

ALGORITHMIC

‘IDEA’
CLUSTERING

VIA NATURAL

LANGUAGE

PROCESSING

Niall Curtis – C1623580

Supervisor: Alun Preece

 1-1

1 Abstract

 Crowd-sourced innovation at scale produces a large number of ideas, which must be

traversed to transfer the knowledge to someone that can act upon the ideas. The length of

time required to view all the ideas, uncover the trends among the data, and sift through

duplicate or “bad” ideas often makes the process formidable or inaccessible to some
establishments.

This project aims to create a system that uses natural language processing and exploratory

data mining to automate some of this process – uncovering trends automatically, grouping

duplicates and extracting key content from ideas.

The project will also reduce the visual burden of a long list of ideas by using the analytic data

to create an attractive visualisation that engages the user and captivates them to spend time

understanding the ideas.

 1-2

2 Table of Contents

1 Abstract .. 1-1

3 Table of Figures ... 3-3

4 Introduction.. 4-5

4.1 The Aim.. 4-5

4.2 Intended Audience.. 4-5

4.3 Scope .. 4-5

4.4 Outcomes .. 4-6

5 Background .. 5-7

5.1 Wider Problem Context .. 5-7

5.2 Stakeholders ... 5-8

5.3 Theory .. 5-8

5.3.1 Cluster modelling ... 5-9

5.3.2 Topic model via LDA .. 5-10

5.3.3 Doc2Vec ... 5-10

5.4 Existing solutions ... 5-10

5.5 Possible constraints .. 5-11

5.6 Research Questions .. 5-12

6 Specification and Design ... 6-13

6.1 Approach .. 6-13

6.2 Development Process ... 6-13

6.3 Requirements .. 6-13

6.4 Requirement Acceptance Criteria .. 6-16

6.5 Technologies Used ... 6-16

6.6 Static Architecture .. 6-17

6.7 Static Architecture (Analysis) .. 6-18

6.7.1 TF-IDF/Clustering/Topic Model .. 6-19

6.7.2 Doc2Vec Closeness .. 6-20

6.7.3 Post Analysis .. 6-20

6.7.4 Technology ... 6-21

6.8 Static Architecture (Visualisation) ... 6-21

6.8.1 Trend Analysis ... 6-23

6.8.2 Cluster Analysis ... 6-24

6.8.3 Managed Cluster Analysis ... 6-25

6.8.4 Post Analysis .. 6-25

6.8.5 Technology ... 6-26

7 Implementation .. 7-27

7.1 Analysis Backend ... 7-27

7.1.1 Data Clean-up... 7-27

7.1.2 Server Model .. 7-30

7.1.3 TF-IDF ... 7-31

7.1.4 Clustering ... 7-32

7.1.5 Principal Component Analysis ... 7-33

 3-3

7.1.6 Latent Dirichlet Allocation .. 7-35

7.1.7 Doc2vec.. 7-35

7.1.8 Limitations ... 7-38

7.2 Visualisation ... 7-38

7.2.1 Uploading Ideas ... 7-39

7.2.2 Adjusting the Granularity ... 7-40

7.2.3 Browse map of ideas .. 7-40

7.2.4 Topic Model Analysis .. 7-44

7.2.5 Limitations ... 7-45

7.2.6 Local API ... 7-46

8 Results and Evaluation .. 8-47

8.1 Methodology Limitations ... 8-47

8.2 Final Methodology ... 8-47

8.2.1 Group Evaluation ... 8-48

8.2.2 Comparative Historic Evaluation ... 8-51

8.2.3 Self-Evaluation and Requirements ... 8-54

8.2.4 Additional Evaluation .. 8-56

8.2.5 Evaluation Conclusions .. 8-57

8.2.6 Methodology Appraisal .. 8-57

9 Future Work ... 9-58

10 Conclusions .. 10-59

11 Reflection on Learning ... 11-61

12 Table of Abbreviations ... 12-63

13 Supplementary Material... 13-67

13.1 Stop words .. 13-67

3 Table of Figures

Figure 1 - Set of ideas in a challenge in Simply Do Ideas ... 5-7

Figure 2 - Example of an idea in the web application ... 5-8

Figure 3 - K-Means Gaussian Data, Chire, 2011. .. 5-9

Figure 4 - Doc2Vec Vectors, (Budhiraja 2018) ... 5-10

Figure 5 - Transfer of information in the project ... 6-13

Figure 6 – Idea analysis flow diagram ... 6-17

Figure 7 - Analyse Uncover Delve Loop ... 6-18

Figure 8 - Analysis Data Flow ... 6-19

Figure 9 - User interface design ... 6-22

Figure 10 - Example of an idea "card" in Simply Do Ideas application 6-22

Figure 11 - Visualisation user flow .. 6-23

Figure 12 - Idea Kanban board .. 6-25

Figure 13 - Un-normalised idea input .. 7-27

Figure 14 - Function to reduce templated field to single string ... 7-28

Figure 15 - Applying untilString to an idea's content .. 7-28

Figure 16 - Normalise idea function .. 7-28

Figure 17 - Tokenizing/Stemming Ideas.. 7-29

Figure 18 - Analysis Server Endpoints .. 7-30

Figure 19 - TF-IDF Analysis of ideas .. 7-31

Figure 20 - Example Word Frequency Matrix ... 7-31

 3-4

Figure 21 - Example TF-IDF matrix .. 7-31

Figure 22 - Scikit K-Means Implementation ... 7-32

Figure 23 - Visualisation of clustering fit and prediction .. 7-32

Figure 24 - Cluster infomation mining .. 7-33

Figure 25 - PCA on idea matrices .. 7-34

Figure 26 - LDA for Ideas ... 7-35

Figure 27 - Pre processing for doc2vec ... 7-36

Figure 28 - doc2vec model processing .. 7-36

Figure 29 - Example of visualised, trained doc2vec .. 7-37

Figure 30 - Close ideas functions... 7-37

Figure 31 - doc2vec two dimensional analysis .. 7-38

Figure 32 - Visualised map of ideas .. 7-39

Figure 33 - Topic modelled "Top themes"... 7-39

Figure 34 - Reading ideas from JSON ... 7-40

Figure 35 - Cluster adjustment ... 7-40

Figure 36 - Default nivo scatterplot ... 7-41

Figure 37 - Converting to nivo chart data .. 7-41

Figure 38 - Idea map controls .. 7-42

Figure 39 - Zoomed/panned idea map ... 7-42

Figure 40 - Further idea map controls.. 7-43

Figure 41 - Idea intelligent context .. 7-43

Figure 42 - Intelligent context calculation ... 7-44

Figure 43 - Suggested ideas ... 7-44

Figure 44 - Topic model context .. 7-45

Figure 45 - Selected top term ... 7-45

Figure 46 - Div inside SVG ... 7-45

Figure 47 - API Code ... 7-46

Figure 48 - Closely grouped ideas in idea map.. 8-49

Figure 49 - Intelligent context.. 8-50

Figure 50 - Idea map for FGCW challenge ... 8-52

 4-5

4 Introduction

4.1 The Aim

 During my year in industry in second year and since then, I worked for Simply Do Ideas1,

a company that builds web software to handle crowd-sourced innovation. Their application

facilitated innovation through a challenge process – a stakeholder would propose a question;

for example, “How can we improve the office?” and employees could submit their ideas using

a proposal template.

The challenge/idea model is propped up by social engagement, where other employees can like

and comment on each other’s ideas to push forward those that they feel will be the most

impactful to them. The side effect of this process was that challenges could amass a large total

of ideas. In some cases, larger organisations could have hundreds of ideas, many of which

uncompleted, duplicated or misunderstood the question. The “challenge owners” must then
devote a significant amount of time to sifting through the pile of ideas to find actionable

information.

This is a human bottleneck in a product that’s main aim is to decentralise the innovation product

and move it to a digital environment. The goal of this project is to use modern text analysis

tools to streamline the post-ideation process and decrease the time required to analyse a set of

ideas from a challenge. This will be achieved by highlighting trends in the dataset, grouping

ideas on similarity, assessing duplicates and reducing the content that the challenge owner must

ingest. This data will then be presented in an easily digestible, visually stimulating manner, as

it is vital for the data to be actionable by the user.

4.2 Intended Audience

 This project is done in tandem with Simply Do Ideas, with the idea that the analysis tool

will be usable and accessible by anyone that wishes to run a challenge-based ideation project.

A number of the staff members within the company have cooperated with organisations to run

innovation challenges, so this project will be built to alleviate the stress points highlighted by

these staff members.

My project can be qualitatively evaluated against their difficulties analysing a set of ideas and

how the technology solves those difficulties, along with the trends and results they picked out

manually and will highlight the difference between automatic and manual analysis – both

positively and negatively, showing perhaps where technology fails to understand ambiguity,

intention, sentiment and personal feeling.

4.3 Scope

 The scope of the project for its current duration is to develop a system that operates

independently of the company’s existing product ecosystem. The basic scope to prove the
‘proof-of-concept’ of the proposal is a backend analysis system that will accept an input dataset
of ideas, perform the proposed text analysis and output a revised dataset with the data from the

analysis added to the ideas.

1 https://www.simplydo.co.uk/

https://www.simplydo.co.uk/

 4-6

As a counterpart to this, there will be a web-based user interface that enables the end-user to

upload their set of ideas, which will use the analysis data to visualise the results in a stimulating

manner that easily enables the user to understand the analysis and fully demonstrates the

capability of the backend.

These two elements combined provide a strong minimum value product to demonstrate the

proposal of the project, providing a good basis on which to evaluate its success and compare

different methods of analysis.

4.4 Outcomes

 A successful outcome of this project would be that, with some consensus, the idea analysis

tool is qualitatively evaluated to reduce the man hours and improve the quality of the post-

ideation process – crucially, reducing the human bottleneck in a digital process, and increasing

the value of the overall product to the consumer.

 5-7

5 Background

5.1 Wider Problem Context

 In order to properly understand the problem in question, it is important to visualise the

post-ideation process. The following diagram is what, typically, a challenge owner will see

following the completion of a challenge process, when there is a number of ideas submitted.

(A challenge owner in the context of this report is an individual of group of stakeholders that

proposed the challenge, and would manage the implementation of ideas on completion).

Figure 1 - Set of ideas in a challenge in Simply Do Ideas

This challenge is taken from an internal company wide one – A larger organisation may have

dozens of pages with hundreds of ideas.

The web application has alleviated the logistically difficulty of manually collecting employee

suggestions, previously done via suggestions boxes or emails. However, sorting through these

ideas is still difficult.

Simply Do attempts to alleviate some of these difficulties by providing tools to sort ideas, filter

by keywords, mark them with filters to indicate they’ve been seen, and many more. The stress
point here is still that every single idea must be manually clicked into, read, and actioned in

some way (marked as read, tagged, commented on, some way to imply that it has been

digested).

This issue is further highlighted in large datasets, where a portion of ideas will be partial

duplicates of each other, incomplete, or have misunderstood the question in some way.

Taking the time to inspect a “bad” idea can be considered wasted time, which adds up over a

large dataset. The other issue encountered is that when challenges are evaluated by a group of

people, trends in data tend to be missed. This is especially noticeable when a set of ideas is

“rationed” in groups for people to look into.

 5-8

Figure 2 - Example of an idea in the web application

These two areas are where the web application currently lacks “intelligence” in the

sense that they are still largely manual processes. These issues were specifically highlighted

by two organisations that run a number of challenges with a large (multiple thousands) userbase

– Development Bank of Wales and South Wales Police. Providing tools to improve this process

is what the project will attempt to achieve.

5.2 Stakeholders

 The project will be completed in tandem with Simply Do Ideas and will be involved in

regular communication to inform progress and iteratively review progress.

The problem for the project was identified as a result of customer surveys with a number of the

company’s clients, including those mentioned in the previous section. As the company offers

direct challenge support with a business’ ideation department as part of a license fee to use the

application, employees that have collected this feedback will be used as representative

stakeholders for the problem. Customers’ employees will therefore be the basis for qualitative

evaluation of success.

The company also has internal challenge analysis reports, where the supporting employee sifts

through the ideas in tandem with the challenge owner manually and extracts duplicates, trends

and keywords. These reports will be compared with the output of the project.

5.3 Theory

 If the solution is to ultimately reduce the time taken to understand a set of ideas, then its

methodology for visualisation should immediately be familiar. Therefore, the product should

be planned top-down – where the best method of presentation is decided upon, then the analysis

system is built to support it.

 Broadly speaking, the challenge and idea process produces ideas that are unseen – They

are unfamiliar to challenge owner, and in the case of some analysis tool, unfamiliar to the

machine or algorithm. Analysis can be disseminated into two categories; confirmatory, which

is the idea of confirming a previous hypothesis, and exploratory, which is discovering

characteristics of a data sets and involves summarisation and visualisation. (Heck 1998). As

 5-9

these challenge analysis activities involve unseen datasets, the author will investigate

exploratory methods of analysis.

Research suggests that our brains are naturally prone to categorising things (Branan 2010);

This supports the decision to make any visualisation and presentation as “natural” as possible,
to imitate and streamline what a user may consider the “natural” way they would manually

filter through a dataset.

An internal company activity that looked at how someone may solve the problem of sorting

through a large dataset concluded that most users begin by applying some degree of

categorisation to reduce the problem into smaller tasks. A standard method of grouping comes

in the form of cluster analysis as the theoretical method of analysis. Another popular method

is word embeddings to generate vectors from words.

5.3.1 Cluster modelling

Centroid-based clustering is where isolated groups are represented by a central point

that may not be part of the data, but can be used to display representative characteristics, which

allow group summarisation.

For this project, it is appropriate to partition ideas by their content. See Figure 3 for a visual

example of partitioned observations using a k-means cluster model (Chire 2011).

In general terms, k-means centroid cluster modelling aims to partition items such that they

belong the cluster with the nearest centroid. In this model, k is a pre-determined number of

distinct clusters to partition observations into (MacQueen 1967).

