficult and were replaced by simpler means that achieved the

same or similar results. For the location, a map and live user location was replaced by a

generic description of a place. A map would have been useful to discover where the most

common events occurred, but a straightforward location description does just as good of a

job. For the emotion wheel, although the patients might have been able to recognise the

idea of placing emotions into a diary using this technique, applying it within an application

proved too laborious to use and implement. This was therefore replaced with a list and

rating design that the user can freely edit, as discussed earlier.

83

Results and Evaluation

Application Outcome Compared with Requirements

The following table is taken from the requirements I put in place at the beginning of the

project. I have taken the requirement number from the earlier requirements table, judged

whether my solution passes the acceptance criteria I put in place and justified my decision

in the final column.

Functional Requirements

Must have

Requirement

Number

Pass/Fail Justification

1. Pass The user is able to fill out a situation tab containing the ability to

aŶsǁeƌ the ƋuestioŶs: ͚ǁheŶ?͛, ͚ǁheƌe?͛, ͚ǁho ǁith?͛ aŶd ͚ǁhat
happeŶed?͛.

2. Pass The user is able to fill out a worry tab containing the ability to answer

the ƋuestioŶ ͚ǁhat if?͛
3. Pass The user is able to fill out a worry tab containing the ability to answer

the ƋuestioŶ ͚ǁhat is the ǁoƌƌǇ pƌediĐtiŶg ǁill happeŶ?͛
4. Pass The user is able to fill out an emotions tab containing the ability to

list any emotion with a corresponding rating.

5. Pass The user is able to fill out a worry tab containing the ability to answer

the ƋuestioŶ ͚What is the tǇpe of ǁoƌƌǇ?͛ usiŶg a dƌop-down list.

6. Pass The user is able to enter the date of an entry using a pop-up calendar

on the situation tab.

7. Fail The system has no capability to track the users live location.

8. Pass The user is prompted on submission if areas of the entry are left

blank.

9. Pass The user is required to set up an account before gaining access to the

application.

10. Fail The user is able to view previous entries but has no option to edit

them.

11. Fail The user is able to choose to publish an entry but the functionality

for this was never implemented.

13. Fail The user is unable to add photographs to their entry.

Should have
14 Fail This functionality was attempted but unfortunately could not be

implemented in time.

15. Fail This functionality was attempted but unfortunately could not be

implemented in time.

Could have

84

16. Fail There is no system in place to remind the user to complete an entry

Will not

17. Pass Due to the way the database has been implemented; the system

would not allow other users to view separate user entries.

Non-Functional Requirements

Must have

Requirement

Number

Pass/Fail Justification

1. Pass The database has the ability to be updated when a new entry is

eŶteƌed, though the fƌoŶt eŶd of the appliĐatioŶ doesŶ͛t offeƌ this
functionality.

2. Pass Entries are always accessible for the user through local storage.

3. Pass A help screen is provided for screens with lots of information or

interactions which may be confusing for the user.

4. Pass Through heuristic evaluation and user testing, the application has

been identified to be easy to navigate.

Should have
5. Pass All actions performed on the application happen with a quick,

seamless response time.

Could have

6. Fail The user has no option to change the look or theme of the

application.

Breakdown of Results

Type of

Requirement

Total Requirements Successful

Requirements

Requirement

Success Percentage

Functional 17 9 53%

Must 13 8 62%

Should 2 0 0%

Could 1 0 0%

Will Not 1 1 100%

Non-Functional 6 5 83%

Must 4 4 100%

Should 1 1 100%

Could 1 0 0%

Total 23 14 61%

Above is a detailed table breaking down the individual sections which were in my original

requirements table. Of the total 23 requirements listed, only 14 were successful. This is a

61% pass rate. This pass rate is a lot lower than expected prior to implementing this

application. I believe this is due to the external pressures that were not accounted for

during the planning of this project. This is discussed in greater detail further on in the

report.

