

.

Cardiff University

School of Computer Science and Informatics

CM3203 – One Semester Individual Project – 40 Credits

Final Paper – IoT Security

Author: Peter Ghawi

Supervisor: Philipp Reinecke

Moderator: Richard Booth

Academic Year: 2019/20

P a g e 2 | 82

P a g e 3 | 82

Abstract
The world of computing is changing rapidly with the rise of the Internet of Things (IoT). These
devices are seen by many as the future and will be owned by many in the population, as they
make our daily tasks plain sailing. However, the side that is not widely discussed about these

devices is their security. This project investigates the vulnerabilities found in these devices.
Outlines the steps taken to produce a tool that can inject commands in an IoT environment. It

gives clear steps on how to reverse engineer a firmware, decompile APKs and how the results
found were used to develop this tool. The results revealed that even with added security
measures, there is still a long way to go to ensure the security of these devices. A summary of

the project is given at the end. The Appendix contains pieces of information integral to the
progression of the project.

P a g e 4 | 82

P a g e 5 | 82

Acknowledgements

I would like to take this opportunity to express my gratitude to the people who have
supported me throughout this project.

Firstly, I would like to thank my supervisor, Dr Philipp Reinecke, for his guidance and
feedback throughout the semester.

Secondly, I would like to thank my lecturers George Theodorakopoulos and Michael Daley,
for their advice on how to conduct certain aspects of this project.

Thirdly, I would like to thank my parents for their love and support. Without them, this day

would not have been possible.

Finally, a special thank you to my friends who were always there for me.

P a g e 6 | 82

P a g e 7 | 82

Table of Contents

Abstract .. 3

Acknowledgements .. 5

Table of Contents ... 7

Table of Figures ... 9

1. Introduction .. 11

1.1. Aim of the Project ... 11

1.2. Intended Audience... 11

1.3. Scope of the Project... 11

1.4. Structure of the Report .. 11

2. Background .. 13

2.1. Internet of Things .. 13

2.2. IoT Security Issues .. 14

2.2.1. Previous IoT Security Issues .. 15

2.2.2. Nature of IoT Security Vulnerability ... 17

2.3. MITRE ATT&CKs ... 17

2.4. Related Work... 18

3. Approach .. 19

3.1. Setup .. 19

3.1.1. Home Network ... 19

3.1.2. Network in section 4.6 ... 20

3.1.3. Protocols Used ... 20

3.2. Hardware ... 21

3.3. Software .. 21

3.4. Tools .. 22

3.5. Determining the Attack Vector ... 24

3.5.1. Threat Modelling ... 24

3.5.2. Classification of Threats .. 24

3.5.3. Identifying Threats ... 25

3.5.4. Rating the threats ... 30

4. Implementation and Results ... 35

4.1. Reverse Engineering the Firmware ... 35

4.1.1. Acquiring the Firmware ... 35

4.1.2. Components of the Firmware... 36

4.1.3. Entropy Analysis .. 36

P a g e 8 | 82

4.1.4. Extracting the File System ... 37

4.1.5. Firmwalker ... 39

4.2. Emulating the Firmware .. 40

4.3. Backdooring firmware... 43

4.4. Portscan ... 45

4.5. Decompile the APKs ... 45

4.6. Wireshark Dissector .. 48

4.7. Adding Feature to the “tplink-smartplug.py” .. 51

4.8. Amsel .. 52

5. Evaluation .. 57

6. Future Work ... 59

6.1. Firmware ... 59

6.2. KACI ... 59

7. Conclusions .. 61

8. Reflection on Learning .. 63

8.1. Reflection on the entire project ... 63

8.2. Reflection on the work done ... 63

References .. 67

Table of Abbreviations ... 71

Appendices ... 73

Appendix A .. 73

Appendix B .. 75

Appendix C .. 77

Appendix D .. 81

Appendix E .. 82

Appendix F ... 82

P a g e 9 | 82

Table of Figures
Figure 1: Home Network Setup ... 19

Figure 2: Network in Section 4.6 ... 20

Figure 3: Downloading the Firmware into a New Directory ... 36

Figure 4: Components of the Firmware ... 36

Figure 5: Entropy Graph .. 37

Figure 6: Entropy Table ... 37

Figure 7: Extracting Firmware ... 38

Figure 8: Encrypted Root Password ... 38

Figure 9: Public Key .. 38

Figure 10: Root Password Hashed ... 39

Figure 11: Unshadow the etc/shadow File ... 39

Figure 12: Root Password Cracked .. 39

Figure 13: Information Found in the Header of the File System ... 40

Figure 14: Copying the QEMU MIPS Binary inside the File System 40

Figure 15: Emulating the BusyBox .. 41

Figure 16: Emulating the Entire Firmware .. 41

Figure 17: Successful Login into the Emulated Firmware... 42

Figure 18: Built-In BusyBox Commands .. 42

Figure 19: Files Inside the Firmware ... 42

Figure 20: Changing the Address of Binwalk .. 43

Figure 21: Compiling the Backdoor ... 44

Figure 22: Backdoor Placed Inside the rcS File ... 44

Figure 23: New Firmware Compiled ... 44

Figure 24: Emulating the Firmware with the Backdoor... 44

Figure 25: RSA Keys ... 45

Figure 26: Port Scan on the IoT Device ... 45

Figure 27: Decompiling the APK .. 46

Figure 28: Total Number of Java Classes Contained in the APK .. 46

Figure 29: Running MobSF ... 46

Figure 30: Encryption Method Found .. 48

Figure 31: Decryption Method Found ... 48

Figure 32: Setting Up Monitor Mode... 49

Figure 33: Searching for All Access Points seen by the WiFi Adaptor 50

Figure 34: Specifying Which Access Point to Listen On .. 50

Figure 35: Packets observed Without Dissector .. 50

Figure 36: Packets Observed With Dissector... 51

Figure 37: Blackout Statistics .. 51

Figure 38: Simplified UML Class Diagram ... 54

Figure 39: KACI Interface, On Attack, Random Attack ... 55

Figure 40: Packets Sent using Kasa App ... 56

Figure 41: Packets Sent using KACI ... 56

P a g e 10 | 82

P a g e 11 | 82

1. Introduction

1.1. Aim of the Project
The main aim of this project was to write a module to emulate the traffic of an actual attack
across the network, focused mainly on the Internet of Things environment. In order to achieve
this, several sub-goals were established:

• Investigate any vulnerabilities found on the device provided, including any
vulnerabilities found to be shared among other Internet of Things devices.

• Implement a number of attacks with the highest probability of success that can exploit
the vulnerabilities found in the Internet of Things device provided.

• Integrate a tool into AMSEL that will be used to send symptoms of an attack across the

network. This will allow IoT developers to test the security of the devices they develop
before releasing them to the public. By doing so, the devices can be as secure as
possible.

1.2. Intended Audience
The intended audience or beneficiaries of this project is any individual interested in or
researching the field of IoT Security, whether it is a student or scientist.

1.3. Scope of the Project
The scope of this project was to write a module that would emulate attack traffic across a

network in an IoT environment. A smart plug was used as the IoT device. The traffic across

the network was monitored using a packet analyser, Wireshark, which was chosen due to its
popularity and frequent use across the pen-testing community. This was done to compare the

differences in the packets sent across the network, before any presence of an attack and during
an attack. Due to the threat modelling that was done, the scope of this project gravitated towards
the firmware of the IoT device and the APKs of the Kasa application. Acquiring the firmware

from the IoT device itself was deemed outside the scope of the project.

1.4. Structure of the Report
This structure of the report is as follows: Section 2 presents an initial background of the Internet
of Things, a security issue that involves IoT, the MITRE ATT&CK Framework, and any

research found relating to the work done. Section 3 discusses the approach to set up the IoT

environment and the steps taken to assess possible threats on the device. Section 4 focuses on
the implementation and the results of the attack that was seen as the greatest threat. Section 4

also contains the steps taken to develop a tool that can exploit the threat. Section 5 highlights
the discussion and evaluation of different parts of section 4. Section 6 discusses any potential

future work that could be undertaken to further the capabilities of the project. Section 7
summarises the significant findings and concludes the project. Finally, Section 8 reflects on
the knowledge attained by undertaking the project at hand.

P a g e 12 | 82

P a g e 13 | 82

2. Background

2.1. Internet of Things
In the world of communication technology, two events hold special significance; the invention
of ARPANET and the emergence of the Internet of Things (IoT). However, the latter was an
evolving development instead of a single event. The first implementation of the concept of IoT

was monitoring the number of cans remaining in a vending machine. This was achieved by
adding a photosensor to the device that would count every time a can was bought from the
vending machine, and hence, the number of remaining cans was calculated [1]. Nowadays, IoT

devices can serve as a source of evidence during trials in court, as seen in 2018, when the data
on a FitBit was used in a murder trial [2]. Other incidents include Alexa being called in as a
witness to a homicide in Florida on the 1st of November 2019 [3]. The journey of IoT devices

from vending machines to being used in court is fascinating.

Kevin Aston, the man who coined the term “Internet of Things” would probably never have
imagined that these devices would overtake the entire human population, with the projected

number of IoT devices to reach 75.44 billion worldwide by 2025, according to a study
conducted by Statista [4]. The definition of IoT has changed since Aston coined the term, with
different organisations giving their own meaning to the term. One of these definitions being

“A system of interrelated computing devices, mechanical and digital machines provided with
unique identifiers and the ability to transfer data over a network without requiring human-to-
human or human-to-computer interaction.” [5]. As there is an abundance of definitions for

what IoT is, there is not a correct way or wrong way of defining it [6].

The earliest inkling of what is considered an IoT device these days was in 2000 when LG
revealed, the Internet Digital DIOS, the first internet-connected refrigerator. The refrigerator

was able to display the temperature inside, and by using the webcam functionality, it kept track
of the items being stored [7]. However, the acquisition of a thermostat company by Google for
$3.2 billion was the event that made the world aware of an upcoming revolution in technology

[8]. The thermostat company developed a thermostat that was able to learn the users’ schedule
to adjust different desired temperatures at different times of the day. This event launched the
beginning of a race to create new smart devices. Today we can interact with our smart TVs at

home while sipping a cup of coffee brewed by an internet-controlled coffee machine and
controlling the lights by the music playing on our smart assistant. However, IoT is not limited
to the home but has numerous applications in the enterprise, retail stores, health care, industry,

power grids and scientific research.

Policymakers struggled with the fast pace raise of IoT devices and could not enforce strict
controls and safety regulations. Security and privacy guidelines were introduced by GSMA in

2017 [9], and the Federal Trade Commission (FTC) outlined steps to be followed to ensure
safety and security in 2018 [10]. The delay in implementing these guidelines enabled
developers to overlook specific security considerations concerning IoT devices. It was not until

the effects of the Mirai botnet that the security flaws of IoT would be known. The Mirai hack
took place in October of 2016 and is still regarded as the most significant DDoS (Distributed
Denial of Service) attack to have ever been launched. Mirai targeted a Domain Name System

or a DNS service provided by Dyn using a botnet of IoT devices. It was able to take down Dyn
Servers. It brought vast sections of the internet down, this included website for some of the

major companies in the world, like Amazon, Twitter, Reddit, CNN and Netflix to name a few

from the 70 websites that were affected. The botnet is named after the Mirai malware that is
used to infect connected devices. Once it successfully infected a vulnerable IoT device, it
automatically searched the internet for other vulnerable devices, mainly Internet-connected

P a g e 14 | 82

cameras. Whenever it found one, the malware would brute-force authentication using common
usernames and passwords to login into the device, install itself and repeat the process. This was

possible, as many of these devices had issues with outdated firmware and weak default
passwords, which made them vulnerable and effortless to hack. [54]

2.2. IoT Security Issues
Over the past couple of years, the security of these devices has slowly improved, yet it has
not reached a point where these devices can be considered extremely safe to use. It is not that
farfetched to think that we would see smart-device ransomware similar to WannaCry, asking
for money to open the locks on doors or turn on a pacemaker. It has been proven that most of
the smart device have critical security and privacy issues, from smart home automation
systems to wearable devices, and even baby monitors. Considering the amount of private data
these devices collect, it is scary to see how much exposure we have to cyberattacks.
It is imperative to understand that IoT systems are very diverse; multiple manufacturers
produce devices, components of IoT systems may have different owners and some IoT
systems of geographically spread. As a result, the attack surface of IoT devices is considered
to be huge, making end-to-end IoT systems hard to protect. [11]
According to the Open Web Application Security Project (OWASP) [12], the attack surface
of IoT systems can be categorised into the following:

• Devices: Devices are the primary way an attack is initiated. They have many
components where vulnerabilities can be found, such as its memory, firmware,
physical and web interfaces, and network services.

• Communication Channels: Channels that connect IoT components is another area
where an attack can be initiated. IoT systems are vulnerable to known network attacks
like Denial of Service (DoS) and spoofing.

• Applications and Software: Vulnerabilities in the web application can potentially
lead to the compromise of an entire IoT system.

The firmware of IoT devices is known to have an abundance of vulnerabilities which an
attacker can exploit. According to Terry Dunlap, Co-founder and Chief Strategy Officer at
ReFirm Labs, the most common of them being:

• Unauthenticated Access: This is the most common vulnerability in firmware.
Unauthenticated access allows attackers to gain access to an IoT device, making it
trivial to exploit data.

• Weak Authentication: Attackers can quickly gain access to devices if the firmware
has weak authentication. Weak authentication can range from single-factor
authentication and password-based authentication to weak cryptographic algorithms
that can be broken into with brute-force attacks.

• Hidden Backdoors: Backdoors are intentional vulnerabilities that are placed into an
IoT device to provide remote access to anyone with the correct authentication
information. Although backdoors can be helpful for customer services, but can also
have severe consequences if an attacker found it.

• Password Hashes: In most devices, hard-coded passwords can be found in the
firmware, with users not being able to change them. In some cases, default passwords
that users rarely change can also be found in the firmware. This is the vulnerability
that the Mirai attack exploited.

• Encryption Keys: Some device store encryption keys using cryptography that has
been proven to be inadequate such as Data Encryption Standard (DES). Attackers can
then exploit the encryption keys and eavesdrop on communications or access the
device.

P a g e 15 | 82

• Buffer Overflow: When coding firmware, programmers run into problems if they use
insecure string-handling functions, which lead to buffer overflows. Attacks spend an
enormous amount of time looking at the code trying to find a way to cause erratic
application behaviour or crashes that open paths to a security breach.

• Open Source Code: Even though open-source code enables the rapid development of
sophisticated IoT products, they frequently use third-party libraries and open source
components with unknown sources. The firmware is regularly left as an unprotected
attack surface. Many devices are released containing known vulnerabilities, as seen in
section 2.2.1.

• Debug Services: While essential during the development and testing stage, if left in
the device, it provides attackers unfettered access and control over the entire device.

[52]

2.2.1. Previous IoT Security Issues
The greatest way to learn about the security of IoT is by looking at its history. By learning
about what happened in the past, an understanding can be gained into the security issues that
were the downfall of some devices. This gives an insight into what can be expected in products

that are being assessed at the moment.