Figure 3 - K-Means Gaussian Data, Chire, 2011.

This task can be applied to text documents by using common algorithms to represent sentences

numerically, such as TFIDF (Term Frequency – Inverse Document Frequency). Term

Frequency is the ratio of the current word to the number of all words in the document, and

Inverse Document Frequency measures the ratio of the documents in the collection that contain

the given word. TF-IDF is then the product of these two values to uncover the “important” of
the term (Ramos 2003). The TF-IDF of a document can then be represented in a two-

dimensional space and partitioned into clusters.

 5-10

Reducing cognitive load is a key task for the project, however using text processing

also makes rich data analysis accessible. Trends can be deduced automatically; a challenge

owner can understand the key themes from the idea set before they begin manually inspecting

ideas. Practical implementations of this can be very basic, such as simple word frequency, but

richer analysis can be done with text-mining techniques, such as the statistical topic model.

5.3.2 Topic model via LDA

 Topic modelling is an unsupervised, exploratory machine learning technique that attempts

to uncover trends (topics) that can characterise a document or set of documents (Rehurek and

Sojka 2010), through numerical representation. Trends are calculated by the occurrence of

terms in a document. A popular approach to obtain topics is LDA (Latent Dirichlet Allocation);

an algorithm that operates on an assumption that documents have a mixture of topics, and

words are generated based on a probability distribution.

5.3.3 Doc2Vec

 Another implementation for numerical representation for words. An extension of the

word2vec model (Goldberg and Levy 2014), which is a numerical representation of words that

is able to retain the “meaning” of words when considering their closeness, including similarities

such as analogies, synonyms etc.

For example, the relative relationship from king to man is gender, whereas king to queen is

monarchy. Given woman as well, word2vec can reason that king – man + woman = queen,

through its understanding of the meaning and relationship between words. The doc2vec model

(Lau and Baldwin 2016), extends this by using document vectors to represent the concept of

sentences, rather than just words. It uses the understanding that the order of words in a sentence

affects the meaning of the sentence when looking at relationships.

Figure 4 - Doc2Vec Vectors, (Budhiraja 2018)

5.4 Existing solutions

 Internal competitor research within Simply Do Ideas has highlighted the approaches that a

number of competitors in the ideation-innovation space in the United Kingdom have taken to

streamline the post-ideation process for challenge owners.

The research looks at the data reporting for five competitors, and what methods they use for

idea analysis. Of the five companies, four of them use self-assessment to group and sort ideas.

This generally involves users attaching their own identifiable metrics to ideas with a rigid

structure. For example, this may be their estimation of simplicity to implement an idea, the cost

 5-11

it might save on implementation, or a set of tags. This pushes the burden of categorisation onto

the user, still remaining largely a manual process but reducing the requirement for the

challenge-owner to do all the work. Three of the companies offer an implementation of NLP

(natural language processing) for their reporting. One of them states that they provide AI to

“analyse unstructured data ... to consolidate similar ideas and connect people interested in like-

minded ideas”, which suggests some similar clustering approach. One other states they use
NLP for identifying duplication, and the final uses sentiment analysis.

Of the five competitors, none are understood to use any form of two-dimensional representation

of idea content, direct centroid-based clustering or topic model analysis. The author hopes that

using this form of representation and analysis would, if taken further, provide Simply Do Ideas

with a competitive advantage in this area where no competitor has ventured into, at the time-

of-writing.

 Clustering text from digital sources, in itself, is well explored, and has myriad

implementations. Common exploratory analysis can be done where masses of data are

available freely in some digital space such as Twitter, where the author can source a potential

dataset of millions of sentences.

A typical use case may be attempting to group politically focused tweets to find large unseen

trends and communities, which is particularly applicable due to inherent tribalism in this topic.

(Koç et al. 2018). While used extensively elsewhere, the discussion of clustering in the ideation

space, at least as far as scholarly and competitor research goes, is seemingly unexplored.

While the techniques used in this project remain largely equivalent to usual cluster modelling,

there is no clear precedent for visualisation, which this project will hinge much of its success

on. Additionally, the project will look at how a combination of the aforementioned techniques

can improve the richness of analysis.

5.5 Possible constraints

Users of the Simply Do platform tend towards being less experienced with computers

and managing large datasets, so the possible complexity of detailed analysis can in fact increase

the cognitive load of managing a challenge. This would have the inverse effect of increasing

the time requirement for challenge owners. It is vital therefore that the project focuses on a

straightforward operation, that uses detailed analysis to reduce, rather than increase, the

complexity of the process. A successful outcome would not be simply successful data analysis,

but rather successful packaging and conveying of data analysis.

The quality of data also provides a hurdle in natural language processing. Ideas have

no baseline for correct grammar, spelling or sentiment. The opposite is often preferred, for a

faster user experience – quickly submitting short ideas. By promoting this type of ideation,

sacrifices are made on the calibre of the text itself. The content will also typically discuss the

challenge set forth, and as such many ideas may have similar content if they begin sentences

with something akin to “I think we can improve the office by…”; leading office to be a

reoccurring theme across all ideas. Calibration of techniques will therefore be important to

avoid ideas being clustered or grouped on central themes that are unhelpful to the challenge

owner. This also extends to usage of the words “idea”, “challenge” and other terms specific to

this subject area. There must be a thorough list of terms to ignore, as the efficiency of the k-

 5-12

means algorithm increases as clusters are more isolated, given cluster isolation p, with a run

time of O(kn/p2). (Kanungo et al. 2000)

The size of the average idea set is also not ideal for detailed processing. A typical corpus

for text analysis would contain thousands of entries, whereas this system will manage tens to

hundreds. The accuracy of results and isolation of clusters scales with the number of items to

analyse, but other research suggests that there is no explicit “minimum” size for cluster analysis
(Siddiqui 2013), which suggests that the chosen method will still be applicable to this use case.

5.6 Research Questions

This project will consider the viability, usability, and achievability of using NLP and

exploratory data mining techniques to streamline and enrich the process of navigating and

managing a large number of ideas. The project will investigate and justify appropriate methods

for both analysing and visualising data and evaluate the extent to which the software produced

successfully improves this process.

The key metrics will be demonstrating that the stakeholders previously identified:

a. find the data activities performed on the idea set noticeably reduces the cognitive load

navigating the idea set and

b. reduces the time needed to draw conclusions, and identify relevant themes.

 6-13

6 Specification and Design

6.1 Approach

 The project has two distinct elements – The “backend” system, which handles the analysis,

and the “frontend” system, which handles visualisation. The backend will take a set of ideas,
perform the data mining activities to uncover the unseen characteristics of the set, and return

the set of ideas with the new knowledge included.

The frontend will be able to reason the output from the backend and use appropriately justified

methods of visualisations to make the knowledge easily interpretable by the end user. The two

systems will operate as black boxes – while they will function together as a system, they will

not be explicitly intertwined and able to operate independently, similar to a client-server model.

Figure 5 - Transfer of information in the project

6.2 Development Process

This black box system is in aid of an Agile, iterative development process with the ability to

independently work on the analysis and visualisation tools. Upon regular liaison with

stakeholders from Simply Do Ideas, improvements can be made in “sprint” intervals, and focus
shifted where necessary. The goal with having two independent systems as part of the project

facilitates having distinct development processes for each constituent.

Reviews of the entire project have been planned with the Simply Do Ideas team as a whole,

and evaluations with SME (Subject-matter Experts) about how the project could have aided

challenges they have run in the past.

 Before beginning the development process, the author researched a number of technical

implementations of the techniques discussed, as well as previous applications of the

technologies to learn the processes involved. Great attention was paid to the scikit-learn Python

package (Pedregosa et al. 2011). This provides easy-to-use APIs for a number of popular

machine learning algorithms and is especially relevant to this project as it includes

implementations for k-means clustering, TF-IDF, and LDA topic modelling.

Additionally, the author devoted time to a popular Python handbook called “Python Data
Science Handbook” (VanderPlas 2016) that teaches usage of these implementations and how

to maximise their potential. The book covers, step-by-step, methods for data mining and

visualisation.

6.3 Requirements

 Requirements have been formulated by the previously mentioned Simply Do Ideas team

members acting as stakeholders on the part of license-holding clients. From the project aims,

I devised and verified a set of explicit milestones that would shape the application and

 6-14

provide a basis for evaluation. The milestones were then split into minimum and desirable, in

order to prioritise development progress effectively, and across three separate categories –

Supplementary tasks, Analysis, and Visualisation. These milestones were included in the

initial report and will be reiterated here to aid review.

Requirement Acceptance Criteria

Key Supplementary Tasks

Data Clean-Up (MINIMUM): System

must be able to accept and normalise a large

variety of ideas in different formats, to build

a standardised corpus of ideas for further

comparison, amalgamating the content for

text processing.

System successfully converts an unsorted

set of ideas to an array of documents with

identical keys, and correspondingly

formatted items.

Analysis

Supports Multiple Use Cases

(MINIMUM): The system will support a

variety of different skill-levels, supporting a

multitude of use-cases. The system will

support the user regardless of their

experience.

System has a set of features with varying

degrees of involvement and complexity. At

a minimum, the system will have two

workflows, one that is heavily automated

and one that allows the user to manually

explore the rich analysis.

Word Frequency (MINIMUM): Word and

bigram frequency analysis; allowing simple

visualisation of the most used terms. Both

segmentation and tokenization will be used,

along with a common and user-extended

library of stop-words to remove analytically

useless connectives, verbs and common

terms that have no use for investigation

System outputs an array of the most popular

terms from the set of ideas, along with how

many times they have been used, enabling

creation of an appropriate visualisation

technique such as a word cloud.

TF-IDF (MINIMUM): Analytic techniques

to pick out the most ‘popular’ terms in the
set of ideas, which in turn allows discovery

of the overall ‘key topics’. Acts as basis for
clustering and enables broad stroke

inspection of challenge outcomes.

System produces a vectorised TF-IDF

matrix for the ideas in the dataset, and

reduces them to a two-dimensional

representation, giving all ideas both a TF-

IDF value and TF-IDF “coordinates” to be
plotted.

Clustering (MINIMUM): Act of

separating the ideas into previously

unknown, potentially non-discrete groups

based on their individual TF-IDF matrices,

traits, and the occurrent of trends within the

ideas; the aim being to create subsets of

ideas that belong to a particular topic within

the idea corpus, which were previously

found via inverse document frequency

analysis. This is the end goal to solve the

post ideation process of filtering ideas, as

the administrators can immediately extract

and dissect the key outcomes of the

challenge.

System uses natural language, exploratory

cluster analysis to partition all ideas into

discrete groups, using an appropriately

justified technique, such as k-means. Each

idea is given a cluster based on the

predetermined number of clusters, and this

can be visualised along with the TF-IDF

plots. Clusters are verified in their

correctness via qualitative evaluation.

 6-15

Word Embeddings and Idea Closeness

(DESIRABLE): Representing individual

words as vectors in a vector space, finding

words that have the same representation and

thus being able to define some degree of

similarity, or closeness in the vector space,

between different ideas. Using a pre-

existing populated embeddings model for

word comparison, we can compare the

features of ideas and be able to produce a

traversable map of ideas.

The content of ideas is converted by the

system into a numerical representation using

an appropriately justified method, such as

doc2vec. The model will allow suggestions

of similar ideas, and discovery of the

closeness of given ideas to others. This can

also be verified in effectiveness through

qualitative evaluation.

Visualise

Key topics (MINIMUM): Simple

visualisation of the key topics acquired from

TF-IDF and term frequency analysis data, to

enable a minimum viable product

TF-IDF output from the analysis system is

visualised appropriately, with justification

and verification from evaluation. The

applicability of conversion from TF-IDF

matrix to two dimensional coordinates

makes scatter plot a suitable candidate to

visualise the TF-IDF differences between

ideas; but any way to visualise the TF-IDF

scores would be a measure of success.

Clustering representation (MINIMUM):

A well-justified method to represent the

clustering of ideas in the dataspace, that

fully supports a fast and efficient idea

sifting process for the user. Clearly define

the extracted key topics and allow granular

access to ideas clustered within these topics

for deeper analysis.

The visualisation successfully differentiates

between ideas of each cluster. This

visualisation paradigm is evaluated to prove

that the differentiation is easily identifiable.

Within the discrete clusters, the

visualisation will provide controls to further

limit the number of visible ideas.

Embedding graph (DESIRABLE): Take

advantage of the embedding vector-space

and similarity data to create a linked map

visualisation of the closeness of ideas. Can

pick out trends between clusters, navigate

the data space, view potential outliers and

more.

Closeness of ideas have a suitable

exploratory visualisation method. The

chosen vector space model has a module to

show which ideas are the closest, in a way

that it “suggests” the next move of the user.

Data manipulation (DESIRABLE):

Create set of tools that give the user the

ability to manipulate the tools that analyse

the dataset in real time to allow them to

decide their own granularity of analysis –

By empowering them to complete actions

such as adjusting cluster size, with the

visualisation robust enough to support these

user activities.

The user interface has controls that interact

with the analysis system as well as being

able to visualise the result. Controls are

verified to improve the richness of analysis,

and are simplistic enough as to not impede

the progress of the user. Any granularity is

optional, allowing power users to adopt if

wanted.

 6-16

6.4 Requirement Acceptance Criteria

 When evaluating the success of a project, two potential schools of evaluation are

qualitative and quantitative (Newman et al. 1998). Generally, quantitative research is

applicable when confirming a theory or assumption, expressed through numbers; and can be

used to create facts. Qualitative evaluation is expressive, naturally opinionated and enables

exploration and generating insight. It is possible in many cases to combine both qualitative and

quantitative to produce a more thorough picture.

