
1

CM3203 – One Semester Individual Project

Final Report

Implementation of a data privacy protection method

for transaction data in Python

Lim Chun Kuan – C1855672

Supervisor: Dr. Jianhua Shao

Moderator: Dr. Neetesh Saxena

2

Abstract

In the modern world, a huge amount of data is being collected, stored, and processed for

various purposes, because these data collected from people or the environment often contains

valuable information. At the same time, these data may also include sensitive information and

quasi-identifier that could lead to identity disclosure, which violates the privacy of the users.

Terrovitis et al. proposed an anonymization technique that focus on protection against

identity disclosure in publication of sparse multidimensional data termed disassociation [1].

Disassociation is implemented in C++ in the original work. In this work, it aims to implement

the proposed anonymization method in a different platform (Python), and evaluates the

results and performance.

Acknowledgement

I want to express great appreciation towards my supervisor, Dr. Jianhua Shao, for providing

guidance and assistance throughout the project.

3

Table of Contents

1. Introduction .. 5
1.1 Project Aim/ Project Goal ... 5
1.2 Implementation Approach ... 5
1.3 Project Outcome .. 6

2. Background ... 6
2.1 Privacy issues for transaction data .. 6
2.2 Privacy model .. 7
2.3 Attack Model ... 7
2.4 Anonymization Operations ... 8
2.5 k-Anonymity ... 9
2.6 km-Anonymity .. 11

3. Specification and Design .. 12
3.1 Structures ... 12
3.2 Horizontal Partitioning .. 12
3.3 Vertical Partitioning .. 15
3.4 Refining ... 17

4. Implementation ... 20
4.1 User Interface .. 20
4.2 Program Design ... 20
4.3 Structures ... 21

4.3.1 Record ... 21
4.3.2 Record Chunk ... 21
4.3.3 Cluster ... 22

4.4 Horizontal Partitioning .. 22
4.4.1 getRemainingTerms .. 23
4.4.2 mostFrequentTerm .. 23
4.4.3 horizonPartition .. 24
4.4.4 horizonPartitioning ... 25

4.5 Vertical Partitioning .. 26
4.5.1 sortSupportTerm ... 26
4.5.2 createTermChunk.. 27

4

4.5.3 kMAnonymous ... 27
4.5.4 verticalPartition ... 27
4.5.5 projectRecordChunk ... 29
4.5.6 createRecordChunk ... 30

5.0 Results and Evaluation ... 30
5.1 Dataset ... 30
5.2 Evaluation Parameters ... 31
5.3 Performance .. 31
5.4 Relative Error .. 32
5.5 Top-K Deviation ... 35
5.6 Reconstruction of Dataset ... 37

6. Future Work ... 37
6.1 Refining ... 37
6.2 Performance Improvement .. 37
6.3 Top-K multiple level mining loss tKd – ML2 ... 38
6.4 re-a and tKd-a .. 38

7. Conclusions .. 38
8. Reflection ... 39
9. Reference ... 41

5

1. Introduction

As technology progress rapidly year by year, many people realize how important data is, in

order to progress further. A variety of digital data has been collected by the government,

corporations, and individuals for various purposes, e.g. data analytics. Either due to

regulations or mutual benefits, data publishing is often required. To make data to be more

accessible for either research purpose or commercial purpose, or the data owner wants the

data to be published, or to use these data to achieve a greater good for humanity, these data

needed to be published. For example, the cases of COVID-19 in each country are mostly

published [8], and a large amount of research data such as the demographic of COVID-19

patients [7]. However, publishing data that contains sensitive information of individuals

directly violates individual privacy. Hence, privacy-preserving data publishing (PPDP) has

been a topic within some research communities, and many approaches (e.g. generalization

and suppression) has been proposed.

1.1 Project Aim/ Project Goal

Disassociation is an anonymization technique proposed by Terrovitis et al. [1] to provide

protection against identity disclosure in the publication of sparse multidimensional datasets. It

protects the user’s privacy by disassociating record terms that participate in identifying

combinations [1]. In this project, it intends to implement disassociation in Python, evaluates

its results and performance on the same dataset introduced in [1], and compares them to the

experimental results that are produced in [1].

1.2 Implementation Approach

The project will be implemented step by step with the disassociation algorithm, after

completing and testing one part of the algorithm, then only move onto the next one. For

example, horizontal partitioning will be implemented and tested first, and after it is

completed and ready for deployment, then only the development for vertical partitioning will

begin.

6

1.3 Project Outcome

The project manages to produce several important outcomes:

 The implementation and correct output of horizon partitioning

 The implementation and correct output of vertical partitioning

 The timings of horizon and vertical partitioning

 Information loss measurements

2. Background

We will provide a background context on privacy issues of transaction data and some

proposed privacy models for transaction data.

2.1 Privacy issues for transaction data

A large amount of high dimensional data are being processed and published on a daily basis,

and transaction data is one of the instances. Transaction data corresponds to a record owner

and its respective set of items under a specific context. Some of the examples are web

queries, emails, medical notes etc. These types of data often contain useful information and is

a great source for data mining. However, they may also contain sensitive information about

the record owners and publishing it without any anonymization techniques could result in

identity disclosure and privacy breaching.

A previous case exposes the privacy threats caused by publishing transaction data: AOL

published a database of web search queries to the public for research purposes [2]. However,

by examining query terms, AOL user No. 4417749 was linked to Ms. Thelma Arnold, a 62-

year-old widow who lives in Lilburn. Even if a query does not contain any attribute that are

detrimental to identity disclosure (e.g. names or address), the combination of query terms that

are adequately unique to a record owner can still be used for re-identification of the record

owner. This scandal led not only to the disclosure of private information of AOL users, but

also affected data publishers’ enthusiasm in offering anonymized transaction data for

research purposes [3].

7

2.2 Privacy model

Privacy model can be broadly categorized into two categories.

The first category deems that privacy is vulnerable to attack when an adversary is able to link

a record owner to a record in a published data table, to a sensitive attribute in a published data

table, or to the published data table itself. They are called record linkage, attribute linkage,

and table linkage, respectively [3].

The second category tries to achieve the uninformative principle [4]: “The published table

should provide the adversary with little additional information beyond the background

knowledge. In other words, there should not be a large difference between the prior and

posterior beliefs.” We consider a probabilistic attack has been performed if there are a large

difference between the prior and posterior beliefs to the attacker.

The privacy model we will be focus on falls on the first category. More specifically, the

attack model we are providing protection from is record linkage. Our anonymization

technique tries to prevent linkage of the records in a published data table to its record owners

that leads to identity disclosure.

