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Abstract 
 

Fraud detection is a complicated and usually inefficient process, done by checking against 

specifically generated rules. This process is slow and can be unrealisable because of missing 

values in transaction datasets. This project explores different strategies of implementing 

machine learning and feature engineering to improve both the speed and accuracy of the 

process.  
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Introduction  

 
Problem and motivation 
 

 Fraud prevention has been a big problem in the ecommerce sector since the start of the 

ecommerce in 1994. When the Internet was only at its early stages of popularity, fraud 

prevention relied on flagging fraudulent transactions based on predetermined conditions: 

simple if-statements checking the validity of a transaction. With the rapid development of the 

sector and growth of companies like Amazon and the possibility of sending goods around the 

world, fraudulent behaviours have evolved and became harder to identify. Fraud can be 

defined as an unauthorized transaction, fraudulent transaction due to identity theft or 

fraudulent requests for returns. Due to the various ways fraud can be committed, a rule-

based fraud-detection system may struggle to correctly label transactions.  

 

 This led to an increase use of machine learning algorithms for fraud detection. The advantage 

of using machine learning (ML) compared to rule-based model is the ability of an ML 

algorithm to identify patterns within transactions and label them based on the previous data 

that the algorithm learned from. Thus, there is no need to manually make rules to identify 

legitimate transactions in order to match all types of fraud. This project will look at different 

ML algorithms suitable for impleŵeŶtatioŶ iŶ eĐoŵŵerĐe aŶd eǀaluate oŶ algorithŵs’ 
performances. ML algorithms used in e-commerce should be fast because it will be used in 

online mode, efficient in reading a dataset and evaluating specific patterns to identify fraud. 

In order to make the algorithm efficient it needs a lot of data to learn from. For this project, 

a dataset from Kaggle.com ͞IEEE-CIS Fraud Detection͟ competition was used. The dataset is 

proǀided ďy Vesta CorporatioŶ, the ǁorld’s leadiŶg payŵeŶt serǀiĐe ĐoŵpaŶy, aŶd Đoŵes 
from real e-commerce transactions and contains a wide range of features.  This project can 

be divided into following steps: 

 

o Feature engineering and feature extraction in the dataset 

o Testing of supervised ML algorithms  

o Optimization of supervised ML algorithms 

o Testing of unsupervised ML algorithms with supervised algorithms  

o Evaluation of results and final verdict for each approach 

 

Aims of the project 
 

The aim is to develop a machine learning algorithm that can accurately predict and 

successfully identify fraudulent transactions.   

 

 

 

 

 

 

 



 4 

Background 
 

This chapter is a brief overview of essential concepts needed to understand the outcomes of 

the paper.  

 

Machine learning  

 
Machine learning is a subgroup of artificial intelligence, where an algorithm learns from the 

data, makes predictions or classifies data without much of human interaction. Machine 

learning does not require as much code as artificial intelligence algorithms because a ML 

algorithm can learn from the data and rather than follow heuristics only specific to the 

problem it is solving. Therefore, ML algorithm are more versatile, and the same algorithms 

can be used to solve different problems. Machine learning is split into two categories: 

supervised and unsupervised learning. 

 

Supervised learning 
 

Supervised learning algorithms learn from labelled data. This means that a dataset has already 

labelled values for the target an algorithm tries to predict. To train a supervised algorithm a 

training and test set are required. The target values are usually called Y and the rest of the 

dataset is called X. When an algorithm learns the training set data, it can identify which values 

in X cause a specific value of Y and based on that knowledge it can predict which values of Y 

should be in the test set. There are two types of functions a supervised algorithm can do: 

Classification and Regression. As the name suggests, classification assigns the output a class, 

regression predicts a specific value. Identification of fraudulent transactions is a classification 

problem, where the instance belongs to either fraud (1) or non-fraud (0) classes.  

 

 

Boosted Decision Trees  
 

The ML algorithms used for the project are ensemble of Decision Trees algorithms with 

gradient boosting [1]. Decision Trees are versatile ML algorithms that can perform both 

classification and regression tasks, and even multioutput tasks []. A tree ensemble trains a 

group of Decision Trees, where to get a final prediction, each iŶdiǀidual trees’ prediĐtioŶs is 

obtained, and the class with the most votes is chosen as the final result. Boosting refers to 

any Ensemble methods that can combine several weak learners into one strong learner [ ]. 

The idea is to try train predictors in a sequence and correct their predecessors. Gradient 

boosting uses gradients to try fit predictors to the residual errors of previous predictors. The 

most popular gradient boosting algorithms are XGBoost, LightGBM and CatBoost. These 

algorithms are used in this project because of their speed, scalability and accuracy of 

predictions. 