 The value of this project is in the perceived improvement of the post-ideation experience

for the challenge administrator. Whilst the project aims to reduce the time spent understanding

a set of ideas, the provision of additional analysis tools means this criterion is more

complicated, as one may spend more time uncovering hidden trends that adds value to their

reporting.

The system in itself produces results through exploratory data mining exercises – k-means,

topic modelling – which aim to generate previously unseen information as opposed to

confirming a pre-existing hypothesis. It fits into a pre-existing application that’s business
model is exploratory innovation via ideation. As such, in the majority of cases, there is no

hypothesis to evaluate the effectiveness of project’s analysis in a confirmatory manner. This
calls for the need for exploratory evaluation.

The requirements can be appraised via a qualitative evaluation with SMEs (Subject Matter

Experts) from Simply Do. Chosen SMEs can be asked to choose a previously completed

challenge that they have overseen in the past, where they have manually analysed and reported

on trends and information from the ideas, where this data and their personal experience of the

process will be qualitatively compared to conducting a similar process with the aid of this

project. Additionally, general evaluation can be performed with a wider selection of team

members to understand opinion on the user interface and basic effectivity of the analysis.

A possible solution for quantitative assessment of the requirements could be a confirmatory

experiment with an unseen set of ideas. The time taken to reach an agreed “solution” (a suitable
report of the outcome of the ideation process) can be compared between an unaided manual

report, and a report created with the aid of the project. Unfortunately, unforeseen circumstances

have rendered this method of evaluation infeasible. Office closures due to SARS-CoV-2

(Organization 2020) stretched company resources thin and made in-person contact

unattainable, reducing the possible scope of evaluation with subject matter experts. For the

duration of this project, all communication can only be done digitally, with less evaluation

contact time than hoped upon inception of the project.

6.5 Technologies Used

 This section will overview the most influential technologies and programming languages

used. Only the most important modules will be included that are necessary for the project to

function, with tertiary components excluded to reduce complexity e.g. Built in functionality

such as numpy for Python will be excluded here, and mentioned where necessary in the

Implementation section.

 6-17

• Python: Used as the basis for the analysis system in a client-server model. Chosen for

its simplicity and readability in the execution of calculation, and widespread support

for common data mining applications.

o Flask: Python web application framework (Grinberg 2018), designed for

simplicity in getting started while remaining extensible.2

o Scikit-learn: Widely used, free machine learning library for Python. Contains

implementations of, and simplistic APIs for a variety of data mining models,

including k-means clustering, LDA topic model and TF-IDF.3

o Gensim: Python library that specifies in unsupervised topic modelling and

natural language processing. Has capability to support word2vec and doc2vec.4

• React: Component-based JavaScript library for building web user interfaces.

Supported through a wealth of community extensions.5

o Semantic UI: React implementation for the vocabulary-based Semantic UI

visualisation library. Uses straightforward component model to reduce time

spent designing basic UI components such as Buttons.6

o NIVO: Deep data visualisation components for plotting information in React,

build on top of the barebones d3.js JavaScript data visualisation library.7

6.6 Static Architecture

 Broadly, the static architecture is divided into four distinct steps, as the ideas are reduced

into a more manageable format.

Figure 6 – Idea analysis flow diagram

 The broad-scope architecture flows from left to right in Figure 6, starting with the unsorted

corpus of ideas that begins following the completion of a challenge in Simply Do Ideas, once

a collection of ideas has been produced. The set of ideas is sent to the analysis system, where

the data mining exercises – clustering, TF-IDF, topic model etc – are performed. The system

then outputs the newly analysed corpus of ideas with the cluster information in place. In the

2 https://palletsprojects.com/p/flask/

3 https://scikit-learn.org/stable/index.html

4 https://radimrehurek.com/gensim/

5 https://reactjs.org/

6 https://react.semantic-ui.com/

7 https://nivo.rocks/

https://palletsprojects.com/p/flask/
https://scikit-learn.org/stable/index.html
https://radimrehurek.com/gensim/
https://reactjs.org/
https://react.semantic-ui.com/
https://nivo.rocks/

 6-18

visualisation, the set of ten unorganised ideas are initially reduced to three discrete clusters, the

first step in reducing the cognitive load. From there, the clusters are further simplified through

two parallel processes; extracting unseen topics from the clusters to identify key themes, and

using vector space closeness to suggest similar ideas from a singular one. This simplistic

overview can be elaborated upon by considering the static architecture from two viewpoints;

the analysis and visualisation. The overall ethos and fundamental loop of the system is:

1. Analyse: Cluster, topic model, find popular terms

2. Uncover: Discover hidden trends among data, traverse the “space” of ideas, find similar
suggestions, understand what is popular

3. Delve: Using the knowledge uncovered, increase the granularity of the analysis to

repeat the process and expose further information

Figure 7 - Analyse Uncover Delve Loop

These three crude stages can be repeated until the desired level of granularity is achieved. The

project aims to provide an effective solution to the problem within one loop, with enough data

to draw solid conclusions – while providing the option to continue the cycle when desired.

6.7 Static Architecture (Analysis)

 The following flow diagram, Figure 8, demonstrates the route data will take from the

conclusion of a challenge to the analysed dataset used for the visualisation.

 6-19

Figure 8 - Analysis Data Flow

 Figure 8 begins with an unsorted JSON format file, containing the ideas from any given

challenge. This is the standard output format used in the Simply Do Ideas application, due to

the data being stored in a document format using MongoDB8. Upon receiving this data, the first

step for the system is to clean-up and normalise the ideas, to enable the data mining activities

through a consistent data structure with additional metadata. This process will also involve the

removal of stop words. Stop words are analytically useless words, that are equally likely to be

in irrelevant documents as they are to be in relevant documents when doing comparisons. This

can include connectives and articles such as “and” or “the”. The normalised data will have the

following fields:

• _id: Unique identifier for each idea, which can be used to refer back to the original

unsorted corpus

• Name: Name given to an idea by a user

• Content: Single string amalgamation of all the content fields from an idea, which may

be spread across nested objects in the original document

• Tokens: Array of strings contained each word in the Content section, with stop words

removed

• Stems: Stemmed copy of the Tokens array. A stem is a word without any

suffixes/prefixes to reduce it to its root. E.g. running to run.

More fields will be added to this object upon conclusion of data mining activities.

The architecture flow then divides into two sub-systems of analysis; TF-IDF and Clustering,

along with Doc2Vec Embeddings, before combining as a final dataset upon completion.

6.7.1 TF-IDF/Clustering/Topic Model

 The TF-IDF/Clustering sub-system will support the bulk of the visualisation, and thus is

the more complex of the two sub-systems, with a greater number of steps along the way along

with a more complex output. It starts with a simplistic term frequency analysis, that just

considers the commonality of terms across the corpus of ideas. This can be used to generate

diagrams such as word clouds. This is extended by applying TF-IDF to the set of ideas to find

the terms that are important to specific ideas but not common across the entire dataset.

8 https://www.mongodb.com/

https://www.mongodb.com/

 6-20

TF-IDF values can then be converted to a matrix of features through vectorisation , and

reduced to a two dimensional representation via PCA (Principal component analysis) (Wold

et al. 1987). PCA aims to reduce the dimensionality of the data, while retaining how the data

varies.

The sklearn package has a PCA decomposition method included to enable this. This allows us

to plot ideas in a two dimensional space using a scatter plot, as each idea feature will have both

an X and Y plot value, which are attached to the normalised idea documents in the next step.

This provides a tactile way to visualise the textual difference between ideas, as scatter plots are

commonly recognisable formats.

 The other direction in the flow chart following Term Frequency – Inverse Document

Frequency is the cluster analysis. The Python k-means model can be fit to the TF-IDF matrix,

which will use the pre-defined number of clusters to search the data and categorise it into k

groups by the Euclidean distance from the cluster. The centroids of each given cluster can also

be reduced via PCA decomposition to plot the centroids along with the ideas, and the cluster

each idea belongs to is attached to the relevant document.

 The ideas in each cluster are applied to the sklearn LDA (Latent Dirichlet Allocation)

function, which produces a topic model analysis of the set of ideas from each cluster. The

features are then attached to each cluster’s document, to demonstrate the unseen themes from

each cluster.

6.7.2 Doc2Vec Closeness

 The other sub-system is the training and subsequent data revelations from a doc2vec model.

Gensim provide a simplistic Python API for using a doc2vec model which will be used in this

project (Rehurek and Sojka 2011). The idea corpus is pre-processed to create tokenised training

data, along with tagged documents for the analysis. Tagged documents allow relating the

document vectors to the original ideas using their unique _id field. The genism doc2vec will

build a model with given parameters, build the vocabulary using the training corpus then test

over a given number of epochs.

Once any given idea is chosen, gensim can use the trained model to infer a vector from the

respective idea’s tokens. This vector can be compared to the other vectors from the set of ideas,

and the closest vector can be referred back to the original idea using the tag from the vector.

This enables a production of an ordered array of ideas, from most to least similar in content.

Suggestions and soft “duplicates” can be inferred from this information.

6.7.3 Post Analysis

 Once the data mining activities have all been performed, the data will be packaged in a

consistent manner that the visualisation will reliably be able to reason with. The ideas will be

packaged into another JSON file that will respond to the initial HTTP POST request sent by

the client.

The following is an example of the extra fields that will be added post-analysis:

• Content: Amalgamated field of all the text fields from the original idea

• Cluster: Identifier for the cluster the idea belongs to

• Tokens: Array of strings of each word from the Content field, delimited by spaces,

with punctuation removed and caps normalised

 6-21

• Stems: Stemmed copy of the Tokens array

• TF-IDF Instance: Coordinates for 2D TF-IDF matrix representation

• Topic Modelling: Data mined unseen themes from the idea content

6.7.4 Technology

 The architecture of the backend will use Python for its widespread support of popular

machine learning, with the Flask library to allow the analysis option to operate as a HTTP

server. This architecture also mirrors the approach used in the existing Simply Do Ideas product

stack, where the user interface also interacts with, and receives information from, a

Python/Flask server.

In regard to future work, the project developed in this way improves its flexibility to be

integrated into the existing product stack. This familiarity also aids the author with the speed

and efficiency they can program the project. Experience in the technologies used will incur less

blockages related to programming ability, so more time can be spent completing “useful” work,
rather than learning other technologies.

 Python has a number of popular, simple APIs for conducting exploratory data analysis,

making it a powerful and versatile tool for analysis. Both scikit (Pedregosa et al. 2011) and

gensim (Rehurek and Sojka 2011) have well-documented implementations of the data mining

activities decided for the project, that offer simplistic black box approaches to these processes.

An often discussed programming paradigm is to not “reinvent the wheel” (Gama 2007), to

make use of the wealth of peer-reviewed existing implementations for tools rather than design

it yourself. This project will make use of that approach to maximise reliability, success, and

speed of the development process. This project does not aim to provide a confirmatory analysis

of the effectiveness/speed of different algorithms.

 A HTTP Flask server also aids the black-box approach to developing the analysis system.

A user interface can send data to the server using HTTP requests, and will receive analysed

data in return, without needing any understand of how the analysis is performed. Python Flask

also offers a range of features that aid the fundamental development process. Errors are handled

without causing a server crash, and changes to the code are applied through automatic restart

on save. Once the user interface begins development, testing effectiveness can be done rapidly

by sending and receiving data to the server.

6.8 Static Architecture (Visualisation)

 The following diagram, Figure 9, demonstrates how the output from the analysis system

could be visualised. The coloured circles in the image are representations of ideas, with a colour

to indicate which cluster it belongs to. Figure 10 provides a real example of how an idea looks

within a list of ideas, and how they will be displayed in the final iteration of the project.

 6-22

Figure 9 - User interface design

Figure 10 - Example of an idea "card" in Simply Do Ideas application

The diagram Figure 9 is taken from the perspective of the end user – typically the

challenge owner or the consulting staff member. The visual elements are indicative of the

actions user will be able to take, along with the visualisation concepts that can be expected,

specific design of individual elements is subject to iterative change and evaluation.

As a companion Figure 11 contains examples of how the post ideation process can work using

the project, and how a user reduces the cognitive load of managing a challenge.

 6-23

Figure 11 - Visualisation user flow

 The first step in the user flow involves them uploading a set of ideas that they have acquired

from a challenge. This step is unique to the project, and assuming the system would be

integrated with the existing product stack, would be no longer required as ideas would be

manually imported.

For the scope of the project it is necessary to allow the system to act independently. This action

is performed using Action 1 in Figure 9. Once the server has analysed the ideas, they will be

returned to the client to be visualised. As shown in Figure 11, the client may adjust the number

of clusters, which will subsequently return the ideas to the database to be reanalysed with the

new k value for the k-means algorithm.

The following steps indicate paths the user could take in the visualisation following

receiving the analysed idea data back, either “Browses map of ideas” or “Look at trends from
topic model analysis”. These paths are not mutually exclusive, and optionally both can be

undertaken. This allows the challenge owner to deep dive into the analysis if they choose to,

but can pick a path exclusively if they are trying to save as much time as possible.

6.8.1 Trend Analysis

 Taking the path of topic model analysis, the user will begin on the user interface using

Action 4. This will contain the trends uncovered from the dataset as a whole, or a specific

cluster if desired. The “themes” will be a discrete set of single words that have been uncovered

as popular among the data. In the example these include “clothing” and “offices”. Stop words
are excluded from analysis to prevent connectives from being included in the themes. These

words will enable the challenge owner to instantly uncover the most popular trends among the

ideas without having to take any additional actions.

 Hovering over any given word transitions the user into the next part of the flow, “View
how the trend is used across ideas”. Hovering over the word will reveal context of how the

word is used across the ideas that contain it.