Over the years, there have been numerous attacks on IoT devices, but some of the most
distinguished are:

• The Nest Thermostat, in a paper “Smart Nest Thermostat: A Smart Spy in Your Home”
it mentions a security flaw of Google Nest that allowed the installation of malicious

firmware on the device. This was achieved by pressing the button on the Nest for about

10 seconds to trigger the global reset. At this point, the device was made to look for
USB media for firmware by communicating with the sys_boot5 pin. The USB device

would include a malicious firmware, which the device will use in booting. [13]

• Philips Hue worm was built as a Proof of Concept (PoC) by security researchers. In the
PoC, a demonstration on how the hard-coded symmetric keys used in Philips devices

could be exploited to gain control over the targeted device over ZigBee.[14]

• A security researcher, by the name , Nitesh Dhanjani, discovered a technique to cause
permanent blackouts by using a replay attack to gain control of the Philips Hue devices.
He discovered this vulnerability after realising that the device only considers the MD5
of the MAC address as the single parameter to authenticate a message. As the MAC

address of the device can be found effortlessly, an attacker can send a malicious packet

with the command to turn off the bulb and indicating that it came from a genuine host.
Doing this repeatedly causes a permanent blackout.[15]

• The Jeep Hack is arguably the most popular IoT hack of all time. In 2015, Dr Charlie
Miller and Chris Valasek demonstrated how they could remotely take over and control

a Jeep using vulnerabilities found in Chrysler’s Uconnect system. The hack exploited
many different vulnerabilities; including extensive efforts in reverse engineering
various individual binaries and protocols. A vulnerability found in the Uconnect

software made this attack possible as it allowed anyone to connect to it over a cellular
connection remotely. Port 6667 was accessible without authentication as anonymous
authentication enabled and it was found to be running D-Bus over IP. After Interacting

with D-Bus, a list of available services was found, one of these services was found to

have an execute method which made it possible to run arbitrary code on the device.
After gaining arbitrary command execution, it was possible to perform lateral

movement and send Controller Area Network (CAN) messages taking control over
numerous aspects of the vehicle, such as steering wheel, brakes, headlights, etc. [16]

P a g e 16 | 82

• Belkin WeMo is a compelling case as the developers took measures to prevent attackers
from installing malicious firmware on the device. However, the firmware updates
happen over, and the unencrypted channel allows attackers to modify the firmware
binary package during the update. As a protection measure, Belkin Wemo uses a GNU

Privacy Guard (GPG) based encryption on the firmware distribution mechanism. This
security protection was overcome quite easily because the device distributes the
firmware signing key with the firmware in the update process, without it being

encrypted. Therefore, an attacker easily modify the package, sign it with the correct
signing key and the firmware would be accepted by the device without any issues. [17]

• Jay Radcliffe found that OneTouch Ping insulin pump system by Animas, a subsidiary
of Johnson & Johnson, used plaintext messages to communicate. Making it extremely

simple for anyone to capture the communications, modify the dosage of insulin to be
delivered, and retransmit the packet. When Radcliffe attempted an attack on the

OneTouch Ping, it worked immaculately, with there being no way of knowing the
original amount of insulin that was meant to be delivered. The vulnerability was

patched within five months. [18]

• TRENDnet marketed their SecurView cameras as being perfect for a wide range of
uses. But as it turned out, anyone could find the IP address and easily look at the camera

feed. In rare cases, the attacker was able to capture audio from the built-in microphone
in some of the cameras. The FTC later announced that TRENDnet was transmitting
users’ login information over the internet in plaintext.[54]

• Researcher Anthony Rose and Ben Ramsey gave a presentation titled “Picking
Bluetooth Low Energy Locks from a Quarter Mile Away” in which they revealed

vulnerabilities in many smart lock products. These products include Quicklock
Padlock, iBluLock Padlock, Plantraco Phantomlock, Ceomate Bluetooth Smart
Doorlock, Elecycle EL797, Vians Bluetooth Smart Doorlock, Mesh Motion Bitlock

Padlock and Lagute Sciener Smart Doorlock. The vulnerabilities found were numerous,
including, the transmission of passwords in plaintext, devices being prone to replay
attacks, fuzzing, device spoofing, reverse engineering companion applications to

identify sensitive information. During the process of resetting the password, iBluLock
Padlock sends a Bluetooth low energy packet containing the opcode, old password and
new password in plain text. Since authentication happens over plaintext, the attacker

can use the password and set up a new password for the door lock that renders the

device useless to the user. [57]

P a g e 17 | 82

2.2.2. Nature of IoT Security Vulnerability
Given that the architecture of IoT devices is extremely complex, it is likely that most devices

will have security issues, some of the reasons that stand out as a cause of security issues are
given below.

1. Lack of compliance from IoT manufacturers

Considered to be the primary source of most IoT security issues, as manufacturers do
not spend enough time and resources on security. Resulting in risks such as weak,
guessable, or hard-coded passwords, hardware issues, old and unpatched operating

systems and software.
2. Lack of user knowledge and awareness

Even though most of the security issues happen on the manufacturers side, the

ignorance and lack of awareness from users can possibly create more significant threats
and open new attack surface possibilities. One of these possibilities is a social
engineering attack where the target of this attack is not the device but the human owning

the device. As Kevin Beaver mentions, social engineering takes advantage of the
weakest link in information security: people.[58]

3. Lack of security in device updates

Even though manufacturers sell devices with the latest software updates, it is
unavoidable that new vulnerabilities will be found. Updates are essential in maintaining
security on IoT devices. These devices should be updated immediately after a new

vulnerability is discovered. However, unlike smartphones and laptops, IoT devices can
still be used even without the necessary updates.

4. Lack of physical hardening

Even though some IoT devices are designed to be autonomous, they still need to be
physically secured, as these devices can be set up in remote locations for weeks on end.
IoT devices that have not been physically hardened can be stolen or physically tampered

with; using a USB with malware or malicious firmware.
Even though physical security begins with the manufacturers, from their point of view,
building an IoT device with security sensors and transmitters at a low-cost is

challenging already.
5. Lack of macro perspective

The development of an IoT device constitutes many components; therefore, it is

straightforward for developers to forget about the fact that it is an interconnection of

devices and various technologies that can lead to security issues. As an attacker, a piece

of information from the mobile application might not reveal a security issue. However,
combine that piece of information with another piece of information, the attacker has
the possibility of finding critical information, or information that can be seen as a

stepping stone that can be used to obtain critical information.

[51][53]

2.3. MITRE ATT&CKs
ATT&CK is a framework that stands for Adversarial Tactics, Techniques, and Common
Knowledge, this project was started by MITRE in 2013 and later made public in 2015 to record

common tactics, techniques and procedures (TTPs) that advanced threat actors use. This

framework was designed to address four main issues; adversary behaviour, lifecycle models

that did not fit, applicability to real environments, and common taxonomy. Firstly, MITRE
focussed on developing analytics to detect possible adversary behaviours; indicators that were
easily changed by adversaries such as domains, IP addresses, file hashes, etc. Secondly,

P a g e 18 | 82

existing adversary lifecycles and Cyber Kill Chain concepts were too high-level to relate
behaviours to defences. Thirdly, TTPs need to be based on observed incidents to ensure that

the work applies to the real world. And finally, TTPs need to be similar across different threat
actors using the same terminology. At the time of writing this report, MITRE incorporates
techniques used against Windows, macOS, Linux, mobile devices and includes strategies for

pre-exploit planning. [25]

Unlike prior work in this area, ATT&CK focuses on the way the tools used by adversaries
interact with the system during an attack. The framework is largely a knowledge-based of

known techniques that adversaries exploit systems. These techniques are categorised into a set
of tactics that provide context for the technique. A simple way of thinking about this is tactics
represent the “why” of a certain attack; the attackers’ objective behind performing an action.
Tactics include; “discover information”, “move laterally”, “execute files” or “exfiltrate data”.
On the other hand, techniques can be thought of as either the “how” a threat actor achieves a
tactical objective, or the “what” a threat actor gains from a tactical objective. As there are many

ways to achieve a certain tactical objective, multiple techniques are categorised in each tactic.
This is visualised in the ATT&CK Matrix seen in Appendix A.[24][25]

2.4. Related Work
AMSEL or The Abstract Malware Symptom Emulation Library is a tool for generating

symptoms of malware and intruder activity by testing threat detectors. In this tool, the
symptoms are emulated, meaning they pose no actual threat to the system they are being
generated on, even though they seem realistic. This tool is governed by stochastic models to

govern the randomness. Each stage of an attack can be emulated by this tool, initial infection,
discovery, and data extraction.[23]

There has been some research conducted on the vulnerabilities of the device used throughout

this project, most notably the research done by softScheck, a security consulting company.
Where they attempted to reverse engineer the firmware of the device, and later reverse-
engineered the devices’ companion app, Kasa. By using Wireshark, they sniffed app-to-device

and device-to-app communications. Subsequently, they were able to develop a tool that sends
JSON commands to the devices and be able to control the device without any authentication.
This tool was released on GitHub, with all the necessary information. [55]

Other related work includes a study published by Davino Mauro Junior, Luis Melo, Harvey
Lu, Marcelo d’Amorim, and Atul Prakash titled “A Study of Vulnerability Analysis of Popular
Smart Devices Through Their Companion Apps”, where they found that the communication

between IoT devices and its app is often not adequately encrypted and authenticated. These
findings were confirmed by using a combination of static and dynamic analyses. The static
analysis comprises of going through the code to find out any possible vulnerabilities.

Moreover, dynamic analysis involves executing the code and analysing the output.

Section 2 has achieved the first sub-goal in which vulnerabilities for multiple devices, including
the one used in this project, were investigated. It reveals alarming information about the degree

to which these devices are secure and the different complexity of attacks that can be done to
IoT devices.

P a g e 19 | 82

3. Approach

3.1. Setup
Due to some complication in setting up the TP-Link Cloud Camera mentioned in the initial
plan of this report, the device was exchanged for the HS110 Smart Plug. The complications
mentioned previously is that the camera was not able to reset to factory settings and was not to

be used in this project as it could have tainted the results of the project making the findings
unreliable.

3.1.1. Home Network

Figure 1: Home Network Setup

In the network diagram above, the Motorola phone (Motog6), the smart plug (HS110 Smart
Plug) and the virtual machine (VM) are connected to the router. The VM can connect to the
local router as it uses the AWUS036NHA 802.11 b/g/n long-range USB adapter. These devices

create a topology similar to a star topology. All the devices communicate using the 802.11

protocol, communicating using a frequency of 2.4 GHz. The protocol has been explained in
depth later in the report.

P a g e 20 | 82

3.1.2. Network in section 4.6

Figure 2: Network in Section 4.6

Seen above, is a figure that illustrates the network diagram that is set up to sniff the packets
between the Motorola phone (Motog6) and the smart plug (HS110 Smart Plug), by using the

ALFA Network AWUS036NHA. This sniffing action is illustrated by the light blue line
connected to the red dashed box which symbolises the packets between the devices.

3.1.3. Protocols Used
802.11

The IEEE created the first WLAN standard. It was called 802.11 after the name of the group
that was in charge to oversee its development. Below are only the variations used in the

network diagrams above.

802.11b

The 802.11b protocol supports a theoretical speed of 11Mbps. However, a realistic bandwidth
is 5.9Mbps for TCP and 7.1Mbps for UDP. This protocol uses the unregulated radio signalling

frequency of 2.4 GHz. This frequency is primarily used since vendors prefer it for lower

production costs. This protocol is also known as Wi-Fi 1. [48]

802.11g

The 802.11g protocols emerged between 2002 and 2003 where attempts to combine the best of
802.11a and 802.11b, where it supports bandwidth up to 54MBbps and uses the 2.4GHz
frequency. 802.11g is backwards compatible with the 802.11b, which allows 802.11b access

points to work with 802.11g wireless network adapters and vice versa. This protocol is also
known as Wi-Fi 3. [48]

802.11n

This protocol was designed to improve in 802.11g regarding the limitation of its bandwidth,
with the use of several wireless signals and antennas provided a network bandwidth for up to

300Mbps. It is also backward compatible with both 802.11b/g. This protocol is more

commonly known as Wi-Fi 4. [48]

P a g e 21 | 82

3.2. Hardware
Laptop

The laptop being used during the project is an HP Pavilion 15 running windows 10 Education,

a virtual machine will be used to implement attacks. VMware Workstation 15 player will be
used to virtualise Kali Linux which is expanded on in the software section below.

 Motog6 Play

A Motorola Motog6 Play running Android Version 9 will be used to run the Kasa app to control
the IoT device.

TP-Link HS110 UK Smart WiFi Plug with Energy Monitoring

The HS110 Smart Plug is an IoT device that controls electronic devices anywhere in the world

using the companion app, TP-Link Kasa, which can be installed on smartphones and tablets.
The device can be paired with services, including Amazon Alexa and Google Assistant. A
feature only found for the HS110 module is energy conservation which tracks the power being

consumed in real-time, and has weekly and monthly summaries.[19]

ALFA Network USB Wi-Fi Adaptor

Due to the use of a virtual machine, a USB Wi-Fi adaptor will be needed. The ALFA Network

USB Adaptor was chosen as it uses the Atheros AR9002U chipset, which is supported by Kali
Linux straight out of the box. The Atheros chipset enables the Wi-Fi adaptor to support
monitoring mode, which is necessary for parts of the report.

3.3. Software
 Kasa Android App

Kasa is an app developed by TP-Link for pairing and controlling some TP-Link smart devices
on the network. This app will be used to connect to the TP-Link smart plug for setup and use

as an everyday user would; i.e. the app and the plug will be connected to the local WiFi. The
latest version was installed, 2.19.0.911, at the time of undertaking this project.

 VMware Workstation 15 Player

VMware Workstation 15 is the industry standard for running multiple operating systems as
virtual machines on a single Linux or Windows PC [20]. This will be used to run the Kali Linux

virtual machine which is expanded on below. All necessary files will be stored on the VM as

it was allocated enough storage capacity to operate as a standard machine. All tools will be
installed and used on this VM.

 Kali Linux

Kali Linux is a Debian based Linux operating system which is maintained and funded by

Offensive Security, an information security training and pen-testing world-class service
provider [21]. This operating system is designed for security professionals for various reasons,
specifically for penetration testing and forensics. It is also used by many hackers around the

world, making it ideal for running attacks. Some additional tools were installed and will be
discussed below.

P a g e 22 | 82

3.4. Tools
 Nmap

Nmap is an open-source utility for network discovery and security auditing. Nmap runs on all

major operating systems, Nmap includes an advanced GUI called Zenmap. It can be used to
scan devices on the network returning open ports on the devices found. It can also detect the
device’s operating system and the services it supports [22].

 Wireshark

Wireshark is the most widely used network protocol analyser, allowing the user to view the
network on a microscopic level. It will be used to display the packets being sent from the phone

(Motog6 Play) to the IoT device (HS110 Smart Plug). A custom plugin/dissector will be added

as to decrypt the packets being sent and view them in plaintext.

Binwalk

Binwalk is a tool written by Craig Heffner, for searching a given binary image for embedded

files and executable code. Specifically, it is designed for identifying data and code embedded
inside of firmware images. Binwalk uses the libmagic library, so it is compatible with magic
signatures created for the Unix file utility. Binwalk also includes a custom magic signature file

which contains improved signatures for files that are commonly found in firmware images such
as compressed/archived files, firmware headers, Linux kernels, bootloaders, filesystems, etc.

