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Abstract

The focus of this report is on the creation of a system that handles

the generation of real time voxel planets using Unity Game engine. Voxel

planets allow for more interesting terrain and interactivity by a user. In-

formation on the background knowledge is provided to better understand

how the system works and why certain decisions were made. The design of

the system is explained and in particular talks about why marching cubes

are chosen for isosurface extraction and also how noise is used to generate

the terrain. In addition, the slightly different design of the level of detail

system is explained and mentions why the standard approach of octrees

is not used. The implementation was done in Unity and uses compute

shaders to allow fast processing on the GPU however it is bottle-necked

by the the transfer of data between the CPU and GPU. The project was

mildly successful in that the system manages to render planets and main-

tain a framerate of at least 30 frames per second however the resolution

achieved was not what was imagined and the terrain is of a lower quality

then expected.
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Terminology

• Voxel - A singular value on a regular grid.

• Chunk - 16x16x16 voxels. The spacing between voxels is dependant upon
the resolution.

• Cube - A single voxel in a chunk

• FPS - the number of frames per second the application is rendering
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1 Introduction

Many games produced today typically have open worlds or even contain solar
systems full of planets. For a lot of these games they just use simple heightmap
terrain as they are efficient to manipulate and easy to render however, they are
unable to render more complicated terrain features such as overhangs, cliffs and
caves. If heightmap terrains are to be edited by the player at runtime then they
are only able to create craters or build hills and spikes however it doesn’t allow
the player to dig or tunnel through it. This interactivity can greatly enhance
gameplay and can lead to many unique new forms of content. By instead using
voxel terrain, it is possible to create much more interesting terrain and which
can also be easily editable by the player.

If the game or interactive content is trying to take place across multiple worlds
or planets or even contain a whole solar system, using heightmap terrain is
less than ideal, as planetary terrain systems quickly become very complicated.
If used as a flat terrain then transitions and loading screens are needed when
traveling from the surface of a planet into space. This can ruin the immersion
and be frustrating for players. These planets can then be procedually generated
so little artistic input is needed apart from changing some parameters, this
would allow for the fast generation of entire galaxies and save a great deal of
time during development. By changing a few parameters it can be possible to
have all sorts of planets ranging from barren ice worlds to earth like planets.
For an artist to do this manually it could take weeks to get the same level of
detail which would delay development of games massively.

Rendering these large planets, can quickly lead to performance issues due to the
large number of triangles being rendered, so having a way to handle the level of
detail at different distances is also a vital component.

In this project I created a system for generating different terrains and rendering
them with an isosurface extraction technique giving voxel terrain. The results
were that by adjusting the level of detail of the rendering system based on the
distance from the planet an adequate level of framerate can be maintained of
around 30 fps and this can allow the whole planet to be seen at once. However,
the level of detail must be kept quite low unless the viewer is on the surface
of the planet and due to transferring data from the CPU and GPU they can
sometimes be stuttering when generating parts of a planet.

This report will be discussing the background knowledge needed to understand
how a system that can generate planets will work. It will also discuss the
design of the system and why that design was chosen, and then will go into the
implementation details of various vital aspects giving insight into how they work
at a low level. Finally, it will discuss the performance of the overall system and
the results of the terrain generation and how successful it has been at generating
interesting planets.
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2 Background

2.1 Unity Game Engine

Unity is a game engine that has a wide variety of features, most of which are not
needed for this project but its rendering pipeline makes rendering the procedural
meshes very simple. This saves lots of development time. Unity objects can have
mesh renderer components and mesh filters. These are needed to render meshes
with the mesh filter being assigned with a mesh object to render. The mesh
renderer contains the material that should be used to render the object.

Unity also contains an editor that allows you to change variables during runtime.
This can allow very quick iterating, as it is possible to see the changes live as they
happen. Another key feature is the ability to quickly debug scenes visually. A
variety of debug geometry can be drawn, which can allow you to see how objects
are being rendered. Finally, Unity also have a powerful profiler which makes
seeing how fast code is running very easy.

2.2 Procedural Mesh Generation

Typically, in 3D graphics and games, meshes are designed beforehand by artists
however, this is very costly in both time and money. More and more companies
are trying to add procedural content into their workflow to help speed up devel-
opment. Part of this includes procedural meshes and objects used to populate
the scene.

A 3D model or mesh can be represented in multiple ways. In Unity, a mesh
is made up of vertices, normals, and triangles which contain three vertices per
triangle, and the order of the vertices decide their winding order. The winding
order decides which side of a triangle is the front and which is the back. This
is important as most rendering engines do not render back faces to save on
performance. (Michel 2016)

2.3 Procedural Terrain using Noise

2.3.1 Coherent Noise

As planets need to be randomly generated, there needs to be a way to generate
these random values which can be used to change the surface of the planet. A
random number generator is not suitable for this as the variance does not cre-
ate realistic looking objects as random objects in nature usually have a smooth
looking appearance which random number generators do not provide but co-
herent noise does (Scratchapixel n.d.). Take, for example, a hill or valley, if we
were to just sample values, the likelihood of generating a hill would be very low.
Therefore we want a system where small changes in input value will give a small
change in output value, in return giving a smooth noise.
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Noise, in general, is a series of random numbers, typically arranged in a line
or a grid (Patel n.d.). This would not be useful, so to create a natural looking
terrain coherent noise is used. Coherent noise is a smooth pseudo-random noise.
As stated by (Bevins 2005) coherent noise must have three important properties:

1. The same input value will always return the same output value.

2. A small change in input value will return a small change in output value.

3. A large change in input value will return a random change in output value.

This type of noise is much more useful for terrain generation, as by sampling
the noise at different frequency’s and layering noise, we can produce interesting
terrain features. In the case of terrain when we sample the noise we use it to
represent the elevation of the terrain at a point. There are many ways that
noise can be used and modified to produce terrain features. These include:

1. The Frequency - by changing the frequency of the noise that we sample
we can produce less wider hills or by increasing the frequency we can have
more narrow hills. One way to think of this is that the frequency changes
the horizontal size of the terrain features whilst amplitude changes the
vertical size.

