

Project 152
'Real-Time Audio and MIDI Control iPad Application with
Backing Drum Generation

Student No: 1026943
Student Name: Steffan Walters
Supervisor: Prof. A.D.Marshall
Moderator: Dr K.Sidorov
Module Code: CM0343 - 40 credits

5/3/2013

Project 152 Steffan
Walters

Acknowledgments
I would like to express my personal thanks to my supervisor professor A.D.Marshall for giving up his
time generously and providing help and guidance throughout my project from the planning stage up
to the reporting stage.

I would also like to thank Regaljay Ltd. for providing me with the equipment necessary to complete
this project.

Finally, I would like to express my thanks to Mr Matthew R Jones for taking part in the evaluation
stage of my report and helping test the application.

Page 2 of 79

Project 152 Steffan
Walters

Table of Contents
Acknowledgments ... 2

Table of Figures ... 5

Introduction .. 8

Design .. 10

Background Research Update/ Technologies Used .. 10

Objective-C .. 10

Pure Data .. 10

MIDI Input ... 10

Included Features.. 10

MIDI ... 10

Drum ... 11

Design of Interface .. 11

MIDI Section .. 11

Drum Section .. 12

Overall System Diagram .. 14

Implementation .. 15

Approach to Solving the Problem ... 15

Overall Sequence of the Application Steps ... 15

MIDI Section .. 15

Drum Section .. 16

Pure Data .. 17

1. MIDI Section .. 18

1.1 Connect Keyboard ... 18

1.2 Keyboard Input .. 20

1.3 Record and Playback ... 24

1.4 Effects .. 26

1.5 Play / Stop drums .. 31

1.6 Populating the table of saved drum tracks ... 31

Page 3 of 79

Project 152 Steffan
Walters

1.7 Text View Methods ... 32

1.8 View Lifecycle Methods .. 32

2. Pure Data Patch .. 34

General Overview ... 34

2.1 How to Create a Simple Pure Data Patch .. 34

2.2 Arpeggio Synthesiser... 36

2.3 Diminish Synthesiser ... 39

2.4 Main Synthesiser ... 41

3. Drum Section ... 45

3.1 Choosing a Drum Pattern .. 45

3.2 Save / Load / Delete a Track ... 49

3.3 Drum Parameters changed (volume and tempo) ... 53

3.4 Populate the Drum Table .. 54

3.5 - viewDidLoad Method .. 55

Results and Evaluation .. 57

Unique Features .. 57

Advantages/Disadvantages of my Application ... 57

Advantages .. 57

Disadvantages ... 57

Aims and Objectives .. 58

Detailed Aims and Objectives ... 58

Evaluate Strategy for Key Methods .. 60

MIDI section .. 60

Drum section ... 61

External Evaluation ... 62

Results ... 62

Functionality ... 62

General .. 63

Critical Evaluation of the Application .. 63

Page 4 of 79

Project 152 Steffan
Walters

Design .. 63

Usability .. 63

Functionality ... 63

Future Work .. 64

Problems Encountered ... 64

General Improvements ... 65

Midi Section Improvements .. 65

Drum Section Improvements .. 66

Pure Data Synthesiser Patch Improvements .. 67

Conclusions ... 68

Reflection on Learning .. 69

Glossary ... 71

Table of Abbreviations .. 71

Appendix ... 72

References .. 79

Table of Figures
Figure 1 - MIDI Interface ... 12
Figure 2 - Drum Interface .. 13
Figure 3 - MIDI interface ... 18
Figure 4 - Connect Keyboard ... 18
Figure 5 - Alert View Method .. 19
Figure 6 - setupMIDI ... 19
Figure 7 - Log Messages .. 20
Figure 8 - Check Error .. 20
Figure 9 - MIDI Input via Keyboard ... 20
Figure 10 - Note on Event ... 21
Figure 11 - Recording .. 21
Figure 12 - Diminish Effect .. 21
Figure 13 - Arpeggio Effects .. 22
Figure 14 - Main Synthesiser ... 22