2.3 Attack Model

Record linkage. In a record linkage attack, some value of an attribute only identifies a small

amount of records in a released table. If the victims’ QID(quasi-identifier, a set of attributes

that could possibly identify record owners) matches them, then the attacker is able to link the

victim to the group of records, which narrows down the possibilities for the attacker to find

the victim’s record. With some additional background knowledge, it becomes possible for the

attacker to accurately identify the record that belongs to the victim from those records.

 Figure 1

8

Example 1. Figure 1.1 is a table of patient records that a hospital wants to publish for

research purposes. If an attacker knows that his friend Bob is among the patient, with

background knowledge of Bob’s age is 48 and his job is pianist, the attacker can link Bob to

the third record, and knows that Bob is a HIV patient.

2.4 Anonymization Operations

If a table to be published does not meet a specified privacy requirement, then the table need

to be modified to meet the requirement before publishing. A series of anonymization

operations are performed to modify the table. There are several types of anonymization

operation, here are a few examples: generalization, suppression, anatomization and

perturbation.

Generalization. Generalization replaces some value of an attribute with a more “general”

value in the taxonomy of that attribute. For example, in Figure 1.1, the job singer and pianist

can be replaced with a more general value musician. The reverse operation of generalization

is called specialization.

Suppression. Suppression removes some values, or replaces some values with a special value

(such as asterisk ‘*’), to hide the content of those specific values or all values of a column.

Anatomization. Anatomization does not change the value of the QID (quasi-identifiers) nor

the sensitive attribute, instead it separates them. This approach publishes the data of the QID

and the sensitive attribute in two separate tables, with a common attribute that links both

tables together. Disassociation extends this approach by separating terms of the original data.

Perturbation. This approach focuses on preserving statistical information. The idea is to

replace the original data values with some synthetic data values, so the statistical information

does not differ too much compared to the original data. Since the perturbated data does not

9

correspond to any real-life individuals, attacker cannot perform linkage attack on the

published data. However, the published “synthetic” records could be meaningless to some

recipients.

2.5 k-Anonymity

k-Anonymity is an approach proposed by Samarati and Sweeney [5] to provide protection

against record linkage through QID. A database is a table with n rows and m columns. A

table is k-anonymous if one record in the table has some value qid, there are at least k-1 other

records that hold the same value qid. In a k-anonymous, each record is indistinguishable from

at least k-1 other records in terms of QID. So, the probability of an attacker linking an

individual through QID is at most 1/k [3].

The common methods for achieving k-anonymous is generalization and suppression.

Figure 2 shows an example of k-anonymous table using generalization and suppression. Let

k=2, and the quasi-identifiers are {Age, State}. The left table is the table with original

records, and the right table is the k-anonymous table.

Figure 2: Example of k-anonymous table using generalization and suppression

Assuming the data is intended to be published to a recipient for the purpose of finding

correlations between age and disease, the anonymized table shown in figure 2 should be able

10

to satisfy the intended purpose. In the right table, the ‘age’ attribute values are replaced with

more “general” values, replacing specific age value with an age range of 10. While modifying

its value, but maintaining its original meaning. The ‘state’ attribute values are suppressed and

replaced with ‘*’, because ‘state’ attribute serves no value for the intended purpose of the

table, and additionally most of the values in ‘state’ attribute do not have k records that holds

the same value.

There are several issues with k-anonymity. In many real world application, generalization and

suppression would often remove valuable information in the data, which results in huge

information loss. k-Anonymity is also vulnerable to background knowledge attack, by having

some background knowledge, the attacker can narrow down the possible records and break k-

anonymity. For example, Figure 3 shows a k-anonymized table where k=2 and the quasi-

identifiers are {Age, State, Gender}. Even if the table is k-anonymous, if an attacker knows

that Bob participates in this table and has background knowledge of Bob is a 58 years old

man, then the attacker can narrow it down to R1 and knows that Bob has HIV.

 Figure 3

ID Age State Disease Gender

R1 50≤Age<60 * HIV Male

R2 30≤Age<40 * Breast Cancer Female

R3 Age<20 * Flu Male

R4 30≤Age<40 * HIV Male

R5 Age<20 * Flu Female

R6 50≤Age<60 * Heart Disease Female

11

2.6 km-Anonymity

km-Anonymity is a new version of k-anonymity guarantee proposed by Terrovitis et al. [6].

The anonymization model is proposed for transactional databases. It guarantees that an

attacker, who has background knowledge of up to m items, will not be able to distinguish any

record from other k-1 records. The formal definition:

An anonymized dataset DA is km-anonymous if no adversary that has a background

knowledge of up to m terms of a record can use these terms to identify less than k candidate

records in DA. [1]

In this project, we aim to achieve km-Anonymity through anatomization instead of

generalization as proposed in [6]. Unlike k-anonymity problem in relational database, there is

no fixed, or well-defined set of quasi-identifier attributes and sensitive data. Additionally, the

transactions have variable length and high dimensionality, compared to relational database

that only have fixed set of attributes. Figure 4 shows an example of a km-Anonymous table,

where k = 2, and m = 2.

 Figure 4: 22-Anonymous table (km-anonymity)

Even if an attacker has a background knowledge of m (2) items in this case, there are at least

k (2) records that contain them. For example, if an attacker knows Bob searched 2 terms

{basketball, headphone}, the attacker can only narrow it down to R1 and R3, but not able to

accurately identify which record belongs to Bob.

ID Web Search Query

R1 basketball, apple, tea, headphone

R2 starbucks, headphone, apple, tea

R3 basketball, starbucks, headphone

R4 basketball, apple, starbucks

R5 tea, basketball, starbucks

12

3. Specification and Design

The implementation is developed in Python 3.7.5, and the program will require the

installation of two Python library: pandas and mlxtend.

A user interface is implemented for the users to choose the dataset they want to run the

program with. There will be 4 datasets available to choose, and they will be introduced in the

later section.

Disassociation algorithm has three stages: horizontal partitioning, vertical partitioning, and

refining stage. It transforms the original records into smaller and disassociated sub-records.

3.1 Structures

There is a “structures” python file that contains all the class object that will be used in the

disassociation algorithm. There will be three class objects: Record, Cluster, and

RecordChunk, which respectively represents record, cluster and record chunk. The object’s

methods will be defined in the class.

