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Abstract 

Named Entity Recognition is required for recognising and disambiguating place names in 

a text document. Named Entity Recognition is a branch of Natural Language Processing 

which labels the known entities in a piece of text. There are many tools already available 

that can achieve NER.  

In this project, I have used Named Entity Recognition tools to achieve the task of 

recognising place names and evaluated them by calculating their precision, recall and F1 

values. I have trained baseline classifier on specific training data to allow them to perform 

NER. The NER tools and Classifiers are compared to see which the best options for Named 

Entity Recognition are.   
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1.0 Introduction 

1.1 Project overview 

Natural Language Processing (NLP) is a field of linguistics and machine learning which 

allows computers to analyse, read and manipulate human written data and text. Named 

Entity Recognition (NER) is a branch of NLP which takes the individual entities of a text 

document and assigns a tag to that entity. It can be an essential task for social media 

applications such as Facebook for promotional advertisement, applications such as google 

maps to give the most suitable options for searches and other applications that could use 

customer interactions to improve the experience of the user. Most branches of NLP are 

challenging due to the richness and ambiguity of natural language. 

My project is an information retrieval project that is concerned with developing machine 

learning methods to perform this task. Geo-references are a common place task in GIS 

that involves associating information with same location in physical space which can take 

different forms of postal addresses, place names, post codes and coordinates. This location 

should only refer to one place which is typically is the case with given reference. In a 

document identifying references to location helps understand its geographical context. 

Geoparsing will include identifying geo-references which will use named entity 

recognition which is the process of assigning words or groups of words to a set of 

predefined classes or categories such as locations, person, organisation etc. Most named 

entity recognition algorithms exploit lists of known locations. These lists are called 

gazetteers.  The task can be challenging because of the difficulty of distinguishing genuine 

place names from other terms, such as the names of people and organisations, and 

because some place names (such as Newport) are ambiguous due to different places 

having the same name. There are various approaches to geoparsing which include simple 

list lookup which is simple fast and language independent, knowledge or rule-based 

methods which uses surrounding context to capture geographical context. Machine 

learning approaches to geoparsing employ types of evidence that a name is a place name 

based on whether it occurs in a gazetteer or if it is preceded by spatial relations such as 

Ǯnearǯ or Ǯwithinǯ and whether it is a particular instance of a vernacular place name such as 

ǮBig Appleǯ is associated to New York City, USA.  

Looking at current NERǯs being used will give a good idea of how the algorithms work and 
how they perform. This project will see the efficient working classifiers and where they 

have opportunities to improve as well as using machine learning libraries such as Scikit-

Learn to develop a classifier and how that can be done and how to improve a custom 

written NER.  

1.2 Aims and objectives 

The first aim of the project is the use the current standards for NER to detect a place name 

in a text document. Objectives of this aim will include research and understanding 



PAGE 9 

machine learning algorithms as having a greater understanding of how machine learning 

work and how the algorithms are trained will help use the NER algorithms to their best 

ability and further on train a classifier from scratch.  

Objectives:  

- Research machine learning on a whole to ensure that there is a clear understanding 

while starting the project 

- Understand and download the relevant tools and libraries required while working 

with machine learning  

- Research the standard NER algorithms used currently 

- Apply them and use them to detect entities in text documents 

Secondly, aiming to evaluate current NER tools by getting accuracy measurements of 

overall accuracy and the furthering on to precision, recall and F1 value.  

Objectives: 

- Evaluate the NER tools for accuracy using overall accuracy, precision, recall and F1 

values.  

- Evaluate the NER tools for speed 

The next aim is to use a machine learning library to create a classifier that predicts if the 

word is a location or not in a corpus. The same accuracy measurements that are used to 

evaluate the current standards of NER can be used to evaluate the created classifier.  

Objectives:  

- Research machine learning libraries that can be used to create classifier (e.g. Scikit 

Learn) and how to create a classifier using those libraries 

- Research pre-trained embeddings downloads and how they are used 

- Create a classifier using pre-trained embeddings 

- Evaluate the classifier using different embeddings, different dimensions of 

embeddings, different training data and different classifiers  
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2.0 Background 

This section focuses on the background research of the tools that will be used to detect 

place names in a text document. Machine learning explains how supervised and 

unsupervised algorithms are trained. The following background research of NLP and 

classifiers will give a helpful explanation of how the software tools in named entity 

recognition are used and how classifiers can be trained as a way of improving performance 

of the standard tools.  

2.1 Machine Learning 

Machine learning is an application of artificial intelligence which gives systems the ability 

to learn and improve from experience without being explicitly programmed. It focuses on 

developing computer programs that can access data and use it to learn. The aim of 

machine learning is to allow computers to learn automatically without assistance of 

human intervention. [Expert System Team, 2017] 

There are 6 stages of machine learning which include data collection, data storing, data 

analysis, algorithm development, checking algorithm generated and use of the algorithm 

to further conclusions. To look for patterns various algorithms are used which are divided 

into unsupervised and supervised learning. Unsupervised learning is where the machine 

receives only a set of input data, there after the machine is set up to determine the 

relationship between entered data and any other hypothetical data. Unsupervised 

machine learning implies that the computer itself will find any relationships and patterns 

between data sets. Supervised machine learning implies computer ability to recognise 

elements based on samples provided to the machine. The computer studies elements and 

develops the ability to recognise new data based on the previous data, examples of 

supervised machine learning algorithms include decision trees and linear regression. 

[Kgarkovyna, 2019] 

Machine learning often works with high dimensional data which is best represented by 

matrices. Therefore, mathematical analysis derivatives and gradients will be needed for 

optimisation problems. The main data analysis libraries are NumPy, Pandas, Scikit, SciPy, 

iPython and matplotlib. [Kgarkovyna, 2019]  

2.2 Natural Language Processing 

Natural language processing is a specialized area of study of linguistics, computer science 

and artificial intelligence. It is concerned with interactions between computers and 

human languages especially how to program machines to process and analyse large 

amounts of human language data. The study of natural language processing started 

around the 1950s although work has been found from earlier periods. [Bates, M (1995)]  

Natural language processing facilitates conversations between machines and humans, it 

holds all the systems that allows a machine to handle interactions with a humanǯs 
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language. [Goyal, Kumar, Gupta- October 2017] There are various applications of named 

entity recognition which include question answering systems which try to find exact 

answers to the natural language questions in a large document. A system with speech 

tagging, dependency parsing and NER system can improve the speed and accuracy of 

getting correct answers. Information extraction systems can include NER systems as 

recognising named entities in any documents can help retrieve the correct information 

requested by the user. NER systems can be used in opinion mining which is identifying 

and extracting subjective information in source materials, therefore used in social media 

for marketing. [IGI-Global] Other applications that refer to the location are how social 

media advertise local businesses or for hotels in a location that is spoken about. A new 

tool developed called GeoTxt, the app uses NER techniques which finds proper nouns and 

associates them with given places or objects. [Karimzadeh, M., Pezanowski, S., 

MacEachren, A. M., & Wallgrün, J. O. (2019)] 

2.3 Speech Tagging 

In NLP Speech tagging is used to identify a word in a corpus to a corresponding part of 

speech established on context and its definition. Part of speech tagging cannot have a 

generic mapping as the same word can have several different part of speech tags in 

different sentences based on different context. Speech tagging is not necessarily useful in 

solving specific NLP tasks however it proves helpful in simplifying other problems. 

[Malhotra, Godayal, 2018] When words have speech tags it could help NER algorithms to 

determine its entity, for example if a word is identified as an adjective it would be easier 

for the NER to realise the word cannot be a location and could help determine the word 

surrounding the adjective e.g. ǮMelbourne is a beautiful cityǯ. The adjective Ǯbeautifulǯ is 

used to describe the location ǮMelbourneǯ a couple of words before it.   

2.4 Dependency Parsing 

Dependency parsing is the task of assigning a syntactic structure to a sentence. The 

syntactic structure represents its grammatical structure and defines the relationship 

between head words and the other words. [Kadam, 2019] Dependency parsing can provide 

the structure and relationship between the words as well as the subjects and objects of a 

verb. 

2.5 Named Entity Recognition 

Named entity recognition, referred to as NER, takes unstructured texts extracts 

information that label named entity in the texts. The texts are labelled from pre-defined 

categories such as location, person, organisation, percentage etc. [Technopedia, 2015] 

Many of the NER systems that have been developed take an unannotated text block and 

produces annotations on them of the tags that have been identified and located. Named 

entity recognition can also be referred to as entity identification or extraction. An example 

of this would look like this:  

file:///C:/Users/erobi/Desktop/Shirish%20Kadam
https://medium.com/@5hirish/dependency-parsing-in-nlp-d7ade014186?source=post_page-----d7ade014186----------------------
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Taking an unannotated block of text:  

Simon Cowell bought a house in New York City in 2020. He operates his businesses under 

Sony.   

And producing annotation such as this:  

Simon Cowell [person] bought a house in New York City [location] in 2020 [time]. He 

operates his businesses under Sony [organisation] 

Named entity recognition has a key role in many natural language processing applications 

such as machine translation and question answering. The most popular and recognised 

named entity recognition platforms, systems or algorithms are Stanford NER, NLTK and 

SpaCy.  

Stanford NER is a Java implementation of a named entity recogniser which comes with a 

well-engineered feature extractor for NER and includes different options to define features 

of the extractor. It is known as a CRF Classifier which is a conditional random field 

classifier. The software gives a general implementation of a linear chain CRF sequence 

model. The code from Stanford NER can be used to build a sequence model for NER by 

training your own models labelled data. [Jenny Rose Finkel, Trond Gregnagr and 

Christopher Manning. 2005] 

NLTK, natural language tool kit, is a platform for building python programs to work with 

human language data. NLTK has a module that is used for interfacing with Stanford tags. 

It uses the download of the tagger models and then uses the StanfordNERTagger class to 

write python program using the Stanford NER. NLTK has been described as Ǯa wonderful 

tool for teaching, and working in, computational linguistics using Pythonǯ. [2001-2019 

NLTK Project. Nitin MAdnani, Rami Al-Rfou] 

SpaCy is a free open source library for natural language processing in python. It focuses on 

providing software for production usage and features name entity recognition. [Honnibal, 

2015] 

Firstly, Stanford named entity recognition can be implemented as a way of detecting 

named entities in text documents.   

2.6 Software Tools 

2.6.1 Stanford Natural Language Processing Group 

The group is a group of employees at the Stanford University, researchers studying a post-

graduate, hired programmers and students studying at the university who work together 

to create, develop and improve algorithms that allow machines to process and understand 

human language. Their work can include a range between research in computational 

linguistics and key applications in human language technology. The work of natural 

language can be training the machine for sentence understanding, automatic question 
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answering, translation between human and machine language, syntactic parsing and 

tagging and models of text and visual scenes. Syntactic parsing and tagging are where 

Stanford named entity recogniser would fall under. The Stanford NLP Group have a 

recognisable feature which is their effective combination of sophisticated and depth 

linguistic modelling and data analysis with machine learning and deep learning 

approaches to natural language processing. Known technologies developed by the group 

are coreference resolution system. The NLP Group at Stanford includes members of the 

Linguistics and Computer Science departments and is part of the Stanford AI Lab. 

2.6.2 Stanford Named Entity Recognition  

Stanford NER is a developed named entity recognition which is a Java implementation. It 

labels words in text that are names of organisations, persons and locations. Stanford NER 

has different classes class 3, 4 and 7 which labels sequences of a words in a text which are 

for class 3 names of organisations, persons and locations, for class 4 locations, persons, 

organisations and miscellaneous entities and for class 7 locations, organisations, persons, 

dates, times, percentages and money. Stanford NER makes other models available for 

different languages and circumstances which includes models trained on the CoNLL 2003 

English training data. Stanford NER is known as a CRF Classifier. CRF represents 

conditional random field and a CRF classifier are a class of statistical modelling applied in 

machine learning and pattern recognition. It can consider context while labelling samples. 

Stanford NER software provides general implementation of a linear chain CRF sequence 

models by users training their own models on labelled data.  The software for Stanford 

NER is available for download and licensed under the GNU General Public License. The 

software packable includes components for command line use, running it as a server and a 

Java API. [Jenny Rose Finkel, Trond Gregnagr and Christopher Manning. 2005] 

When implementing Stanford NER, the NLTK Stanford interface can be implemented to 

be able to use Stanford NER while writing the program in python. The Ǯnltk.tag.stanfordǯ 
which is an interface to the Stanford Part-of-Speech and Named-Entity Taggers can be 

used as long as certain pre-conditions are met. These pre-conditions are ensuring Stanford 

tagger models are downloaded, which can be downloaded from the Stanford NER website, 

and that the Stanford model environment variables are set.  

The Stanford NLTK Tagger can be implemented which is a class for the named entity 

tagging task using the Stanford. When referencing the Stanford tagger models the class of 

the model is required which will change what named entities are recognised, the most 

common class is class 3 which only identifies people, organisation and locations. The 

Stanford NLTK Tagger is imported from the natural language tool kit Stanford module, it 

includes the Stanford POS Tagger as well and consists of the tag function. The tag 

function applies the most appropriate tag to the given token and returns a list of the 

corresponding tagged tokens. A Python function open() can be used to read a text 

document and used the Stanford NLTK tagger to tag the tokens in the text document 

which returns the list of the tagged tokens from the text documents.  
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2.6.3 NLTK 

Natural language tool kit is an important platform for building Python programs to work 

with human language data. It provides interfaces to large structured texts and language 

resources as well as text processing libraries for classification, tokenisationǯs, tagging, 

parsing and semantic reasoning. NLTK has a guide introducing programming 

fundamentals along with topics in computational linguistics. NLTK provides an API 

documentation making it suitable for people of all programming levels. NLTK can be used 

to tag text, identify entities in text and display a parse tree which is a rooted tree that 

represents the syntactic structure of strings in the text. [2001-2019 NLTK Project. Nitin 

MAdnani, Rami Al-Rfou] 

NLTK can use POS tag to tag tokens in text. The POS tagger processes a sequence of 

words and tags an appropriate tag to the word token.  

2.6.4 SpaCy 

SpaCy is a python written open-source software library for advanced natural language 

processing. It is an industrial strength natural language processing tool in python, which 

unlike NLTK, is used more for production uses not just teaching and research. It is 

designed for production use and will assist the programmer to build applications that 

process and understand volumes of text. SpaCy can be used to build information 

extraction as well as natural language understanding systems which can include machine 

and human translation. It provides various linguistic annotations to understand texts 

grammatical structure for example how words are related to each other and word types. 