 

 
1 Greedy Function Approximation: A Gradient Boosting Machine, by Friedman 

 



 5 

XGBoost stands for Extreme Gradient Boosting and is an open-sourced framework for many 

programming languages. LightGBM is a gradient boosting framework developed by Microsoft. 

CatBoost is an open-sourced gradient boosting library developed by a Russian search engine 

company Yandex. It is used in search engines, recommendation systems, self-driving cars and 

etc. because of its high accuracy and performance even with default parameters. It is widely 

used by Yandex itself, as well companies like CERN, Cloudflare and more. Hyperparameters 

tested for this algorithm are: 

 

 

Unsupervised learning  
 

Unsupervised learning is a type of machine learning where a model is trained on unlabelled 

data. The most popular type of unsupervised learning is clustering, where an algorithm 

identifies instances with similar features and groups them into clusters. Another uses of 

unsupervised learning are density estimation, dimensionality reduction and anomaly 

detection, where the latter is crucial in identifying fraudulent transactions. Unsupervised 

learning is useful in identifying groups in data, as well as outliers which do not belong to any 

other major groups. In the used dataset, there are 95% of legitimate and 5% of fraudulent 

transactions. Due to the majority being legitimate transactions, they are likely to form a 

cluster, whereas fraudulent transactions will be outside of that cluster, hence they can be 

called anomalies.  

 

K-Nearest Neighbours  

 
This is a simple non-parametric machine learning algorithm used for classification and 

regression. In classification, it plots instances on a single plane and each instance is classified 

based on the majority vote of its k nearest neighbours. The only changeable parameter is k 

and it determines the number of neighbours votes. In k=1 classification, an instance is 

assigned to the class of its neighbour. Changing k can will change the algorithms accuracy and 

its performance depends on how data is structured. Making k too big or too big may result in 

incorrect classification, especially if the instances are closely grouped together. 

 

 

DBSCAN 

 
Density-based spatial clustering  of applications with noise (DBSCAN) algorithm was proposed 

by  Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996 [2]. It clusters regions 

of high deŶsity ďy lookiŶg at eaĐh iŶstaŶĐe’s and how many instances are located within a 

small distance of ε froŵ it, ǁhiĐh is Đalled iŶstaŶĐe’s ε-neighbourhood [3]. If there are at least 

min-samples of instances within the neighbourhood, the instance is called a core-instance. 

There can be multiple core-instances that can join into one big neighbourhood. Those 

instances which are not in any of the neighbourhoods are identified as anomalies. Although 

 
2 Ester, Martin; Kriegel, Hans-Peter; Sander, Jörg; Xu, Xiaowei (1996). Simoudis, Evangelos; Han, Jiawei; Fayyad, 

Usama M. (eds.). A density-based algorithm for discovering clusters in large spatial databases with noise.  

 
3 Hands-on machine learning with Skikit-Learn, Keras and TensorFlow 

https://en.wikipedia.org/wiki/Hans-Peter_Kriegel
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DBSCAN does not have a predict method, it is a powerful clustering algorithm and can be used 

with predict() methods of KNN. It only has two hyperparameters (eps and min_sample) and 

its computational complexity is O(mlogm). 

 

PCA 

 
Machine learning algorithms sometimes are used for analysing datasets with thousands and 

even millions of features, and those features can make the training time extremely slow. A 

lot of features can also make the model overfit and reach a bad solution. The problem of 

having too many features is often referred to as the curse of dimensionality. In order to solve 

this problem, a dimensionality reduction algorithm such as PCA is used.  Principal component 

analysis (PCA) is a technique used to emphasize variation and bring out strong patterns in a 

dataset [ 4].  PCA identifies an axis with the largest amount of variance. It also finds the second 

axis which accounts for the remaining amount of variance orthogonal to the first axis. This 

axis is the ith principal components of the data and the number of principal components is 

equal to number of dimensions. To find principal components a matrix factorization 

technique called Singular Vector Decomposition (SVD)[5] is used. After all principal 

components are identified, the dimensionality of a dataset is reduced to d number of 

dimensions by projecting it onto hyperplane defined by the first d principal components [6]. 

The selected hyperplane ensures that projection preserves as much variance as possible. 

  

 

Dataset 
The datasets used iŶ the projeĐt are takeŶ froŵ a Kaggle ĐoŵpetitioŶ ͞IEEE-CIS Fraud 

DeteĐtioŶ͟. The proǀided datasets are ͞TraŶsaĐtioŶs͟ aŶd ͞IdeŶtity͟. The Transactions 

dataset contains  Identity dataset consists of only categorial features and describes 

information related to the identity of a purchaser, such as device type, device information, 

network connection information and digital signatures. Transactions dataset contains both 

numerical and categorical features, and contains transactional information such as 

transaction amount, transaction time delta. product code, card information, address, 

distance, email domains of purchaser and recipient, and special features with hidden meaning 

engineered by Vesta. The datasets are joined by TranscationID column, however not all 

transactions have corresponding identity information. For a better visualization of features 

and training models on one dataset, both datasets are merged on the TranscationID column. 