The system will identify usages of the word across all ideas, then attempt to provide

information on how that is used, by choosing words around it to add meaning, depending on

where the word lies within an idea’s content. If the system provides a 16-word context for any

 6-24

given word, then these words are chosen based on the given word’s location. If the given word
is at the beginning of the idea, the subsequent 16 words will be used. If the word is in the

middle of an idea, the preceding 8 words and the following 8 words will be used. An example

of this using the given word “office” may be:
• “…. We feel that when we are in the office needs more water coolers to give us

water…”

Internal challenge report templates use this format for visualising trends. When a subject

matter expert produces a post-challenge document describing the themes, they use this method

of providing context. This feature aims to emulate that functionality to retain the “natural”
feeling.

During the planning of the project, it was intended that the user could only view topics for

a specific cluster, but following evaluation with the Simply Do Ideas team, this was extended

to show topics for the entire set of ideas – allowing analysis as soon as the data is received

from the server.

The final step in this branch of the user flow is filtering ideas to only those that include the

given word. By progressing from hovering over the word “office”, to clicking on it, the map

of ideas is filtered to only display those with the word “office” within their content. This
reduces the visual complexity of the scatter plot and empowers the challenge administrator to

further investigate the intricacies of the trend.

6.8.2 Cluster Analysis

The second branch following from receiving the analysed ideas from the server involves

directly browsing the scatter of ideas, beginning with Action 2 on the user interface in Figure

9. The scatter plot has a number of controls and keyboard shortcuts that improve the browsing

experience. The user may pan the map in any direction, as well as zoom in or out. This function

provides the user with a tactile, exploratory method to explore the analysed idea based on how

close their content is. The user can naturally explore any trends and identify groups of ideas

that may overlap, or ideas that are very different than others if they are placed at a distance

from any groups. As k-means cluster analysis assigns every observation to a cluster, it does

not identify ideas that may be outliers from the norm.

It is out of the scope of the current project to use a complex avant-garde solution such as cluster

outlier detection (Duan et al. 2009), so to alleviate this the map will allow visual identification

of ideas that may present unique and interesting content. It will additionally highlight very

close or duplicate ideas, if a group of them are heavily overlapping.

 This branch of the user flow supports the use-case where the user wishes to be more

involved in the process. Some existing challenge owners across organisations in the Simply Do

Ideas platform prefer to produce their own reports, unassisted, and investigate trends

themselves. The idea map is carefully designed to support, rather than takeover, this process.

It makes suggestions to the user but does not force them to take any activity, allowing them to

take advantage of the richness of the analysis available.

 The idea map will also offer a “viewed ideas” option – Users will be able to hide ideas that

they have already viewed, so they can whittle down the dataset through their exploration.

 6-25

6.8.3 Managed Cluster Analysis

 Using the idea map will also support a semi-managed user flow. This approach will support

users who want a middle ground between relying entirely on the automatically analysed trends,

and sifting through the map manually. The user interface provides controls to reduce the

cognitive load by limiting ideas to those of a specific cluster. By clicking on a cluster, they will

only see the ideas and themes for that cluster. The user can then browse ideas from only that

cluster. When a user sees an interesting idea, hovering over it will display “key content” –

Displaying content from the idea that contains key terms from the cluster that it belongs to,

using the previously mentioned context identification. Additionally, as seen in Action 3 on the

user interface, the user can make use of the doc2vec vector similarity to find “Suggested Ideas”
based on one that interests them, which is a popular approach among recommendation systems

across the internet (Nandi et al. 2018). They can then choose to manually investigate these

ideas.

6.8.4 Post Analysis

These three processes all converge on the final two phases, “Decide to pursue emerging trend”
and “Manageable set of worthy ideas”. These two phases are out of the scope for the current

duration of the project. They work on the assumption that the project has met the success

criteria laid out, and allowed the user to find a useful set of ideas using the system and has

chosen to act on them in the real world; make changes to the office, improve their logistics, or

whatever the respective proposed outcome from the challenge process was intended.

The Simply Do Ideas platform already offers a system for managing the real-world

implementation of ideas using a Kanban (Anderson 2010) (Figure 12) approach, and a

successful inclusion of this project in the product stack would slot in before this in the challenge

process.

Figure 12 - Idea Kanban board

 6-26

6.8.5 Technology

The architecture of the visualisation is all built on ReactJS, currently the most popular platform

for building responsive front-end web applications (Robbestad 2016). That platform is also in

line with the existing Simply Do Ideas product stack and is an area of experience for the author,

streamlining the development of the basic user interface and allowing more time to be spent on

the intricacies of data visualisation.

This will be supported by the semantic ui visual design library, which adds a number of

common UX paradigms as simple components – Buttons, Inputs, Headers can be added with

simple single components. These two libraries mean the surrounding visualisation for

supporting the data visualisation can be developed smoothly and quickly.

 React uses a component lifecycle model to enable responsive user interfaces, which can

react to changes from an API. Once the user uploads a set of ideas from the user interface, the

frontend will automatically update when the analysed data is received. This removes the need

to refresh once ideas are analysed and is a friendlier experience for the user.

 There is no popular standard for data visualisation in React. Many of the React

implementations are based on d3.js, a low-level data visualisation library that works across

different JavaScript implementations (Zhu 2013). The author researched a number of potential

candidates for rendering a scatter plot in React. These included ChartJS9, React-Vis10 and

Victory11 (Iglesias 2019). Eventually the author settled on using NIVO – This was due to the

extensiveness of documentation, flexibility of customising their scatter plot implementation,

simplicity to use and attractive visual design.

9 https://www.chartjs.org/

10 https://uber.github.io/react-vis/

11 https://formidable.com/open-source/victory/

https://www.chartjs.org/
https://uber.github.io/react-vis/
https://formidable.com/open-source/victory/

 7-27

7 Implementation

This section will detail, to the code level, how the specifications detailed in the previous

section have been implemented in the project. It will also detail how the final project differed

from the original design; systems that were changed due to self/stakeholder evaluation,

limitations due to complexity or unforeseen complications, and areas that may have been over

ambitious. It will follow the same structure as the Specification & Design section for coherent

reading.

7.1 Analysis Backend

7.1.1 Data Clean-up

 Cleaning up the received ideas is one of the tasks when developing that took more time

than expected. Even though it only represents one of the minimum requirements from the stated

requirements, it required a greater-than-expected level of work. The following figure is an

example of an idea before it has been normalised by the system. The clean-up tools are located

in “analysis/tools/Cleanup.py”. Ideas are initially imported into a Python list by using Python’s
in built JSON handling.

Figure 13 - Un-normalised idea input

 Many of the fields here are unnecessary for the analysis; the only fields being analysed

within the scope of this project are the content fields, which are contained under the key

templated. These are user inputs from text input fields in the idea’s “templated”, the format in
which the challenge owner has specified they format their ideas. The data mining NLP tools

being used in the project require the inputs to be single strings. Another challenge is that the

format of the templated field varies from challenge to challenge dependent on template, which

requires the clean-up function to be fairly robust in how it handles the documents.

 7-28

Figure 14 - Function to reduce templated field to single string

 Figure 14 demonstrates a function that can reduce the templated field to a single string. It

takes the templated field, or any object, as an input, and recursively iterates until it reaches a

field called either notes or value. These are guaranteed to be string content fields, which are

rules of the Simply Do Ideas platform. By applying it iteratively to all the fields within

templated, as seen in Figure 15 (as well as encoding and decoding into ascii format to rid any

erroneous characters), the system can convert all of the idea’s analysable content into a single

string.

Figure 15 - Applying untilString to an idea's content

 This function is used as a greater whole of a function called normaliseIdea (Figure 16).

Figure 16 - Normalise idea function

 This function sets out the standardised format for ideas to be analysed upon. It additionally

uses an extra Python library called Beautiful Soup12 (Richardson 2007), which provides an API

to pull content from HTML. Some ideas in Simply Do Ideas have a rich text input, where users

12 https://www.crummy.com/software/BeautifulSoup/bs4/doc/

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

 7-29

can format their content with indentation, bold, underline, images and more. This is then stored

as HTML in the server, and parsed on the web application. This adds unwanted extras to the

idea content for analysis, as the HTML tags and punctuation are not analytically valuable.

Beautiful Soup uses a Regular Expression approach to pull the “content” from a HTML string,

the writing of the user.

 Once the entire corpus of ideas has been normalised into the same format, the content is

further broken into the tokens and stems which will be used for the Natural Language

Processing.

Figure 17 - Tokenizing/Stemming Ideas

 This function uses the TweetTokenizer from Python’s Natural Language Toolkit NLTK

(Loper and Bird 2002), which is a robust tokenizer intended for usage where correct grammar

and English cannot be guaranteed, and expect usage of emoticons or spelling errors; built for

usage on tweets from Twitter, but applicable anywhere that receives unmoderated user input.

Tokens are then filtered against a pre-determined list of analytically “useless” words that are
common across ideas that are different in content. As well as standard stop words from NLTK,

this project adds the most commonly used words across all ideas in Simply Do Ideas, regardless

of challenge. A list of all stop words is contained in the supplementary materials, and include

subject specific terms such as: “idea”, “save”, “youtube”, “vimeo” – the latter of which are

picked up by NLP tools when ideas contain links to external videos.

 These tokens are then stemmed using NLTK’s SnowballStemmer. This function stems the

filtered tokens using Snowball, a language built for stemming algorithms. More information

on the stemming algorithm used can be found on pages 130 through 137 of Porter’s “An
Algorithm for suffix stripping” (Porter 2001).

 Both the tokens and stems are affixed to the previously created normalised idea document,

and the corpus is returned to proceed to further analysis.

7.1.1.1 Constraints

 While robust, there is still further complications when cleaning up an idea document. The

normalisation activities performed do not always guarantee that an idea will be useful for

analysis, as there are a number of uncertainties. The following list demonstrates limitations in

the approach:

 7-30

• Spelling: The platform nor the server have any guidelines or handling for the

misspelling of words. Key theme and nouns can be entirely missed if misspelled

throughout the content of an idea. For example, an idea where “office” is continually
spelled as “ofice” would be entirely different in the eyes of the analysis as one that uses

the word “office”.
• Grammar: Similarly to spelling, the platform makes no attempt to alleviate

grammatical errors. Words that directly precede or follow punctuation may be

incorrectly picked up.

• Unfamiliar terminology: While it is robust in handling many words, there is always

the potential for unfamiliar terms to slip through and cause issues analytically. Encoded

images, unusual link formats and more.

7.1.2 Server Model

 The server uses a very simple, limited set of endpoints for its requests. When the direction

of the project pivoted to do analysis via a server model, the system simply had Flask added to

base and the functions were extended to be called upon when different requests were made.

Figure 18 - Analysis Server Endpoints

 The server only accepts three endpoints: analyse, doc_to_vec, and closest_ideas. The

analyse endpoint returns to the client a set of analysed ideas using the main static flow of the

analysis system – TF-IDF, clusters and topics. It provides all the necessary information for the

visualisation to render the idea map and the top themes.

 The doc_to_vec end point returns a PCA reduced two-dimensional representation of the

vector distance between every idea in the set. This end point ended up being excluded from the

visualisation due to changes in the vision of the project and time limitations as the project

neared conclusion.

 The closest_ideas end point accepts a set of analysed ideas along with an individual idea,

which has its vector compared to those of the entire idea set in order to use doc2vec for

suggesting similar ideas. This end point can only currently be called if the visualisation has

previously received analysed ideas.

 7-31

7.1.3 TF-IDF

 Following the clean-up of the dataset, the normalised ideas can be fed into the analysis

functions. The implementations for TF-IDF and Clustering are in

analysis/tools/BasicAnalysis.py. This computation begins with transposing the content from

every idea object into a single array of content strings, which is then usable by the data mining

libraries gensim and skicit. The TF-IDF in this project’s analysis makes use of the

TfidfVectorizer in skicit. This function is a combination of converting a corpus of text to a count

matrix, following by fitting that to a tf-idf matrix. The TfidfVectorizer is constructed using a

parameter that specifies stop words to be ignored during analysis.

Figure 19 - TF-IDF Analysis of ideas

 More specifically, TfidfVectorizer combines two other functions from scikit:

CountVectorizer and TfidfTransformer. CounterVectorizer simply produces a term frequency

calculation for all of the supplied strings. For example, given a sample of:

• [“simply do ideas”, “ideas man”, “woman simply”]

Feeding this array into the CountVectorizer would produce a representation of the following

matrix.

 do ideas man simply woman

0 1 1 0 1 0

1 0 1 1 0 0

2 0 0 0 1 1
Figure 20 - Example Word Frequency Matrix

 Without providing additional parameters, this function delimits the content by space (or

uses a provided array of tokens) then counts the occurrence of each word in the dataset across

every document, producing a matrix for the entire corpus. Following generation of this

matrix, the TfidfVectorizer then transforms this count matrix into a normalised tf-idf

representation. The documentation for scikit states that it uses the following formula for

calculating the tf-idf for term t in document d of a document set (Pedregosa et al. 2011): “tf-

idf(t, d) = tf(t, d) * idf(t), and the idf is computed as idf(t) = log [n / df(t)] + 1”, where n is

the total number of documents in the set and df(t) is the document frequency of the original t.

Applying this to the example count matrix would produce the following corresponding tf-idf

matrix, which now applies each word a normalised value based on its importance to the

overall corpus as well as just individual documents.

 do ideas man simply woman

0 0.680919 0.517856 0.000000 0.517856 0.000000

1 0.000000 0.605349 0.795961 0.000000 0.000000

2 0.000000 0.000000 0.000000 0.605349 0.795961
Figure 21 - Example TF-IDF matrix

 7-32

This matrix then has a two-fold statistical significance. It will both enable future k-means

analysis, and be reduced from a three dimensional matrix to a two dimensional representation

for visualisation plotting.

7.1.4 Clustering

 Upon completion of the tf-idf matrix, the data now has the appropriate attributes to be

clustered using k-means. The scikit implementation of k-means, by default, solves the problem

using an implementation of Lloyd’s algorithm, also known as Voronoi iteration. The algorithm

uses Euclidean spaces subsets and repeatedly finds the centroids for each partition set,

clustering on the closest centroid for each observation (Lloyd 1982). The average complexity

of scikit k-means is O(K n T), with n samples and T iterations.