[34]

Firmwalker

Firmwalker is a bash script for searching the extracted firmware file system. The script searches
for things of interest such as etc/shadow, etc/passwd, etc/ssl, any SSL related files, keywords

including admin, password, remote etc. and many more interesting things.[35]

Firmware Mod Kit

The Firmware Mod Kit allows for easy deconstruction and reconstruction on firmware images

for various embedded devices. FMK is a collection of utilities and shell scripts. The two
primary scripts are extract-firmware.sh and build-firmware.sh the scripts are capable of
extracting the firmware and rebuilding the firmware respectively.[36]

Firmware Analysis Toolkit (FAT)

FAT is a toolkit built to help security researchers analyse and identify vulnerabilities in IoT
and embedded device firmware. This tool was made to be used in the “Offensive IoT

Exploitation” training conducted by Attify. [37]

Qemu

QEMU is a generic and open source machine emulator and virtualiser, QEMU can run OSes
and programs made for one machine on a different machine. By using dynamic translation, it

can achieve high performance. [38]

Readelf

readelf displays information about one or more ELF format object files. The options control

what particular information to display.[39]

P a g e 23 | 82

Sasquatch

The sasquatch project is a set of patches to the standard unsquashfs utility (part of squashfs-

tools) that attempts to add support for as many hacked-up vendor-specific SquashFS
implementations as possible.[40]

John the Ripper (John)

John the Ripper is free and Open Source software, distributed primarily in source code form.

John the Ripper detects weak hashes and cyphers, where it is later able to crack them. [41]

BuildRoot

By using cross-compilation, BuildRoot makes it simple, efficient and easy to generates

embedded Linux systems.

 Enjarify

Enjarify is a tool developed by Google for translating Dalvik bytecode to equivalent Java

bytecode. This allows Java analysis tools to analyse Android applications. [43]

 JD-GUI

JD-GUI is a stand-alone graphical utility that displays Java source codes of “.class” files.
Making it possible to browse the reconstructed source code with the JD-GUI for instant access

to methods and fields.[44]

 MobSF

MobSF or the Mobile Security Framework is an automated, all-in-one mobile application pen-

testing, malware analysis and security assessment framework capable of performing static and
dynamic analysis.[45]

 Airmon-ng

Airmon-ng is a script that can be used to enable monitor mode on wireless interfaces. It may
also be used to go back from monitor mode to managed mode. Entering the airmon-ng
command without parameters will show the status of the interfaces. [46]

 Airodump-ng

Airodump-ng is used for packet capturing of raw 802.11 frames and is particularly suitable for

collecting WEP IVs (Initialization Vector) for the intent of using them with aircrack-ng. [33]

 AmselProject

AmselProject or Amsel is a tool developed by Philipp Reinecke and Stephen Crane. This tool
has been expanded on in section 2.4 of this report.

P a g e 24 | 82

3.5. Determining the Attack Vector
The attacks that will be performed will be determined using threat modelling as it explores
possible threats against the device and the level of risk each threat poses depending on multiple

factors which will be expanded later in this section.

3.5.1. Threat Modelling
To determine which attack is to be performed on the device, a list of threat use case has been
identified using the STRIDE method which will be explained below. These threats will need
to be rated with a rating system to determine the risk for each one. There are several risk rating
systems. However, the most common are DREAD and the Common Vulnerability Scoring
System (CVSS). DREAD stands for Damage potential, Reproducibility, Exploitability,
Affected Users, and Discoverability this system will be used as the risk rating system for this
project and will be explained in depth later. On the other hand, CVSS or the Common
Vulnerability Scoring System is an open framework for communicating the characteristics and
severity of software vulnerabilities. These vulnerabilities are scored depending on multiple
then added up and compared to a qualitative severity rating scale ranging from 0 to 10 with the
criticality of the vulnerability increases as the score of that vulnerability increase. CVSS will
be used as a rating system by MobSF used in section (Decompiling the APKs).

3.5.2. Classification of Threats
The STRIDE model groups threats into six different categories to formulate questions to
discover threats. These six categories are derived from the acronym itself. In the table below,

each type is given with a brief description/question.

Name Description/Question

Spoofing An attacker attempts to be something or
someone he/she isn’t.

Tampering An attacker attempts to modify or tamper
with legitimate information without the

proper authorisation.

Repudiation The ability for users, legitimate or otherwise,

to deny that they performed specific actions.

Information Disclosure The unwanted expose of internal data.

Denial of Service The process of bringing down a system
intentionally or unintentionally, preventing

users from accessing the system.

Elevation of Privilege An attacker can gain elevated access by

assuming the identity of a privileged user to
gain privileged access to the system.

P a g e 25 | 82

3.5.3. Identifying Threats

Threat #1

Threat Description An attacker could take over the smart plug

Threat Target Users

Attack Techniques An attacker can socially engineer users into accessing the smart
plug. In the MITRE ATT&CK framework, this technique is

called “Conduct social engineering”, and it is described as social
engineering is the practice of manipulating people to get them

to divulge information or take action.

Threat #2

Threat Description Break into surrounding areas based upon intelligence gathered

Threat Target Users

Attack Techniques An attacker can physically access the area of the IoT devices
and apply changes to any or all of them. An attacker can also
socially engineer users into gaining access. In the MITRE

ATT&CK framework, it is described as “Assess security
posture of physical locations”, and it is defined as physical
access may be required for certain types of adversarial actions.

This is possible as some organisations are unaware of the
implications of physical access to the network.

Threat #3

Threat Description Overload the smart plug with requests to prevent usage.

Threat Target Network process

Attack Techniques An adversary can use the technique “Network Denial of
Service” where they attack to degrade or block the availability

of targeted resources to users. This can be done by exhausting
the network bandwidth services rely on. Another technique that
encapsulates this threat is technique T1464 which is “Jamming
or Denial of Service” where an attacker jams radio signals such
as Wi-Fi or GPS, the adversary can also perform a DoS attack
on the smart plug to prevent the user from communicating with

the device.

https://attack.mitre.org/techniques/T1279

P a g e 26 | 82

Threat #4

Threat Description An attacker could install malicious firmware or application on

the smart plug

Threat Target Smart plug firmware

Attack Techniques An attacker could sideload malicious firmware upon firmware
update. The attacker could also flash the device with new
firmware if the attacker gained access to it. This technique is

found under the “Persistence” tactic and is called “Component
Firmware”. Some adversaries may employ sophisticated means
to compromise computer components and install malicious

firmware that will execute adversary code outside the operating
system and main system firmware or BIOS. Malicious firmware
could provide both a persistent level of access to the system.

Threat #5

Threat Description Brick the smart plug

Threat Target Firmware

Attack Techniques Different techniques can achieve this, one of them is “Firmware

Corruption” which is when adversaries overwrite or corrupt the
flash memory contents of system BIOS or other firmware in
devices attached to a system to render them inoperable or unable

to boot. Another way this technique is achieved is called “Disk
Structure Wipe” this is when adversaries corrupt or wipe the
disk data structures on a hard drive necessary to boot systems.

P a g e 27 | 82

Threat #6

Threat Description An attacker could locate sensitive information in clear text on

the mobile device.

Threat Target Kasa mobile app

Attack Techniques Attacker monitors file storage during routine and find data being
synced from the cloud to the mobile device, exposing sensitive
information. This technique is described by three techniques in

the MITRE ATT&CK framework which are “Remotely Track
Device Without Authorisation”, “Network Traffic Capture or
Redirection” and “Data from Local System”.

“Remotely Track Device Without Authorisation” is described
as, an adversary can obtain unauthorised access to or misuse
authorised access to cloud services and use that access to track

mobile devices.

Technique ID T1410; “Network Traffic Capture or Redirection”
is defined as an adversary’s capability to capture network traffic
to and from the device to obtain credentials or other sensitive
data or redirect network traffic to flow through an adversary-
controlled gateway to achieve the same result.

Technique ID T1533; “Data from Local System” sensitive data
can be collected from the local system sources, such as the file
system.

Threat #7

Threat Description An attacker could access local resources on the mobile device

Threat Target Kasa mobile app

Attack Techniques Attacker discovers flaws in API communications.

Technique ID T1409 given the name “Access Stored
Application Data” is described as adversaries may access and
collect application data resident on the device.

Technique ID T1516 with the name “Input Injection” is defined
as a malicious application can inject input to the user interface
to mimic user interaction through the abuse of Android’s
accessibility APIs

Technique ID T1533 explained in threat #6

P a g e 28 | 82

Threat #8

Threat Description An attacker could intercept network communications

Threat Target Network Process

Attack Techniques Technique ID T1056 which is “Input Capture” is described as
adversaries can use methods of capturing user input for

obtaining credentials for valid accounts and information
collection that include keylogging and user input field
interception.

Threat #9

Threat Description An attacker can access possible secrets within the firmware

Threat Target Smart plug firmware

Attack Techniques Reverse engineering the firmware could lead to hard-coded

passwords. This can be found in technique T1032 or “Standard
Cryptographic Protocol” where adversaries may explicitly
employ a known encryption algorithm to conceal command and

control traffic rather than relying on any inherent protections
provided by a communication protocol. Despite the use of a

secure algorithm, these implementations may be vulnerable to

reverse engineering if necessary, and secret keys are encoded
within configuration files.

Threat #10

Threat Description An attacker could perform arbitrary script execution

Threat Target Kasa mobile app

Attack Techniques The technique T1055 or “Process Injection” encapsulates this
threat, and it is described as a method of executing arbitrary

code in the address space of a separate live process. Running
code in the context of another process may allow access to the
process's memory, system/network resources, and possibly

elevated privileges. Execution via process injection may also
evade detection from security products since the execution is
masked under a legitimate process.

P a g e 29 | 82

All techniques are found in the ATT&CK Matrix for Enterprise, PRE-ATT&CK, and Mobile
[24].

Using the DREAD risk rating system, which has been mentioned at the start of this section,
will determine what threat poses the most significant risk.

The DREAD rating system stands for the following:

• Damage potential: How much damage will be caused?

• Reproducibility: How easy is it to reproduce the attack?

• Exploitability: How easy is it to attack?

• Affected users: Roughly how many users are affected?

• Discoverability: How easy is it to find the vulnerability?

DREAD has a risk rating system ranging from 1-3. One is considered to be low risk, two as
medium risk, and three as high risk. The table below describes each rating number for each

rating category:

 Rating High (3) Medium (2) Low (1)

D Damage

potential

Can subvert security
controls, get full trust
authorisation, run as

admin.

Could leak sensitive
information.

Could leak trivial
information.

R Reproducibility An attack can always be

reproducible and does

not require a timing
window.

An attack can be

reproduced but only

within a timed window
or particular
conditions.

It is challenging to

reproduce, even with

specific information
about the vulnerability.

E Exploitability A novice attacker could
execute the exploit in a

short time.

A skilled attacker
could make the attack

repeatedly.

An extremely skilled
attacker with specific

information about the
vulnerability.

A Affected users All users, default

configurations, all

devices.

Some users, custom

configuration, some

devices.

A small percentage of

users and/or devices.

D Discoverability Quickly found

published information
explains the attack,
vulnerability is in a

commonly used feature.

Vulnerability is in a

rarely used feature
where an attacker
needs to be creative to

be able to exploit the
vulnerability.

Vulnerability is obscure

and unlikely to be
exploited by an attacker.

P a g e 30 | 82

3.5.4. Rating the threats
The final risk is ranked using the following ratings:

Risk rating Result

High 12-15

Medium 8-11

Low 5-7

Each threat identified using STRIDE will be rated using the DREAD rating system seen in

table X above.

Threat #1

Threat risk rating: Attacker can take over the smart plug

Item Score

Damage potential 2

Reproducibility 2

Exploitability 2

Affected users 2

Discoverability 3

Risk rating score: 11

Threat #2

Threat risk rating: Break into surrounding areas based upon intelligence

gathered

Item Score

Damage potential 2

Reproducibility 1

Exploitability 2

Affected users 1

Discoverability 1

Risk rating score: 7

P a g e 31 | 82

Threat #3

Threat risk rating: Overload the smart plug with requests to prevent usage

Item Score

Damage potential 1

Reproducibility 3

Exploitability 3

Affected users 2

Discoverability 3

Risk rating score: 12

Threat #4

Threat risk rating: Attacker could install malicious firmware or applications on

the smart plug

Item Score

Damage potential 3

Reproducibility 2

Exploitability 2

Affected users 2

Discoverability 3

Risk rating score: 12

Threat #5

Threat risk rating: Brick the smart plug

Item Score

Damage potential 3

Reproducibility 1

Exploitability 1

Affected users 3

Discoverability 2

Risk rating score: 10

P a g e 32 | 82

Threat #6

Threat risk rating: Attacker could locate sensitive information in clear text on the

mobile device

Item Score

Damage potential 2

Reproducibility 2

Exploitability 1

Affected users 1

Discoverability 2

Risk rating score: 8

Threat #7

Threat risk rating: Attacker could access local resources on the mobile device

Item Score

Damage potential 3

Reproducibility 2

Exploitability 1

Affected users 1

Discoverability 2

Risk rating score: 9

Threat #8

Threat risk rating: Attacker could intercept network communications

Item Score

Damage potential 2

Reproducibility 2

Exploitability 3

Affected users 1

Discoverability 3

Risk rating score: 11

P a g e 33 | 82

Threat #9

Threat risk rating: Attacker can access possible secrets within the firmware

Item Score

Damage potential 3

Reproducibility 3

Exploitability 2

Affected users 2

Discoverability 3

Risk rating score: 13

Threat #10

Threat risk rating: Attacker could perform arbitrary script execution

Item Score

Damage potential 3

Reproducibility 3

Exploitability 2

Affected users 2

Discoverability 3

Risk rating score: 13

According to the threat modelling done above the threats that seem to pose the highest risk and

in turn, the most significant possibility of success are:

• An attacker can access possible secrets within the firmware.

• An attacker could perform arbitrary script execution.

Therefore, the subsections below explore how both threats can be executed.

A presentation by Jonas Zaddach and Andrei Costin called “Embedded Devices Security
Firmware Reverse Engineering”, lays out the sequence of steps that need to be taken in order

to analyse the firmware in the most effective way possible [61]. There are two significant parts
to reversing engineering firmware; the first is firmware analysis, and the second is firmware
emulation. The analysis part is split into five steps; the first step is getting the firmware; this

can be seen in section 4.1.1. The second step is reconnaissance, which includes looking at the
entropy and the file structure of the firmware, possibly revealing useful information; this is
expanded on sections 4.1.2 and 4.1.3. The third step is unpacking the firmware and extracting

the file system, this can be seen in section 4.1.4. The fourth step is called “localise the point of

interest”; this refers to concentrating on the section, yielding the result that is sought after; this

can be seen in section 4.1.4 and 4.1.5. The last step is called
“Decompile/compile/tweak/fuzz/pentest/fun!” this step is comprised of many options where

P a g e 34 | 82

decompiling then altering and later compiling the firmware can be seen in section 4.3.
However, this last step cannot be possible without the second part of reverse engineering,

which is firmware emulation; this can be seen in section 4.2, where the firmware and the file
system are emulated.

The blog by softScheck discusses the process of reverse-engineering the firmware of the device

being used in this project [55]. It follows a specific order of steps, and after reverse-engineering
the firmware, decompiling the companion application, and searching for the encryption method
used by the application to communicate with the device, across the network is next. Therefore,

after reverse-engineering the firmware itself, the focus became on decompiling the APKs of
the Kasa application. This step in the project was done exploratorily as the blog itself does not
contain any information from where its findings originated; this can be seen in section 4.5. The

following step was adding a plugin into Wireshark that decrypted the packets according to the
information gathered when decompiling the Kasa application.