The shape of the merged dataset is 590540 rows and 434 columns.  

 

 

Evaluation techniques 

 
The evaluation techniques for the test are Confusion Matrix, Precision, Recall, ROC AUC score. 

Confusion matrix evaluates performance by comparing predictions to actual values of targets. 

Each row represent actual classes, while columns represent predicted classes. The first cell in 

the first row represents true negatives, second cell is false positive,  in the second row the 

 
4 https://setosa.io/ev/principal-component-analysis/ 
5 Hands-on machine learning with Skikit-Learn, Keras and TensorFlow 
6 Hands-on machine learning with Skikit-Learn, Keras and TensorFlow 
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first cell is false negatives and last cell is true positive. Confusion matrix helps to show how 

well does the model distinguishes between classes and visualizes in a simple way. Precision is 

the number of accuracy of positive predictions. Recall or true positive rate (TPR) is the ratio 

of positive instances correctly identified by a classifier. It is also referred to as sensitivity. 

Precision and recall are usually measured together and they follow a trade-off, which needs 

to be taken into account when constructing a model. The receiver operating characteristic 

(ROC) curve plots true positive rate against false positive rate (FPR), which is the ratio of 

negative instances incorrectly identified as positives. FPR is equal to 1 – true negative rate, 

which is the ratio of negative instances correctly identified as negative. FPR is referred to as 

specificity. Therefore ROC is sensitivity versus 1-specificity [7]. A good classifier has the area 

under the curve (AUC) score equal to 1, whereas a random classifier has a score of 0.5.  

 

 

Bayesian Optimization 

 
Bayesian optimization, also called Sequential Model-Based Optimization (SMBO), is an 

efficient method for tuning hyperparameters of a machine learning model. The method builds 

a probabilistic model of an objective function that maps input values to a probability of the 

lowest output value, also called the loss. The objective function indicates how much each 

variable contributes to the value to be optimized in the problem [ 8]. The probability model is 

much easier to optimize than the objective function, therefore the method selects a criteria 

such as Expected Improvement to select next values to evaluate.  The method uses Bayesian 

Reasoning, meaning it re-calculates the surrogate function while incorporating previous 

information. This makes this method more efficient than other optimization algorithms such 

as Random Search and Grid Search. The method with which the surrogate function is 

constructed for the project is Tree Parzen Estimator (TPE) [9]. 

 

 

Software 
 

Python 

 
In this project, all of the code is written in Python 3.7.6. It is a high-level programming 

language with a lot of built-in libraries for Machine Learning and Visualization. Python is an 

efficient and simple programming language for writing machine learning algorithms and its 

list manipulation functionality was essential for feature engineering.   

 

Numpy 

 
Numpy is a Python library, which adds support for large multi-dimensional arrays and 

matrices, along with high-level mathematical functions. 

 

 
7 Hands-on machine learning with Skikit-Learn, Keras and TensorFlow 
8 https://www.courses.psu.edu/for/for466w_mem14/Ch11/HTML/Sec1/ch11sec1_ObjFn.html 
9 https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf 
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Pandas 

 
Pandas is a Python library built on top of Numpy, which provides fast, efficient and flexible 

data structures for data analysis. Pandas DataFrame is used for displaying and manipulation 

of provided csv datasets.  

 

Ski-Kit learn (Sklearn) 

 
This is a free machine learning library for Python. It provides a big selection of common 

machine learning algorithms such as Support Vector Machines, K-Nearest Neighbours and 

Decision Trees for both classification and regression tasks. It also provides modules for pre-

processing, evaluation and visualization of data.  

 

The modules used in the project are: StandardScaler, K_Fold, Train_Test_Split, PCA, 

Roc_Auc_Score,  Precision_Score, Recall_Score and Confusion_Matrix. This modules were 

used for k-fold validation, standardizing data to perform PCA, split data into subsets and 

evaluation of models performances.  

 

Optuna 
 

Optuna is a hyperparameter optimization framework, which allows for a fast and efficient 

way of tuning hyperparameters for all of the gradient boosting algorithms. The optimization 

can be parallelized and provides detailed visualization options. 

