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ABSTRACT 

The use of deep learning models in diagnostic classification has been gaining increasing 

attention due to its outstanding performance over traditional machine learning models, 

especially in the domain of computer vision. However, such models have a reputation of 

being highly uninterpretable and are often labelled as ‘black boxes’. This project aims to 
compare and evaluate different interpretability methods that can be used to increase the 

transparency of deep learning models. These methods are Layer-wise Relevance Propagation 

heatmaps, saliency maps and images produced using the Lime toolbox. A convolutional 

neural network was developed to classify patients with neuropsychiatric disorders from 

controls, but satisfactory results were not obtained. The interpretability methods were 

therefore applied to a convolutional neural network trained to classify MRIs based on age. 

Qualitative and quantitative evaluations were used to show that the methods successfully 

increase the interpretability of the model and could therefore one day be used by clinicians to 

increase their trust in deep learning models as a diagnostic tool. More specifically, it was 

found that Layer-wise Relevance Propagation heatmaps and saliency maps are more 

successful at increasing interpretability than images produced using the Lime toolbox. 
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1   INTRODUCTION 

Neuropsychiatric disorders are a group of medical conditions that involve both neurology and 

psychiatry. This means they have a physical component relating to the nervous system as 

well as a mental component that causes emotional distress and abnormal behaviour. The 

disorders that the data that will be used comprises of are schizophrenia, posttraumatic stress 

disorder (PTSD) and Parkinson’s disease (PD). Table 1 shows the number of people 

estimated to be living with these disorders worldwide. 

 

Neuropsychiatric Disorder Frequency Worldwide 

Parkinson’s 10 million[1] 

Schizophrenia 3.2 million[2] 

PTSD 3 in 100 people in a given year[3] 

 

Table 1 The estimated number of people living with Parkinson’s and Schizophrenia worldwide and the 
estimated number of people who suffer with PTSD each year worldwide (as it is curable). 

 

However, the number of people these disorders effect is much greater. For example, 145,000 

people in the UK have been diagnosed with Parkinson’s, but it is estimated that more than 1 

million people are affected by the diseases, either by living with Parkinson’s or as a friend, 
colleague or family member of someone who is.[4] It is therefore incredibly important to 

continue to increase our understanding of these disorders. By increasing understanding, we 

can make both diagnostic and treatment advances that would have a direct positive impact on 

both the present and future sufferers of these disorders. 

Clinical diagnosis of these disorders is still a challenge as they are very complex and largely 

not understood. However, the physical changes in the brain mean that machine learning can 

be used to diagnose patients using MRI scans. An MRI is a 3D imaging method that uses 

strong magnetic waves to produce detailed images of the organs and tissues within the body. 

MRIs are therefore very suited to detecting changes in volume of grey matter (a type of tissue 

in the brain), a key sign of a neuropsychiatric disorder, as well as other neuroanatomical 

changes that are characteristic of such disorders. 

The first aim of this project is to develop a convolutional neural network (CNN) model that 

can accurately classify MRIs from healthy patients and MRIs from patient with a 

neuropsychiatric disorder. A CNN is the most suitable model as they are able to 

automatically detect the important features of images without any supervision. [5] This means 

information about which parts of the brain correspond to neuropsychiatric disorders does not 

need to be associated with the data that is fed into the CNN; it will learn this for itself. 

The second aim of the project is to compare different interpretability methods currently 

available to help gain an understanding of the choices made by the CNN during training. 

CNNs are notoriously uninterpretable because they consist of many hidden layers that make 

significant, but complex, computational decisions. Being able to understand these decisions is 

important to help us gain a better understanding of these disorders and how to diagnose them. 

This project aims to uncover by how much these different methods increase the transparency 

of the CNN and therefore the interpretability of the results. One of the biggest challenges is 
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finding a fair, quantitative way to measure just how interpretable these methods make the 

models. The overall goal of this project is therefore to objectively and fairly evaluate how 

well these different methods produce consistent, interpretable and useful information on the 

diagnostic classification of neuropsychiatric disorders using a CNN. 

2   BACKGROUND 

2.1 Concepts 

MRIs 

An MRI is a 3D imaging method that uses strong magnetic waves to produce detailed images 

of the organs and tissues within the body. MRIs are therefore very suited to detecting changes 

in volume of grey matter (a type of tissue in the brain), a key sign of a neuropsychiatric 

disorder, as well as other neuroanatomical changes that are characteristic of such disorders. 

 

Machine Learning 

Machine learning is a subset of Artificial Intelligence which uses algorithms that can modify 

themselves without human intervention in order to improve at tasks with experience. The 

algorithms use statistics to find and learn patterns from large amounts of data. Machine 

learning models can then apply what they have learnt to new, unseen data in order to solve 

problems.  Machine learning algorithms often fall into two categories; supervised and 

unsupervised. Supervised models used labelled data to learn about the past events in order to 

predict future events. The two types of supervised learning are classification and regression. 

Unsupervised models look for patterns in un-labelled data, such as clustering, which groups 

data points that are similar. The approach used in this project is supervised classification 

which is where the model will learn features of each pre-determined class from the labelled 

data it is trained on and then use the information it has learnt to predict the classes of unseen 

data it is tested on.  

 

Deep Learning 

Deep learning is a branch of machine learning that was inspired by the human brain. It 

creates artificial neural networks (ANNs) that are able to learn by experience and acquire 

skills without human involvement from a large amount of data that is unstructured or 

unlabelled. The algorithms get better with experience but require more data than classical 

machine learning algorithms as they have a much larger number of parameters that need to be 

tuned. The structure of such algorithms mean that they are able to solve non-leaner, complex 

problems that classical machine learning algorithms cannot.  

 

Artificial Neural Network Structure 

Like the human brain, ANNs are made up of neuron nodes that are interconnected like a web. 

These nodes are made up of input and output units and are where computation happens in the 

form of an activation function; the input is combined with a set of weights that either amplify 

or dampen that input, thereby assigning it significance with regard to the task the algorithm is 

trying to learn. Figure 1 shows the structure of a node in an ANN. 
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Typically, an ANN has thousands to millions of these neurons, arranged in a series of layers. 

First is the input layer which receives the data from an external source. Next are a series of 

hidden layers, each of which group a large number of neurons together. It is these layers that 

define an algorithm as deep learning and makes it superior to other machine learning 

algorithms. Each hidden layer can have a different number of neurons and each neuron can 

be connected to any number of the neurons in the next hidden layer. A layer is called fully 

connected if all of the neurons are connected to each and every neuron in the next layer. The 

type of computations performed by the hidden layers and the activation functions used 

depend on the type of neural network, which in turn depends on the application. Lastly there 

is an output layer which maps the outputs from the last hidden layer to the desired number of 

outputs in the output range. Figure 2 shows the different layers of an ANN and how they may 

be connected. 

 

 
Figure 2 A simple illustration of the structure of an artificial neural network 

 

 

 

 

 

Figure 1: A simple illustration of a node in an artificial neural network 
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Activation Functions 

Activation functions are what introduce non-linearity to ANNs by mapping the input values 

to a different, smaller range, for example 0 to 1. This non-linearity is essential for the ANN to 

learn and make sense of complex problems where there is not a linear relationship between 

the inputs and outputs. This enables deep learning algorithms to compute and learn any 

function at all. Below are some examples of activation functions most commonly used in 

deep learning: 

 

1. Sigmoid 

One of the most widely used non-linear activation function as it transforms the values  

between the range 0 and 1. 