2. The amplitude - This changes the height of the feature. E.g. producing
very tall mountains.

3. Octaves - This is adding together noise of different frequencies. This gives
the terrain more detail and allows the terrain to have a rugged look, rather
than a completely unnatural smooth shape

(Patel n.d.)

Noise can be seeded which means that for a particular seed it will always produce
the same output for a input. This means to generate different planets a different
seed is needed for each planet.

2.4 Voxels

2.5 Isosurface extraction

An isosurface is a 3D surface representation of points which have equal values
in a 3D data distribution. (Isosurface n.d.) In particular they can be used to
easily represent a sphere as the base of a planet. For example a sphere can be
represented by the following implicit equation:

x2 + y2 + z2 = 0

To render an isosurface the polygonal mesh first needs to be extracted as real
time graphics render piplines require a mesh. There are a variety of isosurface
extraction techniques but one of the most popular is marching cubes.
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2.5.1 Marching Cubes

Marching cubes is an algorithm for extracting polygonal meshes of an isosurface
from a discrete scalar field. Although it was developed back in 1987, it and its
many variations are still popular today due to its simplicity in implementation
and its fast performance. This is partially due to its use of precomputed lookup
tables (Bourke 1984).

The algorithm works by splitting the world up into cubes and goes through each
cube and determines how the user specified isosurface intersects the cube. To
work out the surface intersection for a cube, a one is assigned to a cubes vertex if
it is greater than the user specified isolevel. This means that the vertex is inside
or on the isosurface. Vertices which are below the isolevel are instead outside
the surface. After the cube’s vertices have been marked it is then possible to
know which edges intersect the surface. If an edge has one vertex inside or on
the surface, and its second vertex is outside the surface we then know the edge
must intersect the surface. Therefore, a point on this edge must lay on the
surface. (William E. Lorensen 1987)

Each cube has 8 vertices and each vertex can either be inside or outside the
surface which means there are 256 different ways a surface can intersect the
cube. Rather than manually calculating surface-edge intersections a lookup
table is used. This means that the case number is an 8-bit index where each
bit represents one of the vertices. This case number is used to index into the
lookup table to get which edges intersect the surface. Case 0 and case 255 can
be ignored as this means either all the vertices are inside or outside the surface
so no geometry needs to be produced. (William E. Lorensen 1987)

Once index into the lookup table it is possible to get through each edge inter-
secting the surface and use linear interpolation to get the point along that edge
that intersects the surface. Whilst it is possible to use higher levels of interpo-
lation, using linear interpolation produces good results and is easy to compute.
(William E. Lorensen 1987)

Bourke 1984 provides a triangulation table which is commonly used in mainly
marching cubes implementations. It is a 256x16 array which contains which
edges are intersecting the surface in each case with the rest of each case be-
ing padded out with negative one. The edges are also ordered so that when
they are triangulated the triangles have the correct winding order. This makes
implementation very fast and relatively simple.

2.5.2 Dual Contouring

Dual contouring is similar to marching cubes in that it is an isosurface extraction
technique however it contains a few differences such as being able to render
sharp corners and edges. This allows for a more accurate representation of an
isosurface. As it is a dual method it takes a different approach by producing
vertices on the surface interior to each of the cubes in the grid rather than on
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the edges like marching cubes. Another advantage is that it produces polygons
of more uniform size. Methods like marching cubes can also sometimes produce
small polygons which can produce visual distortion. (Scott Schaefe 1987)

However to obtain the improved detail, more information needs to be known
about the function that is to be rendered. The value of the function must be
known the same as marching cubes but the gradient of the function must also
be known. The extra calculations needed can decrease performance which when
rendering a large scene can have a large impact. (Boris 2018)

2.6 Level of detail

Level of detail, also known as LOD, is a way of decreasing how complicated a 3D
model is as it moves away from the viewer. This typically involves reducing the
number of vertices of the model. Although there are many ways to accomplish
this, most algorithms are more suited for pre-existing models. Using these algo-
rithms for procedural meshes would end up in worse performance so it is better
to generate the mesh at a lower a resolution therefore reducing its complexity.
(DanielG.Aliaga 2010)

The lower resolution meshes difference in quality is typically hardly noticeable
due to its extended distance from the viewer. The benefit of doing this however,
is that it is possible to fit more geometry on screen and keep a high framerate
due to less vertices per model. In terms of voxel rendering it also means less
chunks needs to be generated due to the increased size of a lower resolution
chunk. This in turn decreases the time it takes to generate.

2.7 General purpose GPU Programming

Graphics cards are typically used for rendering images which are output to a
display device such as a monitor. They can run complex graphics pipelines part
of which include shaders which are programs using for shading 3D scenes. The
most commonly used shaders are vertex and fragment shaders. Vertex shaders
are run once for each vertex and fragment shaders are used to compute attributes
for fragments. Fragments are a unit of rendering affecting at most a single pixel.
Although, these shaders are very powerful when it comes to rendering they are
also limited to only graphics applications.

Due to the parallel nature of graphics cards, they can be also extremely fast
for non graphics applications. One way in which this can be done is compute
shaders.

2.7.1 Compute Shaders

Compute shaders are a variant of shaders which can accept a variety of data
types compared to to Vertex and fragment shaders which require certain data
types. There are a few different types of buffers that compute shaders can
accept some of which include appendable buffers and structured buffers. This
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gives compute shaders lots of flexibility to work on a variety of problems even
ones not related to rendering. The benefit of running these generalised problems
on the GPU is that the problem or algorithm then becomes parallelised which
boosts performance considerably. The only downside to this is that sending
data from the CPU to the GPU and vice versa can be very slow so depending
on the problem there isn’t always a guarantee of better performance. If the
work being done is for rendering though such as the case for marching cubes
it is possible to send the vertex or triangle data directly to a vertex/fragment
shader which can save time and also increase performance.