 

Specification & Design  

 
System Overview 
 

In this project, the objective is find an efficient implementation of machine learning to identify 

fraudulent transaction. In order to that, the project is divided into stages to efficiently 

organise the workflow. The original steps were proving that machine learning can be applied 

to fraud detection, after which different models and optimization techniques were used. 

Using the workflow allowed for fast analysis of models and data, as well as ways to modify 

them. The project is focused on exploring performances of specific algorithms and therefore 

eliminates any unnecessary calculations, resulting in a clear work pipeline. 

 

The project is broken down into three stages: 

• Data Pre-Processing 

• Supervised/Unsupervised model selection  

• Optimization  
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Project Structure 
 

The development process started with researching past works related to application of 

machine learning for classification using high-dimensional datasets. The found material 

clearly outlined the effectiveness of using machine learning and the focus of the development 

process was quickly turned to searching the right models for the objective. The stricture of 

the development process is outlined below: 

 

1. Research: Research of most common supervised algorithms and their application for 

fraud identification. This later focused on researching Decision Trees and Boosted 

Trees. Research of feature engineering and feature extraction techniques. 

 

2. Data Pre-processing: Downloading data, encoding categorial values, filling missing 

values and creating new features. 

 

3. Training models: Training default models of the chosen supervised algorithms and 

analysing their performances. 

 

4. Semi-supervised learning: Experimentations with PCA for dimensionality reduction 

and DBSCAN for identifying clusters. Both PCA reduced data and clusters from 

DBSCAN are tested with the chosen supervised algorithms. 

 

5. Optimization: Hyperparameter optimization for best model combinations. 

 

6. Results evaluation: Final evaluation of all models performances and identification of 

the best model. 

 

 

 

Data Pre-Processing 
 

The original dataset had a lot of missing values and it was difficult to see patterns due to most 

of  features having abstract and hidden meanings. A lot of pre-processing had to be done to 

prepare data for training models. Boosted trees have a similar concept to normal decision 

trees and can overfit if there are too many features in the dataset. The merged dataset 

consisted of 434 features, where some features had a majority of values missing or with high 

cardinality. When a decision tree looks at a dataset, it splits it in a similar to how a human 

would do by grouping data based on feature values. When there are many features which 

either mostly consist of missing values or feature values have high cardinality (over 90%), 

these features add ͞Ŷoise͟ to a ŵodel aŶd Đause it to overfit.  

 

To solve this problem, a lot of feature engineering had to be done. The transactions in the 

dataset are sequential and happen on a specific time in a year. In Vesta competition data 

description, it describes that the data was taken in 2017 and spans over 6 months. The 

strategy for feature engineering was to turn time deltas provided in TransactionDT column 

into time representation, grouping transactions by month, day and hour. To reduce the noise 

generated by abstract features, a possible solution was to aggregate features, so decision 
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trees can better split the dataset. Therefore, It was also important to make columns 

representing mean and standard deviation of transactions per a period of time. Another 

strategy was to make features which represent customers id. For that card information and 

customer addresses were combined. Mean and standard deviation of transaction amounts 

per customer id were also created to better identify similar customers and behaviors of 

customers committing fraud. There were also categorical features which had to be turned 

into numerical before training models. 

 

 

 

Supervised/ Unsupervised model selection 
 

They were chosen due to their speed and efficiency handling large databases. This project is 

focused on selecting of the best model out of gradient boosted trees algorithms XGBoost, 

LightGBM and Catboost. The problem the project tries to solve is a binary classification 

problem. Out of the three algorithms, only CatBoost can handle categorial values, thus 

dataset preprocessing was for XGBoost and LightGBM was different in to comparison to 

CatBoost. Firstly, each algorithms is tested with default hyperparameters on the pre-

processed dataset. It is evaluated against performance metrics, such as precision, recall and 

training time.  

 

Unsupervised learning algorithms are used in a mixture with supervised. PCA is a 

dimensionality reduction technique and is used to determine the minimum number of 

dimensions needed without losing much information. PCA does not guarantee an increase in 

performance but it proven to decrease training time. PCA is also used for visualization and in 

combination with DBSCAN can be used to clearly distinguish between classes in the dataset. 

This stage tests if the addition of unsupervised algorithms increases performance of 

supervised algorithms. One of the weaknesses of supervised learning is a bad ability to 

identify the minority class if the size of the class is really small. The algorithm may not have 

enough data to train how to distinguish between fraud and non-fraud classes. The  advantage 

of using DBSCAN is its ability to identify outliers (fraud) and its fast speed of computation. 

Fraud prevention requires to be a fast process, therefore it is essential to test if semi-

supervised learning is not slower in computation than supervised and increases performance 

before choosing the models to optimize.  

 

Optimization 
 

Most of the hyperparameters in the boosted tree models deal with the bias-variance tradeoff. 