P a g e 35 | 82

4. Implementation and Results

4.1. Reverse Engineering the Firmware
Before reverse engineering the firmware a brief understanding of what firmware does on a
system was needed. Firmware is a piece of software that exists on the non-volatile section of
the device, i.e. flash ROM (Read Only Memory), allowing and enabling the device to perform

different tasks required for its functioning. As the firmware is stored on the flash ROM of a
device this makes it rewritable ROM memory, it is initially written by the hardware
manufacturer but can be rewritten afterwards by using a firmware updater.[26]

Firmware consists of various components such as the kernel, bootloader, file system, and
additional resources. The first step into analysing the firmware of any device is to gain a deeper

understanding of it and its various sections that function together as one. Henceforth, the kernel

is one of the core components of the entire embedded device. It is responsible for managing
the resources and communication between hardware and software components. The kernel also
provides secure access to the system memory. The bootloader is responsible for numerous

tasks, one of which is initialising various critical hardware components and allocating the
required resources. The file system is where all the files and directories critical for embedded
device runtime are stored. This includes programs for booting the system, web servers, and

network services.[27]

Firmware is a binary piece of data, which when opened using a hex viewer reveals all the
sections inside it, and later identified by looking at the signature bytes of each section.

Some of the conventional files systems that can typically be seen in IoT devices are Squashfs,

Cramfs, JFFS2, YAFFS2, and ext2. In addition to the different file systems, various types of
compressions are used, some of the standard compressions used are LZMA, gzip, Zip zlib,

ARJ.[28]

The following subsections require basic knowledge on what a BusyBox is and how is it used;
a BusyBox is a multi-call binary that combines a tiny version of many UNIX utilities, providing
minimalist replacement functioning and behaving similar to the services found in GNU.

BusyBox has been written with size-optimisation and limited resources in mind, effectively
making it easy to include and exclude commands when it is being compiled. This makes it

effortless to customise any embedded system, resulting in reducing the binary size of the
BusyBox. A multi-call binary is an executable program with the same functionality as multiple

utility programs. Therefore, a smaller BusyBox contains all the built-in utility programs which

are commonly referred to as applets. [47]

4.1.1. Acquiring the Firmware
Acquiring the firmware directly from the device was not an option as the device belongs to the
university. Therefore the second-best approach was taken and downloaded a copy of the

firmware binary from the TP-Link Support page. The latest version of the firmware,
HS110(US)_V1_151016, was downloaded from the page at the time of writing this report.

Before downloading the firmware, a directory called hs110 was created using the mkdir

command (mkdir hs110). The firmware was downloaded onto the Kali Linux VM and moved
using the mv command to the hs110 directory. Using the command “unzip
HS110\(US\)_V1_151016.zip” the contents of the compressed folder were extracted; all these

steps can be seen in figure 3 below.

https://static.tp-link.com/res/down/soft/HS110(US)_V1_151016.zip

P a g e 36 | 82

Figure 3: Downloading the Firmware into a New Directory

4.1.2. Components of the Firmware
Binwalk is a tool written by Craig Heffner that automates the extraction of the file system from
the firmware binary image. It can do this by matching the signatures present in the firmware
image with the ones found in its database and provides an approximation of what the different

section could be.

Using the command “Binwalk -t hs110v1_us_1.0.7_Build_151016_Rel.24186.bin” various
sections of the firmware are outputted. The -t in this command states that the output will be in

a tabular form, as seen in figure 4 below.

Figure 4: Components of the Firmware

4.1.3. Entropy Analysis
Using additional capabilities of Binwalk, and entropy analysis were performed using the

command “Binwalk -E hs110v1_us_1.0.7_Build_151016_Rel.24186.bin” and result in the
graph seen below.

P a g e 37 | 82

Figure 5: Entropy Graph

By looking at an entropy graph, a sense of how compressed or encrypted the bytes are is

obtained. A high entropy indicates that the firmware is probably encrypted; however, in the
graph seen above, there is a fuzzing in the line, which indicates that the data is simply
compressed and not encrypted. On the other hand, a low entropy indicates that there is no

encryption or compression involved in that segment of bytes. With the aid of the entropy table,
seen in figure 6, it is clear that none of the sections in the firmware are fully encrypted; as none
of them has an entropy of 1.

Figure 6: Entropy Table

4.1.4. Extracting the File System
Using the command “Binwalk -e hs110v1_us_1.0.7_Build_151016_Rel.24186.bin” the file
system is extracted from the firmware. Using the -e in this command negates the need to use
any manual firmware extraction. Even though the output of this command appears to be the

same as running it without any flag. The difference is that this command will generate a new

directory that contains the extracted file system as seen in figure 7 below, the generated
directory by Binwalk has the same name as the firmware with an underscore prepended to it

and a .extracted appended to it.

P a g e 38 | 82

Figure 7: Extracting Firmware

After navigating into the directory, a ls command was used to list the following contents:
10300, 10300.7z, 1102C0.squashfs, 439C, 439C.7z, and squashfs-root. A closer look into each

file using the command “strings <filename> | less” revealed that 10300 is the kernel, 439C is
the boot loader, and 1102C0.squashfs is the file system. The command used above returns each
string of printable characters in the file provided, which makes it easier to look through binary

data.

From a security researcher’s point of view, certain things can be potentially found after
extracting the firmware. These are hard-coded credentials, backdoor access, sensitive URLs,

access tokens, API and encryption keys, encryption algorithms, local pathnames, environment
details, authentication and authorisation mechanisms. [28]

After navigating to the “squashfs-root” directory, the “tree” command was used to display all
the files in the directory. Under the etc directory there were a few files of particular interest

these are group, passwd, public.key and shadow. The group file seems to contain all the hard-
coded users with access to the firmware. The most notable one is ‘root’. The ‘passwd’ file
appears to contain the location of the passwords for 4 of the users seen in the ‘group’ file,
after searching for the files mentioned only the file for the root username exists, and the

hardcoded password seems to be encrypted this is shown in figure 8 below.

Figure 8: Encrypted Root Password

The public.key file contains the public key used by the firmware, which can be seen in figure
9 below.

Figure 9: Public Key

P a g e 39 | 82

The last file “shadow” contains what appears to be a hash of the password for the root username
seen in figure 10. The “unshadow” command was used to combine the “passwd” and “shadow”

file so John can use them, this is needed since if the shadow files were used on its own, the
GECOS information would not be used by the “single crack” mode. The unshadow command
was run with root privileges to be able to read the shadow file. The combined file was redirected

to a file called “unshadow.txt”. This step is seen in figure 11 below.

Figure 10: Root Password Hashed

Figure 11: Unshadow the etc/shadow File

The unshadow.txt file was passed into John the Ripper, using the command “john -show
/poseidon/Desktop/unshadow.txt” to crack the hashes resulting in one password ‘media’ for
the root user. This is seen in figure 12. The -show in the command above allows John to display

the cracked passwords.

Figure 12: Root Password Cracked

4.1.5. Firmwalker
To ensure that no essential information was not missed, Firmwalker was run on the extracted
firmware, in section 4.1.2. Firmwalker is an automated script that searches for interesting
strings from a list that can be manually looked at. The list is divided into eight categories:

binaries, dbfiles, files, passfiles, patterns, sshfiles, sslfiles, and webservers, each containing a
list of keywords.

Following this syntax “./firmwalker {path to root file system} {path for firmwalker.txt}” the

command “./firmwalker.sh
~/hs110/_hs110v1_us_1.0.7_Build_151016_Rel.24186.bin.extracted/squashfs-root/
~/hs110/firmwalker.txt” was used. As the contents of the text file are excessive below are the

parts that are deemed to be important.

The only mention of a “passwd” file was “/etc/passwd”, and the only mention of shadow files
was “/etc/shadow”. There were only two files relating to SSL (Secure Sockets Layer); /an SSL

certificate and a file containing the public key. Some of the patterns Firmwalker searched for

are: admin, root, password, passwd, pwd, and token. After carefully looking at the files, the
patterns that appeared as most important where /etc/passwd and /etc/shadow.

P a g e 40 | 82

One of the binaries found by Firmwalker was BusyBox, after navigating to the directory, a
“strings BusyBox |less” command was used to inspect the contents of the file. Inside the file, a

few commands where found that will be used in the following sections below.

4.2. Emulating the Firmware
Emulating the firmware is the best way to obtain a better understanding of the vulnerabilities
that reside in it. IoT devices run on a different architecture, such as ARM (Advanced RISC

Machine), and MIPS (Microprocessor without Interlocked Pipelined Stages) compared to most
systems. For that reason, a utility known as Qemu is used to emulate the binaries on the
platform. To do this, Qemu was installed using the command “sudo apt-get install qemu qemu-

system qemu-system-arm qemu-system-common qemu-system-mips qemu-system-ppc qemu-
user qemu-user-static qemu-utils”.

After Qemu was installed, a look at the architecture of the firmware was required. This was

possible by running the command “readelf -h bin/BusyBox” in the “squashfs-root” directory.
This is seen in figure 13 below. The -h displays the information that is found in the ELF header
of the file.

Figure 13: Information Found in the Header of the File System

As seen highlighted in the red box, in the figure above, the architecture of the firmware is

“MIPS R3000”, and the data is in big-endian, as seen in the green box above.

The Qemu binary for MIPS is copied to “squashfs-root” directory. This is done by using the
command “which qemu-mips-static” to locate where this binary is. After it is located, it is

copied using the command “sudo cp /usr/bin/qemu-mips-static .”. It is now in the “squashfs-
root” folder, as seen in figure 14 below. “qemu-mips-static” is a binary for running MIPS
binaries, it also provides libraries that are required.

Figure 14: Copying the QEMU MIPS Binary inside the File System

The command “sudo chroot . ./qemu-mips-static ./bin/BusyBox” is used to emulate the
firmware binary.

P a g e 41 | 82

Figure 15: Emulating the BusyBox

As seen in figure 15 above, a successful emulation of the firmware binary was achieved, which

was originally meant to be run on only MIPS-based architectures.

Now that the firmware binary can be emulated, the entire firmware is to be emulated next. This
is done to gain access to all the individual binaries in the firmware image and to perform

network-based attacks on the firmware. However, some hurdles need to be overcome to
emulate the entire firmware successfully, some of the most important are; the firmware is
meant to run on another architecture, and the firmware might be dependent on physical

hardware components to run. The first hurdle will be tackled by using Qemu, as in the previous
section. The second hurdle will be addressed by using the Firmware-Analysis-Toolkit (FAT),
which is a script built on top of Firmadyne, a tool meant to emulate firmware.

After setting up FAT, the command “./fat.py
~/hs110/hs110v1_us_1.0.7_Build_151016_Rel.24186.bin” was run and failed to build the
firmware, after some research, it was found that to utilise the full capabilities of FAT, it needs

to be run as root. Therefore, the command “./fat.py
~/Desktop/hs110v1_us_1.0.7_Build_151016_Rel.24186.bin” was run as root, the firmware
was installed again on the device from the website, following the step in the “Acquiring the

Firmware” section above. FAT was able to emulate the firmware, as seen in figure 16 below.

Figure 16: Emulating the Entire Firmware

Note that in the figure above the Network interfaces is empty as the firmware for this device
does not have a web interface.

P a g e 42 | 82

After running the firmware, a username and password prompt were presented. The input
provided here was the username and password that were extracted from the shadow file found

in section 4.1.4. above; the username is root, and the password is media. The username and
password entered allowed access at a root level, as seen in figure 17 below.

Figure 17: Successful Login into the Emulated Firmware

The first thing noticed is that the BusyBox version seems to be outdated; therefore, a quick
search for vulnerabilities on the Exploit Database revealed a vulnerability classed as an Input

Validation Error and was discovered in 2006. An attacker can exploit this vulnerability to
retrieve arbitrary files from the vulnerable system, in the context of the affected application.

Information obtained may aid in further attacks.[29]

Entering ‘help’ in the shell revealed the built-in commands, this is seen in figure 18 below.

Figure 18: Built-In BusyBox Commands

However, an online search on all the commands available in this version of BusyBox, showed

many more commands that work, even if they are not built-in to this variant of BusyBox. A
simple example is the ls command. By using the command “ls -la”, it showed a directory with
no files, however, when the command “cd ..” was used a directory with all the files inside the

firmware were displayed. This is seen in figure 19 below.

Figure 19: Files Inside the Firmware

Going into the bin/ folder, we can see all the command that can be used. This is useful when
accessing the backdoor in the firmware that will be created in the next section.

P a g e 43 | 82

4.3. Backdooring firmware
Backdooring firmware is one of the security issues that firmware faces if the device has no
security integrity checks and signature validation. An attacker can extract the file system from

a firmware and then modify the firmware by adding a backdoor. This modified firmware could
then be flashed to the real IoT device, giving the attacker backdoor access to the device.

To modify the firmware, the first step is to extract the files from the firmware but rather than

using Binwalk as in section 4.1.2, a tool called Firmware Mod Kit or FMK for short will be
used, this tool has been expanded on in section 3.4.

The first step after cloning this repository from GitHub was to change the address of Binwalk

in the shared-ng.inc file so that it matches the one on the local machine, the final result can be

seen in figure 20 below.

Figure 20: Changing the Address of Binwalk

The second step is to copy the firmware to the FMK directory using the command “cp

~/Desktop/hs110v1_us_1.0.7_Build_151016_Rel.24186.bin .” now that it is in the directory
we run the ./extract-firmware.sh.

Once the execution is complete, the location of the file is given in this case the extracted

firmware is in “/root/firmware-mod-kit/fmk/”.In the “rootfs” which is the root file system
where the entire file system contents are located if any values are modified, or additional files
or binaries are added they can be repackaged into the new firmware image. For that reason, the

backdoor file used is moved here. This backdoor was created to open port 9999 on TP-Link
devices. However, it was modified to open port 1040, which is the TP-Link Device Debug

Protocol (TDDP). To be able to compile the new addition to the firmware, a cross-compiling

toolchain for MIPS architecture is needed. BuildRoot is a unique tool that can help compile
programs for various types of architectures, including MIPS.

After setting up the tool, the command “make menuconfig” is used in the BuildRoot directory,

to bring up the options from which the toolchain can be built. First, navigate to “Target
Options” and change the “Target Architecture” to MIPS (Big Endian) as it is the architecture
being used as seen in figure 13 above. Second navigate to “Toolchain” and select Build Cross
GDB for the Host and GCC Compiler, exit the build root configuration menu. The command
“make” is used to build the toolchain. The BuildRoot cannot make a toolchain as root;
therefore, the BuildRoot was set up on a non-root user with all the proper configurations as

mentioned above, and the FMK directory was moved to this non-root user.

After the toolchain was created, the backdoor code was copied to the bin directory created, and
it was compiled using “mips64-BuildRoot-linux-uclibc-gcc” which is a part of the toolchain

create and is the GCC compiler selected previously, this is shown in figure 21 below.

P a g e 44 | 82

Figure 21: Compiling the Backdoor

Once the backdoor code has been compiled, the new binary is placed inside the firmware using
FMK. The binary is placed in the “etc/rc.d” directory because “etc/rc.d/rcS” will run during

the boot process. The code for rcS was edited so that the backdoor code was inside the script.
As seen in figure 22 below.

