

1

Deep Learning Implementation of

Road Sign Detection and Recognition

Author: Spyros Lontos

Student Number: C1722325

CM3203

One Semester Individual Project

Module Credits: 40

Supervisor: Dr. Yukun Lai

Moderator: Michael Daley

May 2020

2

AďstraĐt

Road sign detection and recognition through the use of computer vision and image processing

techniques have been a prevalent subject over the past few decades. Traffic recognition

systems can be trained with the use of Deep Convolutional Neural Networks to learn and

predict these predefined traffic signs. Modern cars implemented this idea as an advanced

driver-assistance feature. Mainly being driven by their use on autonomous and self-driving

vehicles this futuristic application had been greatly advancing. As deep neural network

techniques are constantly being refined the capabilities of this technology have developed

immensely.

The aim of this project is to use deep learning techniques with image processing to create a

prototype that is able to locate the presence of traffic road signs and distinguishing their

classification. With the use of TeŶsorFloǁ͛s PǇthoŶ API, I adapted a processed version of The

German Traffic Sign Recognition Benchmark (GTSRB) giving me the ability to train different

pre-trained models and test their overall performance given a variety of hyperparameter

changes and methods.

By conducting the different experiments, I have concluded that the SSD MobileNet V2 model

is sufficient enough to be used in real-time applications for road sign detection. With an

average accuracy of 80% with a substantially high processing speed providing over 30 Frames

Per Second it is suitable to be used in a live environment. Some of the other methods which I

had used such as dropout and switching to a new pre-trained model may not have had

provided any better results, but the additional evidence supports the use of the faster SSD

MobileNet model.

AĐkŶoǁledgŵeŶts

I would like to express sincere gratitude to my Supervisor, Dr. Yukun Lai, for giving me this

amazing opportunity to explore this interesting application of deep learning techniques. His

knowledge and guidance were valuable in steering my research in the right direction

allowing me to express my full potential on this project. Additionally, I would also want to

thank my family and friends for their emotional support and encouragement through this

difficult academic period.

3

Taďle of CoŶteŶts

1. Introduction ___ 7

2. Background ___ 10

2.1 Mapillary Traffic Sign Database ________________________________ 10

2.2 German Traffic Sign Recognition Benchmark Dataset ______________ 11

2.3 Deep Learning __ 11

2.4 TensorFlow’s OďjeĐt DeteĐtion API _____________________________ 12

2.5 TensorFlow Detection Models _________________________________ 13

2.5.1 SSD MobileNet __ 13

2.5.2 Faster-RCNN ResNet __ 14

2.6 Evaluation Metric Functions __________________________________ 15

2.6.1 Intersection over Union ___ 15

2.6.2 Average Precision __ 16

2.6.3 Localization Loss ___ 17

2.6.4 Classification Loss __ 17

2.6.5 Regularization Loss ___ 17

2.6.6 Total Loss __ 17

2.7 Deep Neural Network Overfitting ______________________________ 18

2.8 Google Colab __ 18

3. Approach and Implementation _________________________ 19

3.1 Choosing Dataset ___ 19

3.2 Dataset Processing __ 21

3.3 Environment Setup ___ 24

3.4 Model and config ___ 25

3.5 Training and Tensorboard ____________________________________ 29

3.6 Overfitting Prevention _______________________________________ 32

3.6.1 Dropout__ 32

3.6.2 Early Stopping ___ 33

3.7 Exporting __ 34

3.8 Testing__ 36

4

4. Results and Evaluation ________________________________ 39

4.1 Classes (43) vs Classes (13) Performance Difference _______________ 40

4.1.1 Comparing TensorBoard Results ______________________________________ 40

4.1.2 Checkpoints Extracted __ 41

4.1.3 Comparing Performance Results ______________________________________ 41

4.2 Dropout ___ 42

4.2.1 TensorBoard Results and Choosing Export ______________________________ 42

4.2.2 Performance Results__ 43

4.3 Faster-RCNN ResNet___ 43

4.3.1 TensorBoard Results and Choosing Export ______________________________ 43

4.3.2 Performance Results__ 44

4.4 Environment Difference ______________________________________ 44

5. Conclusion of Results _________________________________ 46

6. Future Work __ 47

6.1 Different Dataset ___ 47

6.2 Hyperparameter Tuning ______________________________________ 47

6.3 Adapting Properly Overfitting Prevention Methods _______________ 47

6.4 Additional Training Time _____________________________________ 47

7. Conclusion __ 48

8. Reflection __ 49

9. Appendices ___ 50

10. References ___ 51

5

Taďle of Figures

Figure 1 - TeŶsorFloǁ͛s OďjeĐt Detection sample image [4] __________________________ 8

Figure 2 - YouTuďe Video displayiŶg the ǀieǁ of Tesla͛s Autopilot systeŵ [6] _____________ 9

Figure 3 - MTSD Annotation Example ___ 10

Figure 4 - GTSRB csv annotations example _______________________________________ 11

Figure 5 - Layers of an Artificial Neural Network [12] ______________________________ 12

Figure 6 - Single Shot MultiBox Detector architecture [17] __________________________ 13

Figure 7 - MobileNet Approach [18] __ 14

Figure 8 - Faster-RCNN Structure [19] __ 14

Figure 9 - ResNet Architecture [20] ___ 15

Figure 10 - Intersection over Union Diagram [22] _________________________________ 16

Figure 11 - tp, fp, fn Regions [23] __ 16

Figure 12 - Precision & Recall formulas [24] ______________________________________ 16

Figure 13 - Accessing csv file and collecting class instances __________________________ 20

Figure 14 - GTSRB Frequency Analysis __ 20

Figure 15 - Renaming, changing Filename, and discarding unused classes ______________ 21

Figure 16 - Grouping annotation files ___ 22

Figure 17 - Extracting Test set___ 22

Figure 18 - Name and ID for classes used __ 23

Figure 19 - Generate tfrecords commands _______________________________________ 23

Figure 20 - Generating Label Map ___ 23

Figure 21 - Files after Processing the Dataset_____________________________________ 24

Figure 22 - Proper setup output results ___ 25

Figure 23 - Resolution Metrics Code __ 26

Figure 24 - Resolution Metrics Results __ 26

Figure 25 - 50x50 Scaled test images ___ 27

Figure 26 - mAP on object size amongst models [28] _______________________________ 28

Figure 27 - Performance Differences [28] __ 28

Figure 28 - model_main changes __ 29

Figure 29 - TensorBoard Visualizations __ 30

Figure 30 - Loading TensorBoard __ 30

Figure 31 - TensorBoard's Graphs Tab Example ___________________________________ 31

Figure 32 - TensorBoard's Image Tab Example ____________________________________ 31

Figure 33 - Neural Network Dropout [30] __ 32

Figure 34 - Hyperparameters Changed for Dropout ________________________________ 32

Figure 35 - Early Stopping Principle [31] ___ 33

Figure 36 - Early Stopping Implementation ______________________________________ 34

Figure 37 - Evaluation Metrics Example ___ 34

Figure 38 - Total_loss & mAP Graphs ___ 35

Figure 39 - Exporting Script Command with Parameters ____________________________ 35

Figure 40 - ImageDetection Notebook Cell Examples _______________________________ 36

6

Figure 41 - Fixed Image Resizing ___ 36

Figure 42 - Faster-RCNN ResNet Configuration Image Resizer ________________________ 37

Figure 43 - Resizing Image, Keeping Aspect Ratio with Capped Values (Code) ___________ 37

Figure 44 - Road Sign Detection and Visualization _________________________________ 38

Figure 45 - Model's Evaluation with the use of Test set _____________________________ 39

Figure 46 – 43-Class Evaluation Metrics Graphs __________________________________ 40

Figure 47 – 13-Class Evaluation Metrics Graphs __________________________________ 41

Figure 48 - TensorBoard Results on Model with Dropout ____________________________ 42

Figure 49 - TensorBoard Metric Graphs on Faster-RCNN ResNet ______________________ 43

Figure 50 - Faster-RCNN ResNet Evaluation Result ________________________________ 44

Figure 51 – ͚Gloďal SeĐ͛ MetriĐ oŶ Laptop _______________________________________ 44

Figure 52 – ͚Gloďal SeĐ͛ MetriĐ oŶ Google Colaď __________________________________ 45

Taďle of AďďreǀiatioŶs

GTSRB German Traffic Sign Recognition Benchmark

MTSD Mapillary Traffic Sign Database

ML Machine Learning

TSR Traffic-Sign Recognition

ANN Artificial Neural Network

CNN Convolutional Neural Network

SSD Single Shot MultiBox Detector

RCNN Region-Based Convolutional Neural Network

RPN Region Proposal Network

VOC Visual Object Classes

AP Average Precision

mAP mean Average Precision

FPS Frames Per Second

IoU Intersection over Union

tp True positives

tn True negatives

fp False positives

fn False negatives

IDE Integrated Development Environment

API Application Programming Interface

Json JavaScript Object Notation

ppm Portable Pixmap

csv Comma Separated Values

7

1. Introduction

The development of cars made a huge impact in the way we live, as this method gave the

ability to each person to travel large distances. Cars were introduced as expensive luxury thus

not a lot of people could afford them. With the establishment of a large number of mass

production lines within the automotive industries, it caused the inflated prices of the product

to drop significantly. Cars then changed quickly from just a luxury to an everyday necessity.

As the number of vehicles in the road rapidly increased so did the number of accidents, having

an immediate effect on the number of deaths. From the early 1900s there was a linear and

steady increase to motor vehicle deaths recorded in the US [1]. It had been clear that

preventative measures needed to be established to stop this rising issue.

