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Abstract

Android malware growth has been increasing dramatically along with increasing the

diversity and complicity of their developing techniques. One of the main technique that

is used to detect malware is machine learning methods. This is why there is a crucial

demand to evaluate machine learning algorithms performance in detecting malware.

Hence,the purpose of this work is to evaluate and examine the machine learning

algorithms performance in classifying malware and benign files. Three different

classification methods were evaluated in this research Random Forest, Support Vector

Machine, and K-Nearest Neighbors. In addition to that several default and adjusted

hyperparameters values of the three classification algorithms were evaluated. Finally, a

relation between accuracy and run time was examined.

This work presents recommended methods for machine learning based malware

classification and detection, as well as the guidelines for its implementation. Moreover,

the study performed can be useful as a base for further research in the field of evaluating

the performance of machine learning algorithms and their hyperparameters in detecting

malware.
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Chapter 1

Introduction

Nowadays, there is a rapid growth in the number of smart-phone users more than ever.

Users are more likely to interact and access network via smartphones. The current ex-

isting figure of smart phones users worldwide is 3.5 billion, which represent 45.12% of

the world population [34]. Moreover, two and a half billion users are using Android-

devices, which make it by far the largest operating system by user numbers. With the

rapid growth of the Android application development due to the market high demand,

enormous number of malwares has appeared [?]. Malware can be described as any type

of computer software that is designed to perform malicious acts such as stealing data [3].

The fact that Android is an open source operating system makes it a vulnerable target for

attackers to perform malicious attacks. These malware applications and attacks resulted

in serious damage, such as affecting normal usage, observing users behaviors, and stealing

their private information that are stored in their smartphones. With the diverse types of

malware increasing, and anti-virus scanners being unable of achieving the job of protec-

tion, resulting in millions of corrupted phones. As La Porta indicated that the number

of malicious software striking Android phones more than tripled since 2016, resulting in

almost 40 million attacks globally [23].

Hence, there is an urgent demand to provide protection against any potential attack that

might cause damage to individuals and businesses. Enormous losses and frequent attacks

dictate the need for accurate and timely efficient detection methods. Static and dynamic

analysis are the Main two focal approaches for detecting malware [14].

1



2 Chapter 1. Introduction

Static analysis is viewed as reading the source code of the malicious software and find-

ing the bad behavioral properties without running the application. On the other hand,

Dynamic analysis is achieved by preparing an isolated environment like a specific device,

and then monitor the application dynamic behavior while executing. An effective detector

that can be used to perform both static and dynamic analysis is the well-known machine

learning algorithms, which can provide high accuracy and efficient performance. Conse-

quently, there is a crucial demand to further investigate the machine learning algorithms

in terms of accuracy and performance.

However, using machine learning models as a black box without fully understanding the

details of the model will lead to a falsified model. One of the things that can distinguish

between strong and weak machine learning model is hyperparameter. Hyperparameters

are modifiable parameters that must be tuned in order to obtain a model with optimal

performance [26]. To recieve the best possiable benefits from hyperparameters, there is a

huge demand to understand the difference between them and how they can be tuned in

order to make the model perform it’s best performance. Hyperparameters are significantly

vital since they directly control behaviour of the training time. They cannot be learned

directly from the data in the standard model training process and need to be predefined

[26]. However, they can be chosen by setting different values, training different models,

and choosing the values that perform better. This research will evaluate the performance

of Machine Learning algorithms with varying their hyperparameters.

1.1 Project Aims and Scope

The main objective of this project is to investigate the performance of malware detectors

with the use of different Machine Learning algorithms. However, the second important

objective is to investigate whether altering the Machine Learning hyperparameters would

affect the performance of detecting malwares. Along with, if the default values of hyper-

parametr are performing better than the adjusted values. In order to achieve this, the

following goals were established to be followed:
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• Creating a well-functioned software system that takes malware and benign files as

an input to distinguish between them, the evaluation will be based on the three

different Machine learning algorithms: Random forest, Support Vector Machine,

and K-Nearest Neighbors, with their default hyperparameter values at first.

• Afterwards hyperparametrs default values of the three algorithms will be adjusted.

• Conduct the performance evaluation results, and most importantly considering if

accuracy has an impact on computational power.

1.2 Motivation

Over the last years, Android malware growth has been sharply increasing due to different

factors such as the increase use of Android supported devices and the diversity and com-

plexity of the hackers techniques. Nowadays, the Android global market has the biggest

share of smartphone users with 2.5 billion active users [30]. As the numbers show, An-

droid apps security concerns more than two billion active users worldwide. With the fact

that the Android environment is an open environment, there is a huge increase in the

number of published apps in the Google play store that include more than 2.87 million

apps [30]. In 2019, Android malware had the largest share among all other operating

systems malware, where 10.5 million new Android malware was recorded [31].

Mostly, the researches focus on training supervised machine learning classifiers to classify

a given data to a malware, or benign files. In fact, machine learning techniques can re-

port remarkable accuracy rates at detecting malicious apps depending on the choice of the

classifier hyperparameter. Hence, this research will explore the different hyperparameters

types and how these parameters can be tuned in order to obtain the model with the best

performance. In addition, a comparison will be made between the default and altered

values of hyperparameters, specially in terms of accuracy and run time.
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1.3 Intended Audience

The intended audience and beneficiaries from this project are the individuals who are

interested in learning how to employ Machine Learning algorithms as malware detectors

and doing research in the field of evaluating and comparing the performance of Machine

Learning algorithms.

1.4 Thesis Structure

The structure of this thesis is divided into six chapters. Chapter 2 shows a brief back-

ground about Android Malware, Detection methods, Machine learning Algorithms, and

related work that has been done in the same area. Chapter 3 Covers the Data and

Methodology part where it includes Data collection, and Analysis, Software requirements,

Development Methodology. Chapter 4 shows the Experiment part of this research such

as the Data preparation, Data loading, Feature Extraction and Selection and evaluating

the models. Chapter 5 demonstrates the results, the significant findings, performance

evaluation of the classifiers, and limitation of the work. Chapter 6 concludes the study

work, and suggests further potentials for future work for our proposed approach in this

study. Chapter 7 demonstrate the reflection on learning.



Chapter 2

Background Research

This chapter will briefly explain various concepts that are essential to understanding mal-

ware detection and the importance of machine learning methods. The Android malware

types relevant to the study are described first, followed by the standard malware detection

methods. After that, based on the knowledge gained, the need for machine learning is

discussed, along with the relevant work performed in this field.

2.1 Android Malware types

To have a clear understanding of the methods and logic behind Android malwares that

are currently used, it is useful to classify them. Malware can be divided into several types

depending on its specific purposes. Table 2.1 briefly lists the most common Android

malware types, definition, and their families.

5



6 Chapter 2. Background Research

Table 2.1: Android Malware Families

Type Definition Family

Adware This kind of programs are designed to display

advertisements on the users device, redirect

the search query to advertising websites. The

purpose of this malware is to collect market-

ing type data about the user. It is very un-

likely to cause dramatic results [18].

Dowgin family,

Ewind family,

Feiwo family,

kemogo family,

koodous family,

Youmi family

Ransomware This type of malware aims to lock the phone

system until ransomware is paid by the phone

user [1].

Charger family,

Jisut family,

Koler family,

Svpeng family

Scareware This is the type of malware that tricks the

user into visiting malware-infested websites.

It is also familiar as deception software, it

can also appear in the form of pop-ups [19].

FakeApp family,

AVpass family,

FakeAV family,

VirusSheild

family

SMSMalware This type of malware involves creating and

distributing malware by targeting the user

mobile phone. hence, they are meant to

make unauthorized calls or send unautho-

rized texts without the users knowledge.