Page 5 of 79

Project 152 Steffan
Walters

Figure 15 - Note Off Event .. 23
Figure 16 - actionRecord ... 24
Figure 17 - actionPlaybackRecording .. 24
Figure 18 - Check Diminish and Arpeggio Effects ... 25
Figure 19 - Main Synthesiser ... 25
Figure 20 - actionDiminish .. 26
Figure 21 - actionRandomArpeggio .. 27
Figure 22 - actionChord ... 27
Figure 23 - sgSoundTypeChange ... 28
Figure 24 - Envelope Actions ... 28
Figure 25 - Modulation - actionTapGesture .. 30
Figure 26 - Modulation - slider actions ... 31
Figure 27 - fileSetup .. 32
Figure 28 - Text View Actions .. 32
Figure 29 - View Lifecycle .. 33
Figure 30 - Objects that can be Placed on Screen .. 34
Figure 31 - Simple Patch ... 35
Figure 32 - Arpegigio Synthesiser ... 36
Figure 33 - Up Arpeggio Sub-Patch ... 37
Figure 34 - Select Which Note to Play ... 38
Figure 35 - Select Which Sound Type to Play .. 39
Figure 36 - Diminish Synthesiser ... 40
Figure 37 - Main Synthesiser ... 41
Figure 38 - Choose Effect Sub-Patch ... 42
Figure 39 - Normal Sub-Patch ... 43
Figure 40 - Phasor Changes ... 44
Figure 41 - Square Changes ... 44
Figure 42 - Drum Interface .. 45
Figure 43 - actionTestDrum .. 46
Figure 44 - UICollectionView Methods ... 46
Figure 45 - Check Value in Drum Array ... 47
Figure 46 - actionPlayDrums ... 48
Figure 47 - actionStopDrums .. 48
Figure 48 - actionResetGrid Method .. 49
Figure 49 - resetCollectionRow Method ... 49
Figure 50 - actionSaveFile ... 50
Figure 51 - actionLoadFile ... 51
Figure 52 - actionDeleteFile .. 52

Page 6 of 79

Project 152 Steffan
Walters

Figure 53 - Delete Method .. 52
Figure 54 - Alert View Method .. 53
Figure 55 - actionDrum1Volume ... 53
Figure 56 - actionBPM ... 54
Figure 57 - Table View Methods ... 55
Figure 58 - View Life Cycle .. 56

Page 7 of 79

Project 152 Steffan
Walters

Introduction
The initial description of my project was to create a tactile musical application for Apple's iPad
device. My application emulates some of the features found on the Korg Kaoss pad as well as other
similar applications such as Soundgrid and Beatwave to give real-time audio effect control. The
application also allows for MIDI control and the creation of various drum tracks, using an easy to use
interface. These features add a new level of uniqueness by allowing a user to input their own
musical data into the application while also playing a drum track that they created. As usage of touch
screen devices such as the iPad have increased, there is a good market for applications such as
these, there is however, strong competition from other developers.

The interim report for this project contained all the details regarding my research on how to create
the application and the research conducted into similar devices. Most of the applications that I had
researched did either the adding of effects well or the drum creation aspect well and not many
applications combined the two. This research helped me to begin the development of my
application, which forms the basis for this report.

During the report, I will briefly discuss the design of the application, explain the main methods of my
implementation and produce my findings after conducting an evaluation. There will also be small
sections on future work and reflections of my own learning.

There have not been any major changes to the project from the initial description, the main change
to the project is that the title has changed to 'Real-Time Audio and MIDI Control iPad Application
with Backing Drum Generation' instead of 'Kaoss Pad Type iPad Application for Real-time Audio and
MIDI Control' as was initially stated in the project description. The title has changed, as I have
focused more on the backing drums and audio effects rather than trying to include some of the
advanced features found on the Korg Kaoss Pad. There are however some features in my application
similar to the Korg device. As discussed in the future work section, this project can be developed
further to include other features included in the Korg device and other similar applications.

Below is a summary of the features included on my finished application:

• MIDI input via a MIDI keyboard
• MIDI control for the iPad
• Real-time audio controllable effects using different methods:

o Buttons and sliders - Chord, Arpeggio, Diminish, Volume Envelope, Modulation and
sound type effects

o Gesture input such as 'two finger press' - Modulation effect
• A drum generator

o Select a pattern

Page 8 of 79

Project 152 Steffan
Walters

o Change the tempo of a track
o Change the volume of the drums
o Save the track

• MIDI input with backing drum accompaniment

Page 9 of 79

Project 152 Steffan
Walters

Design

Background Research Update/ Technologies Used
After conducting the research for the interim report, I had most of the information required to
complete my application. Here, I have included the other research that I have conducted after the
interim report.

Objective-C
To create the applications, I have used many of the aspects of the Objective-C programming
language. The Core MIDI and AVFoundation frameworks have been used to allow MIDI input and the
playing of drums respectively. I have also used a number of different Cocoa Touch objects, these
include UIButtons, UILabels, UITableViews, UITextViews, UICollectionView, UISegmentedControls
and UISliders to create the interfaces of my application.

Pure Data
To control the audio processing side of my application I have used the libpd version of Pure Data.
This libpd version runs vanilla-PD and not the full extended-PD. The main Objective-C application
communicates with libpd by sending parameters to receivers within the Pure Data patch. Each Pure
Data patch can contain a number of sub-patches to further divide the processing of audio. For my
application, I have designed three different synthesisers, these will be discussed in detail in the
implementation section.

MIDI Input
As discussed in the interim report, there is a way of inputting MIDI data to the iPad using Wi-Fi,
however, I did not have time to try and implement this feature and therefore I had to keep with the
input of MIDI data through a connected keyboard.