[Honnibal, 2015] 

SpaCy can tokenize text during processing, which splits the text into words, punctuation 

etc. which is done by applying rules specific to each language. Although punctuation rules 

are usually generalised, but a tokenizer exception depends strongly on specifics of an 

individual language so each available language on SpaCy has its own subclass that 

includes lists of hard-codes data and exception rules. Once tokenization is completed 

during processing, SpaCy can parse and tag a given text document. SpaCy can then make a 

prediction of which tag or label most likely applies using a statistical model. The statistical 

model is produced by showing a system enough examples for it to be able to make a 

prediction of which label applies in this context. SpaCy takes on the job of named entity 

recognition by being able to recognise various types of named entities in a document by 

asking the model for a prediction. Like many other NERǯs models work on the examples 

they are trained on so does not work perfectly. [2020 Explosion AI]   

2.6.5 SpaCy Model and Language  

SpaCy has models which can be installed as Python packages which allows them to be a 

component of an application like any other module. SpaCy provides supports for many 
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languages. There is a language class which is created when spacy.load() is called which 

includes a shared vocabulary and language data. 

2.6.7 SpaCy Named Entity Recogniser 

The natural language processor library is assigned to loading the language model using 

the SpaCy load option. The document is then assigned to nlp library which runs the 

named entity recogniser on the text. Named entities are available as the Ǯentsǯ of a Ǯdocǯ in 
SpaCy. The entities have text - which is the entity itself, the entities label which could be:  

Type of Entity Description 

PERSON People (including fictional) 

NORP Nationalities, Religions or Political Groups 

FAC Buildings, Airports, Highways 

ORG Companies, Agencies, Institutions 

GPE Countries, Cities, States, Counties 

LOC Non-GPE locations – bodies of water, 

mountains  

PRODUCT Objects, vehicles, foods 

Figure 1: Entity Labels for SpaCy 

The above entities are the relevant labels that will be focused on during this project. The 

full list can be found at https://spacy.io/api/annotation#named-entities. 

The output of SpaCyǯs named entity recogniser differs from Stanford and NLTK.  

The following text:  

New Zealand is a sovereign island country in the southwestern Pacific Ocean. The country 

has two main landmasses the North Island, and the South Island and around 6OO smaller 

islands. It has a total land area of 268,OOO square kilometres. New Zealand is about 2,OOO 

kilometres east of Australia across the Tasman Sea and 1,OOO kilometres south of the 

Pacific island areas of New Caledonia, Fiji, and Tonga. Because of its remoteness, it was the 

last large habitable landmass to be settled by humans. During its long period of isolation, 

New Zealand developed a distinct biodiversity of animal, fungal, and plant life. The country's 

varied topography and its sharp mountain peaks, such as the Southern Alps, owe much to 

the tectonic uplift of land and volcanic eruptions. New Zealand's capital city is Wellington, 

and its most populous city is Auckland. 

Gives the following output when running the code for SpaCyǯs NER on the command line: 

two CARDINAL 

the South LOC 

6OO CARDINAL 

https://spacy.io/api/annotation#named-entities
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268,OOO CARDINAL 

Australia GPE 

1,OOO QUANTITY 

Fiji GPE 

Tonga PERSON 

Many entities in the text documents were not identified therefore training on the model 

will be required.  

2.6.8 Comparison of NLTK, Stanford NLP and SpaCy 

The three natural language processing technologies NLTK, Stanford NLP and SpaCy are all 

well known for their natural language processing tools. NLTK and SpaCy are written in 

Python and Stanford NLP is written in Java but there are various tools written to use 

Stanford NLP in Python. Neural network modelǯs functionality is offered by SpaCy and 

Stanford NLP but not NLTK. Integrated word vectors and entity linking are provided only 

by SpaCy and not NLTK or Stanford NLP. Integrated word vectors, multi-language 

support, tokenization, part-of-speech tagging, sentence segmentation and entity 

recognition functionalities are provided by all three.  Dependency parsing are not 

provided by NLTK. Coreference resolution is only provided by Stanford NLP. [Explosion 

AI (2), 2020] Using these examples as functionalities SpaCy offers the most in comparison 

to Stanford NLP and NLTK.  

2.7 Classifiers 

Sci-kit learn have various amounts of classifiers that can be used for an NER. Many linear 

models that include classifiers that can be used are Logistic regression, LinearSVC, SGD 

and SVM. SVMǯs are support vector machines which are a set of supervised learning 

methods for classification, SVM includes SVC, NuSVC and LinearSVC. SVM is effective in 

high dimensional space which will be beneficial when using pretrained embeddings to get 

the embeddings of a word when the dimension of the embeddings can go up to 300. Like 

other classifiers the SVM classifiers take in two arrays one of shape [n_samples, 

n_features] featuring the training samples and the other array is of shape [n_samples] 

which include the class labels.    

LinearSVC is a class capable of performing multi-class classification on a dataset, it is like 

SVC with the kernel parameter set to linear. It is implemented in terms of liblinear (open 

source machine learning library) which gives it more flexibility in choice of penalties and 

loss functions, and it should scale better to larger number of samples. SGD Classifier can 

optimise the same cost functions as LinearSVC by adjusting the penalty and loss 

parameters. SGD also requires less memory to LinearSVC. All classifiers from sci-kit learn 

have a fit function that fit the classifier with the given training data and returns an 
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instance of the estimator. After the classifier has been fitted the instance of the estimator 

can be used to predict test data which in this case would be word embeddings. [2019, 

Scikit learn] 

2.8 Scikit Learn 

Scikit Learn is a software machine learning library written in Python. It has efficient tools 

for predictive data analysis and is built on matplotlib, Numpy and SciPy. It features 

various classification, regression and clustering algorithms including scale vector 

machines. Scikit learn provides numerous tutorials to working with text classification and 

other machine learning problems. [2011, Pedregosa et al] 

2.9 Embeddings 

A word embedding in machine learning is a taught representation for a text where the 

words have the same meaning will have a similar representation naturally capturing their 

meaning. One of the key breakthroughs of deep learning on natural language processing 

issues is the approach to representing words and documents.  Word embeddings are a 

class of techniques which represent individual words as real-valued vectors in a predefined 

vector space. Each word is mapped to one vector and the values of the vector are learned 

in a way that resembles a neural network. The idea of using a dense distributed 

representation for each word is key to the approach. The individual words can be 

represented as high dimensional data and reduced to low dimensions of the embeddings. 

Thousands or millions of dimensions would be required for sparse word representations. 

The distributed representation is learned based on the usage of words. Meaning words 

used in a similar way will have a similar representation and naturally capture their 

meaning.  

Word embedding methods learn a real-valued vector representation for a predefined fixed 

sized vocabulary from large text. The learning process is either joint with the neural 

network model on some task or it is an unsupervised process using the documents 

statistics.  

Using word embeddings start with learning embeddings before using them. For each 

individual problem, case or project a word embedding can be learned which requires large 

amount of text data to ensure useful embeddings are taught. The large text data can be 

millions or billions of words. When training the word embeddings, it can be taught 

standalone where the model is trained to learn the embedding and used as a part of 

another model. It can also be learned as part of a large task specific model. Researchers 

make pre-trained word embeddings available such as word2vec and GloVe which can be 

used instead of training your own embeddings from scratch. To use pre-trained 

embeddings the options are static where the embeddings are kept as static and used as a 

component of the model. Or the updated option which is pre-trained embeddings to use 

the increase the model, but the embedding is updated while training the model. [Jason 
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Brownlee, 2017] The embeddings can be used to extract an embedding of a word from 

training data and then using it to be used as features for a classifier. 

2.9.1 Taking N Number of Words Either Side of Word to be Classified 

When a classifier is trying to classify a word in a NER it could be beneficial to understand 

the rest of the sentence to ensure the classification is correct. For example if a sentence 

was ǲ) am ____ big appleǳ the blank word could be Ǯeatingǯ or Ǯin theǯ which will help a 
human and a classifier understand what the bigram Ǯbig appleǯ is referring too. This 

demonstrates how getting the embeddings of the words either side of the word to be 

classifier can improve the performance of a classifier. 

2.10 Bag of words 

Bag of words is a method of extracting features from text documents which can be used 

for a machine learning classifier. It creates a vocabulary of the unique words that occur in 

the text document in the training data. It creates the vocabulary first by cleaning the text, 

tokenizing, building the vocabulary and generating the vectors. Cleaning and tokenizing 

text can be task specific, but the usual steps can include removing punctuation and 

removing stop words. Stop words tend to be words with less than a certain several 

characters e.g. Ǯtheǯ, Ǯaǯ, Ǯandǯ. Some limitations to the bag of words method is that it does 

not consider the meaning of a word in the document and ignores the context in which it is 

used. Also, the vector size can be large in terms of time and computation for large text 

documents which may require the need of ignoring the words irrelevant to the case. [Free 

Code Camp, 2018]  

2.11 Accuracy, Precision, Recall and F1 Values 

A classifier could possibly produce the following confusion matrix:  

 Predicted/Classified 

 

Actual 

 Negative Positive 

Negative 998 0 

Positive 1 1 

Figure 2: Confusion Matrix 

Below demonstrates where true and false positives and negatives occur in a confusion 

matrix: 

 Predicted/Classified 

 

Actual 

 Negative Positive 

Negative True Negative False Positive 

Positive False Negative True Positive 

Figure 3: Confusion Matrix showing True/False Positives and Negatives 
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Accuracy refers to how close something is to a known value. Accuracy is total number of 

correctly identified tags divided by the total number of tags in the data: 

���ݎݑ��� = ݏ�ݒ�ݐ�ݏ݋� �ݑݎ� + ݏ�ݒ�ݐ�ݏ݋� �ݑݎ�ݏ�ݒ�ݐ���� �ݑݎ� + ݏ�ݒ�ݐ���� �ݑݎ� + ݏ�ݒ�ݐ�ݏ݋� �ݏ��� +  ݏ�ݒ�ݐ���� �ݏ���

Figure 4: Accuracy Equation 

NLTK metrics scores that is used to import accuracy is a module from NLTK metrics 

package which imports different types of functions which can give different measurements 

and values that are required.[NLTK Metrics 2019] The accuracy function passes a list of 

reference values and a corresponding list of the values predicted by the classifier as 

parameters and returns the fraction of which values are equal therefore which have been 

correctly predicted. The accuracy takes in this fraction was multiplied by 100 to become a 

percentage rather than the original fraction produced by the accuracy function. 

From the table of a possible classifier the results would imply the classifier has an accuracy 

of 99.9% which would seem remarkable. Unfortunately, the mis-classified actual positive 

which was predicted as a negative could in some cases be a fraud case classified as a 

genuine case or a terrorist predicted as a non-terrorist. Thankfully in the case of detecting 

place names the consequences would not be as dire, but it demonstrates that the accuracy 

of a model is not the be all and end all metric to measure a classifier. 

Instead precision and recall measurements would be better in getting a clearer idea of how 

accurate a classifier is performing. Precision is calculated by dividing the true positives by 

the total predicted positives, showing you how accurate a classifier out of the predicted 

positives.  

݊݋�ݏ���ݎ� = ݏ�ݒ�ݐ�ݏ݋� �ݏ���ݏ�ݒ�ݐ�ݏ݋� �ݑݎ�  +  ݏ�ݒ�ݐ�ݏ݋� �ݑݎ�

Figure 5: Precision Equation 

This is a preferred measurement when there are high costs associated with false positives 

such as spam emails as an important email predicted as a positive for spam could be 

missed.  

Recall is the calculation of dividing the true positives by the total actual positives 

therefore, including the true positives and false negatives. 

������ = ݏ�ݒ�ݐ�ݏ݋� �ݑݎ�ݏ�ݒ�ݐ�ݏ݋� �ݑݎ�  +  ݏ�ݒ�ݐ���� �ݏ���

Figure 6: Recall Equation 



PAGE 20 

Recall would be a better measurement to use if the cost of false negatives were high 

should as detecting fraudulent in a bank as if something is wrongly predicted as a negative 

it could result in theft.  

 

Finally, F1 value is a function of both precision and recall. It is calculated as shown in the 

below equation.  

�ͳ = ʹ × × ݊݋�ݏ���ݎ� ݊݋�ݏ���ݎ� ������  + ������  

Figure 7: F1 Value Equation 

As accuracy can be largely contributed by the number of true negatives it can give a false 

sense of reliability when the important positives wrongly predicted are overlooked. F1 is 

helpful as it provides a balance between precision and recall and is a better measurement 

when there is a large uneven class distribution such as many actual negatives. [Shung, 

2018]  

2.12 Data Sources 

As the project focus is on detecting location names in a text document, I chose to use 

plenty of data sources that come from Wikipedia pages of countries or regions of a 

country. These Wikipedia contents are on the following countries:  

- New Zealand 

- South East England  

- Cwmbran 

- United States 

- Australia 

- Iceland 

- Finland 

- South Wales 

- Southern France 

- Fiji 

- Philippines  

The text documents of the extracted contents include various locations and organisations 

and are approximately 200 words.  

Kaggle is an online community of data scientists and machine learning practitioners 

where datasets are available to use and complete tasks with. A dataset can be downloaded 

specifically for an NER task which includes the entity label and POS tag. The dataset is 

large, so it was trimmed down to 5000 words. Kaggleǯs dataset includes various tags such 
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as Ǯartǯ which represents an artifact, so the dataset was edited to only include other, 

location, person, and organisation.  

The New Zealand locality data is around 1,100 lines of words. The locality data comes from 

Landcare New Zealand (which can be found at https://www.landcareresearch.co.nz/). It 

contains descriptions of the position or size of sites in New Zealand which can include 

addresses, highways, roads, schools, and farms for example. The sites are where biological 

samples are found.  

Every word, punctuation and digits are labelled in all datasets. If the word is a location a 

tag Ǯ)-LOCǯ will be attached after the word, if the word is a person Ǯ)-PERǯ tag will be 
attached, Ǯ)-ORGǯ for organisation and then the ǮOǯ label represents Ǯotherǯ meaning it has 
no named entity.  