These calls and texts are subsequently di-

rected to chargeable SMS text services oper-

ated by criminals, generating significant rev-

enue streams for cybercriminal networks [17]

BeanBot family,

Biige family,

FakeInst family,

FakeMart fam-

ily, FakeNotify

family
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2.2 Detection Methods

In this section, a detailed investigation has been conducted to explore the different de-

tection malware analysis approaches. Over the years different techniques were used to

decide whether software code is malicious or benign. The techniques are divided into

two main approaches, static and dynamic analysis. Static analysis technique inspects

the apps source code and other binary data without the execution of code. It works

by searching for malicious patterns, and then extracting features from the source code

files such as: permissions, hardware components, broadcast receivers, APIs, intents, data

flow, control flow, etc. On the contrary, dynamic analysis inspects the applications in a

run time environment and monitors their dynamic behaviors. Examples of the dynamic

features that are monitored are: network connections, system calls, resources usage, etc.

Generally, in both approaches, the data is gathered to train machine learning classifiers

to build a splitting modeling between benign and malicious characteristics of the apps.

The following sub-sections show in detail some former studies that have been conducted

in both approaches.

2.2.1 Static Analysis

One of the first attempts in the static analysis was presented by [15], where a lightweight

approach of detecting Android malware was offered by analyzing the network traffic. A

series of controlled experiments were conducted. They started by creating virtualized

Android devices with a clean application installed from a third-party market, and some

dummy user data such as contact data, account passwords, browser history, and credit

card information. Then, the researches infected the application with a number of malware

samples. Later, they analyzed the gathered network traces to find data leakage behaviour

and classify connection attempts to command and control servers. Finally, they tested

three methods (IP, DNS blacklisting, and string matching) for detecting any malicious

behaviour of Android malware, and defined four features (HTTP header flag, HTTP-

GET request, content, and pattern of POST request, well-structured identifiers in POST

request). Another attempt was proposed by Hassan, who used static analysis based
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on control statement shingling [12]. In the research, static analysis has been used to

classify malware instances into already identified and unidentified malware families. They

extracted features from disassembled malicious binaries and used the Random Forest

algorithm to classify malware. They reported up to 99.21% accuracy rate using a dataset

of 10,260 malware instances. Last but not least, a static malware detection system was

built using data mining methods that use extraction methods based on the PE headers,

DLLs and API functions and methods. The analysis involved three algorithms Naive

Bayes, J48 Decision Trees, and Support Vector Machines. The highest overall accuracy

was achieved with the J48 algorithm 99% with PE header feature type and hybrid PE

header and API function feature type, 99.1% with API function feature type [4].

Static analysis is a very straightforward and basic way to analyse malware samples, since

its simply observes the behaviour and capability of a malware. There are no specific

requirements, platforms, outgoing communications for static analysis to deal with any

type of file and perform analysis. Nevertheless, with the continually developing field of

malware, many new encounters are facing malware experts that make static analysis more

challenging and impractical.

2.2.2 Dynamic Analysis

Dynamic analysis is another type of analysis, where the behaviour of the file is monitored

while executing and the properties are inferred from that information. While examining

the files, behavioural attributes can be extracted such as opened files, created mutexes,

etc. Moreover, it is much faster than static analysis. The system is set-up in a closed and

isolated environment with proper monitoring. Kilgallon et al. combined machine learning

and dynamic malware analysis in their research [21]. The given research collects registered

values information and API calls made by the observed malware binaries. The collected

data is kept in vector structures and analysed with a value set analysis algorithm. Next, a

linear similarity metric has been used to compare unknown and new malwares binaries, to

identified malwares binaries. Their experiment revealed that the proposed method could

detect malware with an accuracy up to 98.0%. Omind and Nathan experiment used
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a behavioural based malware detection technique using a deep belief network [6]. They

collected data about malware behaviours from a sandbox environment. The gathered data

consist of API calls, registry entries, visited websites, accessed ports, and IP addresses. A

deep neural network of eight layers was used, to produce malware signatures. Afterwards,

malware detectors can be trained using these signatures. In their experiments, they

recorded up to 95.3% detection accuracy with a malware detector utilizing the SVM

algorithm. As can be seen, all studies ended up with different results. From here, we can

conclude that no unified methodology was created yet neither for detection nor feature

representation. The accuracy of each separate case depends on the specifics of malware

family used and on the actual implementation.

2.3 Machine learning

This section gives a theoretical background on machine learning methods, that will be

needed for understanding the practical implementation and evaluation. First, an overview

of the machine learning field is discussed, followed by the description of the methods

relevant to this study.

2.3.1 Machine learning basics

Machine learning can be considered as a separate field of computer science, and a result

of the rapid development of data mining techniques and methods. Machine learning

algorithms use statistics to apply patterns into a huge amount of data. Besides, there

are no limitations on the data that ML algorithms can intake, they can intake numbers,

words, and even images as long as its digitally stored it can be fed to ML algorithms [10].

At an advanced level, ML is the procedure of a computer system learning the approach

of predicting accurately when it fed with data. The main difference between traditional

computer software and ML models is that there is no developer that instructs the system

on how to act. Instead, the ML models are trained on a huge amount of data to learn how

to reliably predict and discriminate [13]. As stated by T. Mitchell: ”A computer program
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is said to learn from experience E with respect to some class of tasks T and performance

measure P if its performance at tasks in T, as measured by P, improves with experience

E” [25]. The simple idea of the ML job is depending on a specific algorithm, where it

should train a model in order to perform a specific task such as regression, classification.

Training phase is established based on the input dataset, afterwards, the build model is

used to make predictions. To develop a deeper understanding, it is worth going through

the general workflow of the machine learning process, which is shown in figure 2.1.

Figure 2.1: General Machine Learning process

As it shown from the graph the process mainly consists of six stages

1-Define the problem: Starting with specifically defining the problem and objective

before gathering data or implementing.

2-Collect Data: At first the dataset can be loaded from text files, spreadsheets, or

databases. The greater variety and volume of the problem related data, the more accu-
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rate results the machine learning model can give.

3-Prepare Data: This phase involves analysing, cleaning, transforming the data that is

loaded from step two to be suitable for the algorithm. Data is converted to have the same

range and format. Afterwards, it can be separated into two sets Training set and Test-

ing set. Training set is used to form the ML model, where testing set is used to evaluate it.

4-Train Model: At this phase, a model will be built with the specified algorithm using

the training data. In this phase identifying patterns and correlations and making predic-

tions can be made, while progressively finding a way to improve accuracy.

5-Evaluate: In this phase a comparison of the accuracy results of phase four, against

the Testing dataset. To assure unbiased test it is important to evaluate the model using

different datasets.

6-Deploy and improve: This phase involves trying different algorithms and gather-

ing greater verity of data to improve predictions until the best model is selected.

To sum up, the majority of ML process are in fact rounded and continuous. Since in the

future there is always a room for improvement, whenever there is a new data available or

with any change in situations.

2.3.2 Supervised vs Unsupervised machine learning

By now we have gathered a general idea of ML basics and its process workflow, this

section will discuss the two main different approaches of machine learning supervised and

unsupervised learning. Figure 2.2 shows the types of machine learning algorithms.
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Figure 2.2: Machine learning Types

Supervised learning: Firstly, when training supervised learning there is an input value

(X) and an output value (Y) then the algorithm is used to learn an approach of finding

a pattern to produce the desired output [35]. After the training is done the algorithm

can take an unseen before data and determine the labels of the new input based on prior

training data. The main objective of supervised learning model is to predict the most

accurate label for unseen and new input data.