Included Features

MIDI
In the MIDI section, I included several simple effects which include:

• Diminish
• Simple Arpeggiation
• Chord
• Sound Type

Page 10 of 79

Project 152 Steffan
Walters

I have included these as most other synthesisers have these basic effects. Some were simple to
implement but others (sound type/ arpeggiation) were more complex. I have also included a feature
to allow the user to modulate their sound but using a touch pad, I thought this was a enjoyable way
for the users to change the sound produced. Finally, as most other applications use knobs and sliders
to control parameters, I decided this was the best way to change the parameters in my application
as it is easy for a user to understand how to change them by using sliders.

To allow the user more flexibility, I decided upon not creating a built-in keyboard I find that it is
much harder to play a keyboard that is on the iPad compared to a physical keyboard. Instead I allow
them to connect a keyboard to the application.

Drum
I have implemented the ability to change the tempo of the track and volume of the drums within the
application. During research, I didn't find these to be common amongst drum generators, but I think
it allows for more customisability and could attract users to the application.

Design of Interface
As stated in the interim report, my application is built from two main sections which are the drum
and MIDI sections. The design of the interface has changed greatly from the one proposed in the
interim report due to the number of interface objects I had not thought about. I have tried to keep
the interfaces as simplistic and easy to use as possible but I have not focused on making the
application look good graphically. To allow navigation between the two sections of the application, I
decided upon using a tab bar to separate each section and allow easy navigation between them. The
saved drum tracks appear on the left hand side of each section with the same background colour so
that a user can easily identify the features as being the same.

MIDI Section
The complete interface for the MIDI section is shown in figure 1 below . I have made use of an
intuitive interface with the layout of it being split into four sections:

• Top Left - Sound type choice, keyboard set-up, record and playback
• Bottom Left - Drum track area (list of tracks, play, stop), debug text view
• Central - Effects area
• Right - Advanced Effect

Page 11 of 79

Project 152 Steffan
Walters

Figure 1 - MIDI Interface

I split up the interface into the four sections so that a user will be able to learn how to use the
interface quicker. To emulate certain aspects of the applications I had researched, I have used sliders
to control the parameters of the effects and buttons to control whether an effect is on or not. The
best aspects of the applications that I had researched into, was the way that they allowed
parameters to be changed via different touch gestures (tap, swipe, pinch). I decided upon using a
separate UIView to allow the users to use different touch gestures to control the parameters of the
modulation effect, this way of changing the parameters could also in theory be used for many other
effects.

Drum Section
Similarly to the MIDI interface, I have grouped different aspects of the drum section together. The
drum interface is displayed in figure 2 below. The interface is split into three sections:

• Top Left - Set BPM, play, stop
• Bottom Left - Save, load, delete, reset interface, list of tracks

Page 12 of 79

Project 152 Steffan
Walters

• Central - Drum track customisation (volume, test the drum, change status of drum at specific
beats)

Figure 2 - Drum Interface

After conducting the background research, the design I found to be most common with beat
generator applications was an x,y grid to allow the user to chose which beat is on at which time. For
this reason, I decided on implementing a similar interface within my drum section, the complete
right hand side of the interface is made up of an x,y grid implementation, when the application is
running, a user will see the grid and be able to change the status of the drums at each beat. This grid
also makes it easy for a user to see which drum is on at a specific beat, as all of the views on a
specific x axis belong to one drum. To allow the user to know if a drum is on at a specific beat, I have
made use of a simple change in background colour to inform them if the drum is on or not, this is a
pretty simple way for the user to tell if the selected beat is on or not.

Page 13 of 79

Project 152 Steffan
Walters

Overall System Diagram
Below is a representation of the flow of data through my application. When a user saves their drum track, it is stored on the iPad in
the documents folder, this can then be accessed by both sections to populate the drum track table. When a user is inputting MIDI
data to the application and changing the effects, the correct values are sent to the Pure Data patch so that it can produce the
correct sounds required.

Drum Section MIDI Section
Transition Between
Pages

Create Drum
Track (alter BPM
and volume)

Documents Folder
Save Track

Load/ Delete
Drum Track

Load Drum
Track

MIDI Input

Pure Data Diminish
Synthesiser

Pure Data Main
Synthesiser

Pure Data Arpeggio
Synthesiser

If Diminished Effect is
on - send MIDI note
and volume

If either Arpeggio
Effect is on - send MIDI
note, volume, sound
type and arpeggio type

If the Diminished Effect and
both Arpeggio Effects are off-
send MIDI note, volume,
envelope parameters, chord
value, modulation
parameters and sound type

Play Audio Sound Play Audio Sound Play Audio Sound
Page 14 of 79

Project 152 Steffan
Walters

Implementation

Approach to Solving the Problem
After conducting the background research for this project, it was decided that along with xCode
(which is where most of the coding for the project would take place), Pure Data was to be used to
manipulate the input into the application and produce different kinds of audio. Therefore, the first
stage of development required me to obtain all of the tools required to program my application. This
meant, obtaining an 'Apple Developer's Licence' which the Cardiff school of Computer Science
provided me with, so that I could create an application and test it on my iPad (not the in-built
simulator of xCode), and to download the newest version of Pure Data. To obtain the developer's
licence, I had to register my iPad with the department and the newest version of Pure Data was
available to download off GitHub[1]. As I had decided upon using a keyboard to input MIDI data, a
camera connection kit had to be acquired, this acted as an adapter between the iPad and keyboard.