85

Upon reflection, I consider soŵe of the ͚ŵust͛ ƌeƋuiƌeŵeŶts ǁhiĐh I failed to pass ǁeƌe
incorrectly assigned and were not crucial to the success of the project. Therefore, these

should have been placed in different requirements sections, i.e. ͚should͛ oƌ ͚Đould͛.

User Testing

To gather the most accurate results, I was hoping to test my application using a handful of

anonymous clinical patients gathered by Dr Cheryl Jones. This data could be dummy data or

real entries. Due to the anonymity, I would have never known if the information inputted

was real, nor would I have known who entered it. These users would have informed me, as

the researcher, how prolific they are with mobile applications and if they are avid diary

users – aiming to find similarities to my previously created personas. This would have made

my results more reliable, comparing the outcome of the tasks given the users previous

experience with applications and diary concepts of this nature. Unfortunately, due to the

current, unprecedented situation we find ourselves in, this was no longer possible. Instead, I

have had to perform the test with only the two individuals that I am currently residing with.

Before the testing begins, I will go through the briefing form which informs them of the

overall goal of the test, as well as asking them to fill in a consent form.

The aim of the tasks I will be conducting are to showcase the most important aspects of my

application. I will be reading through the task as well as having a physical prompt in front of

them, explaining again what to do. Whenever data is asked to be entered into the

application, dummy information will be supplied. This is to avoid any personal information

being displayed to me as the researcher.

The tasks will be timed, and I will be making notes on anything the user does that may stray

from the normal activities the task is designed to do. If the user begins to struggle on any of

the tasks, I will try and hint to them what they could try to progress further. If they are still

struggling, I will show them anything that they need to do to complete the task and it will be

Đlassified as a ͚fail.͛

Following the completion of the tasks, the users are asked to answer a quick questionnaire

regarding the simplicity and efficiency of the application. Then they are asked for any other

comments they have about the application, from the appearance to the ideas used. I

haǀeŶ͛t pƌepaƌed aŶǇ questions to ask the participants as I wanted unbiased and honest

feedback on any aspect of the application and not just on areas, I would have been

prompting them to discuss should I have used specific questions.

Task Create a brand-new profile, login and view this information on the profile page

Task Number T1

Description Your task is to create a new profile, login with this information and find the

location of where to view this profile information.

To avoid personal data being inputted, the following data will be used as

dummy data for input:

Email: TestUser@cardiff.ac.uk

mailto:TestUser@cardiff.ac.uk

86

Password: Password01

Full Name: Test User

Task Create a new diary entry

Task Number T2

Description Your task is to create a new diary entry, filling in every input box available.

To avoid personal data being inputted, the following data will be used as

dummy data for input:

Entry Title: A day at the park.

When: Current date of performing the task.

Where: The Park.

Who: Me, mum and a stranger.

What: We went to the park for a walk and there was a stranger behind us as we

were walking. They got too close for comfort and it triggered my anxiety.

Emotions and Rating: Anxious - 55, Worried - 20 and Scared - 80.

Worry: That the person behind us would get close enough to be able to cause

either of us harm.

Type of Worry: Practical.

Prediction: Either me, my mum or both of us will be attacked by the person

behind us.

Task View the diary entry you created and publish it locally

Task Number T3

Description Your task is to locate where the previous diary entries are stored, locating the

entry you created in the previous task. Once you have located your entry,

publish it.

Task Delete a diaƌǇ oŶe of the test eŶtƌies ǁithiŶ the ͚MǇ EŶtƌies͛ page

Task Number T4

Description Youƌ task is to delete oŶe of the eŶtƌies that Ǉou didŶ͛t Đƌeate ǁithiŶ the ͚MǇ
EŶtƌies͛ page.

Task Add a Ŷeǁ ͚QuiĐk EŶtƌǇ͛
Task Number T5

Description Your task is to locate where to add a quick entry, which consists of just

emotions, and add them to your entries.

To avoid using personal information, please use this dummy information

provided:

Emotions and Rating: Anxious - 55, Worried - 20 and Scared - 80.

87

User Test Results

Here are the results from the two participants, performing the five tasks with little guidance

to simulate a new user using the application for the first time.

