
CM3203 Final Report

Majel: Voice Assistant Style Interface
For Command Line Terminal

George Close
1736823

Abstract

Traditionally, the only way for a user to interact with a command line interface on a
computer is via typing commands with a keyboard. This has issues ranging from simple
efficiency to accessibility concerns. In this project, I will aim to resolve these issues by
implementing an alternative way of interacting with a CLI via voice control. To this end, I
will also attempt to detail a grammar structure that will process any possible command,
and implement a system to tailor the grammar to the user’s system. I will attempt to
develop a ‘voice assistant’ style interface that will be able to run any possible typed
command as a spoken one. The project presents a working ‘proof of concept’ program
that will act as a platform for further development.

Acknowledgements
Prof. David Marshall for his support throughout as project supervisor.

1

George Close
1736823

Table of Contents

Abstract 1

Acknowledgements 1

Table of Contents 2

1. Introduction 4
CLI Issues 4
SR Issues 5
Aims and Objectives 6

2. Background 7
Command Line Interface 7
Speech Recognition and CMU Sphinx 8
JSGF Grammar 10
Python 11

3. Approach 12
Basic Speech to Text 12
Getting Microphone Input 14
A CLI Language Model 15
Grammar Structure for CLI 18
Populating Dynamic Grammars 19
Running Commands 19

4. Implementation 20
Backend 21

setup_dict_grammar() 21
get_dictionary() 25
create_grammar() 26
add_to_grammar() 27
update_folder_grammar_dictionary() 28

Frontend 29
main() 29
get_command() 31

2

George Close
1736823

word_to_character() 32
run_command() 35
change_directory() 36

Grammar Structure 38

5. Results and Evaluation 40
Unit Testing 40

Unit Test 1 - Initialization 40
Unit Test 2 - Running Typed Commands 43
Unit Test 3 - Running Spoken Commands 44
Unit Test 4 - Updating Dynamic Grammar Files and Phonetic Dictionary File 45
Unit Test 5 - Adding Aliases 48
Unit Test 6 - Applying Modifiers 50
Unit Test 7 - Handling ‘Dangerous’ Commands 51
Unit Test 8 - Overriding Pronunciation 52

Usability Testing 55
Conclusion 57

6. Further Work 58

7. Reflections on Learning 60

References 61

3

George Close
1736823

1. Introduction

There are two disparate concepts that I am attempting to bring together in this project;
the command line shell of a Linux operating system and speech recognition.

Command Line Input (CLI) is among the oldest methods of human computer interaction.
The user types commands on a keyboard which are then interpreted by the computer,
running programs with parameters as specified. The most common form of CLI today is
the command shell, a means of interacting with the files and programs on a computer.
These exist in all popular desktop operating systems, including Windows, OSX and
various Linux distributions. Given their relative complexity and difficulty to use,
command shells are not typically the default means of interacting with an operating
system in lieu of a graphical desktop interface.
Speech Recognition (SR) describes the process of converting audio data of speech into
a human and computer readable format, normally text. This is usually a nontrivial,
computationally complex process, with several different methods available. While it was
once considered an obscure and unwieldy form of HCI, it has become commonplace in
recent years due to the popularity of ‘voice assistant’ interfaces on smartphones and
Internet of Things speaker devices.

CLI Issues
In order to use a CLI, the user must be able to use a keyboard to enter commands. This
means that users with certain disabilities that hinder or prevent the use of a keyboard
will struggle to use CLI. Solutions to this problem such as virtual keyboards tend to be
slow and imprecise. A speech based input for CLI as I am proposing would be closer in
speed and efficiency to standard typing.

Another issue with CLI is that it requires the user to learn what exactly each command
does and how to properly use them, meaning that the barrier to entry for new users of a
CLI is high compared to a GUI interface. This is particularly true of multiparameter,
complex commands, for example compiling a C program with the GNU C Compiler, or
use of the source control system Git via CLI. With my proposed speech based input
system, the user will be able to set up alias’ for commands that are more explicit in their
function such as ‘change directory’ for ‘cd’ and ‘execute filename’ for ‘./filename’.

4

George Close
1736823

Since CLI requires the user to type commands, use of them can take the user's focus
away from some other task to look at the terminal window. With a speech based input,
the user will be able to stay focused on another task while they are inputting a
command using their voice, increasing the efficiency of their computer usage.

SR Issues

In most forms of SR that are encountered on a daily basis, the transcription of the audio
data is done ‘online’ and not on the device that recorded the data. While this is efficient
for small low specification devices such as phones or IoT speakers, it requires a stable
internet connection to work. For my program, I plan to instead do the transcription
locally, and only use an internet connection to get pronunciations of new words.

Another issue faced by common SR systems is that they must be able to process
almost any possible input from the entirety of the language; by massively limiting the
possible set of words to be recognised, the speed of transcription should be increased.

Possible Applications and Uses

The simplest application of combining command line and speech recognition technology
is in a voice assistant analoge to launch programs; for example speaking the command
‘firefox’ to launch the eponymous web browser. Another simple application would be for
a system administrator who must perform a set routine of tasks on a regular basis could
set up a number of alias commands such as ‘copy log files’ or ‘make backups’;actively
speaking these commands aloud would aid in maintaining the routine, and also allowing
them to focus on another task. Speech commands could also help designing interfaces
for useful programs that are inaccessible due to their command line nature; for example
speaking the command ‘execute my program’ is much more intuitive and
understandable than the typed command ‘./myprogram’. A good example of this would
be the command line interface for the source control software ‘git’; saying ‘get the
newest updates’ is much more descriptive than ‘git pull origin master’. Use of SR would
also allow for executing CLI commands in hardware setups that do not allow for a
keyboard such as IoT devices.
There are serious limitations to the application of SR; even with noise cancellation, it is
much less effective in noisy environments, and is in some cases rendered unusable.
The higher potential of error when compared with a standard typed input also means

5

George Close
1736823

that SR might not be desirable in critical systems, for example a system interpreting a
command to ‘move’ a file as ‘remove’ could have a catastrophic impact. These issues
could be minimised via use of high quality input devices (microphones), but the cost of
purchase and installation of such devices may outweigh the potential benefit.

Aims and Objectives
In this section, I will list the aims and objectives of the project, in terms of features I wish
to implement.

● Allow for the successful execution of any program installed on the system, given
that it’s name, arguments and user defined inputs are said correctly.

● Majel will be able to be launched via a ‘wake word’ at any time.
● Majel will work entirely offline, with no calls to online APIs for recognition.
● Some form of natural language interface will be implemented, with the user not

having to explicitly state the name of the program, only what they want to have
happen.

● Processing of input will be very responsive, with the command being executed as
quickly as possible.

● The input will be checked and the user prompted if the input command could
have been misinterpreted, especially when moving, copying and deleting files, or
other critical commands.

● Majel itself will have a command line interface that will mimic the functionality of
other shell interfaces (BASH,fish ect).

● Users will have the option of extending the set of commands Majel will recognise
by importing their command line history.

● The system will use calls to the web based Sphinx dictionary creation service to
obtain pronunciation data about new words it encounters.

● Users will be able to override the pronunciation of words with their own.
● Majel will be lightweight, requiring only the installation of a small number of

Python packages to function on a standard Ubuntu based distribution.