Figure 22: Backdoor Placed Inside the rcS File

Now that everything is in place the only thing left is to recompile the firmware, this is done by

using the command “sudo ./build-firmware.sh fmk/ -nopad -min”, after recompiling the new
firmware is saved in the fmk directory as seen in figure 23.

Figure 23: New Firmware Compiled

Before attempting to flash the new firmware on the device, the firmware was emulated using

FAT. As mentioned above, FAT can only be run as root. Therefore, the command used to
emulate the firmware is “sudo ./fat.py /poseidon/firmware-mod-kit/fmk/new-firmware.bin”.

Figure 24 below shows that the backdoor code was run with no errors and can be accessed once

it is on the device.

Figure 24: Emulating the Firmware with the Backdoor

An attempt was made to flash the new firmware on the device; however, the device seems to

validate the signature of the image being flashed, this was confirmed by softScheck where they
found that the image’s signature must match one of four hardcoded RSA keys. These keys are
seen in figure 25 below.

P a g e 45 | 82

Figure 25: RSA Keys

This step was not possible to explore as the free version of IDA does not decompile MIPS
architectures. The software required is IDA Pro which can decompile a range of different
architectures including MIPS; however, this software costs north of $900. [56]

4.4. Portscan
A quick scan using the command “nmap -T4 -F 192.168.1.0/24” to scan for all devices on the
network, after looking at the MAC addresses of the devices the one that matched the MAC
address of the smart plug (as seen on the device itself) has 192.168.1.20 as its IP Address, the

-T4 is a timing template that speeds up the scan and the -F stands for fast mode which limits
the number of ports being scanned, however, the ports that are still scanned are the most
common 100 ports. Later a scan was performed on the device using the command “nmap -p-

192.168.1.20” to scan all UDP and TCP ports, the -p- tells Nmap to scan all possible ports with
no range limitations. The scan reveals port 9999 to be the only port open on the device. This is
shown in figure 26 below. The Port 9999 TCP is soley used to control the smart plug on a local

network via the Kasa app.

Figure 26: Port Scan on the IoT Device

4.5. Decompile the APKs
Decompiling the APKs of an application can reveal vulnerabilities that can be exploited by

attackers, some of these vulnerabilities are lack of binary protection, insufficient transport layer
protection, insufficient authorisation or authentication, improper certificate validation, brute
force user enumeration, insufficient session expiration, and information leakage. [30]

The device used to control the smart plug is a Motorola motog6 and runs on Android; therefore,
acquiring the APK files for the Kasa app can be done by installing it from Apkpure. Apkpure
is a third-party app store that can be used to download APK files, with the ability to download

older versions of an application as well as their historical release notes [42]. The Kasa version

on the mobile phone is 2.20.0.918. Therefore, the same version was installed from Apkpure.

To decompile an android application, Enjarify and JD-GUI will be used. Enjarify translates

Dalvik bytecode to Java bytecode which will be analysed further using JD-GUI. JD-GUI is a

P a g e 46 | 82

Java decompiling tool which can be used to view Java code. Both tools have been expanded
on in section 3.4.

A directory to store any related work for this section was create called “MARS” (Mobile
Application Related Stuff). The tools and APK file were set up in this directory. The command
“./enjarify.sh ~/MARS/Kasa\ Smart_v2.20.0.918_Apkpure.com.apk” was run as seen in

figures 27 and 28 below. The output was written on a JAR file.

Figure 27: Decompiling the APK

Figure 28: Total Number of Java Classes Contained in the APK

The JAR file creates above was opened using JD-GUI, revealing all the classes that were
decompiled, as it can be seen in the figures above, there are over 26,000 classes. Therefore, the
help from an automated tool such as MobSF was needed. MobSF has been expanded on in

section 3.4 and will be used to look for files that may contain hardcoded sensitive information
such as usernames, passwords, keys etc.

After installing all the necessary dependencies and setting up MobSF, the command “./run.sh”
was used to run a local server, at 0.0.0.0:8000 which provides an interface to use MobSF, this
is seen in figure 29 below.

Figure 29: Running MobSF

The APK file was dragged and dropped into MobSF’s web interface where it was automatically
decompiled and analysed. MobSF provides a variety of information about the app such as the
app scores, file information, app information, core android components (Activities, Services,

Receivers, and Providers), however, the most helpful subsection, is the code analysis
subsection. Here, MobSF flags poor coding practices as well as potentially vulnerable pieces
of code listing all the classes that may cause a specific vulnerability and includes the CVSS

score which has been expanded on in section 3.5.1., moreover, MobSF also provides a CWE

or Common Weakness Enumeration, which is a community-developed list of common
software and hardware security weaknesses. It serves as a common language, a measuring stick

for security tools, and as a baseline for weakness identification, mitigation, and prevention
efforts [31]. MobSF found vulnerabilities in the Kasa app, which can be seen in the table below;

P a g e 47 | 82

however, as the files that these vulnerabilities are found in are numerous; 692 out of 26470
have been flagged to have security flaw which equates to 2.6% of the Java files. Some of these

files will be included in Appendix B:

Vulnerability Severity Standards

App can read/write to External Storage.

Any App can read data written to External Storage.

High CVSS: 5.5

CWE: CWE-276- Incorrect Default
Permissions

App can write to App Directory.

Sensitive information should be encrypted.

Info CVSS: 3.9

CWE: CWE-276-Incorrect Default

Permissions

App uses SQLite Database and execute raw SQL
query. Untrusted user input in raw SQL queries
can cause SQL Injection. Also, sensitive

information should be encrypted and written to the
database.

High CVSS: 5.9

CWE: CWE-89- Improper Neutralisation of
Special Elements used in an SQL command

(‘SQL Injection’)

Files may contain hardcoded sensitive

information, like usernames, passwords, keys etc.

High CVSS: 7.4

CWE: CWE-312-Cleartext Storage of
Sensitive Information

Insecure Implementation of SSL. Trusting all the

certificates or accepting self-signed certificates is
a critical Security Hole. This application is

vulnerable to MITM attacks.

High CVSS: 7.4

CWE: CWE-295-Improper Certificate
Validation

IP Address disclosure Warning CVSS: 4.3

CWE: CWE-200-Exposure of Sensitive

Information to an Unauthorised Actor.

The App logs information.

Sensitive information should never be logged.

High CVSS: 6.5

CWE-532-Insertion of Sensitive

Information into Log File

The App uses an insecure Random Number

Generator.

High CVSS: 7.5

CWE: CWE-330-Use of Insufficiently

Random Values

The App uses Java Hash Code. Warning CVSS: 2.3

CWE: CWE-327-Use of a Broken or Risky
Cryptographic Algorithm

P a g e 48 | 82

The vulnerabilities with the highest CVSS score are, “Files may contain hardcoded sensitive
information, like usernames, passwords, keys etc.” and “Insecure Implementation of SSL.

Trusting all the certificates or accepting self-signed certificates is a critical Security Hole. This
application is vulnerable to MITM attacks.” A further look in the files containing these
vulnerabilities revealed the method used by the application to obfuscate the payload across the

local network. The file com.tplinkra.tpcommon.tpclient.TPClientUtils seems to include the
encryption method and its counterpart the decryption method:

Figure 30: Encryption Method Found

Figure 31: Decryption Method Found

In figure 30, the IV (Initialisation Vector) b has a hardcoded value of -85 (= 171). The first
byte of the plaintext is XORed with the key. The key is then set to the plaintext byte. This can

be seen in the figure above. The next iteration, the plaintext byte is XORed with the previous

plaintext byte and if loops until all bytes of the payload have been encrypted. This type of
encryption is known as an autokey cypher which is a polyalphabetic substitution cypher. It is

similar to the Vigenere cypher. The only difference is that it uses a different method of
generating the key [32]. Even though this cypher has better statistical properties than just a
simple XOR with a repeating key, it can still be broken by using a KPA or Known plaintext

Attack.

4.6. Wireshark Dissector
By using ALFA Network AWUS036NHA network adapter, which has been expanded on
previously in section 3.2., is set to monitor mode following a sequence of commands, the first

of which is “sudo iwconfig” this command is used to display all wireless interfaces. The

command revealed three networks with only one having a wireless extension name “wlan0”
which will be the wireless interface that will be changed to monitor mode, the second command
used is “sudo airmon-ng check kill” will check and kill off processes that might interfere with
the airmon-ng suite. The third and final command used is “sudo airmon-ng start wlan0” this

P a g e 49 | 82

command will change the interface to monitor mode, however, to ensure that all the steps
worked as intended “sudo iwconfig” is rerun. In figure 32 below the difference between the

first time iwconfig is run, and the second time it is run is highlighted.

Figure 32: Setting Up Monitor Mode

In the setup seen in section 3.1.1. Wireshark was run on the “wlan0mon” network to search for

packets between the smart plug and the mobile phone, however, no packets where visible. After
extensive research into the matter, the only way for any packets to be seen was to connect the
phone to the smart plugs access point. This was done by first resetting the smart plug back to

its factory settings and connecting the device to the smart plugs ESSID or Extended Service
Set Identifier which is “TP-LINK_Smart Plug_D65B” this makes the smart plug only
controlled locally and did not send any information to the cloud.

To display all the access points detected by the network adapter, the command “sudo airodump-
ng wlan0mon” is used. This command provides an abundance of information; however, two
pieces of information are specifically important; BSSID and CH. The BSSID or Basic Service

Set Identifiers is described as the MAC address of the access point. CH stands for Channel
number, which is taken from beacon packets [33].

P a g e 50 | 82

The MAC address of the smart plug is 50:C7:BF:30:D6:5B and by comparing it with the
BSSIDs seen after running the command, the access point can be identified. As seen in figure

(airodump) below it can be seen that the access point is the last one on the list with channel
number 1 and ESSID of “TP-LINK_Smart Plug_D65B”. Next the command “sudo airodump-
ng -d 50:C7:BF:30:D6:5B -c 1 wlan0mon” is used to specify the exact access point the network
adapter to listen on, this is shown by figures 33 and 34 below.

Figure 33: Searching for All Access Points seen by the WiFi Adaptor

Figure 34: Specifying Which Access Point to Listen On

After running this command, Wireshark is opened to sniff the communication between the
smart plug and the mobile phone, the packets were filtered using the filter “tcp.flags.push”.

Using the phone to turn the plug on and off displays packets in Wireshark, this is seen in figure
35 below.

Figure 35: Packets observed Without Dissector

However, the data seems to be encrypted. Here we can use the knowledge gained in section
4.5. to decrypt the communications. By using the command “sudo cp ~/tplink-
smartplug/tplink-smarthome.lua .” a plugin that has been developed by softScheck was copied

to the directory that contains the plugins for Wireshark, the encrypted packets are then
decrypted and can be viewed in plaintext. Figure 36 shows the packets decrypted.

P a g e 51 | 82

Figure 36: Packets Observed With Dissector

softScheck release a full list of system commands that were integrated into the tool that was
developed by the company. The full list is found in Appendix C. These commands will be used

to add new features to the tool that was developed by them. The main reason for adding new
features to the tool is to test the full capabilities of the tool maliciously; to test the use
maliciously, features that could compromise the functionality of the device will be added, this

will be based on possible real-world scenarios giving further justification for each feature.

To test these features in an everyday environment, the smart plug and phone were connected
back to the home router. Returning the network setup to the one seen in figure 1 found in

section 3.1.1.

4.7. Adding Feature to the “tplink-smartplug.py”
A feature added to the tool developed by softScheck is called “blackout”. This feature takes
advantage of the ability that the tool can send packets to the plug, telling it to turn off. The

blackout feature loops the turn off command for a certain amount of time which is determined
by the user. A scenario where this feature can be used is if a light was connected to a smart
plug that would turn on if it sensed motion, by using this feature the user can walk in front of

the light without having to worry about the light turning on allowing the attacker to access the
place physically.

To run this feature, enter the command “python tplink_smartplug.py -t <IP of the target device>

-c blackout”. The user will be prompted to enter the number of minutes the user wishes the
blackout to last after the specified time has elapsed the feature will display the time taken in
seconds and the number of packets sent in the specified time, this is seen in figure 37 below.

Figure 37: Blackout Statistics

A second feature added to the tool is called “steal”. This feature automates the ability provided

by the tool allowing the user to unbind the rightful owner from the cloud and bind their
information allowing the user of the tool to take full control of the target device. To be able to

P a g e 52 | 82

test this feature, another account was created using the Kasa app; which was installed on a
different phone.

A possible scenario where this feature could be used is when a camera is hooked up to a smart
plug, where when a smart lock is unlocked, the camera is turned off, and when the lock is
locked, the camera is turned back on. By using the tool, the attacker can gain control over the

camera rendering the security system useless, for the person who installed it. The attacker can
then use the system against the original owner by, for example permanently locking the owner
outside of the house and demanding a ransom to open it or lock the owner inside of the house

denying him any possibility of leaving.

To run this feature, enter the command “python tplink_smartplug.py -t <IP of the target device>

-c steal”. This feature will first turn off the LED lights on the devices to ensure that the owner

is not suspicious, second, it will give information about the account that is bound to the device,
third, it will unbind the account from the device, fourth it will prompt the user to enter a
username and password it will then bind the new user to the device. Lastly, it will turn the LED

lights back on. The LED lights are turned off throughout this process as they blink green and
orange, which can be noticeable if left on.

The threat modelling in section 3 and sections 4.1 - 4.7 help achieve the second sub-goal of

this project as the threat modelling helps with indicating which attack has the highest success
rate with the most significant threat. Moreover, sections 4.1- 4.7 perform the attacks indicated
by the threat modelling, where the vulnerabilities found are exploited in section 4.7

specifically.

4.8. Amsel
As seen in the background section of this report, AMSEL is a tool for generating symptoms of
malware and intruder activity by testing threat detectors. In this tool, the symptoms are

emulated, meaning they pose no actual threat to the system they are being generated on, even
though they seem realistic. This tool is governed by stochastic models to govern the
randomness. Each stage of an attack can be emulated by this tool, initial infection, discovery,

and data extraction.

The tool developed by softScheck with the added contributions, will be embedded into AMSEL
to provide a way to send specialised commands to the smart plug HS110, however, in theory,

these commands can be sent to any device that uses the Kasa app, this is due to the fact that

any IoT device using the Kasa app, will communicate with the same method of encryption,
explored previously in section 4.5.

After studying AMSEL and in turn its source code, an attempt was made to implement a class
that would inject commands using a config file that contained specific parameter. As a result,
a tool called KACI was developed to integrate it later into AMSEL.

KACI or the Kasa App Command Injector uses an Abstract Factory Pattern and a Model-View-
Controller pattern to make KACI more versatile and allow the addition of more attacks with
ease, both patterns are explained below. KACI makes it possible to inject commands into any

IoT device that uses the Kasa App as it improves the tool developed by softScheck, where it
provides a GUI for the user, instead of the command line. In addition to this two new features
were added with KACI; the random feature where it will randomise which attack is run for a

specified amount of time, and the steal feature which was adapted into Java making it possible
for the user to use KACI to achieve the scenarios explored in section 4.7.

P a g e 53 | 82

“An abstract factory pattern provides an interface to create families of related or dependent
objects without specifying their concrete classes.” [60]. After researching what pattern is best

to use the Abstract Factory Pattern was deemed the best to create objects. The Abstract Factory
Pattern works through object composition. To provide a more precise explanation, a simplified
UML diagram is seen in figure 38 below. However, the full diagram can be seen in Appendix

D.