Supervised learning can be categorized into two subcategories: classification and regres-

sion which can briefly explained as the following:

1-Classification: A problem is considered as a classification problem when the output

value is a category such as in our case ”Benign” or ”Malicious”. A classification model

tries to draw a conclusion from observed values. Taking a dataset as an input, the clas-

sification model will attempt to predict the value of one or more outcome [2]. Briefly,

classification either predicts categorical class labels or build a model based on Training

set and labels in classifying the attributes and use it to predict new data

2-Regression It is a regression problem when it tries to predict a value based on previous

observations and the outcome value is a numerical or continues [5]. Such as predicting a

price of car given the features of a car like model, design etc.
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In the other hand, Unsupervised learning is when only the input data X is present,

and the goal is to find pattern in the set of unsorted data to explore the data. It’s

called unsupervised learning because there is no specific correct answer, since algorithms

are discovering the interesting parts of the data without any gaudiness like supervised

learning [9]. A common subcategory of unsupervised learning is clustering.

1-Clustering: It tries to find undiscovered patterns in unlabelled data and categorize

them into clusters according to similarity. An example can be the discovery of different

customer groups inside the customer base of the online shop. As a summary table 2.2

shows the main differences between supervised and unsupervised learning:

Table 2.2: Difference between supervised and unsupervised learning

Unsupervised Learning Supervised Learning

Procedure Only input is given Input/ output is given

Input Data Unknown data Known and labelled data

Time Analysis Real Time Analysis Offline Analysis

Results Accuracy Less accurate Highly accurate and reliable

Computational Complexity Simple method Very complex

Number of Classes Not known Known

2.4 Selected Machine Learning Algorithms

In the process of exploring the appropriate algorithms that serve the research purposes,

two main reasons were set to choose the algorithm based on. Firstly, the algorithm should

be suitable for a classification problem. Secondly, there must be critical hyperparameters

that could be adjusted in the chosen algorithm. After a background research , four famous

algorithms were found. Logistic Regression, Random Forest, Support Vector Machine, and

K-Nearest Neighbors. However, logistic Regression was eliminated since it does not have

any critical hyperparameters to tune and produce significantly different results other than

penalty [26]. RF, SVM, K-NN were chosen for their diverse choices of hyperparameters.

This sub-section will provide an overview of these three algorithms.
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2.4.1 Random Forest

Random forest is one of the very common supervised classification ML algorithms, as its

name implies RF consists of a large number of individual decision tree. Every individual

tree in RF consist of class prediction, and the class with the majority votes becomes the

model prediction. It requires almost no data preparation or modelling, but usually results

in accurate results [36]. RF can be considered as a simple but very powerful algorithm

compared to decision tree. As a large number of fairly uncorrelated models operating as

a unit will exceed the performance of an individual model. Normally, there is a basic

relationship between the number of trees in the forest and the result, when the number

of trees is larger, the more accurate result it will give [32]. To best understand the logic

behind the RF procedure here is a simple pseudo-code that can illustrate it:

1- Randomly choose ”F” features from a total of ”M” features where ”F” is less than M.

2- Between the ”F” features, compute the node ”N” with the best split point.

3- Split the node into child nodes using the finest split.

4- Repeat the steps from 1 to 3 until ”l” number of nodes is reached.

5-Construct forest by iterating steps 1 to 4 for ”k” number of times to create ”k” number

of trees.

The different stages of the Random Forest algorithm to finally make a prediction, is

explained in figure 2.3.
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Figure 2.3: Random Forest Mechanism

.

1-Bootstrap Sampling: Multiple trees are selected in a random sub sample, that rep-

resent nearly two thirds of the training data (62.3%).

2- Building model: For every sub sample, one decision tree is built based on a random

set of Features, each tree gives an output that considered as a ”vote”.

3-Bootstrap Aggregating: ”Votes” are gathered from all the constructed trees and

averaged to produce one final prediction.

Advantages and Disadvantages of the Random Forest algorithm:

There are many advantages that makes RF a very popular algorithm. RF capacity make

it eligible to handle very large datasets due to its ability to work with numerous variables

running up to thousands. Automatically it can balance dataset when a single class is

infrequent than the rest of classes in the data. Also, the same RF algorithm works for

both classification and regression tasks since it can handle binary features, categorical

features, and numerical features, and the data will not be required to transform. RF
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offer a method for working with missing data, where any missing values can be replaced

by the most appearing variables in every particular node [29]. However, Two main dis-

advantages of RF that concerns the goal of this report, so it will be discussed. Firstly,

since RF creates numerous number of trees and then it gathers their outputs individually.

Hence, this algorithm requires high computational power and resources. Secondly, longer

training period, compared to a normal decision tree RF requires much more time to train

a model.

2.4.2 Support Vector Machine

Support Vector Machines (SVM) is another supervised machine learning algorithm that

is generally used for classification problems. The main idea behind this algorithm stand

on finding a hyperplane, that would divide different classes in the best way. It is called

Support Vectors because of the points lying near to the hyperplane, that would change the

hyperplane location if they are removed [8]. Moreover, the further from the hyperplane

the classes are, the more accurate predictions SVM gives. The best hyperplane is the one

that maximize the margins from both classes as shown in figure 2.4.

SVM is able to be effective in high dimensional spaces. Additionally, it still can performs

well even when the number of dimensions is higher than the number of samples. However,

the larger the dataset is with more noise or overlapping classes, it can be still effective

but it will requires more time to train [16].

SVM Kernel Functions:

Kernel functions are mathematical functions in SVM algorithms, that takes data as an

input and shape it into the required form. kernel functions give an output of the inner

product of two points in a suitable feature space. it can be done by defining a notion of

similarity, with little computational cost even in very high dimensional spaces. There are

different types of Kernel functions to be used by the SVM algorithm. Types of Kernel

Functions can be illustrated in the following table 2.3:
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Figure 2.4: Support Vector Machine Mechanism

Table 2.3: Description of Kernel Types

Kernel Description

RBF It is the default value if none type is specified.

Sigmoid It is equivalent to a two layer perception neural

network.

Linear It is the simplest kernel function, given by the in-

ner product x,y plus an optional constant c.

2nd degree polynomial It Represents the similarity of vectors training

samples in a feature space over polynomials of the

original variables.

3rd degree polynomial It is the default value of parameter for kernel of

type polynomial.
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2.4.3 K-Nearest Neighbors

K-Nearest Neighbors (K-NN) is a supervised machine learning algorithm that is used for

both classification and regression problems. It is one of the simplest algorithms, that can

give high accuracy. K-NN does not make any assumptions regarding the data structure.

Thus, it is considered as a non-parametric algorithm. In the problems of real world, data

infrequently follow the general theoretical assumptions, that makes K-NN a good solution

for these problems. In K-NN model there is no demand for a learning phase, the entire

training set is stored, since the representation of the model is as simple as the dataset [11].

As mentioned before, that K-NN can be used for classification and regression problems.

In the two problems, the model predicts based on the k training instances that are closest

to the input instance. However, in the classification problems the output would be a class,

that define where the instance belongs to, the prediction is based on the majority vote of

the k closest neighbors. In the regression problems the output is usually the mean value

of the k nearest neighbors. In both problems, choosing the right k for the data is done by

trying several K’s and picking the one that fits best. K-NN mechanism works by finding

the distances between a query and all the examples in the data, then selects the specified

number of the k closest to the query. Then it votes for the most frequent label in the case

of classification, or averages the labels in the case of regression. The mechanism of K-NN

is outlined in figure 2.5 .

KNN Advantages:

1. The model is quite simple and easy to implement.

2. Theres no necessity to build a model, tune several parameters, or make additional

assumptions.