Task Number T1

Participant Number P1

Task Success Pass

Task Comments User started the task by trying to log in before signing up. Maybe the

application should make it more obvious that a new account needs to

be created by suggesting they create a new profile. After this hiccup,

the user was able to successfully log in and quickly discovered the

profile page.

Time Elapsed

(minutes)

2:03

Participant Number P2

Task Success Pass

Task Comments The user found the sign-up form straight away and started inputting the

information. Then they logged in and instantly recognised the three

bars icon as a menu icon to find the profile page.

Time Elapsed

(minutes)

0:49

Task Number T2

Participant Number P1

Task Success Pass

Task Comments The user discovered the Add New Entry function easily from the home

page. User was confused with the tabs at first but easily became

accustomed. The emotions button was pressed before any input was

entered but the alert presented to the user told them exactly what

went wrong. There were no issues regarding the submit entry button.

Time Elapsed

(minutes)

4:23

Participant Number P2

Task Success Pass

Task Comments The user asked about the difference between a quick entry and add a

new entry. Once this was clarified, they clicked the correct button and

proceeded onto inputting the information. This user was confused at

the tabs on the bottom first but became quickly accustomed.

Time Elapsed

(minutes)

2:22

Task Number T3

Participant Number P1

Task Success Pass

88

Task Comments This task was left vague on purpose to see what a completely new user

would do, simulating a new patient. The user saw the dummy entries in

the ͚MǇ EŶtƌies͛ seĐtioŶ aŶd ǁas ĐoŶfused as to ǁheƌe the eŶtƌǇ theǇ
just created was. After a few seconds passed, they noticed the refresh

button and the entry appeared. They selected this and found the

publish button to simulate the diary being made available to the

therapist.

Time Elapsed

(minutes)

0:22

Participant Number P2

Task Success Pass

Task Comments The user clicked on a pre-existing entry and published that instead of

the one they created previously in the task above. When asked if that

was the correct entry, they then realised they had to refresh the entries

before being able to retrieve theirs. After this, they were quickly able to

understand what to do.

Time Elapsed

(minutes)

0:26

Task Number T4

Participant Number P1

Task Success Pass

Task Comments The useƌ loĐated the ͚MǇ EŶtƌies͛ page aŶd usiŶg ƌeĐogŶitioŶ oǀeƌ ƌeĐall,
identified the bin icon meaning the entry would be deleted if this were

pressed.

Time Elapsed

(minutes)

0:07

Participant Number P2

Task Success Pass

Task Comments The user easily recognised the bin icon as a way to remove the entry

from the entries list.

Time Elapsed

(minutes)

0:04

Task Number T5

Participant Number P1

Task Success

(minutes)

Pass

Task Comments The useƌ asked if the ͚QuiĐk EŶtƌǇ͛ ǁas a ǀoiĐe iŶput due to the icon

looking similar to the curved waves of a speaker icon. The user quickly

found where to enter the quick add entry section.

Time Elapsed

(minutes)

0:43

Participant Number P2

Task Success Pass

Task Comments The user quickly found the ͚QuiĐk EŶtƌǇ͛ seĐtioŶ aŶd ďegaŶ eŶteƌiŶg the
provided emotions.

89

Time Elapsed

(minutes)

0:38

Task Questionnaire

Strongly

Disagree

Disagree Neither

Agree nor

Disagree

Agree Strongly

Agree

1 2 3 4 5

I found signing up for a new profile

and logging in simple and efficient

 U2 U1

I found that filling in the situation

page using this application was easy

to follow

 U2 U1

I found that filling in the emotions

page using this application was easy

to follow and I could enter the correct

information

 U2 U1

I found that filling in the worry page

using this application was easy to

follow and I could enter the correct

information

 U2 U1

I found that finding the entry I

created was simple and efficient

 U2 U1

I found that finding where to publish

my entries efficient

 U2 U1

I found that deleting an existing entry

was easy to locate

 U2 U1

I fouŶd that addiŶg a ͚QuiĐk EŶtƌǇ͛
was easy to locate and efficient to use

 U2 U1

Overall, the participants agreed that the application was simple and efficient, with the

majority of the questionnaire being in the strongly agree section – 9/16 votes. The poorest

task question was asking about the simplicity of finding the entry you just created within the

͚MǇ EŶtƌies͛ seĐtion. This is due to the fact that it is a manual refresh button, as opposed to

an automatic refresh which would have been preferred for both users.

