
1 | P A G E

Recognising and Disambiguating
Place Names in Text Documents

SUPERVISOR – CHRIS JONES

Ellie Robins | Individual Project | June 2020

PAGE 2

Abstract

Named Entity Recognition is required for recognising and disambiguating place names in

a text document. Named Entity Recognition is a branch of Natural Language Processing

which labels the known entities in a piece of text. There are many tools already available

that can achieve NER.

In this project, I have used Named Entity Recognition tools to achieve the task of

recognising place names and evaluated them by calculating their precision, recall and F1

values. I have trained baseline classifier on specific training data to allow them to perform

NER. The NER tools and Classifiers are compared to see which the best options for Named

Entity Recognition are.

Acknowledgments

I would like to thank my supervisor Chris Jones for his continued support and guidance

throughout the project.

Table of Contents

Abstract ... 2

Acknowledgments... 2

Table of Contents .. 2

Table of Figures ... 5

1.0 Introduction ...8

1.1 Project overview ..8

1.2 Aims and objectives ...8

2.0 Background.. 10

2.1 Machine Learning .. 10

2.2 Natural Language Processing .. 10

2.3 Speech Tagging ... 11

2.4 Dependency Parsing ... 11

2.5 Named Entity Recognition ... 11

2.6 Software Tools ..12

PAGE 3

2.6.1 Stanford Natural Language Processing Group ..12

2.6.2 Stanford Named Entity Recognition ... 13

2.6.3 NLTK ... 14

2.6.4 SpaCy... 14

2.6.5 SpaCy Model and Language ... 14

2.6.7 SpaCy Named Entity Recogniser ... 15

2.6.8 Comparison of NLTK, Stanford NLP and SpaCy ... 16

2.7 Classifiers ... 16

2.8 Scikit Learn ... 17

2.9 Embeddings .. 17

2.9.1 Taking N Number of Words Either Side of Word to be Classified 18

2.10 Bag of words ... 18

2.11 Accuracy, Precision, Recall and F1 Values .. 18

2.12 Data Sources ... 20

3.0 Approach ..21

3.1 Accuracy of the NER Tools ...21

3.1.1 Testing Stanford NER for Accuracy ..21

3.1.2 Measuring NLTK for Accuracy .. 22

3.1.3 Precision, Recall and F1 values for Stanford NER and NLTK 22

3.1.4 Accuracy Measurements for SpaCy .. 22

3.1.5 Training SpaCy... 23

3.2 Using New Zealand Data ... 26

3.3 Speed of the NER Tools ... 26

3.4 Moving on from Current NER Tools .. 26

3.4.1 Developing a Classifier .. 26

3.5 Bag of Words vs Embeddings .. 26

3.5.1 GloVe .. 27

3.5.2 Vectorizing .. 27

3.5.3 Comparison of Bag of Words vs Embeddings .. 27

3.5.4 Improving a Baseline Classifier .. 28

PAGE 4

3.5.5 Averaging Embeddings ... 28

4.0 Implementation .. 29

4.1 NER Tools ... 29

4.1.1 Annotating Data for Stanford and NLTK .. 29

4.1.2 Accuracy of Stanford and NLTK .. 31

4.1.3 Precision, Recall and F1 values of NLTK, Stanford and SpaCy 33

4.1.4 Speed of Stanford, NLTK, SpaCy .. 37

4.1.5 Using the NER Tools on New Zealand Locality Data .. 39

4.2 Classifiers ...40

4.2.1 Count Vectorizer ...40

4.2.2 Using Pre-trained Embeddings .. 42

4.2.4 Different Scikit Learn Classifiers.. 45

4.2.5 Using Surrounding Words to Classify a Word .. 45

4.2.6 Averaging Embeddings ..48

5.0 Results and Evaluation .. 50

5.1 NER Tools ... 50

5.1.1 Comparison of NLTK and Stanford NER Accuracy Results 50

5.1.2 Precision, Recall, F1 Values .. 51

5.2.3 Comparing Speed of the NER Tools ... 53

5.2.4 Using New Zealand Locality Data for NER Tools .. 54

5.2.5 Evaluation of NER Tools ... 56

5.2 Classifiers ... 59

5.2.1 Count Vectorizer ... 59

5.2.2 Pre-trained Embeddings ...60

5.2.3 Averaging Embeddings ... 62

5.2.4 Using Different Classifiers .. 63

5.2.4 Evaluation of Classifier Results .. 65

6.0 Future Work ... 71

6.1 Training of NER Tools .. 71

6.2 Using Different Pre-Trained Embeddings .. 72

PAGE 5

6.3 Disambiguating ... 72

6.3 Training Classifiers using Different Features ... 72

7.0 Conclusions ... 73

8.0 Reflection on Learning.. 75

8.1 Work Done ... 75

8.2 Time Management .. 75

9.0 Appendices .. 77

9.1 Text Documents ... 77

References ... 81

Table of Figures

Figure 1: Entity Labels for SpaCy ... 15

Figure 2: Confusion Matrix ... 18

Figure 3: Confusion Matrix showing True/False Positives and Negatives 18

Figure 4: Accuracy Equation ... 19

Figure 5: Precision Equation ... 19

Figure 6: Recall Equation .. 19

Figure 7: F1 Value Equation .. 20

Figure 8: Training SpaCy Diagram ... 23

Figure 9: Flow Chart for Accuracy .. 33

Figure 10: Flow Chart for Precision, Recall and F1 for Stanford and NLTK 35

Figure 11: Flow Chart for Precision, Recall and F1 values for SpaCy 37

Figure 12: Flow Chart for Measuring Speed ... 38

Figure 13: Flow Chart for Count Vectorizer Implementation .. 42

Figure 14: Flow Chart for Using Pre-trained Embeddings ...44

Figure 15: Flow Chart for Taking n Embeddings Around Word to be Classified for Training

a Classifier ... 47

PAGE 6

Figure 16: Flow Chart for Averaging n Embeddings around Word to be Classified for

Training a Classifier .. 50

Figure 17: Accuracy Measurements for Stanford and NLTK .. 51

Figure 18: Precision, Recall and F1 for Stanford ... 52

Figure 19: Precision, Recall and F1 for NLTK.. 53

Figure 20: Precision, Recall and F1 for SpaCy .. 53

Figure 21: Speed Measurements.. 54

Figure 22: Precision, Recall and F1 value for Stanford using Locality Data 55

Figure 23: Precision, Recall and F1 values for NLTK using Locality Data 55

Figure 24: Precision, Recall and F1 for SpaCy using Locality Data .. 56

Figure 25: Evaluation of Precision, Recall and F1 for NER Tools ... 57

Figure 26: Average Speed Evaluation ... 58

Figure 27: Comparing the NER tools using the Locality Data ... 59

Figure 28: Using Count Vectorizer for training an SGD Classifier.. 59

Figure 29: Using GloVe's pretrained embeddings to train an SGD Classifier.......................60

Figure ͟͜: Using Gloveǯs pre-trained embeddings and 3 words either side of word to be

classified to train an SGD Classifier ... 61

Figure 31: Using GloVe's pre-trained embeddings and 5 embeddings either side of word to

be classified to train an SGD Classifier .. 61

Figure 32: SGD Classifier trained with Average of Embeddings 3 to left and 3 to right and

word to be classified ... 62

Figure 33: SGD Classifier Trained Using Average of Embeddings 5 to left, 5 to right and the

word to be classified ... 63

Figure 34: Using GloVe's pretrained embeddings to train a Linear SVC classifier............... 63

Figure 35: Using GloVe's pretrained embeddings and taking 3 embeddings either side of

word to be classified to train a Linear SVC Classifier ..64

Figure 36: Using GloVe's pretrained embeddings and taking 5 embeddings either side of

the word to be classified to train a Linear SVC Classifier ... 65

Figure ͣ͟: Using NZ data with word embeddings obtained from GloVeǯs pretrained
embeddings with dimension of 200. The classifier uses features of embeddings of the word

to be classified. .. 65

Figure ͤ͟: Comparison of using Different Training Data Using Dimensions of ͜͜͞ GloVeǯs

pretrained embeddings trained on an SGD Classifier .. 66

PAGE 7

Figure 39: Comparing Count Vectorizer vs GloVe's pretrained embeddings to train an SGD

Classifier both using New Zealand data for training ... 67

Figure 40: Comparing the different dimensions of GloVe's embeddings to train an SGD

Classifier using New Zealand Data for training ...68

Figure 41: Comparing window sizes of embeddings around the word to be classified using

GloVe's pretrained embeddings to train an SGD Classifier using New Zealand data for

training ... 69

Figure 42: Comparing Averaging Embeddings vs Not-Averaging Embeddings with window

size of 3 and 5 using New Zealand data for training. The Number in the bracket contains

the window sized used. ... 70

PAGE 8

1.0 Introduction

1.1 Project overview

Natural Language Processing (NLP) is a field of linguistics and machine learning which

allows computers to analyse, read and manipulate human written data and text. Named

Entity Recognition (NER) is a branch of NLP which takes the individual entities of a text

document and assigns a tag to that entity. It can be an essential task for social media

applications such as Facebook for promotional advertisement, applications such as google

maps to give the most suitable options for searches and other applications that could use

customer interactions to improve the experience of the user. Most branches of NLP are

challenging due to the richness and ambiguity of natural language.

My project is an information retrieval project that is concerned with developing machine

learning methods to perform this task. Geo-references are a common place task in GIS

that involves associating information with same location in physical space which can take

different forms of postal addresses, place names, post codes and coordinates. This location

should only refer to one place which is typically is the case with given reference. In a

document identifying references to location helps understand its geographical context.

Geoparsing will include identifying geo-references which will use named entity

recognition which is the process of assigning words or groups of words to a set of

predefined classes or categories such as locations, person, organisation etc. Most named

entity recognition algorithms exploit lists of known locations. These lists are called

gazetteers. The task can be challenging because of the difficulty of distinguishing genuine

place names from other terms, such as the names of people and organisations, and

because some place names (such as Newport) are ambiguous due to different places

having the same name. There are various approaches to geoparsing which include simple

list lookup which is simple fast and language independent, knowledge or rule-based

methods which uses surrounding context to capture geographical context. Machine

learning approaches to geoparsing employ types of evidence that a name is a place name

based on whether it occurs in a gazetteer or if it is preceded by spatial relations such as

Ǯnearǯ or Ǯwithinǯ and whether it is a particular instance of a vernacular place name such as

ǮBig Appleǯ is associated to New York City, USA.

Looking at current NERǯs being used will give a good idea of how the algorithms work and
how they perform. This project will see the efficient working classifiers and where they

have opportunities to improve as well as using machine learning libraries such as Scikit-

Learn to develop a classifier and how that can be done and how to improve a custom

written NER.

1.2 Aims and objectives

The first aim of the project is the use the current standards for NER to detect a place name

in a text document. Objectives of this aim will include research and understanding

PAGE 9

machine learning algorithms as having a greater understanding of how machine learning

work and how the algorithms are trained will help use the NER algorithms to their best

ability and further on train a classifier from scratch.

Objectives:

- Research machine learning on a whole to ensure that there is a clear understanding

while starting the project

- Understand and download the relevant tools and libraries required while working

with machine learning

- Research the standard NER algorithms used currently

- Apply them and use them to detect entities in text documents

Secondly, aiming to evaluate current NER tools by getting accuracy measurements of

overall accuracy and the furthering on to precision, recall and F1 value.

Objectives:

- Evaluate the NER tools for accuracy using overall accuracy, precision, recall and F1

values.

- Evaluate the NER tools for speed

The next aim is to use a machine learning library to create a classifier that predicts if the

word is a location or not in a corpus. The same accuracy measurements that are used to

evaluate the current standards of NER can be used to evaluate the created classifier.

Objectives:

- Research machine learning libraries that can be used to create classifier (e.g. Scikit

Learn) and how to create a classifier using those libraries

- Research pre-trained embeddings downloads and how they are used

- Create a classifier using pre-trained embeddings

- Evaluate the classifier using different embeddings, different dimensions of

embeddings, different training data and different classifiers

PAGE 10

2.0 Background

This section focuses on the background research of the tools that will be used to detect

place names in a text document. Machine learning explains how supervised and

unsupervised algorithms are trained. The following background research of NLP and

classifiers will give a helpful explanation of how the software tools in named entity

recognition are used and how classifiers can be trained as a way of improving performance

of the standard tools.

2.1 Machine Learning

Machine learning is an application of artificial intelligence which gives systems the ability

to learn and improve from experience without being explicitly programmed. It focuses on

developing computer programs that can access data and use it to learn. The aim of

machine learning is to allow computers to learn automatically without assistance of

human intervention. [Expert System Team, 2017]

There are 6 stages of machine learning which include data collection, data storing, data

analysis, algorithm development, checking algorithm generated and use of the algorithm

to further conclusions. To look for patterns various algorithms are used which are divided

into unsupervised and supervised learning. Unsupervised learning is where the machine

receives only a set of input data, there after the machine is set up to determine the

relationship between entered data and any other hypothetical data. Unsupervised

machine learning implies that the computer itself will find any relationships and patterns

between data sets. Supervised machine learning implies computer ability to recognise

elements based on samples provided to the machine. The computer studies elements and

develops the ability to recognise new data based on the previous data, examples of

supervised machine learning algorithms include decision trees and linear regression.

[Kgarkovyna, 2019]

Machine learning often works with high dimensional data which is best represented by

matrices. Therefore, mathematical analysis derivatives and gradients will be needed for

optimisation problems. The main data analysis libraries are NumPy, Pandas, Scikit, SciPy,

iPython and matplotlib. [Kgarkovyna, 2019]

2.2 Natural Language Processing

Natural language processing is a specialized area of study of linguistics, computer science

and artificial intelligence. It is concerned with interactions between computers and

human languages especially how to program machines to process and analyse large

amounts of human language data. The study of natural language processing started

around the 1950s although work has been found from earlier periods. [Bates, M (1995)]

Natural language processing facilitates conversations between machines and humans, it

holds all the systems that allows a machine to handle interactions with a humanǯs

PAGE 11

language. [Goyal, Kumar, Gupta- October 2017] There are various applications of named

entity recognition which include question answering systems which try to find exact

answers to the natural language questions in a large document. A system with speech

tagging, dependency parsing and NER system can improve the speed and accuracy of

getting correct answers. Information extraction systems can include NER systems as

recognising named entities in any documents can help retrieve the correct information

requested by the user. NER systems can be used in opinion mining which is identifying

and extracting subjective information in source materials, therefore used in social media

for marketing. [IGI-Global] Other applications that refer to the location are how social

media advertise local businesses or for hotels in a location that is spoken about. A new

tool developed called GeoTxt, the app uses NER techniques which finds proper nouns and

associates them with given places or objects. [Karimzadeh, M., Pezanowski, S.,

MacEachren, A. M., & Wallgrün, J. O. (2019)]

2.3 Speech Tagging

In NLP Speech tagging is used to identify a word in a corpus to a corresponding part of

speech established on context and its definition. Part of speech tagging cannot have a

generic mapping as the same word can have several different part of speech tags in

different sentences based on different context. Speech tagging is not necessarily useful in

solving specific NLP tasks however it proves helpful in simplifying other problems.

[Malhotra, Godayal, 2018] When words have speech tags it could help NER algorithms to

determine its entity, for example if a word is identified as an adjective it would be easier

for the NER to realise the word cannot be a location and could help determine the word

surrounding the adjective e.g. ǮMelbourne is a beautiful cityǯ. The adjective Ǯbeautifulǯ is

used to describe the location ǮMelbourneǯ a couple of words before it.

2.4 Dependency Parsing

Dependency parsing is the task of assigning a syntactic structure to a sentence. The

syntactic structure represents its grammatical structure and defines the relationship

between head words and the other words. [Kadam, 2019] Dependency parsing can provide

the structure and relationship between the words as well as the subjects and objects of a

verb.