Compute shaders are run on groups of threads and each group has a set amount
of threads that is specified when writing them. If the number of threads per
group is not set with care it can lead to very poor performance due to the GPU
not using very many threads and having to wait for threads to finish. When
specifying the number of groups and the number of threads you have to specify
the number in each dimension up to three dimensions. For example you could
have (8x8x8) threads which would be 8 in each dimension. The advantage of
this is that it can help map threads to problem and can also help with easier
indexing. For example in terms of marching cubes by using 8 threads in each
dimension, each thread can be used to calculate the vertices for one block in a
three dimensional chunk.
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3 Design

This section is about how the overall system fits together, what each component
of the system does and why each component was chosen for the system.

3.1 System Overview

Figure 1: A simplified class diagram of the overall system

Figure 1 shows the simplified class structure of the system. The chunk class is
used to create the individual chunks and generate their mesh. It does this using
the marching cubes compute shader. The chunk generator is responsible for the
level of detail system and generating the chunks at the correct resolution and
position. The settings classes are passed between the other classes and are used
as an easy way to store the settings as there are a large number of parameters.

To reiterate the goals of the system are to generate planets for real-time ren-
dering which are rendered with a voxel system so that that can be edited and
also contain more interesting terrain features than standard heightmap terrain.
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The system also need needs a level of detail system to render the planets in real
time.

The system can be split into a few main components:

• Terrain/Density generation

• Isosurface extraction

• Chunk Generation

• Level of detail system

• Shading

Each component in the system requires the previous to have completed its step
before the next component can begin its tasks.

This section will detail how each component will be accomplished and it will go
through what methods were tried and finally which methods were picked and
why.

The system has some requirements that it needs to fulfil to be successful. They
can be split into two main categories: terrain generation and voxel rendering.

3.1.1 System Requirements

For the terrain generation of the planets the requirements are:

• The planet must be generated in real-time rather than pre-computed

• The terrain must have different variations such as mountains, valleys,
plains etc.

• The terrain should be textured and coloured based on the height of terrain
from the centre of the planet to create a realistic look.

For the voxel rendering of the planets the requirements are:

• The view distance should be large enough at all distances so that there
are not gaps in the world seen by the viewer.

• The average FPS should maintain at least 60 to ensure smooth game play.

• A level of detail system should be used to increase the detail of the planet
when the viewer is close to the planet.

• The level of detail system should be able to render the entire planet when
the viewer is far away.

• The terrain should be smooth shaded.
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3.2 World representation

It was decided that the world would be split into a regular grid, with each
16x16x16 voxel region being known as a chunk. The advantage of this was it
allowed the rendering to split done in parallel therefore giving better perfor-
mance. It also made the level of detail system easier to develop and meant that
it was easier to decide to what should be rendered as where.

3.3 Terrain and Density generation

3.3.1 Density Generation

To generate a terrain mesh, the chosen isosurface extraction technique needs
to be provided with density values. The density values could be precomputed
and saved to disk and then loaded when needed for when a chunk needs to
be rendered. This approach however can be tricky to get right due needing
to read the data quickly from disk so that it doesn’t become a bottleneck on
the system. The necessary performance can typically be achieved by using
compression however due to the time constraints of the project this was deemed
to be a more complicated approach that may have used too much time.

Due to this it was decided that the terrain and therefore densities for the terrain
would be generated at run time. To do this the density generation will be run on
a compute shader as the density data can be stored in a compute buffer which
can then be sent to the isosurface extraction compute shader. As the compute
buffer will already be on the GPU no time has to be wasted in transferring the
data. It was originally trialed on the CPU however transferring the data to the
GPU was particularly slow and caused major performance issues.

3.3.2 Terrain Generation

The density generation technique allows anything to be rendered however for
planets some thought was needed to decide the best strategy for calculating
density values that would give interesting terrain.

Before the terrain can be calculated a sphere is needed to represent a planet.
One method that was considered was working in cube space or in other words
using 6 faces of a cube and then mapping this cube to a sphere. One advantage
of this is the easy generation of a navigation mesh. (Zackary P. T. Sin n.d.)
Instead of this more complex method, I generated the density function for a
chunk by calculating the implicit equation of a sphere. This isn’t perfect due to
rendering small triangles but it was quick to implement.

To modify the sphere to create interesting terrain for the planet, OpenSim-
plexNoise was chosen over Perlin noise due to it being easier to extend to three
dimensions and it also being more efficient. Three dimensional noise was needed
as it better mapped to the sphere and also allowed for the more interesting ter-
rain features which 2D noise wouldn’t have been able to do.
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3.4 Isosurface extraction algorithm

Marching cubes was the chosen isosurface algorithm over dual contouring due
to marching cubes being easy and fast to implement and also relatively simple
to understand. This means a working prototype could quickly be developed and
more time could be spent on optimizing the rendering to increase performance
for large planets. Marching cubes is also easy to run on a compute shader as
the algorithm is very easy to parallelise due to the algorithm running once for
each cube.

The downside of using marching cubes is that it cannot properly represent sharp
edges and corners such as rectangles and cuboids. This can lead to terrain
looking too smooth and not natural. However the ability to quickly implement
the algorithm outweighs this as by using the right combination of noise it should
be hard to notice the lack of sharp edges. (Boris 2018)

Using marching cubes helps to fulfil the requirements for the project as it has
better performance when compared to dual contouring which is vital when try-
ing to maintain a good framerate. This will ensure the viewer has a smooth
experience which will help to create immersion.