3.2 Horizontal Partitioning

Records of the original dataset D are being grouped into clusters according to their similarity

of their contents. Horizontal partitioning essentially transforms a dataset into multiple smaller

and independent clusters. The pseudo-code of horizontal partitioning is shown in Figure 5.

Figure 5: Pseudo-code of Horizontal Partitioning [1]

13

Horizontal partitioning (HorPart) is a function that split the dataset into clusters of records.

The maximum cluster size is defined by the parameter maxClusterSize, the final output of the

horizontal partitioning algorithm will produce numbers of clusters contains of records less

than maxClusterSize. The algorithm takes two input: dataset D, and a set of terms ignore.

There is a set of terms ignore that is taken as input in this algorithm as shown in Figure 5.

The set ignore contains the most frequent terms of accumulated from each partitioning, and

the set is unique to each HorPart, it is initially empty.

The algorithm first check if the size of the original dataset D is smaller than maxClusterSize,

if it is then nothing will be done. Otherwise, D will be split into two partition (D1 and D2). D1

is the partition with all the records that contains the term a (the most frequent term in D after

excluding all terms in set ignore), and D2 is the remaining records in D. If D1 has a size

greater than or equals to maxClusterSize, then it will be horizontal partitioned again, the same

goes for D2. Note that D1 is later partitioned with the ignore set that includes a, but not for

D2. If D1 has a size that are smaller than maxClusterSize, then the partition D1 forms a cluster,

and the same goes for D2. HorPart will be applied recursively to each partition until the

partition size is smaller than maxClusterSize.

However, there is one thing that the paper [1] does not take into account in HorPart, which is

what happen if the partition has a size that is smaller than k. If HorPart is performed

according to the pseudo-code, then there could be clusters with a size that are smaller than k,

which is problematic because the clusters could not possibly achieve km-anonymity if there is

no k items in the cluster. A solution that I come up with is to put all the records of those

partitions with the size smaller than k into a list of rejectedRecords, and later apply HorPart

to it. This will ensure that all the clusters have the size less than maxClusterSize, at the same

time greater than or equals to k. If rejectedRecords only consists of less than k records, loop

through each cluster to find a cluster that has the capacity to fit all the records in

rejectedRecords, and put them in it, this can avoid the scenario of the program endlessly

horizontal partitioning rejectedRecords if it happens to have less than k records.

14

Figure 6: Horizontal Partitioning Example (maxClusterSize = 6, k=2)

Figure 6 shows an example of horizontal partitioning. The most frequent term in the original

dataset D is “madonna”, which has 9 records containing it. The algorithm first partitions them

into two group. The first group containing the 9 records that contain the term “madonna”, and

the second group only contains r9 because it does not contain “madonna”. Since the first

group has a size larger than maxClusterSize(=6).

 (6), so the first group is partitioned again into two groups, one group containing records that

contain the most frequent term other than “madonna” (note that “madonna” is added into the

ignore set for this group, so it will be ignored when looking for most frequent term in the

group), which is “ruby”, since only 4 records contain the term “ruby” and it is smaller than

maxClusterSize, these records are put into a cluster P2; the other group contains the remaining

5 records that does not contain “ruby”, since it has a size is smaller than maxClusterSize as

well, these records are put into a cluster P1. Now there is only one group left that is not

distributed into a cluster, which only contains 1 record r9, the record size is smaller than

maxClusterSize but it is also smaller than k(=2), so it cannot form its own cluster. Instead we

go through each cluster to find a cluster that can fit this group in, which is cluster P2, because

P1 already has the max size of 5 (|P| < maxClusterSize).

15

3.3 Vertical Partitioning

Vertical partitioning let term combinations that appear many times in a cluster stay together

and disassociates terms that create infrequent, thus, identifying combinations. The purpose is

to hide the fact that these terms appear together in the same record, and prevent an attacker to

easily identify a record with infrequent term combinations.

Each cluster is vertical partitioned into two types of chunks, record chunks and term chunks.

Record chunks contain subrecords of the original dataset, and they are km-anonymous. Term

chunks contain terms that appear in a cluster, but are excluded from the record chunks. A

term chunk is just a set of terms. Each cluster can have 0 or more records chunks, but only

have exactly one term chunk. The pseudo-code of vertical partitioning is shown in Figure 7.

Figure 7: Pseudo-code of vertical partitioning [1]

Vertical partitioning is applied independently to each cluster. It takes a cluster and integers k

and m as input. First, it computes the support (number of appearances) for each term that

appears in the cluster, and sort them in a descending order. Every term that has support less

than k are inserted into term chunk TT, as they are infrequent and record chunks are unable to

achieve km-anonymous with these terms.

Tremain is the list of remaining terms that are not assigned to term chunk in descending order,

these terms will participate in record chunk. The algorithm computes sets of terms T1,…,Tv

16

(while loop of line 8 to 15), Ti (1 ≤ i ≤ v) is a set of terms that participates in a record chunk

Ci. In the while loop, TCur is a set that contains the terms that will be assigned to the current

set of terms. For each term t in Tremain, t will be inserted into a test chunk Ctest (TCur ∪ {t}), if

Ctest is km-anonymous then t will be added into TCur, but the first execution of this for loop

will always add t into TCur since {t} is km-anonymous. To check if Ctest is km-anonymous, we

need to check all the combinations of the size up to m and make sure they appear in at least k

records, if any of the combinations does not fulfil the requirement above, then t is rejected

and will not participate in TCur. For example, let k=2, m=2, Ctest = {p,q,r,}, then it will

generate the following combinations {{p},{q},{r},{p,q},{p,r},{q,r},{p,q,r}}. However if we

want to check if it’s km-anonymous, we do not have to check all of the combinations, we only

need to check the combinations of the size up to m, and we do not have to check the single

items ({{p},{q},{r}}) too because they are guarantee to have k support, so we only have to

check if every combination in this set {{p,q},{p,r},{q,r}} appears in at least k records.

After finishing testing every term in Tremain, the set of terms in TCur will be assigned to Ti, and

all the terms in TCur will be removed from Tremain, then the algorithm moves on to the next set

Ti+1.

Finally, the algorithm creates record chunks C1,…,Cv by using T1,…,Tv and the term chunk CT

using TT. Each record chunk Ci contains subrecords with terms in Ti. For instance, cluster P1

has 3 records: {p,q,x,y,z}, {p,q,z}, {p,q,y,z}, if Ti = {y,z}, then Ci contains 3 subrecords:

{y,z}, {z},{y,z}.