2.5 Named Entity Recognition

Named entity recognition, referred to as NER, takes unstructured texts extracts

information that label named entity in the texts. The texts are labelled from pre-defined

categories such as location, person, organisation, percentage etc. [Technopedia, 2015]

Many of the NER systems that have been developed take an unannotated text block and

produces annotations on them of the tags that have been identified and located. Named

entity recognition can also be referred to as entity identification or extraction. An example

of this would look like this:

file:///C:/Users/erobi/Desktop/Shirish%20Kadam
https://medium.com/@5hirish/dependency-parsing-in-nlp-d7ade014186?source=post_page-----d7ade014186----------------------

PAGE 12

Taking an unannotated block of text:

Simon Cowell bought a house in New York City in 2020. He operates his businesses under

Sony.

And producing annotation such as this:

Simon Cowell [person] bought a house in New York City [location] in 2020 [time]. He

operates his businesses under Sony [organisation]

Named entity recognition has a key role in many natural language processing applications

such as machine translation and question answering. The most popular and recognised

named entity recognition platforms, systems or algorithms are Stanford NER, NLTK and

SpaCy.

Stanford NER is a Java implementation of a named entity recogniser which comes with a

well-engineered feature extractor for NER and includes different options to define features

of the extractor. It is known as a CRF Classifier which is a conditional random field

classifier. The software gives a general implementation of a linear chain CRF sequence

model. The code from Stanford NER can be used to build a sequence model for NER by

training your own models labelled data. [Jenny Rose Finkel, Trond Gregnagr and

Christopher Manning. 2005]

NLTK, natural language tool kit, is a platform for building python programs to work with

human language data. NLTK has a module that is used for interfacing with Stanford tags.

It uses the download of the tagger models and then uses the StanfordNERTagger class to

write python program using the Stanford NER. NLTK has been described as Ǯa wonderful

tool for teaching, and working in, computational linguistics using Pythonǯ. [2001-2019

NLTK Project. Nitin MAdnani, Rami Al-Rfou]

SpaCy is a free open source library for natural language processing in python. It focuses on

providing software for production usage and features name entity recognition. [Honnibal,

2015]

Firstly, Stanford named entity recognition can be implemented as a way of detecting

named entities in text documents.

2.6 Software Tools

2.6.1 Stanford Natural Language Processing Group

The group is a group of employees at the Stanford University, researchers studying a post-

graduate, hired programmers and students studying at the university who work together

to create, develop and improve algorithms that allow machines to process and understand

human language. Their work can include a range between research in computational

linguistics and key applications in human language technology. The work of natural

language can be training the machine for sentence understanding, automatic question

PAGE 13

answering, translation between human and machine language, syntactic parsing and

tagging and models of text and visual scenes. Syntactic parsing and tagging are where

Stanford named entity recogniser would fall under. The Stanford NLP Group have a

recognisable feature which is their effective combination of sophisticated and depth

linguistic modelling and data analysis with machine learning and deep learning

approaches to natural language processing. Known technologies developed by the group

are coreference resolution system. The NLP Group at Stanford includes members of the

Linguistics and Computer Science departments and is part of the Stanford AI Lab.

2.6.2 Stanford Named Entity Recognition

Stanford NER is a developed named entity recognition which is a Java implementation. It

labels words in text that are names of organisations, persons and locations. Stanford NER

has different classes class 3, 4 and 7 which labels sequences of a words in a text which are

for class 3 names of organisations, persons and locations, for class 4 locations, persons,

organisations and miscellaneous entities and for class 7 locations, organisations, persons,

dates, times, percentages and money. Stanford NER makes other models available for

different languages and circumstances which includes models trained on the CoNLL 2003

English training data. Stanford NER is known as a CRF Classifier. CRF represents

conditional random field and a CRF classifier are a class of statistical modelling applied in

machine learning and pattern recognition. It can consider context while labelling samples.

Stanford NER software provides general implementation of a linear chain CRF sequence

models by users training their own models on labelled data. The software for Stanford

NER is available for download and licensed under the GNU General Public License. The

software packable includes components for command line use, running it as a server and a

Java API. [Jenny Rose Finkel, Trond Gregnagr and Christopher Manning. 2005]

When implementing Stanford NER, the NLTK Stanford interface can be implemented to

be able to use Stanford NER while writing the program in python. The Ǯnltk.tag.stanfordǯ
which is an interface to the Stanford Part-of-Speech and Named-Entity Taggers can be

used as long as certain pre-conditions are met. These pre-conditions are ensuring Stanford

tagger models are downloaded, which can be downloaded from the Stanford NER website,

and that the Stanford model environment variables are set.

The Stanford NLTK Tagger can be implemented which is a class for the named entity

tagging task using the Stanford. When referencing the Stanford tagger models the class of

the model is required which will change what named entities are recognised, the most

common class is class 3 which only identifies people, organisation and locations. The

Stanford NLTK Tagger is imported from the natural language tool kit Stanford module, it

includes the Stanford POS Tagger as well and consists of the tag function. The tag

function applies the most appropriate tag to the given token and returns a list of the

corresponding tagged tokens. A Python function open() can be used to read a text

document and used the Stanford NLTK tagger to tag the tokens in the text document

which returns the list of the tagged tokens from the text documents.

PAGE 14

2.6.3 NLTK

Natural language tool kit is an important platform for building Python programs to work

with human language data. It provides interfaces to large structured texts and language

resources as well as text processing libraries for classification, tokenisationǯs, tagging,

parsing and semantic reasoning. NLTK has a guide introducing programming

fundamentals along with topics in computational linguistics. NLTK provides an API

documentation making it suitable for people of all programming levels. NLTK can be used

to tag text, identify entities in text and display a parse tree which is a rooted tree that

represents the syntactic structure of strings in the text. [2001-2019 NLTK Project. Nitin

MAdnani, Rami Al-Rfou]

NLTK can use POS tag to tag tokens in text. The POS tagger processes a sequence of

words and tags an appropriate tag to the word token.

2.6.4 SpaCy

SpaCy is a python written open-source software library for advanced natural language

processing. It is an industrial strength natural language processing tool in python, which

unlike NLTK, is used more for production uses not just teaching and research. It is

designed for production use and will assist the programmer to build applications that

process and understand volumes of text. SpaCy can be used to build information

extraction as well as natural language understanding systems which can include machine

and human translation. It provides various linguistic annotations to understand texts

grammatical structure for example how words are related to each other and word types.

[Honnibal, 2015]

SpaCy can tokenize text during processing, which splits the text into words, punctuation

etc. which is done by applying rules specific to each language. Although punctuation rules

are usually generalised, but a tokenizer exception depends strongly on specifics of an

individual language so each available language on SpaCy has its own subclass that

includes lists of hard-codes data and exception rules. Once tokenization is completed

during processing, SpaCy can parse and tag a given text document. SpaCy can then make a

prediction of which tag or label most likely applies using a statistical model. The statistical

model is produced by showing a system enough examples for it to be able to make a

prediction of which label applies in this context. SpaCy takes on the job of named entity

recognition by being able to recognise various types of named entities in a document by

asking the model for a prediction. Like many other NERǯs models work on the examples

they are trained on so does not work perfectly. [2020 Explosion AI]

2.6.5 SpaCy Model and Language

SpaCy has models which can be installed as Python packages which allows them to be a

component of an application like any other module. SpaCy provides supports for many

PAGE 15

languages. There is a language class which is created when spacy.load() is called which

includes a shared vocabulary and language data.

2.6.7 SpaCy Named Entity Recogniser

The natural language processor library is assigned to loading the language model using

the SpaCy load option. The document is then assigned to nlp library which runs the

named entity recogniser on the text. Named entities are available as the Ǯentsǯ of a Ǯdocǯ in
SpaCy. The entities have text - which is the entity itself, the entities label which could be:

Type of Entity Description

PERSON People (including fictional)

NORP Nationalities, Religions or Political Groups

FAC Buildings, Airports, Highways

ORG Companies, Agencies, Institutions

GPE Countries, Cities, States, Counties

LOC Non-GPE locations – bodies of water,

mountains

PRODUCT Objects, vehicles, foods

Figure 1: Entity Labels for SpaCy

The above entities are the relevant labels that will be focused on during this project. The

full list can be found at https://spacy.io/api/annotation#named-entities.

The output of SpaCyǯs named entity recogniser differs from Stanford and NLTK.

The following text:

New Zealand is a sovereign island country in the southwestern Pacific Ocean. The country

has two main landmasses the North Island, and the South Island and around 6OO smaller

islands. It has a total land area of 268,OOO square kilometres. New Zealand is about 2,OOO

kilometres east of Australia across the Tasman Sea and 1,OOO kilometres south of the

Pacific island areas of New Caledonia, Fiji, and Tonga. Because of its remoteness, it was the

last large habitable landmass to be settled by humans. During its long period of isolation,

New Zealand developed a distinct biodiversity of animal, fungal, and plant life. The country's

varied topography and its sharp mountain peaks, such as the Southern Alps, owe much to

the tectonic uplift of land and volcanic eruptions. New Zealand's capital city is Wellington,

and its most populous city is Auckland.

Gives the following output when running the code for SpaCyǯs NER on the command line:

two CARDINAL

the South LOC

6OO CARDINAL

https://spacy.io/api/annotation#named-entities

PAGE 16

268,OOO CARDINAL

Australia GPE

1,OOO QUANTITY

Fiji GPE

Tonga PERSON

Many entities in the text documents were not identified therefore training on the model

will be required.

2.6.8 Comparison of NLTK, Stanford NLP and SpaCy

The three natural language processing technologies NLTK, Stanford NLP and SpaCy are all

well known for their natural language processing tools. NLTK and SpaCy are written in

Python and Stanford NLP is written in Java but there are various tools written to use

Stanford NLP in Python. Neural network modelǯs functionality is offered by SpaCy and

Stanford NLP but not NLTK. Integrated word vectors and entity linking are provided only

by SpaCy and not NLTK or Stanford NLP. Integrated word vectors, multi-language

support, tokenization, part-of-speech tagging, sentence segmentation and entity

recognition functionalities are provided by all three. Dependency parsing are not

provided by NLTK. Coreference resolution is only provided by Stanford NLP. [Explosion

AI (2), 2020] Using these examples as functionalities SpaCy offers the most in comparison

to Stanford NLP and NLTK.

2.7 Classifiers

Sci-kit learn have various amounts of classifiers that can be used for an NER. Many linear

models that include classifiers that can be used are Logistic regression, LinearSVC, SGD

and SVM. SVMǯs are support vector machines which are a set of supervised learning

methods for classification, SVM includes SVC, NuSVC and LinearSVC. SVM is effective in

high dimensional space which will be beneficial when using pretrained embeddings to get

the embeddings of a word when the dimension of the embeddings can go up to 300. Like

other classifiers the SVM classifiers take in two arrays one of shape [n_samples,

n_features] featuring the training samples and the other array is of shape [n_samples]

which include the class labels.

LinearSVC is a class capable of performing multi-class classification on a dataset, it is like

SVC with the kernel parameter set to linear. It is implemented in terms of liblinear (open

source machine learning library) which gives it more flexibility in choice of penalties and

loss functions, and it should scale better to larger number of samples. SGD Classifier can

optimise the same cost functions as LinearSVC by adjusting the penalty and loss

parameters. SGD also requires less memory to LinearSVC. All classifiers from sci-kit learn

have a fit function that fit the classifier with the given training data and returns an

PAGE 17

instance of the estimator. After the classifier has been fitted the instance of the estimator

can be used to predict test data which in this case would be word embeddings. [2019,

Scikit learn]

2.8 Scikit Learn

Scikit Learn is a software machine learning library written in Python. It has efficient tools

for predictive data analysis and is built on matplotlib, Numpy and SciPy. It features

various classification, regression and clustering algorithms including scale vector

machines. Scikit learn provides numerous tutorials to working with text classification and

other machine learning problems. [2011, Pedregosa et al]

2.9 Embeddings

A word embedding in machine learning is a taught representation for a text where the

words have the same meaning will have a similar representation naturally capturing their

meaning. One of the key breakthroughs of deep learning on natural language processing

issues is the approach to representing words and documents. Word embeddings are a

class of techniques which represent individual words as real-valued vectors in a predefined

vector space. Each word is mapped to one vector and the values of the vector are learned

in a way that resembles a neural network. The idea of using a dense distributed

representation for each word is key to the approach. The individual words can be

represented as high dimensional data and reduced to low dimensions of the embeddings.

Thousands or millions of dimensions would be required for sparse word representations.

The distributed representation is learned based on the usage of words. Meaning words

used in a similar way will have a similar representation and naturally capture their

meaning.

Word embedding methods learn a real-valued vector representation for a predefined fixed

sized vocabulary from large text. The learning process is either joint with the neural

network model on some task or it is an unsupervised process using the documents

statistics.

Using word embeddings start with learning embeddings before using them. For each

individual problem, case or project a word embedding can be learned which requires large

amount of text data to ensure useful embeddings are taught. The large text data can be

millions or billions of words. When training the word embeddings, it can be taught

standalone where the model is trained to learn the embedding and used as a part of

another model. It can also be learned as part of a large task specific model. Researchers

make pre-trained word embeddings available such as word2vec and GloVe which can be

used instead of training your own embeddings from scratch. To use pre-trained

embeddings the options are static where the embeddings are kept as static and used as a

component of the model. Or the updated option which is pre-trained embeddings to use

the increase the model, but the embedding is updated while training the model. [Jason

PAGE 18

Brownlee, 2017] The embeddings can be used to extract an embedding of a word from

training data and then using it to be used as features for a classifier.

2.9.1 Taking N Number of Words Either Side of Word to be Classified

When a classifier is trying to classify a word in a NER it could be beneficial to understand

the rest of the sentence to ensure the classification is correct. For example if a sentence

was ǲ) am ____ big appleǳ the blank word could be Ǯeatingǯ or Ǯin theǯ which will help a
human and a classifier understand what the bigram Ǯbig appleǯ is referring too. This

demonstrates how getting the embeddings of the words either side of the word to be

classifier can improve the performance of a classifier.

2.10 Bag of words

Bag of words is a method of extracting features from text documents which can be used

for a machine learning classifier. It creates a vocabulary of the unique words that occur in

the text document in the training data. It creates the vocabulary first by cleaning the text,

tokenizing, building the vocabulary and generating the vectors. Cleaning and tokenizing

text can be task specific, but the usual steps can include removing punctuation and

removing stop words. Stop words tend to be words with less than a certain several

characters e.g. Ǯtheǯ, Ǯaǯ, Ǯandǯ. Some limitations to the bag of words method is that it does

not consider the meaning of a word in the document and ignores the context in which it is

used. Also, the vector size can be large in terms of time and computation for large text

documents which may require the need of ignoring the words irrelevant to the case. [Free

Code Camp, 2018]

2.11 Accuracy, Precision, Recall and F1 Values

A classifier could possibly produce the following confusion matrix:

 Predicted/Classified

Actual

 Negative Positive

Negative 998 0

Positive 1 1

Figure 2: Confusion Matrix

Below demonstrates where true and false positives and negatives occur in a confusion

matrix:

 Predicted/Classified

Actual

 Negative Positive

Negative True Negative False Positive

Positive False Negative True Positive

Figure 3: Confusion Matrix showing True/False Positives and Negatives

PAGE 19

Accuracy refers to how close something is to a known value. Accuracy is total number of

correctly identified tags divided by the total number of tags in the data:

���ݎݑ��� = ݏ�ݒ�ݐ�ݏ݋� �ݑݎ� + ݏ�ݒ�ݐ�ݏ݋� �ݑݎ�ݏ�ݒ�ݐ���� �ݑݎ� + ݏ�ݒ�ݐ���� �ݑݎ� + ݏ�ݒ�ݐ�ݏ݋� �ݏ��� + ݏ�ݒ�ݐ���� �ݏ���

Figure 4: Accuracy Equation

NLTK metrics scores that is used to import accuracy is a module from NLTK metrics

package which imports different types of functions which can give different measurements

and values that are required.[NLTK Metrics 2019] The accuracy function passes a list of

reference values and a corresponding list of the values predicted by the classifier as

parameters and returns the fraction of which values are equal therefore which have been

correctly predicted. The accuracy takes in this fraction was multiplied by 100 to become a

percentage rather than the original fraction produced by the accuracy function.

From the table of a possible classifier the results would imply the classifier has an accuracy

of 99.9% which would seem remarkable. Unfortunately, the mis-classified actual positive

which was predicted as a negative could in some cases be a fraud case classified as a

genuine case or a terrorist predicted as a non-terrorist. Thankfully in the case of detecting

place names the consequences would not be as dire, but it demonstrates that the accuracy

of a model is not the be all and end all metric to measure a classifier.