Function: ݂ሺݔሻ =  ଵଵ+�−�  

Graph: 

 

 
                            Figure 3 Sigmoid activation graph 

 

2. ReLU (Rectified Linear Unit) 

Does not activate all the neurons at the same time so neurons are only deactivated if the 

output of the linear transformation is less than 0. 

Function: ݂ሺݔሻ = max ሺͲ,  ሻݔ

Graph:  

 

 
                                Figure 4 ReLU activation graph 
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3. Leaky ReLU 

Attempts to fix a common problem with ReLU called “dying ReLU” where neurons 

become inactive and output 0 for any input. The solution is to have a small negative slope 

when x < 0. 

Function: ݂ሺݔሻ = max ሺͲ.Ͳͳݔ,  ሻݔ

Graph: 

 

 
                            Figure 5 Leaky ReLU activation graph 

 

Convolutional Neural Network (CNN) 

A CNN is a deep learning algorithm that is designed to take images as an input, assign 

learnable weights and biases to parts of the image and then be able to classify them using 

labels. The layers that make up a CNN are a series of convolutional and pooling layers 

followed by a number of fully connected layers.  

 

Convolutional Layer 

A convolution is a mathematical operation to merge two sets of information.[5] A CNN uses 

filters to perform convolutions to be able to capture the spatial and temporal dependencies in 

an image. A feature map is produced by sliding the filter over the input data and performing 

element-wise matrix multiplication and summing the result at every location. The size of the 

filter can be specified but is usually 3x3. This process is shown in Figure 6. 

 

 
Figure 6 Visualisation of a convolution[5] 
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Figure 7 The second position of the filter when the stride 

value is 1[5] Figure 8 The second position of the filter when the stride 

value is 2[5] 

Multiple convolutions are performed on an image, each using a different filter and therefore 

resulting in a different feature map. If you want to have less overlap between the filters as 

they move across the input you can increase the stride value, which specifies by how much 

the filter is moved at each step. This makes the resulting feature map smaller, as shown in 

figures 7 and 8. 

 

 

 

 

 

 

 

 

 

 

 

  

  

The size of the feature map is always smaller than the input so if you want to maintain the 

dimensionality of the input you can use padding to surround the input with zeros, as shown in 

figure 9. 

 

 
Figure 9 The effect of using padding on the feature map dimensionality[5] 

The output of the convolutional layer is then all the feature maps stacked together. This result 

of the convolutional layer is then passed through an activation function, such as ReLU, in 

order to incorporate non-linearity and therefore increase the power of the neural network. 

 

Pooling Layer 

After a convolutional layer there is usually a pooling layer to reduce the dimensionality and 

therefore the number of parameters, which both shortens the training time and reduces the 

chance of overfitting. Max pooling is the most common type. It slides a window over the 

input and takes the maximum value in the window. Like the filter in the convolutional layer, 

the window size and stride can be specified. 



 10 

 
Figure 10 A visualisation of a pooling layer[5] 

The main purpose of pooling is to downsize the feature map while keeping the important 

information. In the example in figure 10 above the resulting feature map is half the size of the 

input. 

 

Fully Connected Layer 

After a series of convolution layers and pooling layers there are one or more fully connected 

layers which take a flattened, 1D version of the output from the last pooling layer and 

compute class scores which map each input image to a class label. Figure 12 shows a 

visualisation of how all the layers of a CNN are put together to form a complete network. 

 

 
Figure 11 The layers in a CNN[5] 

 

Training a CNN 

At the start of training, the CNN will not know anything, meaning it has to learn everything 

from scratch. This means training large amounts of data can take a long time. More 

specifically, the learnable weights and filter values are randomised,[6] so the filters do not 

know what to look for. The way a CNN learns is through a training process called 

backpropagation which works backwards through the neural network to calculate the gradient 

of descent for weighting different variables. When training a CNN there are two important 

hyperparameters to be set; number of epochs and batch size. The number of epochs is the 

number of times the entire dataset is passed through the neural network. The higher the 

number of epochs, the more chance the neural network has to learn features and minimise its 

error, therefore the number of epochs is usually in the hundreds or even thousands. The batch 

size determines the number of data points to be passed through the network at once, so a 

lower batch size requires less memory. 
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Equation 2 Precision Equation 3 Recall 

Equation 1 Accuracy 

CNN Performance 

The performance of a CNN is usually measured by train and test accuracy. Accuracy is a 

metric that measures the number of predictions the model got right (true positives and true 

negatives). 

ݕܿܽݎݑܿܿ�  =  �� +  ݏ݊݋�ݐܿ�݀݁ݎ݌ ݂݋ ݎܾ݁݉ݑ݊ ݈ܽݐ݋���

 

 

Accuracy is measured on a scale of 0 to 1, where 1 means the model had 100% accuracy. 

Train accuracy relates to how well the model performed on the training data, so this should 

be close to 1.0 by the end of the network’s training, while test accuracy relates to how well 

the model performed on the test data so is the real measure of how accurate the model is on 

unseen data. In order for accuracy to be a reliable measure of model performance the amount 

of data samples per class has to be balanced. 

Other evaluation metrics that can tell us how well a model performs are precision and recall. 

Precision tells us the proportion of positive identifications that were actually correct while 

recall tells us the proportion of actual positives that were correctly identified. They are both 

calculated using a combination of true positives, false positives and false negatives. 

݊݋�ݏ�ܿ݁ݎ�   =  ���� + ��                                     �݈݈݁ܿܽ = ���� + �� 

 

 

Precision and recall are usually discussed together because there is often an inverse 

relationship, meaning if one is increased the other is decreased. It is therefore important to 

evaluate models using both in order to ensure recall is not being sacrificed for precision or 

vice versa. However, when it comes to developing machine learning models that use health 

care data, recall is often considered more important because it takes into count false 

negatives, which are times when the presence of disease has been missed. Such false 

negatives can therefore have a detrimental effect on the patient. Within healthcare it can be 

said that it is more important to have more false positives than false negatives, in other words 

it is better to err on the side of caution, and this can be represented by a lower precision but a 

higher recall. 

One of the most effective ways to visualise the performance of a deep learning model is a 

confusion matrix. A confusion matrix is a table that shows the proportion of correct and 

incorrect predictions made for each class and which class the model predicted when its 

predictions were incorrect i.e. which class it got confused with. This evaluation technique 

therefore not only tells us how many errors are being made by the model but more 

importantly the type of errors. Figure 12 explains the values that are used in a confusion 

matrix. 
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Equation 4 LRP rule 

 
Figure 12 The values in a confusion matrix[7] 

 

CNN Interpretability 

In the context of machine learning, interpretability means the ability to explain or to present 

in understandable terms to humans. Deep learning techniques are known for being largely 

uninterpretable due to their hidden layers and are often branded as ‘black boxes’[8]. This is 

because we cannot always explain or even identify the logic behind the computations and 

predictions made by deep learning models. Interpretability of CNN predictions is incredibly 

important in the context of clinical diagnosis using MRI scans because the clinicians who 

would be over-seeing the use of deep learning in the context need to be able to fully trust the 

CNN and its predictions. This can only be achieved by allowing them to see what is leading 

the CNN to make these predictions so that they can understand it for themselves. It is 

additionally important to understand why false negative and false positive predictions are 

made by the CNN so the pre-processing of the data or the model itself can be adjusted 

accordingly to account for these. Also, so that clinicians can look out for certain patterns that 

lead to false negatives or false positives and then double-check those predictions themselves. 

Interpretability methods can help increase the transparency, and therefore interpretability, of 

CNN predictions to people with no deep learning experience by creating images that 

highlight which areas of the input image were key influencers in the prediction made. 