As discussed in the design section, there are two main sections to the iPad application, these are the
drum section and MIDI section (which contains the Pure Data patch). I decided to implement the
basic features of the MIDI section first, then move on to the drum section and complete the
implementation by adding other advanced features to the MIDI aspect of the application.

In my implementation, I have two main sections; each section has a header and an implementation
file. These sections are the ViewController(where the MIDI section is) and the
DrumGeneratorViewController.

Overall Sequence of the Application Steps
As there are numerous methods in my implementation, here is a brief description of the sequence in
which the methods will be called for each part.

MIDI Section
The MIDI section of the application revolves around the input of MIDI data from a keyboard and
therefore, the methods to connect the keyboard are key to the functionality of the application. Then
the user may then chose to add different effects to the input and add the drum track. Here is an
ordered list of which methods the user will most likely use.

1. Setup the connection to the keyboard. There are three main methods which achieve this
connection between the two devices. I followed the steps outlined in the 'Learning Core
Audio: A Hands-On Guide to Audio Programming for Mac and iOS'[2] to setup the connection.
There are also two smaller methods which I created to ensure that a user wanted to connect
a keyboard.

2. Play notes on a keyboard. To read MIDI messages from the attached keyboard, I have
adapted a method used in the 'Learning Core Audio: A Hands-On Guide to Audio
Programming for Mac and iOS'[2] book. I have used the code from the book to read the MIDI
message, note number and velocity and to check the status of the message. From this, I have
included my own code to send the required parameters to the Pure Data patch.

Page 15 of 79

Project 152 Steffan
Walters

3. Record / Playback sequence of notes. There are two methods used to achieve this, the

record and playback methods.
4. Add effects to the input. The final methods used on the users input are used to add certain

effects to it. There are in total six different effects that a user can apply to the MIDI input.
Within these six methods, some set Boolean variables that are used when the application is
reading the MIDI notes from a keyboard and others set parameters for the Pure Data patch.
The order in which the effects are added isn't important, but, the diminish effect can only be
used on its own and the arpeggiator can only be used with the sound type effect.

5. Playing/Stopping of drums. There are two methods used, one to play the drums and the
other to stop them.

Along with these main methods that a user may use, there are other key methods which the user
may not directly interact with:

6. Populating the table with the correct saved tracks. The four mandatory UITableView
methods are used for this. The table is populated from the files stored in an array which is
set up in one method on its own.

7. Methods to manage the text view. There are two of these, one to clear the view and one to
append text to the view.

8. Finally the view lifecycle methods.

Drum Section
Within the drum section, the main methods that are used are: the method to change which beat is
on at a specific beat, the method to play the drums and the methods used to save/load/delete a
saved track. Here is a list of methods used in the drum section:

1. The method to change which drum is playing at which beat. To allow the changing of the
drums at a specific beat, there are six different methods, two of these reset the interface the
its original state and the other four are the mandatory methods of the UICollectionView
object.

2. Save / Load / Delete a saved track. For the file management side of the drum section there
are, two methods used to save the track, one method to load a track and three methods
used to delete a track.

3. Changing the volume of the drums and changing the tempo of the track. There is one
method to change the volume of the drums and one to change the tempo of the track.

Along with these methods, there are other important methods a user will not directly use. These
are:

4. Populating the table with the correct saved tracks. The four mandatory UITableView
methods are used for this. The table is populated from the files stored in an array which is
set up in the viewDidLoad method.

5. The view lifecycle methods.

Page 16 of 79

Project 152 Steffan
Walters

Pure Data
In my application, there is one Pure Data patch. Within this section, I will detail:

1. How to create a Pure Data patch
2. The main synthesiser
3. The arpeggio synthesiser
4. The diminish synthesiser

The synthesisers all receive messages/parameters from the Objective-C code and then use these to
create the required sounds.

Page 17 of 79

Project 152 Steffan
Walters

1. MIDI Section
The MIDI section of my application is focused around the input of MIDI notes and velocities to the
iPad by a keyboard, these sounds are then produced and manipulated using a Pure Data patch.

Figure 3 - MIDI interface

1.1 Connect Keyboard

1.1.1 Keyboard Discovery
If the user would like to use a connected keyboard within my application, they must click the button
provided (Connect Keyboard). This button, once clicked, displays a UIAlertView on the screen asking
the user for confirmation to setup the keyboard. The alert view also informs the user that, if they set
up the same keyboard twice, there will be an error (when they play one note it will be read as two -
this is currently a problem within my application).