6

George Close
1736823

2. Background

Command Line Interface

Command Line Interface (CLI) evolved from teleprinter (TTY) machines, where instead
of messages being communicated between two people in TTY, CLI commands are
communicated from a person to a computer. They predate GUI interfaces and provide a
more powerful and efficient way of interacting with a computer. In a CLI, the user types
a command and then submits it, where it is interpreted by the computer and executed.
Any output from the command is usually printed to the terminal interface that the user
typed the command to.

A popular command line shell for Linux operating systems is the Bourne-again shell or
BASH shell[1]. A simple command in BASH is defined as “a sequence of words
separated by blanks, terminated by one of the shell’s control operators” [2]. The general
anatomy of a simple command is the following:

Prompt command arg1 arg2 arg3 … argN

Where:

● Prompt is information provided by the shell program that provides
information such as the current working directory within the file system,
the username of the current user and the host name of the machine.

● Command is provided by the user and refers to a program installed on the
machine or a command ‘built in’ to the shell.

● Arg1 … argN are arguments provided to the command that inform it’s
execution, such as files or folders to be run on or additional instructions
that are specific to the command being run.

Figure 2.1 - Screenshot of the BASH shell showing the Prompt, Command and two
Arguments

7

George Close
1736823

In the above example (Figure 2.1), the Prompt displays the user ‘g’ on machine ‘valis’ is
in the working directory ‘~/year3/majel’. The Command for the program ‘ls’ is being
executed with the two arguments ‘-o’ changing how the program operates and the
directory ‘scripts/’ as it’s target.

Speech Recognition and CMU Sphinx

Speech Recognition (SR) is the conversion of spoken speech into a text string that can
be interpreted by a computer. It has a long history with the earliest advances made in
the 1960s. It’s most apparent and popular use currently is in ‘virtual assistant’ products
such as Apple’s Siri, Amazon’s Alexa and Google’s Google Assistant. It’s other main
use is in out load dictation of text. While the earliest models required ‘training’ on a
particular voice in order to function, modern systems use hidden Markov acoustic
models and n-gram statistical models to match the input sounds to likely words. CMU
Sphinx [3] is one such system, and it’s Python implementation ‘PocketSphinx’ is used
by this project.

CMU Sphinx is a freely available speech recognition system created at Carnegie Mellon
University. It exists in several iterations, but the version used for this project is
‘Pocketsphinx’ a “lightweight recognizer library written in C” [4] that has a Python
interface [5]. It is recommended by the developer in situations where “speed or
portability” [6] are required such as this project. The following section is adapted from
the Sphinx documentation[7].

Sphinx uses a standard structure of speech that consists of the following:

● Phones - “more or less similar class of sounds”
● Diphones - “parts of phones between two consecutive phones”
● Triphones,Quinphones - “phones in context’ that ‘describe slightly different

sounds”
● Senones- “short sound detectors” used “to compose detectors for triphones”
● Subwords - syllable-like “reduction-stable entities” that remain the same even

when speech becomes fast.
● Words - formed of subwords. They “restrict combinations of phones”
● Utterances - formed of words and fillers (“um”, “uhhh”, breathing, cough). nThey

are not necessarily the same as sentences.

8

George Close
1736823

The recognition process used by Sphinx involves two key concepts, features and
models. Features are an optimisation, defined in the Sphinx documentation as:
“Numbers that are calculated from speech usually by dividing the speech into frames.
Then for each frame, typically of 10 milliseconds length, we extract 39 numbers that
represent the speech. That’s called a feature vector.”
A model “describes some mathematical object that gathers common attributes of the
spoken word”. The model of speech used by Spinx is called a Hidden Markov Model or
HMM. In this “(a) process is described as a sequence of states which change each
other with a certain probability”.

Other models used by Sphinx are:

● Acoustic model - “contains acoustic properties for each senone.”
● Phonetic Dictionary - “contains a mapping from words to phones” (Figure 2.2)
● Language model - “used to restrict word search. It defines which word could

follow previously recognized words (remember that matching is a sequential
process) and helps to significantly restrict the matching process by stripping
words that are not probable.” This can be generated using a large number of
sentences containing the words to be recognised.

NOTE: A keyword list or a grammar can be used instead of a language model - the final
version of this project uses a grammar instead, for reasons that will be detailed later.

Figure 2.2 - Screenshot excerpt from the Phonetic Dictionary used by Majel. Note that
for some words many possible phone combinations are listed.

9

George Close
1736823

JSGF Grammar
Instead of a language model, a grammar file can be used to restrict word search.
Sphinx supports the Java Speech Grammar Format (JSGF)[8] for this purpose. This
format adapts some of the conventions of the Java programming language such explicit
public/private declarations and import rules.

The vertical bar ‘|’ means that the rule is defined by a set of alternatives. For example
the following JSGF grammar:

#JSGF V1.0;

grammar planet;

public <planetname> = Earth | Mars | Jupiter | Venus;

Would generate the following possible phrases only:

● “Earth”
● “Mars”
● “Jupiter”
● “Venus”

An important property of JSGF that is used extensively by this project is the ability to
import rules from other grammars. For example, assuming the above grammar was
defined in a file called “planets.gram” (in the same directory) we could define another
grammar as :

#JSGF V1.0;
Grammar greet;
import <planets.gram>
Public <greet> = Hello[<planet.planetname>]! We come in peace!

10

George Close
1736823

Which would generate the following sentences only:
● “Hello! We come in peace!”
● “Hello Earth! We come in peace!”
● “Hello Mars! We come in peace!”
● “Hello Jupiter! We come in peace!”
● “Hello Venus! We come in peace!”

Note that the square brackets means that the content is optional, so no planet name
appears in the first generated sentence.

A key step in the development of this project is the creation of an unchanging ‘master’
grammar that represents any possible command. This master grammar will import
dynamic, changing grammars that define programs, files names, file extensions and
aliases, allowing for the system to be able to process a changing set of possible
commands.

11

George Close
1736823

Python
I will use the Python programming language version 3.6 to implement the project. I have
chosen this language since I am experienced in it and there exists many helpful tools for
implementing speech recognition available for it. These tools include some non
standard modules, available from Python’s package manager ‘pip’:

● SpeechRecognition[11] -This library provides an easy to use wrappers for a
number of speech recognition services, including PocketSphinx, as well as for
recording and accessing audio files using Pyaudio. It performs the former
function via ‘Recogniser’ objects and the latter via ‘Microphone’ and ‘Audio’. It
vastly simplifies the recognition process, and allows for the transcription result to
be returned as a string. It requires the following two modules to do this.

● Pocketsphinx[9] - This is the python interface to the C based PocketSphinx
implementation. PocketSphinx is a cut down ‘lightweight’ version of CMU Sphinx,
that is ”specifically tuned for handheld and mobile devices, though it works
equally well on the desktop”. It handles the transcription of speech from audio
data, using a phonetic dictionary, an acoustic model and a language model or
grammar.

● Pyaudio[10] - This provides python bindings for PortAudio, an audio I/O library. It
handles the recording and playback of audio on a variety of platforms.

● Pyjsgf [12] - This is a JSGF compiler, matcher and parser for Python. Used to
create and append the ‘dynamic’ grammars mentioned above. It can read and
write grammars from files, as well as add rules and match strings to the
grammar.

All of the modules listed here are platform independent, meaning that the program
should work on most modern Linux distributions. Additionally, it would not be difficult to
port the system to another OS, as long as they are compatible with Python.