 

Interpretability Methods 

Heatmaps 

Heatmaps are a popular data visualisation technique that represents values as colours. They 

can therefore be used to increase the interpretability of the results of machine learning models 

by highlighting which pixels of the input images had a positive contribution to the model’s 
predictions and which pixels had a negative contribution. One mathematical method of 

achieving this on convolutional neural networks is Layer-wise Relevance Propagation (LRP). 

LRP uses the weights and biases learnt by the network to propagate the output back through 

the network to the input layer where the relevance of each pixel to the output can be 

visualised.[9] When working backwards through the network, LRP follows this basic rule for 

each neuron: 

 �௝ =  ∑ ௝ܽݓ௝௞∑ ௝ܽݓ௝௞଴,௝ �௞௞  
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Equation 5 The gradient used in 

producing saliency maps 

Where R is the relevance in the output layer, j and k are neurons of consecutive layers, a is 

the activation of the neuron and w is the weight between the two neurons. There are different 

variations of this rule that can be applied depending on the application of both the neural 

network and the LRP heatmap. Figure 13 shows an example of how these different variations 

can affect the resulting heatmap. 

 

 
Figure 13 Example of three different LRP variations generated from a CNN trained on 

the MNIST dataset which aims to classify digits[10] 

 

Heatmaps also have the advantage of being widely used so most people can understand the 

meaning behind them at first glance without knowing any of the scientific or mathematical 

background behind them. 

 

Saliency Maps 

A second interpretability method that is gaining increasing popularity when it comes to CNN 

interpretability is saliency maps.[11] They highlight areas of importance in the CNN’s 
prediction by calculating how the prediction changes with respect to small changes in the 

input pixels and therefore how important each pixel is to the output value. This can also be 

explained as the gradient of the output prediction with respect to the input image.[12] 

ݐݑ݌݊��ݐݑ݌ݐݑ݋�    

 

 

 

Figure 14 shows and example of a saliency map where yellow indicates a high gradient for 

the predicted class. 
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Figure 14 Saliency map example generated from a CNN trained on 

the MNIST dataset which aims to classify digits [13] 

 

Lime 

Lime is a toolbox which aims to ‘explain what machine learning classifiers are doing’[14]. It 

takes a different approach to the previous interpretability methods discussed as it does not 

aim to understand the model as a whole but instead to understand each individual decision. 

This is called local model interpretability and is achieved by slightly changing the feature 

values of a single data point and observing the change in the predicted class. Lime then 

produces a number of super pixels which had the highest contribution value to the output and 

can be used to visualised which areas of the input resulted in the model’s decision. Figure 15 
shows an example of an image produced using the Lime toolbox. 

 

 
Figure 15 An example image produced using Lime which shows 

 the super pixels that had the largest positive and negative 

 contribution to the predicted class. The true label of the image 

 is ‘cat’ and the predicted label was ‘black bear’. 
 

2.2 Datasets 

Cam-CAN dataset 

The cam-CAN dataset was initially used whilst waiting to gain access to the Shared Roots 

dataset. Cam-CAN (Cambridge Centre for Ageing and Neuroscience) is a large scale, 

collaborative research project that uses epidemiological, cognitive and neuroimaging data to 
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understand how individuals can best retain cognitive abilities into old age.[15] The dataset 

contains 653 brain MRIs of subjects aged 18-87 years old. Each subject has recorded 

attributes such as gender, age, brain measurement, whether they smoke and alcohol intake, 

however, for this project focus is purely on the age of the subjects. These attributes are all 

stored in a comma-separated value (CSV) file separate to the MRIs. The MRIs are stored as 

numpy arrays with a dimension of (181, 217, 181). 

 

Shared Roots dataset 

Shared Roots is a project run by Stellenbosch University that aims to understand the 

commonalities of neuropsychiatric disorders and modifiable risk factors for cardiovascular 

disease. Like the cam-CAN dataset, the Shared Roots dataset consists of brain MRIs from 

288 subjects; 141 patients and 147 controls with a neuropsychiatric disorder. The MRIs are 

stored as numpy arrays with a dimension of (157, 189, 136) 

 

2.3 Development Environments and Tools  

Lengau Cluster 

The Shared Roots data that was used is stored on a cluster that is hosted on CHPC (Centre for 

High Performance Computing) supercomputers. All computations that used this data were 

therefore be performed on this cluster. This also improved the speed of training the 3D CNN 

as it has a number of GPUs that could be utilised. Access to the cluster needed to be gained 

from researchers at Stellenbosch University and then some time was needed to learn the 

commands and how to navigate it. 

 

Google Colab 

Google Colab is a free cloud service that gives access to a python development environment 

and can be run using either a CPU, GPU or TPU. While working with the cam-CAN data, 

notebooks were created on Google Colab. A notebook is a file that contains cells of code that 

can be run independently of each other. This makes it a very good environment for 

experimenting with CNNs for the first time as the architecture and parameters of the CNN 

can be changed without having to re-load and pre-process the data again. The option to use a 

GPU also meant that it was possible to train a CNN in reasonable time. 

 

Tensorflow 

Tensorflow[16] is an end-to-end, open source platform for machine learning. It has a 

comprehensive and flexible set of tools, libraries and resources to enable high-level building 

of machine learning models. 

 

Keras 

Keras[17] is a high-level API written in Python for developing neural networks. It was 

developed with a focus on enabling fast experimentation and so suits the needs of this 

project. For this project Tensorflow was used as the backend for Keras. 
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3   APPROACH 

The overall approach throughout this project was that of data analysis and exploration within 

machine learning. Data science projects like this cannot be architected at the start because 

information about the data and the best techniques to use are uncovered as the project 

progresses. As a result, agile methodology was employed as the project was likely to be 

highly iterative. This enabled changes to pre-processing methods and hyperparameter tuning 

to take place after the model was complete in order to improve performance. 

Before working towards achieving the objectives set out in the initial plan, a new objective 

was set to build and train a CNN using the Cam-CAN dataset in order to learn more about 

deep learning implementation. Development and training using the Cam-CAN dataset was 

achieved using the Google Colab development environment as it is more suited to learning 

and experimentation. The development of both CNNs was approached in the same way. First, 

the dataset was explored and pre-processed so that it could be used as input into a CNN. Then 

the CNN was developed using Keras with a Tensorflow backend and the hyperparameters 

were finetuned to improve the CNN performance. In order to achieve the second initial 

objective of training the CNN on the Shared Roots data, the model was uploaded to the 

Lengau Cluster where it was trained to classify the Shared Roots data as either ‘patient’ or 
‘control’. Various network architectures were then implemented and tested in order to see 

which yields the best model performance and to achieve the third initial objective. Although 

the focus of this project is on increasing the interpretability of CNN results, a large 

proportion of time was spent building the CNN models in order to achieve results to which 

interpretability methods can be applied. 

Once satisfactory results were obtained from the CNN, further investigation was completed 

into the three interpretability methods outlined in section 2.1. The interpretability methods 

were then applied to the CNN results in order to produce images that aim to increase the 

interpretability of the results and to achieve the fourth initial objective. Lastly, a method of 

quantitative evaluation was derived in order to fairly compare the interpretability images and 

allow conclusions to be drawn regarding how well they increase the interpretability and 

transparency of the model. Qualitative conclusions were also drawn as there are certain 

advantages to images that cannot easily be quantified. 