It is important to combinations of different hyperparameters to find the most efficient model. 

In order to do so, Bayesian optimization is used because of its superiority over other 

hyperparameter techniques such as Grid Search and Random Search. The size of the dataset 

is large, thus training a model with all combinations of hyperparameters is too time 

consuming and inefficient. The use of Bayesian Optimization significantly reduced 

development time and was essential in showcasing models` performances. 
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Implementation  
 

For the project workflow being more efficient, two versions of the dataset were preprocessed 

and saved as .cvs datatype. Models were then trained without the need to modify the original 

dataset for each individual training. All models were trained on Mac OS system using CPUs, 

meaning models were not parallelized using CUDA GPUs, due to Mac OS being compatible 

with Nvidia video cards.  

 

Preprocessing  

 
Loading data 

 
The provided datasets are provided as .csv files and in order to make them readable by 

machine learning algorithms, they need to be loaded using pandas function read_csv(). The 

datasets are loaded as pandas DataFrame objects, which clearly visualized the datasets 

instances and features. DataFrames have a lot of useful functions such as info(), which shows 

what data types are in which features, and describe(), which computes standard deviation, 

mean, medium for each feature, as well as maximum and minimum values. This functions 

helped with understanding distribution of values in different features and what features may 

represent.  

 

The original Identity and Transaction datasets are merged together on the TransactionID 

column and is called train.  The labels are put into a separate DataFrame named y_train and 

Đopied froŵ ͞isFraud͟ ĐoluŵŶ, ǁhiĐh is later deleted froŵ traiŶ set. In order to decrease the 

size of the original dataset, a memory reduction function is created. It goes through each 

column identifying if the value in a column is either an integer or a float, and assigns it a data 

type based on its size. The function reduced the dataset by 66.8% to 650.48 megabytes. 

 

 

Splitting data  
 

To test machine learning models the train dataset is split into training and test subsets. This 

process is beneficial for testing models because it takes less time to train on smaller data sets. 

There is also no test dataset provided by Kaggle and models can only be tested when 

submitted on the website. Submitting code for each time would be too time consuming, thus 

the train dataset is split into two subsets using Slearn train_test_split(). The module splits the 

dataset 80/20 between a new training set (X_train) and test set (X_test) by firstly shuffling 

and then stratifying the data to preserve the same ratio of classes as in the original set. The 

function also creates y_train and y_test labels referring to the same TranscationID as in 

X_train and X_test. Train_test_split() takes the original set, labels set, test size and random 

state for reproducible output as parameters.  

 

Feature engineering  
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As mentioned previously, the dataset has a lot of features but most of them have obscure 

meaning because of personal data protection. Folloǁ the strategy desĐriďed iŶ ͞“ysteŵ aŶd 
DesigŶ͟ Đhapter, a fuŶĐtioŶ addUids;Ϳ ǁas Đreated to add three Ŷeǁ features: uidϭ, uidϮ, uidϯ. 
All of feature engineering functions are applied to both X_train and X_test. These features 

represent different combinations of personal information which may be useful to identify 

individual card holders. The uid1 feature is a combination of card1 and addr1 features, which 

supposed to represent card owners card details and location. The uid2 feature is a 

combination of uid1 with card3 and card5 features. The card4 feature was not used in any of 

the uids because it represents card issue (Visa, Mastercard, American Express,etc) and is a 

good feature on its own. The uid3 feature is the combination of uid2 with card2 and addr2 

features. This is the final combination and supposed to represent a complete card owners 

identity. The new features are created by adding values of specific columns as strings and 

separated ďy ͞_͟. This is to preǀeŶt soŵe ŶuŵeriĐal ǀalues to add aŶd Đreate ŵore ͞Ŷoise͟, 
and instead be a combination of values, which can form patterns.  

 

To better form an identity of each card holder,  new features representing the mean and 

standard deviation of transaction amount made by each uid group are created. Firstly,  

X_train and X_test “TraŶscatioŶAŵt͟ ĐoluŵŶs are ĐoŶĐateŶated together, theŶ eaĐh uid is 

grouped with the aggregated type of transaction amount. The index is reset and properly 

assigned to values in a temporary pandas DataFrame object temp_df. The values from 

temp_df are mapped to X_train and X_test new columns. There are some cases where values 

of standard deviation ended up being infinite, so they were filled with median values of each 

column.  Another step of checking identity is to see if recipient`s (R_emaildomain) and 

purchaser`s (P_emaildomainͿ eŵails ŵatĐh, siŶĐe it is ŵore suspiĐious if reĐipieŶt’s eŵail 
does not match that of the purchaser. For that a new feature email_match was created, which 

checks if emails match (1) or do not (0). 