3.5 Chunk generation and Level of detail

One method for level of detail was to just generate and render chunks for the
entire planet and then scale the resolution based on the distance from the viewer.
This could have been done using an octree. This wasn’t very efficient and as
planets got larger generating all the terrain for all the chunks began to get very
slow. The one upside of this is that the viewer could always easily see the planet.

I eventually moved to a system where only visible chunks around the viewer are
generated and the chunks closer to the viewer will be at a higher resolution and
as they get further from the viewer they will get progressively lower resolution.
The downside of this is that the resolution of the chunks has to be balanced
with the distance the player is from the planet to ensure the planet could be
seen from extreme distances.

3.6 Shading

To make the planet seem realistic and better quality I chose to use a simple
surface shader that coloured and textured the terrain based on its height from
the radius of the planet. As the maximum height of the terrain is unknown due
to only part of the planet being generated at once it is up to the user of the
system to set the maximum height of the terrain of the planet. Based on this it
is then possible to get distance of each vertex as a percentage with zero percent
being at sea level, which is also the radius of the planet, and one hundred percent
being at the maximum height. The user also needs to set a gradient of colours
which is done within the unity inspector. By sampling this gradient the vertices
colour is then set. Although, this is quite a simple approach and doesn’t allow
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the textures it still gives enough information about sort of terrain would be at
this point on the planet.

The alternative would be to use a triplanar shader which would allow textures
to be used as there would no longer be any distortion. A triplanar shader is
needed for textures as it would not be possible to UV unwrap the procedural
mesh which is needed to stop the textures from stretching. Creating a shader
like this is more complicated and would have taken a lot longer so I instead
went with the simple colour approach to allow more time to be spent on the
rendering system.
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4 Implementation

This section is going to talk about each system from the design section has been
implemented and what issues came up during implementation of these features.

4.1 Unity

All implementation has been done in the Unity Game Engine. The reason for
this is that Unity allows rapid prototyping without having to handle all aspects
of rendering. For example it has a built in mesh class that requires vertices,
normals and triangle indices but when provided with these the mesh can be
passed to a mesh renderer and the game engine handles the rest. If this was
developed from scratch it would require a lot of low level rendering code which
would have slowed development and it would have taken focus away from the
project as time would have had to of been spent implementing basic features
such as lighting.

Some alternatives to Unity could have been writing a custom engine to handle
rendering, lighting, and other key features my self however this approach was
deemed to be not a viable option due to how long it would have taken to get
the basic rendering framework working and that could have instead been spent
on the project. By using Unity it means I do not have to worry about key
features such as rendering containing bugs which could have easily arisen with
a custom solution and this could have led to issues with not knowing whether
planet system or if the basic renderer was causing the bug.

4.2 Chunks

The chunk class is used to represent a chunk and its data and also constructs
the mesh from the marching cubes compute shader. It contains an Initialise
method which is used to set the planet settings, noise settings and voxel render
settings all of which are needed by the class to generate the mesh for this chunk.
The reason a method is used rather than the constructor is that sometimes the
chunk needs to be regenerated with new data so its an easy way to set all the
data.

The class also contains a ”GeneratePlanet” method which is responsible for
setting up the marching cubes compute shader and running it. The compute
shader has an appendable triangle buffer and this triangle buffer is then copied
to an array of the type triangle. The triangle struct just contains three Vector3’s
and looks like this:

public struct Tr iang l e
{

public Vector3 A;
public Vector3 B;
public Vector3 C;

}
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Now that the array of triangles is obtained the mesh is constructed but duplicate
vertices have to be accounted for so that when the mesh’s normals are calculated
they take into account the neighbouring vertices otherwise you end up with non
smooth shading.

Dict ionary<Vector3 , int> vertexIndex = new Dict ionary<Vector3 , int >() ;
foreach ( Tr iang l e t in t r i a n g l e s )
{

i f ( ! vertexIndex . ContainsKey ( t .A) )
{

vertexIndex .Add( t .A, v e r t s . Count ) ;
v e r t s .Add( t .A) ;
t r i s .Add( v e r t s . Count − 1 ) ;

}
else

{
t r i s .Add( vertexIndex [ t .A ] ) ;

}

i f ( ! vertexIndex . ContainsKey ( t .B) )
{

vertexIndex .Add( t .B, v e r t s . Count ) ;
v e r t s .Add( t .B) ;
t r i s .Add( v e r t s . Count − 1 ) ;

}
else

{
t r i s .Add( vertexIndex [ t .B ] ) ;

}

i f ( ! vertexIndex . ContainsKey ( t .C) )
{

vertexIndex .Add( t .C, v e r t s . Count ) ;
v e r t s .Add( t .C) ;
t r i s .Add( v e r t s . Count − 1 ) ;

}
else

{
t r i s .Add( vertexIndex [ t .C ] ) ;

}

}

This snippet creates the mesh with smooth normals by creating a dictionary of
vertices which stores the index of each vertex that is in the triangle array. It
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loops through each triangle and checks to see if the dictionary already contains
the vertex if it doesn’t, it adds it to dictionary and the value is set to the length
of vertex array as that’s the vertex’s position. The vertex is then added to the
vertex list and the triangle index list adds the vertex position.

If the dictionary does already contain vertex then there is no need to add the
vertex to the vertex list or the dictionary and instead vertex index position
stored in the dictionary is added to the triangle index list. These steps are
repeated for the other two vertices in the triangle.

A new mesh object is made and the vertices and triangles of the mesh are set to
the corresponding lists. Finally the mesh normals are recalculated this is done
using the built in unity method however better performance could be gained by
doing this in the marching cubes compute shader.