Figure 22 - Scikit K-Means Implementation

 Figure 22 shows how the project implements scikit k-means. The number of clusters is

specified by the user in the visualisation, but arbitrarily defaults to three if it is not specified.

The model is initialised, then is fit and predicted to the tf-idf matrix. Fit_predict is a

convenience function that runs fit and predict from scikit in succession. Initialising the model

with the k-means++ parameter ensures it uses “smart” random centroid distribution, whereby
the prediction will attempt to avoid choosing centroids that are too close together.

 Figure 23, taken from the paper “Metamorphic Exploration of an Unsupervised Clustering
Program” (Yang et al. 2019), visualises the process of fit then prediction, where fit is the

computation of the k-means clustering centres, and predict computes the closest cluster to

which each document in the matrix belongs to.

Figure 23 - Visualisation of clustering fit and prediction

 The project proceeds to mine the knowledge uncovered from the k-means analysis.

 7-33

Figure 24 - Cluster infomation mining

 The call to cluster_centers_ finds the coordinates for the centre of the k clusters (in this

example, k is three). Given a sample of 50 observations and k equal to three, cluster_centers_

would be a matrix with k rows and 50 columns. Sorting these centroids using .argsort()[:, ::-

1] is the method to find the most popular terms from the corpus. As columns is equivalent to

words in the k-means matrix, sorting the the matrix in descending order uncovers the most

popular words. Get_feature_names() is then a simple mapping function provided by scikit to

relate the column index to its specific term rather than just an integer.

 A list of cluster information is then built, with relevant data to allow visual manipulation

of the center of the clusters. This includes:

• Index of the cluster

• Stems and terms from the cluster

• Coordinates for the centroid

The most popular terms found by the code in Figure 24 are mapped to the document to enable

the “low effort” user flow from Figure 11.

7.1.5 Principal Component Analysis

 The final step for the use case of visualising tf-idf and cluster modelling is to convert the

data into a format that is easily represented in a web application, where three dimensional plots

are not feasible. This is done using Principal Component Analysis (PCA) (Wold et al. 1987).

In Layman’s Terms, PCA is a technical implementation of explaining something simply, by

reducing the dimensionality. It uses best effort to visualise the relationship between

observations in a three-dimensional space, with a two dimensional representation, based on

variance between observations.

In this project, PCA is implemented to visualise how close ideas are in a relative sense, where

the exact values are not relevant for the end user. The most important thing for visualisation is

that ideas that are very different from each other are suitably distant when the dimensionality

is reduced to two dimensions, while the precise distance between them is both unneeded and

not displayed to them.

 7-34

Figure 25 - PCA on idea matrices

 We begin in Figure 25 by specifying that we want PCA to reduce to two components, and

converting the tf_idf_matrix to a dense copy. The algorithm requires all values to be stored,

including non-zeroes, which necessitates a dense representation. We then construct the model

using the decided number of components using PCA(), and both fit the matrix and apply

dimensionality reduction using fit_transform. Each idea in the corpus is given it’s coordinates
from this reduced data, and the cluster it belongs to. The same process is also applied to the

centroids of the clusters to enable visualisation of them.

The final step of PCA represents complete coverage of the minimum functional

requirements for the analysis system. These steps were all completed at the start of the

development process to ensure it could achieve its required functionality, and the desirable

steps were included afterwards. Some desirable functionality is interspersed among the code

stated above, and the figures represent important snippets of analysis but are not an all-

encompassing guide to the codebase. Following this, the author implemented code to achieve

the desirable requirement of topic modelling to further the richness and usefulness of the

project’s visualisation, both via LDA and doc2vec implementations.

 7-35

7.1.6 Latent Dirichlet Allocation

 The first approach to topic model analysis used is Latent Dirichlet Allocation.

Figure 26 - LDA for Ideas

 Figure 26 demonstrates the project’s black box implementation for LDA, which can be

given any set of ideas and it will return a set of uncovered, data mined themes. The function

begins with running the getContents function, which is a simple clean-up tool to get all of the

contents arrays from each idea in the set and append them into a single large list of lists.

topicModelling then uses the same method of tf-idf vectorization as discussed previously. The

LDA model is then initialised.

An unfortunate consequence of using topic modelling in this context is that the sets of ideas

are all relatively small size. The exploratory nature of topic modelling means that small datasets

are subject to high levels of variance with diminishing accuracy. An article by Jason Brownlee

(Brownlee 2019) discussing dataset sizes during exploratory machine learning has a high

variance on accuracy dependent on dataset size. A typical array of ideas from Simply Do Ideas

has around 100 ideas. The article discusses that data mining with 100 samples, evaluated

against that of 100,000 samples, has a test accuracy of 72.041%. This is over 10% lower than

the observed 84.025% accuracy when evaluating a sample of 10000 items. This implies that a

certain level of unreliability will be observed when doing topic model analysis on ideas,

especially on the level of individual clusters. An attempt to mitigate this is by specifying the

LDA to only use one component, and find the top words within that topic. This is opposed to

finding distinct topics within a dataset, then the words within them. The LDA model is fit to

the tf_idf_matrix, and the same enumeration of the columns from earlier is performed to extract

the top terms in descending order.

 This function is called on both the full dataset, and the ideas within each cluster, allowing

a varying granularity of analysis. If the user chooses to increase the number of clusters they

will further increase how precise the themes are to a specific area of interest; however the

important limitation is that for every increase in k, the accuracy of the topic model analysis

continually decreases.

7.1.7 Doc2vec

 The second implementation of topic modelling is performed via doc2vec, using an

implementation from the gensim library (Rehurek and Sojka 2011). The doc2vec theory has

 7-36

been discussed earlier in the report, this section will focus on usage of the model. The

advantage of the doc2vec model over LDA is that it retains the ordering of the word in its

analysis of term importance, as ordering is indicative of meaning in sentences.

Figure 27 - Pre processing for doc2vec

Figure 28 - doc2vec model processing

Figure 27 is an example of how the project pre processes a set of ideas for doc2vec topic

modelling. It accepts ideas and a parameter tokens_only. This parameter should be specified

when training a doc2vec model vocabulary, as the tags are not relevant at this part. Following

this, the function now has a list of all the lists of tokens from each processed idea. The model

is then created using the gensim doc2vec.

The important parameters supplied are min_count and epochs. A minimum count of two

ignores words that are used less than twice, so are completely insignificant over a large dataset.

The epochs indicate how many times the algorithm is iterated on the dataset. A study by Google

indicates a typical iteration number for corpuses with up to millions of entries is 10-20 (Le and

Mikolov 2014), so due to having a low number of documents in the dataset used here the author

has opted to use 40 epochs. The model vocabulary is then built and trained on the pre-processed

vocabulary, which now has a completed and trained model on the specified set of ideas, where

the vector space between documents and words is now known. A visual example of such a

trained set is visible in Figure 29 (Sadighpour 2016).

 7-37

Figure 29 - Example of visualised, trained doc2vec

 The model constructed in Figure 28 can then be leveraged to discover similar ideas to any

given one. The function in Figure 30 can be called from the close_ideas endpoint in the API,

as this information is accessed separately than the regular idea analysis functions.

Figure 30 - Close ideas functions

 This function accepts the parameters idea and ideas, where idea is a potentially unseen

idea, and ideas is a pre-analysed set of ideas from the earlier analysis function. The model is

then used to infer a vector of the given idea. This applies the doc2vec function to the idea,

and uses cosine similarity comparison to find the closest vectors to it. A caveat here is that

due to the doc2vec being exploratory, iterative approximation, repeated evaluation of an idea

may return slightly different results. As the author tagged the vectors with each idea’s unique
_id during pre-processing, the system is then able to procure the respective idea for each

vector. The function then returns an array of the most similar ideas to be displayed in the

visualisation.

 7-38

7.1.8 Limitations

 One of the original requirements and discussion pieces was using doc2vec as another

method of creating an idea map. This was a natural progression from using the model, as

following doc2vec analysis each idea has a numerical vector representation that it can display.

 The beginnings of such implementation can be found alongside the other topic model

functions.

Figure 31 - doc2vec two dimensional analysis

 This function follows a similar formula to the k-means analysis, where the doc2vec vectors

are reduced in dimensionality to be plotted on the web application. While this implementation

on the analysis server is fully featured, an evaluation on the project’s usability rendered this
obsolete.

It was decided that having two separate ways to plot the idea map increased the complexity of

the user experience too much, and did not offer enough variance from the k-means visualisation

to make it worth including. An additional issue was that, due to the inappropriately small

dataset size for doc2vec, the variance in plotting the results was high – repeated modelling

produced very different scatters. As such, this function remains currently unused but could be

utilised for comparison in the future, or if a more complex workflow was required.

7.2 Visualisation

 Figures 32 and 33 are indicative of the final iteration of the visualisation, at time of writing.

They demonstrate how the system will look to the end user following uploading of a set of

ideas, with the entire dataset mapped onto a graph with the controls visible, along with the

themes discovered through topic modelling, and the differentiation of the clusters by colour

code.

The individual components in these screenshots will be discussed in the order a typical user

may interact with them, with code discussed if necessary. The overall visualisation is based

wholesale on the initial diagrams created when planning, and refined through iteration. The

styling of components was built in-line with the existing visual identify of the Simply Do Ideas

 7-39

platform. This styling is backed by an internal style guide, which was externally designed by a

user experience consultant and verified by developers within the company.

The style guide is backed by scientific user experience principles on usability and visual

identity of components, ensuring that decisions made with regards to visualisation are

consistent and have valid reasoning. The flow of the visualisation ends once a user has

uncovered trends of ideas, or single ideas, that they feel suitably complete the original

challenge specification. Once the visualisation is implemented in the existing Simply Do Ideas

platform, the user would move from the project to the “idea project board”, where ideas are
managed by their progress in being implemented in the real world. As such, the project does

not attempt to provide any implementation for showing which ideas are chosen to be taken

forward – doing so would inflate the scope, and reinvent the wheel.

 The visual design of the project follows these guidelines, and this has been confirmed by

demonstration with staff members in the company. Changes were made where necessary to

adhere to this.

Figure 32 - Visualised map of ideas

Figure 33 - Topic modelled "Top themes"

7.2.1 Uploading Ideas

As seen in the top right of Figure 32, the button is used for uploading the ideas for analysis.

This button is backed by the JavaScript FileReader functionality (Cameron 2013) – which

accepts a json type file, and then uses the JSON functionality to parse this data into an array of

ideas. Every set of uploaded ideas is considered as a new analysis “flow”, and therefore the
entire state of the application is reset to allow the user to restart the activity.

 7-40

Figure 34 - Reading ideas from JSON

 Once the ideas are read in, the ideas are sent to the analysis system using local API requests.

As both the visualisation and analysis server were built to act independently, the visualisation

does not need to know the progress of the analysis or need to understand anything that is

happening “beneath the hood”. Once ideas are uploaded to analysis the visualisation enters a

loading state, then once data is received back it renders what it has received, with no underlying

knowledge of what happened between those processes.

7.2.2 Adjusting the Granularity

 When the ideas are uploaded to the server, a local copy of the chosen data set is saved, and

it also includes a user specified number of clusters. The user can use the controls above the

idea map to adjust the number of clusters.

Figure 35 - Cluster adjustment

When the number is adjusted, the locally saved dataset is reuploaded to the server along

with the new cluster number. The user is free to make as many adjustments as they wish, as

well as leave the number of clusters at the default number. While three clusters is an arbitrary

decision, many of the manual idea reports from the company combine ideas into three groups.

This process can be repeated as many times as desired before moving forward in the user flow.

7.2.3 Browse map of ideas

 The next proposed step for the user is to browse the returned map of ideas based on their

tf-idf values. The user interface was designed for this to be the logical next step, by making it

the prominent element on the screen. The map continues from directly below the controls.

This is where nivo scatterplot (Benitte 2019) is used. The author has previously discussed

the reasons why nivo is used, namely for its visual design and extensibility in customisation

beyond the default design.

 7-41

Figure 36 - Default nivo scatterplot

The visualisation uses a highly personalised version of nivo scatterplot with custom

renderers. A caveat of using nivo is that it requires some clean-up on the frontend to format the

data to one that is reasoned by a nivo scatterplot.

Figure 37 - Converting to nivo chart data

The visualisation uses the data returned from the analysis and creates three arrays, based

on the number of clusters. Each cluster creates an object with an id based on the cluster number,

and filters the ideas from the server to the relevant cluster, then pushes each idea’s tf-idf value.

In hindsight, much of this processing should’ve been done on the server – abstracting

calculation from the visualisation. Processing information in this way on the front-end

increases how coupled the server and interface are, reducing its black box possibility. Once the

data is formatted, the ideas are displayed on the plot like in Figure 32.

An important part of the user being able to understand the map is by being able to

manipulate what they can see. On first load, the ideas are all displayed on screen and tend to

overlap in a way that makes it difficult to understand what is going on. This is why the user is

provided with a suite of controls to explore the data and adjust what they can see on the screen.

 7-42

Figure 38 - Idea map controls

The user is given a multitude of controls to adjust what they see on their screen. The

panning and zoom controls adjust the X and Y scale of the scatter, and the X and Y start/end

values, respectively. For example, panning right one time would move the X lower bound ten

points right, and the X upper bound ten points right. Figure 39 demonstrates how Figure 32

would look if the user zoomed and panned to get a more intimate understanding of the ideas in

the dataset.

Figure 39 - Zoomed/panned idea map

 7-43

The ideas are rendered using the bespoke idea card developed for the main Simply Do Ideas

web app. This ensures the visual design closely resembles that of the Simply Do Ideas stack,

and additionally reduces the burden of designing visual components exclusively for this

project. Figure 39 also displays the differentiation of clusters by the coloured border placed on

ideas. Two ideas that have “NIE” in the title are grouped in the same cluster, and close together
on the idea map. The user is given a further set of controls to adjust what they can see on the

map, if they still believe the cognitive load is too high.