3. It can be used for classification, and regression.

KNN Disadvantages:

1. KNN main disadvantage of becoming significantly slower as the volume of data in-

creases and number of examples, predictors, independent variables increase.
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Figure 2.5: K-Nearest Neighbors Mechanism

2.5 Models Evaluation

Evaluation is the approach to better understand how well is the machine learning algo-

rithm is performing. It’s the key to determine which classification algorithm is suitable

for a particular problem, and to evaluate how well different algorithms work and compare

one with another. This section specifically includes a brief description of the evaluation

techniques that will be used in this project.

There are different matrices and techniques to evaluate the models, where a model might

give a satisfying result using a matrix, it might give poor results when it is evaluated by

different matrix.

Confusion Matrix:

It produce a matrix as an output and describes the complete performance of the model.

Confusion matrix has four important terms that are classified as the following:

1-True Positive: is an outcome where the model correctly predicts the positive class.
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2-True Negative: is an outcome where the model correctly predicts the negative class.

3-False Positive: is an outcome where the model incorrectly predicts the positive class.

4-False negative: is an outcome where the model incorrectly predicts the negative class.

Accuracy Matrix: Accuracy is the ratio of number of correct predictions over the

total number of input samples [7], where it can be also defined as the following:

Accuracy =
TP + TN

TP + TN + FP + FN

However, It works well only if there are equal number of samples belonging to each class.

Hence, the main problem of using the accuracy as the only performance matrix is that it

doesnt work well when there is an extreme class imbalance [7].

3-Precision and Recall:

• Precision: It is the number of correctly predicted positive results divided by the

number of positive results predicted by the classifier[22]. It can be simply identified

as the following equation:

Precision =
TP

TP + FP

• Recall: It is the number of correctly positive results divided by all the results that

should have been identified as positive [22]. It can be simply identified as the fol-

lowing equation:

Recall =
TP

TP + FN
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4-F1 Score: It is the total measure of a models accuracy, it’s main aim to find a balance

between precision and recall results. The range for F1 Score is between [0, 1]. The result

of F1 can tell how many instances the classifier classified correctly, as well as how robust

it is. A perfect F1 score when its closer to 1, while the accuracy of the model decrease

when the number is closer to 0. It can be identified as the following equation :

F1Score = 2×
Precision×Recall

Precision+Recall

5-Area under the curve:

AUC provides an aggregate measure of performance across all possible classification

thresholds. One way of interpreting AUC, is as the probability that the model ranks

a random positive example more highly than a random negative example. It is scale

invariant, that means it can measure how well predictions are ranked, rather than their

absolute values. Also,It measures the quality of the model’s predictions regardless of what

classification method is chosen[22].

6-Run Time:

In order to measure the time consumed by each algorithm and it’s hyperparameters, the

elapsed time will be calculated. Elapsed time is simply the amount of time that passes

from the beginning of the classifier starting predicting until it gives the results. As far

as the project concerns the less time required for a model to produce the final results,

the more efficient this algorithm is. The elapsed time can be represented as the following

equation:

ElapsedT ime = EndT ime− StartT ime
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2.6 Python Libraries of Machine Learning

This section will involve a general description of the most significant tools that will be

used over the development stages of the machine learning models. For this project Python

programming language will be used for the implementation part. Due to the fact that

it is readable, reliable system and has simple syntax, which make it highly effective way

of coding. Also, Python offers a pre-written software libraries that can be used to solve

common programming tasks, so the development time will be reduced [27]. So, a research

on the libraries used in Machine Learning had to be conducted. Several open source of

the Machine Learning libraries are provided by Python. It can help in the main areas of

this project such as data analysis process, prototyping and evaluation. The main libraries

that will be used in this project can be illustrated in the following table 2.4:

Table 2.4: Python Libraries Description

Python Library Description

Pandas Provides fast data structures to easily work with structured and time-series

data

Sklearn Provides various algorithms, also supports Python numerical and scientific li-

braries

Numpy Provides advanced math functions and a rudimentary scientific computing

package

Time Provides various time-related functions

Metrics Provides Machine Learning Algorithms evaluation, choice of metrics influences

how the performance of machine learning algorithms is measured

Matplotlib Provides Plotting options for the Python programming language and its nu-

merical mathematics extension

Seaborn Provides a high-level interface for drawing attractive and informative statistical

graphics

2.7 Related Work

The concept of developing machine learning methods to detect Android malware is not

typically new. Several types of studies were carried out in this field, aiming to figure the
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evaluation of different methods. However, two studies related to the same focus of this

project have been found.

Firstly, the research that developed the dataset that is used to carry out this project,

that is presented by [24]. In this research, they proposed a mobile malware detection

model based on 9 different traffic features to expedite the efficiency of traffic classifiers.

Moreover, the research uses the classification methods to characterize malware families

based on the features, and the features are classified into flow-based, packet-based and

time-based features. Eventually, the chosen features to be used to classify, are Maximum

flow packet length, Minimum flow packet length, Backward variance data bytes, Flow

forward bytes, Flow backward bytes, Maximum Idle, Flow FIN, Initial window forward,

Minimum segment size forward. Moreover, three different scenarios have been outlined to

test the proposed model. Scenario A: to differentiate the malware apps from benign apps,

Scenario B: to distinguish the general malware apps from benign apps and also the adware

apps from benign apps, and scenario C: to characterize and label Benign apps, general

malware apps, and adware apps. The classifiers that were used are Random Forest, De-

cision Tree, Random Tree, K-Nearest Neighbors, and Regression. The results were as the

following detecting Scenario A and labeling Scenario C processes; the minimum accuracy

is from Regression (R) algorithm with average accuracy 90.43%, 90.47 and average false

positive 0.096%, 0.095% respectively. From several suitable classification algorithms that

were evaluated, Random Forest classifier surpasses the others with average accuracy of

92.18%, 92.09% and average false positive rate 0.07%, 0.07% respectively.

Though this research has covered different algorithms and compared their accuracy, pre-

cision, recall, and the false positive rates, it has lack of mentioning each algorithm time

to produce a result.

Secondly, an interesting research has been made by [20] in 2019, to establish malware de-

tection system using Java code. The total number of applications that have been tested

is 1958 where it includes 996 malware apps. Five classification algorithms RF, SVM,

K-NN, Nave Bayes, Logistic Regression, and three attribute selection algorithms were ex-

amined in order to choose those that would provide the most effective malware detection.
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Then, for each classifier, it is selected parameters will be tested, and with the adopted

determined parameters, the classification will be determined depending on the number of

features taken into account. Next, the most common features in malware will be listed.

The best results in terms of the number of correctly classified instances will be compiled

for the 5 tested classifiers, along with the time of the algorithms operation and the time

of the pre- processing process and the extraction of features. For testing each classifier,

10-fold cross validation will be used, repeated 10 times. The parameters that have been

tested for each algorithm are as the following: RF: Iterations and max depth, Logistic

Regression: Iterations, k-NN: number of neighbours, SVM: Kernel function.

The summary of the best results achieved by the research is showed in the Figure 2.6

below:

Figure 2.6: Second Research Result Summary

However, there has not been any conduction of research that is directly related to evalu-

ating the performance of machine learning algorithms in detecting Android malware, and

specially speed related evaluation.
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Data and Methodology

To successfully construct this project and meet the initial objectives at the same time,

it is important to identify and design the main components that need to be created.

This chapter will clearly discuss the approach of collecting data, analysing data, models

requirements specification, and the development methodology that will be followed.

3.1 Data Collection

The data that is used in this project have been retrieved from the Canadian Institute

for Cybersecurity [24]. This data contains more than 5,000 Android applications sample,

426 malware, and 5,065 benign. The data is mainly classified into four types of malware,

Adware, Ransomware, Scareware, SMS malware. Droidkin, an apps similarity detector,

shows that the selected families are not similar and not closely related in their attributes.