3.0 Approach 

This section includes how I will approach the issue of detecting a place name in a text 

document. Using the current NER tools to detect a place name in a document and then 

comparing their accuracy measurements. After evaluating their measurements SpaCy can 

be trained to improve the modelǯs performance. This section will also see the difference in 

using the Wikipedia page contents of locations to human written notes of the New 

Zealand locality data. The comparisons can be compared with speed to get a full 

performance measurement of the NERǯs. Finally, this section will discuss moving on from 

using current NER tools to creating classifiers and how to optimise them.   

3.1 Accuracy of the NER Tools 

)f the NERǯs are not very accurate compared the human annotated data then it would need 

to be trained by using annotated data to be able to understand and learn from examples of 

what are locations, place names and organisations to use in future cases of different text.  

3.1.1 Testing Stanford NER for Accuracy 

It can be clear to see that Stanford NER works on text documents as it labels the text, but 

it can often predict the incorrect label. To evaluate the NER it is useful to get a calculation 

of accuracy which can be used compare the NER to others. If the accuracy value is 

incredibly low, then it is suggested the NER predicts many labels incorrectly and may 

require more training. If the accuracy value is relatively high but slow it may not be useful 

to use therefore it is beneficial to get the value to use in conjunction with other 

performance measurements such as speed to see which is the best NER.  

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.landcareresearch.co.nz%2F&data=02%7C01%7CRobinsEC%40cardiff.ac.uk%7C38ed3933130e4730eb8908d7faf464a1%7Cbdb74b3095684856bdbf06759778fcbc%7C1%7C0%7C637253799870169830&sdata=ehwAVm0OLIff2up1cmQW%2BPt6unQVpSNL%2Bvga9WY8t0k%3D&reserved=0
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3.1.2 Measuring NLTK for Accuracy 

NLTK was evaluated for accuracy to see its performance in comparison to Stanford NER. 

Similarly, to measuring Stanford NER for accuracy the same annotated data was used for 

fairness to measure NLTK for accuracy this can be compared to the accuracy results from 

NLTK and Stanford NER. [NLTK metrics, 2019]  

3.1.3 Precision, Recall and F1 values for Stanford NER and NLTK 

In the previous measurement for accuracy on Stanford NER and NLTK the annotations on 

the data include many ǮOǯ labels which would mean there is a large number of true 
negatives predicting the ǮOǯ labels increasing the accuracy percentage when there may be 
many false positives or false negative going unnoticed which could be critical for the use 

of the classifier.  

The recall value will be more important than the precision function, false negatives have a 

much higher cost with determining locations in texts. If locations are not identified when 

they should be it can prevent a different classifier from disambiguating the correct place 

name. This could be an issue for advertising companies who want to release the correct 

adverts in the correct locations or for map applications it can give the wrong directions or 

suggestions.  Calculating the precision and F1 value is also useful even if may not be as 

important as the recall value they provide more accuracy results which can be used to 

compare the NERǯs.  

3.1.4 Accuracy Measurements for SpaCy 

To make the accuracy measurements of SpaCy named entity recogniser the input data and 

annotations need to be in the same form as training data. The training data include the 

sentence to be tagged in quotation marks and then the entities in curly brackets. The 

entities contain two numbers and the entities name in quotation marks, the numbers 

represent the start character index and the end character index of the entity so SpaCy 

understands where the entity is in the sentence.   

Training Data Example: 

TRAIN_DATA = [ 

    ("c150m SW of old factory, Vaughan Rd", {"entities": [(24,34, "FAC")]}), 

    ("550mN from Bush rd-Gladfied rd intersect", {"entities": [(11,18, "FAC")]}), 

    ("P.N. - Himatangi Main Highway 0.75 miles East of junction with Jackytown Rd.", 

{"entities": [(7,29, "FAC"), (64, 76, "FAC")]})] 

As it requires the index of the start character and end character of the entity and then the 

label it will take numerous number of hours to annotate every line in the data sources 

especially as the New Zealand locality data is 1,500 lines.  
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3.1.5 Training SpaCy 

SpaCy has models which are statistical and every decision they make is a prediction. These 

decisions can be deciding if a word is a named entity. The predictions are based on 

previous examples the model has been exposed to during training. Training a model 

requires training data which can be examples of text and labels that the model needs to 

predict. The training data could be named entity and any other information.  

The model will then evaluate the unlabelled text and make a prediction from the previous 

training data. As humans understand if the model has given the wrong label, the model 

can receive feedback in form of an error gradient of the loss function which then 

calculates the difference between the training example text and the expected output. If the 

difference between the test output and the expected output is greater it means the 

updates to the model will be greater. [Explosion AI, 2016-2020]  

 [https://spacy.io/usage/spacy-101] 

 

Figure 8: Training SpaCy Diagram 

When training a model, it is important that the model does not want to just memorise the 

examples but come up with a theory that can be used across other examples. The model 

should not learn one instance of a word, such as ǮAppleǯ which in some texts can be a fruit 

or others can be the company. Which is why the training data should always be 

representative of the types of data that would be processed such as if a model was trained 

on Wikipedia where sentences are not in first person would perform badly on Twitter 

where most text is from the first person. 

Evaluation data is also required as well as training data in order to know how the model is 

performing and if it is learning the correct information from the training data. With only 

the training data there will be no way of knowing how well it is generalising. To update an 

existing model decent results can be produced with few examples if they are 

representative.  

To update SpaCyǯs named entity recogniser with examples for a specific application, 

starting with an existing pretrained model will require example texts and the character 

offsets and then labels each of the entities which are contained in the texts. Firstly, the 

model required can be loaded or an empty model can be created with spacy.blank() with 

the identification of the language being used. With a blank model the entity recogniser 

https://spacy.io/usage/spacy-101
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needs to be added to the pipeline. An existing model will require all other pipeline 

components to be disabled during training using nlp.disable.pipes to ensure only the 

entity recogniser is being trained. Secondly the examples need to be shuffled and looped 

over. Update the model which can be achieved by calling nlp.update which steps through 

the words of the input. The model makes a prediction for every word which is then 

compared to the annotations with the correct labels to see if the prediction is correct. If 

the prediction is incorrect the model will adjust its weights so that the correct result will 

score higher next time. The trained model can be saved using nlp.to_disk and then finally 

the model should be tested to make sure the entities in the training data are recognised 

correctly. [Explosion AI, 2016-2020 (4)] 

Using the same text documents that contain short information on various locations to 

train the model, using examples of text documents with numerous locations will be 

beneficial to training the model for detecting locations to achieve the project aim. It is 

important not to repeatedly iterate over the same examples as the model cannot get used 

to evaluating any other examples. 

Before model training the SpaCy named entity recogniser the following entities were 

identified: 

Australia GPE 

Commonwealth ORG 

Australia GPE 

Australian NORP 

Oceania GPE 

sixth ORDINAL 

26 million CARDINAL 

Australia GPE 

Adelaide PRODUCT 

Australia GPE 

7,617,930 square kilometres QUANTITY 

the north-east LOC 

the south-east LOC 

2.8 CARDINAL 
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Australia GPE 

After model training the SpaCy named entity recogniser the following entities were 

identified:  

Australia GPE 

Commonwealth ORG 

Australia GPE 

Australian NORP 

Tasmania GPE 

Oceania GPE 

sixth ORDINAL 

26 million CARDINAL 

Australia GPE 

Canberra GPE 

Sydney GPE 

Melbourne GPE 

Brisbane GPE 

Perth GPE 

Adelaide GPE 

Australia GPE 

7,617,930 square kilometres QUANTITY 

the north-east LOC 

the south-east LOC 

2.8 CARDINAL 

Australia GPE 
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3.2 Using New Zealand Data 

To measure the accuracy and speed of the named entity recognisers and have an overall 

evaluation of their performance locality data for New Zealand is used. The New Zealand 

data is written in note form with many words shortened so it would be beneficial to gather 

performance measurements of the NERǯs on this data to see if they work as well without 

the text being eloquently written like in the other datasets. 

3.3 Speed of the NER Tools  

To gain an overall understanding of Stanford NER evaluating its speed is a convenient way 

to see its benefits, drawbacks and ultimately if the accuracy of the named entity recogniser 

outweighs any issues with speed.  

3.4 Moving on from Current NER Tools 

3.4.1 Developing a Classifier 

As an alternative to current NER tools a classifier can be developed using machine 

learning libraries. I will be writing a new classifier to try and improve performance and the 

accuracy measurements.   

Firstly, to begin training an NER classifier training and test data will be necessary, as in all 

machine learning classifiers. Training data will allow the classifier to learn a function by 

taking an input that is mapped to an output, in the case of detecting locations the input 

would an array of word embeddings, and the mapped output would be the location or 

other tags. If the data being used for training is a text document, such as the locality New 

Zealand data discussed above, where data is annotated as below:  

Ruatangata I-LOC West I-LOC , O on O roadside O , O 0.7 O km O along O Worsnops I-

LOC Road I-LOC from O Ruatangata I-LOC , O east O side O of O road O .  

The text document can be read through using any programming language and then the 

words and tags can be separated into different lists. Although the words need to be 

changed to embeddings either using pretrained embeddings or vectorization the tags will 

remain in plain English tags but will need to transform to an array. Sci-kit learn module 

model selection have a test train split class which takes in the embeddings and the array of 

tags and split it into train and test data under the same conditions that will be able to be 

fitted and predicted by the chosen classifier. 

3.5 Bag of Words vs Embeddings 

This section will discuss the ways of getting pre-trained embeddings for features when 

training a classifier as well as how to get the features using the bag of words method. It 

will also discuss the difference between the both and which would be better for a NER 

classifier.  
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3.5.1 GloVe 

A word embeddings algorithm called GloVe (The Global Vectors for Word 

Representation) is an unsupervised learning algorithm to obtain vector representations of 

words developed by Pennington, et al. at Stanford. The algorithm constructs an explicit 

word context or word co-occurrence matrix using statistics across the whole large text 

document. The result of the word co-occurrence matrix is a learned model which 

generally results in better embeddings. [Jason Brownlee, 2017] Text documents can be 

downloaded from GloVe that have 50, 100, 200 and 300-dimension pre-trained 

embeddings. The embeddings used were trained under:  Wikipedia 2014 + Gigaword 5 (6B 

tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB 

download): glove.6B.zip.  

3.5.2 Vectorizing 

If pretrained embeddings are not available, the classifier can be trained from scratch using 

word vectors which are created by classes such as Count Vectorizer. Scikit Learn library 

has a feature extraction class which is implemented to extract features to be used in a 

classifier. Feature extraction has a text section which includes Count Vectorizer that 

focuses on extracting features for a classifier from text. Count Vectorizer takes a collection 

of text documents and coverts them to word vectors which are represented using a 

compressed sparse row matrix. Count Vectorizer includes text pre-processing, 

tokenization and filters stop words and then creates a dictionary of features from the text 

document and transforms the features to vectors. This demonstrates a bag of words 

representation where the frequency of a word is used as a feature in classifier training. 

These vectors are the word vectors that can be used to train a classifier.  

3.5.3 Comparison of Bag of Words vs Embeddings 

Both embeddings and bag of words extract features from text documents to use them in 

training a classifier. Pre-trained embeddings have many benefits which include reduced 

training time and need for pre-processing text data. It can be trained on large datasets 

which the user of these pre-trained embeddings may not have access to and therefore help 

improve the performance of a classifier. Using a vectorizer like Count Vectorizer from 

Scikit Learn will transform words to word vectors and use them to train the classifier and 

allow it to predict from other test data. As the words are only transformed to word vectors 

and do not carry the benefits of pre-trained embeddings trained on large datasets with 

numerous dimensions it would be expected that training a classifier using pre-trained 

embeddings would perform better. [2020 – Pai] However as using Scikit-Learn only 

requires a small amount of code to create the model therefore a baseline model may 

benefit from a bag of words representation instead of pre-trained embeddings. If datasets 

are small context is most likely to be domain specific therefore the corresponding vector 

from pre-trained embeddings cannot be found. [2018, Ma]   

http://dumps.wikimedia.org/enwiki/20140102/
https://catalog.ldc.upenn.edu/LDC2011T07
http://nlp.stanford.edu/data/glove.6B.zip
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The higher the dimension the longer the vector is therefore it will give more data for the 

machine learning classifier to take in and learn from. As the longer the vector and higher 

dimension of embeddings the classifier has a better idea of how to predict the word 

embedding. It would be expected for the higher the dimension of the pre-trained 

embeddings used to train the classifier then the better the classifier will perform.  

3.5.4 Improving a Baseline Classifier 

To get the best results of a classifier and to know how to use them to the best of their 

ability it will be beneficial to get results of various variables. These variables will include 

the type of classifier, the training data, the dimension of the embeddings and the n 

number of words either side of the word to be classified. While comparing the only factor 

to change will be the variable that is being evaluated and all other information taken into 

the classifier will remain constant. When comparing the training data or dimensions of 

embeddings, the input of the classifier will be New Zealand locality data and GloVeǯs 
pretrained embeddings of 200 dimensions.  

While using classifiers SGD and Linear SVC are remarkably similar minus the cost of extra 

memory therefore it would be expected that the classifiers would perform similarly. 

Although smaller datasets are not recommended for supervised machine learning 

classifiers they can produce decent results on accuracy by the fact the small input dataset 

are split using Scikit Learnǯs train test split class which means the test data will be even 
smaller than the original annotated dataset. )n this case the text file ǮFiji.txtǯ, as used 
previous in measuring accuracy of Stanford NER and NLTK, will be used as an example of 

a small dataset to train the classifier. The text document has many re-occurring words 

which may impact the accuracy results as it is trying to predict a word it already has 

training on. Other datasets have been used to compare the small ǮFiji.txtǯ dataset with a 
larger dataset and then another even greater dataset. The middle sized dataset 

ǮNER_dataset.txt.ǯ is around ͢͜͜͜ words from the Kaggle NER dataset [which can be found 
at https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus] and the largest 

dataset is the New Zealand locality data which is around 24,000 words. Larger datasets 

would be expected to perform better when loaded and used for models predicting unseen 

data as the more examples a machine learning classifier can get the more it can learn from 

the examples and have a better chance of predicted entities correctly.  

3.5.5 Averaging Embeddings 

When n number of embeddings are taken from the left and right as well as the embedding 

of the word to be classified it will increase the number of data values that will be used for 

training. A way of avoiding using such a high number of data values is the embeddings 

could be averaging the embeddings so there is only one vector of the same size as the 

dimensions of embeddings being used for training. 