Figure 40 - Further idea map controls

The controls shown in Figure 40 are fairly self-explanatory. The checkboxes, which

automatically adjust based on the number of clusters selected by the user, allow them to decide

which clusters they can see on the screen. The motivation behind these controls is that,

assuming a user sees a group of ideas that they feel offer an interesting trend to investigate,

they can limit their view to only those in that cluster.

The other control in Figure 40 is to hide “viewed” ideas. An idea is added to an array of viewed

ideas once a user clicks on it to open it on the Simply Do Ideas application to view its full

content. It will then add a green tick to the corner of the idea on the map, and if specified by

the user, hide it entirely. This allows the user to “whittle down” the number of ideas they see
on the map, as they begin to sift through them.

 Once the idea map shows a limited number of ideas, the user can then begin to investigate

individual ideas. Hovering over one of the idea cards shows the user “intelligent” context. This
is parts of the idea’s content that contains any of the topic model analysed themes, or terms

from the title of the idea.

Figure 41 - Idea intelligent context

The motivation behind this is to allow a user to understand what an idea is about without

fully committing to viewing the entirety of the content. The context generation looks through

the terms in the ideas title, and the terms in the idea’s cluster’s top themes. It then finds the
sentences in that idea around these terms, so the user can understand how the terms are used.

 7-44

Figure 42 - Intelligent context calculation

An arbitrary number for the number of surrounding words is chosen, in the case of the

project, ten. The number of words surrounding the given term is adjusted depending on how

close the term is to the start or end of the idea. If a term is at the start of the idea, more context

is added following the word, or vice versa if it is at the end.

The user may then leverage the idea similarity doc2vec calculation from the server by

clicking on the idea.

Figure 43 - Suggested ideas

The chosen idea is sent to the server to be analysed using the doc2vec model, which returns

an ordered list of the closest document vectors and their associated ideas. These ideas are

visualised below the map along with the selected idea. The ideas are ordered from left-to-right

in order of similarity to the selected one, and more similar ideas are physically larger. This

visualisation was added very late in the development process, following a breakthrough in the

usage of doc2vec. This by extension meant that the visualisation of similar ideas is largely

unfinished and limited. Figure 43 is a very basic interface for showing similar ideas,

demonstrating how this could be potentially done in the future. The author hopes that given

more time this could be made more useful and more visually stimulating, but unfortunately

time was the limiting factor during the development process.

7.2.4 Topic Model Analysis

The secondary user flow involves investigation of the trends uncovered by topic model

analysis. These can be seen in Figure 33, which shows how the topics from the entire dataset

and each individual cluster is visualised. The important part of this flow is the method by which

the user understands the topics, as the individual words themselves are not hugely useful.

 7-45

Figure 44 - Topic model context

Each term from the top themes uses a similar intelligent context model to that of each

individual idea. Hovering over a term opens this bubble – where each idea is tested to

understand whether it contains the chosen term, and if so, runs the same context calculation as

shown in Figure 42. Each corresponding idea is named, with a sentence from that idea with

the term’s usage. If the term is then clicked, it will become bolded, and the idea map will adjust

to only show the ideas containing that term. The user can then follow the original idea map

flow discussed previously and view all ideas containing that word.

Figure 45 - Selected top term

7.2.5 Limitations

As with any limited development project, issues were encountered along the way. The

visualisation was subject to a mixture of limitations with used libraries, and over-ambitious

aims. The chosen nivo library proved difficult to use as time went on. The library was not built

to support the bespoke visualisation intended – A manipulatable map of ideas that use React

components as nodes. Once this approach was decided , it was realised mid development that

nivo would require a lot of work to meet this use case. The author was forced to use workaround

solutions, such as using the HTML foreignObject component to render a div inside a SVG

graphic.

Figure 46 - Div inside SVG

This caused a disproportionate amount of time spent focusing on the idea map. If more

time was spent researching and testing possible solutions before full development began, this

could have been avoided and an alternate solution chosen. As these issues were found mid-

development, it was too late to completely pivot.

Another issue was not having strict enough requirements for the visual design. Too much

time was spent “playing” with the visualisation, making adjustments until it looked good. This

 7-46

also became an easy excuse to do simplistic work as opposed to making progress, extending

the development lifecycle. Having stricter requirements for visual design and a clearer plan

would’ve reduced this burden. Another alternative would be to have earlier visual design
evaluations with stakeholders.

7.2.6 Local API

Figure 47 - API Code

 The API code itself is a very straightforward, standard implementation of the JavaScript

XMLHttpRequest functionality. This implementation opens a connection with the given server,

sends it data, and waits for a response code to indicate the next steps. The project

implementation is also simplistic. Due to time constraints it was decided not to spend time

building out an extremely robust, extensible API, but rather to use straightforward requests and

only handle basic success or fail responses.

 8-47

8 Results and Evaluation

 Full user testing was heavily constrained due to the company policy of working from home

during the national SARS-CoV-2 epidemic. This limited the extent to which the author could

conduct full user tests, as staff member resource was stretched when forced to use virtual

communications, and observation was difficult. This will be reflected in the methodology.

8.1 Methodology Limitations

 Under ideal circumstances, each user would be able to independently operate the program

to eliminate any bias and fully understand the steps they would have taken without testing

supervision of the author. However, the author encountered the following difficulties which

prevented taking this approach to evaluation:

• Development time: The time of development of the project extended greater than

expected. This was due to over-optimistic planning during development phase coupled

with logistical difficulties when adjusting to the work environment during the epidemic.

This reduced the capacity to produce a “working” copy of the software, that could be
sent to staff members for them to test at home.

• Skill limitations: Operating the system requires some degree of experience in

computer science. The scope of the project didn’t include programming deployment for

the project, so upon completion it required installing requirements before launch and

command line commands.

• Environmental factors: The move to home working meant all meetings moved

virtually, limiting the effectiveness of communication, and the project coinciding with

other project launches within the company reduced the available time. The author made

the decision to use less labour-intensive evaluation methods to offer the staff members

flexibility without impacting their existing workflow.

8.2 Final Methodology

 The author settled upon a two stage, qualitative evaluation process to understand the

effectiveness of the analysis results (Gediga et al. 2002). The nature of the project renders

precise quantitative, confirmatory difficult – exploratory data mining uncovers previously

unseen data, and by design the project does not aim to produce a specific result, but rather aid

an existing process. Its value is based on the end user’s opinion of the results, and how the

process compares to what they are used to. The author opted to use analysis of historic

challenges that meet certain criteria that can be compared to the output from the project. The

criteria are as such:

• The challenge was directly assisted by a staff member for at least the management of

ideas.

• The author has direct contact with this staff member, and the staff member has capacity

in their timetable to spend time with the author conducting the evaluation.

• The challenge has a report with manual analysis, that can be compared with the results

of the project.

 8-48

Two challenges met these criteria, and this evaluation could be completed towards the latter

stages of development, dependent on availability to discuss these challenges. This was

eventually reduced to one due to time constraints.

Additionally, an earlier evaluation would take place with a wider selection of team members

to get a general gauged opinion of the user interface and user experience. The author hopes that

these two evaluation periods will help iterative evolution of the project throughout the project

process, understand the success of the results, and guide any future work.

8.2.1 Group Evaluation

8.2.1.1 Aim

The first evaluation task, the group evaluation, aimed to determine whether the basic flow

of the app suited the needs of the company, as well as an overall appraisal of the visual design.

It consulted the team with a casual, semi-structured set of questions and a demonstration to

uncover outcomes in a limited period of time.

8.2.1.2 Method

 The task was undertaken on the 13th April 2020. The evaluation was completed virtually,

where the author demonstrated an example of the standard user flow using ideas from a real

challenge in the platform and invited semi-constructed feedback, which the author noted on a

table.

In order to complete the session within a one-hour time slot, the session attempted to capture

three metrics – What they feel the project succeeds with, where they see shortcomings, and

suggestions they had that may improve the experience and future development. The steps

below were the ones taken during the evaluation process. This evaluation took place before the

doc2vec idea suggestions were implemented, and therefore are not included at this stage.

• The set of ideas were uploaded using the upload button.

• When results received, the author showed the top themes for the clusters, and the

context for some of these themes.

• The author demonstrated how the user can use the controls to traverse the idea map,

including panning, zooming, and adjusting the number of clusters.

• The author showed how the user could extract knowledge from how ideas are grouped

together, and how they may find useful information from outliers.

The table of observations are included below, in a raw format how they were collected. As

the data collection was conducted in real time, the sentences consist of quick thoughts and

feelings without a great deal of structure. Some of this feedback was delivered by text through

a company instant messaging system.

Successes

“Sleek, attractive user interface”

“Ideas as a map is unique and engaging, makes it more “enjoyable””

Additional comments related to this:

“The keyboard controls are very cool”, “Animation, visual design of map is also suitably

good”

“Design fits with existing systems well”

 8-49

Multiple comments that the intelligent context is very useful and is one of the most liked

elements

“The way clusters found duplicate/very similair ideas is very useful”

“Very “sellable””

“Increasing and decreasing cluster size was cool for metrics”

Shortcomings

Various mentions that some of the trends found weren’t hugely insightful, with broad
clusters

“Initially quite intimidating with level of data on display”

Usability problems with overlapping ideas

When ideas don’t have cover images everything blends together (Not sure if this is
something that can be solved)

“Having cluster information behind clicks is unintuitive”

Suggestions

“Display overall topics for entire challenge for even more summarisation”

Reduce intensity of map, way of hiding ideas when “dealt with”?”

“Show cluster information readily, without clicks”

“Be able to hide clusters to focus on groups of ideas, good for cooperation”

8.2.1.3 Outcomes

The demonstration was met with a general consensus of positivity and warmth towards the

product. Due to the fact the session mainly focused on the method behind the ideation process

and not the results, little focus was put on the precision of the analysis data – whether its

accuracy could compete with that of a manual analysis. The staff in general were impressed at

the themes that had been pulled automatically, and how things were grouped. The idea set

contained four ideas that suggested implementation of a “Plain clothes allowance”, and these
ideas were clustered and physically grouped correctly, which was useful for demonstration.

Figure 48 - Closely grouped ideas in idea map

Much of the positive feedback focused on the user interface and visual design. Four of the

seven noted comments expressed positivity in how the visualisation looked. The author was

confident with the visual design from the outset, as it had been based on previously-justified

 8-50

style guides developed for the company’s products, but confirmation from the team was

important – it meant that focus could be moved away from design improvements, purely to

functionality. As stated in the table, there were multiple comments about the “intelligent

context”, where top themes have their context displayed by the usage of the term across the

relevant ideas, as seen in Figure 44.

Figure 49 - Intelligent context

 As discussed previously, the context system does not do any work on the server side; it is

generated when the user hovers over the word, in real time, using the simple function explained

in the Implementation section. The positivity surrounding this feature is demonstrative that

presentation of information can be as, if not more, important than the analysis itself.

 The shortcomings broadly focused on the overwhelming level of information, and the lack

of specificity. That some of the trends found are not “useful” is an unfortunate side effect of
exploratory data mining, using datasets of this size. This was hypothesised when discussing

the theory and implementation – especially topic modelling implementations such as doc2vec,

are far less accurate with the size of datasets being used, specifically to the degree where

individual clusters are used.

The system was succeeding to uncover clear trends, as shown in Figure 48, but had become

increasingly less accurate when there was a great degree of variety among the ideas.

Fortunately, this issue has a reduced impact due to inherent bias in the context of challenge

based, small scale innovation – Internal research has shown that groups of people naturally

focus on specific areas with slightly different viewpoints, which means there are often clear

divides between sets of data.

Another main shortcoming was the issue where the idea map would become overwhelmingly

cluttered with ideas, especially on first viewing. The point of contention being that while this

makes challenges look “well engaged” – successfully gathered lots of ideas – it can also

discourage challenge owners due to the intimidating size of the dataset. This spurs future

thought on how to reduce the initial cognitive load to ease the user in.

8.2.1.4 Post-Evaluation

 Following the evaluation session, the suggestions were taken forward and implemented

wherever possible to demonstrate how iterative development can be vital to the success of the

product. Changes were made to the visualization appropriately to ensure it was a good as it

could feasibly be during the duration of the project.

 8-51

• Overall top themes for dataset displayed. As seen in Figure 33, the user can see the top

terms for the entire dataset rather than just individual clusters, so they can quickly

identify what has emerged from the ideation process. Additionally, the top themes for

all clusters are always displayed, rather than just when the cluster is selected.

• Slowly reduce the “intensity” of the map, by being able to hide ideas from the map once
you have clicked to view them. This can be reversed if needed.

• Provide precise controls for choosing which clusters to display. Hide and show

whichever ones the user chooses, giving maximum control.

8.2.2 Comparative Historic Evaluation

8.2.2.1 Aim

The aim of the historic evaluation was to determine a qualitative comparison between

manual analysis and the project’s analysis. It compares between company reports and the

experience of the associated staff member. Results will be a collection of opinions which can

be extrapolated.

8.2.2.2 Method

 The first comparative exercise was performed with the assistance of the relevant subject

matter expert (SME) from Simply Do Ideas, accompanied by the report they produced for the

challenge when they managed it and the ideas from the challenge. The challenge was done in

tandem with the Future Generations Commission for Wales, with permission to use broad

themes and names when discussing.