A big step in reducing the number of accidents was with the introduction of road traffic

signage. They aimed to establish rules, inform drivers of what is to be expected and, to keep

a smooth flow of traffic. Despite that, the negligence of these road signs due to distracted

driving still played a big problem in the number of traffic accidents.

With an average of over 16000 car accidents per day in the US alone in 2020 [2], many of

them resulting to significant injury or death, it is clear that these preventative measures that

have been made over the years did not result in the complete reduction of motor vehicle

accidents. Many factors can cause road accidents. Drunk driving, speeding, other distractions

but it mostly lies on the big problem which is human error.

To improve the driving experience and help reduce the number of accidents due to

distractions a relatively new technology was developed. Traffic-Sign Recognition or TSR, is a

technology that first appeared in 2008 [3]. It was developed to use image processing

techniques to be able to detect and distinguish the road signs found during a normal car route.

The applications of this technology were mostly aimed as an autonomous driving feature or

a driver-assistance feature which would alert the driver about the road sign. With the use of

Convolutional Neural Networks (CNN), companies had the ability to train artificial models to

predict road signs observed from attached cameras on motor vehicles.

The application of TSR was built on the technology of Object Detection. The combination of

computer vision, image processing and, deep learning techniques could create Deep

Convolutional Neural Networks that learn to distinguish a very large number of typical

objects. By taking advantage of the general features that make up these objects we could use

machine learning-based techniques that could detect and classify the different objects of

interest. Using object detection deep learning approaches such as region-based convolutional

networks Faster-RCNN and the Single Shot MultiBox Detector (SSD) we could use pre-trained

models to both detect and recognize different classes present within an image. As seen in

Figure 1 object detection can distinguish the location and type of objects such as a bicycle,

car, and dog. It visualizes the detections by drawing a bounding box around the predicted

object as well as giving it an estimated classification name.

8

Figure 1 - TeŶsorFloǁ͛s Object Detection sample image [4]

Open-source platforms such as TensorFlow developed the Object Detection technology

further, by providing clear documentation and a wide variety of functionality features they

gave the ability to every person to test, manipulate and learn the applications of such an

interesting idea. Additionally, their Python-based Object detection API provides the ability to

train pre-trained models using new undefined classes for every specific application. For Traffic

Sign detection, we can provide the training model with a large dataset of road sign images

which will then learn to recognize and detect on provided image footage.

By correctly processing a large dataset of images I was able to test road sign recognition and

detection using various pre-trained models. Each model had its benefits and drawbacks but

finding a more appropriate one in the real-time processing application was key. Additionally,

with the use of some overfitting prevention methods I tried tackling a problem that is

prevalent in deep learning which has significant negative effects on the whole process.

I show how I processed the large GTSRB image dataset to a file format that would be used in

TeŶsorFloǁ͛s traiŶiŶg proĐess. JustifǇiŶg the ĐhaŶge ŵade, iŶ ĐoŶǀertiŶg the ppŵ iŵages to
png which is the supported image format, and also trimming the dataset to a more

manageable size which would improve both performance and relative training time.

Additionally, I present the general performance in terms of accuracy and speed on models

with minor differences. This would provide me clear results on how the changes made

throughout the implementation phase proved to be beneficial.

Although road sign detection and recognition can be used to aid in driving experience it is also

being used as an essential component in autonomous driving. Sophisticated systems such as

Tesla͛s autopilot shown by the video in Figure 2, they have shown a substantial decrease in

the number of accidents with their use. With 1 accident for every 3.07 million miles whilst

using Autopilot, it indicates a huge difference whilst comparing it with the 1 accident for every

479 thousand miles a typical automobile has [5]. These statistics reveal that Tesla͛s Autopilot

is up to 6 times safer than a typical human driver.

9

Figure 2 - YouTuďe Video displayiŶg the ǀieǁ of Tesla͛s Autopilot systeŵ [6]

https://www.youtube.com/embed/fKXztwtXaGo?feature=oembed

10

2. Background

Adapting deep learning techniques to road sign detection which can be used in real-time

processing applications can be challenging. This section focuses on providing context for the

technologies, deep learning models, and databases that I have chosen to use throughout my

study. With these technologies I was able to create a high performing model that is capable

of detecting road signs from an extracted set of test images and is also quick enough that can

be used in a real-time processing application.

2.1 Mapillary Traffic Sign Database

The Mapillary Traffic Sign Database (MTSD), is an assortment of high-resolution street-

level imagery [7]. Featuring over 100,000 images covering more than 300 classes from all

6 continents makes it the biggest and most diverse road sign dataset in the world. The

wide variety of varying image conditions such as weather, season, or time of day makes it

a more diverse dataset.

Additionally, more than half of the provided images have JavaScript Object Notation (json)

styled annotations. These annotations can provide a plethora of details for each image

such as the width, height, and a list of present road signs within the image. Such a list has

a wide variety of variables (example shown in Figure 4) for each road sign but the most

important ones being the bounding box coordinates ͚ďďoǆ͛ that indicates its actual

position on the image and its label ͚laďel͛.

Figure 3 - MTSD Annotation Example

11

2.2 German Traffic Sign Recognition Benchmark Dataset

With over 50,000 images and more than 43 classes the lifelike multi-class German Traffic

Sign Recognition Benchmark (GTSRB) dataset [8] still provides a wide road sign image

variety. The GTSRB dataset [9] contains low-resolution Portable Pixmap (ppm) format

images, varying from 15x15 to 250x250 pixel images.

With the basic structure of the dataset containing one directory per class, each directory

containing one comma-separated values (csv) file with annotations as shown in Figure 4.

This information contains the image resolution, the road sign bounding box, and also its

classId. Additionally, the training images are grouped by tracks, each track containing 30

images with varying resolutions, for a single physical traffic sign. The dataset can be

accessed from a public archive [10] which is split into different forms such as the official

train data and test data.

Figure 4 - GTSRB csv annotations example

2.3 Deep Learning

Major advancements in modern computing technologies allowed Artificial Intelligence to

revolutionize the field of computer science. The use of machine intelligence trying to

emulate human intelligence in propositioned tasks has been on the rise over the years.

Artificial Intelligence is split amongst a number of different techniques methods such as

Machine Learning, Computer Vision, and Robotics.

Machine learning or ML is the general study of implementing algorithms that can improve

automatically using mast experiences. By defining specific features, the ML model can

learn to make predictions and decisions without being explicitly programmed to do so.

There are a plethora of applications this technology has already being implemented in

[11] such as, though Virtual Personal Assistants like SIRI, or Alexa. Within Social media

services like automatic face detection on uploaded FaĐeďook iŵages, or eǀeŶ AŵazoŶ͛s
product suggestion. The performance of the implementation of these applications is being

constantly refined, as more data are being fed to these machine learning systems better,

and more accurate estimates will be provided.

A big subset of Machine Learning is Deep learning. Unlike ML, deep learning does not

require any human intervention. It does not need the definition of explicit features to be

able to make accurate estimates. In fact, its method bases on the use of Artificial Neural

Network (ANN), where the multi-layered approach can progressively extract features

from the given input.

12

The general overview of such ANN is displayed in Figure 5. Firstly, the input layer, is highly

dependent on the application and the data it is provided. For road sign detection

application which the input will be a large set of images the raw input which will be used

will be a matrix of pixels.

After the input layer there are the hidden layers. Information is being transferred from

each layer to the next over connecting channels. Each channel has a value attached to it

which we refer to as the Weight. All neurons have a unique number associated with it

called Bias. This Bias is added to the weighted sum of inputs reaching the neuron, which

is then applied to a function known as the activation function. The result of the activation

function determines if the neuron gets activated. Every activated neuron passes on

information to the following layers which continue until the last layer.

The output layer is the final prediction the ANN will choose, the one neuron activated in

the output layer corresponds to the prediction. The weights and biases are continuously

adjusted to create a well-trained network.

Figure 5 - Layers of an Artificial Neural Network [12]

The drawbacks of deep learning are the amount of time it takes to train a Neural Network.

It requires a substantially large dataset of input images and a lot of computational power

so it can be computationally expensive to run.

2.4 TensorFlow’s Object Detection API

TensorFlow is described as an end-to-end machine learning platform. Version 1.0.0 was

released early 2017 [13], it gave the ability for researchers to explore several different

topics using machine learning applications using its free open-source library. The constant

expansion of this library with tools and extensions as well as the abundance of

documentation that has been generated over the years makes it able for novices to easily

learn and use such systems to its full capabilities.

TensorFlow has a relatively large library based on Object Detection. Their GitHub

repository [14] provides a variety of tools and scripts which can be used to effectively train

using a variety of machine learning models a custom dataset. It can also be used to test

general object detection with several provided pre-trained models.

13

2.5 TensorFlow Detection Models

TensorFlow has a long collection of pre-trained detection models [15]. They have been

trained on the COCO dataset, the Open Images Dataset, and the Kitti dataset and they can

provide the immediate usability of object detection and recognition on a variety of

objects. These models can be used as an initializer during training on a custom dataset

which they would greatly improve the amount of time it would take from training the

model from scratch.

Each model has a certain degree of accuracy as well as its average processing speed. Some

models have been to a very high number of accuracy percentages thus making relatively

slow. Whilst others have been created with the purpose of being used in real-time

processing applications where speed would be a very important aspect, but they may lack

in the performance of their overall accuracy. Most of these models use a combination of

detector algorithms with different optimization methods to maximize their performance.

2.5.1 SSD MobileNet

The Single Shot MultiBox Detector (SSD) algorithm was created with a new approach

that tried to reduce the number of steps needed to detect objects within an image.

Instead of using typical standard Region Proposal Network-based approaches that

required 2 steps, this technique made it able to perform both object localization and

classification in a single path of the CNN. It greatly increased speed performance with

substantially good mean average precision (mAP) results. With SSD300 achieving

74.3% at 59 frames per second (FPS), its outperformed R-CNN with 73.2% at just 7FPS

[16]. With the general overview Architecture of the SSD deep convolutional network

shown in Figure 6.