The timeline outlined in the initial plan was kept to with only a couple of minor changes. The 

addition of the extra aim to develop an initial CNN to be trained on Cam-CAN data meant the 

time allocated to develop and train a CNN model based on the Shared Roots data had to be 

shared with this new aim. However, the advantage of developing this additional CNN first 

meant less time was needed on the Shared Roots CNN so it balanced out to mean both could 

be achieved within the allotted time. Additionally, a quantitative evaluation method of the 

interpretability toolboxes was not determined before these methods were applied to the CNN 

as was stated in the timeline in the initial plan. This is because it was necessary to produce 

the images first to be able to know in which format the data would be in and therefore what 

methods were suitable for quantifying the images. 

The combination of an agile approach and a broad, flexible time plan allowed for successful 

iterative development of two CNNs with sufficient time to apply a range of interpretability 

methods and evaluate their effectiveness both qualitatively and quantitively. 
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4   IMPLEMENTATION 

The implementation process of the CNN models using both the Cam-CAN dataset and 

Shared Roots dataset will be discussed. Then the process of generating images in order to 

increase the interpretability of these models and how they were evaluated will be outlined. 

 

4.1 3D CNN Using Cam-CAN Dataset 

The aim of this section was to build a 3D CNN model that can accurately classify MRI scans 

in the Cam-CAN dataset into predetermined age groups. 

 

4.1.1 Pre-Processing 

The first task was to load the cam-CAN data into Google Colab and pre-process it so that it 

could be accepted as an input by the CNN. The total size of the MRI numpy files was 8GB  

and Google Colab gives you a total of 12GB of RAM, so the majority of difficulties 

encountered at this stage were related to computations exceeding the memory allocations.  

The first step to a solution was to use the GPU hardware accelerator available within Google 

Colab. This ensured the notebook did not run out of memory when using the data however 

the computations still took an unreasonable amount of time considering a significant amount 

of experimentation would be needed. Although Google Colab has many advantages as a 

development environment for this project, it became clear that it is not ideal for handling 

large volumes of data, as if the session times out or has to restart because the RAM capacity 

was exceed, all the data has to be re-loaded and re-processed which is the part of building a 

CNN this way that takes the longest. It was therefore decided to only work with half of the 

data until the CNN was fully functional in order to save time. It was also decided to reduce 

the size of the MRI numpy arrays by 50% from (181, 217, 181) to (90, 108, 90) to make 

computations faster.  

The labels chosen for this dataset were ‘young’, ‘middle aged’ and elderly’ with age 
boundaries of 18-43, 44-65, 66-80 respectively. These boundaries ensured that the spread of 

the data across the classes was even in order to achieve reliable CNN results. Table 2 shows 

how many samples belonged to each of these classes. 

 

Class  Label Age Range Number of Samples 

Young 18-43 211 

Middle Aged 44-65 225 

Elderly 66-80 217 
Table 2 The class boundaries used and number of data points in each class 

 

The demographics and brain measurements of each subject were stored in a text file which 

was converted to a CSV file so that it could be loaded as a data frame using pandas in Colab. 

Each subject had a unique ‘SubCCID’ which was also the name of the file containing their 
MRI scan. It was therefore simple to find the age that corresponded to each MRI scan in the 

numpy array and then create a separate numpy array of all the class labels. As this is a multi-

class problem, it was necessary to convert the labels into binary form, or one-vs-all, that is 
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understandable by the CNN. In order to achieve this, the LabelBinarizer function that’s 
available as part of scikit-learn was used which replaces each label with 3 binary digits. The 

label ‘young’ is represented by [1 0 0], ‘middle aged’ is represented by [0 1 0] and ‘elderly’ 
is represented by [0 0 1].  

At the end of pre-processing, we are left with two numpy arrays which will be accepted by 

the CNN. The numpy array ‘X’ holds the arrays of MRI scan data and has dimensions (653, 
90, 108, 90). However, an extra dimension is required by Keras to be the colour channel, so 

an extra axis was added to give the array ‘X’ a final dimensionality of (653, 90, 108, 90, 1). 

An example slice sequence of one of the MRI scans stored in ‘X’ is shown in figure 16. The 

numpy array ‘Y’ holds the representations of the labels of each MRI scan and has dimensions 

(653, 3). 

 
Figure 16 An example MRI scan used as input to the CNN shown as a sequence of slices 

The input data then needed to be split into train data and test data. An 80/20 split was 

achieved using the train_test_split function from scikit-learn as shown in figure 17. 

 

 
Figure 17 The sci-kit learn function used to split input data in train and test data 

The variables X_train, X_test, y_train and y_test can then be used as inputs to the CNN. 

 

4.1.2 Convolutional Neural Network Implementation 

After the pre-processing of the data, it was no more complicated to build a 3D CNN than a 

regular 2D CNN as Keras has equivalent functionalities and methods available. Figure 18 

shows the code for the initial CNN model. 
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Figure 18 The initial network architecture used 

The architecture of this model consists of 2 convolutional layers followed by a max pooling 

layer. This block is then repeated before a layer to flatten the data from 3D to 1D and then 

finally a fully connected layer to map each input to its predicted label. It was necessary to 

have a stride value of 2 in order for the model to run without running out of memory. 

A different network architecture was then tested, called LeNet-5 architecture which is well-

known for its small memory footprint and therefore fast training times[18] meaning it is well 

suited to this data and development environment. It consists of a convolutional layer and 

pooling layer, repeated twice, and then 3 fully connected layers. 

 

 
Figure 19 LeNet-5 network architecture 

The intention was to test the AlexNet architecture and the VGG-16 architecture as well, 

however, after compiling the models and seeing the number of parameters it was clear these 

architectures would not be feasible given the size of the data and the memory constraints of 

Google Colab. LeNet-5 was therefore accepted as the most suitable architecture for this 

network and was used for all further work using this model.  

In order to train the model, 200 epochs were used with a batch size of 32 as shown in figure 

20. 

 
Figure 20 Code to train the model 
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4.2 3D CNN using Shared Roots data 

Once the CNN model was finalised using the Cam-CAN data it was easily transferable to be 

trained using the Shared Roots data. The aim of this section was to build a 3D CNN model 

that can accurately classify MRI scans in the Shared Roots dataset as either patient with a 

neuropsychiatric disorder or control. 

 

4.2.1 Pre-Processing 

The pre-processing of the Shared Roots data was more complex than that of the Cam-CAN 

dataset. One reason why is because the data was stored on the cluster so all code to be run 

using the data had to be uploaded to the cluster as a script and then run as a job. This meant 

there was less possibility for trial and error. A second reason was because the MRI scans 

were not stored using a filename that was the same as the subject ID that was used to 

reference the patient in the demographics file. It was therefore more complicated to assign 

each MRI a label. The required files first had to be extracted from their folders and then 

converted from nifti files to numpy arrays and then saved together as one numpy array.  

The original file name for the nifti files followed a pattern of ‘wsubjectID _date_ 

Memprage_Sag_Memprage_Sag_RMS_brain.nii’ so it was possible to extract the subject ID 

for each MRI scan using the code shown in figure 21. 

 

 
Figure 21 Code to extract the subject IDs from the filenames 

The labels for each subject could then be found in the ‘demographics’ CSV file using the 

subject IDs extracted from the MRI file names. The status of each subject can be determined 

by the ‘Patient_Control’ column in this file; if it is 1 the subject is a patient with a 

neuropsychiatric disorder, if it is 2 the subject is a control. Figure 22 shows how the subject 

statuses were retrieved. The subject IDs used in the demographics folder sometimes included 

‘-‘ which were not included in the file names, so these had to be ignored. 
 