Figure 4 - Connect Keyboard

Once a button on the UIView is clicked, then the clickedButtonAtIndex method of the UIAlertView is
called. This does a simple check to see, whether the title of the UIAlertView is "Set-up Keyboard"(in
case there is more than one UIAlertView) and whether the button index is 1 (Set-up Keyboard

Page 18 of 79

Project 152 Steffan
Walters

clicked). If they are both true, then the [self setupMidi] is called to set up the keyboard and a
message is appended to the text view to inform the user that the keyboard has been connected. If
this isn't the case, a message appears on the text view saying the connection has been cancelled. As
there is only one UIAlertView used in the MIDI section, I can use this method to display the
'Connection Cancelled' message, however, if I were to implement another UIAlertView I would have
to remove this, as the message would display when a button on the new UIAlertView is clicked.

Figure 5 - Alert View Method

1.1.2 MIDI setup
To set-up a MIDI keyboard, I followed the steps outlined in the 'Learning Core Audio: A Hands-On
Guide to Audio Programming for Mac and iOS'[2]. There are three methods required to allow my
application to read in MIDI data from a keyboard. These are: setupMIDI, MyMIDINotifyProc and
CheckError.

1.1.2.1 setupMIDI
The setup MIDI method is where the MIDI keyboard is setup. The basic outline of this method is, to
create a reference to a session and then create an input port to receive MIDI data using the session
reference. We then iterate over the number of sources and set up the connection between the
application and the keyboard using the MIDIPortConnectSource method (there are two sources for
my application if a keyboard is connected - one is the keyboard itself and the other is a network
session). After the keyboard has been setup, MIDI messages can be read by the application.

Figure 6 - setupMIDI

Page 19 of 79

Project 152 Steffan
Walters

1.1.2.2 MyMIDINotifyProc
This method simply notifies the user of any messages that have occurred during the setup of the
MIDI keyboard.

Figure 7 - Log Messages

1.1.2.3 CheckError
This method is used to ascertain there are no errors while setting up the keyboard, this method also
allows us to shorten the method calls as we no longer need to use the assert() method if the method
is called using this CheckError method.

Figure 8 - Check Error

1.2 Keyboard Input
Once a keyboard has been setup, a user is then able to play notes on this keyboard to create sounds
via the application. When the MIDI messages are received, the MIDI note number and velocity are
passed to the Pure Data patch with the correct effect parameters. The method that reads the data in
from the keyboard is MyMIDIReadProc which has been adapted from the code in the 'Learning Core
Audio: A Hands-On Guide to Audio Programming for Mac and iOS'[2] book. The code in figure 9 below
is the code taken from the Learning Core Audio book.

Figure 9 - MIDI Input via Keyboard

Once a packet has been assigned to the packet variable, we enter a for loop. Within the for loop
there are three byte variables, the first stores the status of the MIDI (note on or note off), the
second holds the MIDI note number and the third stores the velocity that the note was played at.

Page 20 of 79

Project 152 Steffan
Walters

If the midiStatus is equal to 0x09 then this signifies that a note on event has occurred and the
application needs to start playing a sound.

Figure 10 - Note on Event

Within this if statement, we firstly check is the user wishes to record their input by checking if the
Boolean variable boolRecord is true or not.

Figure 11 - Recording

When a user is recording their input to the application the boolRecord variable has a value of 'true'
which allows the application to enter the if statement. To start recording, a new time interval
variable is created to ensure that the correct time of the note play is stored. Then a new item object
(a struct containing: note, velocity, time played/released, 5 Boolean effect variables and a pointer to
the next node in the list) is created, allocated space and the various parameters are then set within
the 'curr' object. If the head object is equal to null, then we set the head and tail to be the current
item object otherwise, we set the next item in the sequence to be 'curr' and set tail to be 'curr'. Once
this sequence of instructions is completed, then the application processes the various (effect)
Boolean variables so that it can play the correct sound back to the user.

Figure 12 - Diminish Effect

Page 21 of 79

Project 152 Steffan
Walters

First we test if the diminished effect has been chosen, if it has, the various parameters are sent to
the diminished synthesiser in the Pure Data patch. If it hasn't, we test the random arpeggio variable,
if it is 'true', then we send the values to the correct receivers in the arpeggio synthesiser, if it isn't on
we check the up arpeggio variable and repeat the process.

Figure 13 - Arpeggio Effects

The three Boolean variables above were check as, if they were true, then the parameters must
either be sent to the diminish or arpeggio synthesisers in the Pure Data patch. If none of the above
variables were true, then a user is only using effects that are contained within the main synthesiser
of the Pure Data patch.

Figure 14 - Main Synthesiser

Here, the various parameters are sent to the main synthesiser in the Pure Data patch. If the chord
effect is on then a '1' is sent to the chord receiver otherwise it is sent a '0'. The final if statement,
sends the modulation parameters to the PD patch if the 'value' of the modulation is greater than '0'.