12

George Close
1736823

3. Approach

Basic Speech to Text
The first step I took to implement the project was to simply take spoken English from an
audio file and print the content that is spoken in the file to the screen as text. I sourced
several kinds of speech files, including excerpts from audiobooks and speeches. I used
the ‘en-US’ language package that is provided with Pocketsphinx python; this package
includes an acoustic model, phonetic dictionary and language model for American
English. I wrote a simple python program to do this, ‘speech_test.py’.

Figure 3.1 - Diagram showing the input and output of the speech_test.py program

File Description Actual File Contents Transcribed by
speech_test.py

Extract of low quality radio
audio, transmitted from the
surface of the moon.

“That’s one small step for
man, one giant leap for
mankind”

“have you all and to a boil
with on”

Extract of medium quality
audio, from a freely
available audiobook.

“There is a spectre
haunting Europe, the
spectre of Communism”

“most bacteria scalding
europe the specter of
communism”

Extract of high quality
audio, from a freely
available audiobook.

“Count Dracula had
directed me to go to the
Golden Krone Hotel, which
I found, to my great
delight”

“count dracula had directed
me to go to the golden
crown hotel which i found
to my great delight”

Table 3.1 - Results of transcription of audio files of different qualities.

13

George Close
1736823

As shown in Table 3.1, the accuracy of the transcription was dependent largely on the
quality of the speech in the audio file. In the lowest quality audio, only the general
‘shape’ of what was spoken was detected, with none of the actual words being properly
transcribed. The medium quality file gave better results, with the last few words of the
file being transcribed correctly, albeit with a different spelling from the actual text. In the
highest quality audio file there was a difference of only a single word that can be
explained by the ‘en-US’ language package not containing the uncommon word ‘krone’.

I also found that the accuracy of transcription was correlated with the length of the audio
input. In some cases, limiting the transcription to the first few seconds of the file would
increase the accuracy, in other cases it appeared that cutting the end of a sentence
reduced the accuracy.
I also learnt that the transcription would not consider semantic elements of the speech
such as the end of sentences. This has an adverse effect on the transcription, where it
seemed that the last word of a sentence would sometimes affect the transcription of the
first word of the following. This was likely not to be an issue for this project, given the
lack of semantic elements in a CLI input.

14

George Close
1736823

Getting Microphone Input

The next step was to devise a method of collecting spoken word data from the user.
The Speech Recognition Python module includes a ‘Microphone’ object that uses the
default microphone for the system. This object has a ‘listen’ method that can store audio
input. I modified the speech_test.py program to source the audio from this object rather
than the file input, and then ran the program speaking the following phrases, using the
inbuilt laptop microphone and a higher quality headset microphone.

Spoken Phrase Transcription with laptop
microphone

Transcription with
headset microphone

“Hello world” “Hello wolf” “Hello world”

“The quick brown fox
jumped over the lazy dog”

“a quick run folks jumped
of lazy dog”

“brown at fox jumped over
the lazy dog”

“Space the final frontier;
these are the voyages of
the starship enterprise”

“face the final frontier these
villages starship
enterprise”

“the space the final frontier
and these avoidance of the
starship enterprise”

Table 3.2 - Results of transcription using different input methods of different phrases

As with the audio files, the results in Table 3.2 show that quality of the recording affects
the accuracy of transcription. While the transcription using the headset was not perfect,
it did recognise the majority of the words being spoken (even if they were transcribed
incorrectly), unlike the laptop mic which seems to skip some sections.

Using the inbuilt microphone on my laptop in a busy lab resulted in the system being
unable to distinguish the speech input at all. I found that the best results were when
using the high end headset microphone in an otherwise silent room.

15

George Close
1736823

A CLI Language Model

The next step was to create a language package for CLI commands; this would limit the
possible input of data to only possible command inputs. Following the documentation for
Sphinx[12] I would use a web service [13] to create the phonetic dictionary and
language model, but would use the same acoustic model as ‘en-US’. This is because
the acoustic model only describes how to interpret the spoken ‘sounds’ which will be the
same for the CLI inputs as for English. In order for the web service to work it needs a
‘corpus’ of ‘sentences’ to generate the language model and phonetic dictionary. To get
this list, I wrote a python script, “clean_fish.py” that takes a list of CLI inputs (for
example a shell history file, Figure 3.2) and returns a suitable corpus file(Figure 3.3).
Part of this program converts special characters in the CLI inputs (“/”,”-”,”|”) into how
they would be spoken aloud (“slash”,”dash”,”pipe”).

Figure 3.2, Figure 3.3 - Screenshots from the shell history file and the resultant corpus
file.

The web service returns two files, one a ‘ .dic’ that contains the phonetic dictionary and
the other a “.lm” (Figure 3.4) that contains the language model.

16

George Close
1736823

Figure 3.4 - Screenshot excerpt from a language model file generated by the online tool.

The language model approach was not at all as successful as I had imagined. It
appears that the structural difference between the ‘real’ language expected by the web
service, and the ‘language’ of the commands is too large. Additionally, the language
model made no distinction between the various component parts (program name, file or
folder paths, ect). This meant that the accuracy of the transcription was very
low.Transcriptions would commonly contain either none or several program names, for
example “sudo ls” being transcribed as “ls ls ls”. It was clear at this point that a more
structured method was required.
The first solution I devised was splitting the input of the command into three types of
input, using three different language models (Figure 3.5) . The first input would take the
command followed by the user saying “argument” or “filename” where those
components would be in their command. The program would then prompt the user for
exactly those arguments and filenames and substitute them into the command.

17

George Close
1736823

Figure 3.5 - Diagram depicting the process of the three language model solution

While this approach did help alleviate the issues of the original, single language model
approach, it came with its own problems. Firstly, it took a long time to input any
command, with the user having to wait for each recogniser step to complete before the
next stage. Errors in any of the three recognition steps could result in a nonsense
command, meaning the user would have to start the input all over again. It was not
completely worthless however, as I would reuse the basic concept of separate
structures for each command component later in the ‘dynamic’ grammars.
Another issue with the language model approach was that the .lm files could only ever
contain words that had appeared in the corpus used to generate them was based on.
This would mean that a new language model would have to be generated every time
the user wanted to run a program or access a file or folder that did not exist or was not
visible to the program when the lm and dictionary files were generated.

Despite the above problems, it was already apparent that the smaller set of possible
words was hugely improving performance compared to using the en-US language pack,
with transcription taking less than a second rather than several seconds depending on
the length of the input data.

18

George Close
1736823

Grammar Structure for CLI
It was clear at this point that a more structured, defined method of restricting word
search was needed, that would be able to expand to include previously uninvoked
programs, filenames and extensions. This new method would also have to be supported
by pocketsphinx. With this in mind, I decided to use a grammar structure in the form of a
JSGF grammar file. I used as a basis a simple context free grammar for English [14]
that describes a sentence as consisting of a Noun Phrase (NP) and Verb Phrase (VP).
I defined a command as consisting of a Command Phrase and a recursive Parameter
Phrase.
The original version of this grammar was as follows:

#JSGF V1.0;
grammar command;

public <command> =[<sudo>]<prog>[<option>]*[<file>]*;

<prog> = LS| FIREFOX | PYTHON;
<option> = (DASH A| DASH V | DASH C)[<file>];
<file> = FILENAME;
<sudo> = SUDO;

Here, a command consists of a program name optionally preceded by “sudo” and
optionally followed by a command line option or a filename. The final version of the
‘command’ grammar contains no set terminal rules for programs or files, instead
referencing the single public ‘root’ rule of one of the ‘dynamic’ grammars. The root rule
of the dynamic grammars then represent the possible options for programs, files and
folders. For more detail on the final version of this grammar, see Chapter 4,
Implementation.