 
Figure 22 Code to get each subjects status 

At the end of the pre-processing we are left with one numpy array holding all the numpy 

arrays of the MRI scans and a second numpy array holding the labels of the scans. 
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4.2.2 Convolutional Neural Network Implementation 

A neural network with the same architecture as was used with the Cam-CAN data was 

implemented however, some small changes needed to be made as classifying the Shared 

Roots data is a binary classification problem. The activation used in the final dense layer had 

to be changed from Softmax to Sigmoid and the loss metric had to be changed from 

‘categorical_crossentropy’ to ‘binary_crossentropy’. Dropout was added to test for 
overfitting as well as lowering the learning rate. The learning rate is a hyperparameter which 

controls how much the weights of the network are adjusted with respect to loss.[19] The 

learning rate was reduced from 0.001 to 0.00001 meaning the network is more likely to find 

local optima but will take a longer time to converge.  

 

4.3 Producing Interpretability Images 

It was decided to apply the interpretability methods to the results of the model trained on the 

Cam-CAN data as it achieved a much better performance and therefore would lead to clearer, 

more reliable interpretability images.  

It was discovered that it would not be possible to produce interpretability images using a 3D 

model because the toolboxes used expected a 2D model so the 3D Cam-CAN model was 

adapted to 2D simply by using a 2D slice of each MRI scan as inputs and then changing the 

Conv3D layers to Conv2D layers. The 2D slice was chosen to be position 35 out of 90 as it 

shows important structures such as the corpus callosum which plays a role in motor, sensory, 

and cognitive performances as well as grey and white matter which often change with age. 

An example 2D slice image is shown in figure 23. 

 

 
Figure 23 An example 2D slice which was used as input for the 2D CNN 

The accuracy graph and confusion matrix for the 2D model can be found in the 

supplementary material. 

The iNNvestigate toolbox[20] was first used to produce a number of LRP heatmaps using 

different rules for 10 of the MRI scans the network was tested on. The code to achieve this 

can be found in the supporting material as it is relatively long. The one that seemed best to 

highlight the important areas of the brain for classification by the model was chosen for 

further evaluation. 

The Keras-Vis toolbox[21] was then used to produce a saliency image for each MRI scan the 

model was tested on. The code to produce a saliency image for one input image is shown in 

figure 24. 
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Figure 24 Code to produce a saliency map using the Keras-vis toolbox 

Lastly, the Lime toolbox was used to visualise the top 10 super pixels that contributed either 

positively or negatively to the predicted class. Figure 25 shows the code to achieve this for 

one data point. 

 

 
Figure 25 Code to produce an image with the top 10 super pixels using the Lime toolbox 

In order to evaluate and compare how well these methods increase the interpretability of the 

CNN, the average image for each class was generated for both the LRP heatmap and saliency 

map. This was achieved by calculating the average colour of each pixel for each image in 

each predicted class. A similar method was also applied to the super pixel maps produced by 

Lime. If a pixel was red or green in more than 80% of the images for each predicted class, 

then it would be shown as red or green in the ‘average’ image.  
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5   RESULTS AND EVALUATION 

In this section, first the results obtained from the CNN models that used the Cam-CAN and 

Shared Roots data will be discussed and the performance of these models will be evaluated. 

Then the results from applying the three interpretability methods will be shown and 

evaluated. 

 

5.1 Cam-CAN CNN Results 

Accuracy, precision, recall and confusion matrices were used to evaluate the performance of 

different 3D CNN models trained on the Cam-CAM data set. 

Figure 26 shows the accuracy graph of the model when LeNet-5 architecture was used and 

table 3 shows the precision and recall. Figure 27 shows the confusion matrix. 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Dropout was then added to the model to test for overfitting. Table 4 shows a comparison 

between the accuracy, precision and recall of the model with and without dropout. 

 

Class Precision Recall 

Young 0.92 0.98 

Middle aged 0.62 0.78 

Elderly 0.89 0.68 

Table 3 The precision and recall for the CNN with LeNet-5 

architecture trained on the Cam-CAN dataset 

Figure 26 The accuracy graph for the CNN with LeNet-5 

architecture trained on the Cam-CAN dataset 

Figure 27 Confusion matrix for the CNN with LeNet-5 

architecture trained on the Cam-CAN dataset 
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Maximum 

Accuracy 

Average 

Accuracy 

Average 

Precision 

Average  

Recall 

Without 

Dropout 
0.824 0.809 0.810 0.813 

With 

 Dropout 
0.878 0.710 0.813 0.813 

Table 4 Comparison of the effect of dropout on the accuracy, precision and recall on the CNN with LeNet-5 architecture 

trained on the Cam-CAN dataset 

This table shows that although the maximum accuracy obtained when using dropout was 

higher than the maximum accuracy obtained when not using dropout, the average accuracy 

with dropout was significantly lower and there was no difference in average precision and 

recall. This shows that there was no overfitting occurring when training the model. 

The confusion matrix in figure 27 shows that the errors being made by the model are always 

due to predicting the class next to the correct class. In particular, the model predicts ‘middle 

aged’ instead of the true label ‘elderly’ for 32% of data points with the label ‘elderly’. The 
vast majority of other errors were due to predicting ‘young’ when the true label was ‘middle 
aged’ or predicting ‘elderly’ when the true label was ‘middle aged’.  It seems reasonable to 
allow the model these errors as the classes are continuous rather than distinct and have 

extremely close boundaries. For example, an MRI belonging to a patient aged 44 is unlikely 

to show significantly differences than an MRI belonging to a patient aged 43 however the 

former belongs to the class ‘young’ and the later belongs to the class ‘middle aged’. It is 
therefore satisfactory that the model confused the two classes in this case. 

It is clear from both the confusion matrix and the precision and recall values for each class 

that the model performed best at classifying data points as ‘young’, having achieved 92% 
precision and 98% recall. These values are particularly a success when looking at the 

problem from a healthcare point of view as recall is higher than precision which is more 

advantageous in healthcare, as discussed in section 2.1. The precision within the class 

‘elderly’ is satisfactory at 89% however the precision for ‘middle aged’ is less than 
satisfactory at 62%. This can likely be explained due to the fact this is the middle class and so 

the data points at both the upper and lower ends of the boundaries of this class can easily be 

confused for one of the other classes. 

After checking the model for overfitting and analysing the confusion matrix and precision 

and recall values it seems reasonable to conclude that this is the best performance that can be 

expected given the number of data points and the RAM available. If more RAM or GPUs 

were available, it would be possible to test more sophisticated architectures such as AlexNet 

and GoogLeNet.[22] Having more data available to train the model on would likely increase 

the precision and recall of the ‘middle aged’ and ‘elderly’ classes as the model would have 
more opportunity to learn defining features of these classes. 
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5.2 Shared Roots CNN Results 

Accuracy graphs were primarily used when testing the model using the Shared Roots data as  

it did not perform as well as the model which was trained using the Cam-CAN dataset, so 

precision and recall are not as informative. 

Figure 28 shows the accuracy curve of the model with no dropout and default learning rate of 

0.001. 

 
Figure 28 The accuracy graph for the CNN with LeNet-5 architecture 

trained on the Shared Roots dataset 

 

This curve suggests that the model is overfitting because the train accuracy quickly reaches 

and plateaus at 1.0 while the test accuracy remains around 0.5 with a single peak above 0.6 

which is likely a fluke. Dropout was therefore added in order to reduce the effect of 

overfitting. 

Figure 29 shows the accuracy curve when drop out was added after the two pooling layers. 