Additional Comments

To summarise the general comments made from both users they found the application to

be siŵple, Ǉet effeĐtiǀe. TheǇ ǁeƌeŶ͛t left ĐoŶfused ďǇ aŶǇ iĐoŶs oƌ pƌoĐesses Ŷeeded to
achieve certain tasks. They also were impressed with the depth of the entry form. Both

useƌs didŶ͛t thiŶk a siŶgle oĐĐuƌƌeŶĐe of aŶ eǀeŶt Đould haǀe so ŵuĐh iŶfoƌŵatioŶ to be

taken from it and analysed.

A few improvements suggested included an instantaneous log in when you sign up for the

first time to improve the efficiency of the initial sign up. Another improvement suggested is

when a new entry is added on either the quick entry section or the emotions tab in the add

new entry section, to remove the input from the text box to save time on having to remove

the text already placed within the input box before entering the next emotion.

90

Future Work

Currently, my application is in a position where it is very close to functioning as it was

intended when originally designed. A large factor of the incomplete aspects of the project

are due to time constraints caused by external issues that were out of my hands and caused

a severe dip in my mental health.

The main regret is not being able to fully implement a functioning database to manipulate

the data from the front end to the back end. If I were able to set up this aspect of my

project, it would be much more presentable for users to test and to talk about within this

report. This would greatly improve the overall appeal of the application by having the ability

to perform more extensive tests over a longer period of time.

Some functionalities stated at the beginning of the project were unable to be satisfied.

These iŶĐlude the useƌ͛s ďeiŶg aďle to use theiƌ ĐuƌƌeŶt liǀe loĐatioŶ fƌoŵ ǁithiŶ a ŵap
feature and the ability to edit previous entries. Regarding error prevention, being able to

edit a previous entry is important to adjust anything that was inputted as a mistake after it

has alƌeadǇ ďeeŶ Đoŵŵitted to the dataďase, thus iŵpƌoǀiŶg a useƌ͛s eǆpeƌieŶĐe ďǇ
providing an efficient way to rectify mistakes. A route was initially set up for this within my

app.js file but could not be implemented due to complications previously discussed. With

the useƌ͛s liǀe loĐatioŶ, this is ƌefeƌeŶĐiŶg the usaďilitǇ of the eŶtƌǇ foƌŵ. The aďilitǇ foƌ the
user to pinpoint on a map the location of the event, rather than a broad description, is a

massive help for the therapist to review and analyse behavioural patterns. As previously

mentioned, I have provided a temporary alternative until I am able to fully implement this

feature.

Another main aspect which I have alluded to throughout the report is a therapist view.

Although this was never an intention to develop within this project, it was important to

show what that would have done in terms of interacting with patient data – hence showing

the functional requirements, non-functional requirements and use cases earlier within the

report. For clinical tests to be a possible option in the future, this side of the application

would need to be developed. Each therapist would have an assigned list of patients stored

in a database, where the patient information is only accessible by accessing the application

with the corresponding therapist credentials. It is important to stress this as if therapists had

access to other patieŶt͛s iŶfoƌŵatioŶ there could be a breach in the patient, doctor

confidentially. This is even more important considering the latest controversy of GDPR

(General Data Protection Regulation) and data being shared without consent.

A further future implementation that would improve the re-usability of this application

would be the ability to customise the diary entry form layout. By making this section of the

application fully customisable, it would cater to a much broader audience. From a user

standpoint, default questions asked may not fully benefit the patient. In terms of the clinical

aspect, a therapist could change the questions asked to mould the app for certain disorders

without having to use a different software. This idea was discussed in meetings, however

91

since there was never an intention to develop a therapist view alongside this project, the

idea never came to fruition.