4.3 Regular grid / Chunk Generation system

The world is made up of a regular grid of chunks and each chunk is 16 cubes
x 16 cubes x 16 cubes. This gives a chunk size of 4096 cubes however the size
of a chunk’s cubes depend on the resolution of the chunk. A higher resolution
means the chunks are physically smaller. As generating chunks is expensive the
number of chunks generated must be limited to maintain good performance.
This means that only chunks that are around the player are generated as there
is no point generating something player might not see. The only downside to
this is that the player will have a limited view distance and the distance will
have to be balanced to maintain a good framerate.

The chunk generation system generates chunks at different levels of detail around
viewer depending upon distance to the planet. This gives a good combination
of detail and performance.

Unity scripts contain an update method that are called once per frame. In the
update method the ”InitVisibleChunks” method is called which is responsible
to rendering the chunks surrounding the viewer.

This method works by going through all existing chunks and removing all chunks
that are not within the camera frustum as none of these chunks will be visible
so there is no need to keep them generated.

Next the chunks are generated. Chunks are only generated along the perimeter
of a cube as the inside of the cube contains the chunks at a lower resolution. The
”InitChunkRing” method is responsible to generating the chunks at a particular
resolution. The method also takes in a ”ChunkRing” object in its parameter.
The class contains information on the previous chunk ring. This data is needed
to be able to generate the chunks at the correct location.

public class ChunkRing
{

public Vector3 leftMostChunk ;
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Figure 2: The chunk system rendering chunks at different resolutions

public f loat r e s o l u t i o n ;
public int numberOfChunks ;

}

4.3.1 Chunk Ring

The ”initChunkRing” method works by first calculating the start position for
this ring in chunk coordinates. This is calculated by taking the previous chunk
position and then removing (one * resolution) from this position. This then
gives the bottom left most coordinate of the chunk ring. Using three nested for
loops the method then calculates the current chunk position by adding creating
a vector equal to the for loop values i.e. new Vector3(x,y,z) where x,y,z are
the for loop values. The values of the new vector are also multiplied by the
resolution to ensure the correct spacing. As only chunks on the perimeter of the
imaginary cube should be generated the method checks if x,y,z are equal to zero
or the width of this ring minus one. If any of them are equal to one of these
values it means that this chunk is on the perimeter of the cube.

If it is on the perimeter we then have to check if a chunk currently exists in
this position using a dictionary that stores all the chunks. If one does exist
in this location we then also check if the resolution of that chunk is the same
and if it is we can skip past this chunk as it is the same. If the resolution is
different however we then need to make sure we remove all that chunk from the
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dictionary as it is the wrong resolution.

If no chunk currently exists at the position we are creating the new one and
the resolution is greater than the starting resolution aka the highest resolution
we then need to make sure we check every chunk position inside this chunk as
when it is being created it may be overlapping an old one so we need to remove
all old chunks that is overlapping.

Finally, we check if the chunk is in the camera frustum before we create it and
we also remove all the chunk positions that this chunk overlaps to the dictionary.

4.3.2 Chunk coordinates

Chunks all have their origin at the bottom left of their corresponding mesh. To
help make calculations easier a chunk coordinate system is used this is calculated
by:

private Vector3 WorldPosToChunkPos ( Vector3 worldPos )
{

return worldPos / minimumBoundsSize ;
}

MinimumBoundsSize is the width of the highest resolution chunks. This is
because lower resolution chunks will need a larger world space size and will be
a multiple of the highest resolution chunk.

4.4 The existing Chunks dictionary

All chunks generated are stored in a dictionary with the key being the chunks
position and the value being the chunk object. If a chunk is a lower resolution
than the highest resolution chunk then multiple positions are stored in the
dictionary for that chunk. This allows overlaps to be quickly checked. The
benefit of using a dictionary is the fast lookup speeds.

4.4.1 Removal of chunks

Care has to be taken when removing chunks. The gameobject itself has to
be deleted from the scene but for a chunk with a resolution lower than the
highest resolution chunk, all of the chunks positions have to be removed from
the dictionary if not it can cause errors later on when creating new chunks due
to already existing dictionary keys.

4.4.2 Addition of chunks

When adding chunks if the resolution of the chunk is greater than the highest
resolution chunk then a position needs to be added into the existing chunks
dictionary for each chunk position that this chunk occupies. For example if
a chunk is 2x the base resolution than it will take up twice as many chunk
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positions in each dimension so eight positions will have to be entered. Then the
chunk can be instantiated into the world.

4.5 Density Generation

The density values are generated on the GPU in a compute shader. It uses
a simplex noise implementation for the GPU as well. Each chunk requests a
buffer of density values from the ”Density Generator” which is assigned before
run time. The density generator sets up the buffers and variables needed for the
compute shader and then dispatches the shader. One important variable that
is set up is the number of thread groups. This decides how many thread groups
should be created for the shader. Each thread group contains 512 threads as
this is the limit for the hardware used to test the system when the thread group
is run in a 3D configuration. This means X thread groups are needed where

X =
width+ 1

8

The density buffer is for each chunk is 17x17x17 as for x voxels you need (x+1)
density values in each dimension for marching cubes to run.

The compute shader works by first calculating the density value for a sphere at
the set planet centre and resolution.Another one of the parameters is the world
position of the chunk. These world values are needed to calculate the correct
values for each vertex of this chunk. The shader then creates a elevation variable
which is used to offset the sphere terrain densities. A loop then evaluates the
simplex noise function once for each octave and adds its value to the elevation.
The noise function was edited to be in the 0, 1 range rather than −1, 1. The
elevation value is then set so if it is below the minimum height parameter it is
set to 0. This is done by

elevation = max(0, elevation−minHeight)

. In this implementation negative density values are inside the isosurface whilst
positive are outside the isosurface so we then negate the elevation from the
sphere density. This then gives us a final density value for this vertex and this
is added to the density buffer.