 
Figure 29 The accuracy graph for the CNN with LeNet-5 architecture 

trained on the Shared Roots dataset with dropout 

 

The average test accuracy was increased from 0.5 to 0.6 however there is a greater fluctuation 

in both the train and test accuracy as a result of introducing dropout. There is a relatively 

small increase in test accuracy which suggests that overfitting was not the only problem 

stopping the network from achieving a higher accuracy. It was therefore decided to see the 

effect of lowering the learning rate. Table 5 compares the average accuracy for different 

combinations of dropout and learning rate values. 
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 Learning rate 

= 0.001 

Learning rate 

= 0.00001 

Without 

Dropout 
0.500 0.552 

With  

Dropout 
0.603 0.500 

Table 5 A comparison of the effect of reducing the learning rate on the accuracy of the CNN  

with and without dropout 

 

This table shows that lowering the learning rate increased the average accuracy when dropout 

was not used but decreased the average accuracy when dropout was used however it is 

possible that this is simply by chance. 

It was therefore concluded that 0.6 is the highest accuracy achievable using the Shared Roots 

dataset on this model. There may be multiple explanations as to why such a low accuracy was 

achieved when training the model on the Shared Roots data, but a relatively high accuracy 

was achieved when training the model on the Cam-CAN data. The simplest explanation is 

that there were significantly fewer data points in the Shared Roots dataset; just 288 compared 

to 653 in the Cam-CAN dataset. This means the network had less chance to learn defining 

features. Additionally, within the ‘patient’ class in the Shared Roots data there are multiple 
neuropsychiatric disorders; schizophrenia, PTSD and Parkinson’s. Therefore, the network 

needs to learn individual features of all of these disorders and differentiate them from the 

control MRIs which is exceptionally hard given there are only 141 patient MRIs.  

 

5.3 Interpretability Method Results 

5.3.1 LRP Heatmaps 

Figure 30 shows the results of applying various LRP methods to 3 different inputs and their 

predicted outputs from the CNN model trained on the Cam-CAN dataset. 

 
Figure 30 LRP heatmaps using different rules for 3 input images 
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Each LRP method uses different rules and equations when backpropagating through the 

network and calculating the relevance of the pixels, resulting in each map visualising the 

relevance of the pixels in different ways, such as at different layer depths. It was decided to 

analyse and evaluate LRP-PresetAFlat further as it appeared to consistently and clearly 

highlight which structures and areas of the brain were highly relevant to the CNNs prediction. 

This particular method uses -decomposition which treats the activating and inhibiting 

activation factors of a layer separately, meaning the resulting map highlights pixels that 

positively contributed to the output class as well as pixels that negatively contributed. In this 

instance, pixels that are red had a positive contribution while pixels that are blue had a 

negative contribution. LRP-PresetAFlat also uses flat weight decomposition which produces 

maps that represent the relevance of pixels in higher network layers.[23] 

As discussed in section 4.3, average heatmaps were produced for the three classes using the 

input images the CNN predicted to belong to the class. This allows us to see which areas of 

the brain were most important to the CNN when classifying an image into one class over the 

others. Figures 31, 32 and 33 show the resulting LRP heatmaps. 

 

           
 

 

 

 
 

 

These heatmaps clearly show that the neural network has learnt the structure and features of 

the brain as well as showing which structures contributed positively or negatively to each age 

class.  

 

 

Figure 31 Average LRP heatmap 

for class ‘young’ 
Figure 32 Average LRP heatmap 

for class ‘middle aged’ 

Figure 33 Average LRP heatmap 

for class ‘elderly’ 
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5.3.2 Saliency Maps 

Figure 34 shows saliency maps that were produced for 3 input images. The brighter the pixel, 

the more it contributed to the CNNs prediction.  

 

 

 

 
Figure 34 Saliency maps for 3 input images 

Figures 35, 36 and 37 show the average saliency map for each predicted class that were 

generated in the same way as the average LRP heatmaps. In order to highlight the general 

areas that were of importance to the CNNs predictions a gaussian filter was applied to blur 

the saliency maps and then the map was overlaid on top of an example input from the 

corresponding class. 

 

           
  

 

 

 

 

 

 

 

 

Figure 35 average saliency map 

for the class ‘young’ 
Figure 36 average saliency map 

for the class ‘middle aged’ 
Figure 37 average saliency map 

for the class ‘elderly’ 
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5.3.3 Lime Images 

Figure 38 is an example image that was produced using Lime which shows the top 10 super 

pixels which contributed either positively or negatively to the output class. 

 

 
Figure 38 The top 10 super pixels that contributed to the 

predicted class for an input 

 

This image does suggest that the model has learnt the edges of the brain and some of its 

structures. Figures 39, 40 and 41 show the resulting images from assigning each pixel as red 

or green only if it was red or green in more than 80% of the images in that class. 

 

            
 

 

 

Unfortunately, a significant number of the super pixels appear outside the brain region and 

are instead focused within the border around the brain.  It is possible this is because these 

regions did not play any part in the CNN prediction and so Lime has interpreted this as these 

areas having a negative impact on the resulting prediction. 

 

5.4 Evaluation of Interpretability Methods 

The interpretability images will be evaluated based on how they could be used by, or be 

useful to, clinicians as the motivation behind the project was to increase the transparency of 

machine learning models so that they are more likely to be accepted and used by clinicians in 

a healthcare environment. It is therefore important to look at these images from a clinician’s 
point of view in order to see their true scientific value and to discuss potential further 

improvements. The initial aim of the project was to evaluate how well these images increased 

the interpretability of a CNN when diagnosing neuropsychiatric disorders. However, as 

mentioned in section 4.3, it was decided to instead produce interpretability images for the 

Cam-CAN dataset as it achieved much higher accuracy, precision and recall values and 

therefore the resulting images would have more significance. 

Figure 39 Top super pixels across 

the class ‘young’ 
Figure 40 Top super pixels across 

the class ‘middle aged’ 
Figure 41 Top super pixels across 

the class ‘elderly’ 
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5.4.1 Qualitative Evaluation 

The interpretability methods all produced very different images, so it is necessary to discuss 

the conclusions likely to be drawn by clinicians from simply looking at the images. 

The most obvious difference between the images is that the LRP heatmaps and the Lime 

images show whether an area contributed positively or negatively to the CNN’s output 
whereas the saliency maps do not differentiate this factor. This allows the clinician to clearly 

see the areas that the CNN learnt were different between the age groups. For example, the 

LRP maps clearly show that the anterior horns of the lateral ventricle had significant 

relevance to the CNN when classifying MRIs as ‘elderly’ because the pixels in this area were 

consistently displayed as red when the predicted class was ‘elderly’, meaning they had a 
strong positive contribution. Meanwhile, the same pixels were consistently displayed as blue 

when the predicted class was ‘young’ or ‘middle aged’, meaning they had a negative 
contribution. This tells clinicians that the CNN learnt that differences in this area is one of the 

factors that separates the three classes. This is in line with the known effects of ageing on the 

brain as it has been found that the volume of the lateral ventricles increases with age.[24] 

However, the LRP heatmaps and Lime images do not clearly show which pixels and areas 

were more significant than others because varying intensity of colours is not utilised as it is in 

the saliency maps. In fact, LRP appears to show the contribution of all edges learnt by the 

CNN but the lack of varying intensity of colour means it is not possible to see which areas 

were the most important. In the saliency maps it is clear which areas were more relevant in 

each of the classes. For example, the anterior horns of the lateral ventricle are brighter in the 

‘middle aged’ and ‘elderly’ classes which can tell clinicians that they had higher relevance to 

the CNN when classifying an MRI into one of these classes than they did when classifying an 

MRI  as ‘young’. The use of varying brightness can also highlight to clinicians which areas of 
the brain were more important than others within the classes. This can then allow them to 

focus their attention to the areas that had higher relevance. For example, in the average 

saliency map for the class ‘young’ it is clear that structures towards the back of the brain, 

such as the choroid plexus, had higher relevance than the anterior horns of the lateral 

ventricle when the CNN was classifying an image into this class as this area has brighter 

pixels. 