Instead precision and recall measurements would be better in getting a clearer idea of how

accurate a classifier is performing. Precision is calculated by dividing the true positives by

the total predicted positives, showing you how accurate a classifier out of the predicted

positives.

݊݋�ݏ���ݎ� = ݏ�ݒ�ݐ�ݏ݋� �ݏ���ݏ�ݒ�ݐ�ݏ݋� �ݑݎ� + ݏ�ݒ�ݐ�ݏ݋� �ݑݎ�

Figure 5: Precision Equation

This is a preferred measurement when there are high costs associated with false positives

such as spam emails as an important email predicted as a positive for spam could be

missed.

Recall is the calculation of dividing the true positives by the total actual positives

therefore, including the true positives and false negatives.

������ = ݏ�ݒ�ݐ�ݏ݋� �ݑݎ�ݏ�ݒ�ݐ�ݏ݋� �ݑݎ� + ݏ�ݒ�ݐ���� �ݏ���

Figure 6: Recall Equation

PAGE 20

Recall would be a better measurement to use if the cost of false negatives were high

should as detecting fraudulent in a bank as if something is wrongly predicted as a negative

it could result in theft.

Finally, F1 value is a function of both precision and recall. It is calculated as shown in the

below equation.

�ͳ = ʹ × × ݊݋�ݏ���ݎ� ݊݋�ݏ���ݎ� ������ + ������

Figure 7: F1 Value Equation

As accuracy can be largely contributed by the number of true negatives it can give a false

sense of reliability when the important positives wrongly predicted are overlooked. F1 is

helpful as it provides a balance between precision and recall and is a better measurement

when there is a large uneven class distribution such as many actual negatives. [Shung,

2018]

2.12 Data Sources

As the project focus is on detecting location names in a text document, I chose to use

plenty of data sources that come from Wikipedia pages of countries or regions of a

country. These Wikipedia contents are on the following countries:

- New Zealand

- South East England

- Cwmbran

- United States

- Australia

- Iceland

- Finland

- South Wales

- Southern France

- Fiji

- Philippines

The text documents of the extracted contents include various locations and organisations

and are approximately 200 words.

Kaggle is an online community of data scientists and machine learning practitioners

where datasets are available to use and complete tasks with. A dataset can be downloaded

specifically for an NER task which includes the entity label and POS tag. The dataset is

large, so it was trimmed down to 5000 words. Kaggleǯs dataset includes various tags such

PAGE 21

as Ǯartǯ which represents an artifact, so the dataset was edited to only include other,

location, person, and organisation.

The New Zealand locality data is around 1,100 lines of words. The locality data comes from

Landcare New Zealand (which can be found at https://www.landcareresearch.co.nz/). It

contains descriptions of the position or size of sites in New Zealand which can include

addresses, highways, roads, schools, and farms for example. The sites are where biological

samples are found.

Every word, punctuation and digits are labelled in all datasets. If the word is a location a

tag Ǯ)-LOCǯ will be attached after the word, if the word is a person Ǯ)-PERǯ tag will be
attached, Ǯ)-ORGǯ for organisation and then the ǮOǯ label represents Ǯotherǯ meaning it has
no named entity.

3.0 Approach

This section includes how I will approach the issue of detecting a place name in a text

document. Using the current NER tools to detect a place name in a document and then

comparing their accuracy measurements. After evaluating their measurements SpaCy can

be trained to improve the modelǯs performance. This section will also see the difference in

using the Wikipedia page contents of locations to human written notes of the New

Zealand locality data. The comparisons can be compared with speed to get a full

performance measurement of the NERǯs. Finally, this section will discuss moving on from

using current NER tools to creating classifiers and how to optimise them.

3.1 Accuracy of the NER Tools

)f the NERǯs are not very accurate compared the human annotated data then it would need

to be trained by using annotated data to be able to understand and learn from examples of

what are locations, place names and organisations to use in future cases of different text.

3.1.1 Testing Stanford NER for Accuracy

It can be clear to see that Stanford NER works on text documents as it labels the text, but

it can often predict the incorrect label. To evaluate the NER it is useful to get a calculation

of accuracy which can be used compare the NER to others. If the accuracy value is

incredibly low, then it is suggested the NER predicts many labels incorrectly and may

require more training. If the accuracy value is relatively high but slow it may not be useful

to use therefore it is beneficial to get the value to use in conjunction with other

performance measurements such as speed to see which is the best NER.

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.landcareresearch.co.nz%2F&data=02%7C01%7CRobinsEC%40cardiff.ac.uk%7C38ed3933130e4730eb8908d7faf464a1%7Cbdb74b3095684856bdbf06759778fcbc%7C1%7C0%7C637253799870169830&sdata=ehwAVm0OLIff2up1cmQW%2BPt6unQVpSNL%2Bvga9WY8t0k%3D&reserved=0

PAGE 22

3.1.2 Measuring NLTK for Accuracy

NLTK was evaluated for accuracy to see its performance in comparison to Stanford NER.

Similarly, to measuring Stanford NER for accuracy the same annotated data was used for

fairness to measure NLTK for accuracy this can be compared to the accuracy results from

NLTK and Stanford NER. [NLTK metrics, 2019]

3.1.3 Precision, Recall and F1 values for Stanford NER and NLTK

In the previous measurement for accuracy on Stanford NER and NLTK the annotations on

the data include many ǮOǯ labels which would mean there is a large number of true
negatives predicting the ǮOǯ labels increasing the accuracy percentage when there may be
many false positives or false negative going unnoticed which could be critical for the use

of the classifier.

The recall value will be more important than the precision function, false negatives have a

much higher cost with determining locations in texts. If locations are not identified when

they should be it can prevent a different classifier from disambiguating the correct place

name. This could be an issue for advertising companies who want to release the correct

adverts in the correct locations or for map applications it can give the wrong directions or

suggestions. Calculating the precision and F1 value is also useful even if may not be as

important as the recall value they provide more accuracy results which can be used to

compare the NERǯs.

3.1.4 Accuracy Measurements for SpaCy

To make the accuracy measurements of SpaCy named entity recogniser the input data and

annotations need to be in the same form as training data. The training data include the

sentence to be tagged in quotation marks and then the entities in curly brackets. The

entities contain two numbers and the entities name in quotation marks, the numbers

represent the start character index and the end character index of the entity so SpaCy

understands where the entity is in the sentence.

Training Data Example:

TRAIN_DATA = [

 ("c150m SW of old factory, Vaughan Rd", {"entities": [(24,34, "FAC")]}),

 ("550mN from Bush rd-Gladfied rd intersect", {"entities": [(11,18, "FAC")]}),

 ("P.N. - Himatangi Main Highway 0.75 miles East of junction with Jackytown Rd.",

{"entities": [(7,29, "FAC"), (64, 76, "FAC")]})]

As it requires the index of the start character and end character of the entity and then the

label it will take numerous number of hours to annotate every line in the data sources

especially as the New Zealand locality data is 1,500 lines.

PAGE 23

3.1.5 Training SpaCy

SpaCy has models which are statistical and every decision they make is a prediction. These

decisions can be deciding if a word is a named entity. The predictions are based on

previous examples the model has been exposed to during training. Training a model

requires training data which can be examples of text and labels that the model needs to

predict. The training data could be named entity and any other information.

The model will then evaluate the unlabelled text and make a prediction from the previous

training data. As humans understand if the model has given the wrong label, the model

can receive feedback in form of an error gradient of the loss function which then

calculates the difference between the training example text and the expected output. If the

difference between the test output and the expected output is greater it means the

updates to the model will be greater. [Explosion AI, 2016-2020]

 [https://spacy.io/usage/spacy-101]

Figure 8: Training SpaCy Diagram

When training a model, it is important that the model does not want to just memorise the

examples but come up with a theory that can be used across other examples. The model

should not learn one instance of a word, such as ǮAppleǯ which in some texts can be a fruit

or others can be the company. Which is why the training data should always be

representative of the types of data that would be processed such as if a model was trained

on Wikipedia where sentences are not in first person would perform badly on Twitter

where most text is from the first person.

Evaluation data is also required as well as training data in order to know how the model is

performing and if it is learning the correct information from the training data. With only

the training data there will be no way of knowing how well it is generalising. To update an

existing model decent results can be produced with few examples if they are

representative.

To update SpaCyǯs named entity recogniser with examples for a specific application,

starting with an existing pretrained model will require example texts and the character

offsets and then labels each of the entities which are contained in the texts. Firstly, the

model required can be loaded or an empty model can be created with spacy.blank() with

the identification of the language being used. With a blank model the entity recogniser

https://spacy.io/usage/spacy-101

PAGE 24

needs to be added to the pipeline. An existing model will require all other pipeline

components to be disabled during training using nlp.disable.pipes to ensure only the

entity recogniser is being trained. Secondly the examples need to be shuffled and looped

over. Update the model which can be achieved by calling nlp.update which steps through

the words of the input. The model makes a prediction for every word which is then

compared to the annotations with the correct labels to see if the prediction is correct. If

the prediction is incorrect the model will adjust its weights so that the correct result will

score higher next time. The trained model can be saved using nlp.to_disk and then finally

the model should be tested to make sure the entities in the training data are recognised

correctly. [Explosion AI, 2016-2020 (4)]

Using the same text documents that contain short information on various locations to

train the model, using examples of text documents with numerous locations will be

beneficial to training the model for detecting locations to achieve the project aim. It is

important not to repeatedly iterate over the same examples as the model cannot get used

to evaluating any other examples.

Before model training the SpaCy named entity recogniser the following entities were

identified:

Australia GPE

Commonwealth ORG

Australia GPE

Australian NORP

Oceania GPE

sixth ORDINAL

26 million CARDINAL

Australia GPE

Adelaide PRODUCT

Australia GPE

7,617,930 square kilometres QUANTITY

the north-east LOC

the south-east LOC

2.8 CARDINAL

PAGE 25

Australia GPE

After model training the SpaCy named entity recogniser the following entities were

identified:

Australia GPE

Commonwealth ORG

Australia GPE

Australian NORP

Tasmania GPE

Oceania GPE

sixth ORDINAL

26 million CARDINAL

Australia GPE

Canberra GPE

Sydney GPE

Melbourne GPE

Brisbane GPE

Perth GPE

Adelaide GPE

Australia GPE

7,617,930 square kilometres QUANTITY

the north-east LOC

the south-east LOC

2.8 CARDINAL

Australia GPE

PAGE 26

3.2 Using New Zealand Data

To measure the accuracy and speed of the named entity recognisers and have an overall

evaluation of their performance locality data for New Zealand is used. The New Zealand

data is written in note form with many words shortened so it would be beneficial to gather

performance measurements of the NERǯs on this data to see if they work as well without

the text being eloquently written like in the other datasets.

3.3 Speed of the NER Tools

To gain an overall understanding of Stanford NER evaluating its speed is a convenient way

to see its benefits, drawbacks and ultimately if the accuracy of the named entity recogniser

outweighs any issues with speed.

3.4 Moving on from Current NER Tools

3.4.1 Developing a Classifier

As an alternative to current NER tools a classifier can be developed using machine

learning libraries. I will be writing a new classifier to try and improve performance and the

accuracy measurements.

Firstly, to begin training an NER classifier training and test data will be necessary, as in all

machine learning classifiers. Training data will allow the classifier to learn a function by

taking an input that is mapped to an output, in the case of detecting locations the input

would an array of word embeddings, and the mapped output would be the location or

other tags. If the data being used for training is a text document, such as the locality New

Zealand data discussed above, where data is annotated as below:

Ruatangata I-LOC West I-LOC , O on O roadside O , O 0.7 O km O along O Worsnops I-

LOC Road I-LOC from O Ruatangata I-LOC , O east O side O of O road O .

The text document can be read through using any programming language and then the

words and tags can be separated into different lists. Although the words need to be

changed to embeddings either using pretrained embeddings or vectorization the tags will

remain in plain English tags but will need to transform to an array. Sci-kit learn module

model selection have a test train split class which takes in the embeddings and the array of

tags and split it into train and test data under the same conditions that will be able to be

fitted and predicted by the chosen classifier.

3.5 Bag of Words vs Embeddings

This section will discuss the ways of getting pre-trained embeddings for features when

training a classifier as well as how to get the features using the bag of words method. It

will also discuss the difference between the both and which would be better for a NER

classifier.

PAGE 27

3.5.1 GloVe

A word embeddings algorithm called GloVe (The Global Vectors for Word

Representation) is an unsupervised learning algorithm to obtain vector representations of

words developed by Pennington, et al. at Stanford. The algorithm constructs an explicit

word context or word co-occurrence matrix using statistics across the whole large text

document. The result of the word co-occurrence matrix is a learned model which

generally results in better embeddings. [Jason Brownlee, 2017] Text documents can be

downloaded from GloVe that have 50, 100, 200 and 300-dimension pre-trained

embeddings. The embeddings used were trained under: Wikipedia 2014 + Gigaword 5 (6B

tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB

download): glove.6B.zip.

3.5.2 Vectorizing

If pretrained embeddings are not available, the classifier can be trained from scratch using

word vectors which are created by classes such as Count Vectorizer. Scikit Learn library

has a feature extraction class which is implemented to extract features to be used in a

classifier. Feature extraction has a text section which includes Count Vectorizer that

focuses on extracting features for a classifier from text. Count Vectorizer takes a collection

of text documents and coverts them to word vectors which are represented using a

compressed sparse row matrix. Count Vectorizer includes text pre-processing,

tokenization and filters stop words and then creates a dictionary of features from the text

document and transforms the features to vectors. This demonstrates a bag of words

representation where the frequency of a word is used as a feature in classifier training.

These vectors are the word vectors that can be used to train a classifier.

3.5.3 Comparison of Bag of Words vs Embeddings

Both embeddings and bag of words extract features from text documents to use them in

training a classifier. Pre-trained embeddings have many benefits which include reduced

training time and need for pre-processing text data. It can be trained on large datasets

which the user of these pre-trained embeddings may not have access to and therefore help

improve the performance of a classifier. Using a vectorizer like Count Vectorizer from

Scikit Learn will transform words to word vectors and use them to train the classifier and

allow it to predict from other test data. As the words are only transformed to word vectors

and do not carry the benefits of pre-trained embeddings trained on large datasets with

numerous dimensions it would be expected that training a classifier using pre-trained

embeddings would perform better. [2020 – Pai] However as using Scikit-Learn only

requires a small amount of code to create the model therefore a baseline model may

benefit from a bag of words representation instead of pre-trained embeddings. If datasets

are small context is most likely to be domain specific therefore the corresponding vector

from pre-trained embeddings cannot be found. [2018, Ma]

http://dumps.wikimedia.org/enwiki/20140102/
https://catalog.ldc.upenn.edu/LDC2011T07
http://nlp.stanford.edu/data/glove.6B.zip

PAGE 28

The higher the dimension the longer the vector is therefore it will give more data for the

machine learning classifier to take in and learn from. As the longer the vector and higher

dimension of embeddings the classifier has a better idea of how to predict the word

embedding. It would be expected for the higher the dimension of the pre-trained

embeddings used to train the classifier then the better the classifier will perform.

3.5.4 Improving a Baseline Classifier

To get the best results of a classifier and to know how to use them to the best of their

ability it will be beneficial to get results of various variables. These variables will include

the type of classifier, the training data, the dimension of the embeddings and the n

number of words either side of the word to be classified. While comparing the only factor

to change will be the variable that is being evaluated and all other information taken into

the classifier will remain constant. When comparing the training data or dimensions of

embeddings, the input of the classifier will be New Zealand locality data and GloVeǯs
pretrained embeddings of 200 dimensions.

While using classifiers SGD and Linear SVC are remarkably similar minus the cost of extra

memory therefore it would be expected that the classifiers would perform similarly.