When writing to the density buffer the index must be calculated from thread
ID. The thread ID is a 3 dimensional vector as this makes it easier to relate 3D
world space density values to threads. As the buffer is a 1 dimensional structure
we calculate the index for the buffer as:

int f l a t t en ed Index ( int x , int y , int z )
{

return ( x ∗ ( densityWidth ) ∗ ( densityWidth ) )
+ (y ∗ ( densityWidth ) )
+ z ;

}
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4.6 Marching Cubes

The marching cubes algorithm is also run on a compute shader due to the
increased performance benefits. As the algorithm goes through each cube and
calculates the resultant mesh for that cube, it makes it very suitable for running
in parallel on the GPU. To make indexing easier the compute shader’s threads
are also set to (8,8,8) in each direction giving a total of 512 threads per group.
As chunk sizes are 16x16x16 voxels two threads group perfectly calculate one
chunk however as the chunk size can be variable the shader starts of with a
check to return if the thread id is greater than the chunk width to make sure
unnecessary triangles are not calculated.

As stated in the background section of marching cubes the algorithm marches
through each cube and decides which vertices to need to be rendered for that
cube. This means that the compute shader then gets the 8 density values for
that cube from the density buffer and puts them into a float array.

After this it goes through each cube corner and checks whether it is greater than
the isolevel parameter. In practise the isolevel is set to 0 but can be changed to
whatever suits the project. As also stated in the background section an eight
bit index is created with one bit representing each corner of the cube and each
bits value is dependant on whether the corner is in or outside the surface.

Using the cube index, Bourke 1984’s triangulation table is used to get which
edges have a vertex laying on them for the current index. The edges ordered
so that the vertices calculated from the triangulation table have the correct
winding order and therefore the polygon’s normals face the correct direction.

The vertices for each edge then need to be obtained so that it’s possible to
linearly interpolate between the two to get the correct position for the output
vertex for that edge. Bourke 1984 also provides an edge table however a simpler
implementation is used which is provided by Lague 2019. The edge table requires
many if statements to work and although the shader compiler should be able to
optimise these if statements to avoid branching which can massively decrease
performance of the shader, the overall implementation is more complicated.
Lague 2019’s method instead uses two tables which can one of the edge 12 cube
edges in as an index. The first table gives the index of one vertex whilst the
second table gives the index of the second vertex of that edge. There is then a
third table which contains the vertex positions in object space. This is indexed
into using the vertex index. Now that the two vertices for each edge has been
obtained it is then possible to linearly interpolate between the density values
for these vertices to obtain the vertex position closest to a density value of 0 on
that edge.

Three edges vertices are calculated at a time and a triangle struct is created and
the three vertices are assigned to the triangle struct. This is then added to the
triangle buffer. The reason a triangle buffer is used rather than a vertex buffer
is because when an append buffer is used when three vertices are written by a
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thread to the buffer it is possible for another thread to also write to the buffer
in between vertices. This then messes up the vertex order so it is not possible to
construct the mesh so by writing each triangle at once instead it doesn’t matter
which order the triangles are written to the buffer. One alternative to this is to
use a structured buffer and write the vertex into the correct index for that cube
however when constructing the mesh you then have to filter through vertices
with with a default value.

Another issue that appeared when implementing this on the compute shader
was that originally the indexing was wrong due to forgetting that there are
width + 1 density values in each direction. This was easy to fix though by just
remembering to add one to the width when calculating the flattened index.

4.6.1 Resolution

Due to needing a level of detail system for rendering the meshes must also be
rendered at different resolutions. This is done by keeping the chunks number
of blocks constant and instead changing the width of each block. This means
higher resolution chunks are smaller in world size. The is done by parsing
the compute shader the resolution for that chunk and when interpolating the
vertices they are multiplied by the resolution. This means that a chunk with
a higher resolution is actually less detailed. This can quite easily be fixed by
instead dividing by the resolution.

4.7 Shader

The shader is created using Unity’s shader graph which is a visual graph tool
for making shader’s. This allows you to focus on the functionality of the shader
rather than the syntax.

Figure 3 and figure 4 show the completed shader. It gets the vertex in world
coordinates and then calculates the distance of that vertex from the centre of the
planet. After this it divides the distance by the max height and then samples
the gradient texture using the height of the vertex which is now in the 0-1 range.
The colour from the gradient texture is then set as the output colour.

Figure 5 shows the result of shader. A variety of terrain colours can be seen on
the planet such as blue for the water and green for the grass.
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Figure 3: The first section of the shader which gets the distance from the centre
of the planet

Figure 4: The second section of the shader which colours the vertex
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Figure 5: A low resolution planet with shading
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5 Results and Evaluation

This section discusses what tests have been carried out and why. It also shows
how successful the project has been at hitting its requirements and shows what
aspects were not accomplished.

5.1 Testing methodology

All testing takes place on the same planet that is generated from the same seed.
The planet is 50,000 metres in radius and uses 7 octaves of noise. This ensures
the testing is fair as the geometry of a planet can vary quite wildly which could
lead to very different results.

Due to time constraints the tests are run in the Unity editor these can lead to
slightly lower framerates than if they were run in a built version of the project.
This is because the editor has some overhead costs. The testing also has some
overhead such as writing the data to file which can potentially hold up the
application. To try and counter any variance each test was repeated five times
and averaged.

5.2 Viewer moving performance

This sub-section is evaluating the performance of the overall system when the
viewer is moving. It is also evaluating the effect the level of detail system has
on the framerate.

5.2.1 The test

This was tested by placing the camera 5,000 units away from the surface of
planet and have the camera rotate around the planet at a constant speed. As
the camera moved it also rotated to point towards the centre of the planet.
This ensured the planet the was always in view of the camera. Each test varied
the resolution, which ranged from 8-128. The higher the resolution value the
less detailed the terrain was due to how resolution is handled internally. Due
to the resolution changing the world size of each chunk, the view distance also
changed. By having a higher resolution value there was also a greater view
distance but by keeping the camera close to the terrain a similar area of the
planet was rendered for each test.