Similarly, user evaluation and analysis of their own diary entries is an important factor in

improving CBT process. A functionality to provide a close examination of a dataset from the

user to discover details, such as the average emotion entered, average overall rating of

emotions or even common words or phrases used throughout a diary entry. In my opinion,

this would have greatly improved the self-reflection a user could provide themselves

without having to wait to talk to their therapist. Also, the analytics of diary entries can help

aid the therapist in guiding a patient's therapy.

Conclusions

The main intention of this project was to create an application that a therapist can deploy

for cognitive behavioural therapy patients to fill out in a simple diary format, utilising the

cross-sectional formulation – also kŶoǁŶ as the ͚Hot Cƌoss BuŶ͛ diagƌaŵ. This diaƌǇ
application is a convenient replacement to the paper diaries already in place, reducing the

number of patients who fail to fill out the diaries given to them currently.

Throughout the project, a user driven approach was always the most important aspect at

each stage to be more accessible and approachable for the average day to day user – along

with the patients intended to use the app. From the usability of the application, making sure

that it was simple to use and caused no confusion amongst users, to the style of the app.

Making sure to use attractive, calming colours with fonts that made it welcoming to use,

improving the overall experience more enjoyable for the user. By maintaining this focus, I

was able to create a more efficient and appealing application that anyone would be able to

use throughout their CBT and in life for self-reflection.

Although the app was targeted for CBT patients, given the social focus of maintaining one͛s

mental health along with their physical health there is no reason anyone can not benefit

from this app. Utilising the main features to reflect on situations throughout the day and

taking advantage of the depth that the entry form allows you to go into is a great way for

the public to be able to reflect on their day and wind down ready for a more restful night.

As mentioned in my user testing, both participants stated how going forward they will invest

their time to start using diary applications in their day to day lives. This shows the flexibility

my application offers and the growing interest from users outside of CBT patients that in the

past may not have normally considered downloading these types of apps.

There were many issues I had to face during this project. The most prevalent issue being the

outbreak of the global pandemic, COVID-19. Because of this, I was no longer able to receive

the best support possible from the resources available at university to help guide my

project. Another issue was during the months of March and April, I fell into a state of

sadness due to numerous external happenings that were out of my control and therefore I

didŶ͛t feel ǁell iŶ myself. Thankfully, through the support of my friends, family and mentor,

I was able to pull myself out of that hole and progress effectively to produce the best

92

application I could. Given the new time constraint I set upon myself, and the challenge I had

presented myself by choosing a format that I had very little knowledge of, implementing a

MongoDB within a mobile application and setting up my database became an increasingly

worrying task. Eventually, I managed to sort out a part solution showing what the potential

that the application could achieve if I had more time.

Although some features were not implemented in a way that was originally intended, I still

managed to meet most of the requirements throughout the application, and for that, I can

be proud of the outcome I produced.

Reflection on Learning

The main reflection to take away from this project is to try to fully understand the facilities

that software can offer before diving in too deep with development. The choice to use React

Native stemmed from the attractiveness of developing for both Android and iOS at the same

time without having to re-write code for a specific operating system. Since this framework is

very early in development in terms of its current competitors, the lack of support online for

certain functionalities grew more and more present as I progressed through the project.

I have always been interested in learning about mobile app development and wanted to

take on a new challenge with this project. My lack of experience was apparent at the

beginning but grew more proficient as the days passed to the point where I am confident

with how my application works. I am also hoping to continue this project, maintaining any

software changes made from React Native and building it into a fully functioning

application.

I also learnt that I have the capability to plan efficiently and accurately an extensive project

to a high standard. When proposing the initial plan, I thought that I would veer off at some

points, leaving the project to be a mad dash to the finish. Even with the stumble in the

middle of development, I was able to perform many aspects very well:

• Steady learning with React Native to not have everything being implemented at

once, confusing myself with what component achieves what outcome.

• Ensuring to produce many design iterations and critically evaluating them, taking the

good points forward and removing the bad points.