Although smaller datasets are not recommended for supervised machine learning

classifiers they can produce decent results on accuracy by the fact the small input dataset

are split using Scikit Learnǯs train test split class which means the test data will be even
smaller than the original annotated dataset.)n this case the text file ǮFiji.txtǯ, as used
previous in measuring accuracy of Stanford NER and NLTK, will be used as an example of

a small dataset to train the classifier. The text document has many re-occurring words

which may impact the accuracy results as it is trying to predict a word it already has

training on. Other datasets have been used to compare the small ǮFiji.txtǯ dataset with a
larger dataset and then another even greater dataset. The middle sized dataset

ǮNER_dataset.txt.ǯ is around ͢͜͜͜ words from the Kaggle NER dataset [which can be found
at https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus] and the largest

dataset is the New Zealand locality data which is around 24,000 words. Larger datasets

would be expected to perform better when loaded and used for models predicting unseen

data as the more examples a machine learning classifier can get the more it can learn from

the examples and have a better chance of predicted entities correctly.

3.5.5 Averaging Embeddings

When n number of embeddings are taken from the left and right as well as the embedding

of the word to be classified it will increase the number of data values that will be used for

training. A way of avoiding using such a high number of data values is the embeddings

could be averaging the embeddings so there is only one vector of the same size as the

dimensions of embeddings being used for training.

As there will now be a smaller number of data values used for training, this could impact

the accuracy measurements. The classifier will see less data values when using the average

https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus

PAGE 29

in comparison to use all embeddings of the word and the surrounding words. Averaging

could essentially be hiding some embeddings that would determine if a word is a location

or not i.e. if there is a word Ǯnearǯ left to the word to be classified it could show it is a

location but with the average the embedding for Ǯnearǯ would not be specifically shown.

When the classifier uses just the embedding of the word, the number of data values will be

the same as when using this average. Although vectors are the same size, the average

should improve the classifierǯs performance as the average does take into account the

surround words.

4.0 Implementation

This section will include how NER was implemented and how the classifiers can be

created.

4.1 NER Tools

To begin implementation of the NER algorithms relevant data sources need to be obtained

to be able to test them. Stanford, NLTK and SpaCy can all be implemented in Python.

The prerequisites that are required for Stanford, NLTK and SpaCy to be used are:

- Stanford classification model and jar files need to be downloaded from the Stanford

Natural Language Processing Group

- NLTK needs to be installed via Python

- SpaCy needs to be installed via Python

For Stanford NER to work in Python, a Stanford NER Tagger needs to be imported using

NLTK. The Stanford NER Tagger has the classification model path and the Stanford tagger

jar file path passed through as parameters. It has a tag function which will attach the

relevant label to the word in the text file.

NLTK can be used to tag words in a text file, firstly the NLTK POS-tag is used to give part

of speech tags to the text and then ne_chunk function passes through the words (with

POS-tags attached to them) to identify named entities.

SpaCy loads models and then uses the model to tag the text which can accessed by

printing the text and the labels of the entities.

4.1.1 Annotating Data for Stanford and NLTK

To estimate if Stanford NER and NLTK NER is accurate, data were annotated with

whether they fell under the category for organisations, locations or persons which are the

three entities that class 3 of the Stanford NER recognise. After each token there is a space

PAGE 30

and then the label for the entity Ǯ)-LOCǯ for location, Ǯ)-PERǯ for person and Ǯ)-ORGǯ for an

organisation and any of the tokens that do not fall under this category are labelled as O.

An example of the annotated data in a text document is below, the data is taken from the

Wikipedia page for the United States of America, that can be found at:

https://en.wikipedia.org/wiki/United_States. Only the first two paragraphs from the

Wikipedia page was annotated, as expected the ǮOǯ tag was the most commonly occurring

tag with 137 of tags, the location tag occurred 21 times, person tag with 2 occurrences and

finally the organisation tag occurred 16 many times. How the data is annotated is

demonstrated below:

The O United I-LOC States I-LOC of I-LOC America I-LOC , O commonly O known O as O

the O United I-LOC States I-LOC or O America I-LOC , O is O a O country O consisting O

of O 50 O states O , O a O federal O district O , O five O major O self-governing O

territories O , O and O various O possessions O . O At O 3.8 O million O square O miles O ,

O it O is O the O world's O third O or O fourth O - O largest O country O by O total O area

O and O is O slightly O smaller O than O the O entire O continent O of O Europe I-LOC . O

Most O of O the O country O is O located O in O central I-LOC North I-LOC America I-

LOC between O Canada I-LOC and O Mexico I-LOC . O With O an O estimated O

population O of O over O 328 O million O , O the O U.S. I-LOC is O the O third O most O

populous O country O in O the O world O . O The O capital O is O Washington I-LOC , O

D.C. I-LOC , O and O the O most O populous O city O is O New I-LOC York I-LOC City I-

LOC . O

The O United I-LOC States I-LOC is O a O federal O republic O and O a O representative O

democracy O . O It O is O a O founding O member O of O the O United I-ORG Nations I-

ORG , O World I-ORG Bank I-ORG , O International I-ORG Monetary I-ORG Fund I-ORG ,

O Organization I-ORG of I-ORG American I-ORG States I-ORG , O NATO I-ORG , O and O

other O international O organizations O . O It O is O a O permanent O member O of O the

O United I-ORG Nations I-ORG Security I-ORG Council I-ORG . O Its O President O is O

Donald I-PER Trump I-PER

Once the file is read and split the resulting list includes every word and label as values. It

can be indexed using every other item starting from the first word to get the words and

every other item starting for the first label to get the labels. The list of words would be

returned as:

ǮThe', 'United', 'States', 'of', 'America', ',', 'commonly', 'known', 'as', 'the', 'United', 'States', 'or',

'America', ',', 'is', 'a', 'country', 'consisting', 'of', '50', 'states', ',', 'a', 'federal', 'district', ',', 'five',

'major', 'self-governing', 'territories', ',', 'and', 'various', 'possessions', '.', 'At', '3.8', 'million',

'square', 'miles', ',', 'it', 'is', 'the', "world's", 'third', 'or', 'fourth', '-', 'largest', 'country', 'by',

'total', 'area', 'and', 'is', 'slightly', 'smaller', 'than', 'the', 'entire', 'continent', 'of', 'Europe', '.',

'Most', 'of', 'the', 'country', 'is', 'located', 'in', 'central', 'North', 'America', 'between', 'Canada',

'and', 'Mexico', '.', 'With', 'an', 'estimated', 'population', 'of', 'over', '328', 'million', ',', 'the',

https://en.wikipedia.org/wiki/United_States

PAGE 31

'U.S.', 'is', 'the', 'third', 'most', 'populous', 'country', 'in', 'the', 'world', '.', 'The', 'capital', 'is',

'Washington', ',', 'D.C.', ',', 'and', 'the', 'most', 'populous', 'city', 'is', 'New', 'York', 'City', '.', 'The',

'United', 'States', 'is', 'a', 'federal', 'republic', 'and', 'a', 'representative', 'democracy', '.', 'It', 'is',

'a', 'founding', 'member', 'of', 'the', 'United', 'Nations', ',', 'World', 'Bank', ',', 'International',

'Monetary', 'Fund', ',', 'Organization', 'of', 'American', 'States', ',', 'NATO', ',', 'and', 'other',

'international', 'organizations', '.', 'It', 'is', 'a', 'permanent', 'member', 'of', 'the', 'United',

'Nations', 'Security', 'Council', '.', "It's", 'President', 'is', 'Donald', 'Trump'

Data was annotated as it is easy for a human to recognise if a word is a name, an

organisation or a place name which can be used to test if the machine is working correctly

in being able to detect the correct place names or not.

4.1.2 Accuracy of Stanford and NLTK

The implementation of extracting an overall accuracy value for Stanford and NLTK can be

demonstrated in the flow chart. The flow chart below demonstrates the stages of the

Python script written to calculate the accuracy value.

PAGE 32

-

PAGE 33

Figure 9: Flow Chart for Accuracy

To be able to run the Python script written to calculate the accuracy value the following

pre-requisites need to be imported:

- NLTK

- Stanford NER Tagger from NLTK library module Tag

- Accuracy from NLTK library module Metrics

The python program script takes in an annotated text document which is used to test the

NER tool. The text document is inputted using pythonǯs open function and reads the file

using read function. All values in the file are split using the split function and then two

new lists are created by extracting the words and labels by indexing the resulting list of

the split function.

The list of words is then labelled using Stanford NER tagger or NLTK. The Stanford NER

tagger must be created and have its models, jar files and encoding established. The

Stanford NER uses its tag function to label the text. The text is iterated through to extract

the predicted labels into a resulting list. NLTK will use its pos_tag function to assign part

of speech tags to the text, then use the chunk function to group into noun phrases. The

NLTK tree2conllstr function is used to convert predictions to multiline strings and then to

lists. The part of speech tags is then removed through indexing of the lists and the NLTK

labels are then transformed to mirror the labels from the input file. The list is iterated

through to extract the predicted labels into a list.

The list of labels extracted from the input data is iterated so that the name of the labels

are changed to correspond the labels of the Stanford NER tool.

The NLTK accuracy function from the metrics class is used to calculate the accuracy of the

NER tools. The lists of predicted labels and correct labels are compared in the function to

gather a fraction of how many predicted labels are correct. After the accuracy function

result, the fraction is multiplied by 100 to get a percentage.

4.1.3 Precision, Recall and F1 values of NLTK, Stanford and SpaCy

Precision, Recall and F1 values were calculated differently for Stanford and NER than they

were for SpaCy.

Precision, Recall and F1 values can be calculated for Stanford and NLTK using Scikit

Learnǯs classification report function. The flow chart below demonstrates how the
classification report is calculated:

PAGE 34

PAGE 35

Figure 10: Flow Chart for Precision, Recall and F1 for Stanford and NLTK

For the Python script to run to be able to compute the classification report the following

pre-requisites are required to be imported:

- Classification Report from Sklearn library Metrics module

- NLTK

- Stanford NER Tagger from NLTK library Tag module

- NumPy

The same process for opening the annotated text file and producing 2 lists of the words

and labels as explained in 4.1.2 is carried out.

In the same way as when calculating accuracy, the Stanford NER Tagger and NLTK (part-

of-speech tagger, chunk function and tree2conllstr functions) are used to tag the words.

The predicted labels are transformed to match the correct labels which will be used for

comparison. The labelled text is iterated through and the predicted labels are extracted

into a list. This list is then converted to a NumPy array using the array function from

NumPy library.

The list of labels from the annotated text are transformed to match the predicted labels

and then converted to a NumPy array using the array function from the NumPy library.

The classification report requires an input of arrays. The predicted labels and the correct

labels array are passed through the classification report function to output the report. The

report includes precision, recall and F1 values.

SpaCy requires a different method to extract precision, recall and F1 values. The flow

chart below demonstrates how SpaCy extracts these values:

PAGE 36

PAGE 37

Figure 11: Flow Chart for Precision, Recall and F1 values for SpaCy

Before the Python script for SpaCyǯs precision, recall and F1 value calculations is run the

following pre-requisites need to be imported:

- SpaCy

- GoldParse from SpaCy library Gold module

- Scorer from SpaCy library Scorer module

SpaCy has a Scorer class which computes evaluation scores of SpaCyǯs NER classifier.

Firstly, the SpaCy model needs to be established, then python script inputs a string that

will be used to label. The entities of the string need to be established in the form (number,

number, label), these entities give any correct labels in the inputted string.

Scorer has a score method which takes in two parameters: doc and gold. Doc is a

container for accessing linguistics features and gold is a collection for training

annotations. Doc is the predicted annotations from SpaCyǯs input which is created using

the SpaCy model to label the string. Gold are the correct annotations which is created

using GoldParse which take in the sequence of tokens from the input (created using the

make_doc function and the entities).

The score method from the scorer class produces the following outputs: token_Acc for

token accuracy, tags_acc for part-of-speech tag accuracy, uas for unlabelled dependency

score, las for the labelled dependency score, p for the named entity accuracy precision, r

for named entity accuracy score for recall and f for named entity accuracy for f1 score.

[Explosion AI (3), 2020]

4.1.4 Speed of Stanford, NLTK, SpaCy

Speed of the NER tools can be measured using the time library in Python. The flowchart

below demonstrates how the speed is collected:

PAGE 38

Figure 12: Flow Chart for Measuring Speed

Before the speed can be calculated for the NER tools the following pre-requisites need to

be imported:

PAGE 39

- NLTK

- Stanford NER Tagger from NLTK library

- SpaCy

- Time

The Python script must first input a file that an NER can perform on. The time library has

a time function that gives the current time when the function is called. The function is

first called under Ǯopeningǯ before the NER tool begins.

Then the NER tool performs NER on the input file. Stanford and NLTK perform NER is

the same way described in 4.1.2. SpaCyǯs model is loaded and then used on the text to

perform NER.

After NER is performed the time function is used again to get a Ǯclosingǯ time on the
process.

The duration of the NER performance in calculated by subtracting the opening time from

the closing time. This duration can then be printed for evaluation.

4.1.5 Using the NER Tools on New Zealand Locality Data

The same method is used as before to measure the overall accuracy of Stanford NER and

NLTK which is explained in 4.1.2.

Many roads that described in the data have had their names shortened such as ǲGladfield
Rdǳ which results in the NERǯs not recognising the road as a location. Due to the results

being so poor, implementation was modified to change any abbreviations of road to the

full-length of the word to see the impact of the performance.

As discussed, previous, accuracy is not always the best measurement for evaluating the

classifier. Precision, recall and F1 values are proven to be better measurements as they take

in consideration for false positives and false negatives which can have high costs. They

help where there is a large class distribution which is common especially in this case as

most words do not have a label and therefore the measurement will be how well it is not

identifying entity labels and not how well it is identifying place names. The same method

is used to gather the precision, recall and F1 values as demonstrated in 4.1.3.

As with the other implementation of calculating SpaCyǯs accuracy measurements the full

dataset would be impossible within the time frame to annotate as the data needs to be in

the same format as the training data. Therefore, several lines will be taken from the

dataset to calculate the measurements. As we are looking to get measurements to

compare the dataset including the original abbreviations of the word road and the full-

length word, the lines used for measurements will include roads before and after the

abbreviations are changed.

PAGE 40

4.2 Classifiers

4.2.1 Count Vectorizer

Count Vectorizer is imported from Scikit Learn feature extraction class for text. Below

shows a flow chart which demonstrates how Count Vectorizer is used to extract features

to train a classifier:

PAGE 41

PAGE 42

Figure 13: Flow Chart for Count Vectorizer Implementation

For the Python script to train a classifier with features extracted using Count Vectorizer

the following pre-requisites needs to be imported:

- NumPy

- SGD Classifier from linear model or Linear SVC from SVM module of Sklearn library

- Train Test Split function from model selection module of Sklearn library

- Classification Report from metrics module of Sklearn library

The input file is the training dataset that include words and their relevant labels. The

input datafile values are split using the split function and the resulting list can be used in

creating 2 new lists of just the words and labels.

The implementation of Count Vectorizer converts a sequence of items of strings to a

matrix of token counts. The count vectorizer has a method for fit transform which learns

the vocabulary dictionary and returns a document-term matrix. The document-term

matrix is an array of shape (n_samples, n_features). The fit transform function takes in

the words that have extracted from the input training file.

To obtain train and test data from the original dataset, the Scikit Learn train test split

function is used which splits the train and test data 0.25 proportion to the original dataset.

The function takes the result of the count vectorizer fit and transform function and the list

of labels and results in training data and testing data. The training and testing data

includes the words vectors and corresponding labels.

When a classifier is trained using its fit function the parameters are the training data of a

sparse matrix in shape (n_samples, n_features) and target values of a ndarray of shape

(n_features).

The newly trained classifier can use itǯs predict function to get predicted labels of the

testing data for the words. These predicted labels are then compared to the testing data

for labels to output the classification report function.

4.2.2 Using Pre-trained Embeddings

Pre-trained embeddings can be used to gather features to train a classifier on. The

following flow chart demonstrates the Python script written to achieve this:

PAGE 43

PAGE 44

Figure 14: Flow Chart for Using Pre-trained Embeddings

The relevant modules and libraries that are required to be imported for training an SGD

classifier with pre-trained embeddings are:

- SGD Classifier from linear model or Linear SVC from SVM module of Sklearn library

- NumPy

- Train Test and Split function from model selection module in Sklearn library

- Classification Report from the metrics model in Sklearn library

There are two input files required when training a classifier with pre-trained embeddings,

the annotated training dataset file, and the pre-trained embeddings file. The annotated

training dataset file is opened using the open function and the values are split using the

split function. The resulting list can be used to create two new lists of just the words and

labels by indexing the list of the contents from the input file.