Looking at the images in broader terms, it can be said that both the LRP heatmaps and 

saliency maps increase the transparency and interpretability of the CNN as even at first 

glance it is clear which specific areas and structures of the brain had some level of relevance 

to the CNN when making its predictions. The average Lime images produced show that 

images produced using this toolbox are of lesser quality and achieve increased interpretability 

to a lower level due to a large proportion of highlighted areas being outside of the brain 

region. This problem does not occur when the LRP or saliency methods are used. This has a 

large impact on the interpretability of the images because it means that less structures within 

the brain are highlighted and it also can draw attention away from the highlighted areas 

within the brain, meaning they are not a very effective tool for clinicians. 
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5.4.2 Quantitative Evaluation 

In order to quantitatively evaluate how successfully the individual methods are at increasing 

the interpretability of the CNN, a correlation value was obtained for each method. These 

values tell us how visually clear it is that the change in relevance of a certain area effected the 

CNN’s prediction. The idea behind this method of evaluation was that clinicians could use a 

similar tool to investigate how the relevance of a small area of the brain they are interested in 

changed within the CNN in relation to age. The area chosen for this evaluation was a 

rectangular section that contains the anterior horns of the lateral ventricle as this was 

highlighted by all three interpretability methods as having some relevance of significance to 

the CNN when classifying the MRIs. Figure 42 highlights this section on one of the input 

MRIs. 

 
Figure 42 An example input image with the section used for quantitative evaluation highlighted by the red box 

 

Each interpretability method was applied to each input MRI and then the resulting images 

were cropped down to the area shown above. The images were then divided into the three 

classes that they were predicted to belong to by the CNN. The number of certain pixel values 

in this area in each age class were then used to calculate the correlation value.  

The interpretability images were all generated from the same CNN model trained on the same 

data, meaning if the images were equally as good at increasing the interpretability of the 

CNN, the correlation values should be relatively close. Therefore, the correlation values 

obtained can be used to evaluate the different methods in comparison to one another. 

 

LRP 

Unfortunately, the pixels in the LRP images were stored as RGB values rather than values 

relating to the relevance of the pixel. To overcome this, the maximum value in the RGB array 

was calculated and its corresponding colour was recorded as the colour of that pixel, where 

red represents a positive contribution and blue represents a negative contribution. White 

pixels represent no contribution so were not included in the calculations. The number of red 

and blue pixels present in each image of each class were counted and this information was 

stored in a pandas DataFrame containing the class label of each image (0 for ‘young’, 1 for 

‘middle aged’ or 2 for ‘elderly’), the red pixel count and the blue pixel count. It was then 

possible to calculate the correlation between the label and the number of each colour pixels 

and the p-values. Table 6 shows the results. 

 

 Correlation Value p-value 

Red pixel count 0.880 ͳ.8͵8e−ସଷ 

Blue pixel count -0.880 ͳ.8͵8e−ସଷ 

Table 6 The correlation values and p-values obtained from the LRP heatmaps 
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Using a significance level of 0.05 for the p-values, the null hypothesis that there is no relation 

between the number of red or blue pixels in the area and the age class predicted by the CNN 

can be rejected. This means the strong positive correlation between the red pixel count and 

the label tells us that the greater the number of red pixels in this area, the more likely the 

predicted class is to be ‘elderly’ while the strong negative correlation between the blue pixel 

count and the label tells us that the greater the number of blue pixels in this area, the more 

likely the predicted class is to be ‘young’. Not only does this increase the transparency of the 

CNN by proving that the anterior horns of the lateral ventricle play an important role in the 

CNN’s decision no matter what the predicted class is, it also proves a level of consistency in 
the way the LRP heatmaps present which areas of the brain were relevant to each predicted 

class. This consistency is important in enabling clinicians to understand the decisions made 

by the CNN and to trust the predictions it makes.  

 

Saliency 

The pixels in the saliency images were stored as single numerical values between 0 and 1 

which represent the relevance of that pixel on the predicted class. It was decided to measure 

the correlation between the average pixel value of each cropped image and the predicted 

class. The average pixel value of the image will be greater if there are more ‘brighter’ pixels 
in the image which would mean that the selected area of the brain was of high importance to 

the CNN when making its prediction. Table 7 shows the correlation value and p-value 

obtained. 

 

 Correlation Value p-value 

Average pixel 

relevance 
0.576 6.ͲͲͳe−ଵଵ 

Table 7 The correlation values and p-values obtained from the saliency maps 

 

Once again using a significance level of 0.05 for the p-values, the null hypothesis that there is 

no relation between the average relevance of the pixels in the area and the age class predicted 

by the CNN can be rejected. Although this is not as strong of a correlation as was achieved 

with the LRP heatmaps, it does tell us that the higher the number of bright pixels in this area, 

the more likely the CNN is to predict the label as ‘elderly’. This means that the saliency maps 

aren’t quite as effective as the LRP heatmaps in accurately displaying the difference in the 

relevance of this area of the brain but they do still increase the transparency and 

interpretability of the CNN by making it visually clear to some extent that the anterior horns 

of the lateral ventricle have higher relevance when the predicted label is ‘elderly’ than when 
it is ‘young’. 
 

Lime 

The Lime images were stored using only three possible pixel values; 1 for the colour green,   

-1 for the colour red and 0 for no colour. Therefore, the same method that was used to 

calculate a correlation value for the LRP images was applied. In the Lime images, however, 

green pixels represent a positive contribution and red pixels represent a negative contribution. 

The number of green and red pixels present in each cropped image were counted and then the 



 33 

correlation between these counts and the corresponding predicted labels was calculated. 

Table 8 shows the correlation values and the p-values. 

 

 Correlation Value p-value 

Green pixel count 0.400 ʹ.ʹ8Ͳe−଴6 

Red pixel count -0.252 Ͳ.ͲͲͶ 

Table 8 The correlation values and p-values obtained from the Lime images 

 

As with the LRP and saliency correlations, using a significance level of 0.05 for the p-values, 

the null hypothesis that there is no relation between the number of green or red pixels in the 

area and the age class predicted by the CNN can be rejected. Although the null hypothesis 

can be rejected, the correlations are weak, meaning the relationship between the pixel counts 

and the predicted label is close to negligible. As the Lime images were produced using the 

same information as was available to the LRP heatmap method, no blame can be given to the 

CNN itself for such a difference in correlation values between the Lime images and the LRP 

heatmaps. We can therefore conclude that the Lime images are not as successful in visually 

increasing the interpretability of the CNN as the anterior horns of the lateral ventricle do not 

have differencing levels of relevance within these images like they do within both the 

saliency maps and the LRP heatmaps. 

 

5.4.3 Evaluation Conclusions 

After qualitatively and quantitatively evaluating the three interpretability methods, it is 

possible to conclude that LRP heatmaps are the best method for increasing the transparency 

and interpretability of CNNs for clinicians. This is due to them showing positive and negative 

contributions that are consistent within the predicted classes but differing across the predicted 

classes. This allows clinicians to be confident in the conclusions they can draw when using 

the heatmaps as a tool to understand which areas of the brain were important to the CNN 

when making its decision. 