Figure 6 - Single Shot MultiBox Detector architecture [17]

The MobileNet convolutional transformation and modification methods were also

aimed at having high speed. It was developed for the purpose of being implemented

into computationally limited platforms whilst still providing solid accuracy

performance. The method of implementation factorized standard convolution into

depthwise convolution and a pointwise convolution [18] as displayed in Figure 7.

Using this method, it has been observed that MobileNet has an 8x reduction in

computational cost when compared to the standard convolution method.

14

Figure 7 - MobileNet Approach [18]

2.5.2 Faster-RCNN ResNet

The Region-Based Convolutional Neural Network (RCNN) uses a 2-step approach to

perform object detection. The first step is responsible for generating the region

proposals and the 2nd step for detecting the object for each proposal.

Region proposals are found by the CNN which is referred to as the Region Proposal

Network (RPN). It slides on the last feature map of the convolutional layers and

predicts whether an object is present while guessing its bounding boxes (shown in red

on Figure 8).

With those region proposals as input a Fully connected neural network, the Fast-RCNN

will predict a classification for the input, shown in blue in Figure 8.

Figure 8 - Faster-RCNN Structure [19]

15

The ResNet method bases its method on an optimization problem that states, ͞ deeper
ŵodels are harder to optiŵize͟. A deeper model should be able to perform at least as

well as the shallower model. ͞Residual blocks enables the network to preserve what

it had learnt preǀiouslǇ ;if there͛s ŶothiŶg to learŶͿ ďǇ haǀiŶg aŶ ideŶtitǇ ŵappiŶg
weight function where the output is equal to the input, preserving what the neural

network has learnt by not applying diminishing transformations or if the layer is able

to learŶ soŵethiŶg it͛ll add oŶ to ǁhat the Ŷetǁork has learnt.͟[Ϯ0] The architecture

of the ResNet optimization method is shown in Figure 9.

Figure 9 - ResNet Architecture [20]

2.6 Evaluation Metric Functions

Different evaluation metrics are used to observe current the fitness of training models. It

allows for proper evaluation through the whole process, and it is a general indicator of

how the model performs on the provided dataset.

Popular competitions and metrics, such as the Pascal Visual Object Classes (VOC)

challenge, the COCO object detection challenge, and the Open Images challenge all

provide different important metrics and principles that are used to evaluate object

detection models. [21]

The most important eǀaluatioŶ ŵetriĐs ǁhiĐh ǁould ďe used are the ͚total loss͛ ǁhiĐh
shows a general effect on the overall fitness of the model and the mAP which indicates

the overall accuracies for all of the used classes.

2.6.1 Intersection over Union

Intersection over Union or IoU is a way to measure the accuracy of a predicted

bounding box with the ground-truth box. By measuring the area of overlap between

the bounding box and the ground-truth box and compare it with their combined

total area (shown in Figure 10), we can get a value between 0 and 1 which can

indicate how good the predicted detection was.

IoU can be further used to determine whether predictions made where either True

Positives (tp), True Negatives (tn), False Positives (fp), or False Negatives (fn)

described by Figure 11, by comparing the IoU results to specific threshold values.

16

Figure 10 - Intersection over Union Diagram [22]

2.6.2 Average Precision

Precision and Recall are both used to determine the Average Precision (AP) of a class.

Where preĐisioŶ is used to ŵeasure the aĐĐuraĐǇ of the ŵodel͛s prediĐtioŶs aŶd reĐall
measures how good the detection of all the positives was by comparing them to the

sum of the predicted ground-truth boxes. Both of their equations are displayed in

Figure 12.

Figure 12 - Precision & Recall formulas [24]

To find the average precision, we will first need to find the Precision-Recall curve; this

indicates the association between these metrics at different threshold values. To

calculate AP, we take the average precision values across all the unique recall levels.

With AP we can observe the fitness for each class we use to train our Neural Network.

In order to perceive the fitness amongst all of the classes we will take their average

called mean average precision (mAP).

Figure 11 - tp, fp, fn Regions [23]

17

2.6.3 Localization Loss

Localization loss is used to provide an estimation value to the detection aspect of the

object detection process. By comparing the predicted bounding box, it will use L2

distance and compare it with the ground truth.

2.6.4 Classification Loss

Classification loss is used to provide an estimated fitness level on the performance of

the model on how well it performs in the recognition aspect of object detection. By

using the predicted bounding box and comparing it with the ground truth an IoU value

will be generated. If this IoU value exceeds a threshold (e.g. 0.5) and the predicted

class matches the actual class of the object it will be counted as a correct prediction.

2.6.5 Regularization Loss

The regularization loss punishes the model for being too complex. Since the goal is

generalizing the predictions of the model it provides the ability to detect and recognize

trained objects on images with varying conditions. On the problem of road signs, it

should be able to detect and recognize them in different weather conditions, lighting

conditions, and on different resolution images. The model should not be only fitted to

the training data that would provide. Regularization loss shows how the model learns

to generalize the extracted features making it more capable in predicting accurately

on new unseen data.

2.6.6 Total Loss

This metric is the sum of all 3 previously described metrics. It combines the values of

localization loss, classification loss, and regularization loss and provides a general

description of the overall performance amongst all 3. During training a steadily

decreasing total loss shows clearly that the overall fitness of the Neural Network is

correctly adapting to the provided dataset.

18

2.7 Deep Neural Network Overfitting

Leaving the Deep Neural Network to keep training as much as possible may have negative

effects on its performance. The neural network becomes too closely fitted to the training

set where it loses generalization and predictability in new unseen data. Several methods

have been implemented to prevent deep neural networks in reaching this point.

To be able to observe if the model has reached the point of overfitting during training a

common method of splitting the whole dataset into 3 smaller sets is used. The train set,

the evaluation set, and the test set. The train set is used to train the actual model and the

evaluation set is used to cross-validate its performance. This cross-validation is a

significant indicator of presenting the actual fitness of the model. Our goal would be to

try to minimize the error rate between the training and evaluation set. Additionally, with

the use of the test set, it allows us to obtain an unbiased opinion on how well the model

performs on an unseen set of images.

2.8 Google Colab

Google Colaboratory is a free browser-based platform that allows anyone with a google

account to set up an environment and executes ͞arďitrarǇ pǇthoŶ Đode͟ [25]. It is a

notebook styled environment similar to Jupyter, with much more available resources. It

has the option of adding either CPU (Central Processing Unit), GPU (Graphics Processing

Unit), or TPU (Tensor Processing Unit) proĐessiŶg aĐĐeleratioŶ iŶ the eŶǀiroŶŵeŶt͛s
resources which can provide a substantial improvement in computer-intensive processes

such as machine learning

The limitations of this Cloud Based environment include the memory and a maximum

Virtual Machine runtime. But, its overall ease of use, the adaptation of both Google Drive

and GitHub, makes managing code and backing up much easier.

19

3. Approach and Implementation

My general approach in creating a structured solution for this specific application was to first

dissect it into multiple sections. This modular perspective helped me focus on and improve

each specific aspect during the implementation process making it easier to adapt to any

unforeseen changes.

3.1 Choosing Dataset

The image datasets that I would expect to use should contain a very high number of

high-resolution images, split evenly amongst several classes. The high-resolution images

should give me a better overall performance when testing on different test images and

the even spread amongst classes should provide an overall balanced model that

performs well to all of the trained classes.

After requesting the Research Edition of the MTSD I received a confirmation email that

gave me access to the dataset. Only after downloading the 50GB file containing the

images, annotation files, and the split text files, I realized the scale of this dataset. The

memory on my computer was relatively low so it would have been unreasonable to use

such big of a dataset for my project. Additionally, by the dataset having such a vast

number of classes it meant training a model to perform well on all of them would take a

substantial amount of time. All in all, the dataset was not suited for the scale of my

project, so I had to find a more reasonable one.

After discussing with my supervisor, I was directed to The German Traffic Sign Recognition

Benchmark [9]. Its relative scale was big enough that it could train a relatively accurate

model and the low-resolution images meant that memory was not going to be an issue.

With a much reasonable number of 43 classes it seemed more logical to go with the

approach of using this dataset.

To oďserǀe the dataset͛s image Frequency, I collected the number of images for each class

in both the train set and evaluation set. By iteratively going through the image annotation

file I was storing the class instance for each image in a dictionary, sorting them according

to the number of images and finally storing them in a csv file in which they can be

visualized. (Code is shown in Figure 13).

20

Figure 13 - Accessing csv file and collecting class instances

By plotting the collected results as shown in Figure 14, I saw a great unevenness in how

the images where spread amongst the classes. With the ďiggest ͞“peed liŵit ;50kŵ/hͿ͟
class having more than 2200 iŶ the traiŶ set aŶd the loǁest ďeiŶg ͞Go straight or left͟
class with just 220 images. This indicated that the performance for each class was going

to vary greatly during training and testing. To overcome this issue, I decided to trim the

dataset to a smaller number of classes. I chose to keep the first 13 with the highest

number of overall images. They all exceeded 1400 images in their train set and 450 images

in their evaluation set. By using just these 13 classes I should have been able, in theory,

get better overall results in a much shorter time, as fitting the model to the dataset would

have been much for efficient.

Figure 14 - GTSRB Frequency Analysis

21

3.2 Dataset Processing

The TensorFlow Object Detection library expects the dataset information to be in the form

of a TensorFlow record (tfrecord). I will need to find a way to adapt all the information of

each image such as the filename, width, height, and class, and transform them into the

TensorFlow records.