Figure 8 shows the vertical partitioning of the dataset in Figure 6. Take cluster P1 for

example, every term combination in C1, C2, C3 appears in at least k records. {ikea, panic

disorder, iPhone sdk} is placed in the term chunk, because they have less than k support.

17

Figure 8: Vertical Partitioning Example (k=2, m=2)

3.4 Refining

Refining is the final stage of the disassociation algorithm, however at the end of vertical

partitioning, the dataset is already disassociated. Refining is the stage that improve the quality

of the result while keeping the anonymity guarantee. In this stage, it focus on the terms in the

term chunks. A term T1 can appear in term chunks in multiple clusters because their support

in those clusters are low, e.g. Figure 9 shows the clusters produced by vertical partitioning if

k=3. The term ikea is in the term chunk in both cluster because its support is low, but the

support of the term ikea considering both cluster P1 and P2 is now low enough to jeopardize

user privacy.

To address such issues, [1] proposes joint clusters that allows different cluster to share record

chunks. Given a set TS of refining terms (e.g. ikea), which appear in the term chunks of two

or more clusters (e.g. P1 and P2), a joint cluster is defined by (a) creating one of more shared

chunks after projecting records of the initial clusters to TS and (b) removing all TS terms from

the term chunks of the initial clusters [1]. Figure 10 shows a joint cluster, created by joining

clusters P1 and P2 of Figure 9, based on TS = {audi a4, laptop, panic disorder, sony tv, ikea}.

18

Figure 9: Vertical Partitioning of DA (k=3, m=2)

Figure 10: Disassociation with Shared Chunk

We may form a higher-level joint cluster by joining joint clusters with simple clusters. A

simple cluster is the cluster produced by vertical partitioning, e.g. cluster P1. The output of

vertical partitioning is a set of km-anonymous clusters P. Refining improves the quality of P

by iteratively constructing joint clusters until no more improvement can be made. To perform

refining stage on P, a naïve way of doing includes computing the information loss (e.g. using

the metrics in section 5) for all the possible combinations of joint clusters and choose the

combination with the best quality (i.e. least information loss). However, that would be too

19

inefficient, and probably will take too much time and memory space, so a refining criterion is

defined in [1]. Let us consider two clusters J1 and J2, these clusters are joined into cluster Jnew

if the following inequality holds:

where (a) t1 ,…, tn are the refining terms TS, (b) s(t1),…, s(tn) are the supports of t1 ,…, tn

respectively in the shared chunks of Jnew, (c) P1,…, Pm are the simple clusters of J1 and J2 that

contain t1 ,…, tn and (d) u1,…, um are the number of terms t1 ,…, tn that appear in the term

chunk of each of clusters P1,…, Pm respectively [1]. For example, if J1 and J2 are clusters P1

and P2 of Figure 9, and Jnew is the joint cluster of Figure 10, then the refining terms would be

{audi a4, laptop, panic disorder, sony tv, ikea}. We will have: ௦(௔௨ௗ௜ ௔ସ)ା௦(௟௔௣௧௢௣)ା௦(௣௔௡ ௗ௜௦௢௥ௗ௘௥)ା௦(௦௢௡௬ ௧௩)ା௦(௜௞௘௔)|௃௡௘௪| ≥ ௨ଵା௨ଶ|௉ଵ|ା|௉ଶ|
 ଷାଷାଶାଷାସଵ଴ ≥ ହାହହାହ  ଵହଵ଴ ≥ ଵ଴ଵ଴

Thus J1 and J2 will be replaced by Jnew. The left part of the equation calculates the probability

of assigning one of t1 ,…, tn to the records of the joint cluster Jnew, while the right part of the

equation calculates the probability of assigning one of t1 ,…, tn to the records cluster J1 and J2

[1].

However, even with the equation provided, it is still computationally infeasible to look at all

the combinations of clusters and find the best one. A REFINE algorithm is defined in [1] that

merges only two existing clusters at a time to form a new joint cluster. Figure 11 shows the

pseudocode of the REFINE algorithm.

Figure 11: Pseudocode of Refine Algorithm

20

Due to the COVID-19 situation, face-to-face meeting is cancelled. It makes explanation and

discussion on how the refining stage works and how it should be implemented more difficult

for me and my supervisor. After careful consideration, my supervisor kindly suggests that I

do not implement the refining stage in this project.

4. Implementation

We will go into details of the implementation of the disassociation algorithm using Python in

this section, including the design, explanation of the code and challenges of implementation.

4.1 User Interface

A simple user interface is implemented which lets the user choose which dataset to run the

disassociation on. After choosing one of the given 4 dataset, the program will run itself, and

perform the disassociation algorithm and the evaluation methods, then it will output the time

spent on performing each algorithm and the evaluation metrics results. I try to keep the user

interface simple and easily understandable to avoid confusion, at the same time showing all

the work that I have done.

4.2 Program Design

All the object class that represents something such as record, cluster etc is under

“structures.py”. Every method that relates to horizontal partitioning are in the class HorPart.

Similarly, every method that relates to vertical partitioning are in the class VerPart. Python

allows multiple classes to be defined under one python file helps to group similar classes and

methods together. Evaluation methods are all defined under “evaluation.py” and data

reconstruction method is defined in the class DatasetReconstruct. At the end, we just use the

main method to import every classes and run all the necessary methods to retrieve the

information we are interested.

21

4.3 Structures

Under “structures.py” file, I created three object classes (Record, Cluster and RecordChunk)

representing record, cluster and record chunk respectively. Each class contains relevant setter

and getter method, as well as string object that returns useful information.

4.3.1 Record

A class Record consists of a unique identifier recID and its record values recVal. A record’s

recID is given when parsing the dataset into records, e.g. the first record is given the recID

“R1”, the second record’s recID is “R2”, the 300th record’s recID is “R300” etc. It is

implemented because it’s easier to count and differentiate each record for a human in this

way. The record values are stored in a Set, the reason of it is because it is significantly faster

to check if an item is in a set than a List, because time complexity for querying a Set is O(1)

compare to a List O(n). The order of the items in a record does not matter, and here I assume

there will be no duplicate items in a record. Since there are many checking operations

performed on the record values, hence using Set over List for storing record values gives us a

better performance.

4.3.2 Record Chunk

Similarly, a class RecordChunk consists of a unique identifier recordChunkID and its

subrecords value recordChunkValue, each record chunk ID starts with “C”. The class has

setter and getter method for both variables. A string method that returns the record chunk ID

and its subrecords. The record chunk value is a list of Record objects, it is implemented as a

List because it needs to keep the order of the subrecords, while also allow multiple identical

subrecords.