The pre-trained embeddings are downloaded from

https://nlp.stanford.edu/projects/glove/ the zip files contains text documents with the

word embeddings to be loaded. The different text documents contain the different

dimensions of embeddings which need to be in the same directory as the script calling

them. The file is read by the Python script using the read function and the encoding is set

to Ǯutf-ͤǯ. Every line in the file is split into a list. The word is taken from the list by taking
the 0 index. The rest of the line would be the embedding and can be converted to a

Numpy array. Finally, the word and its embedding are used to create a dictionary with the

word as the key and the embeddings as the value. The dictionary is used as a model to get

embeddings.

The list of words is first converted to a string using the join function so the string of all the

words from the training input file can be put through the word to vector function. The

word to vector function takes in the string and then for every word in the string the get

function is used to receive the embedding from the model. The embedding will be the

dimension of the same dimensions used in the model.

The list of labels is transformed to a NumPy array so it can be used to train the classifier.

The NumPy array of vectors and the NumPy array of labels are used in train test split

function which produces train and test data 0.25 proportion to the input data. The result

is training and testing data for the words and its corresponding labels.

Like when using word vectors created from count vectorizer the training data for

embeddings and the labels are used to fit the classifier. The classifier can then be used to

predict the testing data of the embeddings. The testing labels are the correct labels that

can be used to compare the predicted ones.

https://nlp.stanford.edu/projects/glove/

PAGE 45

The classification report takes the predicted labels that were predicted by the newly

trained classifier and compares them against the correct labels. From this it produces the

precision, recall and F1 values for the classifier.

4.2.4 Different Scikit Learn Classifiers

Different types of classifiers are used such as SGD and LinearSVC. To use Linear SVC or

SGD classifier, it would need to be imported from the SVM or Linear Model module in

Sklearn library as demonstrated throughout 4.2.

The only change in implementation is using LinearSVC or SGD to fit the training data and

then using it to predict.

LinearSVC and SGD classifiers both have inputs of a sparse matrix with shape of

(n_samples, n_features) with the word vectors or embeddings and array with shape of

(n_features) with the labels corresponding the words. Once the classifier has an instance

of itself which is created with using the fit function the classifier can then predict labels

for words.

4.2.5 Using Surrounding Words to Classify a Word

To get a certain number of embeddings around a word to be classified the list of words

from the training data needs to be processed to get these words. The following flow chart

demonstrates how this is obtained:

PAGE 46

PAGE 47

Figure 15: Flow Chart for Taking n Embeddings Around Word to be Classified for Training a
Classifier

The imports necessary to train a classifier using pre-trained embeddings and taking n

number of words before and after the word to be classified include:

- Random

- NumPy

- SGD Classifier from linear model or Linear SVC from SVM module of Sklearn library

- Train Test Split function from Sklearnǯs model selection

- Classification Report from Sklearn library module metrics

As with just using pre-trained embeddings to extract features for a classifier an annotated

training dataset input in required as well as the GloVeǯs pre-trained embedding file. The

annotated file is opened using the open function and read using the read function. The

values in the file are split into a list. To create two new lists of just the words and labels

the resulting list of splitting the file values can be indexed to get them. The GloVeǯs pre-

trained embeddings file which is used to create a model is also opened using the open

function.

To create the model the same steps are taking as in 4.2.2. This model is a dictionary with

the word as a key and the value being their embedding. The model can be used to get

embeddings of words in the training data.

The words can be iterated through and then the embeddings are taken from either side of

the word. If there are 3 embeddings either side of a word being taken and the embeddings

have dimensions of 100 the feature would now have 700 data values instead of just 100

values as it includes the embedding of the word to be classified as well as 3 embeddings to

the left and right.

If 3 embeddings are being taken either side of the word to be classified, the first and the

last 3 words in the training data will not have three embeddings both sides of the word. To

overcome this issue the embeddings either side will be taken until they reach the end of

the list. Where there are less than three embeddings, a random array of the same

dimensions will be added until it matches the length of the 3 embeddings to the left, the

word and the 3 embeddings to the right.

The list of labels from the input file are converted to a NumPy array so it can be used to

train the classifier.

The NumPy array of the embeddings and the NumPy array of the labels are used to get

testing and training data using Sklearn train test split function. The training and testing

data for word and labels are 0.25 in proportion to the dataset.

PAGE 48

The training data for the words and labels are used to fit a classifier which then results in

an instance of itself which can perform the predict function. The classifier can try

predicting labels for the testing data of words.

The classification report takes in the predicted labels of the words and the correct labels

and outputs the accuracy measurements.

4.2.6 Averaging Embeddings

When n number of embeddings around the word to be classified are taking as features for

training they can then be calculated to create one embedding that is the average of the n

number of words before, the word and the n number of words after the word to be

classified. The following flow chart demonstrates this, it being like taking n number of

embeddings around the word to be classified with averaging function being included

before training:

PAGE 49

PAGE 50

Figure 16: Flow Chart for Averaging n Embeddings around Word to be Classified for Training
a Classifier

 The imports required for this implementation are the exact same as when taking n

number of embeddings around the word as well as the word to be classified.

The only difference to 4.2.5. implementation is after there is n embeddings before, the

word to be classified and n embeddings after there is n*2+1 embeddings that can be used

as features for the classifier training. Instead of using the n*2+1 embeddings they are

averaged to create 1 embedding.

The NumPy average function is used and the values are averaged on the zero axis which

will be n*2+1. The average is then taking as the input for train test learn. Finally, training

the classifier with the average embedding and labels and then producing a classification

report.

5.0 Results and Evaluation

The following section includes results of the implementation of the NER tools and

personally created classifiers. The first results presented include performance

measurements of the NER tools SpaCy, NLTK and Stanford. The performance

measurements are overall accuracy and then the precision, recall and F1 values. Secondly

the speed of the NER tools is presented. Then the accuracy results are presented for the

NER tools using the New Zealand locality data.

The second half of the result presentation in this section include the results of newly

created classifiers. Firstly, the results show the comparisons of using Count Vectorizer

instead of pre-trained embeddings then the next results use the GloVe pre-trained

embeddings. Followed by the results of using the same pre-trained embeddings with

taking 3 words to the left and right of the word to be classified and then taking 5 words

instead of 3. Next shows the results of using LinearSVC classifier instead of the SGD

classifier which was used in the previous set of results. In the final section uses graphs to

demonstrate the comparison of the variables when training the classifiers.

5.1 NER Tools

5.1.1 Comparison of NLTK and Stanford NER Accuracy Results

I chose to run 11 different text documents that were annotated by myself to be able to

gather a set of results of overall accuracy. The accuracy result is the total number of true

positives and true negatives divided by the total predicted values (true positives + true

negatives + false negatives + false positives). The accuracy is measured by the

identification of all entities including ǮOǯ for those with no entities, location, person, and

organisations. All text documents contain a short paragraph of information of a certain

area, region or country, all data from the text documents come from the Wikipedia page

PAGE 51

of each location. The data was chosen to include locations so that the data would be able

to compare many location tags and entities as that is the main area of focus for this project

to be able to take the detected place names and disambiguate them. All files are similar in

length.

The range of Stanford NER accuracy percentage range from 85.7% to 99.4% which is a

range of 13.7%. The NLTK has a bigger range from 79.8% to 97.2% which is a range of

17.4%. The average score for accuracy of Stanford NER is 94.8% which gives evidence that

the Stanford NER is highly accurate but there is room for improvement. Some accuracy

issues can occur from human error when annotating data. The NLTK accuracy average

score is 88.9% which is still a high score but less than Stanford NER so the NLTK is less

reliable and accurate named entity recogniser than the Stanford NER. In every file the

NLTK is always less accurate that the Stanford NER.

Text file of annotated data Stanford NER NLTK

New Zealand 95.6% 91.1%

South East England 85.7% 81.4%

Cwmbran 97.9% 89.4%

America 99.4% 97.2%

Australia 96.8% 94.7%

Iceland 97.2% 94.3%

Finland 94.0% 79.8%

South Wales 92.2% 95.2%

Southern France 92.0% 87.5%

Fiji 93.5% 84.6%

Philippines 97.9% 82.4%

Average 94.8% 88.9%
Figure 17: Accuracy Measurements for Stanford and NLTK

5.1.2 Precision, Recall, F1 Values

Stanford NER Precision, Recall and F1 Values

Below demonstrates the precision, recall and f1 values for the same files that were

measured for accuracy in table 1. Unlike the accuracy results the precision and recall

values are calculated on the identification of location entities and not the other, person or

organisation entities. This makes it easier to see if the NER tools are better for location

identification.

File Precision Value Recall Value F1 Value

New Zealand 1.0 0.8 0.889

PAGE 52

South East England 0.857 0.6 0.706

Cwmbran 1.0 0.875 0.933

America 1.0 0.952 0.976

Australia 1.0 0.6 0.749

Iceland 1.0 0.733 0.846

Finland 1.0 0.844 0.915

South Wales 1.0 0.727 0.842

Southern France 0.926 0.595 0.725

Fiji 0.967 0.696 0.810

Philippines 1.0 0.919 0.958

Average 0.977 0.758 0.849

Figure 18: Precision, Recall and F1 for Stanford

Recall is the most important value in the case of detecting place names in a text

document. False negatives have a higher cost than false positives when detecting place

names as the locations that go unmissed could result in incorrect disambiguation of the

locations found. For example, if ǮManhattanǯ were falsely identified as a negative it could
result in the words ǮYorkǯ being mis-identified as the English City not the American state.

The average of precision value for Stanford for these files is 0.977 which is remarkably

high and demonstrates the Stanford NER works well at not producing false positives. The

average recall value for Stanford NER calculated using these files is 0.758. Although it is

not as high as the precision value it is still relatively high therefore Stanford is better at

not producing false positives than false negatives. F1 value is 0.849 on average, when

compared to the accuracy average value calculated by NLTK metrics class accuracy

(shown above in table 1) which was 94.8%. Although the accuracy average value is higher

than the F1 value it can be a misconception as the accuracy value takes in the

identification of all entities not just the location entity like F1 does. It is easier to identify a

true negative so the result would be higher when taking these into account, as F1 value

does not take these into consideration the accuracy value will be higher than the F1.

NLTK Precision, Recall and F1 Values

Below shows the precision, recall and f1 values for NLTK for the text files that were used to

previously calculate the overall average for the NER.

Text File Precision Value Recall Value F1 Value

New Zealand 1.0 0.467 0.636

South East England 0.889 0.4 0.552

Cwmbran 1.0 0.375 0.545

America 0.864 0.792 0.826

Australia 1.0 0.5 0.667

Iceland 1.0 0.467 0.636

Finland 0.941 0.5 0.653

South Wales 0.941 0.516 0.667

Southern France 0.778 0.5 0.609

PAGE 53

Fiji 0.875 0.304 0.452

Philippines 1.0 0.324 0.489

Average 0.935 0.478 0.612

Figure 19: Precision, Recall and F1 for NLTK

The average precision value for NLTK for these text files is 0.935, which is significantly

high but lower than the precision value for Stanford NER using the same files therefore

confirming that the Stanford NER is a better classifier than NLTK. The recall value average

for NLTK is 0.478 which is significantly lower than Stanford average recall value of 0.758.

The F1 value average for the NLTK classifier is 0.612 which is lower than Stanford NER by

0.237 which is a big difference. This confirms and supports the argument the Stanford

NER is a better evaluator than NLTK.

SpaCy Precision, Recall and F1 Values

Below gives the precision, recall and F1 value for several lines of each data file.

Text File Precision Value Recall Value F1 Value

New Zealand 1.0 1.0 1.0

South East England 1.0 0.50 0.66

Cwmbran 1.0 0.66 0.80

America 1.0 0.50 0.66

Australia 1.0 0.50 0.66

Iceland 1.0 0.50 0.66

Finland 0.5 0.66 0.57

South Wales 1.0 0.75 0.85

Southern France 0.6 0.43 0.50

Fiji 0.5 0.40 0.44

Philippines 0.5 0.33 0.40

Average 0.83 0.57 0.65

Figure 20: Precision, Recall and F1 for SpaCy

The average precision value for SpaCy is 0.83 which is a relatively high score showing

SpaCy is good at identifying true positives. The average recall value is 0.57 which shows

SpaCy performs poorly with regards to identifying false negatives in comparison to

identifying true positives. The average F1 value is 0.65 which demonstrates that SpaCy

performs relatively well regarding accuracy.

5.2.3 Comparing Speed of the NER Tools

The same 11 text files on areas, regions and countries that were used to test the named

entity recognisers for accuracy are used for testing NLTK and Stanford NER for speed. If

speed were to become an issue, then it may be a better option to use a less accurate NER if

it is going to work faster. The results are measured in seconds. The range of speed for

Stanford NER is from 4.79 seconds to 3.46 seconds which is a range of 1.3 seconds. The

range of speed for NLTK is from 0.50 seconds to 0.28 seconds which is a range of 0.22

PAGE 54

seconds which is considerably lower than the range for Stanford NER. The average speed

for Stanford NER is 4.34 seconds. The average speed for NLTK is 0.37 seconds which is also

a considerably faster measurement than the speed for Stanford NER. NLTK is a lot slower

than Stanford NER but Stanford NER is more accurate than NLTK, as all text files used for

this comparison have been quite a small text file with all similar lengths it may be

interesting to use different file sizes to see if the greater time taken for Stanford NER to

work is worth using it for its better accuracy in comparison to NLTK. SpaCy has an

astonishing faster named entity recogniser with beating NLTK by 0.14 seconds in its

slowest time. SpaCy has an average of 0.12 seconds compared to Stanfordǯs ͠.͟͠ seconds
average and NLTKǯs ͜.ͣ͟ seconds. SpaCy only ranges from 0.24 to 0.06 seconds with a

range of ͜.ͤ͝ seconds.)f speed were the only factor to influence a developerǯs choice of

named entity recogniser then SpaCy would be the best choice.

Text file of data Stanford NER NLTK SpaCy

New Zealand 4.49 seconds 0.38 seconds 0.24 seconds

South East England 4.79 seconds 0.33 seconds 0.07 seconds

Cwmbran 4.33 seconds 0.28 seconds 0.06 seconds

America 4.61 seconds 0.39 seconds 0.17 seconds

Australia 4.54 seconds 0.40 seconds 0.09 seconds

Iceland 4.29 seconds 0.35 seconds 0.11 seconds

Finland 4.53 seconds 0.32 seconds 0.08 seconds

South Wales 3.46 seconds 0.35 seconds 0.11 seconds

Southern France 3.62 seconds 0.42 seconds 0.15 seconds

Fiji 4.70 seconds 0.50 seconds 0.17 seconds

Philippines 4.42 seconds 0.37 seconds 0.11 seconds

Average 4.34 seconds 0.37 seconds 0.12 seconds

Figure 21: Speed Measurements

5.2.4 Using New Zealand Locality Data for NER Tools

The accuracy of Stanford NER, it has an accuracy percentage of 79.59%. When all cases of

ǲrdǳ are placed with the full word ǲroadǳ the accuracy percentage increases to ͤ͜.͟͜%. This
demonstrates the NERǯs ability to recognise the full name of a location but struggles to

recognise human slang or written notes of an area.

NLTK gives an accuracy percentage of 68.58% for the locality data which again shows that

NLTK is the least accurate NER in comparison to Stanford NER. When changing all ǲrdǳ
occurrences to ǲroadǳ just like with Stanford the percentage increases to 69.44%.

PAGE 55

Below shows the precision, recall and f1 value for the Stanford NER for the locality data on

New Zealand. It also shows a comparison of the values after the abbreviation of Ǯroadǯ are
changed to the full-length word.

Text File Precision Value Recall value F1 value

Locality Data

(original)

0.822 0.198 0.319

Locality Data (full-

length of any

abbreviations of

road)

0.732 0.228 0.347

Figure 22: Precision, Recall and F1 value for Stanford using Locality Data

The recall value for the locality data is significantly low, which can demonstrate some

issues of Stanford NER. Many entities were not identified where they should have been.