As there will now be a smaller number of data values used for training, this could impact 

the accuracy measurements. The classifier will see less data values when using the average 

https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus
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in comparison to use all embeddings of the word and the surrounding words. Averaging 

could essentially be hiding some embeddings that would determine if a word is a location 

or not i.e. if there is a word Ǯnearǯ left to the word to be classified it could show it is a 

location but with the average the embedding for Ǯnearǯ would not be specifically shown.  

When the classifier uses just the embedding of the word, the number of data values will be 

the same as when using this average. Although vectors are the same size, the average 

should improve the classifierǯs performance as the average does take into account the 

surround words.  

4.0 Implementation 

This section will include how NER was implemented and how the classifiers can be 

created.  

4.1 NER Tools 

To begin implementation of the NER algorithms relevant data sources need to be obtained 

to be able to test them. Stanford, NLTK and SpaCy can all be implemented in Python. 

The prerequisites that are required for Stanford, NLTK and SpaCy to be used are: 

- Stanford classification model and jar files need to be downloaded from the Stanford 

Natural Language Processing Group  

- NLTK needs to be installed via Python  

- SpaCy needs to be installed via Python 

For Stanford NER to work in Python, a Stanford NER Tagger needs to be imported using 

NLTK. The Stanford NER Tagger has the classification model path and the Stanford tagger 

jar file path passed through as parameters. It has a tag function which will attach the 

relevant label to the word in the text file.  

NLTK can be used to tag words in a text file, firstly the NLTK POS-tag is used to give part 

of speech tags to the text and then ne_chunk function passes through the words (with 

POS-tags attached to them) to identify named entities.  

SpaCy loads models and then uses the model to tag the text which can accessed by 

printing the text and the labels of the entities.  

4.1.1 Annotating Data for Stanford and NLTK 

To estimate if Stanford NER and NLTK NER is accurate, data were annotated with 

whether they fell under the category for organisations, locations or persons which are the 

three entities that class 3 of the Stanford NER recognise. After each token there is a space 
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and then the label for the entity Ǯ)-LOCǯ for location, Ǯ)-PERǯ for person and Ǯ)-ORGǯ for an 

organisation and any of the tokens that do not fall under this category are labelled as O.  

An example of the annotated data in a text document is below, the data is taken from the 

Wikipedia page for the United States of America, that can be found at: 

https://en.wikipedia.org/wiki/United_States. Only the first two paragraphs from the 

Wikipedia page was annotated, as expected the ǮOǯ tag was the most commonly occurring 

tag with 137 of tags, the location tag occurred 21 times, person tag with 2 occurrences and 

finally the organisation tag occurred 16 many times. How the data is annotated is 

demonstrated below:  

The O United I-LOC States I-LOC of I-LOC America I-LOC , O commonly O known O as O 

the O United I-LOC States I-LOC or O America I-LOC , O is O a O country O consisting O 

of O 50 O states O , O a O federal O district O , O five O major O self-governing O 

territories O , O and O various O possessions O . O At O 3.8 O million O square O miles O , 

O it O is O the O world's O third O or O fourth O - O largest O country O by O total O area 

O and O is O slightly O smaller O than O the O entire O continent O of O Europe I-LOC . O 

Most O of O the O country O is O located O in O central I-LOC North I-LOC America I-

LOC between O Canada I-LOC and O Mexico I-LOC . O With O an O estimated O 

population O of O over O 328 O million O , O the O U.S. I-LOC is O the O third O most O 

populous O country O in O the O world O . O The O capital O is O Washington I-LOC , O 

D.C. I-LOC , O and O the O most O populous O city O is O New I-LOC York I-LOC City I-

LOC . O 

The O United I-LOC States I-LOC is O a O federal O republic O and O a O representative O 

democracy O . O It O is O a O founding O member O of O the O United I-ORG Nations I-

ORG , O World I-ORG Bank I-ORG , O International I-ORG Monetary I-ORG Fund I-ORG , 

O Organization I-ORG of I-ORG American I-ORG States I-ORG , O NATO I-ORG , O and O 

other O international O organizations O . O It O is O a O permanent O member O of O the 

O United I-ORG Nations I-ORG Security I-ORG Council I-ORG . O Its O President O is O 

Donald I-PER Trump I-PER 

Once the file is read and split the resulting list includes every word and label as values. It 

can be indexed using every other item starting from the first word to get the words and 

every other item starting for the first label to get the labels. The list of words would be 

returned as: 

ǮThe', 'United', 'States', 'of', 'America', ',', 'commonly', 'known', 'as', 'the', 'United', 'States', 'or', 

'America', ',', 'is', 'a', 'country', 'consisting', 'of', '50', 'states', ',', 'a', 'federal', 'district', ',', 'five', 

'major', 'self-governing', 'territories', ',', 'and', 'various', 'possessions', '.', 'At', '3.8', 'million', 

'square', 'miles', ',', 'it', 'is', 'the', "world's", 'third', 'or', 'fourth', '-', 'largest', 'country', 'by', 

'total', 'area', 'and', 'is', 'slightly', 'smaller', 'than', 'the', 'entire', 'continent', 'of', 'Europe', '.', 

'Most', 'of', 'the', 'country', 'is', 'located', 'in', 'central', 'North', 'America', 'between', 'Canada', 

'and', 'Mexico', '.', 'With', 'an', 'estimated', 'population', 'of', 'over', '328', 'million', ',', 'the', 

https://en.wikipedia.org/wiki/United_States
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'U.S.', 'is', 'the', 'third', 'most', 'populous', 'country', 'in', 'the', 'world', '.', 'The', 'capital', 'is', 

'Washington', ',', 'D.C.', ',', 'and', 'the', 'most', 'populous', 'city', 'is', 'New', 'York', 'City', '.', 'The', 

'United', 'States', 'is', 'a', 'federal', 'republic', 'and', 'a', 'representative', 'democracy', '.', 'It', 'is', 

'a', 'founding', 'member', 'of', 'the', 'United', 'Nations', ',', 'World', 'Bank', ',', 'International', 

'Monetary', 'Fund', ',', 'Organization', 'of', 'American', 'States', ',', 'NATO', ',', 'and', 'other', 

'international', 'organizations', '.', 'It', 'is', 'a', 'permanent', 'member', 'of', 'the', 'United', 

'Nations', 'Security', 'Council', '.', "It's", 'President', 'is', 'Donald', 'Trump' 

Data was annotated as it is easy for a human to recognise if a word is a name, an 

organisation or a place name which can be used to test if the machine is working correctly 

in being able to detect the correct place names or not.  

4.1.2 Accuracy of Stanford and NLTK 

The implementation of extracting an overall accuracy value for Stanford and NLTK can be 

demonstrated in the flow chart. The flow chart below demonstrates the stages of the 

Python script written to calculate the accuracy value.  
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Figure 9: Flow Chart for Accuracy 

To be able to run the Python script written to calculate the accuracy value the following 

pre-requisites need to be imported:  

- NLTK 

- Stanford NER Tagger from NLTK library module Tag 

- Accuracy from NLTK library module Metrics 

The python program script takes in an annotated text document which is used to test the 

NER tool. The text document is inputted using pythonǯs open function and reads the file 

using read function. All values in the file are split using the split function and then two 

new lists are created by extracting the words and labels by indexing the resulting list of 

the split function. 

The list of words is then labelled using Stanford NER tagger or NLTK. The Stanford NER 

tagger must be created and have its models, jar files and encoding established. The 

Stanford NER uses its tag function to label the text. The text is iterated through to extract 

the predicted labels into a resulting list. NLTK will use its pos_tag function to assign part 

of speech tags to the text, then use the chunk function to group into noun phrases. The 

NLTK tree2conllstr function is used to convert predictions to multiline strings and then to 

lists. The part of speech tags is then removed through indexing of the lists and the NLTK 

labels are then transformed to mirror the labels from the input file. The list is iterated 

through to extract the predicted labels into a list.   

The list of labels extracted from the input data is iterated so that the name of the labels 

are changed to correspond the labels of the Stanford NER tool. 

The NLTK accuracy function from the metrics class is used to calculate the accuracy of the 

NER tools. The lists of predicted labels and correct labels are compared in the function to 

gather a fraction of how many predicted labels are correct. After the accuracy function 

result, the fraction is multiplied by 100 to get a percentage.  

4.1.3 Precision, Recall and F1 values of NLTK, Stanford and SpaCy 

Precision, Recall and F1 values were calculated differently for Stanford and NER than they 

were for SpaCy.  

Precision, Recall and F1 values can be calculated for Stanford and NLTK using Scikit 

Learnǯs classification report function. The flow chart below demonstrates how the 
classification report is calculated: 
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Figure 10: Flow Chart for Precision, Recall and F1 for Stanford and NLTK 

For the Python script to run to be able to compute the classification report the following 

pre-requisites are required to be imported:  

- Classification Report from Sklearn library Metrics module 

- NLTK 

- Stanford NER Tagger from NLTK library Tag module 

- NumPy 

The same process for opening the annotated text file and producing 2 lists of the words 

and labels as explained in 4.1.2 is carried out.    

In the same way as when calculating accuracy, the Stanford NER Tagger and NLTK (part-

of-speech tagger, chunk function and tree2conllstr functions) are used to tag the words. 

The predicted labels are transformed to match the correct labels which will be used for 

comparison. The labelled text is iterated through and the predicted labels are extracted 

into a list. This list is then converted to a NumPy array using the array function from 

NumPy library. 

The list of labels from the annotated text are transformed to match the predicted labels 

and then converted to a NumPy array using the array function from the NumPy library.  

The classification report requires an input of arrays. The predicted labels and the correct 

labels array are passed through the classification report function to output the report. The 

report includes precision, recall and F1 values.  

SpaCy requires a different method to extract precision, recall and F1 values. The flow 

chart below demonstrates how SpaCy extracts these values:  
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Figure 11: Flow Chart for Precision, Recall and F1 values for SpaCy 

Before the Python script for SpaCyǯs precision, recall and F1 value calculations is run the 

following pre-requisites need to be imported:  

- SpaCy 

- GoldParse from SpaCy library Gold module 

- Scorer from SpaCy library Scorer module 

SpaCy has a Scorer class which computes evaluation scores of SpaCyǯs NER classifier. 

Firstly, the SpaCy model needs to be established, then python script inputs a string that 

will be used to label. The entities of the string need to be established in the form (number, 

number, label), these entities give any correct labels in the inputted string.  

Scorer has a score method which takes in two parameters: doc and gold. Doc is a 

container for accessing linguistics features and gold is a collection for training 

annotations. Doc is the predicted annotations from SpaCyǯs input which is created using 

the SpaCy model to label the string. Gold are the correct annotations which is created 

using GoldParse which take in the sequence of tokens from the input (created using the 

make_doc function and the entities).  

The score method from the scorer class produces the following outputs: token_Acc for 

token accuracy, tags_acc for part-of-speech tag accuracy, uas for unlabelled dependency 

score, las for the labelled dependency score, p for the named entity accuracy precision, r 

for named entity accuracy score for recall and f for named entity accuracy for f1 score. 

[Explosion AI (3), 2020]  

4.1.4 Speed of Stanford, NLTK, SpaCy 

Speed of the NER tools can be measured using the time library in Python. The flowchart 

below demonstrates how the speed is collected:  
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Figure 12: Flow Chart for Measuring Speed 

Before the speed can be calculated for the NER tools the following pre-requisites need to 

be imported:  
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- NLTK 

- Stanford NER Tagger from NLTK library 

- SpaCy 

- Time 

The Python script must first input a file that an NER can perform on. The time library has 

a time function that gives the current time when the function is called. The function is 

first called under Ǯopeningǯ before the NER tool begins. 

Then the NER tool performs NER on the input file. Stanford and NLTK perform NER is 

the same way described in 4.1.2. SpaCyǯs model is loaded and then used on the text to 

perform NER.  

After NER is performed the time function is used again to get a Ǯclosingǯ time on the 
process.  

The duration of the NER performance in calculated by subtracting the opening time from 

the closing time. This duration can then be printed for evaluation.  

4.1.5 Using the NER Tools on New Zealand Locality Data 

The same method is used as before to measure the overall accuracy of Stanford NER and 

NLTK which is explained in 4.1.2.  

Many roads that described in the data have had their names shortened such as ǲGladfield 
Rdǳ which results in the NERǯs not recognising the road as a location. Due to the results 

being so poor, implementation was modified to change any abbreviations of road to the 

full-length of the word to see the impact of the performance.  

As discussed, previous, accuracy is not always the best measurement for evaluating the 

classifier. Precision, recall and F1 values are proven to be better measurements as they take 

in consideration for false positives and false negatives which can have high costs. They 

help where there is a large class distribution which is common especially in this case as 

most words do not have a label and therefore the measurement will be how well it is not 

identifying entity labels and not how well it is identifying place names. The same method 

is used to gather the precision, recall and F1 values as demonstrated in 4.1.3. 

As with the other implementation of calculating SpaCyǯs accuracy measurements the full 

dataset would be impossible within the time frame to annotate as the data needs to be in 

the same format as the training data. Therefore, several lines will be taken from the 

dataset to calculate the measurements. As we are looking to get measurements to 

compare the dataset including the original abbreviations of the word road and the full-

length word, the lines used for measurements will include roads before and after the 

abbreviations are changed.  
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4.2 Classifiers 

4.2.1 Count Vectorizer 

Count Vectorizer is imported from Scikit Learn feature extraction class for text. Below 

shows a flow chart which demonstrates how Count Vectorizer is used to extract features 

to train a classifier:  
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Figure 13: Flow Chart for Count Vectorizer Implementation 

For the Python script to train a classifier with features extracted using Count Vectorizer 

the following pre-requisites needs to be imported: 

- NumPy 

- SGD Classifier from linear model or Linear SVC from SVM module of Sklearn library 

- Train Test Split function from model selection module of Sklearn library  

- Classification Report from metrics module of Sklearn library  

The input file is the training dataset that include words and their relevant labels. The 

input datafile values are split using the split function and the resulting list can be used in 

creating 2 new lists of just the words and labels. 

The implementation of Count Vectorizer converts a sequence of items of strings to a 

matrix of token counts. The count vectorizer has a method for fit transform which learns 

the vocabulary dictionary and returns a document-term matrix. The document-term 

matrix is an array of shape (n_samples, n_features). The fit transform function takes in 

the words that have extracted from the input training file. 

To obtain train and test data from the original dataset, the Scikit Learn train test split 

function is used which splits the train and test data 0.25 proportion to the original dataset. 