• As I progressed through the application, concurrently progressing through the

report. This would mean that my thoughts ǁeƌe fƌesh iŶ ŵǇ ŵiŶd aŶd I ǁouldŶ͛t
have to try to recall my thoughts at the time from memory as I would have should I

have chosen to write it later on.

Another personal learning reflection is to be less critical of myself. I repeatedly gave myself

a hard time for the level of work I was achieving. This caused more unnecessary stress for

myself, however, learning to understand these situations without getting overwhelmed has

become a huge step forward in my personal progression as a soon to be graduate. Given the

current situation the world finds itself in, and the dip in my mood, I should be proud of how

my application ended up and where I find myself as a person. I am proud.

93

References

[1] NH“, ͞CogŶitiǀe ďehaǀiouƌal theƌapǇ ;CBTͿ,͟ ϭϲ JulǇ ϮϬϭϵ. [OŶliŶe]. Aǀailaďle:
https://www.nhs.uk/conditions/cognitive-behavioural-therapy-cbt/. [Accessed 15 May 2020].

[2] A. JaiŶ, ͞ϭϬ HeuƌistiĐ PƌiŶĐiples – Jakoď NielseŶ͛s ;UsaďilitǇ HeuƌistiĐsͿ,͟ UX NE““, ϭϬ FeďƌuaƌǇ
2015. [Online]. Available: http://www.uxness.in/2015/02/10-heuristic-principles-jakob-

nielsens.html. [Accessed 31 May 2020].

[3] I. “aĐoliĐk, ͞What is agile ŵethodologǇ? ModeƌŶ softǁaƌe deǀelopŵeŶt eǆplaiŶed,͟ IŶfoWoƌld,
25 February 2020. [Online]. Available: https://www.infoworld.com/article/3237508/what-is-

agile-methodology-modern-software-development-explained.html. [Accessed 5 June 2020].

[4] J. ‘. a. “. M. Mike Baƌkeƌ, ͞PƌaĐtiĐal teĐhŶiƋues iŶ seƋueŶĐe ĐoŶtƌol desigŶ,͟ iŶ Practical Batch

Process Management, Newnes, 2005, pp. 70-85.

[5] GU‘Uϵϵ, ͞What is MoŶgoDB? IŶtƌoduĐtioŶ, AƌĐhiteĐtuƌe, Featuƌes & Eǆaŵple,͟ GU‘Uϵϵ, ϰ
May 2020. [Online]. Available: https://www.guru99.com/what-is-mongodb.html. [Accessed 5

June 2020].

[6] MoŶgoDB, ͞MoŶgoDB Atlas,͟ ϮϬϮϬ. [Online]. Available:

https://www.mongodb.com/cloud/atlas. [Accessed 5 June 2020].

[7] Eǆpƌess, ͞‘outiŶg,͟ ϰ MaǇ ϮϬϭϴ. [OŶliŶe]. Aǀailaďle: https://eǆpƌessjs.Đoŵ/eŶ/guide/ƌoutiŶg.
[Accessed 4 June 2020].

[8] N. KaƌŶik, ͞IŶtƌoduĐtioŶ to MoŶgoose foƌ MoŶgoDB,͟ fƌeeCodeCaŵp, ϭϭ FeďƌuaƌǇ ϮϬϭϴ.
[Online]. Available: https://www.freecodecamp.org/news/introduction-to-mongoose-for-

mongodb-d2a7aa593c57/. [Accessed 02 June 2020].

[9] AXU‘E, ͞Aǆuƌe ‘P ϵ.Ϭ.Ϭ.ϯϲϵϲ,͟ Ϯϵ Apƌil ϮϬϮϬ. [OŶliŶe]. Aǀailaďle: https://www.axure.com/.

[10] ‘eaĐt Natiǀe, ͞‘eaĐt Natiǀe Ϭ.ϲϮ.Ϭ,͟ Ϯϲ MaƌĐh ϮϬϮϬ. [OŶliŶe]. Aǀailaďle:
https://reactnative.dev/.

[11] J. Ulanovsky, Artist, Montserrat. [Art]. 2017.