For the tests where the level of detail system was on the chunk rings consisted
of 4 chunks of the base resolution, 2 chunks of 2 ∗ baseresolution and 1 chunk
of 4 ∗ baseresolution.

For some of the smaller tests such as resolution 8 and 16 sometimes no geometry
was rendered due to being to far from the surface of the planet but the chunks
surrounding the camera were still generated.
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Resolution 8 16 32 64 128
Min FPS 10 10 10 10 10
Average FPS 10.04 10.27 11.47 14.94 17.36
Max FPS 13.26 20.15 21.26 22.70 24.81
Average Frame Time (s) 0.09959 0.09806 0.0900 0.07089 0.06028

Table 1: A table showing the framerate and frame times for different starting
resolutions without level of detail.

Resolution 8 16 32 64 128
Min FPS 10 10 10 10 10
Average FPS 11.06 11.16 12.01 20.89 31.84
Max FPS 42.85 43.18 30.11 36.57 43.23
Average Frame Time (s) 0.09664 0.09651 0.08713 0.05725 0.03506

Table 2: A table showing the framerate and frame times for different starting
resolutions with level of detail running.

Figure 6: A graph showing the time between frames averaged over the 5 preset
resolution with and without level of detail
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5.2.2 The results

Table 1 shows the results with the level of detail system turned off. This means
all chunks for a particular test had the same resolution. The results from this
table show that the minimum framerate for all tests were 10, this is due to
the time it would take to generate the all the chunks. When generating them
the worst case would be 0.1s in between frames and would take 10 frames to
generate these chunks and therefore giving a minimum frame time is 10. The
way to increase this would be to speed up how long it takes to generate all the
chunks such as not passing data back to the GPU.

These results also show as the resolution increases so does the average framerate,
this is most likely due to not have to as many chunks to generate due to their
increased world size. There saves time transferring data between the CPU
and GPU and also by having a higher resolution less triangles will be on screen
meaning the GPU has do less work. The same also applies to the max framerate.
The average FPS for resolutions 8 and 16 are quite similar and its only when
the resolution starts to increase even more that a noticeable difference starts to
appear. The average framerates are still very low across all the tests but this
could be due partly to the overhead from the editor but also shows that overall
the system needs more optimising.

The average frame time also decreases as the resolution increases which is what
we would expect to see. To render at 60 frames per second, which is a value
typically used as a goal in most commercial games each frame must take no
longer than 0.016667 seconds and from the results we can see we are still at
times nearly 6x slower than that which is far below the set out requirements.
(Schliesser 2018)

Table 2 shows the same tests repeated but this time with the level of detail
system turned on.It shows the same patterns as table 1 however the average
FPS are higher for each resolution and the average frame times are lower as the
resolutions increase compared to when level of detail is turned off. This means
that by using the level of detail system we gain a much higher average framerate
and also in turn gain a much further view distance. The disadvantage of this is
that terrain that is further away will look less detailed but as it is further from
the viewer it is hard to notice. If it does become a problem there are ways to
hide some of the differences by using fog to blur the less detailed terrain.

To further support the increase in performance from the level of detail system
figure 6 shows the averaged times between frames over all the tests. As can be
seen from the graph the tests with the level of detail system on have a lower
time between frames which indicates a higher framerate. The peaks on the
graph show where large amounts of chunks had to be generated which increase
the time between frames.
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5.2.3 summary of the results

These results show that although the system doesn’t meet all the requirements
laid out in the design section such averaging 60 frames per second it is still
possible to move the viewer around the world and maintain at least 30 frames
per second with the level of detail system on. This allows the viewer to see large
amounts of the planet and to even view the planet out into space.

The disadvantages of this are that the resolutions needed to have at least 30
frames per second as very high this means the terrain is not very detailed and
doesn’t look particularly good. Therefore, the system needs to be optimised
more or changed to allow a more detailed terrain at a higher framerate.

In these tests the number of chunks rings were fixed and when the level of detail
system was on, only combination of resolution multipliers were tested. One thing
that could help performance is having less detailed chunks around the player as
there are currently 4 rings of detailed chunks. This could be decreased. Further
testing would be needed to see the impact this would have and whether this
would mean that the system could achieve higher framerates with more detail.

5.3 Planetary Detail

In this section I will be evaluating the results of the terrain and how detailed
the planets are. I will also highlight any artifacts that are generated.

As seen in figure 5 an entire planet can be seen at a fairly low resolution. The
terrain is quite basic and doesn’t feature some of the more advanced require-
ments such as caves,overhands and cliffs however due to time constraints it was
more important to focus on the rendering speed rather than the quality. Basic
mountains and ocean can be seen and the colours of the terrain try to represent
the type of terrain that it is. For example green for grass, blue for ocean etc.
I believe this gives a good representation of a planet in a non-photorealistic
representation. This could be improved later by adding textures and increasing
the variety of terrain features.

One area that could be improved the most is oceans, why now they are smooth,
flat surfaces which only contain a colour that make it hard to notice that they
are oceans. Instead they could be replaced with a custom water shader which
would allow waves and some distortion, this better represent an ocean.

From looking at the planet at a distance, the planet some terrain features can
seem overly large however this can be tackled by editing the parameters which
affect the noise strength and the number of octaves. The use of different reso-
lutions can also vastly affect how the planet looks. Some of this could be solved
by a using an atmospheric shader which would hide some of the lower resolution
terrain until the viewer was closer to the surface.

Although planets can seem good at various angles and distances there are also
some rendering issues. The sub-sections below will detail the what the issues
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are and how they have arisen.