Saliency maps are also an effective method for increasing interpretability, but they contain 

less information than the LRP heatmaps so fewer conclusions can be drawn by clinicians 

when using them as a tool to understand the CNNs predictions. They are, however, effective 

at informing clinicians which areas of the brain were more important than others which the 

LRP heatmaps are lacking. 

It can also be concluded that Lime images are the least effective at increasing the 

interpretability of the CNN, mainly due to the majority of the highlighted areas falling 

outside of the brain in the average images produced. This means even fewer conclusions 

about the CNN can be drawn by clinicians using these images. 

Although the methods were not applied to MRIs of neuropsychiatric disorders, the results 

from this evaluation are proof of concept that LRP and saliency methods could be applied to 

this form of data to obtain interpretable results about the CNNs decision making process. 
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6   FUTURE WORK 

6.1 Shared Roots CNN Optimisation 

Although the aims of the project have been met, the later aims relating to the interpretability 

of a CNN were not achieved using the intended dataset. This was due to a CNN trained on 

the Shared Roots data not achieving an accuracy level higher than 60%. Therefore, any future 

work should first be focused on trying to improve the performance of this model. This would 

involve potentially weeks of hyperparameter tuning and experimenting with different 

architectures. It would also be necessary to check whether the task is definitely 

computationally possible as it may be the case that there are not enough consistent structural 

differences within the brain for a CNN to be able to classify MRIs of patients with a 

neuropsychiatric disorder from MRIs of control subjects. It should also be tested whether 

changing the prediction classes would improve accuracy. For example, by aiming to classify 

the MRIs into their exact neuropsychiatric disorders; Parkinson’s, PTSD and schizophrenia, 

rather than into patient or control. 

 

6.2 Apply Interpretability Methods to Shared Roots CNN 

If an accuracy level of greater than 80% is achieved, then we can confidently assume that the 

CNN has successfully learnt the features of the brain that separate these disorders from 

healthy controls. The interpretability methods that were explored in this project can then be 

applied to such CNN trained on the Shared Roots data as it has been shown that they are all 

successful in increasing the transparency and interpretability of CNNs to at least a small 

extent. The results of this would have greater clinical applications than the results achieved 

using the Cam-CAN age dataset as diagnosing neuropsychiatric disorders is a more important 

clinical task than predicting age. If it can be shown that such methods can increase the 

interpretability of a CNN in this context that is one step towards deep learning models being 

trusted and accepted by clinicians and consequently being used for diagnosis in clinical 

settings. 

 

6.3 Further study of Interpretability Methods 

It would also be beneficial to carry out further study and explorations of the interpretability 

methods to ensure that they are being used to their full potential. This would involve 

experimenting with different variations of the methods, such as the many different LRP 

variations available. A large-scale study could then be carried out in order to evaluate and 

compare these methods in a clinical setting. Further quantitative evaluation of both the CNN 

and the interpretability methods could be achieved by asking clinicians to highlight areas of 

specific MRIs they would primarily look at when diagnosing the patient and calculate the 

percentage of regions the interpretability methods also highlighted as being important to the 

CNN when making its prediction. This would tell us how effective and accurate the CNN and 

interpretability methods are compared to clinicians and therefore whether including them in 

the diagnostic process would be of significant benefit. 
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7   CONCLUSIONS 

There were initially two aims of this project, with an additional aim added at the start of the 

implementation. These are reiterated below. 

 

− Develop a CNN to classify MRI scans into age groups 

−    Develop a CNN to classify MRI scans of neuropsychiatric disorders 

− Evaluate the interpretability of a range of Python libraries for interpreting deep 

learning models 

 

The first CNN which was trained on the Cam-CAN dataset was developed successfully, 

having obtained greater than 80% accuracy, precision and recall. 

The second aim was met in the sense that a CNN was developed and trained on the Shared 

Roots data, however it did not achieve a satisfactory performance, having accuracy of only 

60%. Although there was no explicit aim to achieve a certain accuracy, it was necessary to 

achieve a performance level where valuable information could be extracted via the use of 

interpretability methods and this level was not achieved. 

The third aim was also met but it was not achieved using the Shared Roots data as was 

originally planned. However, it was still possible to evaluate the three interpretability 

methods initially outlined using the Cam-CAN dataset. There were no expectations of how 

well the methods would successfully increase the interpretability of the CNN, however based 

on the results achieved, it is reasonable to say that the methods did achieve this to a 

reasonably high extent. The evaluation of the methods showed that LRP was the most 

successful at clearly highlighting the areas of the brain that had high relevance to the CNN 

when making its predictions but also it was successful at highlighting the differences in 

important areas between the classes. It was also shown that saliency maps increased the 

transparency of the CNN significantly by visually drawing attention to the areas of the brain 

which consistently contributed to the CNN’s predictions. Lime was a method very different 
to LRP and saliency and it was discovered that it may not be as suitable as the others for this 

application. The Lime method highlighted the area in the input image around the brain more 

than it highlighted areas within the brain and it was not successful at highlighting the areas 

that were consistently relevant to the CNN, as was shown by the weak correlation value 

obtained. These conclusions can be drawn as a result of both quantitative and qualitative 

evaluation of the three interpretability methods, therefore successfully obtaining the third and 

final aim of the project. This project can be used as proof of concept that interpretability 

methods can be used to increase the transparency and interpretability of deep learning models 

and it can confidently be assumed that the same would be true if the methods were applied to 

MRIs of neuropsychiatric disorders. 
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8    REFLECTION OF LEARNING 

I am pleased not only with the outcome of my project but also with all the skills, both 

technical and soft, that I have learnt along the way. At the start of the project I had no  

practical experience with deep learning, but I now feel confident in programming a CNN and 

believe it would be possible to apply the knowledge I have gained to any other machine 

learning or deep learning task. I have also gained a deeper understanding of the maths and 

technology behind neural networks which will be incredibly valuable as I continue working 

with deep learning in the future. Although interpretability of deep learning models is a fairly 

niche subject, I believe it holds the key to deep learning models being used for everyday 

diagnostic classification, which is a milestone I am passionate about being achieved. I 

therefore believe the knowledge about this subject I have gained from this project will give 

me a great advantage when undertaking further research in the area in the future. 

This experience also gave me invaluable insight into the data science research process, most 

importantly how to stay motivated throughout. I learnt early on that data exploration and 

development of machine learning models is not a linear process and it is inevitable to be 

faced with many unexpected problems that need to be overcome. It is therefore important not 

to get disheartened when you have spent a large amount of time on a project but don’t have 
much to show for it yet. I found that even after a long period of time of obtaining no useful 

results, things would eventually start to come together, and meaningful results would be 

obtained in the end. 

I have also been able to build and improve upon my soft skills significantly, with this being 

the first large data science report I have written. I have learnt the correct basic structure of 

such reports and the tone that they should be written in. Time management was another 

important skill I was able to utilise and build upon. As this was such a large project it was 

important to set small, achievable goals along the way. I also had to make important 

decisions regarding when to move on from trying to improve the accuracy of my CNNs in 

order to focus on other parts of the project and to meet deadlines. This was always a tough 

decision as it is very tempting to keep making small changes to hyperparameters or even 

testing potentially endless combinations of layers in order to see the effects on the model’s 
performance but it was important for me to learn when it was best to move on to other tasks 

in relation to the amount of tasks and time remaining. 

Overall, I believe I handled the hurdles and difficult decisions I was faced with both 

professionally and successfully and am therefore proud with not only the final product of my 

project, but also the knowledge and skills I learnt throughout the project. 
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