3.1. Hence, this results indicates that the selected malware families in the dataset are

diverse, which is very important in reducing the unbalanced data for further analysis.

The captured samples have been gathered from 42 unique malware families as showed in

table 3.1:

25
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Table 3.1: Malware Sample Distribution

Malware Type Number of Families Number of Samples

Adware 10 104

Ransomware 10 101

Scareware 11 112

SMS Malware 11 109

In order to extract features and select them, the network traffic has been captured in pcap

files during three states (installation, before restart, and after restart)

1. Installation: The first state of data capturing which occurs immediately after

installing malware (1-3 min).

2. Before restart: The second state of data capturing which occurs 15 min before

rebooting phones.

3. After restart: The last state of data capturing which occurs 15 min after rebooting

phones.

After downloading the pcap files of each type of malware family individually which is more

than 1000 file , it was then converted into csv format using WireShark(a network protocol

Figure 3.1: Droidkin Similarity Test
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analyzer) the file contains more than 85 feature and 35 different type of labels. Afterwards,

all the csv files were combined into two categories, all the benign files together, and all

the malwares together for experiment purposes, using a Python script, as shown in figure

3.2.

Figure 3.2: Combining CSV Files

3.2 Data Analysis

This network traffic flow dataset is rich in quantity where there is approximately 85

features in it with more than 35 kind of label. Moreover, its contains static features such

as permissions and intents and API calls as dynamic features. It would be beneficial to

breakdown the list of features into categories. There would be four main categories: Time-

based features, Behaviour based features, Byte based features, and Byte based features.

We categorized all listed features into four groups: Behaviour based, Byte based, Packet

based, and Time based shown in table 3.2.
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Table 3.2: Network flow based features list

Time based

Feature Name Description

Forward\Backward Arrival Time ”Std, Min,Max,Mean” Variation of time between two packets sent in the forward\backward

direction

Idle Time ”Std, Min,Max,Mean” Variation time of a flow was idle before becoming active

Active Time ”Std, Min,Max,Mean” Variation time a flow was active before becoming idle

Flow based

Feature Name Description

Forward\Backward Variance Data Byte Variation of total bytes used in the forward\backward direction

Flow FIN Number of packets with FIN

Idle ”Max, Min” Min,Max time a flow was idle before becoming active

Initial Window Forward\Backward Total number of bytes sent in initial window in the forward\backward

direction

Idle (Max, Min) Min,Max time a flow was idle before becoming active

Segment Size Forward\Backward ”Max, Min” Max,Min segment size observed in the forward\backward direction

Flow Packet Length ”Std, Min,Max,Mean” Variation of the length of a flow

Flow Forward\backward Bytes Average number of bytes in a sub flow the forward\backward direction

Byte based

Feature Name Description

Total Forward\Backward Bytes Total bytes in forward\backward direction

Forward\Backward Header Length Total bytes used for headers in forward\backward direction

Packet based

Feature Name Description

Forward\Backward Forward Packets Total packets in the forward\backward direction

Forward packet length ”Std, Min,Max,Mean” Variation of the size of packet in forward\backward direction

Behavior based

Feature Name Description

Duration Duration of the flow
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3.3 Models Requirement Specification

Every software includes requirements specification as it is the base for the entire project.

This section will talk about the functional and non-functional requirement of this project.

3.3.1 Functional Requirements

The most important functional requirements of the implemented models are outlined

below:

• The models shall take data as an input, either malware, benign, or both and classify

them into two categories malware or benign.

• There are three different classification algorithms in total. The classifiers available

are, Random Forest, Support Vector Machine, K-nearest neighbors . The following

criteria should be examined in the three different algorithms.

1-Speediness: The computation rates the model need to be trained and pro-

duce results

2-Robustness: The ability of the model to make accurate predictions with

noisy/missing values

3-Accuracy: The ability of the model to predict class label of unseen data

• The system shall test each algorithm against different experiments that will be

discussed in the Experiment chapter

• The models should produce an exact output of the time required to train a model.

3.3.2 Non-Functional Requirements

The non-functional requirements of the system are listed below:

• Reliability

– The models will have no errors and satisfactorily perform the task for which it

was designed .
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• Performance

– The model pre-processing the dataset, testing and evaluating should be mea-

sured.

• Size

– The size of the models implemented should have a justifiable impact on the

computer memory.

• Usability

– The models should be easy,understandable, and adjustable for a later use.

• Re-usability

– The code implementation of the different classification algorithms will be im-

plemented in one single file to make it easier to evaluate. Furthermore, Jupyter

Notebook platform will be used in the implementation part, since it is easier

to test specific chosen parts of the system.
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3.4 Development Methodology

Due to the project structure and limitation of time, a development methodology had

to be followed to assure the outcome of this project is as desired. The most suitable

methodology based on the needs and objectives is the Waterfall. The waterfall can be

described as several phases, where each phase must be completed before starting with

the following phase. An evaluation of the completed work at the end of each phase must

take place, to determine whether the project is on the right track or not. The motives to

follow this approach are the simplicity, ease of use, and the fact that the work stages of

the project will not overlap. the Waterfall is flexible to manage due to the rigidity of the

model, because each phase has specific deliverables and a review process. Thus, it is clear

where the project stands, what is achieved, and what needs to be achieved next. Finally,

the requirements of this project are clearly defined, which suits the Waterfall strategy.

This project has been through five main phases that are described below:

• Requirements Gathering and Analysis: The beginning of this phase was all about

understanding the requirements of this project starting from reading the description,

writing a short proposal of the experiment plan, meeting with Dr. Philipp to clarify

some unclear points, writing the initial plan and use the feedback that been given

from it in the final report. Also, a background research about the best classifiers and

their hyperparameter that serves the project objectives was conducted.

• Project Architecture: Searching, acquiring, processing dataset for the project. Choos-

ing the best classifiers to be tested.

• Experiment: Implementing the three classifiers and allow them to be trained and

tested using the dataset form the first phase. Changing the hyperparameters of each

classifier and observing the results. The following figure 3.3 describe the experiment

methodology.

• Maintenance: Issues that are reported after observing the models operating are fixed.

For example, after conducting and testing the models several times they started to

crash due to the huge amount of data, so the data had to be reduced.
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Figure 3.3: Experiment methodology



Chapter 4

Experiment

This section of the report will discuss the experiment of implementing the machine learn-

ing models down to the code level. The key parts of the code implemented will be detailed

with the related services and tools that were utilised.

4.1 Project Structure

The implementation used the Jupyter notebook platform, to produce a reliable, readable,

and maintainable system. Thus, the re-usability of the code is facilitated by the usage of

the classifiers, hence, the access for a specific functionality in the code would be easier.

There are two files, one file contains the Random Forest classifier, and the other contains

both of SVM, and K-NN.

Each of the algorithms will be tested by varying their special hyperparameter’s. After-

wards, the results of performance achieved by all classifier with their default hyperpa-

rameters or with an adjusted one’s will be analysed. The classifiers and their tested

hyperparameters are shown in table 4.1.

33
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Table 4.1: Parameters tested for classifiers

Classifier Parameter

Random Forest N-estimators/Max Depth

SVM Kernel Function

k-NN Number of Neighbors/Distance

metric/weight

4.2 Data Preparation

Reading Data:

This section will mainly discuss how the dataset was prepared and processed to be used

in each classifier.

4.2.1 Data Loading and Processing

After importing the required packages, the next step that needed to be done in the field

of machine learning is loading the data. Since the data contains labelled malwares and

benign files in csv format, and it must be prepared for the classification algorithms in

a built-in function, read csv() was imported from csv module and called using panadas.

The malware and benign csv files directory was taken in the first of the experiment and

converted into a DataFrame using panadas library for further processing as shown in the

figure 4.1.