The simplified version of the UML diagram consists of two interfaces and eight classes;
however, the full diagram consists of two interfaces and thirty-two classes. The classes and

interfaces of the simplified version are:

• There is an interface called AttackFactory, which has the createAttack() method. This
allows creating any attack class that implements this interface. In the UML diagram

seen below, the interface is implemented by two classes: OnAttack and the OffAttack.
The AttackFactory creates an attack. It can either be the OnAttackFactory class or the
OffAttackFactory class. Both implement the AttackFactory interface.

• The OnAttack class is a class that contains all the methods from the Attack class for the
on attack.

• The OffAttack class contains methods from the Attack class. However, they are
implemented for the off attack.

• The OnAttackFactory creates an On attack by using the OnAttack class. Similarly, the
OffAttackFactory uses the OffAttack class for creating an Off attack.

• The AttackGenerator class is an abstract class that extends the RunAttack class. The

AttackGenerator class has a method mainly for returning a specific attack factory based
on the argument that the method takes as a string.

• The RunAttack class is a class that runs the program; it prompts a user to choose an
attack, then uses the AttackGenerator abstract class to get the AttackFactory to get

factories of concrete classes by passing the user’s input.
• The UserInterface class is used by the OnAttack and the OffAttack classes to indicate

what messages to output to the user. Similarly, the Console class is responsible for

reading the users input and outputs the response provided by the UserInterface class.

As it can be seen based on the above design description and the UML class diagram below,
this pattern creates its objects through object composition.

P a g e 54 | 82

Figure 38: Simplified UML Class Diagram

MVC or Model-View-Controller is a design pattern which specifies that an application consists

of a data model, presentation information, and control information. The pattern requires that
each of these is separated into different objects. In the diagram above the UserInterface can be
thought of as the Model, the Console can be thought of as the View and the RunAttack or

*Attack (meaning any class ending with the word Attack) can be thought of as the Controller.
This is due to the fact that the Model is responsible for containing all the application data; it

does not contain any logic specifying how the data is to be presented to the user [59]. The View
presents the data that is found in the model, without knowing what this data means or how it
can be manipulated by the user, i.e. the view only knows the order of how the data stored inside

the model is to be presented and which data to present to the user according to the controller.
The controller exists between the view and the model. It listens to any event triggered by the

view and executes the appropriate reaction to the corresponding event.

The reason behind the use of MVC is that it offers high cohesion which allows the logical
grouping of related actions of a controller and the grouping of views for a specific model. In

P a g e 55 | 82

addition to high cohesion, it also offers low coupling among all the components; models, views
or controllers. MVC makes the modifying parts of the code uncomplicated as it separates the

responsibilities, which in turn increase the scalability of the tool.[49]

Once KACI is launched, it will provide the user with an interface that displays all the available
attacks the user can perform. In figure 39 below the user entered ‘on’ which is recognised by
the AttackGenerator and will call the AttackFactory to call on the appropriate attack factory,
in this case, the OnAttackFactory, which uses the OnAttack to launch the attack. Later if
successful, the OnAttack will call on the Console to display a message that is stored in the

UserInterface and return the appropriate response to the user.

If the user entered ‘rand’ the same process would be undertaken however once in the

RandAttack it will prompt the user for how long the random attack should last after that it

generates random numbers each corresponding to an attack, it then launches that attack,
returning the assigned message to the user, it will then generate another random number
starting the cycle all over again. It will keep doing so until the amount of time indicated by the

user is exceeded. Both the ‘on’ and the ‘rand’ attack can be seen in figure 39 below.

Figure 39: KACI Interface, On Attack, Random Attack

P a g e 56 | 82

To run KACI, open the source code in eclipse and create a runnable JAR file with the run
configuration pointing to RunAttack as the main. In addition, the tool by softScheck needs to

be installed on the desktop as the configuration file that is provided will search for the tool
there. Furthermore, the configuration file contains an IP address that is required to be changed
according to the IP address of the device on the network. These issues will be fixed in the

future.

A look at the network while using this tool revealed that the difference between the packets
sent from the Kasa App on the Motog6 and KACI was the number of packets itself, for

example, the number of packets sent by the Kasa App to turn the light on is nine as seen in
figure 40 below. However, the number of packets sent by KACI to turn the light on is eleven,
as seen in figure 41 below. Another observation that was made was that the device could not

differentiate between packets sent from the Kasa App and KACI, this proves that the packets
do not have a specific signature that is validated by the device.

Figure 40: Packets Sent using Kasa App

Figure 41: Packets Sent using KACI

The primary purpose of KACI is to test the security of IoT devices that use the Kasa App as

their companion app. These devices can be smart plugs, cameras, smart lights, smart switches,
smart routers, range extenders, door locks, and sensors. This tool can be used by developers in
the development stage of the IoT device to ensure they are not susceptible to a specific attack.

This can be done by using the tool to run attacks on various devices as they are being developed
to ensure that when they are released, they do not have security flaws.

KACI is the first step into achieving the last sub-goal of this project, where it will be integrated

into AMSEL to send symptoms of an attack across the network. As the moment KACI injects
command and has the potential to harm the device, however as discussed later in the future
work section of this project, this will be removed once it has been integrated into AMSEL.

P a g e 57 | 82

5. Evaluation
The assessment conducted revealed the presence of a variety of security flaws present in the
HS110 Smart Plug, which can affect the owner and the device severely if an attacker has any
malicious intent and enough persistence.

These vulnerabilities stem from two major parts of this IoT environment, namely the firmware
and the Kasa application itself. Even though the HS110 Smart Plug was built recently, some
components of the firmware, such as the BusyBox are considered outdated as they have known

vulnerabilities which are documented on the CVE or the Common Vulnerabilities and
Exposures database, the BusyBox version 1.01 used contains vulnerabilities such as Denial of
Service, Execute Code and Obtaining Information, these vulnerabilities range in severity from

a 4.3 to a 7.8 according to the Common Vulnerability Scoring System most of which are

considered low in complexity. In addition to the BusyBox the U-Boot version 1.1.4 used also

contains previously discovered and well-known vulnerabilities, during the time of this writing
the recorded known vulnerabilities are 23 most of which stem from a stack-based buffer
overflow vulnerability which is also found on the CVE database with a CVSS score ranging

from 2.1 to 8.3 however the majority of these vulnerabilities has a score of 7.5 all with the
ability to be exploited remotely. The firmware analysed contains an outdated method of
encryption which the tools tplink_smartplug.py and KACI exploit allowing the injection of

commands without the need for the Kasa application this makes it possible for the attacker to
gain cloud information about the current bound owner to the device including their email,
which can be vital information into opening up additional attack vectors. One possible attack

could be the steal attack found in the added feature to the tplink_smartplug.py and KACI which

allows the user to gain full control over the smart plug with only knowing the IP address of the
device.

By emulating the firmware, it was proven that the cracked credentials could successfully be
exploited by an attacker with malicious intent and gain root access to all the file system,
enabling the attacker to acquire knowledge regarding the firmware, which can allow the

attacker to embed a backdoor, as seen in this report embedding a backdoor and emulating the
backdoored version of the firmware worked but flashing the new firmware on the device was
unsuccessful.

The Kasa application proved to be full of vulnerabilities itself as it communicates with the
device through a simple autokey cypher which is trivial to reverse engineer. This mechanism

is believed to be used to communicate with any device that the application can communicate

with including cameras, which theoretically can drastically increase the security threats which
will, in turn, broaden the attack surface, making many more IoT devices susceptible to attacks
due to this encryption method. It must be noted that the static analysis report generated by

MobSF contains a detailed description of all the vulnerabilities found in the application scoring
the security of this application a dreadful 5 out of 100. Also, MobSF was able to find that the
app is signed with SHA1, and as it is known, the SHA1 hash algorithm is known to be

susceptible to collision resistance issues. The security score can be seen in Appendix E, and
the SHA1 warning can be seen in Appendix F.

By scanning the network and in turn the smart plug, the information gathered about the smart

plug such as the open port and the devices IP address was critical information that is used in

KACI, as it injects the commands to a specific port on a specific device.

By using the Wireshark packet dissector plugin developed by softScheck, packets that sent

information to the smart plug where decrypted, similarly the packets that returned information

P a g e 58 | 82

were also decrypted the rest of the packets are part of establishing and terminating the
connection. This dissector was used to confirm that the packets being sent by KACI are similar

to the ones sent by the Kasa application.

The added features to the tplink_smartplug.py tool give an example of how an open-source
educational tool can be manipulated into performing malicious attacks on IoT devices. One of

these features called blackout enables the user to initiate a loop that sends a series of packets
that tell the device to turn off, which would not be stopped or intervened with unless the
attacker chooses to stop it, this can be a small part of a much more massive attack that can lead

to catastrophic repercussions. The tool contains an encryption method identical to that found
in the Kasa application and a decryption method that is also found it the Kasa application, it
uses these methods to send and receive packets to the device with the correct encryption and

decrypt the return message and displays it on the screen. This tool also contains a dictionary
for all the attacks that can be performed by this tool.

KACI uses the existing features found inside the tplink_smartplug.py tool to be able to run the

attacks. However, KACI makes it possible to add features that the tplink_smartplug.py tool
does not contain in its dictionary, these can be features like the random attack already found in
KACI where random attacks will be performed for a duration of time. Extra attacks can be

added to KACI as it has an abstract factory design pattern which follows the open/closed
principle which states “software entities (classes, modules, functions, etc.) should be open for
extension but closed for modification, meaning that new variants of attacks can be introduced

without breaking the existing code. It also follows the single responsibility principle that states
that “every module or class should have responsibility over a single part of the functionality
provided by the software, which in turn allows the extraction of the attack creation code into

one place making it easier to support and makes the code more robust. [50]

P a g e 59 | 82

6. Future Work

6.1. Firmware
To improve on the firmware related part of this project, it would be ideal for extracting the
firmware from the device itself, rather than downloading the firmware binary from the vendors
support website. This will allow a more accurate analysis of the current firmware running on

the device, which could reveal different or additional findings to the ones reached in this report.
Another improvement that can be done in the near future would be to break the RSA keys
found in the firmware for authenticating the firmware image. However, this is not possible at

the moment, but with the rise of quantum computing breaking these keys will undoubtedly be
plausible. Breaking these keys would make it possible to flash a modified firmware on the
device.

6.2. KACI
The most significant improvement that needs to be done is integrating KACI into AMSEL as
it will become part of a more extensive tool responsible for injecting commands, this
integration will add a variety of functionality to KACI such as implementing the randomness

that is used in AMSEL and adding the feature to allow delays in between command injection,
i.e. a feature could add time intervals between the commands themselves. When KACI is added
to AMSEL, it will introduce a feature that will specialise AMSEL to test the security flaws of

IoT devices that use the Kasa application as their companion app. As mentioned previously
once KACI has been integrated into AMSEL the impact of the commands inject will be
removed as they will become symptoms and not cause serious harm to the device itself.

Another significant improvement that can be done to KACI is making the tool independent
from the tplink_smartplug.py tool. This will allow KACI to become a stand-alone tool that
does not require any previously installed tools to run. Extra functionality will be added to

KACI. These could include, adding more ready-made attacks such as the “steal” attack that
will ease the user experience, or having the device scan the network to view all the IoT devices
on the network.

To make KACI more diverse, it will be used on multiple devices that use the Kasa application
to see if KACI works on different devices. If so, KACI could be improved in a way to change
the options presented to the user depending on the device. This could be done by having a

configuration file for each possible device, for example, if KACI were used to test the security
of a camera that uses the Kasa application, KACI would make it possible to access the camera

feed by typing in a single command.

To streamline KACI for developers, KACI will be able to provide statistics on how high the
risk of a particular security flaw is, and how complex this particular flaw was to exploit and
will also be able to provide the developer on how significant the security flaw is, in terms of

functionality of the device and in turn its system.

Finally, KACI will be adapted to test the security of multiple IoT devices, including those that
do not use the Kasa application as their companion app.

P a g e 60 | 82

P a g e 61 | 82

7. Conclusions
One of the aims of this project was to investigate vulnerabilities in IoT devices, as the

number of IoT devices is increasing with no sign of stopping and little importance is given to

the security of these devices. More security threats will inevitably emerge in the future. The

device used, HS110 Smart Plug, was set up in a home network environment to mimic an

actual setup as much as possible. Implementing a reverse engineering attack was seen best

according to the threat modelling done as it was the attack with the highest DREAD rating.

The attack revealed sensitive information hard-coded into the device, such as root privileges,

outdated version of both the BusyBox and the U-Boot. Reverse engineering the application

that controls the devices, Kasa application, revealed a gold mine of security flaws, starting

with the app using an insecure Random Number Generator, containing hardcoded sensitive

information, and finally, a class containing both the encryption method and the decryption

methods that are used to communicate with the device itself. These methods were found in a

Wireshark plugin developed by softScheck, where it would decrypt the packets and view

them in plaintext. Also, softScheck developed a tool to send packets to the device by

encrypting them with the same method and decrypting the response. This tool was later

adapted to Java to integrate it into AMSEL, the tool developed is called KACI and utilises the

Python tool developed by softScheck. However, additional features were added to both tools

to visualise how they can be adapted to server a more malicious intent. KACI can be used by

developers to test IoT security and see if the device uses this method of encryption to

communicate with its companion app. Finally, the next steps have been outlined to improve

the solution of this project further and adapt it to multiple devices, its integration into

AMSEL will make both tools more powerful, as it gives KACI a variety of additional

features and gives AMSEL a more specialised way to inject command into IoT devices.

P a g e 62 | 82

P a g e 63 | 82

8. Reflection on Learning

8.1. Reflection on the entire project
From the start of this project, I was ecstatic to be taking this challenge as I was hoping this
project will allow me to understand an aspect of computing that was not covered heavily during
my time at Cardiff University. While undertaking this project, it increased my knowledge in a

specific area, and valuable skills were learned. At the beginning of this project, I did not grasp
the concept of IoT and the impact it will have on everyday life, or that many of these devices
have security flaws that can affect a person, from broadcasting sensitive information as seen in

the background by TRENDnet to putting the owners life at risk as discovered by Jay Radcliffe.
Another aspect of this project that I lacked knowledge in was the idea of reverse engineering,
which proved to be a journey involving much research to understand and implement this type

of attack. Another skill as a result of this project that was not expected was how I adapted to
using the terminal in Linux as most of the tools required to perform this type of attack required
the use of the command-line interface. As a result, I developed this skill as a bi-product of the

project itself.

As much as I have learned from this project, none of it came easy. I faced many obstacles and
challenges throughout the different stages of this project. One of the main challenges I came

across in this project was getting the tools to reverse engineer the firmware to work, this
required reading the documentation of each tool to understand the full capabilities of each of
them, and how would the tools be used to reach the underlining goal. Some of the tools used

lacked extensive documentation, and the use of these tools by other people in the community

was covered minimally, which in turn made it somewhat challenging to use. Nevertheless, I
was able to eventually understand how each tool worked and what it is capable of.

In addition to the technical skills I have gained throughout this project, I learned many lessons
concerning project management and how they can affect the potential of a project. One of these
lessons was not to focus solely on one issue that does not seem to work but try to find

alternatives that achieve the intended result. At the stage of decompiling the APKs, I spent
much time trying to look through the Java files that were decompiled by JD-GUI however,
after some research into the matter I was able to find MobSF which made the process much

more comfortable and less time-consuming. As this is the first project undertaken individually
throughout my years at Cardiff University, procrastination was more than possible. However,
the weekly meeting with the supervisor helped keep me on track. After finishing the project

and looking back at where I started the main lesson, I learned was that a project could change
as you undertake it, this can be due to a couple of reasons but mainly because of what you find
while doing the project.