 

 

The dataset provides time deltas that can be reverted to normal visualization of time. To do 

that, datetime module was used. Time deltas are converted to seconds and added to the start 

date of 30/11/2017. From that new features representing month (DT_M), week (DT_W), day 

of the yeat (DT_D), hour (DT_hour), day of the week (DT_day_week) and day of the month 

(DT_day) were created to better group periods when transactions took place. DT_M_total, 

DT_W_total and DT_D_total were also created to show on which dates there the most 

transactions.  Finally, for uid3 as the complete representation of a card holder, three more 

features were created representing the frequency of transactions done by a card holder per 

specific month, week and day of the year. 

 

Dealing with categorical features only had to be done for XGBoost and LightGBM, thus there 

are two versions of the final dataset. In the first dataset categorical features are converted 

into numerical using frequency encoding. This method of encoding was chosen because it 

assigns each value its frequency within its column and does not assign a number that can be 

repeated across other columns, which would be the case if label encoding was used. 

EncodeFE() function is used to convert 48 categorical features in X_train and X_test.  

 

The last step of the feature engineering process was to delete redundant features and fill NaN 

values. The function get_useless_columns() returns a list of columns that have either to many 
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missing values or values with very high cardinality ( over 90%). The function returns 12 

columns with mostly missing values and 66 columns with high cardinality values. These 

columns are dropped from both X_train and X_test. Decision tree algorithm are able to deal 

with missing values, however they do not take them into account. Hence, they are filled with 

-999 because it is the lowest out of all values in the dataset and models will consider them 

when training. The last features to drop are TransactionDT and DT because they were used 

to create other features and strongly correlated to them, adding unnecessary noise to the 

data. The second dataset undergoes the same transformation except turning categorical 

features into numerical and is used to train CatBoost.  

 

Supervised models  
 

Each supervised algorithms is trained using default parameters on X_train with y_train, and 

then predicts labels of the X_test. To calculate the AUC ROC score, boosted trees algorithms 

need to used predict_proba() method to return an array of rows per instance and columns 

for every class, each containing the probability of belonging to either class. To calculate 

precision and recall predict() method is used, which returns an array with a class value in each 

row. The chosen supervised models have an eval metric parameters that calculates AUC ROC 

sĐore for eaĐh iteratioŶ aŶd is set to ͞auĐ͟.  

 

Models are evaluated using evaluationMetrics() function which trains each model and 

predicts probabilities for X_test. The functions takes assigns the predicted class to predictions 

and uses it to calculate performance metrics. These sklearn methods are used for evaluations: 

• Recall: recall_score() 

• Precision: precision_score() 

• Confusion Matrix: confusion_matrix() 

• ROC_AUC: roc_auc_score() 

 

 

Hyperparameters for the baseline LighGBM are automatically set to default and only 

eval_metric parameter is used. The baseline model is trained on X_train and tested on X_test 

without cross-validation. The time to train is measured in second using timer() method.  

 

 
 

 

Baseline XGBoost takes does not take any parameters but eval_metric=͟auĐ͟ and 

early_stopping_rounds=10 were used to reduce training time and stop training if 

performance does not increase after a certain number of rounds. The baseline model was 

also measured in seconds using timer() method. 
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Default CatBoost takes iterations=500, early_stoping_rounds=20, eval_metric=͟auĐ͟ and 

categorical_features parameters, which includes categorical column indices. The model also 

has a plot parameter that was set to True so it can show the ROC curve after training. The 

baseline was timed in seconds using timer() method. 

 

 
 

Unsupervised  

 

The X_train dataset is high-dimensional, therefore to use DBSCAN it is better to perform 

dimensionality reduction. Since DBSCAN is density-based algorithm, it takes a lot of time to 

cluster data. To use PCA, X_train has to be scaled. To do so, a sklearn StandardScaler() method 

is used, which standardizes values by the subtracting mean value and dividing by the standard 

deviation. After standardization, the number of dimensions to reduce down to has to be 

chosen first. This is done by choosing the number of dimensions that add up to a sufficiently 

large portion of the variance, 99% in this example. The following code returns the number of 

dimensions without transforming X_train dataset. 
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The graph shows that shows that variance ratio stops growing at 54 dimensions. Using this 

number of dimensions, a copy of X_train is created and transformed.  X_reduced is then used 

to fit DBSCAN, which produces indices of the core instances in the core_sample_indeces 

istance variable and core instances in components_ instance variable. The graph shows how 

DBSCAN clustered instances after fitting X_reduced. Finally, to predict values of X_test, K-

Nearest Neighbours algorithm is used. Two versions of DBSCAN are used with one having 

eps=10 and eps=5 in another. The min_sample value was left at 5 for both tests. KNN 

parameter was set to 1 because the aim is to group legitimate and fraudulent transactions 

into completely separate clusters. To test if dimensionality reduction increase performance 

of the supervised models, classifier are trained on X_reduced and tested against X_test.  