22

4.3.3 Cluster

A class Cluster consists of a unique identifier clusterID, which starts with “P”, it also consists

of a list of records records, a list of RecordChunk that associates with the cluster

recordChunks, and a set of term chunk that associates with the cluster termChunk. Its String

method will return the records that are in the cluster, the record chunks and their subrecords

and its term chunk. We use a List to represent the records and record chunks in the cluster, so

it preserves the order of the records, it is also slightly faster to iterate over the records than

using set. The term chunk is a Set because the order does not matter and there should not be

any duplicate in the term chunk, and the time complexity for querying a Set is O(1), so it

would be faster to check if an item is in the term chunk than using a List.

4.4 Horizontal Partitioning

The entire horizontal partitioning algorithm is implemented inside the class HorPart. The

class expects 2 arguments (maxClusterSize and k) when creating a HorPart object.

maxClusterSize is needed in horizontal partitioning because horizontal partitioning is the

algorithm that partitions the dataset into clusters, hence the maximum size of cluster needed

to be defined. k needed to be defined too, in order to check and prevent clusters size smaller

than k.

When the class is initialized, the constructor method will initialize 7 attributes. k and

maxClusterSize has already been explained in section 2 and 3.2 respectively. clustersList is

the list of clusters produced by horizontal partitioning, this is the output of horizontal

partitioning. It is a list because I consider the order of cluster important and there are a good

amount of iteration of its content in the program. clusterCounter is a just counter for the

cluster, it is used for assigning clusterID, the clusterID starts with “P1”. queueListData and

queueListIgnore are a queue implemented in a list, a detail explanation will be given below.

Finally, rejectedRecords is also explained in section 3.2, a list is used for the performance of

iteration.

23

4.4.1 getRemainingTerms

getRemainingTerms is a method that return the remaining terms in a dataset after removing

all the terms that appears in the ignore set. It takes 2 argument, the dataset, which is a list of

records and ignore, a set of strings to be ignored. The code is shown in Figure 12.

Figure 12: getRemainingTerms code

Part 1 iterate over each term of each record in the dataset and append every term in the record

into the list remTerms. Part 2 uses list comprehension to filter out all the terms in ignoreTerm

and return the remaining terms that are stored in the list rTerm. The reason of using a list for

the remaining term and store all the duplicate terms, instead of using a set and only store once

for each term and ignoring the duplicate, is because rTerm will be used to count the

frequency of each term in the future. List comprehension is used for filtering because it’s one

of the most efficient way of performing this operation.

4.4.2 mostFrequentTerm

This method returns the most frequent term of the remaining terms. It uses Dictionary to store

each term and its occurrence count. It iterates over the List remTerms and updates the

occurrence count of each term, then updates the most frequent term if the current term has an

occurrence count more than the current most frequent term.

24

4.4.3 horizonPartition

This method performs horizontal partitioning on the dataset just like the algorithm shown in

Figure 5. First, it gets the remaining terms, if the remaining terms are empty, that means that

the every records in the dataset only contains terms that are previously the most frequent

term, in this case, all the records in the dataset are inserted into rejectedRecords and the

HorPart for this partition ends here.

If the remaining terms are not empty, it finds the most frequent term of the dataset, and begin

the partitioning. The records that contain the most frequent term will be inserted into a List

freqTermList, and the others will be inserted into a List otherTermList. As mentioned above,

if one of the lists has a size smaller than k, all its records will be inserted into

rejectedRecords, for a reapplication of HorPart.

Figure 13: Creating cluster

Figure 13 shows if the list has the size smaller than maxClusterSize and greater than k, then

the records in the list will become a cluster and added into clustersList. At the same time, it

removes the records that are in this list from the rejectedRecords.

Figure 14: Queueing up larger than k partition

Figure 14 shows what happen if the list has the size greater than maxClusterSize. The code

above applies to freqTermList and the bottom applies to otherTermList. It creates a copy of

the set ignore to prevent alteration. The code above will add the most frequent term to the

ignore set because the freqTermList contains the records that contain the most frequent term.

Finally, it appends the list and the ignore set to the end of the lists queueListData and

25

queueListIgnore respectively, the lists acts as a queue, so both of them are inserted into the

back of the queue.

4.4.4 horizonPartitioning

This method is the main method of horizontal partitioning. It integrates all the methods and

produce the final result of horizontal partitioning. First, it checks if the size of the original

dataset is smaller than maxClusterSize, if it is then the dataset forms the one and only Cluster.

Otherwise, it inserts the dataset and an empty ignore Set to the back of the queue (which is

empty now). Then, a while loop is performed, and exits under the condition of

rejectedRecords being empty at the end of the loop. Before that, it enters another while loop

with the exit condition being queueListData is empty, this is the first full horizontal

partitioning, which means that by the end of this loop, the original dataset is fully horizontal

partitioned. However, there could be rejected records as mentioned above due to invalid

clusters or partitions.

Figure 15: Handling rejected records

As shown in Figure 15, if rejectedRecords is not empty by the end of the full horizontal

partitioning, then we check if its size is smaller than k, if it is then we go through each Cluster

26

and find a Cluster that can fit the records in. However, if there is no cluster that could fit all

the records, then we iterate over the clusters again and insert one record at a time, and remove

it from rejectedRecords after it is inserted into a Cluster. At the extremely unlikely cases of

every cluster is full and there are still rejected records left, then these records are abandoned,

because all the clusters should be km-anonymous.

If rejectedRecords has a size greater or equals to k, then all the records are inserted into the

queue (which is empty now) , the rejectedRecords will be emptied, and these records will be

fully horizontal partitioned again.

When both the queue and rejectedRecords are empty by the end of the loop, clustersList will

be returned as the final result of HorPart.

4.5 Vertical Partitioning

The entire vertical partitioning algorithm is implemented inside the class VerPart. The class

expects 2 arguments (k and m) when creating a VerPart object. k and m needed to be defined

because the vertical partitioning algorithm will perform a km-anonymous check for the test

chunk. When the class is initialized, the constructor method will initialize 2 attributes, which

are k and m. Vertical partitioning is only performed on one cluster at a time.

4.5.1 sortSupportTerm

This method sorts the terms in the Cluster with decreasing support and returns a list that

contains each term and its support, it accepts a Cluster object as an argument. The method

first iterates over the Records in the Cluster, and appends every terms in the records into the

List allTerm, which is similar to part 1 of Figure 12. Then, it uses a method

(Counter([iterable].most_common([n]) imported from Python Library collections to count

and sort the term support. The method returns a list of all the elements in allTerm and their

counts from the most common to the least (descending order).