5.3.1 Gaps

Due to the level of detail system, when neighbouring chunks are at different
resolutions there can be gaps between the meshes. This is because the different
resolution chunks have a different number of vertices at the border and therefore
when the noise is sampled and applied to the vertices they no longer match up
due to the sampling rate being different.

In figure 7 two neighbouring chunks of different resolutions can be seen. With
the chunk on the left being at a higher resolution and therefore having more
sample points over a smaller area. Due to this the meshes will not be able to
fully close and a modified version of marching cubes will be needed to fix this.
An alternative would be to try and stitch the gaps together by iterating over by
edges. Lengyl 2010 proposes a modified marching cubes solution that contains
many more cases and uses data from neighbouring chunks to fill the gaps.

5.3.2 Skinny triangles

As shown in figure 8 marching cubes can produce lots of small skinny triangles
when triangulating an isosurface. Although this shouldn’t effect it the visual
quality it can impact performance quite heavily due to the unnecessary extra
triangles which could instead be represent by one of the surrounding larger tri-
angles. This puts a greater strain on the GPU and can lead to lower framerates
and in turn lower render distances.

5.3.3 Seams

There are noticeable seams between chunks. As seen in figure 9a and figure 9b
the seams are less noticeable at higher resolutions they are still visible. This
means they when the viewer is far from the planet they are more likely to notice
the seams then when they are on the planet. However, as the higher resolution
chunks are smaller in world space as the viewer moves they will move past more
chunks and therefore cross more seams and even if they are less noticeable when
static they could become more prevalent due to the constant motion of these
hard edges.

They are due to the normals between neighbouring meshes being different due
to each chunk not using data from the neighbouring chunks to generate the
normals at boundary’s. This is something that could be fixed in the future
without too much effort by calculating the neighbouring vertices in the marching
cubes compute shader.

5.3.4 Noise errors

The implementation of GPU simplex noise used in this project sometimes causes
small indentations in the terrain. These artifacts are not visible when tested
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Figure 7: A wireframe image of a gap in the planet.
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Figure 8: A wireframe rendering of part the planet detailing lots of small trian-
gles
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(a) Low resolution seams. (b) High resolution seams.

Figure 9: Seams at different resolutions at the same location on the same planet.

with a CPU implementation of simplex noise which indicates it is due to a bug
in the GPU version. The GPU implementation is simplified in some ways to
increase performance on the GPU so this could be due to a performance trade
off.
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6 Future Work

From the results it can be seen that although at least 30 frames per second can
be obtained using the level of detail system and the a low level of quality there
is much than could be improved. In particular the framerate and the quality of
the rendering need to be worked on.

To do this, the performance loss of transferring data between the CPU and GPU
needs to be eliminated by keeping all data on the GPU. This would increase
performance massively. In addition, chunks are currently generated at runtime
even if they have previously been visited which is a waste of CPU and GPU
time. Instead once a chunk is generated it should be compressed and saved to
disk and then when revisited it can be read from disk again. This should give
better performance than generating it, especially if the terrain generation gets
more complicated (Kapoulkine 2017). This would also allow the terrain to be
edited by the player at run time and then saved and reloaded.

Finally the quality of the terrain generation could be improved massively, cur-
rently the terrain is slightly dull and could feature many new types of terrain
and also include features such as rivers and lakes. One bug that must be fixed
is the gaps in the terrain as this immediately ruins the immersion and is an eye
sore.
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7 Conclusions

In conclusion the aim of the project was to create a system a that could generate
voxel planets in real time and still maintain an average framerate of 60 frames
per second. In addition to this, the the terrain also needed to contain interesting
terrain features that can only arise from voxel terrain such as overhands, caves,
and cliffs.

The system designed utilised the marching cubes algorithm for isosurface ex-
traction and used simplex noise to generate the terrain features. A level of detail
system was created to help increase the performance of the system and increase
the view distance.

The results of the system were that by using the level of detail system and a low
level of detail an average framerate of at least 30 fps could be achieved. They
also showed that the level of detail system gave better performance than just
using a constant resolution. However, in order to get at least 30 fps the level of
detail must be so low that it impacts the quality of the terrain which makes the
planets less interesting to look at and blurry.

There were also some artifacts during the generation of the planets. These
include seams at the borders of chunks all at the same resolution due to the
normal vector calculations not taking into account the neighbouring meshes. In
addition, when neighbouring meshes have different resolutions gaps are formed
between the chunks and lots of skinny triangles are formed during generation
which is a detriment to performance however, it can be solved by using dual
contouring.

Finally, the terrain of the planet was not very detailed and did not contain many
interesting terrain features, however the shading helped to bring the planet to
life and make it more visually appealing to look at. The terrain generation could
have done with a big improvement and would have drastically changed the look
of the planets and made them more impressive.
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8 Reflection on Learning

During the creation of this system I have learned a wide variety of skills and have
found the application of isosurface extraction techniques to be very interesting.
I would have liked to have spent more time on the generation of the terrain to
create more interesting features however it was vital to have a solid rendering
system implemented first. Without this, it would have been hard to view the
generated meshes without long generation times. In reflection, when researching
different techniques and trying to implement them I shouldn’t have spent so long
on particular features because sometimes I would finish implementing a feature
only to realise its performance was too poor and that there was a better option.
This means I should have done more research on different techniques or been
willing to reconsider what else was out there if implementation was taking a
long time.

I should have also spent more time testing the system in a variety of ways
because when it came to time to collect results a variety of bugs appeared which
made it impossible to collect any reliable data. If more testing was completed
then I could have caught these bugs early on and wouldn’t have had to rush to
fix them.

Overall, I have found this topic fascinating to learn about and it has reinforced
my passion for computer graphics and also games. It has shown that developing
computer graphics applications are incredibly rewarding due to being able to
visually see the results.
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