The function takes the result of the count vectorizer fit and transform function and the list 

of labels and results in training data and testing data. The training and testing data 

includes the words vectors and corresponding labels.  

When a classifier is trained using its fit function the parameters are the training data of a 

sparse matrix in shape (n_samples, n_features) and target values of a ndarray of shape 

(n_features).  

The newly trained classifier can use itǯs predict function to get predicted labels of the 

testing data for the words. These predicted labels are then compared to the testing data 

for labels to output the classification report function.  

4.2.2 Using Pre-trained Embeddings 

Pre-trained embeddings can be used to gather features to train a classifier on. The 

following flow chart demonstrates the Python script written to achieve this:  
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Figure 14: Flow Chart for Using Pre-trained Embeddings 

The relevant modules and libraries that are required to be imported for training an SGD 

classifier with pre-trained embeddings are: 

- SGD Classifier from linear model or Linear SVC from SVM module of Sklearn library 

- NumPy 

- Train Test and Split function from model selection module in Sklearn library 

- Classification Report from the metrics model in Sklearn library  

There are two input files required when training a classifier with pre-trained embeddings, 

the annotated training dataset file, and the pre-trained embeddings file. The annotated 

training dataset file is opened using the open function and the values are split using the 

split function. The resulting list can be used to create two new lists of just the words and 

labels by indexing the list of the contents from the input file.  

The pre-trained embeddings are downloaded from 

https://nlp.stanford.edu/projects/glove/ the zip files contains text documents with the 

word embeddings to be loaded. The different text documents contain the different 

dimensions of embeddings which need to be in the same directory as the script calling 

them. The file is read by the Python script using the read function and the encoding is set 

to Ǯutf-ͤǯ. Every line in the file is split into a list. The word is taken from the list by taking 
the 0 index. The rest of the line would be the embedding and can be converted to a 

Numpy array. Finally, the word and its embedding are used to create a dictionary with the 

word as the key and the embeddings as the value. The dictionary is used as a model to get 

embeddings. 

The list of words is first converted to a string using the join function so the string of all the 

words from the training input file can be put through the word to vector function. The 

word to vector function takes in the string and then for every word in the string the get 

function is used to receive the embedding from the model. The embedding will be the 

dimension of the same dimensions used in the model.  

The list of labels is transformed to a NumPy array so it can be used to train the classifier.  

The NumPy array of vectors and the NumPy array of labels are used in train test split 

function which produces train and test data 0.25 proportion to the input data. The result 

is training and testing data for the words and its corresponding labels.   

Like when using word vectors created from count vectorizer the training data for 

embeddings and the labels are used to fit the classifier. The classifier can then be used to 

predict the testing data of the embeddings. The testing labels are the correct labels that 

can be used to compare the predicted ones.  

https://nlp.stanford.edu/projects/glove/
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The classification report takes the predicted labels that were predicted by the newly 

trained classifier and compares them against the correct labels. From this it produces the 

precision, recall and F1 values for the classifier.  

4.2.4 Different Scikit Learn Classifiers 

Different types of classifiers are used such as SGD and LinearSVC. To use Linear SVC or 

SGD classifier, it would need to be imported from the SVM or Linear Model module in 

Sklearn library as demonstrated throughout 4.2.  

The only change in implementation is using LinearSVC or SGD to fit the training data and 

then using it to predict.  

LinearSVC and SGD classifiers both have inputs of a sparse matrix with shape of 

(n_samples, n_features) with the word vectors or embeddings and array with shape of 

(n_features) with the labels corresponding the words. Once the classifier has an instance 

of itself which is created with using the fit function the classifier can then predict labels 

for words.  

4.2.5 Using Surrounding Words to Classify a Word 

To get a certain number of embeddings around a word to be classified the list of words 

from the training data needs to be processed to get these words. The following flow chart 

demonstrates how this is obtained:  
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Figure 15: Flow Chart for Taking n Embeddings Around Word to be Classified for Training a 
Classifier 

The imports necessary to train a classifier using pre-trained embeddings and taking n 

number of words before and after the word to be classified include:  

- Random 

- NumPy 

- SGD Classifier from linear model or Linear SVC from SVM module of Sklearn library 

- Train Test Split function from Sklearnǯs model selection 

- Classification Report from Sklearn library module metrics 

As with just using pre-trained embeddings to extract features for a classifier an annotated 

training dataset input in required as well as the GloVeǯs pre-trained embedding file. The 

annotated file is opened using the open function and read using the read function. The 

values in the file are split into a list. To create two new lists of just the words and labels 

the resulting list of splitting the file values can be indexed to get them. The GloVeǯs pre-

trained embeddings file which is used to create a model is also opened using the open 

function.  

To create the model the same steps are taking as in 4.2.2. This model is a dictionary with 

the word as a key and the value being their embedding. The model can be used to get 

embeddings of words in the training data.  

The words can be iterated through and then the embeddings are taken from either side of 

the word. If there are 3 embeddings either side of a word being taken and the embeddings 

have dimensions of 100 the feature would now have 700 data values instead of just 100 

values as it includes the embedding of the word to be classified as well as 3 embeddings to 

the left and right.  

If 3 embeddings are being taken either side of the word to be classified, the first and the 

last 3 words in the training data will not have three embeddings both sides of the word. To 

overcome this issue the embeddings either side will be taken until they reach the end of 

the list. Where there are less than three embeddings, a random array of the same 

dimensions will be added until it matches the length of the 3 embeddings to the left, the 

word and the 3 embeddings to the right.  

The list of labels from the input file are converted to a NumPy array so it can be used to 

train the classifier.  

The NumPy array of the embeddings and the NumPy array of the labels are used to get 

testing and training data using Sklearn train test split function. The training and testing 

data for word and labels are 0.25 in proportion to the dataset. 
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The training data for the words and labels are used to fit a classifier which then results in 

an instance of itself which can perform the predict function. The classifier can try 

predicting labels for the testing data of words.  

The classification report takes in the predicted labels of the words and the correct labels 

and outputs the accuracy measurements. 

4.2.6 Averaging Embeddings 

When n number of embeddings around the word to be classified are taking as features for 

training they can then be calculated to create one embedding that is the average of the n 

number of words before, the word and the n number of words after the word to be 

classified. The following flow chart demonstrates this, it being like taking n number of 

embeddings around the word to be classified with averaging function being included 

before training: 
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Figure 16: Flow Chart for Averaging n Embeddings around Word to be Classified for Training 
a Classifier 

 The imports required for this implementation are the exact same as when taking n 

number of embeddings around the word as well as the word to be classified.  

The only difference to 4.2.5. implementation is after there is n embeddings before, the 

word to be classified and n embeddings after there is n*2+1 embeddings that can be used 

as features for the classifier training. Instead of using the n*2+1 embeddings they are 

averaged to create 1 embedding.  

The NumPy average function is used and the values are averaged on the zero axis which 

will be n*2+1. The average is then taking as the input for train test learn. Finally, training 

the classifier with the average embedding and labels and then producing a classification 

report. 

5.0 Results and Evaluation 

The following section includes results of the implementation of the NER tools and 

personally created classifiers. The first results presented include performance 

measurements of the NER tools SpaCy, NLTK and Stanford. The performance 

measurements are overall accuracy and then the precision, recall and F1 values. Secondly 

the speed of the NER tools is presented. Then the accuracy results are presented for the 

NER tools using the New Zealand locality data.  

The second half of the result presentation in this section include the results of newly 

created classifiers. Firstly, the results show the comparisons of using Count Vectorizer 

instead of pre-trained embeddings then the next results use the GloVe pre-trained 

embeddings. Followed by the results of using the same pre-trained embeddings with 

taking 3 words to the left and right of the word to be classified and then taking 5 words 

instead of 3. Next shows the results of using LinearSVC classifier instead of the SGD 

classifier which was used in the previous set of results. In the final section uses graphs to 

demonstrate the comparison of the variables when training the classifiers.  

5.1 NER Tools 

5.1.1 Comparison of NLTK and Stanford NER Accuracy Results 

I chose to run 11 different text documents that were annotated by myself to be able to 

gather a set of results of overall accuracy. The accuracy result is the total number of true 

positives and true negatives divided by the total predicted values (true positives + true 

negatives + false negatives + false positives). The accuracy is measured by the 

identification of all entities including ǮOǯ for those with no entities, location, person, and 

organisations. All text documents contain a short paragraph of information of a certain 

area, region or country, all data from the text documents come from the Wikipedia page 
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of each location. The data was chosen to include  locations so that the data would be able 

to compare many location tags and entities as that is the main area of focus for this project 

to be able to take the detected place names and disambiguate them. All files are similar in 

length. 

The range of Stanford NER accuracy percentage range from 85.7% to 99.4% which is a 

range of 13.7%. The NLTK has a bigger range from 79.8% to 97.2% which is a range of 

17.4%. The average score for accuracy of Stanford NER is 94.8% which gives evidence that 

the Stanford NER is highly accurate but there is room for improvement. Some accuracy 

issues can occur from human error when annotating data. The NLTK accuracy average 

score is 88.9% which is still a high score but less than Stanford NER so the NLTK is less 

reliable and accurate named entity recogniser than the Stanford NER. In every file the 

NLTK is always less accurate that the Stanford NER.  

Text file of annotated data Stanford NER  NLTK 

New Zealand 95.6% 91.1% 

South East England 85.7% 81.4% 

Cwmbran 97.9% 89.4% 

America 99.4% 97.2% 

Australia 96.8% 94.7% 

Iceland 97.2% 94.3% 

Finland 94.0% 79.8% 

South Wales 92.2% 95.2% 

Southern France 92.0% 87.5% 

Fiji 93.5% 84.6% 

Philippines 97.9% 82.4% 

Average 94.8% 88.9% 
Figure 17: Accuracy Measurements for Stanford and NLTK 

5.1.2 Precision, Recall, F1 Values 

Stanford NER Precision, Recall and F1 Values 

Below demonstrates the precision, recall and f1 values for the same files that were 

measured for accuracy in table 1. Unlike the accuracy results the precision and recall 

values are calculated on the identification of location entities and not the other, person or 

organisation entities. This makes it easier to see if the NER tools are better for location 

identification.   

File Precision Value Recall Value F1 Value 

New Zealand 1.0 0.8 0.889 
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South East England 0.857 0.6 0.706 

Cwmbran 1.0 0.875 0.933 

America 1.0 0.952 0.976 

Australia 1.0 0.6 0.749 

Iceland 1.0 0.733 0.846 

Finland 1.0 0.844 0.915 

South Wales 1.0 0.727 0.842 

Southern France 0.926 0.595 0.725 

Fiji 0.967 0.696 0.810 

Philippines 1.0 0.919 0.958 

Average 0.977 0.758 0.849 

Figure 18: Precision, Recall and F1 for Stanford 

Recall is the most important value in the case of detecting place names in a text 

document. False negatives have a higher cost than false positives when detecting place 

names as the locations that go unmissed could result in incorrect disambiguation of the 

locations found. For example, if ǮManhattanǯ were falsely identified as a negative it could 
result in the words ǮYorkǯ being mis-identified as the English City not the American state. 

The average of precision value for Stanford for these files is 0.977 which is remarkably 

high and demonstrates the Stanford NER works well at not producing false positives. The 

average recall value for Stanford NER calculated using these files is 0.758. Although it is 

not as high as the precision value it is still relatively high therefore Stanford is better at 

not producing false positives than false negatives. F1 value is 0.849 on average, when 

compared to the accuracy average value calculated by NLTK metrics class accuracy 

(shown above in table 1) which was 94.8%. Although the accuracy average value is higher 

than the F1 value it can be a misconception as the accuracy value takes in the 

identification of all entities not just the location entity like F1 does. It is easier to identify a 

true negative so the result would be higher when taking these into account, as F1 value 

does not take these into consideration the accuracy value will be higher than the F1.  

NLTK Precision, Recall and F1 Values 

Below shows the precision, recall and f1 values for NLTK for the text files that were used to 

previously calculate the overall average for the NER.  

Text File Precision Value Recall Value F1 Value 

New Zealand 1.0 0.467 0.636 

South East England 0.889 0.4 0.552 

Cwmbran 1.0 0.375 0.545 

America 0.864 0.792 0.826 

Australia 1.0 0.5 0.667 

Iceland 1.0 0.467 0.636 

Finland 0.941 0.5 0.653 

South Wales 0.941 0.516 0.667 

Southern France 0.778 0.5 0.609 
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Fiji 0.875 0.304 0.452 

Philippines 1.0 0.324 0.489 

Average 0.935 0.478 0.612 

Figure 19: Precision, Recall and F1 for NLTK 

The average precision value for NLTK for these text files is 0.935, which is significantly 

high but lower than the precision value for Stanford NER using the same files therefore 

confirming that the Stanford NER is a better classifier than NLTK. The recall value average 

for NLTK is 0.478 which is significantly lower than Stanford average recall value of 0.758. 

The F1 value average for the NLTK classifier is 0.612 which is lower than Stanford NER by 

0.237 which is a big difference. This confirms and supports the argument the Stanford 

NER is a better evaluator than NLTK.  

SpaCy Precision, Recall and F1 Values 

Below gives the precision, recall and F1 value for several lines of each data file.  

Text File Precision Value Recall Value F1 Value 

New Zealand 1.0 1.0 1.0 

South East England 1.0 0.50 0.66 

Cwmbran 1.0 0.66 0.80 

America 1.0 0.50 0.66 

Australia 1.0 0.50 0.66 

Iceland 1.0 0.50 0.66 

Finland 0.5 0.66 0.57 

South Wales 1.0 0.75 0.85 

Southern France 0.6 0.43 0.50 

Fiji 0.5 0.40 0.44 

Philippines 0.5 0.33 0.40 

Average 0.83 0.57 0.65 

Figure 20: Precision, Recall and F1 for SpaCy 

The average precision value for SpaCy is 0.83 which is a relatively high score showing 

SpaCy is good at identifying true positives. The average recall value is 0.57 which shows 

SpaCy performs poorly with regards to identifying false negatives in comparison to 

identifying true positives. The average F1 value is 0.65 which demonstrates that SpaCy 

performs relatively well regarding accuracy.  