Page 22 of 79

Project 152 Steffan
Walters

If the midiStatus was not equal to 0x09 we test if it was equal to 0x08, if it is, then we have a note off
event taking place. There are only two checks in this part of the method. The first is to test if we are
recording at that point, if we are we need to record when the note was released etc. We create a
new NSTimeInterval and check the time interval between now and when the NSDate object
'dateStart' was set, this gives us the time that the note should be released in the sequence. As with
the MIDI note on event, we have to create and allocate space for a new item object called 'curr'. The
various values are then stored in this struct with the value of 'onOrOff' being false to indicate a note
off. We then set the next item in the list to be the 'curr' item object and set tail to be 'curr'.

Finally, if the boolDiminished effect isn't on, we stop the playing of the required note(s) by sending
the note to the midiOffNote receiver, we then trigger the stop receiver and send the release time of
the volume envelope to the release receiver. We also have to send the sound type of the note to the
Pure Data patch. In case either arpeggio effect is on, the 'arpegioStop' receiver is triggered in the
Pure Data patch.

Figure 15 - Note Off Event

After checking to see what status the MIDI note was in (on or off), we then get the next packet using
MIDIPacketNext which will likely force the program out of the loop.

Page 23 of 79

Project 152 Steffan
Walters

1.3 Record and Playback

1.3.1 Record
The main record method has been described above, however, when a user wishes to record their
input, they must click the record button on the screen. This calls the actionRecord method which
simply changes a few variables. A Boolean variable called boolRecord is used so that the application
knows whether the user wishes to record or not, if they want to start recording the variable is set to
true. When a user wishes to record (boolRecord is false at the time), this method sets the play
button to be hidden and sets the boolRecord variable to be true, it also sets the head and tail of the
linked list to be null values and sets a new NSDate variable (dateStart) which is used in the recording
part of the input method. If the user wishes to stop recording, the play button is shown and
boolRecord is set to false.

Figure 16 - actionRecord

1.3.2 Playback
Unlike most of the key methods in the MIDI section, the actionPlaybackRecording method is a bit
more complex. This method, as the method name states, plays the recorded sequence of notes back
to the user. The way that this is achieved is by setting a new NSDate variable and then executing a
while loop where most of the processing is done. This is all done inside the dispatch_async() which
allows concurrent execution of more than one task and allows a user to keep interacting with the
application when the while loop in this method is processed.

The 'curr' variable is an item * variable which is a member of the linked list(the linked list is made up
of a number of structures pointing to each other). Within the 'curr' variable we have the state of the
effects when the note was played, all of the parameters in the 'curr' object are read and stored in
seperate variables to test (or send to the PD patch) later in the method.

Figure 17 - actionPlaybackRecording

Page 24 of 79

Project 152 Steffan
Walters

Next we calculate the interval between the start of the method call and the time now (using
[compare timeIntervalSinceNow]) and round it to two decimal places, we also round the note time
of the note held in the 'curr' item to two decimal places. We do this, as it is almost impossible to
match the two times otherwise and I have deemed that being correct to two decimal places is
accurate enough. We compare the two above, that is the interval since the method started and the
time that the note was played/stopped. If they aren't equal then the process happens again until
they are, however if they are equal, the effects in the 'curr' object are checked (using the variables)
to see which synthesiser the parameters need to be sent to.

Figure 18 - Check Diminish and Arpeggio Effects

These if statements in figure 18 above, test whether the parameters need to be sent to the arpeggio
or diminish synthesisers. If they don't, then the parameters will be passed to the main synthesiser.

Figure 19 - Main Synthesiser

Similar to the arpeggio synthesiser, the type of sound is sent to the main synthesiser (0 for normal, 1
for sawtooth and 2 for square). Unlike the arpeggio synthesiser, for the main synthesiser, the value
of the chord effect is sent to the patch (0 for no chord effect, 1 for chord effect). Finally, we find out
if the note was played or released using the boolOnOff variable. If boolOnOff is true it means the

Page 25 of 79

Project 152 Steffan
Walters

note is played, so the correct volume and MIDI note number is passed to the Pure Data patch, if
boolOnOff is false, then the note is released so the correct MIDI note number is passed to the Pure
Data to stop the playing of the note. We then move to the next item in the list using curr = curr ->
next.

1.4 Effects

1.4.1 Diminish
When a user wishes to add the diminished effect, the actionDiminished method is called and it is a
simple method that sets the Boolean variable boolDiminished to be true (if they want the effect) or
false (if they want to stop the effect). The actual sound is generated in the MyMIDIReadProc method
that is explained in detail above. As, when the user wants to use the diminish effect, the diminish
synthesiser is used, the buttons for the other effects are disabled as they can't be used within the
diminish synthesiser.