To process the dataset to generate the appropriate files that I would need for the training

process I had to split it into multiple steps. By using the public archives that store the

GTSRB dataset [10] I chose to download 3 different zipped files that I could use to generate

the training set, the evaluation set, and the test set as well as the image annotations. The

3 .zip files that I used were, ͞ GT“‘B_FiŶal_TraiŶiŶg_Iŵages͟, ͞ GT“‘B_FiŶal_Test_Iŵages͟
but because the .csv file within this zipped file did not contain information for the classes

for each image I had to also doǁŶload the ͞GT“‘B_FiŶal_Test_GT͟ aŶd use that Đsǀ.

To process my dataset, I used multiple python scripts that I had created.

The ͞traiŶ_Đsǀ_geŶerator.pǇ͟ disĐards all the class directories which are not going to

be used and keeps only the 13 classes. Additionally, it extracts every image from their

class directories into the main folder whilst also performing several additional actions (as

shown in Figure 15). It renames each filename by adding their class ID to the front because

files have the same names throughout the class directories. Also, it converts them from

their ͚ppŵ͛ extension to a .png extension because the ppm format was is not supported

withiŶ TeŶsorFloǁ͛s oďjeĐt deteĐtioŶ API. I had decided to use the ͚png͛ format since it

has lossless compression and it would not introduce any artifacts that could impact the

learning process.

Figure 15 - Renaming, changing Filename, and discarding unused classes

22

Finally, the python script groups and processes all the csv files that contain annotation

iŶforŵatioŶ for eaĐh iŵage iŶto a Ŷeǁ oŶe Ŷaŵed ͞traiŶ_laďels.Đsǀ͟ whilst also shuffling

and mixing their stored order. Shuffling the order, prevents the model from overfitting to

the first observed group of images which would all belong in the same class. (Code in

Figure 16)

Figure 16 - Grouping annotation files

The ͞eǀal_test_Đsǀ_geŶerator.pǇ͟ sĐript has very similar functionalities as the previously

described script whilst also extracting 150 images the evaluation set and storing them into

a newly created test set (shown in Figure 17). The images in the test set were never going

to be seen during the training and evaluation process making the testing process less

biased. With the completion of the scripts 2 folders containing the evaluation and test set

having multiple .png images. Also, Ϯ .Đsǀ files Đalled ͚test_laďels.Đsǀ͛ aŶd ͚eǀal_laďels.Đsǀ͛
were created which contain annotation information for each image.

Figure 17 - Extracting Test set

23

To generate the 2 TensorFlow record files I used pre-existing code [26] that I had found

online, but modified it to use ͚.png͛ files instead of .jpg files and also changed the

͞Đlass_teǆt_to_iŶt;roǁ_laďelͿ͟ fuŶĐtioŶ to fit ŵǇ specific 13 classes with their appropriate

name and ID (Figure 18).

Figure 18 - Name and ID for classes used

By executing the following python commands (Figure 19), I was returned with the 2

.record files containing both image and image annotation information.

Figure 19 - Generate tfrecords commands

To generate the label map that would be needed in the pipeline configuration, I first

needed to create a labels.csv file that contained the ClassID and the Name for each of the

13 classes. By executing my created python script ͞label_map_generator.py͟ as shown in

Figure 20), it ǁould use that ͚laďels͛.Đsǀ͛ aŶd ǁould generate a ͞laďel_ŵap.pďtǆt͟ file.

Figure 20 - Generating Label Map

24

A link to my GitHub repository provides every python file that I have used for processing

the dataset as well as the labels.csv file. By correctly executing the processing scripts the

directory now contained the files and folders shown in Figure 21 which were needed for

the model training process.

Figure 21 - Files after Processing the Dataset

3.3 Environment Setup

I expect ďǇ folloǁiŶg TeŶsorFloǁ͛s iŶstallatioŶ proĐedures [Ϯ7] to be able to download

any dependencies on my laptop and I should be able to set up an environment where I

can work on the comfort of my personal space. The specifications of my laptop having

8GB of RAM and a mobile GPU (GTX 840M with 2GB of virtual RAM) I should be able to

test and run everything.

By installing an Anaconda environment, installing all of the suggested libraries, and

folloǁiŶg TeŶsorFloǁ͛s iŶstallatioŶ guide I ŵaŶaged to create the Object Detection

Environment. The issue that I had during the process was mostly the version mismatch

between some of the libraries. I had to downgrade some, such as TensorFlow from version

2.0 to 1.4 because many functionalities where depreciated and could not be properly used

within the Object Detection API. As of May 2020, TeŶsorFloǁ͛s oďjeĐt deteĐtioŶ has Ǉet
to be properly upgraded to its latest 2.0 version so much older versions are needed to run

everything properly. To test that everything had been implemented correctly I was able

to use a ŵodified ǀersioŶ of the proǀided ͞ oďjeĐt_deteĐtioŶ_tutorial.ipǇŶď͟ aŶd oďserǀed
that everything was running properly.

Although I had set up everything on my laptop I was limited by the capabilities of my

hardware. Every time I was trying to test object detection by using some of the pre-trained

models, I saw that my computer was struggling a lot, by showing a lot of ͚ruŶŶiŶg out of

ŵeŵorǇ͛ ǁarŶiŶgs. So, I began searching for any cloud-based alternatives. Several of the

options I had found seemed good, ďut a frieŶd͛s suggestioŶ guided ŵe to Google Colaď.
It could sync any project with Google Drive and since it also had GPU acceleration, it also

solved my hardware limitation issue.

Setting up the environment in a Google Colab notebook was much easier than on my

laptop. I created a new folder in my google drive where I set up the whole environment

in. All the libraries needed came pre-installed, I only had to import the ones I wanted. I

had to specify the imported TensorFlow version to 1.x because it automatically imported

the 2.x. version. To know that everything had been set up correctly I executed

͞model_builder_test.py͟ froŵ the ͚builders͛ folder and from its output (Figure 22) I could

see that all the tests were passed successfully.

https://github.com/Spyroslon/CM3203-Road-Sign-Detection-Code/tree/master/Preprocessing

25

Figure 22 - Proper setup output results

3.4 Model and config

The next step after setting up the environment and processing the dataset was the

appropriate model and modifying its configuration. Since the application of my projects

aims at road-sign detection that can be implemented in real-time processing examples I

needed to choose a faster performing model to train the neural network on my image

dataset.

As previously expressed TensorFlow provides a wide variety of object detection models

within their detection model zoo. Since the metrics they have used are a good

representation of their accuracy and speed performance, I could choose a pre-trained

model that should give me similar metric performances.

Going through this model zoo I had observed that the ssd_mobilenet_v2_coco had a

distinctly low speed for the mAP it provided. Since MobileNet and Single Shot Detection

were created and optimized on being used on low-end systems the choice of this pre-

trained model and configuration was appropriate.

26

A tar version of the pre-trained model contained in its directory the following files:

• a graph proto

• a checkpoint

• a frozen graph proto with weights baked into the graph as constants

• a config file (pipeline.config) which was used to generate the graph

Also, I needed to find and download its corresponding configuration file

(ssd_mobilenet_v2_coco.config) from the samples/config directory which I then modified

to my preferences.

To adjust the hyperparameters of the configuration I needed to go through them and

change them to more appropriate values. Firstly, I modified the number of classes field to

a number of 13, since I used the trimmed version of the GTSRB dataset. I then had to

decide which resolution values I should use in the ͞fixed_shape_resizer͟ parameter. To

find the appropriate values I gathered some resolution metrics using the csv files as shown

in Figure 23 that contained resolution information for all the images. The results that I got

(shown in Figure 24) indicated that the average resolution was around 50 pixels by 50

pixels.

Figure 23 - Resolution Metrics Code

Figure 24 - Resolution Metrics Results

27

It made sense to use these ǀalues iŶ the ͞fixed_shape_resizer͟ field so it would not

oversample or downsample by too much. Although, soon after testing using images scaled

to 50 by 50 as shown in Figure 25 the resulting images were too small for the bounding

box and categories to be correctly visualized. It was awkward to use images with that size,

so I opted to change the resolution to 150 by 150. Testing with these new resolution sizes

scale the image to an okay size where the bounding box and category were easily visible

and identifiable.

Figure 25 - 50x50 Scaled test images

I changed the paths of the label map, the evaluation, and the training record files and

added the ability to gather evaluation metrics from Pascal VOC, including metrics for each

class. These provided a clear indication of the fitness of the training model throughout the

training process. Additionally, since I would be using Google Colab with GPU accelerated

processing, I could take advantage of the better hardware, so I changed the batch size to

24.

The configuration had some pre-set data augmentation options such as random

horizontal flip and SSD random crop which I took advantage of. These data augmentations

can have a significant impact in training time, but they help generalize the neural network

making it able to recognize images in varying conditions.

All in all, the ssd_mobilenet_v2 pre-trained model was a very good starting point but I

believed it had additional room for improvement. By doing some further research I found

this very clear and descriptive article [28] by Jonathan Hui which tested the performance

on a wide variety of models. As shown in Figure 26 found within the article I had observed

that SSD MobileNet was one of the poorest performing models on small objects. Since my

dataset only uses low-resolution images it made sense to choose and train a different

model that I could compare the performances with.

28

Figure 26 - mAP on object size amongst models [28]

With this information I decided to choose a new accuracy oriented whilst still having an

okay speed performance. By using the data given in Figure 27 I decided to use the Faster-

RCNN with ResNet101. Faster-RCNN is not that fast as R-CFN and SSD but by lowering the

Ŷuŵďer of proposals as it ǁas suggested ͞Faster R-CNN with Resnet can attain similar

performance if we restrict the number of proposals to 50.͟ I was supposed to get a similar

performance with the faster models. With this newly chosen model I supposed to get even

better than I had whilst using SSD MobileNet without seeing any significant decrease in

speed.