The grammar approach was from the start more successful compared to the language
model. It was much easier to diagnose problems with the grammar given that I had
complete control over its content, unlike the language model which I could only
influence indirectly. The grammar also made it impossible for the system to recognise
inputs that did not remotely resemble a possible command; such inputs could now be
detected.

19

George Close
1736823

The move to the grammar approach also meant that the language model creating web
tool was no longer necessary. I could now use the simpler service [15] that returns only
the phonetic dictionary.

Populating Dynamic Grammars
The next step was to devise a way to automatically populate the ‘dynamic’ grammars
that would store the program names, file names and extensions, folder names and
aliases used in the program. My initial approach for the program grammar was to use
the in-built BASH command ‘compgen’ to get a list of all the compiled binaries in the
system’s path. This proved problematic however, as with over 400 programs some of
which had long and unwieldy names, the accuracy of transcription was greatly affected.
To remedy this, I wrote code that reads CLI history files (BASH and fish history) and
counts the number of occurrences of each program in the list. I then only included those
programs that had at least one appearance i.e had been typed by the user at least
once. This cut the program grammar down to a much more manageable 130 or so
programs.
I then moved on to the grammars for folders,files and file extensions. I wrote code that
got all folder names from the current directory and all folder names from the level below
the current directory. One quirk of this step was that names which started with certain
characters such as “.” or “_” could not have their pronunciations generated by the web
service, so these had to be filtered out. I then then wrote similar code to handle files and
their extensions, and the ‘alias.txt’ that stores the user defined aliases.

Running Commands
I had originally intended for Majel to work in conjunction with an existing shell such as
BASH, piping the output of my program into the shell’s input. There were major issues
with this however, namely in that using the command ‘cd’ to change directory would not
be preserved once exiting the Python script, instead leaving the shell in the location that
the program was originally invoked from. This was because of the way that the stack of
processes works on Linux systems, with the stack of processes exiting back in the
original directory location, rather than the location that the process was when it was
ended.
To fix this, I instead had Majel itself handle the execution of commands via the
‘subprocess’ module for python. I also wrote functions to emulate the behavior of
BASH’s ‘cd’ command. The end result of these changes was effectively a simple shell
program that was entirely independent from BASH. Another positive effect of this

20

George Close
1736823

change was that I could now implement my own control commands for Majel that could
be run from within the program such as ‘majel_timeout’ that sets the number of seconds
the program waits for microphone input.

4. Implementation
The project’s implementation consists of two seperate parts. The first ‘majel’ is the main
script that handles the frontend implementation; command prompt, obtaining speech,
recognising and running commands. The second, ‘setup’ is a collection of backend
functions which handles the creation and updating of the dynamic grammars, as well as
the creation and editing of the phonetic dictionary file. The ‘majel’ script is run to actually
start the program, with functions from setup imported and called when needed.

Figure 4.1 Overview diagram of program modules

In this section I will highlight the key function structures of each module, describing each
on a code level.

21

George Close
1736823

Backend

setup_dict_grammar()

This is the core function of the setup script, and is called when the main program is run
as ‘majel setup’. It handles the creation of lists of programs, files, folders and aliases,
the creation of the phonetic dictionary containing all of these lists and finally the
dynamic grammars. This process is shown in Figure 4.2.

Figure 4.2 - Diagram showing the process of setup_dict_grammar()

Figure 4.2 shows the creation of text files listing the various components used by the
program; programs, file names, file extensions, directory names and aliases. The
function compare_prog_list() compares the list of all programs with the programs
that have been previously invoked in the BASH history file, and returns a list that
contains only those programs that have been run at least once.

As shown in Figure 4.3 all words to be used in the program are combined into a single
file (“folders_out.txt”) which is then uploaded to the web service to create the phonetic
dictionary, “master.dict”. This is a efficiency consideration as it reduces the number of
calls to the web service required.

Finally, the dynamic grammar files are created; before this happens, each word list is
compared to the words in the dictionary file and any words that do not appear in the
dictionary are removed from the lists. This is to ensure that words that are not able to be
processed by the dictionary creation service are not erroneously added to the
grammars. All temporary files used by this function are then deleted. This code is shown
in Figure 4.4. One of the resultant grammar files is shown in Figure 4.5.

22

George Close
1736823

Figure 4.2 - Code excerpt from setup_dict_grammar() that shows the creation and
writing to files of lists containing programs, files, folders, file extensions and aliases.

23

George Close
1736823

Figure 4.3 - Code excerpt from setup_dict_grammar() showing the combining of the
word list files and the creation of the phonetic dictionary file via get_dictionary().

24

George Close
1736823

 Figure 4.4 - Code excerpt from setup_dict_grammar() showing the comparison of each
list to the dictionary, dynamic grammar creation and temporary file

Figure 4.5 - Screenshot from “progs.gram” showing one of the grammar files created.

25

George Close
1736823

get_dictionary()

This function takes in a list of words as a parameter and returns a phonetic dictionary as
a file “words.dict”. It uses a web based service provided by the developers of Sphinx to
do this. The file uploading and downloading is handled using the ‘requests’ python
module. In addition to the word list file, a ‘hand’ file is also uploaded, containing any
user defined pronunciations that should not be overwritten by what the web service
generates.

Figure 4.6 - Code excerpt showing the get_dictionary() function

26

George Close
1736823

create_grammar()
This function takes a list of words and creates a ‘root’ grammar with each word in the list
as a private terminal rule and a public root rule that expands to each terminal rule. It
then saves this grammar to a “.gram” file, such that it can be loaded by the ‘master’
grammar. This function makes use of the ‘RootGrammar’ and ‘PublicRule’
objects from the ‘pyjsgf’ module for the creation of the grammar and it’s rules. Since all
words returned by the speech recognition component are fully capitalised, each element
of the grammar likewise must uppercase. There is also a check here that no special
characters are erroneously added to the grammar.

Figure 4.7 - Code excerpt showing the create_grammar() function.

27

George Close
1736823

add_to_grammar()

This function takes a grammar file containing a root grammar and a list of words and
returns a grammar file with that list of words appended as private terminal rules. It is
used by the functions that deal with the addition of new programs, files, folders and
aliases as the program is running. Due to a limitation of the ‘pyjsgf’ the rules from the
input grammar must be copied and added to a new grammar, rather than having new
rules be appended to the input grammar . The new rules are then added to this new
grammar and it is saved, overwriting the input grammar. The function ensures that each
terminal rule in the output grammar expands to a unique string, by checking that the
new rule expansions are not in ‘old_rules_text’.

Figure 4.8 - Code excerpt showing the add_to_grammar() function

28

George Close
1736823

update_folder_grammar_dictionary()
This function is called when the user changes to a new directory. It acts in a similar way
to setup_dict_grammar(); it gets a list of new folders in the current directory and
updates the folders grammar and the phonetic dictionary with any new words. Given
that it calls the get_dictionary() function, it requires that the system is connected
to the internet to function. There exist similar functions for the updating of file names,
file extensions and aliases.

Figure 4.9 - Code excerpt showing the update_folder_grammar_dictionary() function

29

George Close
1736823

Frontend

main()

This is the main function of the frontend part of the program, it handles the creation and
display of the command prompt and is where the ‘main loop’ of the program is located,
where the command input, formatting and execution all occur. In the case that the user
types a command such that the variable ‘input_string’ is not empty (they have not
pressed enter without typing anything), get_command() is called to get the speech
input. Otherwise, the program will attempt to execute what was typed as a command. In
both cases, the command is sent to words_to_character().