8.2.2.3 Challenge Background

 The author begun by analysing the report created by the SME; the contents of which cannot

be included due to data sensitivity and protection but can be broadly discussed. The author

picked out interesting things that could be compared with, along with excerpts from the report

that could be used to improve the analysis done by the system, and elements that an automatic

analysis system would struggle to assist with. These notes were compiled externally with the

excerpt below:

• Discusses “power users” – People with highly interacted ideas, that produced multiple

ideas or commented often

• In the interest of time spent on a large dataset, the SME pulled out three main themes:

o “Raising aspirations of young people”

o “Climate change”

o “Equiping young people with the skills for the future”

• These discoveries were done via a time and resource heavy group meeting in person,

due to the large size of the data

• Ideas were “clustered” manually – Points to the observation and research that people

naturally group things together, making clustering a natural choice

• Reports on “self-assessed” ideas – The idea template told users to rate the impact,

importance and simplicity to implement. The bespoke nature of this is difficult to apply

to automatic, non-specific analysis systems like the project’s system.

 The author noted two clear points of comparison here – The main themes that were pulled

out manually, and the fact that all of their analysis required a team of meeting spending time

 8-52

in person, which comes at a high expense of time and money. Thus, the author decided with

the SME two questions that if answered would prove the success of the system in this context:

• Can the system produce clearly similar themes to the ones discovered manually?

• Can the system group ideas to a satisfactory standard without needed a group of people?

It will also be discussed whether these advantages mean the analysis can replace a group

of people in areas it cannot perform in – and how this gap can be bridged. In this challenge,

this would mean the self-assessment task that is discussed in the manual report.

8.2.2.4 Using the system

Figure 50 - Idea map for FGCW challenge

In a similar fashion to the group evaluation, the set of ideas were uploaded to the system

and the same analytical steps were performed to emulate the predicted approach of the

average challenge owner. The author showed the steps taken, and the intermediary results, to

the SME and asked him for his thoughts compared to the manual process, and to answer the

questions set, to understand whether the project is a success.

The process began by looking at what the topic model analysis had produced for the

clusters. As the manual report uncovered three distinct themes, the number of clusters was set

to three, to understand whether the analysis could produce similar results. The results below

are the top ten themes from the three clusters.

• Cluster 1: preventative, need, young, determinants, people, improve, inequalities,

food, wales, health

• Cluster 2: needs, transport, waste, change, climate, public, need, communities,

people, wales

• Cluster 3: work, video, wales, ensure, equipped, necessary, future, young, skills,

people

 8-53

Both the author and the SME agreed that the themes uncovered by the system were

remarkably similar to those discovered manually. The three manual themes – young people,

climate change, and equipping skills, have been distinctly represented within the three clusters

here. You can see in Cluster 1 that “young” and “people” are prominent, “change” and
“climate” are seen in Cluster 2, and Cluster 3 has “equipped” and “skills”. This is a strong

demonstration for the success of the analysis, and proves the effectivity of the approach taken.

The SME also agreed that these results answer the question “Can the system produce clearly

similar themes to the ones discovered manually?” positively, succeeding in this.

Following the demonstration, the author asked the SME for general comments on the

process. These thoughts were captured using a notes application and repeated here, including

additional thoughts I had during this.

• “Very impressed with acquisition of almost exactly the same topics”

• “In a real setting would reduce time heavily”

• “Still a few analytically useless words such as ‘needs’” Focus on nouns only?

• “Overall top terms not actually that useful”

• “Having the Previously Viewed ideas streamlined process”

• “Navigation somewhat cumbersome with this size of data, some overlapping caused
difficulty” Perhaps needs smoothening and UI improvements of the map

• 3 clusters seemed to be the preferred number for level of detail while still being fast to

sort, especially with dataset of this size

• Noted that this would be really useful AT SCALE where it becomes unfeasible to

spend man hours on these reports - but manual still may be more precise and useful

sometimes

8.2.2.5 Outcomes

Many of the observed comments mirror those discussed in the group meeting, with repeats

of the difficulties encountered with having a large set of ideas on the map. They commented

that the addition of hiding viewed ideas, however, improved this. The important part of his

comments is deciding whether the product answers the second question of success, “Can the

system group ideas to a satisfactory standard without needed a group of people?”. The answer

is slightly more complex than a simple “Yes” here.

The SME states in his comments that he thinks the project’s usefulness is proportional to
the scale of the challenge. This makes sense in both the accuracy of the analysis and the amount

of time it saves for the user. A smaller challenge with fewer ideas may require less time to sift

through the ideas, and consequently less time uncovering the themes through the dataset.

Additionally, the previously discussed research tells us that a smaller number of ideas would

lead to less “accurate”, and by extension less useful, data mining. Whereas a challenge with

many dozens of ideas would require more man power and time to traverse all the ideas, and

having more content provides the opportunity for a richer analysis. The other issue encountered

is when the challenge owner may be looking for very context specific metrics – for example,

the self-assessment scores in this challenge.

Overall, the SME agreed that even during a smaller challenge, the system successfully aids

the process. Where the shortcomings appear due to sample size and lack of specificity, the

system does not impede the regular process, and the user can still take advantage of certain

 8-54

features where necessary, even if that doesn’t mean using the entirety of the rich analysis on
offer. The flexibility will be key for future expansion.

8.2.3 Self-Evaluation and Requirements

It is important to understand the author’s considerations of how they perceive the success
of the project too. Looking at how the final iteration of the project matches the initial

requirements is a strong basis, from which it can be discussed where it differs and why.

Green = Full success

Yellow = Semi-success or adjusted through iteration

Red = No success, or removed/changed entirely

Requirement Did it succeed?

Key Supplementary Tasks

Data Clean-Up (MINIMUM): System

must be able to accept and normalise a large

variety of ideas in different formats, to build

a standardised corpus of ideas for further

comparison, amalgamating the content for

text processing.

System has a clean-up file that creates

normalises ideas. Performs key tasks

including tokenization, stemming and

combining content into a single string.

Analysis

Supports Multiple Use Cases

(MINIMUM): The system will support a

variety of different skill-levels, supporting a

multitude of use-cases. The system will

support the user regardless of their

experience.

The final product has a user flow designed

to cater for a multitude of user experience

level’s, wants and needs. This has been

demonstrated and verified.

Word Frequency (MINIMUM): Word and

bigram frequency analysis; allowing simple

visualisation of the most used terms. Both

segmentation and tokenization will be used,

along with a common and user-extended

library of stop-words to remove analytically

useless connectives, verbs and common

terms that have no use for investigation

System calculates word frequency as a

biproduct of calculating TF-IDF values, but

this is not visualised. The simplicity of the

knowledge found was not considered more

useful than using data mining methods for

discovering popular terms, which eventually

replaced this.

TF-IDF (MINIMUM): Analytic techniques

to pick out the most ‘popular’ terms in the
set of ideas, which in turn allows discovery

of the overall ‘key topics’. Acts as basis for
clustering and enables broad stroke

inspection of challenge outcomes.

TF-IDF values are calculated for every idea

in a given set, reduced to a two dimensional

representation using PCA, then the

coordinates are sent to the visualisation.

Clustering (MINIMUM): Act of

separating the ideas into previously

unknown, potentially non-discrete groups

based on their individual TF-IDF matrices,

traits, and the occurrent of trends within the

ideas; the aim being to create subsets of

ideas that belong to a particular topic within

System leverages scikit k-means to perform

cluster data mining on the ideas, and assign

every idea a cluster to be visualised. Cluster

centroids have their dimensionality reduced

to be given coordinates.

 8-55

the idea corpus, which were previously

found via inverse document frequency

analysis. This is the end goal to solve the

post ideation process of filtering ideas, as

the administrators can immediately extract

and dissect the key outcomes of the

challenge.

Word Embeddings and Idea Closeness

(DESIRABLE): Representing individual

words as vectors in a vector space, finding

words that have the same representation and

thus being able to define some degree of

similarity, or closeness in the vector space,

between different ideas. Using a pre-

existing populated embeddings model for

word comparison, we can compare the

features of ideas and be able to produce a

traversable map of ideas.

Topic modelling and sentence to vector

analysis is done on all ideas, in a variety of

ways, but the traversable map of ideas was

excluded due to limitations in development

time. Instead, the results from this data

mining was used elsewhere in a less

developmentally intensive manner.

Visualise

Key topics (MINIMUM): Simple

visualisation of the key topics acquired from

TF-IDF and term frequency analysis data, to

enable a minimum viable product

TF-IDF scores are visualised by using a 2D

representation of their relationship on a

scatter graph. Similar ideas are grouped

closely together on the map, while outliers

are further away.

Clustering representation (MINIMUM):

A well-justified method to represent the

clustering of ideas in the dataspace, that

fully supports a fast and efficient idea

sifting process for the user. Clearly define

the extracted key topics and allow granular

access to ideas clustered within these topics

for deeper analysis.

Ideas on the scatter graph are coloured

based on their cluster. Key themes are

modelled for each cluster, with appropriate

context, and the user has controls to limit

which clusters they see. Evaluation verifies

that the clusters are identifiable.

Embedding graph (DESIRABLE): Take

advantage of the embedding vector-space

and similarity data to create a linked map

visualisation of the closeness of ideas. Can

pick out trends between clusters, navigate

the data space, view potential outliers and

more.

Embedding graph was not created due to

limitations in time for development, and

changes in focus following evaluation. The

time to develop outweighed the benefit to

the user flow, and the idea was removed for

now.

Data manipulation (DESIRABLE):

Create set of tools that give the user the

ability to manipulate the tools that analyse

the dataset in real time to allow them to

decide their own granularity of analysis –

By empowering them to complete actions

such as adjusting cluster size, with the

The user can adjust the number of clusters,

hide viewed ideas, upload their own ideas,

zoom, pan, and choose to view context for

different topics.

 8-56

visualisation robust enough to support these

user activities.

Of the twelve requirements devised on the inception of the project, nine were considered

fully successful, two were adjusted to better suit the direction of the project, and one was

removed. Any adjustments were made to focus on the creation of a complete product with a

full user flow, that successfully aided a user’s management of ideas. Both word frequency and

document vectors were adjusted to be incorporated in a simpler user flow.

The author felt that using these to create entirely new sections of the analysis and visualisation

systems would’ve exponentially increased both development time and the time needed to

evaluate. To still meet the requirements, these features were moved elsewhere to make use of

their richness without having an overwhelming user interface. Word frequency is still used as

part of the calculations for TF-IDF, and both topic modelling implementations were used for

suggesting similar ideas and finding unseen themes from groups of ideas.

 The only requirement that was left completely unsatisfied was creating a graph/map to

display the data generated from the vector representations of the ideas. This would’ve been a
strong comparison with the graph/map created by using TF-IDF representation and allow the

user to look at multiple representations. It was decided during development that the effort

required to complete this outweighed its usefulness in the short term, as it created an additional

user flow that would need to be bug fixed and evaluated. It is hoped that in the future this could

be included.

 As development of the project progressed and evaluation took place, it was found that the

topic model analysis was more impactful than first thought. While the clustering was

considered useful, having the analysis automatically pull out themes proved to be the biggest

improvement in time and richness compared to manual analysis. The project evolved to put a

bigger focus on this, by providing topic model analysis for the entire dataset, individual clusters

and idea suggestions. While this meant a deviation from the original title, the author feels these

changes ultimately helped towards the goal of improving the post-ideation process.

The overall progress made towards the requirements, and the outcomes from the critical

evaluation with members of the company, the author believes proves that the project is a

success. This can be affirmed through the results from evaluation, and progress made towards

the requirements.

8.2.4 Additional Evaluation

Following the previous evaluations, the author demonstrated the final project to two

members of the Cardiff University Crime and Security Research Institute. While this

evaluation wasn’t a formal procedure, it helped guide future work and aided the author’s
understanding of the user story – running through the project with the same mindset as a

challenge owner. The application was presented by screen share presentation over an online

video call and was followed by an informal discussion of the members’ thoughts on how the

project succeeded.

 8-57

8.2.5 Evaluation Conclusions

The project set out to attempt to aid the bottleneck of manual analysis in the ideation

process, so it is important to consider whether the evaluation proves that this aim has been

achieved. This can be primarily extrapolated from the outcomes of the historic evaluation –

this is where the discussion of the effectiveness, speed and usefulness of the analysis was

directly addressed. The SME crucially stated their satisfaction that the results from the project

mirrored those found manually, using a team of people, office space and valuable work hours.

To this end, we can conclude that in this instance, the project produced very similar results, in

a dramatically shorter time, using far fewer resources – the data mining found the same

themes as a group of people. If the project would’ve been used for this challenge, the need to
gather people together using both valuable time and money would’ve been reduced –

successfully solving the analysis bottleneck. In the future a greater number of evaluation

exercises would need to take place to confirm this fully, but within the constraints of the

project, it would be fair to say that significant progress has been made towards solving this

problem.

8.2.6 Methodology Appraisal

 The process behind development was mostly a success. The technologies used mirrored

those used in Simply Do Ideas application stack, and due to the familiarity of the author no

difficulties were encountered using those tools.

The development of the project used a combination of waterfall and agile development. It

began with a thorough stage of research and planning to devise the aims of the project and plan

the basics of how it will act and look. Following this stage, development progress would be

relayed to relevant stakeholders in small bursts with screenshots, and any changes made as

necessary. This approach ensured the project maintained its focus, while changes were made

on a rolling basis before it got too late.

It may have been preferable to do an iterative review following the planning process – This

would’ve meant any changes could’ve been made before the development process began. This

method also could’ve meant that potential difficulties – such as the removed embedding graph

– were discussed before development began and could’ve been adjusted in the initial
requirements to make them more achievable.

The author also believes that beginning writing the report earlier in the development

process may have aided some of the decision making. Report writing is a natural extension to

the “rubber duck” development technique, and they uncovered issues and found ideas through
writing these decisions in the report.

 9-58

9 Future Work

Hofstadter’s Law says that “Everything takes longer than you think, even when you take

into account Hofstadter’s Law” (Kreuzer and Robbiano 2005), and this project is no different.