Where the abbreviations for road are changed to the full word it clearly shows how the

NER can then identify roads better rather than when they were not being identified when

written as human short notes. This could be a potential area of focus for Stanford as it

could be trained on using shortened human notes or slang to identify locations that may

not be written as correctly as they should.

Below shows the precision, recall and f1 value for NLTK for the same locality data:

Text File Precision Value Recall Value F1 Value

Locality Data

(original)

0.085 0.038 0.053

Locality Data (full-

length of any

abbreviations of

road)

0.108 0.044 0.063

Figure 23: Precision, Recall and F1 values for NLTK using Locality Data

NLTK have incredibly low precision, recall and f1 values compared the Stanford NER.

Having the abbreviations of road changed to the full word does help increase the values

meaning NLTK must also struggle to identify roads if the word is not in full, this could

also be a potential area to be improved for NLTK, like it is in Stanford NER.

Below shows the precision, recall and F1 values for SpaCy NER for the New Zealand

locality data. It will compare the original data and the data with any abbreviations of road

written as the full length of the word.

Text File Precision Recall F1 Value

Locality Data

(original)

1.0 0.20 0.33

Locality Data (full-

length of any

1.0 0.25 0.40

PAGE 56

abbreviations of

road)

Figure 24: Precision, Recall and F1 for SpaCy using Locality Data

Using SpaCyǯ s named entity recogniser for the English language it produces the named

entity labels along with their texts. When SpaCy NER labels the texts, it uses more labels

which are explained in the background of SpaCy NER. than Stanford NER so many areas

that could be considered as a location such as ǲCastlepoint Roadǳ or ǲLake Orbellǳ are
labelled as ǮFACǯ. As the text in the locality data file is written as notes many descriptions

of roads are written as ǲMangaone Rdǳ using the shortened ǲRdǳ for road. SpaCy does not
recognise these as roads which would give the ǲFACǳ label, they produce ORG labels
which indicates SpaCy NER is tagging the text ǲMangaone Rdǳ as an organisation. Other

locations were labelled as organisations for example ǲParoaǳ, ǲThorton Mainǳ,
ǲWhakatoneǳ, ǲTaurangaǳ, ǲMorton Mainsǳ and ǲMaitland Valeǳ. Sentences within the
locality data include directions such examples as ǲ͝km along Goatleys Roadǳ which was
labelled by SpaCy as a Quantity. The ǲ͝km alongǳ could indication why SpaCy NER

thought it was a quantity by with the word ǲroadǳ having a word before it beginning with a

capital letter it should of distinguished the difference and recognised ǲGoatleys Roadǳ as a
separate entity which would be associated with a ǲFACǳ or a location label. SpaCy does not
recognise many roads where in the sentence the word road does not start with a capital

letter, such as if ǲGoatleys roadǳ was written this way rather than the previous ǲGoatleys

Roadǳ. As the word ǮRoadǯ does not have a capital letter SpaCy does not label it as a place.

The NER recognised ǲOmahuta forest ȋcompartment ͤȌǳ as an organisation where it
should have recognised ǲOmahuta forestǳ as a location. The NER also recognises many

places as PERSON for example ǲElie Bayǳ, ǲAhuriri Lagoonǳ and ǲTe Kawǳ. Some other
areas that impacted SpaCyǯs ability to label text correctly was where notes were written to

demonstrate a measurement or road between two places such as ǲHawera-New Plymouth

main highwayǳ. A human can read this and understand it is the main Highway between

the places Hawera and New Plymouth but SpaCy only recognises and labels ǲPlymouthǳ as
a place which may be the Plymouth in England.)gnoring the ǲ(aweraǳ and the ǲMain

Highwayǳ which could be used to disambiguate that the place is in New Zealand not

England, UK.

5.2.5 Evaluation of NER Tools

Below shows the average precision, recall and F1 values for the NER tools using the small

datasets from Wikipedia on different countries, counties, and places.

PAGE 57

Figure 25: Evaluation of Precision, Recall and F1 for NER Tools

In terms of precision (identifying true positives) Stanford NER performs better than NLTK

which performs better than SpaCy. Recall values shows Stanford NER performing the best,

SpaCy next and NLTK performing the worst. The F1 value gives a better overall accuracy

value using the precision and recall values which shows Stanford NER performing the best

with SpaCy in second and NLTK performing the worst out of the three. As Stanford only

has the 3 values: person, organisation and location for its entities, it may mean entities

such as roads and bodies of water are being classed as locations in Stanford but not in

SpaCy where there are different labels for these such as ǮLOCǯ for a body of water (Oceans

etcȌ and ǮFACǯ for roads/highways. This may impact the accuracy results as roads

annotated as a location may not come up as the location label for SpaCy. This may result

in future work needed to group the different location-related labels in SpaCy into one

label to see if SpaCyǯs accuracy measurements need improving.

Next will include the evaluation of the speed of the NER tools. This will suggest if the

speed will have an impact on using a standard even if it has high accuracy.

0

0.2

0.4

0.6

0.8

1

1.2

Precision Recall F1

Precision, Recall and F1 values for NER Tools

Stanford NER NLTK SpaCy

PAGE 58

Figure 26: Average Speed Evaluation

SpaCy is the quickest NER on average and Stanford is the slowest. Although Stanford has

the highest accuracy measurements if it is taking an average of over 4 seconds to perform

NER on such small datasets. So, it may be useful to consider using SpaCy who also has

relatively high accuracy measurements and has a very quick average of 0.12 seconds for the

same datasets.

It is useful to compare the NER tools performance on a larger datasets. Using the New

Zealand locality data, it can give an idea of how the NERǯs performance changes using the

larger dataset.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Stanford NLTK SpaCY

The Average Speed of the NER Tools

Speed (In Seconds)

PAGE 59

Figure 27: Comparing the NER tools using the Locality Data

Although Stanford and SpaCy have relatively high precision values all NER tools worked

poorly on the locality data. As previously discussed, the locality data is human written

notes and it may be the cause of the poor results from all three NER tools. This is a

motivation for creating my own classifier as it can be trained on human written notes

whereas the NER tools used will not be trained on this type of format.

5.2 Classifiers

5.2.1 Count Vectorizer

The results below are of an SGD classifier that is trained using Count Vectorizer to get

word vectors of the training data. The different training data is used to compare the

results of different sized dataset. The training and test data is split using Scikit Learnǯs
train test split function, the training and test data is automatically set to 0.25 proportion

to the dataset. The only features used in the classifier are the word vectors of the word to

be classified.

Training Data Precision Recall F1

Fiji 0.6 0.43 0.5

NER dataset (5000

words)

0.69 0.57 0.62

New Zealand Locality 0.77 0.59 0.67

Average 0.69 0.53 0.60

Figure 28: Using Count Vectorizer for training an SGD Classifier

0

0.2

0.4

0.6

0.8

1

1.2

Precision Recall F1

Comparing the Accuracy Measurements for Locality Data

Stanford NLTK SpaCy

PAGE 60

5.2.2 Pre-trained Embeddings

Below include the results of an SGD classifier that is trained using word embeddings

obtained by GloVeǯs pretrained embeddings. The results include the different dimensions

and each different training datasets. The training and test data is also split using the train

test split function from Scikit-Learn with the training and test data both set to 0.25

proportion to the dataset. The only features used in the classifier is the word embedding

of the word to be classified.

Training Data Embedding

Dimension

Precision Recall F1

Fiji 50 0.57 0.67 0.62

Fiji 100 0.92 0.85 0.88

Fiji 200 0.86 0.86 0.86

Fiji 300 0.69 0.90 0.78

Ner dataset

(5000)

50 0.20 0.50 0.29

Ner dataset

(5000)

100 0.35 0.45 0.39

Ner dataset

(5000)

200 0.37 1.0 0.54

Ner dataset

(5000)

300 0.41 1.0 0.58

NZ locality 50 0.77 0.30 0.43

NZ locality 100 0.65 0.30 0.41

NZ locality 200 0.59 0.30 0.40

NZ locality 300 0.61 0.30 0.40

Average 0.58 0.62 0.55

Figure 29: Using GloVe's pretrained embeddings to train an SGD Classifier

The next results shown below are of an SGD classifier that is trained using the word

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the

different dimensions and each different training datasets. The training and test data is

split using the train test split function from Scikit-Learn with the training and test data

both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the

classifier are the word embeddings of the word to be classified along with the 3 words

before and the 3 words after.

Training Data Embedding

Dimension

Precision Recall F1

Fiji 50 0.88 0.58 0.70

Fiji 100 0.6 0.75 0.67

Fiji 200 0.40 1.0 0.57

Fiji 300 0.64 0.75 0.69

Ner dataset

(5000)

50 0.49 0.69 0.57

PAGE 61

Ner dataset

(5000)

100 0.52 0.61 0.52

Ner dataset

(5000)

200 0.51 0.49 0.50

Ner dataset

(5000)

300 0.52 0.64 0.57

NZ locality 50 0.66 0.52 0.59

NZ locality 100 0.66 0.53 0.59

NZ locality 200 0.64 0.52 0.58

NZ locality 300 0.65 0.58 0.61

Average 0.60 0.64 0.60

Figure 30: Using Gloveǯs pre-trained embeddings and 3 words either side of word to be
classified to train an SGD Classifier

The next results shown below are of an SGD classifier that is trained using the word

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the
different dimensions and each different training datasets. The training and test data is

split using the train test split function from Scikit-Learn with the training and test data

both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the

classifier are the word embeddings of the word to be classified along with the 5 words

before and the 5 words after.

Training Data Embedding

Dimension

Precision Recall F1

Fiji 50 0.60 0.46 0.52

Fiji 100 0.83 0.71 0.77

Fiji 200 0.44 0.80 0.57

Fiji 300 0.91 0.71 0.80

Ner dataset

(5000)

50 0.41 0.49 0.45

Ner dataset

(5000)

100 0.61 0.68 0.64

Ner dataset

(5000)

200 0.65 0.53 0.59

Ner dataset

(5000)

300 0.59 0.46 0.51

NZ locality 50 0.66 0.55 0.60

NZ locality 100 0.65 0.54 0.64

NZ locality 200 0.64 0.56 0.60

NZ locality 300 0.62 0.52 0.57

Average 0.63 0.58 0.61

Figure 31: Using GloVe's pre-trained embeddings and 5 embeddings either side of word to be
classified to train an SGD Classifier

PAGE 62

5.2.3 Averaging Embeddings

The next results shown below are of an SGD classifier that is trained using the word

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the

different dimensions and each different training datasets. The training and test data is

split using the train test split function from Scikit-Learn with the training and test data

both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the

classifier are the average of the word embeddings of the word to be classified along with

the 3 words before and the 3 words after.

Training Data Dimensions Precision Recall F1

Fiji 50 0.47 0.69 0.56

Fiji 100 0.40 0.25 0.31

Fiji 200 0.55 0.50 0.52

Fiji 300 0.33 0.42 0.37

Ner Dataset

(5000)

50 0.50 0.54 0.52

Ner Dataset

(5000)

100 0.65 0.62 0.63

Ner Dataset

(5000)

200 0.66 0.50 0.57

Ner Dataset

(5000)

300 0.58 0.70 0.63

NZ Locality 50 0.50 0.42 0.46

NZ Locality 100 0.57 0.43 0.49

NZ Locality 200 0.57 0.42 0.48

NZ Locality 300 0.54 0.50 0.52

Average 0.53 0.50 0.51

Figure 32: SGD Classifier trained with Average of Embeddings 3 to left and 3 to right and
word to be classified

The next results shown below are of an SGD classifier that is trained using the word

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the

different dimensions and each different training datasets. The training and test data is

split using the train test split function from Scikit-Learn with the training and test data

both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the

classifier are the average of the word embeddings of the word to be classified along with

the 5 words before and the 5 words after.

Training Data Dimensions Precision Recall F1

Fiji 50 0.2 0.24 0.12

Fiji 100 1.0 0.20 0.33

Fiji 200 0.33 0.20 0.25

Fiji 300 0.40 1.0 0.57

Ner Dataset

(5000)

50 0.25 0.30 0.27

PAGE 63

Ner Dataset

(5000)

100 0.30 0.57 0.57

Ner Dataset

(5000)

200 0.36 0.44 0.40

Ner Dataset

(5000)

300 0.32 0.39 0.35

NZ Locality 50 0.20 0.42 0.27

NZ Locality 100 0.35 0.41 0.38

NZ Locality 200 0.36 0.50 0.42

NZ Locality 300 0.30 0.41 0.35

Figure 33: SGD Classifier Trained Using Average of Embeddings 5 to left, 5 to right and the
word to be classified

5.2.4 Using Different Classifiers

The next results shown below are of a LinearSVC classifier that is trained using the word

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the

different dimensions and each different training datasets. The training and test data is

split using the train test split function from Scikit-Learn with the training and test data

both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the

classifier is the word embeddings of the word to be classified.

Training Data Embedding

Dimension

Precision Recall F1

Fiji 50 0.67 0.91 0.77

Fiji 100 0.87 1.0 0.93

Fiji 200 0.75 0.75 0.75

Fiji 300 0.79 1.0 0.88

Ner dataset

(5000)

50 0.36 1.0 0.53

Ner dataset

(5000)

100 0.36 1.0 0.53

Ner dataset

(5000)

200 0.37 0.99 0.53

Ner dataset

(5000)

300 0.30 1.0 0.46

NZ locality 50 0.66 0.30 0.42

NZ locality 100 0.48 0.20 0.28

NZ locality 200 0.59 0.30 0.39

NZ locality 300 0.51 0.40 0.45

Figure 34: Using GloVe's pretrained embeddings to train a Linear SVC classifier

The next results shown below are of a LinearSVC classifier that is trained using the word

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the

different dimensions and each different training datasets. The training and test data is

split using the train test split function from Scikit-Learn with the training and test data

PAGE 64

both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the

classifier are the word embeddings of the word to be classified as well as the 3 words

before and 3 words after.

Training Data Embedding

Dimension

Precision Recall F1

Fiji 50 0.62 0.71 0.67

Fiji 100 0.80 0.73 0.76

Fiji 200 0.62 0.50 0.56

Fiji 300 0.60 0.82 0.69

Ner dataset

(5000)

50 0.60 0.60 0.60

Ner dataset

(5000)

100 0.60 0.56 0.58

Ner dataset

(5000)

200 0.45 0.52 0.48

Ner dataset

(5000)

300 0.55 0.58 0.56

NZ locality 50 0.65 0.54 0.59

NZ locality 100 0.66 0.57 0.61

NZ locality 200 0.63 0.55 0.59

NZ locality 300 0.63 0.57 0.60

Figure 35: Using GloVe's pretrained embeddings and taking 3 embeddings either side of word
to be classified to train a Linear SVC Classifier

The next results shown below are of a LinearSVC classifier that is trained using the word

embeddings obtained by the GloVeǯs pretrained embeddings. The results include the

different dimensions and each different training datasets. The training and test data is

split using the train test split function from Scikit-Learn with the training and test data

both set to 0.25 proportion set to 0.25 proportion to the dataset. The features used in the

classifier are the word embeddings of the word to be classified as well as the 5 words

before and 5 words after.

Training Data Embedding

Dimension

Precision Recall F1

Fiji 50 0.29 0.29 0.29

Fiji 100 0.73 0.92 0.81

Fiji 200 0.71 0.62 0.67

Fiji 300 0.89 0.57 0.70

Ner dataset

(5000)

50 0.47 0.60 0.53

Ner dataset

(5000)

100 0.52 0.63 0.57

Ner dataset

(5000)

200 0.52 0.65 0.58

PAGE 65

Ner dataset

(5000)

300 0.62 0.52 0.57

NZ locality 50 0.66 0.54 0.59

NZ locality 100 0.64 0.53 0.58

NZ locality 200 0.57 0.54 0.56

NZ locality 300 0.59 0.53 0.56

Figure 36: Using GloVe's pretrained embeddings and taking 5 embeddings either side of the
word to be classified to train a Linear SVC Classifier

5.2.4 Evaluation of Classifier Results

Comparing the main changing variables of the classifier being the type of classifier, using

pretrained embeddings or using Count Vectorizer, increasing the dimensions of

embeddings and taking n number of words either side of the word to be classified many

pattern can be found and evaluated.