27

4.5.2 createTermChunk

This method move the terms with less than k support to a Set termChunkSet, which will be

the term chunk for the cluster. It accepts the list of terms support produced by

sortSupportTerm as argument. It uses the counts in the list to filter the terms with less than k

support.

4.5.3 kMAnonymous

This method checks if the terms in combinationToCheck is km-anonymous, which means that

every combination in combinationToCheck must appear in at least k records. If there is

combination that does not meet the requirement, then it return False. The List

combinationToCheck contains terms combinations up to size m. The method iterate over the

combinations and check if all the terms in the combination appears in a record, once it finds

out that there are k records that contain all the term in the combination, it stops the checking

for the current combination and move onto the next combination. Once every combinations in

combinationToCheck pass the check, then it returns True, which means that the terms in the

test chunk chunkTest are km-anonymous.

4.5.4 verticalPartition

This method performs the vertical partitioning algorithm from line 8 to line 15 of the

pseudocode shown in Figure 7. The List termSetList is a list for storing the set of terms

T1,…,Tv that are km-anonymous. tRemain is a list to store the remaining terms Tremain , initially

contains the remaining terms in the cluster after excluding the terms in term chunk.

The most important task of this method is to generate combinations of terms and check if

they are km-anonymous. We use a module function combinations() of a module itertools

imported from the Python Standard Library to generate combinations. combinations(iterable,

r) returns combinations of size r length The List newCombinations is used to store the new

combinations generated with the terms in the test chunk chunkTest, and oldCombinations is

used to store the combinations that passed the km-anonymous check. The reason to store the

old combinations is for newCombinations is to filter the previously checked combinations,

thus reducing the number of combinations to check.

28

Tcur (or tCurrent in code) is a Set that stores the terms that will be assigned to Ti. Use the for

loop to go through each term in tRemain. At the start of each loop, chunkTest is assigned a

copy of tCurrent (use the copy() function to avoid alteration of tCurrent), adding the current

term.

Figure 16: Generating term combinations

Figure 16 shows the lines of code that generate the term combinations. There is no need to

generate combinations if there is only one term in chunkTest, so the first execution of the for

loop always add a term to tCurrent. chunkTest is converted to a List because the argument of

combinations() needs to be an iterable. Since we are checking for km-anonymity, means that

we only need to generate combinations up to size m, because km-anonymity assumes that an

adversary may have background knowledge of up to m terms for any record. For example, if

m = 3, and there are 4 terms in the test chunk {“A”,”B”,”C”,”D”}. Then we only need to

generate combinations of size up to 3 excluding single item combinations, which are {“A”,

“B”}, {“A”,”C”}, {“A”,”D”}, {“B”,”C”}, {“B”,”D”}, {“C”,”D”}, {“A”,”B”,”C”},

{“A”,”B”,”D”}, {“A”,”C”,”D”} and {“B”,”C”,”D”}.

Figure 17: km-anonymity check

29

If the combinations are km-anonymous, then these combinations will be inserted into

oldCombinations, and the current term will be added to tCurrent.

Figure 18: Tremain = Tremain – TCur

At the end of the loop, insert the terms in tCurrent into termSetList, and remove the terms

that are in tCurrent from tRemain.

4.5.5 projectRecordChunk

This method creates a RecordChunk object by projecting the records to the Set of terms

termsToProject (a set of terms from termSetList returned by verticalPartition method). The

method checks if a record contains the terms in termsToProject, and create a new record

containing only those terms. Finally adding the new record to the RecordChunk. Figure 19

shows an example of how the records are projected to the terms.

Figure 19: Record Chunk Example

30

4.5.6 createRecordChunk

This method creates all the record chunks in the cluster and returns them.

5.0 Results and Evaluation

5.1 Dataset

We use the 3 datasets (POS, WV1 and WV2) that are introduced in [1] that are described in

Figure 9. Dataset POS is a transaction log from an electronics retailer. Datasets WV1 and

WV2 contain click-stream data from two e-commerce websites, collected over a period of

several months [1]. The fourth dataset is a small dataset that only contains 15 records, which

can be used for simple and quick testing. As shown in Figure 20, POS is the largest dataset

with 515,597 records and consists of 1,657 unique terms. WV2 being the second largest

dataset and WV1 is the smallest. WV2 has the most unique terms (3,340), and WV1 has the

biggest maximum record size (267 items in a record).

Figure 20: Dataset

The dataset that I used are all in txt file, WV1 and WV2 has a different format than POS. WV1

and WV2 uses “-1” and “-2” as separator, where “-1” acts like a comma, and “-2” acts as the

end of line; while POS uses “,” to separate items. Since each dataset has different format, I

implemented different file handling operation for each dataset.

31

5.2 Evaluation Parameters

There are 3 parameters that should be considered before performing the disassociation

algorithm, which are k, m and maxClusterSize. We vary k with the values of 5, 10 ,15 and 20

as these k values are also tested in [1] and we can compare our result to [1] to see the

differences. m is fixed on 2 as it was mentioned in [1] that the effect of m > 2 is insignificant.

It is not mentioned anywhere in [1] what value maxClusterSize should be, after some testing,

I found maxClusterSize = 2k to be the best in terms of performance, so I set maxClusterSize

to be 2k in all the evaluations unless stated explicitly otherwise.

5.3 Performance

First, compare our time spent on disassociation algorithm to [1] with the parameter k=5, m=2,

maxClusterSize=11. Figure 21 illustrates the performance of the disassociation algorithm in

terms of CPU time (in seconds), the left chart is the results achieved by [1], and the right

chart is our results.

Figure 21: Performance on dataset (left from [1])

The timing is the average timing results over 5 runs of each dataset, a more detailed

information can be found in the excel file inside the Appendix folder. Our results are

significantly slower than the performance of [1], and even slightly different in characteristics.

In the left chart, the performance on dataset WV1 is the best, however, the best performance

of our results is achieved by dataset WV2. One of the reason that our performance is much

slower than [1] is that the disassociation algorithm is implemented in C++ in [1], while ours

are implemented in Python. C++ is compiled, while Python is interpreted, and the

interpretation of code is always slower than compilation, which is why Python loses out on

performance in this case against C++.