Figure 27 - Performance Differences [28]

Again, following the same process, I downloaded the appropriate pre-trained model file

and its configuration ͞faster_rcnn_resnet101_coco.ĐoŶfig͟ file aŶd ǁeŶt through
changing the hyperparameters. Since this configuration could maintain image aspect

ratio, I decided to again use a minimum value of 150 to account for the resolution of the

test images. To maintain the speed as I previously explained, I changed the number of

proposals to just 50 from 300. I added the appropriate file paths added the evaluation

metrics.

29

3.5 Training and Tensorboard

Having done all the previous steps, I had all the files needed as well as the environment

where I could train my custom model. Since I will be using a pre-trained model as an

initializer, it meant that the training process would provide results much faster. Several

online tutorials suggested using the training script supplied in TeŶsorFloǁ͛s OďjeĐt
Detection repository. Using the ͚traiŶ.pǇ͛ sĐript fouŶd ǁithiŶg the ͚legaĐǇ͛ folder, I was

able to start the training process and observe the training loss metric and observe how

the overall fitness of the model was improving on the provided dataset. Although I could

observe this training loss, I was not getting any evaluation metric outputs. With further

research, I found out that I needed to ruŶ the ͚eǀal.pǇ͛ fouŶd iŶ the saŵe ͚legaĐǇ͛ folder
concurrently to get an evaluation.

Creating another cell inside the Google Colab notebook and running them concurrently

did not perform as expected since it was waiting for one of them to finish to run the other.

So, I acted by creating another Google Colab notebook since I could have up to 2 runtimes

at the same time. But, by using this method, I encountered the issue of one of the

runtimes stalling. It was not getting enough processing time and it kept crashing.

Since evaluation seemed to be the most important aspect of correctly observing the

training state of the model, I had to find another way to run both training and evaluation.

The solutioŶ ǁas the alreadǇ proǀided ͚ŵodel_ŵaiŶ.pǇ͛ ǁhiĐh could perform both

training and evaluation.

I needed to do some further modifications to it (as shown in Figure 28) such as changing

the number of logging steps to 10 from the default of 100. Additionally, an important

change was on the frequency of checkpoints made. I modified it from creating a

checkpoint every 10 minutes to be done every 2500 steps. I observed that after it reached

the checkpoint mark it began the evaluation process. This took around 7-8 minutes. So,

with the previous configuration after it finished evaluating it began training for just 2

minutes then again created another checkpoint and began evaluating. This issue caused

training time to be very short, so it was not really fitting on the training set, but it was

instead fitting on the evaluation set. By changing it to a specific number of steps I had

stopped the time caused issue.

Figure 28 - model_main changes

30

Since I now had the ability to train and evaluate properly, I needed a way to observe the

process which for that I used TensorBoard. TensorBoard is TeŶsorFloǁ͛s ǀisualizatioŶ tool
that tracks and visualizes the metrics gathered (Example in Figure 29). It can be used to

draw graphs to show the performance changes and display image data to show how the

model progresses over time.

Figure 29 - TensorBoard Visualizations

For that I created a new Google Colab Notebook which I then loaded the TensorFlow

library in. I was then able to instantiate TensorBoard by directing it to the training

directory which was storing the training files and I was then returned with a page that had

all the training and evaluation metrics in the form of graphs, shown by Figure 30.

Figure 30 - Loading TensorBoard

31

Additionally, TensorBoard has a ͚Graphs͛ taď ǁhiĐh has a ǀisualizatioŶ of the ŵodel
which was used during traiŶiŶg. It ĐaŶ ĐlearlǇ shoǁ the ŵodel͛s laǇers aŶd ĐoŶŶeĐtioŶs
and its overall huge complexity as shown by Figure 31.

Figure 31 - TensorBoard's Graphs Tab Example

LastlǇ, it also has aŶ ͚Iŵages͛ taď, shown by Figure 32, which at every checkpoint

ǀisualizes the ŵodel͛s prediĐtioŶs for speĐifiĐ iŵages. It has a side ďǇ side displaǇ of Ϯ
images, the left is the Image with the bounding-box and classification predictions and

on the right is the actual image ground-truth boxes and the correct class. We can use

this to observe how the model fits on those specific images and see how it evolves

from each checkpoint.

Figure 32 - TensorBoard's Image Tab Example

32

3.6 Overfitting Prevention

͞Lack of control over the learning process of our model may lead to overfitting͟ [29]. It

had been clear that by letting the model keep training without any clear goals on when I

was going to stop the process I was going to reach the point of my model overfitting and

having a negative effect on its performance. I found 2 very popular methods in which their

implementation seemed relatively simple to adapt.

3.6.1 Dropout

A very popular method of overfitting prevention is dropout. Every neuron within the

neural network is given a probability of being temporarily ignored on calculations

(example shown in Figure 33). Although this method may sound counter-intuitive

since it limits the whole capabilities of the neural network, it can in fact help generalize

the predictions made down the line improving its overall performance. After every

iteration, any input values can be randomly eliminated. So, the neuron by trying to

balance the risk and not use the same feature dependencies it generalises the values

used in the weight matrix making them more evenly distributed.

Figure 33 - Neural Network Dropout [30]

Firstly, I added the method of dropout which was very simple to adapt to my chosen

model. IŶ the ŵodel͛s ĐoŶfiguratioŶ file iŶ the ͚ĐoŶǀolutioŶal_ďoǆ_prediĐtor͟ seĐtioŶ
there were 2 parameters that I could change (Figure 34). Either true or false to use or

not use dropout, aŶd a field Ŷaŵed ͚dropout_keep_probability͛ ǁhiĐh ǁas a
percentage given for every unit in the NN to be kept during calculations. At a value of

0.8 there was a 20% chance that a neuron could be temporarily ignored.

Figure 34 - Hyperparameters Changed for Dropout

33

3.6.2 Early Stopping

Another overfitting prevention method would be an adaptation of Early Stopping.

During training several metrics are provided, these can be used to measure the fitness

of the model at its current state. By using these values gathered and by setting a limit

on the maximum number of iterations during no progress has been made on the

metrics then we stop the training process. We want to prevent the model from fitting

to the validation data thus decreasing its overall fitness so it should be stopped at its

optimal point (example shown in Figure 35). I would wish to prevent my model from

reaching such a point since it will both waste additional time but also decrease its

overall performance.

Figure 35 - Early Stopping Principle [31]

The idea seemed very intuitive. In theory, by iteratively looking at the metrics

generated during training and evaluation you could calculate when no significant

improvements had been made and stop the training process. BǇ usiŶg TeŶsorFloǁ͛s
documentation [32] it seemed relatively simple to adapt as there were some premade

functions within their experimental section that had exactly what I was looking for.

The issue was found only after I tried implementing those functions within the

͚ŵodel_ŵaiŶ͛ traiŶiŶg sĐript. Testing with some of the available functions I had to pass

the metric name as well as a threshold value of when the hook would then stop the

process. My implementation process as shown in Figure 36 seemed to be wrong as I

saw no results. The training process never stopped even when I used both training

metrics and evaluation metrics with easily reachable threshold values.

34

Figure 36 - Early Stopping Implementation

3.7 Exporting

Since I had the ability to train properly but did not have the benefit of implementing early

stopping, I had to constantly keep track of the training and evaluation process. Evaluation

results were only generated and could be observed in TensorBoard only after the training

process had been interrupted. In order to not interrupt the process at every single

checkpoint I had to find a simpler solution.

After every checkpoint where the evaluation step was finished, I was returned with output

such as the one shown in Figure 37 which showed all of the metric values at that specific

checkpoint. Using those values, I could observe the state of the model and see how well

the model was fitting to the dataset.

Figure 37 - Evaluation Metrics Example

35

I was constantly checking that the total loss was decreasing and that the mAP for all

classes was rising. At every 10,000 steps I preferred interrupting the process, where it

caused an evaluation event file to be uploaded. With the use of my TensorBoard

Notebook I was able to visually observe how the evaluation and training metrics where

changing overtime, and I was able to observe if any irregularities occurred.

The key indicators which would show that the model was at its peak fitness in terms of

training performance were when the mAP and total loss metrics had reached a plateau.

An example of those 2 metrics within TensorBoard can be seen in Figure 38.

Figure 38 - Total_loss & mAP Graphs

When I believed that it had reached its optimal point, I would let it train for a few more

checkpoints so I could have more options when deciding which checkpoint, I would like to

export as my trained model. With the graphs in Figure 34 as an example, I chose to export

the checkpoint which was at 25,000 steps. The mAP was at its highest point and

͚total_loss͛ had shown almost no change between 30,000 steps 25,000.

To eǆport the ŵodel at that speĐifiĐ ĐheĐkpoiŶt I used TeŶsorFloǁ͛s proǀided script

͚export_inference_graph.py͛ as shown in Figure 39. Using that I pass the image tensor

input type parameter, the pipeliŶe͛s ĐoŶfiguratioŶ path, the speĐifiĐ checkpoint which I

wanted, and the output directory. The directory which was created had the same type of

files as the pre-trained model but with the changes in the Neural Network of the new

weights and biases. This model now had the ability to detect and recognize the road signs

classes it had been trained on.

Figure 39 - Exporting Script Command with Parameters

36

3.8 Testing

To deploy my trained exported model, I needed to create a Google Colab Notebook to

tests its overall ability and examine its performance using the exported test images.

I adapted an online tutorial which I had found [33] which was using live webcam feed to

perform object detection with TensorFloǁ͛s provided pre-trained models. By splitting the

different functionalities into multiple cells, I simplified the whole process which made it

easier to follow and test the custom trained models as shown in Figure 40.