Simply Do Ideas is also a SaaS (Software as a Service) company, so their software is constantly

growing and evolving – it is not contained to a single time period. The duration of the project

only allowed a limited period of development, but the author discovered a number of ways the

project could be taken further in the future.

• Larger datasets: As discovered from evaluation and research, the dataset size used for

the topic modelling is considered “toy size” – with a less-than-great accuracy of results.

Future work should consider research into how exactly the results of the analysis is

affected by the number of ideas. This may guide whether to use the analysis system for

sifting ideas, or to do it manually.

• Further doc2vec: Reflection on results and requirements show that the usage of

document vectors were pushed down on the requirements as they proved to be less

relevant to creating a strong minimum value product. Future work should further this

work, given the foundations are in place including a full doc2vec modelling process.

Using the advantage of larger datasets, the original requirement to create a “map” using
document vectors could be completed, and compared to the “map” created from tf-idf.

• Implement into existing product stack: One of the clearest goals for the project is for

it to be implemented into the existing Simply Do Ideas platform, effectively

commercialising the system. This would allow it to continue directly when a challenge

is completed, without having to download then upload ideas. This would require further

iteration until the project is seemed “ready for sale”, where it can begin to be used by
real world clients.

• UX Simplification: Multiple comments during the evaluation stated how the initial

idea map and set of topics were daunting when first seen. This is due to the large amount

of data on the screen. Reducing this cognitive load could be key to increasing usability

and the number of users who trust and leverage the capabilities of the analysis. Ideally

the developer taking it further could use an experience user experience designer to

justify methods to achieve this.

• Expanded suggestions: The suggestions proved to be a popular feature of analysis,

and expansion of this could prove fruitful. An unrealised idea that the author had during

development was to increase the scope of suggestions to include external resources.

The doc2vec model could include webpages, online journals, scientific research and

more. Ideas could then suggest similar content from an extremely vast library of

information. For example, an idea on improving the office could suggest furniture

shopping results, research papers on optimal office layout, or exemplary images of

offices. The “intelligence” of the analysis is key to how “sellable” it is.
• Topic summarisation: A future feature discussed with the members from the Crime

and Security Institute was summarising the top themes from the corpus and from each

cluster. One possible method for this would be utilising WordNet13, a large database of

words and synonyms to find the closest synonym to the group of words and present the

topics with a single word or phrase.

13 https://wordnet.princeton.edu/

https://wordnet.princeton.edu/

 10-59

10 Conclusions

 The project set out to offer a solution to the issue of handling a large set of complex data.

Its application could spread beyond merely the idea context, but the scope of the project was

to demonstrate how capable data mining and strong visualisation can be in the management of

ideas. The project had to target a number of use cases, with a variety of target users that have

different degrees of skill level. The project also included developing both a server and a

visualisation, with justification and evaluation for the effectiveness of both, using bespoke data

adhering to existing user interface guidelines. All these considerations led to a complex set of

aims and requirements, with a carefully considered scope.

 By the conclusion of the project, the author successfully produced a clear minimum viable

product for both the analysis server and the visualisation front-end.

 The analysis server is able to reason and normalise a variety of ideas, calculate tf-idf for

the entirety of the corpus and use this to k-means cluster the ideas, then use exploratory topic

modelling to uncover the themes among the ideas without any manual assistance. Following

this, it could use doc2vec to find similarities between ideas and suggest them when requested.

This analysis would be packaged in a reasonable format and returned to the client that made

the request.

 To make this analysis human-understandable, a robust visualisation was developed that

used interesting, engaging techniques to display the data. An idea “map” displays a two-

dimensional representation of the relationships between the tf-idf values for each idea, enabling

the user to recognise the variation in the dataset, visualising similarities and differences in a

physical space.

This idea map could be manipulated through zooming and panning for maximum control. The

k-means clusters would be represented via coloured borders on the ideas, allowing the user to

quickly see where groups of trends formed. These clusters could be investigated to see the

trends that were data mined within them, and the context surrounding these trends. This

allowed the user to instantly understand what trends exist in the dataset, as well as frames of

reference for these trends, without having to open a single idea.

If a user chooses to investigate a single idea to view its full content, the visualisation will

leverage the doc2vec data to suggest similar ideas that they can investigate next for further

information about emerging trends. The visualisation also offered the user optional controls to

manipulate the granularity of the analysis – by choosing their own k, the number of clusters

used during k-means.

 The effectiveness of these techniques were verified through numerous stages of iteration

and evaluation. Subject matter experts were consulted and offered a demonstration of the

analysis system in action. The author compared how the analysis performed through data

mining, to the manual analysis that was performed when the historical challenge was

completed.

Evidence displayed that the data mined themes were almost entirely similar to those found

manually, which required a physical group meeting using multiple people. The SME agreed

that the project would be of definite assistance to the ideation process when the number of ideas

is far greater than manageable by a single person. The design of the user interface was also

 10-60

evaluated by members of the Simply Do Ideas team, and iterated upon to maximise the

effectivity, usability and visual design.

 Ultimately, the system achieved the goals it set out to perform. Some of the initial concepts

deviated – the importance of clustering was found to be less than expected, while the usefulness

of topic modelling greater than expected. Some features were changed or removed, such as the

doc2vec embeddings map. But the final product developed was proven to meet the broad aim

of streamlining and improving the management of ideas. The author has reflected on how the

system could further enhance the experience with more time, but the existing system is a clear

indicator of the effectivity of data mining, language processing and engaging visualisation in

this context, and perhaps the wider context of managing knowledgebases.

 11-61

11 Reflection on Learning

While the author had a wealth of experience in front-end development, the venture into

exploratory data analysis was one of little knowledge. The aim when devising the goals was

to explore the familiar context of ideation but doing so while investigating the capability of

data mining. Their university degree had little focus on front-end development, which was their

full-time job, while they had taken numerous modules focused on more traditional

programming, as well as the management of knowledge. Their interest in the idea of knowledge

management led to taking the approach of trying to investigate interesting techniques for doing

so.

 The interest in discovering techniques for manipulating data was key to motivation during

the duration of the project. Being able to use as many as possible, remaining ambitious in the

scope, proved fruitful – the author was able to include a number of data mining techniques

from various subject areas. The unfortunate side effect of this was that the greater amount of

data that was created, the more visualisation components were needed. The time taken to

visualise data took a disproportionate amount of time compared to the time needed to create

the analysis tools.

While Python has a wealth of extremely versatile and easy-to-use data mining libraries, there

were fewer bespoke solutions for React, especially for the approach taken to display ideas in a

map. The aims set out meant that the quality of the analysis data was only as good as how it

was presented. The author found that this was impactful on the motivation to work. The author

was working as a front-end developer alongside the duration of the project, so the drive to do

more front-end development on the project was diminished. In hindsight, the project would’ve
more interesting had it solely focused on producing analytical data. Even more ambitious tools

could’ve been used with a great focus on confirmatory hypothesis and comparing the

effectiveness.

 This also demonstrated how a move to a “test-first” development approach could’ve
benefited progress. The procedure taken was to complete development first, then decide how

the product would be evaluated.

The author then encountered severe difficulty in finding methods to scientifically evaluate their

progress. The heavy focus on visualisation made the usage of quantitative very difficult, and

the end result was a reliance on qualitative evaluation with staff members. While the outcome

from this evaluation was surprisingly positive and effective, a preferable approach may have

been to devise quantitative tests that could verify and compare how the analysis performs,

which the ability to compare the effectiveness of different data mining techniques, including

numerical figures such as accuracy. This also would’ve been aided by a greater focus on the
backend rather than visualisation.

 A conscious decision was made to research why techniques are used, as well as how they

were used. This meant reading academic papers and guides on the usage of different mining

techniques in different contexts. The double-loop learning approach of questioning your

assumptions behind the actions you take (Argyris 2002) was one the author took on board

during their Knowledge Management module, and proved a dramatic change to their standard

work flow. The understanding of why you are doing something is a great aid to scientific report

writing – the advantage of being able to confidently justify why you take your actions. The

 11-62

author plans to apply this technique in their future learning and professional development; it

has proved to be instrumental in being confident in your decisions.

 The author was overall happy with the approach to the project. The scope required little

adjustment; barring some “crunch” development, all the goals were suitably met. The timeline
devised in the initial report ended up rarely adhered too – the author was accustomed to agile

development from their job and found that it was far more effective to decide the order of

development in shorter bursts rather than an overarching, waterfall timeline. The project also

taught to not be against taking a scholarly approach to tasks. The act of writing a report, having

to verify all decisions made and extensively evaluate them, ensured that development always

met a certain quality.

 12-63

12 Table of Abbreviations

TF-IDF Term Frequency – Inverse Document

Frequency

SME Subject Matter Expert

LDA Latent Dirichlet Allocation

NLP Natural Language Processing

UI User Interface

HTTP HyperText Transfer Protocol

JS JavaScript

 12-64

References

Anderson, D. J. 2010. Kanban: successful evolutionary change for your technology business.

Blue Hole Press.

Argyris, C. 2002. Double-loop learning, teaching, and research. Academy of management

learning & education 1(2), pp. 206-218.

Benitte , R. 2019. ScatterPlot | nivo.

Branan, N. 2010. Are our brains wired for categorization. Scientific American,

Brownlee, J. 2019. Impact of Dataset Size on Deep Learning Model Skill And Performance

Estimates. http://machinelearningmastery.com.

Budhiraja, A. 2018. A simple explanation of document embeddings generated using

Doc2Vec. Medium.

Cameron, D. 2013. A Software Engineer Learns HTML5, JavaScript and jQuery.

CreateSpace Independent Publishing Platform.

Chire. 2011. K-means Gaussian Data.

Duan, L. et al. 2009. Cluster-based outlier detection. Annals of Operations Research 168(1),

pp. 151-168.

Gama, P. 2007. Stop reinventing the wheel. IEEE Distributed Systems Online (5), p. 9.

Gediga, G. et al. 2002. Evaluation of software systems. Encyclopedia of computer science

and technology 45(supplement 30), pp. 127-153.

Goldberg, Y. and Levy, O. 2014. word2vec Explained: deriving Mikolov et al.'s negative-

sampling word-embedding method. arXiv preprint arXiv:1402.3722,

Grinberg, M. 2018. Flask web development: developing web applications with python. "

O'Reilly Media, Inc.".

Heck, R. H. 1998. Factor analysis: Exploratory and confirmatory approaches. Modern

methods for business research, pp. 177-215.

Iglesias, M. 2019. Using Your Library with React.Pro D3. js. Springer, pp. 201-218.

Kanungo, T. et al. eds. 2000. The analysis of a simple k-means clustering algorithm.

Proceedings of the sixteenth annual symposium on Computational geometry.

Koç, S. Ş. et al. 2018. Triadic co-clustering of users, issues and sentiments in political tweets.

Expert Systems with Applications 100, pp. 79-94.

http://machinelearningmastery.com/

 12-65

Kreuzer, M. and Robbiano, L. 2005. Computational commutative algebra 2. Springer Science

& Business Media.

Lau, J. H. and Baldwin, T. 2016. An empirical evaluation of doc2vec with practical insights

into document embedding generation. arXiv preprint arXiv:1607.05368,

Le, Q. and Mikolov, T. eds. 2014. Distributed representations of sentences and documents.

International conference on machine learning.

Lloyd, S. 1982. Least squares quantization in PCM. IEEE transactions on information theory

28(2), pp. 129-137.

Loper, E. and Bird, S. 2002. NLTK: the natural language toolkit. arXiv preprint cs/0205028,

MacQueen, J. ed. 1967. Some methods for classification and analysis of multivariate

observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and

probability. Oakland, CA, USA.

Nandi, R. N. et al. eds. 2018. Bangla news recommendation using doc2vec. 2018

International Conference on Bangla Speech and Language Processing (ICBSLP). IEEE.

Newman, I. et al. 1998. Qualitative-quantitative research methodology: Exploring the

interactive continuum. SIU Press.

Organization, W. H. 2020. Coronavirus disease 2019 (COVID-19): situation report, 72.

Pedregosa, F. et al. 2011. Scikit-learn: Machine learning in Python. the Journal of machine

Learning research 12, pp. 2825-2830.

Porter, M. F. 2001. Snowball: A language for stemming algorithms.

Ramos, J. ed. 2003. Using tf-idf to determine word relevance in document queries.

Proceedings of the first instructional conference on machine learning. Piscataway, NJ.

Rehurek, R. and Sojka, P. eds. 2010. Software framework for topic modelling with large

corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP

Frameworks. Citeseer.

Rehurek, R. and Sojka, P. 2011. Gensim–python framework for vector space modelling. NLP

Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic 3(2),

Richardson, L. 2007. Beautiful soup documentation. April,

Robbestad, S. A. 2016. ReactJS blueprints. Packt Publishing Ltd.

Sadighpour , S. 2016. arxiv-doc2vec-recommender.

Siddiqui, K. 2013. Heuristics for sample size determination in multivariate statistical

techniques. World Applied Sciences Journal 27(2), pp. 285-287.

 12-66

VanderPlas, J. 2016. Python data science handbook: Essential tools for working with data. "

O'Reilly Media, Inc.".

Wold, S. et al. 1987. Principal component analysis. Chemometrics and intelligent laboratory

systems 2(1-3), pp. 37-52.

Yang, S. et al. eds. 2019. Metamorphic exploration of an unsupervised clustering program.

2019 IEEE/ACM 4th International Workshop on Metamorphic Testing (MET). IEEE.

Zhu, N. Q. 2013. Data visualization with D3. js cookbook. Packt Publishing Ltd.

 13-67

13 Supplementary Material

13.1 Stop words

'would', 'use', 'using', 'year', 'could', 'useful', 'use', 'idea', 'used', 'save', 'know', 'knows', 'get',

'us', 'etc', 'make', 'able', 'add', 'easy', 'making', 'https', 'com', 'aspirations', 'embed', 'youtube',

'vimeo', 'couk', 'www', 'http'