32

Figure 22 shows the performance of disassociation algorithm with different k values (5, 10,

15, 20, m=2, maxClusterSize = 2k +1). The performance in general scale linearly downward

as the value of k increases, but the effects are mostly insignificant. It is almost unremarkable

for WV2, however noticeable for a large dataset such as POS. There is also a small spike

when k=10 for WV1. Note that the performance on WV1 is worse than WV2 until k increases

to 15, then only the performance is better than WV2, which is a larger dataset than WV1.

Figure 22: Time performance varies by k (left from [1])

5.4 Relative Error

Relative error is used the measure the relative error in the support of term combinations in the

reconstructed data [1]. However, considering the size of the dataset, the amount of possible

combinations is too large to compute, it will take too long to generate the combinations and

likely run out of memory to store them. Here we only focus on generating combinations of

size two as an indication of the dataset quality, since the larger combinations are normally

rare. The relative error is defined as below [1]:

Where so(a,b) is the support of the combination of two terms (a,b) in the original dataset and

sp(a,b) is the support of the combination of two terms (a,b) in the reconstructed dataset. Since

reconstructing dataset will introduce new term combinations that does not exists in the

33

original dataset, this should be taken into account when choosing a denominator, that’s why

instead of choosing so(a,b) as denominator, [2] opted to the average of both supports. For

example, the term combination {“C”,”D”} does not exists in the original dataset, but it does

exists in the reconstructed dataset, if we use so(a,b) as denominator, we will get a division by

0.

Calculating the average relative error on all the combinations of size two does not indicate

the relative error accurately in the cases of skewed distributions and large domains [1]. A

majority of those combinations would be infrequent or not even exists in the original dataset,

but they would dominate the result. To avoid this situation, the domain of the dataset are

ordered by descending term support and a small sequential terms are used to trace relative

error, the 200th-220th most frequent term are used to measure relative error, which in this case

relative error is a more accurate indicator of how well the less frequent but not extremely rare

combinations are kept in the reconstructed dataset [1].

The parameter defined in [1] is k=5, m=2. Here, I tried a few experiments to compare my

results to the experiment results of [1]. The Figure 23a shows the information loss obtained

by [1] on the three datasets. Figure 23b illustrates the average relative error I obtained

Figure 23: Comparison of relative error (re) (a-b) (left by [1])

on each dataset over 5 runs, details are available in the Excel file inside the Appendix folder.

Average relative error over 5 runs:

WV1: 0.93362

WV2: 0.86014

POS: 0.82142

34

The characteristics of our results are much different than the results obtained in [1], Figure

23a shows that the relative error of dataset POS is significantly lower than the other two

datasets. Although it is not explicitly stated, we can assume that the middle column represents

WV1, and the right column represents WV2. It appears that WV2 should have the most

relative error among the three datasets, but my result (Figure 23b) appears differently. While

POS still has the least relative error, WV1 has the most relative error with an average of

0.93362. The ratio difference between the values are much smaller when compare to Figure

23a. However, it appears that both the values of WV1 is close, and the relative error of our

result on WV2 is superior to the left chart.

Figure 24: relative error varies by k (a-b) (left by [1])

Figure 24a shows the relative error scales linearly with k in the left graph. On Figure 24b, our

results indicate that only the relative error of WV1 scales upward, while other datasets scales

downward, which is different than what is shown in the left graph. The differences between

different k values in Figure 24b also appears to be insignificant.

Figure 25: relative error varies by range

35

We measure relative error on the combination of the 0-20th, 100-120th, 200-220th, 300-320th

and 400-420th most frequent terms in POS. Relative error scales linearly with the frequency

order of the terms as shown in Figure 25.

5.5 Top-K Deviation

Top-K deviation (tKd) is a metric that measures how the top-K frequent itemsets of the

original dataset differs in the reconstructed disassociated dataset. Let FI and FI’ be the top-K

frequent itemsets in the original dataset and the reconstructed dataset, tKd is defined as below

[1]:

tKd expresses the ratio of the top-K frequent itemsets of the original dataset that also appear

in the top-K frequent itemsets of the reconstructed dataset. Here we measure the 1000 most

frequent itemsets in the datasets.

To find the top-K frequent itemsets, I import an Apriori function that extract frequent

itemsets for association rule mining using Apriori algorithm from mlxtend (machine learning

extensions, a Python library) [9]. The min_support argument is a user specified support

threshold, for instance, if min_support is 0.02, the apriori function only returns a set of items

that occur together in at least 0.2% of all the records in the dataset. However, the lower the

min_support, the longer it takes to compute the frequent itemsets, but setting it too high

might not generate enough (1000) frequent itemsets. After some testing, it appears that when

k=5, m=2, by setting the min_support to 0.01 for WV1, 0.03 for WV2 and 0.08 for POS

provides the best performance and still generate enough frequent itemsets.

Although not explicitly stated in [1], single item itemsets are not included, only itemsets with

two items or above is a valid itemset.

Figures below shows my tKd results compare to the experiment results in [1]. Figure 26a

contains tKd obtained in [1] where k=5, m=2. Figure 26b demonstrates our tKd results with

the same parameter.

36

Although it is not stated in the left chart, we can safely assume that the middle column

represents WV1, and the right column represents WV2. We can see that the tKd of the three

datasets of both charts behave similarly, but our result has a generally higher tKd. POS has a

significantly lower tKd that the other two datasets, because it is the largest dataset and its

records have the longest average length. This reflects the fact that disassociation managed to

create multiple record chunks for POS [1].

Figure 26: Comparison of tKd (a-b) (left from [1])

Figure 27: Comparison of tKd with growing k (a-b) (left from [1])

From Figure 27, we can observe how information loss accelerates as the power of the

guarantee, expressed by k parameter, grows [1]. tKd is a measure that depend on the most

frequent item and itemsets are only slightly affected by k, since they are mostly preserved in

the record chunks, that reflects in Figure 27a where the increase of tKd is barely noticeable as

k grows. Figure 27b shows that the margin of increase of tKd is slightly higher than Figure

27a, and the reason may be lack of refining algorithm. I also notice that tKd of WV2 when

k=5 is oddly high, and I could not provide a reasonable explanation.