8.2. Reflection on the work done
To reflect on the work done, the method ‘What Went Well’ (WWW) and ‘Even Better If’ (EBI)
will be used. This method is usually used to evaluate students at all key stages; however, it will
be used in a basic capacity pointing out what went well in each stage of implementation and if

given additional time how each part of implementation could have been improved.

The first part of the implementation was to assess possible threats on the device and exploit the
threat with the highest risk rating. By using STRIDE, a variety of threats were identified, and

each threat was scored according to the DREAD rating system. To add more details, the Mitre
ATT&CK framework was integrated into the rating system by finding the closest Attack
Technique or Techniques, that best fit the threat. However, it would have been better if some

attack techniques found in the framework were specifically catered to the threats found. On the

P a g e 64 | 82

hand, after researching the CVSS, as it is used in MobSF, it proved to be a more thorough
rating system, that could have replaced DREAD during this project.

Acquiring the firmware was the second part where the firmware was found online on the TP-
Link support page and was not required to be extracted from the device itself, the firmware
was a matter of downloading it and unzipping the file. However, if the firmware were extracted

from the device itself, the analysis would have been more specific, as it is performed on the
firmware of the actual device. It would have also given me first-hand experience in extracting
the firmware directly from the device. Unfortunately, it was not possible as the smart plug is

the property of Cardiff University.

Using the tool Binwalk was the third step whereby using its ability to display an entropy graph

and an entropy table, it was able to show which sections are encrypted and which sections are

compressed. Binwalk was able to display all the components of the firmware such as the kernel,
bootloader, and file system.

Binwalk was used next to extract the components mentioned previously for further analysis.

This included manually looking through the file system and inspecting each file individually
to find any information that can be considered sensitive. After an in-depth analysis, a method
of authentication was found; a hard-coded username and password that granted root access.

The use of Firmwalker was needed as it was able to confirm the finding during the manual
analysis; it was also able to identify files that may contain sensitive information that could have
gone unnoticed. However, there are more tools available to verify these findings further.

Emulating the firmware was the fifth step in the implementation, where identifying the

architecture used, MIPS R3000. The order of bytes, big-endian, was possible by using the tool
readelf and by using Qemu the file system was successfully emulated allowing further analysis

on the binary, this was possible as the Qemu binary was compatible with the firmware
BusyBox. Lastly, by using FAT, the entire firmware was emulated and ran the built-in
commands. However, it would have been better if the instructions on Github for running FAT

were in more detail, as further research into running FAT was required. It would have been
better if the firmware had a network interface to allow further analysis into different aspects of
the firmware.

Backdooring the firmware was the sixth step in implementation, where the firmware was
extracted by using FMK, the backdoor code found was modified successfully and with the help

of BuildRoot which was able to build a toolchain that can compile the extracted firmware with

a MIPS architecture, and the endianness is big-endian. The backdoor was successfully added
as FAT was able to emulate the new firmware. However, it would have been better if the FMK
repository on Github had more instructions on how to install and run the tool. At the time of

writing this report, there is very little content found online that explains installing and running
FMK in detail. Flashing the new image was not possible as the image’s signature has to match
one of four RSA keys. Investigating these keys was not possible as the program IDA Pro

specialised for decompiling MIPS architectures costs around $1000.

The port scan worked as expected and was able to find port 9999 open, however, it would have
been better if ports 80 and 1040 were open as seen in “Reverse Engineering the TP-Link

HS110” by softScheck when they performed the port scan on the same device.

Decompiling the APKs was the eighth step of the implementation, where Enjarify was able to
decompile the APK file, and MobSF was able to perform a static analysis (code analysis).

MobSF provided a table for all the classes that contain any sensitive information. In this table,

P a g e 65 | 82

a class containing the encryption method used to communicate between the app and the device
was found. Enjarify and MobSF were uncomplicated to use compared to some of the other

tools used. It would have been better if all classes where decompiled as five classes had an
error, these classes may have contained sensitive information.

For the Wireshark part of the implementation, communication packets between the phone and

the smart plug were sniffed. Instructions on how to change the interface into monitor mode
were abundant online. By using the Wireshark plugin, the packets were decrypted and read in
plaintext. However, information on why Wireshark was not sniffing any packets at first could

not be found online, this required experimentation and the help of a Wireshark expert to get it
to work.

Concerning the “blackout” feature added to the tool, it was able to send packets telling the
device to turn off, for the amount of time specified by the user. This feature worked better than
expected in such that if the smart plug is turned on by using the Kasa app, the tool will turn the
device off, but the Kasa app will not register that it is off, making it seem that the device is still

on when in fact it has been turned off. On the other hand, this feature cannot take float as the
number of minutes it can only take integers, in addition, it would have been better if this feature
was able to send more packets per minute.

The other feature called “steal” also worked better than expected as it completely removes any
possibility for the rightful owner to control the device. Meanwhile, the attacker will gain full
control over the device, being able to control it remotely and locally, in addition, the tool will

ask the user to enter the username and password first before sending any packets, this is done

to make everything past the point of entering the password, automated without the user
interfering with the processes. However, when the tool asks for the username, it is not restricted

to only allow email addresses.

For the part of this project concerning Amsel, understanding how it works and its core
functionalities and capabilities was possible only after contacting the author of the tool.

AMSEL itself is not well documented, which in turn made understanding how all the Java files
interact with each other take longer than first anticipated.

For the development of KACI, the use of past assignments was integral as they were adapted

into this tool, by using past assignments, the use of the abstract factory pattern was familiar to
implement. In addition to the abstract factory pattern, the use of the MVC pattern was also

derived from a different assignment. Combining both patterns made KACI flexible in its ability

to add code without affecting the core mechanisms. Furthermore, a minor bug was fixed, this
bug crashed the tool when the input by the user didn’t match any attack presented, now it will
recognise the input, and if not found in the options available it will prompt the user again.

However, KACI would have been a better tool if REGEX was used in the steal attack to check
if the username to which the IoT device will be bound to be an email address. Moreover, further
testing into the capabilities of KACI is needed to see the extent of the attack on different

devices.

P a g e 66 | 82

P a g e 67 | 82

References
1. Teicher, J., 2018. The Little-Known Story Of The First IoT Device. [online] IBM Industries.

Available at: <https://www.ibm.com/blogs/industries/little-known-story-first-iot-device/>
[Accessed 10 February 2020].

2. BBC News. 2018. Fitbit Data Used To Charge Man With Murder. [online] Available at:
<https://www.bbc.co.uk/news/technology-45745366> [Accessed 10 February 2020].

3. Guardian Staff, 2019. Witness "Alexa" Is Called To Give Evidence In Ongoing Murder
Investigation In Florida. [online] Privacy International. Available at:
<https://privacyinternational.org/examples/3275/witness-alexa-called-give-evidence-ongoing-
murder-investigation-florida> [Accessed 10 February 2020].

4. Statista. 2016. Iot: Number Of Connected Devices Worldwide 2012-2025. [online] Available at:
<https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/>
[Accessed 11 February 2020].

5. Rouse, M., 2020. What Is Iot (Internet Of Things) And How Does It Work?. [online] IoT Agenda.
Available at: <https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT>
[Accessed 15 February 2020].

6. Perera, C., 2020. Internet Of Things: Systems Design. [online] Available at:
<https://learningcentral.cf.ac.uk/bbcswebdav/pid-5291652-dt-content-rid-
14142344_2/courses/1920-CM3202/Lesson%201-
Applications%20and%20Use%20Cases.pdf> [Accessed 12 February 2020].

7. Parry, T., 2015. The Internet Of Things Is About Experience… And Data - Multichannel
Merchant. [online] Multichannel Merchant. Available at:
<https://multichannelmerchant.com/blog/the-internet-of-things-is-about-experience-and-data/>
[Accessed 12 February 2020].

8. Tilley, A., 2020. Google Acquires Smart Thermostat Maker Nest For $3.2 Billion. [online]
Forbes. Available at: <https://www.forbes.com/sites/aarontilley/2014/01/13/google-acquires-
nest-for-3-2-billion/#5d1553316ee2> [Accessed 13 February 2020].

9. Gsma.com. 2017. Iot Security Guidelines. [online] Available at: <https://www.gsma.com/iot/wp-
content/uploads/2018/08/CLP.-11-v2.0.pdf> [Accessed 13 February 2020].

10. Digital Guardian. 2016. FTC Issues Security Guidelines For Internet Of Things Technology.
[online] Available at: <https://digitalguardian.com/blog/ftc-issues-security-guidelines-internet-
things-technology> [Accessed 13 February 2020].

11. McNamee, K., 2018. Iot Architecture, Vulnerabilities And Exploits. [online] Brighttalk.com.
Available at: <https://www.brighttalk.com/webcast/288/324255/iot-architecture-vulnerabilities-
and-exploits> [Accessed 14 February 2020].

12. Trendmicro.com. 2019. The Iot Attack Surface: Threats And Security Solutions - Security News
- Trend Micro USA. [online] Available at:
<https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/the-iot-attack-surface-
threats-and-security-solutions> [Accessed 15 February 2020].

13. Hernandez, G., Arias, O., Buentello, D. and Jin, Y., n.d. Smart Nest Thermostat: A Smart Spy
In Your Home. [online] Blackhat.com. Available at: <https://blackhat.com/docs/us-
14/materials/us-14-Jin-Smart-Nest-Thermostat-A-Smart-Spy-In-Your-Home-WP.pdf>
[Accessed 15 February 2020].

14. Ronen, E., O'Flynn, C., Shamir, A. and Weingarten, A., n.d. Iot Goes Nuclear: Creating A
Zigbee Chain Reaction. [online] Eprint.iacr.org. Available at:
<https://eprint.iacr.org/2016/1047.pdf> [Accessed 16 February 2020].

15. Dhanjani, N., 2013. HACKING LIGHTBULBS: SECURITY EVALUATION OF THE PHILIPS
Hue PERSONAL WIRELESS LIGHTING SYSTEM. [online] Dhanjani.com. Available at:
<https://www.dhanjani.com/docs/Hacking%20Lighbulbs%20Hue%20Dhanjani%202013.pdf>
[Accessed 17 February 2020].

16. Miller, C. and Valasek, C., 2015. Remote Exploitation Of An Unaltered Passenger Vehicle.
[online] Illmatics.com. Available at: <http://illmatics.com/Remote%20Car%20Hacking.pdf>
[Accessed 17 February 2020].

P a g e 68 | 82

17. Davis, M., 2014. Belkin Wemo Home Automation Vulnerabilities. [online] Ioactive.com.
Available at: <https://ioactive.com/pdfs/IOActive_Belkin-advisory-lite.pdf> [Accessed 17
February 2020].

18. Radcliffe, J., 2020. Hacking Medical Devices For Fun And Insulin: Breaking The Human
SCADA System. [online] Media.blackhat.com. Available at: <https://media.blackhat.com/bh-us-
11/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_Slides.pdf> [Accessed 17
February 2020].

19. Images-eu.ssl-images-amazon.com. 2017. Wi-Fi Smart Plug HS100 Wi-Fi Smart Plug With
Energy Monitoring HS110 User's Manual. [online] Available at: <https://images-eu.ssl-images-
amazon.com/images/I/91OSctvFpCS.pdf> [Accessed 16 February 2020].

20. VMware. n.d. Workstation Pro - Vmware Products : Windows Virtualization For Everyone.
[online] Available at: <https://www.vmware.com/uk/products/workstation-pro.html> [Accessed
16 February 2020].

21. Kali.org. n.d. About Kali Linux. [online] Available at: <https://www.kali.org/about-us/> [Accessed
17 February 2020].

22. Nmap.org. n.d. Command-Line Flags. [online] Available at: <https://nmap.org/book/port-
scanning-options.html> [Accessed 18 February 2020].

23. Reinecke, P. and Crane, S., 2017. Amselproject/Amsel. [online] GitHub. Available at:
<https://github.com/AmselProject/amsel> [Accessed 5 February 2020].

24. Attack.mitre.org. 2015. MITRE ATT&CK®. [online] Available at: <https://attack.mitre.org/>
[Accessed 2 March 2020].

25. Strom, B., 2018. ATT&CK 101. [online] Medium. Available at: <https://medium.com/mitre-
attack/att-ck-101-17074d3bc62> [Accessed 2 March 2020].

26. Rusen, C., 2017. Simple Questions: What Is Firmware? What Does It Do?. [online] Digital
Citizen. Available at: <https://www.digitalcitizen.life/simple-questions-what-firmware-what-
does-it-do> [Accessed 3 March 2020].

27. Digi.com. 2018. Embedded Systems Terminology. [online] Available at:
<https://www.digi.com/resources/documentation/digidocs/90001546/concept/c_terminology.ht
m> [Accessed 5 March 2020].

28. Martínez, I., n.d. The Key To Everything: Firmware On Iot Devices. [online] Puffin Security.
Available at: <https://www.puffinsecurity.com/the-key-to-everything-firmware-on-iot-devices/>
[Accessed 5 March 2020].

29. Securityfocus.com. n.d. BusyBox HTTPD Directory Traversal Vulnerability. [online] Available
at: <https://www.securityfocus.com/bid/20067/discuss> [Accessed 6 March 2020].

30. Codersera. 2019. Top 7 Vulnerabilities In Android Applications 2019. [online] Available at:
<https://codersera.com/blog/top-7-vulnerabilities-in-android-applications-2019/> [Accessed 6
March 2020].

31. Cwe.mitre.org. 2006. CWE - Common Weakness Enumeration. [online] Available at:
<https://cwe.mitre.org/> [Accessed 6 March 2020].

32. Practicalcryptography.com. n.d. Practical Cryptography. [online] Available at:
<http://practicalcryptography.com/ciphers/autokey-cipher/> [Accessed 7 March 2020].

33. Aircrack-ng.org. n.d. Airodump-Ng. [online] Available at: <https://www.aircrack-
ng.org/doku.php?id=airodump-ng> [Accessed 7 March 2020].

34. Tools.kali.org. n.d. [online] Available at: <https://tools.kali.org/forensics/Binwalk> [Accessed 7
March 2020].

35. craigz28, 2016. Firmwalker. [online] GitHub. Available at:
<https://github.com/craigz28/firmwalker> [Accessed 10 March 2020].

36. rampageX, 2018. Firmware-Mod-Kit. [online] GitHub. Available at:
<https://github.com/rampageX/firmware-mod-kit/wiki> [Accessed 14 March 2020].

37. Attify, 2016. Firmware-Analysis-Toolkit. [online] GitHub. Available at:
<https://github.com/attify/firmware-analysis-toolkit> [Accessed 18 March 2020].

38. Wiki.qemu.org. 2020. QEMU. [online] Available at: <https://wiki.qemu.org/Main_Page>
[Accessed 19 March 2020].

39. Sourceware.org. n.d. Readelf (GNU Binary Utilities). [online] Available at:
<https://sourceware.org/binutils/docs/binutils/readelf.html> [Accessed 20 March 2020].

https://images-eu.ssl-images-amazon.com/images/I/91OSctvFpCS.pdf
https://images-eu.ssl-images-amazon.com/images/I/91OSctvFpCS.pdf
https://images-eu.ssl-images-amazon.com/images/I/91OSctvFpCS.pdf

P a g e 69 | 82

40. devttys0, 2020. Sasquatch. [online] GitHub. Available at:
<https://github.com/devttys0/sasquatch> [Accessed 16 March 2020].