5.2.3 Comparing Speed of the NER Tools 

The same 11 text files on areas, regions and countries that were used to test the named 

entity recognisers for accuracy are used for testing NLTK and Stanford NER for speed. If 

speed were to become an issue, then it may be a better option to use a less accurate NER if 

it is going to work faster. The results are measured in seconds. The range of speed for 

Stanford NER is from 4.79 seconds to 3.46 seconds which is a range of 1.3 seconds. The 

range of speed for NLTK is from 0.50 seconds to 0.28 seconds which is a range of 0.22 
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seconds which is considerably lower than the range for Stanford NER. The average speed 

for Stanford NER is 4.34 seconds. The average speed for NLTK is 0.37 seconds which is also 

a considerably faster measurement than the speed for Stanford NER. NLTK is a lot slower 

than Stanford NER but Stanford NER is more accurate than NLTK, as all text files used for 

this comparison have been quite a small text file with all similar lengths it may be 

interesting to use different file sizes to see if the greater time taken for Stanford NER to 

work is worth using it for its better accuracy in comparison to NLTK. SpaCy has an 

astonishing faster named entity recogniser with beating NLTK by 0.14 seconds in its 

slowest time. SpaCy has an average of 0.12 seconds compared to Stanfordǯs ͠.͟͠ seconds 
average and NLTKǯs ͜.ͣ͟ seconds. SpaCy only ranges from 0.24 to 0.06 seconds with a 

range of ͜.ͤ͝ seconds. )f speed were the only factor to influence a developerǯs choice of 

named entity recogniser then SpaCy would be the best choice. 

Text file of data Stanford NER  NLTK SpaCy 

New Zealand 4.49 seconds 0.38 seconds 0.24 seconds 

South East England 4.79 seconds 0.33 seconds 0.07 seconds 

Cwmbran 4.33 seconds 0.28 seconds 0.06 seconds 

America 4.61 seconds 0.39 seconds 0.17 seconds 

Australia 4.54 seconds 0.40 seconds 0.09 seconds 

Iceland 4.29 seconds 0.35 seconds 0.11 seconds 

Finland 4.53 seconds 0.32 seconds 0.08 seconds 

South Wales 3.46 seconds 0.35 seconds 0.11 seconds 

Southern France 3.62 seconds 0.42 seconds 0.15 seconds 

Fiji 4.70 seconds 0.50 seconds 0.17 seconds 

Philippines 4.42 seconds 0.37 seconds 0.11 seconds 

Average 4.34 seconds 0.37 seconds 0.12 seconds 

Figure 21: Speed Measurements 

5.2.4 Using New Zealand Locality Data for NER Tools 

The accuracy of Stanford NER, it has an accuracy percentage of 79.59%. When all cases of 

ǲrdǳ are placed with the full word ǲroadǳ the accuracy percentage increases to ͤ͜.͟͜%. This 
demonstrates the NERǯs ability to recognise the full name of a location but struggles to 

recognise human slang or written notes of an area.  

NLTK gives an accuracy percentage of 68.58% for the locality data which again shows that 

NLTK is the least accurate NER in comparison to Stanford NER. When changing all ǲrdǳ 
occurrences to ǲroadǳ just like with Stanford the percentage increases to 69.44%. 
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Below shows the precision, recall and f1 value for the Stanford NER for the locality data on 

New Zealand. It also shows a comparison of the values after the abbreviation of Ǯroadǯ are 
changed to the full-length word.  

Text File Precision Value Recall value F1 value 

Locality Data 

(original) 

0.822 0.198 0.319 

Locality Data (full-

length of any 

abbreviations of 

road) 

0.732 0.228 0.347 

Figure 22: Precision, Recall and F1 value for Stanford using Locality Data 

The recall value for the locality data is significantly low, which can demonstrate some 

issues of Stanford NER. Many entities were not identified where they should have been. 

Where the abbreviations for road are changed to the full word it clearly shows how the 

NER can then identify roads better rather than when they were not being identified when 

written as human short notes. This could be a potential area of focus for Stanford as it 

could be trained on using shortened human notes or slang to identify locations that may 

not be written as correctly as they should.  

Below shows the precision, recall and f1 value for NLTK for the same locality data: 

Text File Precision Value Recall Value F1 Value 

Locality Data 

(original) 

0.085 0.038 0.053 

Locality Data (full-

length of any 

abbreviations of 

road) 

0.108 0.044 0.063 

Figure 23: Precision, Recall and F1 values for NLTK using Locality Data 

NLTK have incredibly low precision, recall and f1 values compared the Stanford NER. 

Having the abbreviations of road changed to the full word does help increase the values 

meaning NLTK must also struggle to identify roads if the word is not in full, this could 

also be a potential area to be improved for NLTK, like it is in Stanford NER.  

Below shows the precision, recall and F1 values for SpaCy NER for the New Zealand 

locality data. It will compare the original data and the data with any abbreviations of road 

written as the full length of the word.  

Text File Precision Recall F1 Value 

Locality Data 

(original) 

1.0 0.20 0.33 

Locality Data (full-

length of any 

1.0 0.25 0.40 
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abbreviations of 

road) 

Figure 24: Precision, Recall and F1 for SpaCy using Locality Data 

Using SpaCyǯ s named entity recogniser for the English language it produces the named 

entity labels along with their texts. When SpaCy NER labels the texts, it uses more labels 

which are explained in the background of SpaCy NER. than Stanford NER so many areas 

that could be considered as a location such as ǲCastlepoint Roadǳ or ǲLake Orbellǳ are 
labelled as ǮFACǯ. As the text in the locality data file is written as notes many descriptions 

of roads are written as ǲMangaone Rdǳ using the shortened ǲRdǳ for road. SpaCy does not 
recognise these as roads which would give the ǲFACǳ label, they produce ORG labels 
which indicates SpaCy NER is tagging the text ǲMangaone Rdǳ as an organisation. Other 

locations were labelled as organisations for example ǲParoaǳ, ǲThorton Mainǳ, 
ǲWhakatoneǳ, ǲTaurangaǳ, ǲMorton Mainsǳ and ǲMaitland Valeǳ. Sentences within the 
locality data include directions such examples as ǲ͝km along Goatleys Roadǳ which was 
labelled by SpaCy as a Quantity. The ǲ͝km alongǳ could indication why SpaCy NER 

thought it was a quantity by with the word ǲroadǳ having a word before it beginning with a 

capital letter it should of distinguished the difference and recognised ǲGoatleys Roadǳ as a 
separate entity which would be associated with a ǲFACǳ or a location label. SpaCy does not 
recognise many roads where in the sentence the word road does not start with a capital 

letter, such as if ǲGoatleys roadǳ was written this way rather than the previous ǲGoatleys 

Roadǳ. As the word ǮRoadǯ does not have a capital letter SpaCy does not label it as a place. 

The NER recognised ǲOmahuta forest ȋcompartment ͤȌǳ as an organisation where it 
should have recognised ǲOmahuta forestǳ as a location. The NER also recognises many 

places as PERSON for example ǲElie Bayǳ, ǲAhuriri Lagoonǳ and ǲTe Kawǳ. Some other 
areas that impacted SpaCyǯs ability to label text correctly was where notes were written to 

demonstrate a measurement or road between two places such as ǲHawera-New Plymouth 

main highwayǳ. A human can read this and understand it is the main Highway between 

the places Hawera and New Plymouth but SpaCy only recognises and labels ǲPlymouthǳ as 
a place which may be the Plymouth in England. )gnoring the ǲ(aweraǳ and the ǲMain 

Highwayǳ which could be used to disambiguate that the place is in New Zealand not 

England, UK.  

5.2.5 Evaluation of NER Tools 

Below shows the average precision, recall and F1 values for the NER tools using the small 

datasets from Wikipedia on different countries, counties, and places. 
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Figure 25: Evaluation of Precision, Recall and F1 for NER Tools 

In terms of precision (identifying true positives) Stanford NER performs better than NLTK 

which performs better than SpaCy. Recall values shows Stanford NER performing the best, 

SpaCy next and NLTK performing the worst. The F1 value gives a better overall accuracy 

value using the precision and recall values which shows Stanford NER performing the best 

with SpaCy in second and NLTK performing the worst out of the three. As Stanford only 

has the 3 values: person, organisation and location for its entities, it may mean entities 

such as roads and bodies of water are being classed as locations in Stanford but not in 

SpaCy where there are different labels for these such as ǮLOCǯ for a body of water (Oceans 

etcȌ and ǮFACǯ for roads/highways. This may impact the accuracy results as roads 

annotated as a location may not come up as the location label for SpaCy. This may result 

in future work needed to group the different location-related labels in SpaCy into one 

label to see if SpaCyǯs accuracy measurements need improving.  

Next will include the evaluation of the speed of the NER tools. This will suggest if the 

speed will have an impact on using a standard even if it has high accuracy.  
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Figure 26: Average Speed Evaluation 

SpaCy is the quickest NER on average and Stanford is the slowest. Although Stanford has 

the highest accuracy measurements if it is taking an average of over 4 seconds to perform 

NER on such small datasets. So, it may be useful to consider using SpaCy who also has 

relatively high accuracy measurements and has a very quick average of 0.12 seconds for the 

same datasets.  

It is useful to compare the NER tools performance on a larger datasets. Using the New 

Zealand locality data, it can give an idea of how the NERǯs performance changes using the 

larger dataset.  
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Figure 27: Comparing the NER tools using the Locality Data 

Although Stanford and SpaCy have relatively high precision values all NER tools worked 

poorly on the locality data. As previously discussed, the locality data is human written 

notes and it may be the cause of the poor results from all three NER tools. This is a 

motivation for creating my own classifier as it can be trained on human written notes 

whereas the NER tools used will not be trained on this type of format.  

5.2 Classifiers 

5.2.1 Count Vectorizer 

The results below are of an SGD classifier that is trained using Count Vectorizer to get 

word vectors of the training data. The different training data is used to compare the 

results of different sized dataset. The training and test data is split using Scikit Learnǯs 
train test split function, the training and test data is automatically set to 0.25 proportion 

to the dataset. The only features used in the classifier are the word vectors of the word to 

be classified.  

Training Data Precision Recall F1 

Fiji 0.6 0.43 0.5 

NER dataset (5000 

words) 

0.69 0.57 0.62 

New Zealand Locality 0.77 0.59 0.67 

Average 0.69 0.53 0.60 

Figure 28: Using Count Vectorizer for training an SGD Classifier 
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5.2.2 Pre-trained Embeddings 

Below include the results of an SGD classifier that is trained using word embeddings 

obtained by GloVeǯs pretrained embeddings. The results include the different dimensions 

and each different training datasets. The training and test data is also split using the train 

test split function from Scikit-Learn with the training and test data both set to 0.25 

proportion to the dataset. The only features used in the classifier is the word embedding 

of the word to be classified.  

Training Data Embedding 

Dimension 

Precision Recall F1 

Fiji 50 0.57 0.67 0.62 

Fiji 100 0.92 0.85 0.88 

Fiji 200 0.86 0.86 0.86 

Fiji 300 0.69 0.90 0.78 

Ner dataset 

(5000) 

50 0.20 0.50 0.29 

Ner dataset 

(5000) 

100 0.35 0.45 0.39 

Ner dataset 

(5000) 

200 0.37 1.0 0.54 

Ner dataset 

(5000) 

300 0.41 1.0 0.58 

NZ locality 50 0.77 0.30 0.43 

NZ locality 100 0.65 0.30 0.41 

NZ locality 200 0.59 0.30 0.40 

NZ locality 300 0.61 0.30 0.40 

Average  0.58 0.62 0.55 

Figure 29: Using GloVe's pretrained embeddings to train an SGD Classifier 

The next results shown below are of an SGD classifier that is trained using the word 

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the 

different dimensions and each different training datasets. The training and test data is 

split using the train test split function from Scikit-Learn with the training and test data 

both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the 

classifier are the word embeddings of the word to be classified along with the 3 words 

before and the 3 words after. 

Training Data Embedding 

Dimension 

Precision Recall F1 

Fiji 50 0.88 0.58 0.70 

Fiji 100 0.6 0.75 0.67 

Fiji 200 0.40 1.0 0.57 

Fiji 300 0.64 0.75 0.69 

Ner dataset 

(5000) 

50 0.49 0.69 0.57 
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Ner dataset 

(5000) 

100 0.52 0.61 0.52 

Ner dataset 

(5000) 

200 0.51 0.49 0.50 

Ner dataset 

(5000) 

300 0.52 0.64 0.57 

NZ locality 50 0.66 0.52 0.59 

NZ locality 100 0.66 0.53 0.59 

NZ locality 200 0.64 0.52 0.58 

NZ locality 300 0.65 0.58 0.61 

Average  0.60 0.64 0.60 

Figure 30: Using Gloveǯs pre-trained embeddings and 3 words either side of word to be 
classified to train an SGD Classifier 

The next results shown below are of an SGD classifier that is trained using the word 

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the 
different dimensions and each different training datasets. The training and test data is 

split using the train test split function from Scikit-Learn with the training and test data 

both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the 

classifier are the word embeddings of the word to be classified along with the 5 words 

before and the 5 words after. 

Training Data Embedding 

Dimension 

Precision Recall F1 

Fiji 50 0.60 0.46 0.52 

Fiji 100 0.83 0.71 0.77 

Fiji 200 0.44 0.80 0.57 

Fiji 300 0.91 0.71 0.80 

Ner dataset 

(5000) 

50 0.41 0.49 0.45 

Ner dataset 

(5000) 

100 0.61 0.68 0.64 

Ner dataset 

(5000) 

200 0.65 0.53 0.59 

Ner dataset 

(5000) 

300 0.59 0.46 0.51 

NZ locality 50 0.66 0.55 0.60 

NZ locality 100 0.65 0.54 0.64 

NZ locality 200 0.64 0.56 0.60 

NZ locality 300 0.62 0.52 0.57 

Average   0.63 0.58 0.61 

Figure 31: Using GloVe's pre-trained embeddings and 5 embeddings either side of word to be 
classified to train an SGD Classifier 
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5.2.3 Averaging Embeddings  

The next results shown below are of an SGD classifier that is trained using the word 

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the 

different dimensions and each different training datasets. The training and test data is 

split using the train test split function from Scikit-Learn with the training and test data 

both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the 

classifier are the average of the word embeddings of the word to be classified along with 

the 3 words before and the 3 words after. 