Figure 37: Using NZ data with word embeddings obtained from GloVeǯs pretrained
embeddings with dimension of 200. The classifier uses features of embeddings of the word to
be classified.

The use of different classifiers SGD and Linear SVC made little to no difference in the

accuracy measurements, as seen in figure 26 there is no change to precision, recall and F1

values. Therefore, SGD or Linear SVM would both be suitable classifiers to use to compare

other training data variables.

The training data of a classifier can have a big impact on its performance as small dataset

may make it easier but the lack of examples the classifier can learn from can hinder its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Precision Recall F1

Compaing SGD and Linear SVC Classifiers

SGD Classifier Linear SVC Classifier

PAGE 66

performance when using new data not from the same dataset. The three training datasets

that are used to compare are a Fiji text document, which contain a small number of lines

where the word ǮFijiǯ is also repeated numerous times, 6000 words from a large dataset

designed for training an NER classifier is used and finally a 24000 word dataset of locality

data for New Zealand which like Fiji has been used previously to evaluate the Stanford,

SpaCy and NLTK.

Figure 38: Comparison of using Different Training Data Using Dimensions of 200 GloVeǯs
pretrained embeddings trained on an SGD Classifier

The precision values were better on the smaller and the largest datasets for training, as all

datasets were split using Scikit Learnǯs train test split class where the train and test data is

set to 0.25 in proportion to the input dataset it may suggest the Fiji text document is so

small that the result are better as there are not many new words in the test data compared

to the training data the classifier has already learned on. Recall values for NER dataset

have the highest value. F1 values decrease as the size of the datasets used to train the

classifier decrease.

Moving forward the New Zealand data is being used to compare the following variables to

ensure it reflects the changing variable effecting results. Instead of using pre-trained

embeddings to transform words to embeddings scikit learn have a count vectorizer that

can be used to transform the words to word vectors and therefore train the classifier.

0

0.2

0.4

0.6

0.8

1

1.2

Precision Recall F1

Comparing Training Data

Fiji NER NZ

PAGE 67

Figure 39: Comparing Count Vectorizer vs GloVe's pretrained embeddings to train an SGD
Classifier both using New Zealand data for training

The training datasets appear to be not large enough that the embeddings do not perform

better than count vectorizer. The New Zealand locality data has a considerable repetition

of words therefore it may be easier for the classifier to learn associations between entities

and context words. With this the bag of words representation could be better suited and is

the reason why it performs better than pre-trained embeddings.

In future pre-trained embeddings would still better suit for classifier writing as they take

time away for text pre-processing and are trained on large datasets that the programmer

would not have access to. Although count vectorizers may have more dimensions than

embeddings the pre-trained embeddings may be better at encapsulating the meaning

within their dimensions. Another positive of using pre-trained embeddings are that the

embedding feature of a word to be classified can have 200 non-zero values (for

embeddings of 200 dimensions), where for the count vectorizer of the same word to be

classified although there will be more dimensions there will be more zero values.

Increasing the dimensions of the embeddings can change the performance of the

classifier:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision Recall F1

Comparing CountVectorizer to GloVe's pretrained

embeddings

Count Vectorizer Pretrained embeddings

PAGE 68

Figure 40: Comparing the different dimensions of GloVe's embeddings to train an SGD
Classifier using New Zealand Data for training

Surprisingly, the results of the classifiers with increasing dimensions of embeddings are

not what was expected. Precision decreases with the increasing dimensions but increase

from 200 to 300 dimensions. Recall is not impacted by the increasing of the dimensions

and F1 also decreases but only very slightly.

The training data is small and therefore would probably be better suited using a bag of

words representation. As pre-trained embeddings may have been the poor choice for this

classifier the results of changing the dimensions of the embeddings could be impacted and

not produce the results that would be expected. Therefore, it may be beneficial to test the

changing embeddings on larger datasets to see if the results are common or if these are

anomalies as the training data is small.

Classifiers can perform better if they can capture context of a sentence, taking n number

of words from either side of the word to be classified can improve the classifiers

performance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision Recall F1

Comparing dimension of embeddings

50 100 200 300

PAGE 69

Figure 41: Comparing window sizes of embeddings around the word to be classified using
GloVe's pretrained embeddings to train an SGD Classifier using New Zealand data for
training

As expected, increasing the number of words taken left and right of the word to be

classified increasing its accuracy performance. All three values precision, recall and f1

increased with the increasing number of words taken either side, although precision

stayed the same when increased from 3 to 5 words. As this experiment would not be able

to go underway without using pre-trained embeddings it demonstrates another benefit of

using pre-trained embeddings for classifier training.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Precision Recall F1

Comparing taking n number of embeddings either side of

word to be classified

No embeddings of neighbouring words 3 embeddings either side of the word

5 embeddings side of the word

PAGE 70

Figure 42: Comparing Averaging Embeddings vs Not-Averaging Embeddings with window
size of 3 and 5 using New Zealand data for training. The Number in the bracket contains the
window sized used.

Using 3 embeddings left and right of the word to be classified and the embedding of the

word as an example will result in 700 data values being used for each word when training

with pre-trained embeddings of dimensions of 100. When taking the average, the training

data for the classifier will go from 700 data values to 100. With the less data values in

training the accuracy measurements decrease. As predicted, all precision, recall and F1

values decrease when taking the average for training instead of all the values.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Precision Recall F1

Comparing Averaging Embeddings

No Average (3) Average (3) No Average (5) Average (5)

PAGE 71

6.0 Future Work

The goal of this project is to Ǯrecognise and disambiguate place names in a text documentǯ,
throughout the project recognising place names has been successful and evaluating the

techniques that do so. This section includes what shortcomings in the implementation

have occurred and what future work could be done to further the completion of this

project goal.

6.1 Training of NER Tools

To improve the technique of recognising place names in a text document further training

on NER tools could be required. SpaCy gives clear tutorial on training the NER tool and

update the model to perform better.

SpaCy model could be trained to improve NER on human annotated data like the locality

data. Using New Zealand locality data for training which has sentences including

ǲWhareroa Roadǳ which can be used in training to allow the model to learn that a word

with ǲrdǳ, ǲRDǳ or ǲroadǳ after is a location. It can use that information and the training

example to remember next time it comes across a sentence such as ǲMangaone Rdǳ to
realise it is a location or a ǲFACǳ, not an organisation which SpaCy previously labelled it

as. Previously, SpaCy has labelled a sentence such as ǲ3.52 km south of Mangatoetoenui

Stationǳ as a quantity due to the presence of the 3.52, further training of the SpaCy model

could result in the model recognising the location separately from the quantity. SpaCy

model could also be trained to recognise locations based on the presence of spatial

relations such as Ǯnearǯ just like used in the example in New Zealand locality data: ǲNEAR

ROTORUA AIRPORTǳ. SpaCy identified ǲAlexandraǳ in the locality data as a location but

also identifies it as a name, training could help by improving the SpaCy model to see that

the same word did have the same entity of being a location.

To ensure the accuracy results of SpaCy are easier to compute and compare the Stanford

and NLTK future work could include grouping some of SpaCyǯs entity labels together and

creating a program to input SpaCyǯs training data in an easier way. As many locations such

as oceans or highways are given the label ǮLOCǯ or ǮFACǯ where countries and cities are

given the label ǮGPEǯ it could be argued that SpaCy is correctly identifying them as

locations but in Stanford and NLTK they will all be labelled ǮLOCATIONǯ. To achieve a

better comparison of the three NER tools a function could be included to group the labels

that all account for a location in SpaCy to one location label. This will help compare the

three tools as they will all have Ǯlocationǯ as a label for the same things. To calculate the

accuracy measurements of SpaCy they must be in the training data form showing in 3.1.4.

To input each line and entities separately takes an enormous amount of human time so an

idea to make this process more elegant and faster could be to input a file of annotated

data and convert it to a json file in the correct format.

PAGE 72

6.2 Using Different Pre-Trained Embeddings

Future work on creating NER classifiers could be using different pre-trained embeddings

other than GloVe used in the project examples include FastText and Word2Vec. SpaCy

also have a build in embeddings that could be used to train a classifier. It would be

beneficial to see how the different pre-trained embedding sources affected the accuracy

performance.

6.3 Disambiguating

The task of disambiguating place names was not implemented in this project. Further

work could include implementing tools to do this. The Edinburgh GeoParser is a system

that can detect and disambiguate a place name with respect to a gazetteer [2010, Grover,

Tobin, Bryne, Woollard, Reid, Dunn, Ball]. The geoparser can be used with several

gazetteers and can be used to process a variety of input text processes. The Edinburgh

Geoparser can be downloaded via The Language Technology Group website

(https://www.ltg.ed.ac.uk/software/) and is described as a toolkit for georeferencing text.

Like the NER tools that have been evaluated within the project The Edinburgh Geoparser

could be evaluated to get accuracy measurements for its performance.

6.3 Training Classifiers using Different Features

An aim that was not implemented was to create a classifier that can detect and geo-

reference a place name by the presence of biological specimens described in text. The New

Zealand locality data used in the project comes from ǲLandcare New Zealandǳ which

describes biological specimens that occur in places. The places are described by region,

map series, map number, east coordinates, north coordinates, locality, and altitude. All

this information of the biological specimens can be as features in a classifier so when the

classifier sees a certain biological specimen in a text document it can recognise and geo-

reference a place name from the specimens would occur.

https://www.ltg.ed.ac.uk/software/

PAGE 73

7.0 Conclusions

The goal of the project is to Ǯrecognise and disambiguate place names in a text documentǯ,
as disambiguating was not implemented the conclusions will include the work of

detecting place names. This section will conclude which of the NER tools used are the best

option and whether they are better in comparison to the classifiers written.

Using the precision, recall and F1 values to compare the NER tools the conclusion is

Stanford NER gives the best performance results. Stanford gives the best precision value of

0.98 in comparison of NLTKǯs value of 0.94 and SpaCyǯs value of 0.83. Stanford also

achieves the best recall of 0.76 in comparison to SpaCyǯs 0.57 value and NLTKǯs 0.48 recall

value. It subsequently has the best F1 value of 0.85 with SpaCy in second with 0.65 and

NLTK with the worst score of 0.61.

Stanford performs NER very slowly in comparison to the other NER tools with an average

of 4.34 seconds which is significantly higher than NLTKǯs average speed of 0.37 seconds

and SpaCyǯs average speed of 0.12 seconds. Therefore, it is concluded Stanford would not

be the best choice going forward especially as it could be dealing with exceptionally large

documents in practice.

SpaCy gives high precision, recall and F1 values, allows you to train the model and

performs faster than Stanford so the conclusion I have achieved is SpaCy is the best NER

tool to use in the future. As it also gives a greater range of labels for the entities it could be

further adapted to improve disambiguating place names in future work as roads and lakes

will not be classed as a location but can be used to help decide which place name the text

is discussing i.e. if the Hudson River is labelled ǮLOCǯ by SpaCy it would be clear that the

word ǮYorkǯ in the same text would be referring to ǮNew York Cityǯ and not the English

city.

Using the average of precision, recall and F1 values of the SGD Classifier trained using pre-

trained embeddings and the NER Tools we can compare their performance in terms of

accuracy.

When using pre-trained embeddings to train an SGD Classifier the average precision value

is 0.58 which is lower than when using SpaCy with 0.83, NLTK with 0.94 and Stanford

with 0.98 therefore if false positives had a very high cost then using the NER Tools would

be more beneficial.

SGD Classifier trained with pre-trained embeddings gave a higher recall value of 0.62

compared to SpaCy with 0.57 and NLTK with 0.48 but did have a lower recall value than

Stanford with 0.76. As recall has a higher cost in this project as false negatives can lead to

the incorrect disambiguation of a place name then it would be suggested to use Stanford

or the SGD classifier trained with pre-trained embeddings to reduce the amount of false

negatives identified.

PAGE 74

F1 gives a value than can be used as a substitute for the overall accuracy. The SGD

classifier trained with pre-trained embeddings gave a F1 value of 0.55 which is lower than

NLTKǯs value of 0.61, SpaCyǯs F1 value of 0.57, and Stanfordǯs value of 0.85. Overall, using

the F1 values gives the conclusion that the NER Tools would be preferred than the SGD

Classifier trained with pre-trained embeddings.

In conclusion taking words either side of the word to be classified as input for training

increases performance measurements of a classifier. The window size refers to the number

of words either side of the word to be classified taken as features for training. With a

window size of 0 the precision value is 0.58, increasing the window size to 3 the precision

value increases to 0.60 and increases again to 0.63 when the window size increases to 5.

The recall does not follow the exact same pattern as precision as with a window size of 0

the recall value is 0.62, as the window size increases to 3 the recall value increases to 0.64

but as the window size increases to 5 the recall actually decreases to 0.58. As F1 value gives

a better overall value of accuracy increasing the window size does increase the F1 value.

Window size of 0 gives 0.55 F1 value, then the window size of 3 gives F1 value of 0.60 and

the window size of 5 gives a 0.61 F1 value. Overall, the larger the window size the greater

the accuracy performance but as recall has high costs in this project it would be better to

use a window size of 3 as it gives the best recall value.

In summary, on formally written text documents Stanford and SpaCy work extremely well

to recognising location entity labels correctly and SpaCy works amazingly fast which gives

it its edge of being the better NER. The NER tools already published work better than the

current classifiers written for this project.

PAGE 75

8.0 Reflection on Learning

Completing this final year project has been rewarding in furthering my skills in

programming and project management. This project has broadened my areas of research

as machine learning and natural language processing is an area of computer science, I had

not previously had experience in.

8.1 Work Done

Starting this project, I had no experience in working with machine learning algorithms or

natural language processing. I have managed to learn how algorithms work, how

classifiers can be trained and how they are evaluated. I feel that my programming skills

and understanding how to optimise libraries and imported modules have improved within

this project. Although disambiguating place names was not implemented the techniques

to recognise a place name was implemented successfully and code was written to evaluate

them. To create a classifier using Scikit Learn library to perform NER is a massive

achievement for me and a symbol of how far I have progressed in this area.

Reflecting on my progress on the project I would have started following more practical

tutorials of machine learning and NLP during research to get a better idea of how the tools

worked and how classifiers are trained. This could have optimised my time during

classifier creation and could have possibly allowed me to gain the time to move on to

disambiguating place names.

8.2 Time Management

The initial plan was ambitious in hindsight due to amount of research required.

Developing a new skill in machine learning is not something that can be developed

quickly but rather developed constantly over a long period of time. From the beginning of

the project to now I have gained a greater understanding of machine learning classifiers

and natural language processing, it was unrealistic to expect this knowledge to be gained

within the time frame proposed which resulted in some aspects like disambiguating not

being implemented.

The initial plan was not followed. The initial plan outlined completing the task of NER,

then disambiguation and finally evaluating and creating classifiers to improve

performance of the tasks. The plan changed to completing NER, evaluating NER tools and

then creating classifiers to try and increase the performance measurements of NER before

moving on to disambiguation. I believe it was better to change the plan as I gained

valuable skills in the process of evaluating NER tools and creating classifiers for NER

which would be needed when the task of disambiguation was carried out. When carrying

out the first tasks in the initial plan it came apparent that further work on NER and

classifiers would be required to move on in the project. I believe I am now in a position

that moving forward I have the skills required if I were to carry out the rest of the project.

PAGE 76

Skype meetings were set up regularly between myself and my supervisor to discuss project

progress and what could be done next. These calls also gave a great hand in explaining

machine learning processes and how NERǯs, embeddings and classifier training worked.

These meetings allowed to be to continue to keep focus on the tasks in hand and guided

me to change the plan when necessary.

PAGE 77

9.0 Appendices

9.1 Text Documents

Below give the text documents used as data sources described in 2.12.

New Zealand:

New Zealand is a sovereign island country in the southwestern Pacific Ocean. The country

has two main landmasses the North Island, and the South Island and around 6OO smaller

islands. It has a total land area of 268,OOO square kilometres. New Zealand is about

2,OOO kilometres east of Australia across the Tasman Sea and 1,OOO kilometres south of

the Pacific island areas of New Caledonia, Fiji, and Tonga. Because of its remoteness, it

was the last large habitable landmass to be settled by humans. During its long period of

isolation, New Zealand developed a distinct biodiversity of animal, fungal, and plant life.