Figure 20 - actionDiminish

Page 26 of 79

Project 152 Steffan
Walters

1.4.2 Arpeggiator
There are two arpeggio effects, one plays an up arpeggio (actionUpArpegio) and one a random
arpeggio (actionRandomArpegio), as with most other effects, when the two arpeggio methods are
called, they set a Boolean variable to be true or false depending on whether the effect is to be on or
off. If the effect is to be turned off, the methods send a stop trigger to the arpeggio patch. When an
arpeggio effect is used, the parameters are sent to the arpeggio synthesiser, so any effect which
can't be used within this, is disabled (the buttons to set them).

Figure 21 - actionRandomArpeggio

1.4.3 Chords
The basic outline of the chord method is exactly the same as the diminished method. The chord
method is called actionChord and it sets the variable boolChord to be true or false depending on
whether the user wants to use the chord effect or not. Similar to the arpeggiator and diminish
methods, the chord method disables the effects that can't be used within the main synthesiser.

Figure 22 - actionChord

Page 27 of 79

Project 152 Steffan
Walters

1.4.4 Sound Type
To allow users of the application to chose between the three basic sound types available, I have
implemented a segmented control. This segmented control has three states it can be in, the user can
chose normal, sawtooth or square which in turn sets the intSoundType variable to be the index
number of the button chosen on the segmented control. To make sure that no other sound is carried
over (e.g. if the user is still holding down a note when the change occurs), the stopAll receiver is
triggered in the Pure Data patch when the sound type is changed.

Figure 23 - sgSoundTypeChange

1.4.5 Envelope
Four sliders have been used in the application to allow the control of the implemented envelope
feature. These four sliders represent the four different phases; attack, sustain, decay and release.
Each phase is associated with its own integer variable (e.g intAttack), when the sliders are changed,
we created a temporary variable to hold the value of the slider and then set the variables (intAttack
etc) to be this temporary variable. As stated in most other methods, the actual creation of sound is
done in the MyMIDIReadProc.

Figure 24 - Envelope Actions

Page 28 of 79

Project 152 Steffan
Walters

1.4.6 Amplitude Modifier
Applying the amplitude modifier effect is a bit more complex than the other effects. There are two
ways to change the input parameters of the Pure Data patch. One is to use the on-screen sliders and
the other is to tap or swipe the effect view (effectViewSuper) of the interface. Both ways of changing
the input parameters change the variables intTremeloValue and intTremeloRange which are passed
to the Pure Data patch to achieve the effect.

1.4.6.1 EffectViewSuper
The most complex way to change the input parameters of the modulation is to use the
'viewEffectSuper'which is a UIView placed on the interface. It allows a user to tap or swipe with their
finger to change the modulation. The position of the tap or swipe is then used to set the two input
parameters.

1.4.6.2 Effect View
When a user swipes or touches the 'viewEffectSuper', a blue square is placed at the position of the
tap or swipe. This is done by adding another UIView called 'effectView' onto the 'viewEffectSuper'.
This process also takes place when a user changes the values of the sliders.

1.4.6.3 Tap and Swipe Gesture
The tap and swipe gestures contain the same code but they have to be different methods as they are
different actions. The position of where the user touched the view is retrieved and stored in a
CGPoint variable. This point is then split into its y and x components and stored in yPos and xPos
respectively. As the current position of the 'effectView' (blue square) is now out of date, it is
removed from its super view. Before placing the 'effectView' onto the screen in its new position,
simple checks are made to ensure the swipe of the user hasn't breached the boundaries of the
'viewEffectSuper', if they have, the 'xPos' and 'yPos' are set to the min or max values depending on
how the 'viewEffectSuper' has been breached. Once this has been done, the new position of the
'effectView' can be calculated using 'xPos' and 'yPos'. The 'effectView' is then allocated using the
new position (or frame) and added to the 'viewEffectSuper'.

The final thing to do, is to set the two containing variables for the modulation parameters, this is
done by dividing the 'xPos' by 40 and setting 'intTremeloValue' to be the result, the same process
happens to determine the 'intTremeloRange' from the 'yPos', but the 'yPos' is only divided by 2. The
sliders are then updated with the new values and the values are printed to the text view for
debugging purposes. The two modulation parameters are then sent to the correct receiver in the
Pure Data patch ('intTremeloValue' to 'ampMod' and 'intTremeloRange' to temp).

Page 29 of 79

Project 152 Steffan
Walters

Figure 25 - Modulation - actionTapGesture

1.4.6.4 Sliders
The simpler of the two methods to change the parameters of the modulation effect, from a coding
perspective, is the changing of the parameters using the two sliders. There are two sliders that can
be manipulated and the method for each is practically the same, with one changing the value of the
manipulation and the other changing the range of the manipulation. The important part of the
method is when the variable to store the value/range of the manipulation is set to be the value from
their respective sliders; the value is also added to the text view for debugging purposes.