Training Data Dimensions Precision Recall F1 

Fiji  50 0.47 0.69 0.56 

Fiji  100 0.40 0.25 0.31 

Fiji 200 0.55 0.50 0.52 

Fiji 300 0.33 0.42 0.37 

Ner Dataset 

(5000) 

50 0.50 0.54 0.52 

Ner Dataset 

(5000) 

100 0.65 0.62 0.63 

Ner Dataset 

(5000) 

200 0.66 0.50 0.57 

Ner Dataset 

(5000) 

300 0.58 0.70 0.63 

NZ Locality 50 0.50 0.42 0.46 

NZ Locality 100 0.57 0.43 0.49 

NZ Locality 200 0.57 0.42 0.48 

NZ Locality 300 0.54 0.50 0.52 

Average  0.53 0.50 0.51 

Figure 32: SGD Classifier trained with Average of Embeddings 3 to left and 3 to right and 
word to be classified 

The next results shown below are of an SGD classifier that is trained using the word 

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the 

different dimensions and each different training datasets. The training and test data is 

split using the train test split function from Scikit-Learn with the training and test data 

both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the 

classifier are the average of the word embeddings of the word to be classified along with 

the 5 words before and the 5 words after. 

Training Data Dimensions Precision Recall F1 

Fiji  50 0.2 0.24 0.12 

Fiji  100 1.0 0.20 0.33 

Fiji 200 0.33 0.20 0.25 

Fiji 300 0.40 1.0 0.57 

Ner Dataset 

(5000) 

50 0.25 0.30 0.27 
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Ner Dataset 

(5000) 

100 0.30 0.57 0.57 

Ner Dataset 

(5000) 

200 0.36 0.44 0.40 

Ner Dataset 

(5000) 

300 0.32 0.39 0.35 

NZ Locality 50 0.20 0.42 0.27 

NZ Locality 100 0.35 0.41 0.38 

NZ Locality 200 0.36 0.50 0.42 

NZ Locality 300 0.30 0.41 0.35 

Figure 33: SGD Classifier Trained Using Average of Embeddings 5 to left, 5 to right and the 
word to be classified 

5.2.4 Using Different Classifiers 

The next results shown below are of a LinearSVC classifier that is trained using the word 

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the 

different dimensions and each different training datasets. The training and test data is 

split using the train test split function from Scikit-Learn with the training and test data 

both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the 

classifier is the word embeddings of the word to be classified. 

Training Data Embedding 

Dimension 

Precision Recall F1 

Fiji 50 0.67 0.91 0.77 

Fiji 100 0.87 1.0 0.93 

Fiji 200 0.75 0.75 0.75 

Fiji 300 0.79 1.0 0.88 

Ner dataset 

(5000) 

50 0.36 1.0 0.53 

Ner dataset 

(5000) 

100 0.36 1.0 0.53 

Ner dataset 

(5000) 

200 0.37 0.99 0.53 

Ner dataset 

(5000) 

300 0.30 1.0 0.46 

NZ locality 50 0.66 0.30 0.42 

NZ locality 100 0.48 0.20 0.28 

NZ locality 200 0.59 0.30 0.39 

NZ locality 300 0.51 0.40 0.45 

Figure 34: Using GloVe's pretrained embeddings to train a Linear SVC classifier 

The next results shown below are of a LinearSVC classifier that is trained using the word 

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the 

different dimensions and each different training datasets. The training and test data is 

split using the train test split function from Scikit-Learn with the training and test data 
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both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the 

classifier are the word embeddings of the word to be classified as well as the 3 words 

before and 3 words after. 

Training Data Embedding 

Dimension 

Precision Recall F1 

Fiji 50 0.62 0.71 0.67 

Fiji 100 0.80 0.73 0.76 

Fiji 200 0.62 0.50 0.56 

Fiji 300 0.60 0.82 0.69 

Ner dataset 

(5000) 

50 0.60 0.60 0.60 

Ner dataset 

(5000) 

100 0.60 0.56 0.58 

Ner dataset 

(5000) 

200 0.45 0.52 0.48 

Ner dataset 

(5000) 

300 0.55 0.58 0.56 

NZ locality 50 0.65 0.54 0.59 

NZ locality 100 0.66 0.57 0.61 

NZ locality 200 0.63 0.55 0.59 

NZ locality 300 0.63 0.57 0.60 

Figure 35: Using GloVe's pretrained embeddings and taking 3 embeddings either side of word 
to be classified to train a Linear SVC Classifier 

The next results shown below are of a LinearSVC classifier that is trained using the word 

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the 

different dimensions and each different training datasets. The training and test data is 

split using the train test split function from Scikit-Learn with the training and test data 

both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the 

classifier are the word embeddings of the word to be classified as well as the 5 words 

before and 5 words after. 

Training Data Embedding 

Dimension 

Precision Recall F1 

Fiji 50 0.29 0.29 0.29 

Fiji 100 0.73 0.92 0.81 

Fiji 200 0.71 0.62 0.67 

Fiji 300 0.89 0.57 0.70 

Ner dataset 

(5000) 

50 0.47 0.60 0.53 

Ner dataset 

(5000) 

100 0.52 0.63 0.57 

Ner dataset 

(5000) 

200 0.52 0.65 0.58 



PAGE 65 

Ner dataset 

(5000) 

300 0.62 0.52 0.57 

NZ locality 50 0.66 0.54 0.59 

NZ locality 100 0.64 0.53 0.58 

NZ locality 200 0.57 0.54 0.56 

NZ locality 300 0.59 0.53 0.56 

Figure 36: Using GloVe's pretrained embeddings and taking 5 embeddings either side of the 
word to be classified to train a Linear SVC Classifier 

5.2.4 Evaluation of Classifier Results 

Comparing the main changing variables of the classifier being the type of classifier, using 

pretrained embeddings or using Count Vectorizer, increasing the dimensions of 

embeddings and taking n number of words either side of the word to be classified many 

pattern can be found and evaluated.  

 

Figure 37: Using NZ data with word embeddings obtained from GloVeǯs pretrained 
embeddings with dimension of 200. The classifier uses features of embeddings of the word to 
be classified. 

The use of different classifiers SGD and Linear SVC made little to no difference in the 

accuracy measurements, as seen in figure 26 there is no change to precision, recall and F1 

values. Therefore, SGD or Linear SVM would both be suitable classifiers to use to compare 

other training data variables.  

The training data of a classifier can have a big impact on its performance as small dataset 

may make it easier but the lack of examples the classifier can learn from can hinder its 
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performance when using new data not from the same dataset. The three training datasets 

that are used to compare are a Fiji text document, which contain a small number of lines 

where the word ǮFijiǯ is also repeated numerous times, 6000 words from a large dataset 

designed for training an NER classifier is used and finally a 24000 word dataset of locality 

data for New Zealand which like Fiji has been used previously to evaluate the Stanford, 

SpaCy and NLTK.  

 

Figure 38: Comparison of using Different Training Data Using Dimensions of 200 GloVeǯs 
pretrained embeddings trained on an SGD Classifier 

The precision values were better on the smaller and the largest datasets for training, as all 

datasets were split using Scikit Learnǯs train test split class where the train and test data is 

set to 0.25 in proportion to the input dataset it may suggest the Fiji text document is so 

small that the result are better as there are not many new words in the test data compared 

to the training data the classifier has already learned on. Recall values for NER dataset 

have the highest value. F1 values decrease as the size of the datasets used to train the 

classifier decrease.  

Moving forward the New Zealand data is being used to compare the following variables to 

ensure it reflects the changing variable effecting results. Instead of using pre-trained 

embeddings to transform words to embeddings scikit learn have a count vectorizer that 

can be used to transform the words to word vectors and therefore train the classifier.  
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Figure 39: Comparing Count Vectorizer vs GloVe's pretrained embeddings to train an SGD 
Classifier both using New Zealand data for training 

The training datasets appear to be not large enough that the embeddings do not perform 

better than count vectorizer. The New Zealand locality data has a considerable repetition 

of words therefore it may be easier for the classifier to learn associations between entities 

and context words. With this the bag of words representation could be better suited and is 

the reason why it performs better than pre-trained embeddings.  

In future pre-trained embeddings would still better suit for classifier writing as they take 

time away for text pre-processing and are trained on large datasets that the programmer 

would not have access to. Although count vectorizers may have more dimensions than 

embeddings the pre-trained embeddings may be better at encapsulating the meaning 

within their dimensions. Another positive of using pre-trained embeddings are that the 

embedding feature of a word to be classified can have 200 non-zero values (for 

embeddings of 200 dimensions), where for the count vectorizer of the same word to be 

classified although there will be more dimensions there will be more zero values.  

Increasing the dimensions of the embeddings can change the performance of the 

classifier: 
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Figure 40: Comparing the different dimensions of GloVe's embeddings to train an SGD 
Classifier using New Zealand Data for training 

Surprisingly, the results of the classifiers with increasing dimensions of embeddings are 

not what was expected. Precision decreases with the increasing dimensions but increase 

from 200 to 300 dimensions. Recall is not impacted by the increasing of the dimensions 

and F1 also decreases but only very slightly.  

The training data is small and therefore would probably be better suited using a bag of 

words representation. As pre-trained embeddings may have been the poor choice for this 

classifier the results of changing the dimensions of the embeddings could be impacted and 

not produce the results that would be expected. Therefore, it may be beneficial to test the 

changing embeddings on larger datasets to see if the results are common or if these are 

anomalies as the training data is small.  

Classifiers can perform better if they can capture context of a sentence, taking n number 

of words from either side of the word to be classified can improve the classifiers 

performance.  
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Figure 41: Comparing window sizes of embeddings around the word to be classified using 
GloVe's pretrained embeddings to train an SGD Classifier using New Zealand data for 
training 

As expected, increasing the number of words taken left and right of the word to be 

classified increasing its accuracy performance. All three values precision, recall and f1 

increased with the increasing number of words taken either side, although precision 

stayed the same when increased from 3 to 5 words. As this experiment would not be able 

to go underway without using pre-trained embeddings it demonstrates another benefit of 

using pre-trained embeddings for classifier training.  
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Figure 42: Comparing Averaging Embeddings vs Not-Averaging Embeddings with window 
size of 3 and 5 using New Zealand data for training. The Number in the bracket contains the 
window sized used.  

Using 3 embeddings left and right of the word to be classified and the embedding of the 

word as an example will result in 700 data values being used for each word when training 

with pre-trained embeddings of dimensions of 100. When taking the average, the training 

data for the classifier will go from 700 data values to 100. With the less data values in 

training the accuracy measurements decrease. As predicted, all precision, recall and F1 

values decrease when taking the average for training instead of all the values.  
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6.0 Future Work 

The goal of this project is to Ǯrecognise and disambiguate place names in a text documentǯ, 
throughout the project recognising place names has been successful and evaluating the 

techniques that do so. This section includes what shortcomings in the implementation 

have occurred and what future work could be done to further the completion of this 

project goal.  

6.1 Training of NER Tools 

To improve the technique of recognising place names in a text document further training 

on NER tools could be required. SpaCy gives clear tutorial on training the NER tool and 

update the model to perform better.   

SpaCy model could be trained to improve NER on human annotated data like the locality 

data. Using New Zealand locality data for training which has sentences including 

ǲWhareroa Roadǳ which can be used in training to allow the model to learn that a word 

with ǲrdǳ, ǲRDǳ or ǲroadǳ after is a location. It can use that information and the training 

example to remember next time it comes across a sentence such as ǲMangaone Rdǳ to 
realise it is a location or a ǲFACǳ, not an organisation which SpaCy previously labelled it 

as. Previously, SpaCy has labelled a sentence such as ǲ3.52 km south of Mangatoetoenui 

Stationǳ as a quantity due to the presence of the 3.52, further training of the SpaCy model 

could result in the model recognising the location separately from the quantity. SpaCy 

model could also be trained to recognise locations based on the presence of spatial 

relations such as Ǯnearǯ just like used in the example in New Zealand locality data: ǲNEAR 

ROTORUA AIRPORTǳ. SpaCy identified ǲAlexandraǳ in the locality data as a location but 

also identifies it as a name, training could help by improving the SpaCy model to see that 

the same word did have the same entity of being a location.   

To ensure the accuracy results of SpaCy are easier to compute and compare the Stanford 

and NLTK future work could include grouping some of SpaCyǯs entity labels together and 

creating a program to input SpaCyǯs training data in an easier way. As many locations such 

as oceans or highways are given the label ǮLOCǯ or ǮFACǯ where countries and cities are 

given the label ǮGPEǯ it could be argued that SpaCy is correctly identifying them as 

locations but in Stanford and NLTK they will all be labelled ǮLOCATIONǯ. To achieve a 

better comparison of the three NER tools a function could be included to group the labels 

that all account for a location in SpaCy to one location label. This will help compare the 

three tools as they will all have Ǯlocationǯ as a label for the same things. To calculate the 

accuracy measurements of SpaCy they must be in the training data form showing in 3.1.4. 

To input each line and entities separately takes an enormous amount of human time so an 

idea to make this process more elegant and faster could be to input a file of annotated 

data and convert it to a json file in the correct format.  
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6.2 Using Different Pre-Trained Embeddings 

Future work on creating NER classifiers could be using different pre-trained embeddings 

other than GloVe used in the project examples include FastText and Word2Vec. SpaCy 

also have a build in embeddings that could be used to train a classifier. It would be 

beneficial to see how the different pre-trained embedding sources affected the accuracy 

performance.  

6.3 Disambiguating  

The task of disambiguating place names was not implemented in this project. Further 

work could include implementing tools to do this. The Edinburgh GeoParser is a system 

that can detect and disambiguate a place name with respect to a gazetteer [2010, Grover, 

Tobin, Bryne, Woollard, Reid, Dunn, Ball]. The geoparser can be used with several 

gazetteers and can be used to process a variety of input text processes. The Edinburgh 

Geoparser can be downloaded via The Language Technology Group website 

(https://www.ltg.ed.ac.uk/software/) and is described as a toolkit for georeferencing text. 

Like the NER tools that have been evaluated within the project The Edinburgh Geoparser 

could be evaluated to get accuracy measurements for its performance.  

6.3 Training Classifiers using Different Features 

An aim that was not implemented was to create a classifier that can detect and geo-

reference a place name by the presence of biological specimens described in text. The New 

Zealand locality data used in the project comes from ǲLandcare New Zealandǳ which 

describes biological specimens that occur in places. The places are described by region, 

map series, map number, east coordinates, north coordinates, locality, and altitude. All 

this information of the biological specimens can be as features in a classifier so when the 

classifier sees a certain biological specimen in a text document it can recognise and geo-

reference a place name from the specimens would occur.  