Figure 40 - ImageDetection Notebook Cell Examples

The main functionalities of Road Sign detection are within the function ͚ObjectDetection͛.
It initially loads the tensors that would be used. Then with the use of the CV2 library I read

the image and with 2 different ways I could resize the resolution of the image. Since I

wanted to keep the same testing environment as it had during training, I wanted the resize

test images to more appropriate height and width values.

By using the SSD MobileNet model during training I had to adapt fixed resolution sizes of

150 by 150. Since I wanted to maintain the same testing environment, I also had to change

the resolution of the test images to those exact values (as shown by Figure 41)

Figure 41 - Fixed Image Resizing

37

For the Faster-RCNN ResNet model a different image resizer was used in the pipeline

configuration (Shown by Figure 42). It resized the image size whilst maintaining aspect

ratio and also having a set of minimum and maximum dimensions.

Figure 42 - Faster-RCNN ResNet Configuration Image Resizer

To adapt this method during the testing phase I had to check with the use of IF statements

for the dimensions of the minimum and maximum resolution values and modifying them

whilst also ŵaiŶtaiŶiŶg the iŵage͛s aspeĐt ratio.

Figure 43 - Resizing Image, Keeping Aspect Ratio with Capped Values (Code)

38

By using the provided image and the pre-loaded teŶsors a TeŶsorFloǁ͛s sessioŶ ruŶ
operation is run and the actual object detection happens. The results are then stored in a

tuple with a set of variables that contain the predicted bounding boxes for the detection,

the scores of the predicted class as well as the class name. These variables are then passed

with the image in a built-in TensorFlow visualization function where it modifies the image

to now contain the predicted bounding box as well as the class the predicts the object is

with a percentage number that indicates the confidence level for the predicted class

(Shown by Figure 44).

Figure 44 - Road Sign Detection and Visualization

39

4. Results and Evaluation

To evaluate the decisions I had made, during the implementation process, I decided to

compare trained models with only some minor property differences to show what the effect

was. By keeping most environment variables, the same, I could accurately show the

performance differences by comparing the evaluation metrics that would be gathered and

also show its actual testing performance in terms of speed and accuracy. I decided to train

eǀerǇ ŵodel oŶ the saŵe Ŷuŵďer of ϯ0,000 traiŶ steps aŶd use the saŵe ͚PA“CAL VOC
DETECTION͛ ŵetriĐs to measure the evaluation when cross-referencing with the 'eval͛
dataset.

With the models͛ exported graphs, I would use the ImageDetection notebook where with the

use of the TEST set, I could measure eaĐh ŵodel͛s performance as shown in Figure 45. To find

aŶ approǆiŵate ŵeasureŵeŶt for the ŵodel͛s speed I measured the instance of time before

and after all 150 images had been processed, I could use 2 very simple formulas to find the

average time each image needed to be processed and also find an estimate for Frames Per

Second (FPS) the model could run on a real-time processing application.

numImages /(endTime - startTime) ǁould giǀe ŵe the ŵodel͛s proĐessed FP“

(endTime - startTime)/numImages) *1000 would give me the average processed

speed in milliseconds.

To find the accuracy of the model, I compared the class predicted with the actual class of the

test image. When processing the GTSRB dataset when I extracted the 150 test images from

the evaluation set, I also Đreated a ͚test_laďel.Đsǀ͛ that had all the information for each of the

test images. During testing I could load the csv, store the actual class for each file name, and

compare the predicted result with the actual class. If the predicted class were the same, I

would count it as correct. By comparing the correct predictions with the number of images

that had been processed (150) I could find a percentage accuracy of the model.

Figure 45 - Model's Evaluation with the use of Test set

40

4.1 Classes (43) vs Classes (13) Performance Difference

Firstly, to evaluate the performance difference amongst using the whole 43 class dataset

vs the trimmed 13 classed dataset I decided to create 2 models. I used the same

͚ssd_mobilenet_v2_coco_2018_03_29͛ pre-model as an initializer whilst keeping mostly

the same hyperparameter values. The only changes I had made between the 2 was within

the configuration file and specifically on the number of classes and the number of

examples in the evaluation set.

4.1.1 Comparing TensorBoard Results

After the 30,000 training step mark, I interrupted both training processes so I could

visualize the results with the use of TensorBoard. I had 2 training folders that

contained all evaluation and training metrics for each model.

By first visualizing the 43 class model I had observed a steady improvement on all

evaluation metric graphs as shown in Figure 46. With ͚total loss͛ deĐliŶiŶg froŵ aŶ
initial evaluation at 2,500 steps with a result of 19.68 to 5.18 at 30,000 steps.

Additionally, the mAP had increased to a point of 0.5747 which indicated that the

general predictions of the model were improving significantly.

Figure 46 – 43-Class Evaluation Metrics Graphs

When comparing with the model which had trained on the 13 classes I saw a

substantial difference amongst these metric values (Figure 47). With ͚total loss͛
dropping at just 1.5 and with mAP of 0.99 this model was performing much better

given the restricted training step process. The one issue that I saw was the

͚regularizatioŶ loss͛ which began dipping down half-way, but because it was varying

on just 2 hundredths of a unit, I decided to discard it. This sign may have been an

indicator that the model was beginning to overfit to the evaluation set but because it

was so negligible, I could simply overlook it.

41

Figure 47 – 13-Class Evaluation Metrics Graphs

4.1.2 Checkpoints Extracted

By using the metrics observed within TensorBoard I had to pick which checkpoint I

wanted to extract to test Road Sign Detection on.

For the 43 class model it was obvious that it could have been trained for much longer

which would have provided with much better overall results but since I wanted to

keep my experimentation process the same I just had to use the checkpoints up to

30,000 steps. With that in mind I decided to export at the 30,000 step mark which had

the best overall results with the highest mAP and lowest total loss.

Additionally, this was the case for the 13 class trained model. The checkpoint at 30,000

steps was at its lowest point in terms of total loss and with a very high mAP of over

0.99 it was an easy choice for my exported deep learning model.

4.1.3 Comparing Performance Results

By testing the 43-class model I had observed it was running on 21.3FPS. Each image

took 46.9ms on average to be processed which was relatively fast, but it had a pretty

low accuracy of 32.67%. It was obvious that the training process had been stopped

prematurely for this specific model as all of its evaluation metrics had the potential to

improve significantly. But, this also showed that at 30,000 steps the model is not

reliable enough to be used in a real-time application, and since I was limited in the

amount of time I could have spent in training, continuing the 43-class trained model

was not viable.

For the 13-class trained model I saw that processing speed was much faster. By taking

only 32.47ms to process each image running at almost 30.8 FPS, it was much faster

than the previously tested model. With a substantial difference in the accuracy of 80%

I could now see that training with just 13 classes was much more feasible in terms of

training time relative to performance.

42

4.2 Dropout

To generalize the previously used SSD MobileNet I decided to test the dropout method.

This was in theory, going to help the model perform better on the unseen set of test

images. By using similar configuration hyperparameters as the previously trained SSD

MobileNet model I wanted to create a new one with the dropout method implemented.

With the hǇperparaŵeter of ͚use_dropout͛ set at true aŶd ͚dropout_keep_probability͛
with the value of 0.8, I was trained new model to see how much of an improvement the

dropout method could give.

4.2.1 TensorBoard Results and Choosing Export

By following the same method as before I interrupted the training process at the

30,000 step mark. Reaching a total loss of 1.8 and with mAP of 0.98 the results were

almost identical to the previously created trained model. The fitness visualized

through the TensorBoard graphs as shown in Figure 48 was almost the exact same.

With only the minor increase of 0.3 in total loss it seemed that dropout may have did

not affect the performance of the model.

With the use of these metric graphs I decided to export the 30,000 step checkpoint

which again had the highest value of mAP and the lowest total loss.

Figure 48 - TensorBoard Results on Model with Dropout

43

4.2.2 Performance Results

The overall performance of the model was almost identical which was to be expected.

With an average processing time for each image at 32.84ms and 30.45 FPS this model

had the same speed as the other trained model which did not use dropout. The

unexpected difference was in the accuracy which showed a value of 74.67%. Dropout

did in fact had a negative effect on the performance at those 30000 training steps

which was an unexpected result for a method that was supposed to improve the

ŵodel͛s performance when testing on those unseen set of images.

4.3 Faster-RCNN ResNet

Since I had seen that SSD MobileNet had a substantially good performance for those set

of training images I wanted to compare the performance with another chosen model and

see how far I could improve it. Again, by keeping the same properties such as the number

of classes at 13 I wanted to see hoǁ ŵuĐh of a differeŶĐe the ͚faster_rcnn_resnet101͛
ŵodel has froŵ the ͚ssd_mobilenet_v2͛ model.

4.3.1 TensorBoard Results and Choosing Export

The training process was mostly the same but the results that I saw such as total loss

had reached a very low value of 1.19 which seemed very promising. The mean average

precision for all of the classes had again a high value of 0.96 and all of the other metric

graphs showed the same relative relationships (Figure 49). Again, my choice of export

was at the same checkpoint of 30,000 since all of the metrics were at their best points.

Figure 49 - TensorBoard Metric Graphs on Faster-RCNN ResNet

44

4.3.2 Performance Results

The testing results of this Faster-RCNN ResNet model were supposed to show a

significant increase in accuracy. With the results as shown in Figure 50 this seemed to

not be the case. This image processing speed was substantially affected and dropped

down to just 8.89FPS, but the accuracy had very little effect to just 80.67%.

Figure 50 - Faster-RCNN ResNet Evaluation Result

4.4 Environment Difference

Finally, I wanted to observe how much effect switching to Google Colab had on my training

process. With the use of a training metric ͚gloďal_step/seĐ͛ which is visualized in

TensorBoard I could identify how many training steps per second were performed. By also

knowing the batch size which I had used for each configuration I could calculate the

performance increase I had.