Figure 4.10 - Diagram showing the processing that happens for each of the two input
types, speech and text that occurs in main()

 Figure 4.11 - Screenshot of Majel running in a terminal window, ready for command

30

George Close
1736823

Figure 4.12 - Code screenshot showing the main() function, showing the creation and
formatting of the prompt string and the command input (get_command()), processing
(words_to_character()) and execution(run_command()).

31

George Close
1736823

get_command()
This function handles the input and transcription of a voice command. It returns the
command that was spoken as an ordered list, with each word spoken as an element in
the list. It uses a Microphone object from the SpeechRecognition module to capture the
input from the default microphone set in the OS. The number of seconds that the
program waits for input is set by the ‘timeout’ variable which can set via a
command. This is then passed into the ‘recognise_sphinx()’ function of a
Recogniser object, which also takes in a tuple of language parameters ‘lang’ and the
path to the main grammar file.The final structure of this grammar file is discussed below.
This then returns as a string the transcripted text, ‘out’ which is returned by the
function as a lowercase list. If the recognition fails and an ‘UnknownValueError’ is
raised, an empty list is returned, which is detected by the next step of the program in
main(). This function also supports the experimental ‘selective mode’ where instead of
the single ‘best’ transcription being returned, instead the user can select from the top 10
possible transcriptions.

Figure 4.13 - Code excerpt showing the get_command() function.

32

George Close
1736823

word_to_character()

This function takes in an ordered list of words and converts it into an executable
command. It does this in a number of ways, including converting words such as ‘slash’,
‘dash’ etc into characters, combining paths into single strings separated by slashes and
changing the case of words or characters.

Figure 4.14 - Code excerpt from the first stage of words_to_character()

The first part of this function uses the support function ‘replace_in_list()’ which
takes a list, and two strings and returns the list with all instances of the first string
replaced with the second. It then loops through the phrase and removes all instances of
‘<s>’ which are sometimes introduced during the transcription step and represent
silence in the input speech.

33

George Close
1736823

Figure 4.15 - Code except showing the second step of word_to_character()

The next step makes use of Python’s enumerate() function to loop through each
word in the phrase with an associated index. It first applies any case modification that
the user has specified (‘upper’,’lower’,’capital’) and appends a “-” to the next element
after a “-” is found. Next it appends “./” to the next element after “execute”.Finally, it
handles the case that there are two dots adjacent to each other, usually representing
the parent to the current directory. Note that in all these cases the instruction word is
removed from the phrase.

34

George Close
1736823

Figure 4.16 - Code excerpt showing the next part of the enumerate loop, which handles
the combining of file paths into a single string

The final part of the enumerate loop deals with the creation of a single file path string
from seperate strings. It does this by checking if the first character of the current word
and the previous word is ‘/’ meaning that these words form a single file path. It then
combines these two words into a single string new_word and places this new string in
the place of the current word, phrase[index]. For example if the current word was
“/world” and the previous word in the phrase was “/hello” the phrase afterward would
replace these two with the word “/hello/word”.

35

George Close
1736823

run_command()

This function is responsible for the actual execution of commands. It takes the
command in as a parameter in an ordered list. It first checks if the command is one of
majel’s ‘built-in’ commands, if it is not, it checks if it contains any aliases and then
executes the command using python’s ‘subprocess’ module. If the command contains a
potentially ‘dangerous’ program to execute, it prompts the user if they are sure they
want to execute it. The program will inform the user if the command they typed is
invalid, or if they do not have permissions to run it.

Figure 4.17 - Code except showing the section of run_command() that handles Majel’s
built-in commands.

36

George Close
1736823

Figure 4.18 - Code except showing the ‘dangerous’ command confirmation and the
error handling section of run_command()

37

George Close
1736823

change_directory()
This function simulates a ‘cd’ command in BASH in that it will change the current
working directory to that directory that is specified. If it is run with no specified directory,
it will change to the user’s home folder. It supports the same type of input as BASH with
‘.’ representing the current directory and ‘..’ the parent. When the directory is changed,
functions from the setup script that update the dynamic grammars and phonetic
dictionary with any new files and folders in the directory that is being changed to. The
function uses the built-in os.chdir()function to change the directory. The function will
inform the user if the directory does not exist or is not a directory.

Figure 4.19 - Code excerpt showing the change_directory() function.

38

George Close
1736823

Grammar Structure

Having discussed the core functions of the program, I will now detail the grammar
structure of the ‘command.gram’ file that is passed as parameter to get_command()
and then the Recogniser object.The final form of this file is as follows:

#JSGF V1.0;
grammar command;
import <progs.gram>;
import <folders.gram>;
import <files.gram>;
import <exts.gram>;
import <alias.gram>;
public <command> = EXIT
|([SUDO])(EXECUTE|<progs.root>|<alias.root>) [<parameter>*];

<parameter> = [<option>][<pathexpr>[<file>]];
<option> = <dash>[<modifier>]<chars>;
<pathexpr> = <dot><slash><pathexpr>
 |<dot><dot><slash><pathexpr>
 |<foldername><slash><pathexpr>
 |<NULL>;

<file> = <filename><dot><fileextension>
 |<filename>;

<foldername> = [<modifier>]<folders.root>;
<filename> = [<modifier>]<files.root>;
<fileextension> = <exts.root>;
<chars> = B | A | C | F | G | M | O | V | S | X | R | Q;
<modifier> = CAPITAL | UPPER | LOWER;
<slash> = SLASH;
<dash> = DASH;
<dot> = DOT;

39

George Close
1736823

At the top of the file,the dynamic grammars are imported. Next is the sole ‘public’
(meaning that it can be spoken) rule of the grammar, ‘command’. This consists of either
the keyword ‘EXIT’ that exits the program or of a actual command; the structure of a
command is given as an optional ‘SUDO’ followed by either ‘EXECUTE’, the name of a
program from the ‘progs’ grammar or an alias from the ‘alias’ grammar. The final
component is any number (including zero) of ‘parameter’. A parameter is defined as an
‘option’, a ‘DASH’ followed by a ‘char’ and/or a ‘pathexpr’ with an optional ‘file’.
The ‘pathexpr’ rule is right side recursive and describes a file path of infinite length.’file’
defines a file as a filename followed by a ‘DOT’ followed by a file extension or a
filename with no extension; it both cases, the name and extension come from the ‘files’
grammar or the ‘exts’ grammar. Various parts of the grammar can also have an optional
‘modifier’ which can be ‘CAPITAL’,‘UPPER’ or ‘LOWER’; these are used by the program
to change the case of the proceeding word to the user’s specification.

40

George Close
1736823

5. Results and Evaluation
In this section I will detail two different types of testing of the program; I will first carry
out unit tests to ensure that all the features of the program are functional. I will then
carry out useability tests to test the program’s ability to recognise a variety of spoken
commands. Finally, I will evaluate the testing results, and give some ways that the
current implementation could be improved.

Unit Testing
In this section I will conduct a series of tests of the core features of the program, first
describing the test, then the expected result and finally the actual output of the program.

Unit Test 1 - Initialization

Description: Test of initial setup of the system, with the creation of the phonetic
dictionary file and the dynamic grammar files, based on where the program is being
initialized from. For this test, the program has been added to the system path, allowing it
to be run from anywhere on the system. This will be achieved by running ‘majel setup’
from a BASH terminal in the folder.