  

https://www.ltg.ed.ac.uk/software/
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7.0 Conclusions 

The goal of the project is to Ǯrecognise and disambiguate place names in a text documentǯ, 
as disambiguating was not implemented the conclusions will include the work of 

detecting place names. This section will conclude which of the NER tools used are the best 

option and whether they are better in comparison to the classifiers written.  

Using the precision, recall and F1 values to compare the NER tools the conclusion is 

Stanford NER gives the best performance results. Stanford gives the best precision value of 

0.98 in comparison of NLTKǯs value of 0.94 and SpaCyǯs value of 0.83. Stanford also 

achieves the best recall of 0.76 in comparison to SpaCyǯs 0.57 value and NLTKǯs 0.48 recall 

value. It subsequently has the best F1 value of 0.85 with SpaCy in second with 0.65 and 

NLTK with the worst score of 0.61.  

Stanford performs NER very slowly in comparison to the other NER tools with an average 

of 4.34 seconds which is significantly higher than NLTKǯs average speed of 0.37 seconds 

and SpaCyǯs average speed of 0.12 seconds. Therefore, it is concluded Stanford would not 

be the best choice going forward especially as it could be dealing with exceptionally large 

documents in practice.  

SpaCy gives high precision, recall and F1 values, allows you to train the model and 

performs faster than Stanford so the conclusion I have achieved is SpaCy is the best NER 

tool to use in the future. As it also gives a greater range of labels for the entities it could be 

further adapted to improve disambiguating place names in future work as roads and lakes 

will not be classed as a location but can be used to help decide which place name the text 

is discussing i.e. if the Hudson River is labelled ǮLOCǯ by SpaCy it would be clear that the 

word ǮYorkǯ in the same text would be referring to ǮNew York Cityǯ and not the English 

city.  

Using the average of precision, recall and F1 values of the SGD Classifier trained using pre-

trained embeddings and the NER Tools we can compare their performance in terms of 

accuracy. 

When using pre-trained embeddings to train an SGD Classifier the average precision value 

is 0.58 which is lower than when using SpaCy with 0.83, NLTK with 0.94 and Stanford 

with 0.98 therefore if false positives had a very high cost then using the NER Tools would 

be more beneficial.  

SGD Classifier trained with pre-trained embeddings gave a higher recall value of 0.62 

compared to SpaCy with 0.57 and NLTK with 0.48 but did have a lower recall value than 

Stanford with 0.76. As recall has a higher cost in this project as false negatives can lead to 

the incorrect disambiguation of a place name then it would be suggested to use Stanford 

or the SGD classifier trained with pre-trained embeddings to reduce the amount of false 

negatives identified.  
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F1 gives a value than can be used as a substitute for the overall accuracy. The SGD 

classifier trained with pre-trained embeddings gave a F1 value of 0.55 which is lower than 

NLTKǯs value of 0.61, SpaCyǯs F1 value of 0.57, and Stanfordǯs value of 0.85. Overall, using 

the F1 values gives the conclusion that the NER Tools would be preferred than the SGD 

Classifier trained with pre-trained embeddings. 

In conclusion taking words either side of the word to be classified as input for training 

increases performance measurements of a classifier. The window size refers to the number 

of words either side of the word to be classified taken as features for training. With a 

window size of 0 the precision value is 0.58, increasing the window size to 3 the precision 

value increases to 0.60 and increases again to 0.63 when the window size increases to 5. 

The recall does not follow the exact same pattern as precision as with a window size of 0 

the recall value is 0.62, as the window size increases to 3 the recall value increases to 0.64 

but as the window size increases to 5 the recall actually decreases to 0.58. As F1 value gives 

a better overall value of accuracy increasing the window size does increase the F1 value. 

Window size of 0 gives 0.55 F1 value, then the window size of 3 gives F1 value of 0.60 and 

the window size of 5 gives a 0.61 F1 value. Overall, the larger the window size the greater 

the accuracy performance but as recall has high costs in this project it would be better to 

use a window size of 3 as it gives the best recall value.  

In summary, on formally written text documents Stanford and SpaCy work extremely well 

to recognising location entity labels correctly and SpaCy works amazingly fast which gives 

it its edge of being the better NER. The NER tools already published work better than the 

current classifiers written for this project.  
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8.0 Reflection on Learning 

Completing this final year project has been rewarding in furthering my skills in 

programming and project management. This project has broadened my areas of research 

as machine learning and natural language processing is an area of computer science, I had 

not previously had experience in.  

8.1 Work Done 

Starting this project, I had no experience in working with machine learning algorithms or 

natural language processing. I have managed to learn how algorithms work, how 

classifiers can be trained and how they are evaluated. I feel that my programming skills 

and understanding how to optimise libraries and imported modules have improved within 

this project. Although disambiguating place names was not implemented the techniques 

to recognise a place name was implemented successfully and code was written to evaluate 

them. To create a classifier using Scikit Learn library to perform NER is a massive 

achievement for me and a symbol of how far I have progressed in this area.  

Reflecting on my progress on the project I would have started following more practical 

tutorials of machine learning and NLP during research to get a better idea of how the tools 

worked and how classifiers are trained. This could have optimised my time during 

classifier creation and could have possibly allowed me to gain the time to move on to 

disambiguating place names.  

8.2 Time Management  

The initial plan was ambitious in hindsight due to amount of research required. 

Developing a new skill in machine learning is not something that can be developed 

quickly but rather developed constantly over a long period of time. From the beginning of 

the project to now I have gained a greater understanding of machine learning classifiers 

and natural language processing, it was unrealistic to expect this knowledge to be gained 

within the time frame proposed which resulted in some aspects like disambiguating not 

being implemented.  

The initial plan was not followed. The initial plan outlined completing the task of NER, 

then disambiguation and finally evaluating and creating classifiers to improve 

performance of the tasks. The plan changed to completing NER, evaluating NER tools and 

then creating classifiers to try and increase the performance measurements of NER before 

moving on to disambiguation. I believe it was better to change the plan as I gained 

valuable skills in the process of evaluating NER tools and creating classifiers for NER 

which would be needed when the task of disambiguation was carried out. When carrying 

out the first tasks in the initial plan it came apparent that further work on NER and 

classifiers would be required to move on in the project. I believe I am now in a position 

that moving forward I have the skills required if I were to carry out the rest of the project. 
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Skype meetings were set up regularly between myself and my supervisor to discuss project 

progress and what could be done next. These calls also gave a great hand in explaining 

machine learning processes and how NERǯs, embeddings and classifier training worked. 

These meetings allowed to be to continue to keep focus on the tasks in hand and guided 

me to change the plan when necessary.  
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9.0 Appendices 

9.1 Text Documents 

Below give the text documents used as data sources described in 2.12.  

New Zealand:  

New Zealand is a sovereign island country in the southwestern Pacific Ocean. The country 

has two main landmasses the North Island, and the South Island and around 6OO smaller 

islands. It has a total land area of 268,OOO square kilometres. New Zealand is about 

2,OOO kilometres east of Australia across the Tasman Sea and 1,OOO kilometres south of 

the Pacific island areas of New Caledonia, Fiji, and Tonga. Because of its remoteness, it 

was the last large habitable landmass to be settled by humans. During its long period of 

isolation, New Zealand developed a distinct biodiversity of animal, fungal, and plant life. 

The country's varied topography and its sharp mountain peaks, such as the Southern Alps, 

owe much to the tectonic uplift of land and volcanic eruptions. New Zealand's capital city 

is Wellington, and its most populous city is Auckland. 

South East England:  

South East England is the most populous of the nine official regions of England at the first 

level of NUTS for statistical purposes. It consists of Berkshire, Buckinghamshire, East 

Sussex, Hampshire, the Isle of Wight, Kent, Oxfordshire, Surrey, and West Sussex. As with 

the other regions of England, apart from Greater London, the south east has no elected 

government. 

Cwmbran: 

Cwmbrân is a new town in Wales lying within the historic boundaries of Monmouthshire 

it forms part of the county borough of Torfaen Cwmbran was designated as a new town in 

1949 to provide new employment opportunities in the south eastern portion of the South 

Wales Coalfield. 

America:  

The United States of America, commonly known as the United States or America, is a 

country consisting of 50 states, a federal district, five major self-governing territories, and 

various possessions O. At 3.8 million square miles, it is the world's third or fourth - largest 

country by total area and is slightly smaller than the entire continent of Europe I-LOC. 

Most of the country is located in central North America between Canada and Mexico I-

LOC. With an estimated population of over 328 million, the U.S. is the third most 

populous country in the world O. The capital is Washington, D.C., and the most populous 

city is New York City. 
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The United States is a federal republic and a representative democracy. It is a founding 

member of the United Nations, World Bank, International Monetary Fund, Organization 

of American States, NATO, and other international organizations. It is a permanent 

member of the United Nations Security Council. Its President is Donald Trump. 

Australia: 

Australia, officially the Commonwealth of Australia, is a sovereign country comprising the 

mainland of the Australian continent, the island of Tasmania, and numerous smaller 

islands. It is the largest country in Oceania and the world's sixth-largest country by total 

area. The population of 26 million is highly urbanised and heavily concentrated on the 

eastern seaboard. Australia's capital is Canberra, and its largest city is Sydney. The 

country's other major metropolitan areas are Melbourne, Brisbane, Perth, and Adelaide.  

Australia is the oldest flattest, and driest inhabited continent, with the least fertile soils. It 

has a landmass of 7,617,930 square kilometres A megadiverse country, its size gives it a 

wide variety of landscapes, with deserts in the centre, tropical rainforests in the north-

east, and mountain ranges in the south-east. Its population density, 2.8 inhabitants per 

square kilometre, remains among the lowest in the world. Australia generates its income 

from various sources including mining-related exports, telecommunications, banking, 

manufacturing, and international education. 

Iceland: 

Iceland is a Nordic island country in the North Atlantic, with a population of 360,390 and 

an area of 103,000 km2, making it the most sparsely populated country in Europe. The 

capital and largest city is Reykjavík. Reykjavik and the surrounding areas in the southwest 

of the country are home to over two-thirds of the population. Iceland is volcanically and 

geologically active. The interior consists of a plateau characterised by sand and lava fields, 

mountains, and glaciers, and many glacial rivers flow to the sea through the lowlands. 

Iceland is warmed by the Gulf Stream and has a temperate climate, despite a high latitude 

just outside the Arctic Circle. Its high latitude and marine influence keep summers chilly, 

with most of the archipelago having a tundra climate. 

Finland: 

Finland Swedish : Finland, Finland, officially the Republic of Finland is a Nordic country 

in Northern Europe bordering the Baltic Sea, Gulf of Bothnia, and Gulf of Finland, 

between Sweden to the west, Russia to the east, Estonia to the south, and north-eastern 

Norway to the north. The capital and largest city is Helsinki. Other major cities are Espoo, 

Tampere, Vantaa, Oulu, Turku, Jyväskylä, Lahti and Kuopio. 

South Wales: 
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South Wales is a loosely defined region of Wales bordered by England and the Bristol 

Channel to the east and south. It has a population of around 2.2 million, almost three-

quarters of the whole of Wales, including 400,000 in Cardiff, 250,000 in Swansea and 

150,000 in Newport. Generally considered to include the historic counties of Glamorgan 

and Monmouthshire, South Wales extends westwards to include Carmarthenshire and 

Pembrokeshire. In the western extent, from Swansea westwards, local people would 

probably recognise that they lived in both south Wales and west Wales. The Brecon 

Beacons National Park covers about a third of South Wales, containing Pen y Fan, the 

highest British mountain south of Cadair Idris in Snowdonia. 

Southern France: 

Southern France, also known as the South of France or colloquially in French as le Midi, is 

a defined geographical area consisting of the regions of France that border the Atlantic 

Ocean south of the Marais Poitevin, Spain, the Mediterranean Sea and Italy. It includes: 

Nouvelle-Aquitaine in the west, Occitanie in the centre, the southern parts of Auvergne-

Rhône-Alpes  in the northeast, Provence-Alpes-Côte d'Azur in the southeast, as well as the 

island of Corsica in the southeast. Monaco and Andorra are sometimes included in 

definitions of Southern France although they are principalities.  

The term Midi derives from mi and di in Old French, comparable to the term 

Mezzogiorno from the Southern Italy. The time of midday was synonymous with the 

direction of south because in France, as in all of the Northern Hemisphere north of the 

Tropic of Cancer, the sun is in the south at noon. The synonymy existed in Middle French 

as well, where meridien can refer to both midday and south. The Midi is considered to 

start at Valence, hence the saying "à Valence le Midi commence". 

Fiji: 

Fiji, officially the Republic of Fiji is an island country in Melanesia, part of Oceania in the 

South Pacific Ocean about 1,100 nautical miles northeast of New Zealand's North Island. 

Its closest neighbours are Vanuatu to the west, New Caledonia to the southwest, New 

Zealand's Kermadec Islands to the southeast, Tonga to the east, the Samoas and France's 

Wallis and Futuna to the northeast, and Tuvalu to the north. Fiji consists of an 

archipelago of more than 330 islands of which 110 are permanently inhabited and more 

than 500 is lets, amounting to a total land area of about 18,300 square kilometres. The 

most outlying island is Ono i Lau. The two major islands, Viti Levu and Vanua Levu, 

account for 87% of the total population of 883,483. The capital, Suva, on Viti Levu, serves 

as the country's principal cruise ship port. About three-quarters of Fijians live on Viti 

Levu's coasts, either in Suva or in smaller urban centres such as Nadi where tourism is the 

major local industry or Lautoka, where the sugar cane industry is paramount. Due to its 

terrain, the interior of Viti Levu is sparsely inhabited. 

Philippines: 
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The Philippines, officially the Republic of the Philippines, is an archipelagic country in 

Southeast Asia. Situated in the western Pacific Ocean, it consists of about 7,641 islands 

that are broadly categorized under three main geographical divisions from north to south: 

Luzon, Visayas and Mindanao. The capital city of the Philippines is Manila and the most 

populous city is Quezon City, both part of Metro Manila. Bounded by the South China Sea 

on the west, the Philippine Sea on the east and the Celebes Sea on the southwest, the 

Philippines shares maritime borders with Taiwan to the north, Japan to the northeast, 

Palau to the east, Indonesia to the south, Malaysia and Brunei to the southwest, Vietnam 

to the west, and China to the northwest. 
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