Figure 4.1: Data Loading

One of the faced obstacles, that the malware and benign files were extremely large to

be processed, for experiment purposes a random sample from each file was taken. Also,

the two files have misleading white space in their headers, so it had to be read without

the columns headers. A 70000 number of malware types was taken and 30000 of benign
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types, respectively as shown in the figure 4.2. Then, a file that contains the new data

was created that consists of 105000 rows and 85 columns, to be used for the classification

algorithms.

Figure 4.2: Data Preparation

Encoding Data:

Since the data contain huge number of different names of malware, they were all converted

to a single categorical label malware to ease the process of training the models. Moreover,

due to the fact that machine learning algorithms cannot operate on label data directly

and require all input variables to be numeric, the categorical labels had to be substituted

with special integer values. 0 was assigned to the label benign, and 1 for malware, shown

is figure 4.3.

Figure 4.3: Labels Conversion

Data Cleaning:

As some features were not required to classify malwares, they were removed from the
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dataset. For example, since source port, destination port, Source IP, and Destination IP

are used for the flow generation and labelling process of the data, they had to be removed

from the list of gathered features. The remaining number of columns consists of 75 fea-

tures. Finally, the dataset was checked against any null values among it and removed if

found as shown in figure 4.4.

Figure 4.4: Data Cleaning

Now its essential to separate feature variables and labels using the .iloc method to remove

the last two columns from the data. Then converting the labelled data into array. Thus,

its possible to test the machine learning algorithms on the data set. Selecting features

and labels from data-frame and converting labelled data into array is done using the code

below in figure: 4.5.

Figure 4.5: Separate Feature Variables than Labels

Training/Testing Split:

After preparing the dataset, the feature vectors are split into two separate subsets, train-

ing and testing, with a percentage of with 70% training and 30 % testing. The training

set will be used to train the models alongside with their labels its, the model learns on
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this data in order to be generalized to other data later on. Testing set will be used to test

the predictions of the models. This is required to avoid over-fitting. Over-fitting refers

to a modelling fault that happens when a function is extremely close to fit into a limited

set of data points. Hence, to handle the split of the data split data() function has been

implemented. Also the function train test split() provided from -learn library was used

to take features and their labels to return two lists that holds their labels after a shuffle,

the percentage of the subsets size is assigned using test size as shown in figure 4.4.

Figure 4.6: Training Testing Split

4.3 Models

For the evaluation purposes three types of machine learning models was created, each of

these classifiers implements a suitable class from its algorithm learning model Scikit-learn

classifiers as in table 4.3.

Table 4.2: Implemented Scikit-learn classifiers

Model Implemented classifier

Random Forest RandomForestClassifier

SVM SVC

k-NN KNeighborsClassifier

4.3.1 Random Forest

Random Forest algorithm is the supervised classifier chosen to predict whether a file

is malicious or benign. In order to classify using this classifier, RandomForestClassifier

has been imported from Scikit-learn ensemble module. RandomForestClassifier class also

takes n estimators as a parameter, this parameter defines the number of trees in the

Random Forest, the default value was set as None, and it was altered between 10-100

later in the experiment. Also for our experiment purposes max depth parameter that is
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the maximum number of levels in each decision tree of the RF was varied between 5-200,

and the default value was set to 100. A table was generated to save the Random Forest

performance results. All the results were saved in a performance table then two heat maps

were generated to visualise the results of the Accuracy, and Run-time to be compared and

evaluated.

Features Importance:

Feature importance was a part of examining the features available in the data set using

random forest classifier, as this tool provides a good indicator of the feature importance

among other classifiers used. The best 20 features for the RF classification were printed

and visualised using the following code shown in figure: 4.7.

Figure 4.7: RF Important Features

4.3.2 Support Vector Machine

The next algorithm is Support Vector Machines. Before applying data to SVM, it is

important to perform scaling of that data. Main purpose of scaling data before processing

is to avoid attributes in greater numeric ranges. Another purpose is to avoid some types

of numerical difficulties during calculation, since the kernel values usually depend on the

inner product of feature vectors. Scaling is done as shown in figure 4.8. After Scaling the

Figure 4.8: SVM Feature Scaling

features an empty performance matrix was created to store the performance results after
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execution, that contains Accuracy,Precision,Recall,F1-Score, and AUC. Also, SVM will

be tested for one more evaluation indicator that is:

Logarithmic Loss: Logarithmic Loss or as its known as Log Loss, has a mechanism of

penalising the false classifications. The classifier must assign for each class for all of the

samples a probability. Log Loss has no upper bound and it occurs on the range [0, ). Log

Loss nearer to 0 indicates higher accuracy, whereas if the Log Loss is away from 0 then

it indicates lower accuracy. Overall, minimising Log Loss gives us greater accuracy for

the classifier. The previously mentioned in Chapter 2 types of Kernel function are the

chosen to be tested and evaluated. The kernel functions are RBF,Sigmoid, Linear, 2nd

and 3rd degree polynomial.

4.3.3 K Nearest Neighbors

The last algorithm implemented is the K Nearest Neighbors. The K-NN depends of the

k value which is the number of Neighbors. There are only two parameters required to

implement KNN, the value of K and the distance function. In our experiment there are

three main parameters that will be varied:

1. K value

2. Weight:

• Uniform: means that all neighbors get an equally weighted vote about an

observations class

• Distance: would weigh each observations vote by its distance from the obser-

vation that it is classifying.

3. Distance metric:

• Euclidean distance: It is the default formula that can be used to calculate the

distance between two data points in a plane.

• Manhattan distance: To calculate the distance between two data points in a

grid similar to path.
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4.4 Classifiers Evaluation

In order to evaluate the classifiers as discussed in Chapter 2, several metrics was used

from Scikit-learn. Confusion matrix, accuracy, precision, recall, F1, AUC, classification

metric function were all used. Each of these functions was passed the true labels along

with predicted labels. In the case of recall, precision, and F1 score the pos label was set

to 1 to report the scores for the malware label only. To record the run time results, start

time was recorded at the beginning time of training, and end time was recorded after

the algorithm done predicting. Then the start time was subtracted from the end time.

The list below shows the evaluation metrics with the functions used from Scikit-learn and

figure 4.9 shows an example of how they were used in the code. As this was repeated for

each classification algorithm and for each hyperparameter individually.

• Confusion Matrix: confusion matrix()

• Accuracy: accuracy score()

• Precision:: precision score()

• Recall: recall score()

• F1 Score: f1 score()

• AUC: roc auc score()

• Time: time.time()

Figure 4.9: Evaluation Metrics
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Results and Discussion

Evaluating the classifiers implemented in the software system, and analysing the perfor-

mance of each classifier with the altered Hyperparameters.

5.1 Classifiers Performance

As stated before, this report focused on implementing three types of classifiers, Random

Forest, Support Vector Machine and k-Nearest Neighbors.

5.1.1 Random Forest Performance

Random Forest Accuracy:

• Hyperparameters default values: n estimators = 100, max depth = None

The accuracy results of the classifier Random Forest is presented in a heat map in fig-

ure 5.1 to best visualize the variance of the results while varying the n estimators and

max depth. As its shown that the x-axis presents n estimators values while the y-axis

presents max depth values. The main significant trend shown is that the lowest results of

accuracy achieved by RF is when the max depth values are between 5-15 regardless what

are the n estimators values. However, the highest accuracy results achieved are when
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the n estimators value is equal to the default value 100, even when max depth values are

between 5-15 the accuracy results are higher compared to the other n estimators values.

Possibly the reason behind that, is the larger the tree the better accuracy we get. Hence,

averaging more trees will produce more robust by reducing overfitting. In regards to the

max depth values it appears that the model overfits appropriately and gives higher accu-

racy rates for large depth values. This is because the deeper the tree, the more splits it

has and it captures more information about the data. Finally, the highest accuracy result

accomplished by RF is 76.28% and that when the max depth is 25 and n estimators is

100.