Expected Result: The program will first create the phonetic dictionary using the files and
folders from the current directory, and programs from the BASH history file. It will then
populate the dynamic grammars using these files, folders, and programs.

Result:

I created a folder with three empty directories and three files, as shown in Figure 5.1. I
then ran the command ‘majel setup’ in a BASH shell in this folder (Figure 5.2). The
program then initialized, populating the ‘folders’,’files’ and ‘exts’ grammar files based on
the directory, as well as the ‘progs’ grammar based on the BASH history. The phonetic
dictionary file was also created, containing the pronunciation of each word in these
grammars. This is displayed in Figures 5.3 to 5.6.

41

George Close
1736823

Figure 5.1- Screenshot of file manager showing the directory that majel setup will be run
in.

Figure 5.2 - Screenshot of a terminal window in the directory with the command ready.

42

George Close
1736823

Figure 5.3 - Screenshot showing the exts.gram file, having been updated using the file
extensions in the current folder.

Figure 5.4 - Screenshot showing the files.gram file, having been updated using the file
names in the current folder.

Figure 5.5 - Screenshot showing the folders.gram file, having been updated using the
directory names in the current folder.

43

George Close
1736823

Figure 5.6 - Screenshot showing the start of the progs.gram file, having been updated
based on the most commonly used programs from the BASH history.

Unit Test 2 - Running Typed Commands

Description: Test displaying program’s ability to run traditional typed commands, in a
manner similar to existing shell programs. For this test, I will run the command ‘ls -o
test/’.

Expected Result: I will run the command from the parent folder of the folder created for
Unit Test 1. After the command is entered, I would expect to see the contents of the
folder ‘test’ printed to the screen, along with extra information such as permissions,
owner and time created as it is being run with the ‘-o’ option.

Result

I launched the program in the parent folder of the test directory and ran the command
(Figure 5.7). This was the expected result, and identical to the output of the same
command in BASH (Figure 5.8).

44

George Close
1736823

Figure 5.7- Screenshot of terminal program showing successful execution of typed
command within Majel.

Figure 5.8 - the same command as Figure 5.7, but executed in BASH.

45

George Close
1736823

Unit Test 3 - Running Spoken Commands

Description: Test displaying the program’s ability to interpret, format and execute
spoken commands. For this test I will speak the same command that was typed in Unit
Test 2, ‘ls -o test/’. As mentioned in chapter 3, I will use a high quality headset
microphone, as it’s use results in the best possible transcription.

Expected Result: When the user presses enter with no command typed, the program
will prompt the user to speak (via printing ‘listening…’ to the terminal) and will execute
the spoken command. As the command is the same as the previous test, the output for
the same command spoken aloud will be the same.

Result

The command was executed exactly as spoken. As shown in Figure 5.9 below, some
debug information labeled ‘INFO:’ is printed when voice commands are executed; this is
a feature from where pocketsphinx interacts with the grammar file, and cannot be
disabled in the python interface.

Figure 5.9 - Screenshot showing output after a spoken command

46

George Close
1736823

Unit Test 4 - Updating Dynamic Grammar Files and Phonetic Dictionary
File

Description: Test displaying the program’s ability to append to the phonetic dictionary
file with new words and also add to the ‘dynamic’ grammar files. This will be achieved
by changing the directory to a directory that contains new directory names, file names
and file extensions. I will use the test directory setup in the previous two tests, with a
new directory that has not been processed by the program.

Expected Result: The new file names, directory names and file extensions will be added
to the appropriate grammar files. All of these will be added to the phonetic dictionary.

Result

Prior to changing the directory, the dynamic grammar files were in the states shown in
Figures 5.3 to 5.6. The directory that is being changed to ‘Projects’ has the structure
shown in Figures 5.10 (below). After the command ‘cd Projects/’ is run, the dynamic
grammars are in the states shown in Figures 5.11 to 5.13, with the new elements having
been added. The phonetic dictionary file has also been updated, as shown in Figure
5.14.

47

George Close
1736823

Figure 5.10 - Structure of directory that is changed into in test 4

Figure 5.11 - Screenshot of folders.gram after cd command, showing that the new
directories have been added.

Figure 5.12 - Screenshot of files.gram after the cd command, showing that the new file
names have been added.

Figure 5.13- Screenshot of exts.gram after the cd command, showing that the new file
extensions have been added.

48

George Close
1736823

Figure 5.14 - Screenshot of the end of the phonetic dictionary file, with the new words
having been added.

Unit Test 5 - Adding Aliases

Description: Test for the ability to add and use aliases, both in typed and spoken
commands. This will be done by adding an alias for the command ‘ls -o’ as
‘list-directory’. This will be done via the built in command ‘majel-alias’. Another
command, ‘majel-update’ will also be run, to generate the dictionary and grammar
entries for the new alias.

Expected Result: After the alias has been added and the command ‘majel-update’ run, it
will be usable in both typed and spoken commands.

Result:
After running the command ‘majel-alias list-directory “ls -o”’ shown in Figure 5.15, the
new entry was added to alias.txt(Figure 5.16). After ‘majel-update’ is run, the alias is
usable in typed commands (Figure 5.17) and spoken commands

49

George Close
1736823

Figure 5.15 - Showing the alias adding command before it is executed.

Figure 5.16 - Screenshot of alias.txt, showing the newly added alias.

50

George Close
1736823

Figure 5.17 - Screenshot showing the alias being used in a typed command.

Unit Test 6 - Applying Modifiers

Description: Test for the ability for the system to detect and apply ‘modifiers’ in speech
inputs; specifying the case of the next word spoken in the command. For example
speaking the command ‘ls dash upper s’ will run the command ‘ls -Q’.

Expected Result: After the command ‘ls dash upper q’ is spoken as an input, the
program ‘ls’ will be executed, with the -Q instructing the program to “enclose entry
names in double quotes” [16].

Result:

The program prompted the user for a spoken command and ‘ls dash upper Q’ was
spoken. The program then displayed the content of the current directory, with each
element enclosed in double quotes.

51

George Close
1736823

Figure 5.17 - Screenshot showing the ‘upper’ modifier having been applied to the ‘q’
element in the command.

Unit Test 7 - Handling ‘Dangerous’ Commands

Description: Test to show that a warning prompt will appear when the user tries to run a
command that could result in loss of important data or system instability. I have
categorised dangerous commands as those that delete or move files and any command
that is run as a superuser via ‘sudo’. This is mainly to catch any incorrect transcription of
a spoken command before it is executed. For this test I will execute the command ‘sudo
ls’.

Expected Result: After speaking the command, the program will display a yes or no
prompt asking if the user is sure they want to run the command. If they input ‘no’ the
command will not be run, if ‘yes’ then it will be.

Result:
The program prompted the user for a spoken command and ‘sudo ls’ was spoken.

52

George Close
1736823

The program then prompted the user if they were sure they wanted to execute the
command, and ‘y’ was entered by the user. The command was then executed, first
prompting the user for the superuser password.

Figure 5.18- Screenshot showing the yes/no prompt for a sudo command.

Unit Test 8 - Overriding Pronunciation

Description: Test showing the program’s capacity for the user to add alternative
pronunciations for words. This takes advantage of a feature of the online dictionary
creation tool to include a ‘hand’ file that contains fixed pronunciations for words that
must appear in the resultant phonetic dictionary. For this test, the pronunciation ‘AA’ will
be added for the letter ‘A’.

Expected Result: After the pronunciation has been added and majel-update invoked,
the word will be recognised via the newly added pronunciation.