 

 

 
 

 

 

Optimization 

Bayesian optimization is applied to LightGBM, XGBoost and CatBoost. Three different classes 

are created to optimize the classifiers separately. These hyperparameters are chosen to be 

tuned: 

CatBoost: 
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• cat_features: this feature tests CatBoost`s ability to handle categorical data and 

essential for testing the full potential of the algorithm. 

• max_death: This is the depth of the base tree. It has high impact on training time. 

• subsample: Sample rate of rows. 

• colsample_bylevel: Sample rate of columns. 

• scale_pos_weight: Defines the weight of a class in binary classification. 

• random_strength: The amount of randomness to use for scoring splits when the tree 

structure is selected. Used to avoid overfitting. 

• one_hot_max_size: Uses one-hot encoding for all categorical features with a number 

of different values less than or equal to the given parameter value.  

• reg_lamda: L2 regularization coefficient 

• bagging_temperature: defines the settings of the Bayesian bootstrap. 

 

XGboost: 

• max_depth: maximun depth of a tree. 

• reg_lambda: L2 regularization term on weights. 

• reg_alpha: L1 regularization term on weight. 

• eta: equal to learning rate in GBM. Corresponds to how quickly error is corrected from 

each tree to the next. 

• gamma: minimum loss reduction required to split a node. 

• tree_method: ͞hist͟ ŵethod is ĐhoseŶ to speed up ĐoŵputatioŶ ǁith CPUs. 
• objective: ͞ďiŶary:logistiĐ͟ ŵeaŶs logistiĐ regressioŶ for ďiŶary ĐlassifiĐatioŶ. 

 

LightGBM: 

• learning rate: equal to eta in XGBoost 

• max_depth: maximum depth of a tree. 

• num_leaves: controls the complexity of a tree. 

• min_data_in_leaf: minimum data in a one leaf node. Used to deal with overfitting. 

• feature_fraction: determines the fraction of parameters the model will select in each 

iteration when building a tree. 

• subsample: Sample rate of rows. 

 

 

 

Optimized models were pickled using joblib.dump() and cross-validated on the X_train 

dataset using sklearn K-Fold validation where the number of folds k=5.   

 

 

Results  
 

The sections reviews the outcomes of experiments described in Implementation section. The 

hardware used for these experiments is 1.4 GHz Quad-Core Intel Core i5 CPU and 8 GB 2133 

MHz LPDDR3 RAM. GPU was not utilized due to MACOS incompatibility with NVIDIA cards. 

 

 

 



 17 

Default LightGBM 

 

  
Optimized LightGBM 

  

 
 

 

LightGBM is also able to clearly visualizes the importance of top features with its 

best_feature() module. 
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Default XGBoost 
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Optimized XGBoost 

 

 
 

 

 

Default CatBoost 

 

 
 

Optimized CatBoost 

 
 

KNN for eps = 5 
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KNN for eps = 10 

 
 

Summary of results  
 

Out of all of the supervised models, CatBoost performed the best. Even with default 

parameters its AUC ROC score is higher than optimized LightGBM and XGBoost have. This 

proves that its ability to process categorical values does increase performance. The only 

downside was its speed, where LightGBM showed its superiority. Both KNN algorithms 

performed very badly and calculation of dbscan2 with higher eps value took long time, which 

means that supervised learning is the definite winner in solving this problem. 

 

  

Conclusion 
 
 The projects aim was to develop efficient machine learning models to identify fraudulent 

transactions and research different strategies to increase performance of those models. The 

project researched both supervised and unsupervised approaches to solving the given 

problem, as well as methods of optimization. This was a challenging project mostly because 

of the large size of the dataset and its obscurity. Results show, that using grouping strategies 

for feature engineering proved beneficial and algorithms give those features high rankings. It 

was challenging to come with a way to sort data, however feature engineering payed off and 

made the data more structured. It is important to mentioned individual performances of each 

algorithm. CatBoost is a clear winner in terms of AUC score, however it took the most amount 

of time to optimize.  