The country's varied topography and its sharp mountain peaks, such as the Southern Alps,

owe much to the tectonic uplift of land and volcanic eruptions. New Zealand's capital city

is Wellington, and its most populous city is Auckland.

South East England:

South East England is the most populous of the nine official regions of England at the first

level of NUTS for statistical purposes. It consists of Berkshire, Buckinghamshire, East

Sussex, Hampshire, the Isle of Wight, Kent, Oxfordshire, Surrey, and West Sussex. As with

the other regions of England, apart from Greater London, the south east has no elected

government.

Cwmbran:

Cwmbrân is a new town in Wales lying within the historic boundaries of Monmouthshire

it forms part of the county borough of Torfaen Cwmbran was designated as a new town in

1949 to provide new employment opportunities in the south eastern portion of the South

Wales Coalfield.

America:

The United States of America, commonly known as the United States or America, is a

country consisting of 50 states, a federal district, five major self-governing territories, and

various possessions O. At 3.8 million square miles, it is the world's third or fourth - largest

country by total area and is slightly smaller than the entire continent of Europe I-LOC.

Most of the country is located in central North America between Canada and Mexico I-

LOC. With an estimated population of over 328 million, the U.S. is the third most

populous country in the world O. The capital is Washington, D.C., and the most populous

city is New York City.

PAGE 78

The United States is a federal republic and a representative democracy. It is a founding

member of the United Nations, World Bank, International Monetary Fund, Organization

of American States, NATO, and other international organizations. It is a permanent

member of the United Nations Security Council. Its President is Donald Trump.

Australia:

Australia, officially the Commonwealth of Australia, is a sovereign country comprising the

mainland of the Australian continent, the island of Tasmania, and numerous smaller

islands. It is the largest country in Oceania and the world's sixth-largest country by total

area. The population of 26 million is highly urbanised and heavily concentrated on the

eastern seaboard. Australia's capital is Canberra, and its largest city is Sydney. The

country's other major metropolitan areas are Melbourne, Brisbane, Perth, and Adelaide.

Australia is the oldest flattest, and driest inhabited continent, with the least fertile soils. It

has a landmass of 7,617,930 square kilometres A megadiverse country, its size gives it a

wide variety of landscapes, with deserts in the centre, tropical rainforests in the north-

east, and mountain ranges in the south-east. Its population density, 2.8 inhabitants per

square kilometre, remains among the lowest in the world. Australia generates its income

from various sources including mining-related exports, telecommunications, banking,

manufacturing, and international education.

Iceland:

Iceland is a Nordic island country in the North Atlantic, with a population of 360,390 and

an area of 103,000 km2, making it the most sparsely populated country in Europe. The

capital and largest city is Reykjavík. Reykjavik and the surrounding areas in the southwest

of the country are home to over two-thirds of the population. Iceland is volcanically and

geologically active. The interior consists of a plateau characterised by sand and lava fields,

mountains, and glaciers, and many glacial rivers flow to the sea through the lowlands.

Iceland is warmed by the Gulf Stream and has a temperate climate, despite a high latitude

just outside the Arctic Circle. Its high latitude and marine influence keep summers chilly,

with most of the archipelago having a tundra climate.

Finland:

Finland Swedish : Finland, Finland, officially the Republic of Finland is a Nordic country

in Northern Europe bordering the Baltic Sea, Gulf of Bothnia, and Gulf of Finland,

between Sweden to the west, Russia to the east, Estonia to the south, and north-eastern

Norway to the north. The capital and largest city is Helsinki. Other major cities are Espoo,

Tampere, Vantaa, Oulu, Turku, Jyväskylä, Lahti and Kuopio.

South Wales:

PAGE 79

South Wales is a loosely defined region of Wales bordered by England and the Bristol

Channel to the east and south. It has a population of around 2.2 million, almost three-

quarters of the whole of Wales, including 400,000 in Cardiff, 250,000 in Swansea and

150,000 in Newport. Generally considered to include the historic counties of Glamorgan

and Monmouthshire, South Wales extends westwards to include Carmarthenshire and

Pembrokeshire. In the western extent, from Swansea westwards, local people would

probably recognise that they lived in both south Wales and west Wales. The Brecon

Beacons National Park covers about a third of South Wales, containing Pen y Fan, the

highest British mountain south of Cadair Idris in Snowdonia.

Southern France:

Southern France, also known as the South of France or colloquially in French as le Midi, is

a defined geographical area consisting of the regions of France that border the Atlantic

Ocean south of the Marais Poitevin, Spain, the Mediterranean Sea and Italy. It includes:

Nouvelle-Aquitaine in the west, Occitanie in the centre, the southern parts of Auvergne-

Rhône-Alpes in the northeast, Provence-Alpes-Côte d'Azur in the southeast, as well as the

island of Corsica in the southeast. Monaco and Andorra are sometimes included in

definitions of Southern France although they are principalities.

The term Midi derives from mi and di in Old French, comparable to the term

Mezzogiorno from the Southern Italy. The time of midday was synonymous with the

direction of south because in France, as in all of the Northern Hemisphere north of the

Tropic of Cancer, the sun is in the south at noon. The synonymy existed in Middle French

as well, where meridien can refer to both midday and south. The Midi is considered to

start at Valence, hence the saying "à Valence le Midi commence".

Fiji:

Fiji, officially the Republic of Fiji is an island country in Melanesia, part of Oceania in the

South Pacific Ocean about 1,100 nautical miles northeast of New Zealand's North Island.

Its closest neighbours are Vanuatu to the west, New Caledonia to the southwest, New

Zealand's Kermadec Islands to the southeast, Tonga to the east, the Samoas and France's

Wallis and Futuna to the northeast, and Tuvalu to the north. Fiji consists of an

archipelago of more than 330 islands of which 110 are permanently inhabited and more

than 500 is lets, amounting to a total land area of about 18,300 square kilometres. The

most outlying island is Ono i Lau. The two major islands, Viti Levu and Vanua Levu,

account for 87% of the total population of 883,483. The capital, Suva, on Viti Levu, serves

as the country's principal cruise ship port. About three-quarters of Fijians live on Viti

Levu's coasts, either in Suva or in smaller urban centres such as Nadi where tourism is the

major local industry or Lautoka, where the sugar cane industry is paramount. Due to its

terrain, the interior of Viti Levu is sparsely inhabited.

Philippines:

PAGE 80

The Philippines, officially the Republic of the Philippines, is an archipelagic country in

Southeast Asia. Situated in the western Pacific Ocean, it consists of about 7,641 islands

that are broadly categorized under three main geographical divisions from north to south:

Luzon, Visayas and Mindanao. The capital city of the Philippines is Manila and the most

populous city is Quezon City, both part of Metro Manila. Bounded by the South China Sea

on the west, the Philippine Sea on the east and the Celebes Sea on the southwest, the

Philippines shares maritime borders with Taiwan to the north, Japan to the northeast,

Palau to the east, Indonesia to the south, Malaysia and Brunei to the southwest, Vietnam

to the west, and China to the northwest.

PAGE 81

References

2001-2019 NLTK Project. Nitin MAdnani, Rami Al-Rfou http://nltk.org

2007-2019 Scikit-learn developers https://scikit-learn.org/stable/modules/svm.html

2016 -2020 Explosion AI (3) - https://spacy.io/api/scorer

2016-2020 Explosion AI (2) https://spacy.io/usage/facts-figures

2016-2020 Explosion AI(4) - https://spacy.io/usage/training

2016-2020 Explosion AI, https://spacy.io/usage/spacy-101

ARAVIND PAI, MARCH 16, 2020 – ǲAn Essential Guide to Pretrained Word Embeddings for
NLP Practitionersǳ https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-

embeddings-nlp/

August 20, 2019 https://www.nltk.org/api/nltk.metrics.html

Bates, M (1995). "Models of natural language understanding". Proceedings of the National

Academy of Sciences of the United States of America.

Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language Processing with

Python. OǯReilly Media)nc.

Bold360 by LogMeIn - https://www.bold360.com/features/conversational-ai/natural-

language-

processing?gclid=CjwKCAiA7t3yBRADEiwA4GFlIxU_Hkfp7CfQrIVM9uHPb4sf6oq93jxdfdf

L0UKEjT8HX01sJ48jrhoCWxUQAvD_BwE&gclsrc=aw.ds

Claire Grover, Richard Tobin, Kate Byrne, Matthew Woollard, James Reid, Stuart Dunn,

and Julian Ball. 2010b. Use of the Edinburgh Geoparser for georeferencing digitised

historical collections. Philosophical Transactions of the Royal Society A, 368(1925):3875-

3889

Edward Ma Jul 22, 2018 – ǲ͟ basic approaches in Bag of Words which are better than Word

Embeddingsǳ https://towardsdatascience.com/3-basic-approaches-in-bag-of-words-

which-are-better-than-word-embeddings-c2cbc7398016

Europa Technologies - https://www.europa.uk.com/what-is-a-gazetteer/

Expert System Team, Blog March 2017 - https://expertsystem.com/machine-learning-

definition/

Free Code Camp: 18 DECEMBER 2018 ǲAn introduction to Bag of Words and how to code

it in Python for NLPǳ

http://nltk.org/
https://scikit-learn.org/stable/modules/svm.html
https://spacy.io/api/scorer
https://spacy.io/usage/facts-figures
https://spacy.io/usage/training
https://spacy.io/usage/spacy-101
https://www.analyticsvidhya.com/blog/author/aravindpai/
https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/
https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/
https://www.nltk.org/api/nltk.metrics.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC40721
https://www.bold360.com/features/conversational-ai/natural-language-processing?gclid=CjwKCAiA7t3yBRADEiwA4GFlIxU_Hkfp7CfQrIVM9uHPb4sf6oq93jxdfdfL0UKEjT8HX01sJ48jrhoCWxUQAvD_BwE&gclsrc=aw.ds
https://www.bold360.com/features/conversational-ai/natural-language-processing?gclid=CjwKCAiA7t3yBRADEiwA4GFlIxU_Hkfp7CfQrIVM9uHPb4sf6oq93jxdfdfL0UKEjT8HX01sJ48jrhoCWxUQAvD_BwE&gclsrc=aw.ds
https://www.bold360.com/features/conversational-ai/natural-language-processing?gclid=CjwKCAiA7t3yBRADEiwA4GFlIxU_Hkfp7CfQrIVM9uHPb4sf6oq93jxdfdfL0UKEjT8HX01sJ48jrhoCWxUQAvD_BwE&gclsrc=aw.ds
https://www.bold360.com/features/conversational-ai/natural-language-processing?gclid=CjwKCAiA7t3yBRADEiwA4GFlIxU_Hkfp7CfQrIVM9uHPb4sf6oq93jxdfdfL0UKEjT8HX01sJ48jrhoCWxUQAvD_BwE&gclsrc=aw.ds
https://towardsdatascience.com/@makcedward?source=post_page-----c2cbc7398016----------------------
https://towardsdatascience.com/3-basic-approaches-in-bag-of-words-which-are-better-than-word-embeddings-c2cbc7398016?source=post_page-----c2cbc7398016----------------------
https://towardsdatascience.com/3-basic-approaches-in-bag-of-words-which-are-better-than-word-embeddings-c2cbc7398016
https://towardsdatascience.com/3-basic-approaches-in-bag-of-words-which-are-better-than-word-embeddings-c2cbc7398016
https://www.europa.uk.com/what-is-a-gazetteer/
https://expertsystem.com/machine-learning-definition/
https://expertsystem.com/machine-learning-definition/

PAGE 82

Goyal, Kumar, Gupta- October 2017 – International Journal of Advance Research in

Science and Engineering Volume No.06, Issue No.10

IGI-Global - https://www.igi-global.com/dictionary/using-the-flipped-classroom-to-

improve-knowledge-creation-of-masters-level-students-in-engineering/21327

Jason Brownlee on October 11, 2017 in Deep Learning for Natural Language Processing -

What Are Word Embeddings for Text?

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global

Vectors for Word Representation.

Jenny Rose Finkel, Trond Gregnagr and Christopher Manning. 2005 – Incorporating Non-

local information into Information Extraction Systems by Gibbs Samling. Proceedings of

the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp

363-370 - http://nlp.stanford.edu/~manning/papers/gibbscrf3.pdf

Karimzadeh, M., Pezanowski, S., MacEachren, A. M., & Wallgrün, J. O. (2019). GeoTxt: A

scalable geoparsing system for unstructured text geolocation. Transactions in GIS, 23(1),

118–136. https://doi.org/10.1111/tgis.12510.

Shirish Kadam Mar 31, 2019 - https://medium.com/@5hirish/dependency-parsing-in-nlp-

d7ade014186

Kaustumbh Jaiswal, April 18, 2019 – Custom Named Entity Recognition Using SpaCy -

https://towardsdatascience.com/custom-named-entity-recognition-using-spacy-

7140ebbb3718

Koo Ping Shung, March 15 2018 - https://towardsdatascience.com/accuracy-precision-

recall-or-f1-331fb37c5cb9

Lafferty, J., McCallum, A., Pereira, F. (2001). "Conditional random fields: Probabilistic models for

segmenting and labelling sequence data". Proc. 18th International Conf. on Machine Learning.

Morgan Kaufmann. pp. 282–289.

March 06, 2020 Python Software Foundation https://docs.python.org/3/library/time.html

Mathew Honnibal, February 19, 2015 https://explosion.ai/blog/introducing-spacy

Oleksii Kgarkovyna, April 9, 2019 - https://towardsdatascience.com/beginners-guide-to-

machine-learning-with-python-b9ff35bc9c51

Sachin Malhotra and Divya Godayal, June 2018 - https://www.freecodecamp.org/news/an-

introduction-to-part-of-speech-tagging-and-the-hidden-markov-model-953d45338f24/
Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

https://www.igi-global.com/dictionary/using-the-flipped-classroom-to-improve-knowledge-creation-of-masters-level-students-in-engineering/21327
https://www.igi-global.com/dictionary/using-the-flipped-classroom-to-improve-knowledge-creation-of-masters-level-students-in-engineering/21327
https://machinelearningmastery.com/author/jasonb/
https://machinelearningmastery.com/category/natural-language-processing/
https://nlp.stanford.edu/pubs/glove.pdf
https://nlp.stanford.edu/pubs/glove.pdf
http://nlp.stanford.edu/~manning/papers/gibbscrf3.pdf
https://doi.org/10.1111/tgis.12510
Shirish%20Kadam
Shirish%20Kadam
https://medium.com/@5hirish/dependency-parsing-in-nlp-d7ade014186?source=post_page-----d7ade014186----------------------
https://medium.com/@5hirish/dependency-parsing-in-nlp-d7ade014186
https://medium.com/@5hirish/dependency-parsing-in-nlp-d7ade014186
https://towardsdatascience.com/@kaustumbhjaiswal7?source=post_page-----7140ebbb3718----------------------
https://towardsdatascience.com/custom-named-entity-recognition-using-spacy-7140ebbb3718
https://towardsdatascience.com/custom-named-entity-recognition-using-spacy-7140ebbb3718
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://docs.python.org/3/library/time.html
https://explosion.ai/blog/introducing-spacy
https://towardsdatascience.com/beginners-guide-to-machine-learning-with-python-b9ff35bc9c51
https://towardsdatascience.com/beginners-guide-to-machine-learning-with-python-b9ff35bc9c51
https://medium.com/@sachinmalhotra
https://medium.com/@divyagodayal
https://www.freecodecamp.org/news/an-introduction-to-part-of-speech-tagging-and-the-hidden-markov-model-953d45338f24/
https://www.freecodecamp.org/news/an-introduction-to-part-of-speech-tagging-and-the-hidden-markov-model-953d45338f24/
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

PAGE 83

Simone Magnolini, Valerio Piccioni, Vevake Balaraman, Marco Guerini, Bernardo Magini,

2019 – How to Use Gazetteers for Entity Recognition with Neural Models

T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, A. Joulin. Advances in Pre-Training

Distributed Word Representations

Technopedia - August 11, 2015 - https://www.techopedia.com/definition/13825/named-

entity-recognition-ner

https://arxiv.org/abs/1712.09405
https://arxiv.org/abs/1712.09405
https://www.techopedia.com/definition/13825/named-entity-recognition-ner
https://www.techopedia.com/definition/13825/named-entity-recognition-ner