37

5.6 Reconstruction of Dataset

Possible original datasets can be constructed by combining the subrecords of record chunks

and padding some terms in term chunk. We called it reconstructed dataset. Reconstructed

datasets should have similar statistical properties to the original dataset. The reconstructed

datasets will be used to compare and evaluate the similarity of reconstructed datasets to

disassociated datasets. The dataset is reconstructed by reconstructing the disassociated

dataset. The paper [1] does not explicitly state the method of reconstructing the dataset, so I

perform the dataset reconstruction by shuffling the subrecords in the record chunks of the

clusters and combining them together to form a collection of records. Every subrecord in the

record chunks in a cluster will be shuffled and combined into records, then finally randomly

padding 0 or more terms in term chunk into the records. For example, {madonna, ruby,

digital camera, itunes, audi a4} is a reconstructed record from cluster P2, taking {madonna,

ruby} from C1, {} from C2, {digital camera} from C3, and {itunes, audi a4} from CT.

6. Future Work

6.1 Refining

I would like to finish implementing the refining stage of the disassociation algorithm. The

current evaluation results does not reflect accurately compare to evaluations that are

performed on a dataset disassociated by the completed disassociation algorithm. I would like

to see if my results will be similar to the evaluation results in [1].

6.2 Performance Improvement

I would like to try to improve the performance of my code, and see if I could make the

execution time shorter. The execution time of POS is almost 15 times higher than the

performance displayed in [1]. The time spent on vertical partitioning of the dataset WV1 is

oddly long, I would also like to find out the problem and see if I could fix that as well. Other

than the time performance, I would also like to improve the memory management of the

code, as running the program on the large dataset sometimes cause memory issues.

38

6.3 Top-K multiple level mining loss tKd – ML2

A version of tKd, called the top-k multiple level mining loss tKd – ML2, that compares

disassociation with generalization-based methods. Mining a dataset at a multiple levels of a

generalization hierarchy in an established technique, allows the detection of frequent

association rules and frequent itemsets that might not show in the most detailed level of the

data [1]. A generalized frequent itemset is considered lost if it contains terms that have been

generalized at a higher level during the anonymization process [1]. If I have more time, I

would like to implement this, so I could learn some new knowledge about associative rule

mining.

6.4 re-a and tKd-a

re-a and tKd-a is the relative error and top-K deviation for the disassociated datasets

computed by only taking into account the subrecords that appear inside the record and shared

chunks [1]. However, to implement these evaluation metrics requires refining stage to be

implemented.

7. Conclusions

The project has successfully implemented the horizontal partitioning and vertical partitioning

of the disassociation algorithm proposed in [1] using Python. While the disassociation

algorithm is not fully implemented, we can see the difference between the results before and

after the refining stage by looking at the results produced by this project and results in [1]

respectively, although I have not reached a concrete conclusion on why some of the results

may differ significantly. The evaluation metrics evaluates the information loss of the

disassociated dataset.

39

8. Reflection

Reflecting on the whole process of completing this project, first I want to thank my

supervisor for guiding me through this project. The weekly meeting really helps me

progressing on the project in a timely manner. However, later due to the COVID-19 situation,

face-to-face meeting is cancelled, and Skype meeting took place. However, the meeting

frequency sometimes went from weekly to bi-weekly, which I regret a lot. At the end of the

project, I almost ran out of time because at some point I was lost on what to work on, which

now I thought that maybe I would do better if I speak to my supervisor more often, and he

could provide me clear guidance to solve the problem I was facing.

This project taught me the importance of analytical thinking and creative thinking when

studying and trying to understand a research paper. Many times, I thought I understand the

algorithm, only to be corrected by my supervisor. After being corrected, I always find that my

initial interpretation is so obviously wrong, yet I still did not see it. When I reflect on it, I

realized that I did not analyse the problem enough and think about what the algorithm is

trying to achieve. After you fully picture the problem it is trying to solve, and understand

what the algorithm is trying to achieve, it becomes easier to understand the algorithm and the

implementation of it. The ability to “think outside the box” also plays a huge role here in my

opinion.

This program helps me develop my programming skill and problem-solving skill

significantly. I have to consider the performance of the program and routinely improve my

code quality to achieve a better performance. The data type that I use, the approach that I take

to implement the algorithm, all matters significantly when it comes to memory and time

performance. For example, I was not careful about choosing the data type to store a Record’s

value, and I use a list initially because that’s what I instinctively thought was the best, and did

not do enough research to see the difference between List and Set not just in terms of

performance, but in general. I later found out that using a set to store the record value would

be much better, because there are a decent amount of item checking (check if a record value

contains an item), e.g. check if the record value contains a term combination, and using a set

for that would be significantly faster than using a list. Implementing the algorithm requires a

good amount of problem solving, regularly I have to figure out a way to implement what the

algorithm is trying to achieve, and personally I think that is the fun part.

40

A big problem that I encounter is my poor planning skill and poor time management. The

occasional procrastination, some part of the algorithm took longer time than expected to

implement and too little time at the end to test the results, makes me realized the importance

of proper planning and execution. While planning, I should never assume everything to go

perfectly, and should always plan for the worst-case scenario.

41

9. Reference

[1] Terrovitis, M., Liagouris, J., Mamoulis, N., & Skiadopoulos, S. (2012). Privacy

preservation by disassociation. arXiv preprint arXiv:1207.0135.

[2] Barbaro, M., & Zeller, T. (2006, August 9). A Face Is Exposed for AOL Searcher No.

4417749. Retrieved from https://www.nytimes.com/2006/08/09/technology/09aol.html

[3] Fung, B. C., Wang, K., Chen, R., & Yu, P. S. (2010). Privacy-preserving data publishing:

A survey of recent developments. ACM Computing Surveys (Csur), 42(4), 1-53.

[4] Machanavajjhala, A., Kifer, D., Gehrke, J., & Venkitasubramaniam, M. (2007). l-

diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from

Data (TKDD), 1(1), 12-13.

[5] Samarati, P., & Sweeney, L. (1998). Protecting privacy when disclosing information: k-

anonymity and its enforcement through generalization and suppression.

[6] Terrovitis, M., Mamoulis, N., & Kalnis, P. (2008). Privacy-preserving anonymization of

set-valued data. Proceedings of the VLDB Endowment, 1(1), 115-125.

[7] South Carolina Department of Health and Environmental Control (SC DHEC). (n.d.). SC

Demographic Data (COVID-19) | SCDHEC. Retrieved May 31, 2020, from

https://www.scdhec.gov/infectious-diseases/viruses/coronavirus-disease-2019-covid-19/sc-

demographic-data-covid-19

[8] World Health Organization (WHO). (n.d.). WHO Coronavirus Disease (COVID-19)

Dashboard. Retrieved May 31, 2020, from https://covid19.who.int/

[9] Raschka, S. (2020). Apriori - mlxtend. Rasbt.github.io. Retrieved 4 June 2020, from

http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/apriori/.