[12] L. Luďos, ͞The ‘ole of Coloƌs iŶ “tƌess ‘eduĐtioŶ,͟ LiĐeo Journal of Higher Education Research,

July 2012. [Online]. Available: 10.7828/ljher.v5i2.39. [Accessed 20 May 2020].

[13] Guƌuϵϵ, ͞Node.js MoŶgoDB Tutoƌial ǁith Eǆaŵples,͟ Guƌuϵϵ, ϭϲ MaǇ ϮϬϮϬ. [OŶliŶe]. Aǀailaďle:
https://www.guru99.com/node-js-mongodb.html. [Accessed 31 May 2020].

[14] T. GƌaǇ, ͞MoŶgoDB Atlas: What, WhǇ?,͟ OPTIMAL, ϰ JulǇ ϮϬϭϴ. [OŶliŶe]. Aǀailaďle:
https://optimalbi.com/mongodb-atlas-what-why/. [Accessed 3 June 2020].

[15] ŵoŶgoDB, ͞“haƌded Clusteƌ CoŵpoŶeŶts,͟ ϰ FeďƌuaƌǇ ϮϬϮϬ. [Online]. Available:

https://docs.mongodb.com/manual/core/sharded-cluster-components/. [Accessed 3 June

2020].

94

[16] A. Johaƌi, ͞What is a “Đheŵa iŶ “QL aŶd hoǁ to Đƌeate it?,͟ EDU‘EKA, Ϯϰ OĐtoďeƌ ϮϬϭϵ.
[Online]. Available: https://www.edureka.co/blog/schema-in-sql/. [Accessed 5 June 2020].

[17] J. “haƌiƌ, ͞Hoǁ to Use PostŵaŶ to MaŶage aŶd EǆeĐute Youƌ APIs,͟ BlazeMeteƌ, ϭϵ MaƌĐh
2019. [Online]. Available: https://www.blazemeter.com/blog/how-use-postman-manage-and-

execute-your-apis. [Accessed 1 June 2020].

[18] PƌogƌaŵŵeƌBlog, ͞Hoǁ to Đƌeate a Ŷodejs ŵoŶgodď ƌest api aŶd test ǁith postŵaŶ,͟
ProgrammerBlog, 19 August 2017. [Online]. Available: https://programmerblog.net/nodejs-

mongodb-rest-api/#disqus_thread. [Accessed 1 June 2020].

[19] N. P. a. D. Mazieƌes, ͞A Futuƌe-Adaptaďle Passǁoƌd “Đheŵe,͟ U“ENIX, Ϯϴ Apƌil ϭϵϵϵ. [OŶliŶe].
Available: https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node1.html.

[Accessed 1 June 2020].

[20] Defuse “eĐuƌitǇ, ͞“alted Passǁoƌd HashiŶg - Doing it Right,͟ ϱ JuŶe ϮϬϭϵ. [OŶliŶe]. Aǀailaďle:
https://crackstation.net/hashing-security.htm#salt. [Accessed 1 June 2020].

[21] E. Elliott, ͞Masteƌ the Jaǀa“Đƌipt IŶteƌǀieǁ: What is a Pƌoŵise?,͟ Mediuŵ, Ϯϯ JaŶuaƌǇ ϮϬϭϳ.
[Online]. Available: https://medium.com/javascript-scene/master-the-javascript-interview-

what-is-a-promise-27fc71e77261. [Accessed 1 June 2020].

[22] “taĐkifǇ, ͞What aƌe C‘UD OpeƌatioŶs: Hoǁ C‘UD OpeƌatioŶs Woƌk, Eǆaŵples, Tutoƌials &
Moƌe,͟ Ϯ MaǇ ϮϬϭϳ. [OŶliŶe]. Aǀailaďle: https://stackify.com/what-are-crud-operations/.

[Accessed 3 June 2020].

[23] ‘eaĐt, ͞UsiŶg the “tate Hook,͟ Ϭϲ FeďƌuaƌǇ ϮϬϭϵ. [OŶliŶe]. Aǀailaďle:
https://reactjs.org/docs/hooks-state.html. [Accessed 1 June 2020].