The limitations of my GPU memory meant that I had to lower the batch size to the value

of 8 iŶ order to Ŷot ruŶ to the ͚ Out of MeŵorǇ͛ errors. With the value of this metric I could

observe as also shown in Figure 51 that there were approximately 3 training steps of batch

8 at every second. Multiplying these 2 provides an estimated processing value of 24.

Figure 51 – ͚Global Sec͛ Metric on Laptop

45

BǇ usiŶg Google Colaď͛s GPU I Đould take adǀaŶtage of the higher ŵeŵorǇ capacity, so I

increased the batch size to a value of 24. After carrying on with the training process I saw

that the ͚gloďal_step/seĐ͛ ŵetriĐ ǁas averaging at around a value of 5.75, as shown in

Figure 52. Meaning that for every second almost 5.75 steps of batch size 24 had been

carried out giving a value of 138.

Figure 52 – ͚Global Sec͛ Metric on Google Colab

By comparing the values from my laptop and Google Colab I could see a huge difference.

With a 5.75 improvement when using this Cloud Based alternative, this showed that my

early approach in switching from my laptop to this testing environment had saved me a

substantial amount of time.

46

5. Conclusion of Results

By comparing the results which I had gathered I identified the effect my choices had done to

the overall outcome of my results. At every evaluation step I was always choosing the last

checkpoint as my preferred export as it was always the best available one. By interrupting the

process at 30,000 steps I had never reached a point where the metrics of my model would

reach a plateau. There was always extra room for improvement which also means that I

should have trained the models for more.

The results which I had gathered as shown from the Following table indicate what effect each

change had.

 FPS Processing Time(ms) Accuracy (%)

SSD MobileNet (43 Classes) 21.3 46.9 32.67

SSD MobileNet (13 Classes) 30.8 32.47 80.0

SSD MobileNet (13 Classes + Dropout) 30.45 32.84 74.67

Faster-RCNN ResNet (13 Classes) 8.89 112.48 80.67

Firstly, when comparing a 13-class model with the 43-classes I could see how much difference

trimming the GTSRB dataset to a smaller number of classes had in all of the performance

metrics relative to the training time that was carried out. Using the 13 classes I could conclude

that the speed of the model had a 30% increase and with an improvement in accuracy of over

47%.

The dropout method may have had an effect in the long run which would have prevented the

model from overfitting to the training and evaluation image datasets but for the 30,000

training steps which I had used I saw a negative effect in the outcome of the performance.

With the average speed being almost exactly the same I had seen a decrease of more than

5% in the overall accuracy of the model with dropout vs the one without.

Furthermore, when comparing the SSD MobileNet vs the Faster-RCCN ResNet model on the

same number of 13 classes I was expecting a bigger difference to their overall performance.

With a 70% negative effect in speed and with only a 0.67% difference in accuracy, using the

Faster-RCNN ResNet model would not have been suitable for my real-time processing

application. In an environment where car speeds could exceed over 100Km/h, choosing this

relatively slow model for just an extra bit of accuracy would be unreasonable.

47

6. Future Work

The aim of my project to successfully recognize and identify road signs was met, but there are

multiple areas where further improvements can be made.

6.1 Different Dataset

If I were not limited to the memory of my cloud storage, I could have used the MTSD which

had much more available data than GTSRB. MTSD images could give better overall results

as it is observed that the Deep Learning Models perform substantially better in high-

resolution images than the low-resolution which the GTSRB dataset has. It will increase

the needed training time exponentially, but the results of the trained model should be

superior.

6.2 Hyperparameter Tuning

The task of furtherly tuning the number of hyperparameters of the trained model can

provide better training results. Given the time constraints and the scale of my project,

going through the large amount of the implicit and explicit hyperparameters and tuning

them was not timely plausible.

For example, several additional data augmentation options as described in appendix A

can be adapted which would act as having a larger dataset of images with varying

conditions. This should cause training times to be much longer but in theory, could create

a more capable model able to distinguish road signs from images in harsher situations.

6.3 Adapting Properly Overfitting Prevention Methods

Something that I have not successfully adapted to my project was the use of overfitting

prevention methods. Although I had attempted to apply them throughout my training

process their effects where either negligible or just not properly seen.

The correct application of these methods could have saved significant time as finding the

optimal state of the Machine Learning model would have been much easier.

6.4 Additional Training Time

It is a prevalent issue using deep learning techniques, that training times can be

significantly large. It had been clear that the consistent issue which I had from my chosen

models was that I did not train them long enough. The models did take a considerable

amount of time to reach that training point but given additional time the results should

have been much better.

48

7. Conclusion

The goals of my project were on creating a prototype, capable of detecting and recognizing

road signs using deep learning techniques. This aim has been successfully met, as I had

created and tested several prototypes with the use of pre-trained models which I was then

able to evaluate further.

Initially, finding an appropriate image dataset which I could process had proved to be more

challenging than I had expected. There were plenty of available options but choosing on the

right one was very important. The GTSRB dataset with its high number of low-resolution

images was a huge convenience as I was not limited due to high memory consumption which

the alternatives caused. It gave me the flexibility to train a very accurate model in a time-

efficient manner. I was able to easily manipulate, trim, and process the dataset to a size that

was much suitable for me.

Moreover, switching to a cloud-based alternative seemed to be a very important move as I

was not limited to the capabilities of my system. I was able to carry out very computer-

intensive processes in a much shorter period which allowed testing and exploring several

different approaches and methods. With the benefit of using this highly developed

TensorFlow Python Library I was able to test several different deep learning models with

minor changes but significantly affecting their overall performance.

I compared the effect of using a smaller number of classes had in the performance of the

model relative to training time. As was expected the SSD MobileNet model which was training

in 13 classes rather than all 43 had performed substantially better with over 47% in higher

accuracy. Additionally, I compared the effects of applying the dropout method which in the

given time frame provided me with negative results. Furthermore, I had tested the effects of

using a different deep learning model, the Faster-RCNN with ResNet. It was expected to have

a significant benefit in performance with some effect in processing speed but with the results

that I had gathered this seemed to not be the case. The minor increase in accuracy with the

significant drop in image processing speed, just reaching 9FPS made it unsuitable for the

applications of my project which are expected to be mostly high-speed environments.

Lastly, I had concluded that the SSD MobileNet trained on just 13 classes is a very suitable

model for Road Sign detection applications. Its development approach of being used mostly

on low-end systems with high processing speed was shown as it was the fastest amongst all

of the models tested. With an accuracy of over 80% and enough processing speed to run on

more than 30FPS this model meets all of the key requirements. In conclusion, the results

which I have found, proved that creating a deep learning model that is capable of accurately

and quickly, detecting road signs is plausible. Their overall performance shows that they can

be used for real-time processing applications.

49

8. Reflection

This Final year project proved to be my most challenging endeavour as it dared me to explore

a subject that I had never previously worked with. Making a choice for my final year project

was relatively easy as I was very intrigued in the field of artificial intelligence, specifically

machine learning. I was highly motivated to tackle a problem with a very steep learning curve

because, as I had expected, it challenged me to truly put my mind to work. I had previously

seen several applications of Artificial Neural Networks carrying out simple tasks but never to

the extent of being implemented for real-life uses.

Properly managing my time had proved to be very hard. I underestimated the time each task

would take which veered me significantly from my initial time plan, right from the very

beginning. Additionally, the difficulty of the subject was not of any help. Since it was the first

time working with this technology, making changes and bug fixing was very difficult and the

process of training neural networks was very time-consuming. I had to wait for a considerable

amount of time to see if the changes that I was making were of any benefit. Truly sitting down,

researching, and learning the background I was then able to understand how to approach

solving my problems.

Due to the recent pandemic and by following my goǀerŶŵeŶt͛s repatriation process I found

myself stuck in a hotel for 14 days where I had to quarantine before being allowed to go back

to my home. Due to this restriction I found the opportunity to focus strictly on creating my

final report. With no distractions I was much more productive. I was able to re-think the

approach of my project, made some significant changes, and managed to get the results I was

finally happy with. For me, this 2-week quarantine the best opportunity that I had, and it

played a significant role in the outcome of my dissertation. Reflecting on the overall process

of my time creating this project I should have been better at time management and task

prioritization. The complexity of the background and the unfamiliar technologies was a

difficult challenge, but seeing the outcome was all worth it.