Result:
First the command ‘majel-pronounce A’ is run, listing all the pronunciations in the
phonetic dictionary that contain the word ‘A’ (Figure 5.19). Then command ‘majel-hand’

53

George Close
1736823

is run (Figure 5.20), adding a new entry to the hand.txt file (Figure 5.21). The new
output of ‘majel-pronounce A’ is shown in Figure 5.22.

Figure 5.19 - showing the result of the inbuilt command 'majel-pronounce A’

Figure 5.20- showing the ‘majel-hand’ command and output.

54

George Close
1736823

Figure 5.21 - Screenshot of hand.txt, showing the newly added pronunciation.

Figure 5.22- output of ‘majel-pronounce A’, showing the newly added pronunciation.

55

George Close
1736823

Usability Testing

In this section I will evaluate the usability of the program via a series of tests. To do this,
I will run spoken commands of differing complexity and verbosity a number of times,
and note the number of times that the program successfully interprets and executes the
command. I will consider a test a success if more than fifty percent of the attempts are
correctly processed.

I used a high quality headset microphone for these tests which were carried out in an
otherwise silent room. I used the directory setup from the above section.

Ideally, I would have tried to have other people use the system and carry out these tests
also, in order to get more accurate and varied data from a number of different voices,
accents and audio recording systems. However, under the circumstances that this
report is being written, that is currently impossible.

Test Number Command
(Spoken)

Number of
Successes

Test Status Notes

1 ls (“ls ”) 10/10 (100%) PASS

2 python
(“python ”)

9/10 (90%) PASS In the failed
test,
‘update-grub’
was run
instead.

3 firefox -v
(“firefox dash
v”)

10/10 (100%)

PASS

4 nano hello.txt
(“nano hello
dot txt”)

6/10 (100%) PASS Program did
not produce
any command
at all in failed
cases.

5 cd Projects/
(“cd capital
projects slash”)

10/10 (100%) PASS

56

George Close
1736823

6 list-root (“list
root”)

6/10 (60%) PASS ‘list-root’ is an
alias for the
command ‘ls /’

7 sudo nano
secret_plans
(“sudo nano
secret plans”)

8/10 (80%) PASS In failed tests,
the filename
was
mistranscribed.

8 ls -Q -a (“ls
dash upper q
dash a”)

4/10 (40%) FAIL Program often
fails to properly
interpret the
second
argument,
incorrectly
representing
the letter ‘a’ as
another
character.

9 ls ../
(“ls dot dot
slash”)

9/10 (90%) PASS In failed test,
no command
was
processed,
likely because
the program
did not detect
the word
‘slash’ failing
the grammar.

10 ls ../test/
(“ls dot dot
slash test
slash”)

0/10 (0%) FAIL Bug in the
program fails
to correctly
append ‘test’ to
end of file path.

Table 5.1 - Results of Usability Test

These results indicate that the program is largely usable. The two failed tests involve
more complicated commands with several component parts, with test number 8 failing
at the interpretation step(get_command()) and test 10 at the transformation step
(word_to_character()). While the latter failure would be trivial to fix, requiring
changes to a few lines, the former would require a lot more work on and testing of the

57

George Close
1736823

grammar structure. The bug in word_to_character()could be avoided entirely with
a more sophisticated approach, which is detailed in the Conclusion to this chapter.

Conclusion

The results of the unit testing were overwhelmingly successful, with all of the core
features of the program implemented and functional. However, there were some issues
raised in the usability testing. There are some aspects that failed and that could be
improved on a code level, which I will detail here.

The function that converts from the raw string of spoken input into a valid command, is
currently somewhat messily written, with several edge case catching conditional
statements, and a mix of different approaches. I have sometimes used a function that
replaces each occurrence of a given element in the list, and other times I have looped
through the command using conditional statements to replace elements as they are
encountered; the ordering of these function calls and loops is what results in the bug
that occured in Usability Test 10 . Given more development time, I would unify the
method used, perhaps employing some sophisticated regular expressions to match and
replace the command elements.

In the current implementation, the creation of the phonetic dictionary is done online,
using a web service. While this does help offload some computation, increasing
efficiency of the program, it does require that the system the program is run on be
connected to the internet, and that the service remains available. Ideally, I would
implement my own means of dictionary creation, that would be able to run offline.

I have used in the program a set of wrapper functions from the SpeechRecognition
module to interact with PocketSphinx for Python. While these wrappers did ease
development by drastically simplifying the process of getting the transcribed speech,
there would be benefits of interacting with PocketSphinx directly myself. For example, it
would be possible to hide the grammar transcription messages and I would be able to
tailor the transcription process more finely to the context of the current directory.

While the grammar structure I have used is effective, it could be improved in a number
of ways, as exemplified by the failure of Usability Test 8. Currently, any program can be
run with any possible option and file or folder arguments, even if that program does not
accept those options. It would be possible to fix this by implementing a dynamic
grammar for each program, that would ‘learn’ what options that program could take via

58

George Close
1736823

analysis of history files and the manual pages for that program. I could also add a
means for the user to add their own options (‘update’,’-help’) outside of the commonly
used ones (‘-a’,’-v’,’-t’) that are currently implemented. While I found that the language
model approach was ineffective, I believe that it is ultimately a more sophisticated and
effective approach; perhaps with access to more training data for the corpus file, a
better result could be achieved.

59

George Close
1736823

6. Further Work

There are a number of ways that the project could be expanded, which I will detail here.
Firstly, the program could support languages other than English. This would require
obtaining an acoustic model for that language, and a means of creating the phonetic
dictionary for that language. Given the online tool provided by CMU only supports the
English language, some other means of creating the phonetic dictionary would have to
be found. Otherwise, it would be relatively simple to implement, with the only change
being the parameters passed to the get_command() function.

Another possible expansion to the program would be the implementation of more
advanced features common to other shell programs, such as command piping and
scripting. While this would not really be related to the core theme of speech recognition
in the program, it would bring the program up to parity with other shells. It would likely
be somewhat difficult to implement, and would mean that I would have to abandon use
of the subprocess module and write my own means of running the commands from
within Python, which might be beyond my abilities.

In order to make the program function more like existing ‘voice assistant’ programs, a
‘wake word’ system could be implemented. This would be a daemon process that would
listen for a certain word to be spoken by the user; when this word would be spoken the
program would launch, and start listening for a command. I would likely be able to
implement this in a rudimentary way using the ‘pocketsphinx_continuous’ binary
provided by pocketsphinx in a BASH script running as a background process. The
BASH script would periodically monitor the output of the binary, and launch my program
only when the wake word is present in the binary’s output.

In the same vein as the previous improvement, some form of text to speech technology
could be implemented. Currently, the user must observe the command window to see
the output of their command which detracts from the ‘hands free’ nature of the program;
synthesizing a voice to speak the output would alleviate this. The voice synthesis could
also be used to show the user what the expected pronunciation of a given word is,
helping to reduce errors in transcription. There is a python module ‘pyttsx3’ [17] that
provides text to speech support, that would be useful in implementing this.

Another feature that would improve the program would be a ‘smarter’ system for
transforming the spoken string into an executable command, that would take the context
60

George Close
1736823

of the current directory into account. For example if the command ‘cd documents slash’
was spoken in a directory that contains a subdirectory ‘Documents’ only, the
transformation process would detect this and automatically reformat the string to match.
By the same token, if the directory contains subdirectories ‘Documents’, ‘DOCUMENTS’
and ‘documents’, the program would prompt the user to clarify. This could also extend
to the transcription process also, with file/folder names, file extensions that are present
in the current directory being given more weight in the transcription that those not
present in the current directory. This function is predicated on the idea that the user will
be most likely to want to manipulate items within the current directory, which may not
always be the case; as such, an option to disable this feature would be useful.