 

The problem with not being able to parallelize the training and optimization process using 

GPU really affected the workflow. LightGBM and XGBoost also showed great performances, 

with LightGBM being the fastest of all three algorithms.  The use of Bayesian optimization 

helped to quickly find performance boosting combinations of parameters, although it is 

possible that better combinations exist. Bayesian optimization may have started exploiting 

error minimizing values before exploring other possibilities. This could have been done using 

GridSearch, however it would be inefficient to build using a CPU. In comparison to supervised 

models, unsupervised models achieved very low results. DBSCAN was proven useless with 

kNN, even after using PCA. There is a possibility that DBSCAN could work better if correct 

values of eps and min_sample were found, however only increasing eps value proved to 

increase performance, and large eps started to require O(m2) memory. Unfortunately, it was 

not possible to try to use neural networks and work with Keras or Tensoflow libraries due to 

projects time constraints.  

 

To summarize, this was an interesting and demanding project but an overall a great learning 

experience, which showed how different strategies work when trying to solve the same 
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problem. It also opens up possibilities for future work and further improvement to the 

models, which are not perfect but do an already great job in identifying fraud. 

 

 

Future work  
 

As it was mentioned before, one of the main challenges of working with a large dataset is a 

slow speed of calculation and fitting of models. The use of CUDA and NVIDIA would drastically 

decrease computation times and allowed for a faster workflow. CUDA is well integrated with 

Python through many libraries and it would not be a hard task to implement GPU parallelism 

to solve the given task. Perhaps the use of GPU could find better hyperparameter 

combinations using either Bayesian Optimization or other methods of parameter tuning. Even 

Grid Search would be a viable option if the code was parallelized.  

 

This would also allow for a faster computation of each model and possibility of using them as 

an ensemble. Using multiple models in an ensemble where each model could vote on the 

value of a specific instance may result in increase in recoil, since it was the metric which 

showed the lowest values. This would not be feasibly to do using CPU due to the long speed 

of calculation when the goal is to make a model that can be deployed fast. The gained speed 

would allow the model to be used online and operate on an updated data. 

 

Grouping strategy and frequency encoding showed good results during feature engineering, 

however the strategy does not solve the problem of most of the values missing. The V-

columns seem to be closely correlated, thus it would be beneficial to perform a correlation 

analysis of these columns, leave those with the most unique values and discard those that are 

closely correlated. Another strategy would be to perform time-complexity analysis for all 

columns and discard those which do not increase AUC ROC score. It would be interesting to 

see how discarding features would affect performance of each model.  

 

Using GPU parallelism would also allow to search for optimal values of eps and min_sample 

for DBSCAN. Although unsupervised algorithm did not perform well, completely discarding 

the idea of using them would seriously narrow down future research. There are many 

unsupervised algorithm that can be tried for both clustering and dimensionality reduction. An 

example of a possible improvement  would be the use of HDBSCAN, which is a recent 

algorithms developed by creators of DBSCAN. The new version only has one parameter 

min_cluster_size and completely eliminates eps parameter. Due to this being an anomaly 

detection problem, it would be interesting to research more about anomaly detecting 

algorithms such as Isolation Forests. Although PCA was already explored in this project, its 

function fit_inverse() is a popular choice for anomaly detection, as it identifies outliers when 

tries to revert compressed data back to its original state.  

 

 

Reflection 
 

Being introduced to the world of machine learning has been a great experience both from 

learning and fun perspective. When working on the project I have managed to research a lot 
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of different techniques how to build efficient machine learning models and how they are 

deployed. Although I had no prior knowledge of machine learning, I enjoyed researching how 

to feature engineering works and its application in managing data. I am inspired to learn more 

about machine learning and start learning how to apply neural networks. This challenging but 

yet rewarding project taught me a lot of new information and helped me to improve my 

knowledge of programming. 

 

References 
 

1. Greedy Function Approximation: A Gradient Boosting Machine, by Friedman 

2. Ester, Martin; Kriegel, Hans-Peter; Sander, Jörg; Xu, Xiaowei (1996). Simoudis, 

Evangelos; Han, Jiawei; Fayyad, Usama M. (eds.). A density-based algorithm for 

discovering clusters in large spatial databases with noise.  

3. Hands-on machine learning with Skikit-Learn, Keras and TensorFlow 

4. https://setosa.io/ev/principal-component-analysis/ 

5. Hands-on machine learning with Skikit-Learn, Keras and TensorFlow 

6. Hands-on machine learning with Skikit-Learn, Keras and TensorFlow 
7. ands-on machine learning with Skikit-Learn, Keras and TensorFlow 

8. https://www.courses.psu.edu/for/for466w_mem14/Ch11/HTML/Sec1/ch11sec1_ObjFn.html 

9. https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf 

https://en.wikipedia.org/wiki/Hans-Peter_Kriegel
https://setosa.io/ev/principal-component-analysis/
https://www.courses.psu.edu/for/for466w_mem14/Ch11/HTML/Sec1/ch11sec1_ObjFn.html