Figure 5.1: Random Forest Accuracy Heatmap

Random Forest Run Time:

The second heatmap in figure 5.2 is the Run Time results achieved by running the RF

with varying the parameters values. An interesting result that when the n estimators is

set to 100 it achieved highest results in accuracy, but it was taking longer time to produce

results. Moreover, the highest accuracy result produced by RF took 21 seconds running

time, which is quite long compared to other results. However, the general observation is

that the larger value of n estimators the longer it will take from the classifier to produce
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results. Hence, producing more trees will need more memory and more time to train.

Also the larger values of max depth the longer time it will take of the classifier to produce

a result.

To conclude the results of varying the parameters of RF, it can be said that there is a

direct relationship between accuracy and run time. The higher the accuracy, the longer

it will take from RF to produce results.

Figure 5.2: Random Forest Run Time Heatmap

Random Forest Feature Importance:

Feature importance was a part of examining the features available in the data set using

random forest classifier, as this tool provides a good indicator of the feature importance

among other classifiers used. Figure 5.3 shows the best twenty features ranked by the RF

algorithm. Feature importance produce a score for each feature in the data, the higher

the score the more relevant the feature is towards the output accuracy results.
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Figure 5.3: Random Forest Important Features

5.1.2 Support Vector Machine Performance

The second classifier to evaluate is the SVM classifier, SVM is tested to measure if there

is a difference in performance between different kernel functions.

SVM Accuracy:

• Hyperparameters default values: Kernel = RBF, Degree polynomial kernel = 3

As the bar chart in figure 5.4 shows the x-axis contains the kernel functions, while y-

axis contains the accuracy scores varying from (0-1). Overall, the five kernel functions

achieved nearly similar scores. The scores varied between 0.627 for the lowest achieved

by Sigmoid, and 0.67 for the highest achieved by 2nd polynomial degree. While RBF,

Linear, and 3rd polynomial degree achieved relatively the same score. The mechanism of

SVM to produce results works by separating hyperplane, which maximizes the margin of

separation between classes, measured along a line perpendicular to the hyperplane if the

data are linearly separable. However, the algorithm of both RBF and Sigmoid works by

mapping the data to a higher dimensional feature space where the data becomes separable

and a maximum margin separating hyperplane is found in this space. In the case of our

data it appears that mapping data to a higher dimensional or being linearly separable are
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almost the same since the difference in results is in fractions.

Figure 5.4: SVM Accuracy Score

SVM Precision & Recall: Precision scores in figure5.5 are relatively similar to ac-

curacy, where all the Kernel functions achieved almost 0.67. However, the most precise

kernel function is the Sigmoid with a value of 0.679.

In contrast, Recall values in figure 5.5 exceeded all other performance measurements where

the values varied between 0.84 for the lowest (Sigmoid), and the highest at 0.99 (Linear).

The recall is intuitively the ability of the classifier to find all the positive samples. In

our case the positive is being malware, and negative is being benign. In our SVM model

it’s achieving high recall but low precision and accuracy means that it’s returning many

results, but the positive class is more accurately predicted than negative class.

Unfortunately, it is not possible to maximize precision and recall metrics at the same

time, as usually one comes at the cost of another.
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Figure 5.5: SVM Precision Score

Figure 5.6: SVM Recall Score

SVM F1 & AUC Score: F1 Score is needed when there is a need to seek a balance

between Precision and Recall. As in accuracy F1 got a similar ranking in the highest and

lowest performing. Where the highest was the 2nd polynomial and the lowest was Sigmoid

with 0.81 and 0.75 as shown in figure 5.8, respectively. While all the Kernel functions

got similarly the same result in AUC which is 0.5, illustrated in 5.7 figure. When AUC is

almost 0.5, it means model has no class separation capacity.
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Figure 5.7: SVM AUC Score

Figure 5.8: SVM F1 Score

SVM Log Loss:

The goal of our machine learning models is to minimize the value of Log Loss, so unlike

other scores, the lowest the score the better the model is. Log Loss takes into account

the uncertainty of the prediction based on how much it varies from the actual label. This

gives a more nuanced view into the performance of our model. As in figure 5.9 the best

performing kernel function was the 2nd polynomial function with a value of 0.321. While

the least performing kernel function was Sigmoid with a value of 0.372.
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Figure 5.9: SVM Log Loss Score

SVM Run Time:

The computational power in SVM perhaps is the most serious problem with the algorithm,

as it has a high algorithmic complexity and extensive memory requirements. Where the

fastest Kernel took 394 seconds to produce a result (RBF), and the lowest took 562 sec-

onds (Linear) as in figure 5.10. The reason why the Linear is not performing well in

terms of time, might be because of the lack of flexibility in the choice of penalties and

loss functions and the limited ability to scale large numbers of samples.

Figure 5.10: SVM Run Time
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SVM Kernel functions Ranking:

To make it more practical to compare and contrast between different kernel functions fig-

ure5.11 was created, as it shows all kernel functions and their ranks in accuracy, precision,

recall, F1 score, AUC, Log Loss, and run time.

Kernel Functions:

• Default (RBF): It performed its best in terms of run time where it significantly

scored a lower time to produce results. The lower rank RBF got is 4 in terms of

precision, however all other kernel functions achieved almost the same scores with

different in fractions only.

• 2nd Degree Polynomial: Among all Kernel functions it achieved the best overall

results of performance. With the first rank in accuracy, F1 score, and Log loss, and

the second in preciseness and run time. This can be because polynomial kernels are

well suited for problems where all the training data is normalized

• 3rd Degree Polynomial: Even though it is the default value of polynomial, it

staid behind the 2nd degree in almost all performance measurement except the

AUC.

• Linear: It performed the best in terms of recall and AUC, although all other

kernel functions performed almost the same in the AUC measurement. However

it was significantly the lowest performing in terms of time. This can be because

the dataset wasn’t a line separable so it would take extra computational power to

compute.

• Sigmoid: Overall, the Sigmoid kernel function was the poorest in terms of perfor-

mance, where it ranked the lowest in accuracy, recall, and F1 score. However, it

was the most precise function among all.
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Figure 5.11: SVM Kernel Rank

5.1.3 K Nearest Neighbours Performance

K-NN Accuracy:

• Hyperparameters default values: n neighbors= 5, weights=uniform, and metric=

Euclidean.

The measures of the knn algorithms was divided into 4 different experiments, with varying

the value of weight between uniform and distance, changing the measurement matrix be-

tween Euclidean and Manhattan and varying the number of neighbours as shown in figure

5.12. Overall, setting the number of neighbor into 9 was the most accurate measurement

among the four experiments. While the best accuracy measure was when the weight is

equal to distance and the distance was taken by the Manhattan, since it varied between

66.13% for the lowest and 67.78% for the highest. Moreover,in the two experiment when

the weight was set to distance, the accuracy of the algorithm continued to improve when

the number of n increased. Setting the weight into distance means that it will weight

points by the inverse of their distance. So, closer neighbors of a query point will have a

greater influence than neighbors which are further away.
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Figure 5.12: K-NN Accuracy Scores

K-NN Precision & Recall:

The precision scores were relatively similar to the accuracy scores as in figure 5.13. In

general the best results were achieved when the weight was taken by distance where it

varied between 72.6%-73.8%. In contrast, when the weight is set to uniform the precision

scores varied between 70.97%-74.8%. Unexpectedly, the highest precision is 74.82% and

that when the weight is set to uniform, distance metric to Manhattan and the value of

n is equal to 4. In the other hand, unlike accuracy and precision, recall values were at

their best when the weight is taken by uniform where it varied between 77.8% -85.9%.