50

9. Appendices

APPENDIX A

TeŶsorFloǁ OďjeĐt DeteĐtioŶ Data AugŵeŶtatioŶ OptioŶs

• NormalizeImage normalize_image = 1;

• RandomHorizontalFlip random_horizontal_flip = 2;

• RandomPixelValueScale random_pixel_value_scale = 3;

• RandomImageScale random_image_scale = 4;

• RandomRGBtoGray random_rgb_to_gray = 5;

• RandomAdjustBrightness random_adjust_brightness = 6;

• RandomAdjustContrast random_adjust_contrast = 7;

• RandomAdjustHue random_adjust_hue = 8;

• RandomAdjustSaturation random_adjust_saturation = 9;

• RandomDistortColor random_distort_color = 10;

• RandomJitterBoxes random_jitter_boxes = 11;

• RandomCropImage random_crop_image = 12;

• RandomPadImage random_pad_image = 13;

• RandomCropPadImage random_crop_pad_image = 14;

• RandomCropToAspectRatio random_crop_to_aspect_ratio = 15;

• RandomBlackPatches random_black_patches = 16;

• RandomResizeMethod random_resize_method = 17;

• ScaleBoxesToPixelCoordinates scale_boxes_to_pixel_coordinates = 18;

• ResizeImage resize_image = 19;

• SubtractChannelMean subtract_channel_mean = 20;

• SSDRandomCrop ssd_random_crop = 21;

• SSDRandomCropPad ssd_random_crop_pad = 22;

• SSDRandomCropFixedAspectRatio ssd_random_crop_fixed_aspect_ratio = 23;

51

10. References

[1] En.wikipedia.org (2020), Motor vehicle fatality rate in U.S. by year [online], Available at:

https://en.wikipedia.org/wiki/Motor_vehicle_fatality_rate_in_U.S._by_year (Accessed 14 May 2020)

[2] Bill Widmer (2019), 50+ Car Accident Statistics in the U.S. & Worldwide [online], Available at:

https://www.thewanderingrv.com/car-accident-statistics/ (Accessed 14 May 2020)

[3] En.wikipedia.org (2019), Traffic-sign recognition [online], Available at:

https://en.wikipedia.org/wiki/Traffic-sign_recognition (Accessed 14 May 2020)

[4] TechLeer (2017) Google To Help Developers In Object Identification Using Tensorflow Object

Detection API [online], Available at: https://www.techleer.com/articles/123-google-to-help-

developers-in-object-identification-using-tensorflow-object-detection-api/ (Accessed 14 May 2020)

[5] Fred Lambert (2020), Tesla Autopilot crash rate increases, but still lower than without Autopilot –

Electrek [online] ,Available at: https://electrek.co/2020/01/16/tesla-crashes-autopilot-increase-

better-without-autopilot/ (Accessed 14 May 2020)

[6] Carscoops (2020) [Video] Available at: https://www.youtube.com/watch?v=fKXztwtXaGo

(Accessed 14 May 2020)

[7] Sweden Mapillary AB , Mapillary - Street-level imagery, powered by collaboration and computer

vision [online], Available at: https://www.mapillary.com/dataset/trafficsign (Accessed 14 May 2020)

[8] Benchmark.ini.rub.de (2012), German Traffic Sign Benchmarks [online] Available at:

http://benchmark.ini.rub.de/?section=gtsrb&subsection=news (Accessed 14 May 2020)

[9] Benchmark.ini.rub.de (2012), German Traffic Sign Benchmarks [online] Available at:

http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset (Accessed 14 May 2020)

[10] Christian Igel (2019), Public Archive: daaeac0d7ce1152aea9b61d9f1e19370 [online] Available

at: https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/published-

archive.html (Accessed 14 May 2020)

[11] Daffodil Software (2017), 9 Applications of Machine Learning from Day-to-Day Life Medium

[online] Available at: https://medium.com/app-affairs/9-applications-of-machine-learning-from-day-

to-day-life-112a47a429d0 (Accessed 14 May 2020)

[12] Facundo Bre (2017), Fig. 1. Artificial neural network architecture (ANN i-h 1-h 2-h n-o) [online]

Available at: https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-

h-2-h-n-o_fig1_321259051 (Accessed 14 May 2020)

[13] En.wikipedia.org (2019), TensorFlow [online] Available at:

https://en.wikipedia.org/wiki/TensorFlow (Accessed 14 May 2020)

[14] GitHub, tensorflow/models [online] Available at:

https://github.com/tensorflow/models/tree/master/research/object_detection (Accessed 14 May

2020)

https://en.wikipedia.org/wiki/Motor_vehicle_fatality_rate_in_U.S._by_year
https://www.thewanderingrv.com/car-accident-statistics/
https://en.wikipedia.org/wiki/Traffic-sign_recognition
https://www.techleer.com/articles/123-google-to-help-developers-in-object-identification-using-tensorflow-object-detection-api/
https://www.techleer.com/articles/123-google-to-help-developers-in-object-identification-using-tensorflow-object-detection-api/
https://electrek.co/2020/01/16/tesla-crashes-autopilot-increase-better-without-autopilot/
https://electrek.co/2020/01/16/tesla-crashes-autopilot-increase-better-without-autopilot/
https://www.youtube.com/watch?v=fKXztwtXaGo
https://www.mapillary.com/dataset/trafficsign
http://benchmark.ini.rub.de/?section=gtsrb&subsection=news
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/published-archive.html
https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/published-archive.html
https://medium.com/app-affairs/9-applications-of-machine-learning-from-day-to-day-life-112a47a429d0
https://medium.com/app-affairs/9-applications-of-machine-learning-from-day-to-day-life-112a47a429d0
https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051
https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051
https://en.wikipedia.org/wiki/TensorFlow
https://github.com/tensorflow/models/tree/master/research/object_detection

52

[15] GitHub, tensorflow/models [online] Available at:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_m

odel_zoo.md (Accessed 14 May 2020)

[16] Sik-Ho Tsang (2018), Review: SSD — Single Shot Detector (Object Detection) [online] Available

at: https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-

851a94607d11 (Accessed 14 May 2020)

[17] Eddie Forson (2017), Understanding SSD MultiBox — Real-Time Object Detection In Deep

Learning [online] Available at: https://towardsdatascience.com/understanding-ssd-multibox-real-

time-object-detection-in-deep-learning-495ef744fab (Accessed 14 May 2020)

[18] Jiwon Jeong (2019), Deep Dive into the Computer Vision World: Part 1 [online] Available at:

https://towardsdatascience.com/deep-dive-into-the-computer-vision-world-f35cd7349e16

(Accessed 14 May 2020)

[19] Lunit Tech Blog (2017), R-CNNs Tutorial [online] Available at: https://blog.lunit.io/2017/06/01/r-

cnns-tutorial/ (Accessed 14 May 2020)

[20] mc.ai (2019), Resnet architecture explained [online] Available at: https://mc.ai/resnet-

architecture-explained/ (Accessed 14 May 2020)

[21] Nick Zeng (2018), An Introduction to Evaluation Metrics for Object Detection [online] Available

at: https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-

detection/ (Accessed 14 May 2020)

[22] Supervise (2020), Precision and Recall - Custom Plugin [online] Available at:

https://supervise.ly/explore/plugins/precision-and-recall-75278/overview (Accessed 14 May 2020)

[23] (2013), Object Detection Using SURF and Superpixels [online] Available at:

https://www.researchgate.net/figure/Illustration-of-meaning-of-false-positive-Fp-false-negative-Fn-

and-true-positive_fig1_273687795 (Accessed 14 May 2020)

[24] Koo Ping Shung, Accuracy, Precision, Recall or F1? [online] Available at:

https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9 (Accessed 14 May

2020)

[25] Research.google.com, Colaboratory – Google [online] Available at:

https://research.google.com/colaboratory/faq.html (Accessed 14 May 2020)

[26] Dat Tran (2017), datitran/raccoon_dataset [online] Available at:

https://github.com/datitran/raccoon_dataset/blob/master/generate_tfrecord.py (Accessed 14 May

2020)

[27] GitHub, tensorflow/models [online] Available at:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.

md (Accessed 14 May 2020)

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11
https://towardsdatascience.com/review-ssd-single-shot-detector-object-detection-851a94607d11
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/deep-dive-into-the-computer-vision-world-f35cd7349e16
https://blog.lunit.io/2017/06/01/r-cnns-tutorial/
https://blog.lunit.io/2017/06/01/r-cnns-tutorial/
https://mc.ai/resnet-architecture-explained/
https://mc.ai/resnet-architecture-explained/
https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-detection/
https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-detection/
https://supervise.ly/explore/plugins/precision-and-recall-75278/overview
https://www.researchgate.net/figure/Illustration-of-meaning-of-false-positive-Fp-false-negative-Fn-and-true-positive_fig1_273687795
https://www.researchgate.net/figure/Illustration-of-meaning-of-false-positive-Fp-false-negative-Fn-and-true-positive_fig1_273687795
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://research.google.com/colaboratory/faq.html
https://github.com/datitran/raccoon_dataset/blob/master/generate_tfrecord.py
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md

53

[28] Jonathan Hui (2018), Object detection: speed and accuracy comparison (Faster R-CNN, R-FCN,

SSD, FPN, RetinaNet and YOLOv3) [online] Available at: https://medium.com/@jonathan_hui/object-

detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359 (Accessed

14 May 2020)

[29] Piotr Skalski (2018), Preventing Deep Neural Network from Overfitting [online] Available at:

https://towardsdatascience.com/preventing-deep-neural-network-from-overfitting-953458db800a

(Accessed 14 May 2020)

[30] Amar Budhiraja (2016), Dropout in (Deep) Machine learning [online] Available at:

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-

better-dropout-in-deep-machine-learning-74334da4bfc5 (Accessed 14 May 2020)

[31] Konstantin (2017), Four Years Remaining » Blog Archive » The Mystery of Early Stopping [online]

Available at: http://fouryears.eu/2017/12/06/the-mystery-of-early-stopping/comment-page-1/

(Accessed 14 May 2020)

[32] TensorFlow, tf.estimator.experimental.stop_if_higher_hook [online] Available at:

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/estimator/experimental/stop_if_hi

gher_hook (Accessed 14 May 2020)

[33] Harrison Kinsley (2017) , Streaming Object Detection Video - Tensorflow Object Detection API

Tutorial [online] Available at: https://pythonprogramming.net/video-tensorflow-object-detection-

api-tutorial/?completed=/introduction-use-tensorflow-object-detection-api-tutorial/(Accessed 14

May 2020)

https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://towardsdatascience.com/preventing-deep-neural-network-from-overfitting-953458db800a
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
http://fouryears.eu/2017/12/06/the-mystery-of-early-stopping/comment-page-1/
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/estimator/experimental/stop_if_higher_hook
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/estimator/experimental/stop_if_higher_hook
https://pythonprogramming.net/video-tensorflow-object-detection-api-tutorial/?completed=/introduction-use-tensorflow-object-detection-api-tutorial/
https://pythonprogramming.net/video-tensorflow-object-detection-api-tutorial/?completed=/introduction-use-tensorflow-object-detection-api-tutorial/