The concept of a formal grammar definition for a command line interface is currently
unexplored. I have implemented a very simple version in my command.gram file,
however I believe that there is potential for a much expanded and general solution.
There has been some research done to employ genetic algorithms to infer grammar
structure[18], rather than creating it by hand as I have here. This works via the analysis
of source code (in this case this would be CLI history files) and the structure of an
existing grammar (perhaps English) to infer the rules of the new grammar, effectively a
much more sophisticated version of what I was attempting with the language model
approach. This would require much more time and resources than I had available to me
for this project, and far outside of its scope.

61

George Close
1736823

7. Reflections on Learning

In this section I will review what I have learned about each technology involved in the
project, and how the process of development has proceeded as a whole.

When I first chose Python as the language I would use for this project, chief among the
reasons was my familiarity with it, having used it in several prior projects. I found in
development that it was uniquely suited for this task, with several useful modules
already existing, such as the tools for interacting with pocketsphinx and for grammar
creation. With that said, there were times when this was a detriment rather than an aid;
for example the ‘jsgf’ module is still very much in development and is currently poorly
documented. As a result, some development time was dedicated to puzzling out it’s
usage; in hindsight it would have been better to write my own method of creating and
editing the grammar files.

When I started this project I had only a vague understanding of the mechanics of
speech recognition. I now have a much greater knowledge of the component parts
required such as the language model, phonetic dictionary and word search restriction
structure. I also understand the limitations and challenges of the technology such as the
need for good word search restriction structure, and the differences between different
approaches to this. I also realised how simple and modular implementation of speech
recognition could be, and that I will endeavor to include it in my future projects.

Prior to researching grammar as a means of word search restriction, I had some
knowledge of language theory from the second year module ‘Introduction to the Theory
of Computation’. I have found it a very interesting and engaging topic, and hope to be
able to work in this area in future, and hope to expand the concept of command line
grammar.

I have learnt a lot about how CLI programs function, and how they interact with the host
operating system. Having effectively written my own shell program for this project, I was
surprised how easy it was to implement; I may endevor in future to write my own shell
program ‘from the ground up’ as a side project. My newfound knowledge of CLI will
hopefully serve me well in the future.

I have found working on the project an exciting and engaging process. I was always
motivated to develop the next part of the program, and to implement new strategies and
62

George Close
1736823

ideas towards solving the problem. Being able to use my own project proposal rather
than select one set by a supervisor meant that I could tailor the project to my own
interests and strengths. Another key source of motivation was weekly meetings with my
project supervisor; this meant that I always tried to have something new to show for
each meeting, allowing me to effectively roadmap what the work for the next week
would be. Whenever a problem in development occurred such as with the language
model approach or with interacting with BASH, these meetings were useful to discuss
and resolve these problems. There were a few developmental ‘deadends’ chiefly the
language model approach; these took up a lot of the development time that could have
otherwise been used to implement some additional feature. In the future, more research
and planning before starting the implementation of an idea might help reduce these
issues.

63

George Close
1736823

References
1. “Gnu.org.” Bash - GNU Project. Accessed April 27, 2020.
https://www.gnu.org/software/bash/
2.Bash Reference Manual. Accessed April 27, 2020.
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Simple-Comman
ds.
3.Shmyrev, Nickolay. “CMUSphinx Open Source Speech Recognition.” CMUSphinx
Open Source Speech Recognition. Accessed April 27, 2020.
https://cmusphinx.github.io/
4. Shmyrev, Nickolay. “Overview of the CMUSphinx Toolkit.” CMUSphinx Open Source
Speech Recognition. Accessed April 27, 2020.
https://cmusphinx.github.io/wiki/tutorialoverview/
5. Cmusphinx. “Cmusphinx/Pocketsphinx.” GitHub, March 28, 2020.
https://github.com/cmusphinx/pocketsphinx
6. Shmyrev, Nickolay. “Before You Start.” CMUSphinx Open Source Speech
Recognition. Accessed April 27, 2020.
https://cmusphinx.github.io/wiki/tutorialbeforestart/
7. Shmyrev, Nickolay. “Basic Concepts of Speech Recognition.” CMUSphinx Open
Source Speech Recognition. Accessed April 27, 2020.
https://cmusphinx.github.io/wiki/tutorialconcepts/.
8. JSpeech Grammar Format. Accessed April 27, 2020.
https://www.w3.org/TR/2000/NOTE-jsgf-20000605/.
9. “Pocketsphinx.” PyPI. Accessed April 27, 2020.
https://pypi.org/project/pocketsphinx/.
10. “PyAudio.” PyPI. Accessed April 27, 2020.
https://pypi.org/project/PyAudio/.
11. “Pyjsgf.” PyPI. Accessed April 27, 2020.
https://pypi.org/project/pyjsgf/.
12. Shmyrev, Nickolay. “Building a Language Model.” CMUSphinx Open Source
Speech Recognition. Accessed April 27, 2020.
https://cmusphinx.github.io/wiki/tutoriallm/.
13. “ Sphinx Knowledge Base Tool -- VERSION 3.” Sphinx Knowledge Base Tool
VERSION 3. Accessed April 27, 2020.
http://www.speech.cs.cmu.edu/tools/lmtool-new.html.
14. Jurafsky, Dan, and James H. Martin. Speech and Language Processing: an
Introduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition . Upper Saddle River, NJ: Pearson Prentice Hall, 2009.
64

https://www.gnu.org/software/bash/
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Simple-Commands
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Simple-Commands
https://cmusphinx.github.io/
https://cmusphinx.github.io/wiki/tutorialoverview/
https://github.com/cmusphinx/pocketsphinx
https://cmusphinx.github.io/wiki/tutorialbeforestart/
https://cmusphinx.github.io/wiki/tutorialconcepts/
https://www.w3.org/TR/2000/NOTE-jsgf-20000605/
https://pypi.org/project/pocketsphinx/
https://pypi.org/project/PyAudio/
https://pypi.org/project/pyjsgf/
https://cmusphinx.github.io/wiki/tutoriallm/
http://www.speech.cs.cmu.edu/tools/lmtool-new.html.

George Close
1736823

15. “LOGIOS Lexicon Tool.” CMU Lexicon Tool. Accessed April 27, 2020.
http://www.speech.cs.cmu.edu/tools/lextool.html
16. ls(1) - Linux manual page. Accessed April 27, 2020.
http://man7.org/linux/man-pages/man1/ls.1.html.
17. “pyttsx3.” PyPI. Accessed April 27, 2020.
https://pypi.org/project/pyttsx3/.
18. Penta, Massimiliano Di, Pierpaolo Lombardi, Kunal Taneja, and Luigi Troiano.
“Search-Based Inference of Dialect Grammars.” Soft Computing 12, no. 1 (2007):
51–66.
https://doi.org/10.1007/s00500-007-0216-5

65

http://www.speech.cs.cmu.edu/tools/lextool.html
http://man7.org/linux/man-pages/man1/ls.1.html.
http://man7.org/linux/man-pages/man1/ls.1.html.
https://pypi.org/project/pyttsx3/
https://doi.org/10.1007/s00500-007-0216-5.