41. Openwall.com. n.d. John The Ripper Password Cracker. [online] Available at:
<https://www.openwall.com/john/> [Accessed 23 March 2020].

42. Apkpure.com. 2020. Apkpure. [online] Available at: <https://Apkpure.com/about.html>
[Accessed 24 March 2020].

43. Google, 2015. Enjarify. [online] GitHub. Available at: <https://github.com/google/enjarify>
[Accessed 25 March 2020].

44. Dupuy, E., n.d. Java Decompiler. [online] Java-decompiler.github.io. Available at: <http://java-
decompiler.github.io/> [Accessed 27 March 2020].

45. MobSF, 2020. Mobile-Security-Framework-Mobsf. [online] GitHub. Available at:
<https://github.com/MobSF/Mobile-Security-Framework-MobSF> [Accessed 27 March 2020].

46. Aircrack-ng.org. n.d. Airmon-Ng. [online] Available at: <https://www.aircrack-
ng.org/doku.php?id=airmon-ng> [Accessed 28 March 2020].

47. BusyBox.net. n.d. BusyBox - The Swiss Army Knife Of Embedded Linux. [online] Available at:
<https://www.BusyBox.net/downloads/BusyBox.html> [Accessed 29 March 2020].

48. Mitchell, B., 2020. 802.11 Wifi Standards Explained. [online] Lifewire. Available at:
<https://www.lifewire.com/wireless-standards-802-11a-802-11b-g-n-and-802-11ac-816553>
[Accessed 27 April 2020].

49. Socratic Solution, 2017. Why MVC Architecture?. [online] Medium. Available at:
<https://medium.com/@socraticsol/why-mvc-architecture-e833e28e0c76> [Accessed 3 May
2020].

50. Refactoring.guru. n.d. Abstract Factory. [online] Available at:
<https://refactoring.guru/design-patterns/abstract-factory> [Accessed 3 May 2020].

51. Intellectsoft Blog. 2019. Top 10 Iot Security Issues. [online] Available at:
<https://www.intellectsoft.net/blog/biggest-iot-security-issues/> [Accessed 10 February 2020].

52. Dunlap, T., 2020. Unsecured Iot: 8 Ways Hackers Exploit Firmware Vulnerabilities. [online]
Dark Reading. Available at: <https://www.darkreading.com/risk/unsecured-iot-8-ways-hackers-
exploit-firmware-vulnerabilities/a/d-id/1335564> [Accessed 11 February 2020].

53. Owasp.org. 2018. OWASP Iot Top 10 2018. [online] Available at: <https://owasp.org/www-pdf-
archive/OWASP-IoT-Top-10-2018-final.pdf> [Accessed 11 February 2020].

54. Kilpatrick, H., 2018. 5 INFAMOUS IOT HACKS AND VULNERABILITIES. [online] IOT
Solutions World Congress. Available at: <https://www.iotsworldcongress.com/5-infamous-iot-
hacks-and-vulnerabilities/> [Accessed 12 February 2020].

55. Stroetmann, L. and Esser, T., 2016. Reverse Engineering The TP-Link HS110. [online]
softScheck.com. Available at: <https://www.softscheck.com/en/reverse-engineering-tp-link-
hs110/> [Accessed 13 February 2020].

56. Hex-rays.com. n.d. Hex-Rays Online Store. [online] Available at: <https://www.hex-
rays.com/cgi-bin/quote.cgi> [Accessed 12 April 2020].

57. Rose, A. and Ramsey, B., 2016. Picking Bluetooth Low Energy Locks From A Quater Mile
Away. [online] Available at: <https://www.youtube.com/watch?v=KrOReHwjCKI> [Accessed 12
April 2020].

58. Beaver, K., n.d. Hacking For Dummies. 5th ed. p.67.
59. GeeksforGeeks. n.d. MVC Design Pattern. [online] Available at:

<https://www.geeksforgeeks.org/mvc-design-pattern/> [Accessed 3 May 2020].
60. Freeman, E. and Freeman, E., 2005. Head First Design Patterns. [Sebastopol, CA]: O'Reilly

Media.
61. Zaddach, J. and Costin, A., n.d. Embedded Devices Security Firmware Reverse Engineering.

P a g e 70 | 82

P a g e 71 | 82

Table of Abbreviations

AMSEL
The Abstract Malware Symptom
Emulation Library

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DREAD
Damage, Reproducibility,
Exploitability, Affected users,
Discoverability

FAT Firmware Analysis Toolkit

FMK Firmware-mod-kit

IEEE
Institute of Electrical and Electronics
Engineers

IoT Internet of Things

JAR Java ARchive

KACI Kasa Application Command Injector

MIPS
Microprocessor without Interlocked
Pipelined Stages

MobSF Mobile Security Framework

STRIDE
Spoofing, Tampering, Repudiation,
Information disclosure, Denial of
service, Elevation of privilege

VM Virtual Machine

P a g e 72 | 82

P a g e 73 | 82

Appendices

Appendix A

[24]

P a g e 74 | 82

P a g e 75 | 82

Appendix B
 com/flurry/sdk/ei.java

com/tplink/hellotp/util/h.java

com/tplink/hellotp/features/device/customizeicon/CustomizeIconFragment.java

com/tplink/hellotp/features/device/deviceportrait/b.java

com/tplink/smarthome/ModifyPortraitActivity.java

com/tplink/smarthome/CustomizeIconFragment.java

com/tplink/smarthome/model/PortraitManager.java

com/hypertrack/hyperlog/a/b.java

com/tplink/hellotp/util/d/a.java

com/tplink/hellotp/data/kasacare/a.java

com/tplink/hellotp/data/lightingeffects/versionconfig/b.java

com/tplinkra/android/db/migration/MigrationV2.java

com/tplinkra/android/db/migration/MigrationV3.java

com/j256/ormlite/android/AndroidDatabaseConnection.java

com/j256/ormlite/android/AndroidCompiledStatement.java

com/j256/ormlite/android/compat/ApiCompatibility.java

com/j256/ormlite/android/compat/JellyBeanApiCompatibility.java

com/j256/ormlite/android/compat/BasicApiCompatibility.java

com/hypertrack/hyperlog/e.java

org/terracotta/quartz/collections/TimeTrigger.java

com/tplinkra/iotclient/HealthCheckClient.java

com/tplinkra/iotclient/AbstractIOTCloudClient.java

com/tplinkra/factory/device/DeviceFactory.java

com/tplinkra/db/android/model/Device.java

com/tplinkra/db/android/model/Account.java

com/tplinkra/db/android/model/VirtualDevice.java

com/tplinkra/router/iotrouter/api/SOAPAction.java

P a g e 76 | 82

com/tplinkra/iot/authentication/AbstractAuthentication.java

com/tplinkra/iot/authentication/oauth2/OAuth2Helper.java

com/tplinkra/iot/devices/router/AbstractRouter.java

com/tplinkra/subscriptiongateway/v2/Constants.java

com/tplink/sdk_shim/c.java

com/tplink/hellotp/android/g.java

com/tplinkra/tpcommon/tpclient/TPClientUtils.java

com/tplink/hellotp/features/kasacare/model/KasaCareTerm.java

com/tplink/hellotp/features/scene/builder/device/item/e.java

com/tplink/hellotp/f/b.java

com/tplinkra/network/transport/http/TrustAllCertificates.java

com/tplinkra/network/protocol/SDKTrustManager.java

com/tplink/hellotp/h/b.java

redis/clients/jedis/HostAndPort.java

com/mchange/v2/c3p0/c.java

com/tplinkra/rangeextender/discovery/REDiscoveryAgent.java

com/tplinkra/tpcommon/discovery/TPCommonDiscoveryAgent.java

com/tplink/hellotp/service/AppManagerService.java

com/tplink/hellotp/features/appforceupdate/a/b.java

com/tplink/hellotp/features/setup/smartre/SmartREQuickSetupPresenter.java

com/tplink/hellotp/features/onboarding/wifisetup/configprogress/b.java

com/tplink/hellotp/model/OnboardingManager.java

com/amazonaws/auth/o.java

com/amazonaws/util/o.java

org/slf4j/helpers/f.java

P a g e 77 | 82

Appendix C
System Commands

==

Get System Info (Software & Hardware Versions, MAC, deviceID, hwID etc.)

{"system":{"get_sysinfo":null}}

Reboot

{"system":{"reboot":{"delay":1}}}

Reset (To Factory Settings)

{"system":{"reset":{"delay":1}}}

Turn On

{"system":{"set_relay_state":{"state":1}}}

Turn Off

{"system":{"set_relay_state":{"state":0}}}

Turn Off Device LED (Night mode)

{"system":{"set_led_off":{"off":1}}}

Set Device Alias

{"system":{"set_dev_alias":{"alias":"supercool plug"}}}

Set MAC Address

{"system":{"set_mac_addr":{"mac":"50-C7-BF-01-02-03"}}}

Set Device ID

{"system":{"set_device_id":{"deviceId":"0123456789ABCDEF0123456789ABCDEF
01234567"}}}

Set Hardware ID

{"system":{"set_hw_id":{"hwId":"0123456789ABCDEF0123456789ABCDEF"}}}

Set Location

{"system":{"set_dev_location":{"longitude":6.9582814,"latitude":50.9412784}}}

Perform uBoot Bootloader Check

{"system":{"test_check_uboot":null}}

Get Device Icon

{"system":{"get_dev_icon":null}}

Set Device Icon

{"system":{"set_dev_icon":{"icon":"xxxx","hash":"ABCD"}}}

Set Test Mode (command only accepted coming from IP 192.168.1.100)

P a g e 78 | 82

{"system":{"set_test_mode":{"enable":1}}}

Download Firmware from URL

{"system":{"download_firmware":{"url":"http://...."}}}

Get Download State

{"system":{"get_download_state":{}}}

Flash Downloaded Firmware

{"system":{"flash_firmware":{}}}

Check Config

{"system":{"check_new_config":null}}

WLAN Commands

==

Scan for list of available APs

{"netif":{"get_scaninfo":{"refresh":1}}}

Connect to AP with given SSID and Password

{"netif":{"set_stainfo":{"ssid":"WiFi","password":"secret","key_type":3}}}

Cloud Commands

==

Get Cloud Info (Server, Username, Connection Status)

{"cnCloud":{"get_info":null}}

Get Firmware List from Cloud Server

{"cnCloud":{"get_intl_fw_list":{}}}

Set Server URL

{"cnCloud":{"set_server_url":{"server":"devs.tplinkcloud.com"}}}

Connect with Cloud username & Password

{"cnCloud":{"bind":{"username":"your@email.com", "password":"secret"}}}

Unregister Device from Cloud Account

{"cnCloud":{"unbind":null}}

Time Commands

==

Get Time

{"time":{"get_time":null}}

Get Timezone

{"time":{"get_timezone":null}}

P a g e 79 | 82

Set Timezone

{"time":{"set_timezone":{"year":2016,"month":1,"mday":1,"hour":10,"min":10,"sec":

10,"index":42}}}

EMeter Energy Usage Statistics Commands

(for TP-Link HS110)

==

Get Realtime Current and Voltage Reading

{"emeter":{"get_realtime":{}}}

Get EMeter VGain and IGain Settings

{"emeter":{"get_vgain_igain":{}}}

Set EMeter VGain and Igain

{"emeter":{"set_vgain_igain":{"vgain":13462,"igain":16835}}}

Start EMeter Calibration

{"emeter":{"start_calibration":{"vtarget":13462,"itarget":16835}}}

Get Daily Statistic for given Month

{"emeter":{"get_daystat":{"month":1,"year":2016}}}

Get Montly Statistic for given Year

{"emeter":{""get_monthstat":{"year":2016}}}

Erase All EMeter Statistics

{"emeter":{"erase_emeter_stat":null}}

Schedule Commands

==

Get Next Scheduled Action

{"schedule":{"get_next_action":null}}

Get Schedule Rules List

{"schedule":{"get_rules":null}}

Add New Schedule Rule

{"schedule":{"add_rule":{"stime_opt":0,"wday":[1,0,0,1,1,0,0],"smin":1014,"enable":

1,"repeat":1,"etime_opt":-1,"name":"lights on","eact":-
1,"month":0,"sact":1,"year":0,"longitude":0,"day":0,"force":0,"latitude":0,"emin":0},"s
et_overall_enable":{"enable":1}}}

Edit Schedule Rule with given ID

{"schedule":{"edit_rule":{"stime_opt":0,"wday":[1,0,0,1,1,0,0],"smin":1014,"enable":
1,"repeat":1,"etime_opt":-
1,"id":"4B44932DFC09780B554A740BC1798CBC","name":"lights on","eact":-

1,"month":0,"sact":1,"year":0,"longitude":0,"day":0,"force":0,"latitude":0,"emin":0}}}

P a g e 80 | 82

Delete Schedule Rule with given ID

{"schedule":{"delete_rule":{"id":"4B44932DFC09780B554A740BC1798CBC"}}}

Delete All Schedule Rules and Erase Statistics

{"schedule":{"delete_all_rules":null,"erase_runtime_stat":null}}

Countdown Rule Commands

(action to perform after number of seconds)

==

Get Rule (only one allowed)

{"count_down":{"get_rules":null}}

Add New Countdown Rule

{"count_down":{"add_rule":{"enable":1,"delay":1800,"act":1,"name":"turn on"}}}

Edit Countdown Rule with given ID

{"count_down":{"edit_rule":{"enable":1,"id":"7C90311A1CD3227F25C6001D88F7F
C13","delay":1800,"act":1,"name":"turn on"}}}

Delete Countdown Rule with given ID

{"count_down":{"delete_rule":{"id":"7C90311A1CD3227F25C6001D88F7FC13"}}}

Delete All Coundown Rules

{"count_down":{"delete_all_rules":null}}

Anti-Theft Rule Commands (aka Away Mode)

==

Get Anti-Theft Rules List

{"anti_theft":{"get_rules":null}}

Add New Anti-Theft Rule

{"anti_theft":{"add_rule":{"stime_opt":0,"wday":[0,0,0,1,0,1,0],"smin":987,"enable":1

,"frequency":5,"repeat":1,"etime_opt":0,"duration":2,"name":"test","lastfor":1,"month"

:0,"year":0,"longitude":0,"day":0,"latitude":0,"force":0,"emin":1047},"set_overall_ena
ble":1}}

Edit Anti-Theft Rule with given ID

{"anti_theft":{"edit_rule":{"stime_opt":0,"wday":[0,0,0,1,0,1,0],"smin":987,"enable":1
,"frequency":5,"repeat":1,"etime_opt":0,"id":"E36B1F4466B135C1FD481F0B4BFC9
C30","duration":2,"name":"test","lastfor":1,"month":0,"year":0,"longitude":0,"day":0,"

latitude":0,"force":0,"emin":1047},"set_overall_enable":1}}

Delete Anti-Theft Rule with given ID

{"anti_theft":{"delete_rule":{"id":"E36B1F4466B135C1FD481F0B4BFC9C30"}}}

Delete All Anti-Theft Rules

"anti_theft":{"delete_all_rules":null}}

P a g e 81 | 82

Appendix D

P a g e 82 | 82

Appendix E

Appendix F