When measuring using weight as uniform, it means that all points in each neighborhood

are weighted equally. However, among all experiments when n was equal to 4, it scored

the lowest recall score. Figure 5.14 refers to the recall scores.
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Figure 5.13: K-NN Precision Scores

Figure 5.14: K-NN Recall Scores

K-NN F1 & AUC:

Both values of the area under curve and F1 scores have also accomplished their best when

the weight is taken by distance and Manhattan is set as the distance metric as shown in

figures 5.16 and 5.15. Moreover, in F1 scores when the distance is measured by distance

the larger number of n the higher the score is, that applied in Euclidean and Manhattan

metric as well. However, the best scores averaged between 50.6%-60.5% in AUC, and

between 75.4%-77.5 in F1-score.
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Figure 5.15: K-NN AUC Scores

Figure 5.16: K-NN F1 Scores

K-NN Run Time:

In the case of computational power the best performing experiments where when the dis-

tance was taken by the Manhattan metric as in figure 5.17. Also it appears that the lower

the value of n, the highest computational power it takes to give result. Since the small

value of n means that noise will have a higher influence on the result and a large value

make it computationally expensive.
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Figure 5.17: K-NN Run Time

5.2 Limitations

In the process of developing this project, there were several limitations that if they were

avoided it would enhance the project outcomes.

One of the main challenges, is the computational power of our device that restricted

us on using only a partial of the dataset. Since Machine Learning algorithms are trained,

not programmed, this means that they require enormous amounts of data to perform

tasks. In order to achieve this a large memory capacity and storage is required, unfortu-

nately this wasnt available in our case.

Furthermore, the data that we used contains more than 35 different labels, due to the

lack of time and the high efforts that this kind of data will require all different malware

labels were converted to malware only. While it would be more interesting if our model

could classify each malware category and family. Also, the data that we used were not

balanced since there was a large number of malwares compared to the benign files.

Finally, in terms of varying the different kinds of hyperparameters it was a challenge

to investigate the reason why a specific hyperparameter is performing better than the

other. Although several explanations were provided through this research, there was no
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certain answer of the reasons why a specific hyperparameter is performing better than

the other.
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Final Thoughts

6.1 Conclusion

The Paper is focused on the issue of malware detection for currently the most popular

mobile system Android. In this research, an overview of Android malwares and analysis

types was presented. Along with, an overview of Machine Learning algorithms basics,

types, and libraries. The main aim of this project was to evaluate the machine learning

algorithms performance with different values of hyperparameters for each algorithm. Ad-

ditionally, observing if there is a relation between accuracy and run time. In order to

do this, three classification algorithms were implemented Random Forest, SVM, K-NN.

RF was tested against varying the max depth and n estimators hyperparameters. It per-

formed it best with the default value of n estimators set to 100, and altering max depth

to 25 rather than the default value none. Moreover, SVM performed better when the

default Kernel function was changed from RBF to polynomial degree. However, the best-

performed Kernel function was the 2nd polynomial degree, rather than the default degree

value which is the 3rd. Finally, the hyperparameters that was tested in K-NN are the

number of neighbors, distance metric, and weight measure. The default values of K-NN

hyperparameter are as the following n neighbors= 5, weights=uniform, and metric= Eu-

clidean. Despite that it gave better accuracy scores when the values are as the following

n neighbors= 9, weights= distance, distance= Manhattan.

Furthermore, among all the three classification algorithms the better accuracy scores the
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classifier achieved, the longer it requires to produce results. Also, RF, SVM, K-NN de-

fault hyperparameter required less run time to produce a result compared to the best

performing and adjusted hyperparameter.

To conclude, it can be said that there is no single best choice of hyperparameter value that

can fit all models and problems. There are several factors that affect it, such as data type,

volume, and features. So, hyperparameters must be optimized and chosen depending on

each machine learning problem.

6.2 Future Work

Due to the restricted time limit allowed for this project, there are several aspects of the

evaluation that could potentially be improved in the future. One of the aspects that could

be enhanced is the shortage of the memory space. As an alternative of using the memory

of local device, a cloud platform could be used in future to enhance the experience of

evaluating. Since the cloud platforms such as google cloud, offer low cost of operations,

scalability, and huge processing power to analyse huge amount of data. Hence, with

the additional data that could be given to ML to train, the better performance it can

achieve. Since evaluating the run time is important in this project, it would be interest-

ing to compare between the results using the local device memory and the cloud platforms.

Another enhancement could be done to this project is to evaluate additional ML al-

gorithms and their hyperparameters. Algorithms such as Bagged Decision Trees can be

tested by varying the n estimators, while Decision Trees can be tested by varying the

max depth.

An interesting addition that could be added to this work is a graphical user interface.

This interface could ask the user to choose from a list what algorithm to evaluate. Along

side with, choosing the type and number of hyperparameters and what kind of perfor-
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mance metric the user would like to examine. This would make the evaluation process

easier and more efficient for future use.

A final recommendation for the future is to perform the training of ML models without

the conversion of all type of malwares to the label ”malware” only. It would be interesting

if the models could recognize each malware family and categorise them based on types.

As the dataset contain four categories of malwares, Adware, Ransomware, Scareware, and

SMS malware.
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Reflection on Learning

While reflecting on the experience of writing a thesis, I came to the realization that in

order to accomplish the final year dissertation it requires being fully committed and ded-

icated. I believe that through this process of working on this project, my knowledge and

skills have tremendously improved. I took this project because I am very interested in

Data Science, especially Machine learning. However, when I first started this project my

knowledge about machine learning, and approaches of evaluating ML algorithms were

very limited. Through this project, I became familiar with three different ML algorithms,

Random Forest, SVM, K-NN, and their hyperparameters. As my project was focused

on Android malwares, I have discovered many things in the field of security which is

extremely beneficial since my degree focus is on security and forensics. This knowledge

that I gained will help me in my future job, as Im a sponsored student by the Saudi Oil

company Aramco, which is investing a lot of money in the field of security. Nevertheless,

I feel like I have only touched the surface of Artificial Intelligence and security, and I have

many more to learn to use the knowledge of AI in enhancing the security of my company

in the future.

An example of the challenges that I have faced throughout this project, is time manage-

ment and task prioritization. One of the problems that I have faced at first is spending

significant time to find a suitable dataset. As all the data that I found at first either were

extremely large that I couldnt even download and open on my device, or after download-

ing and analysing they were not suitable for the proposes of this project. Eventually, I
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found a suitable dataset, and took sufficient part of the data to use it. Also, managing my

time to accomplish the goal of evaluating ML was a challenge as I started implementing

the models before finding an idea to evaluate based on. Then I got the idea of evaluating

based on varying the models hyperparameters. Thus, after agreeing on the idea with my

supervisor, it was a major addition to the project.

Furthermore, the biggest challenge that I have faced, with the pandemic that the world

is living, is to still stay focus on developing the project. The uncertainty of not being

able to go back home and being with my family, have affected my motivations and my

mental health. However, with the support of my supervisor and family, and me knowing

that this project is the final step to fulfill my journey toward getting my degree, I got

very motivated to accomplish this project. Though it was difficult at times to motivate

myself and complete the work, I enjoyed the research and how it helped me to expand

my knowledge and skills.

Looking back at the whole experience, I realized that my writing skills have improved.

As a bachelor foreign student, this research was no like any other research I have done

throughout my degree. I also learned LaTeX what are the components of academic re-

search and how to write it professionally. As I have limited experience previously on

writing reports using LaTeX, which I deeply regret now. I used LaTeX to produce a

satisfactory structured and professional report, and I will definitely keep utilizing it with

any future report.
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