The middle part of the method, then updates the 'viewEffectSuper'. It removes the 'effectView' (blue
spot) from the 'viewEffectSuper', calculates it's new position using the 'intTremeloValue' and
'intTremeloRange' variables, allocates the 'effectView' with the new position and then adds the
'effectView' to the 'viewEffectSuper'. The 'intTremeloValue' is used as a basis of calculating the x
value on the 'viewEffectSuper' of where the 'effectView' should be placed, it multiplies the value
stored in the variable by a factor of 40. The 'intTremeloRange' is the same for the y value, but it is
only multiplied by a factor of 2.

Finally, it sends the new value/range of the manipulation to the Pure Data patch.

Page 30 of 79

Project 152 Steffan
Walters

Figure 26 - Modulation - slider actions

1.5 Play / Stop drums
The playing and stopping of the drum tracks in the MIDI section is very similar to the corresponding
methods in the drum section. With regards to the stop method, they are the same apart from the
fact that some of the variable names have been changed. The play method in the MIDI section is a
mixture of the load method and play method in the drum section. As both sections have the same
methods, I will describe the playing and stopping of the drums in more detail in the drum section
below.

1.6 Populating the table of saved drum tracks

1.6.1 fileSetup method
To ensure that a user is able to see their saved drum tracks in the drum table, we need to fill the
'array of files' variable (arrOfFiles) with all of the files that a user has saved (the drum table is
populated from this array of files). The basic operation of this method is to find the path to the files,
and then fill the array using the contentsOfDirectoryAtPath method of the NSFileManager. To make
sure the user can't play a file if there are no files, a check is made, if arrOfFiles is empty (count == 0)
then the stop and play drum buttons are disabled.

Page 31 of 79

Project 152 Steffan
Walters

Figure 27 - fileSetup

1.6.2 Drum table
To allow the user to view which drum tracks they have created, I make use of a single UITableView
to display the files. As with the play and stop drum methods, the required UITableView methods for
the drum table in the MIDI section are exactly the same as the ones in the drum section; therefore I
have explained the code fully in the drum section of this report.

1.7 Text View Methods
To allow myself to debug the application, I had to create a text view which printed out the
debugging statements as, when I needed to debug the MIDI section, I couldn't connect it to the
computer as I had to connect a keyboard to the iPad. There are two simple methods which relate to
the text view, one is actionClearText which sets the text of the text view(tvLabelOutput) to be empty
and the other is appendToTextView which adds text to the text view. When this method is called, it
adds the text using the NSString method stringWithFormat which allows you to concatenate two
strings, in this case, it concatenates the previous text on the view and the text to be added which is
derived from the moreText parameter. Finally, the text view is scrolled so that I could see the most
recent data to be printed to the screen.

Figure 28 - Text View Actions

1.8 View Lifecycle Methods
There are four methods for the view lifecycle, these are viewDidLoad which is the main method, it is
called as soon as the view is loaded for the first time, viewDidAppear which is called when a view is
transitioned to from another view, viewDidUnload and shouldAutorotateToInterfaceOrientation.

As said, the main method for my application here is the viewDidLoad. In this method, we set the
head and tail of the linked list used for recording to be null, set up a dispatcher and load the Pure

Page 32 of 79

Project 152 Steffan
Walters

Data patch 'simple_synth' into the application (tutorial from 'Making Musical Apps' followed to set
up PureData patch).

A '0' is sent to both the ampMod and temp recievers in the main Pure Data synthesiser to ensure
that no ampitude modulation is taking place before a user decides they want the effect. To play the
drums, we make use of the AVAudioPlayer and these are set up in the viewDidLoad method, the
entire description is available in the viewDidLoad method for the drum section below. Finally, the
fileSetup method is called.

The viewDidAppear method is used to reload the drum table, in case a user has deleted a file in the
drum section and then transitioned to the MIDI section. This ensures the files in both sections are
kept up to date.

Figure 29 - View Lifecycle

Page 33 of 79

Project 152 Steffan
Walters

2. Pure Data Patch

General Overview
Pure Data is an essential part of my application; it is used for all of the audio processing and
generation. Within my Pure Data patch, there are 3 synthesisers:

• The main synthesiser - effects used in this synthesiser are: volume envelope, chord, sound
type and amplitude modulation.

• The diminish synthesiser - used for the diminished effect
• The arpeggio synthesiser - used for the arpeggio effect, can also use the different sound

types in this effect

Objective-C uses [PdBase sendFloat:parameter to Reciever@"receiver"] and [PdBase
sendBangToReceiver@"receiver"] to send the parameters and triggers to the receivers in the Pure
Data patch.

2.1 How to Create a Simple Pure Data Patch
Pure Data uses a graphical user interface to allow developers to place objects onto the screen
without having to code their specific locations into the patch. To create an object, you place the
object onto the screen (using the put option from the toolbar), if the object required a name then,
you would need to specify the name, examples include:

• osc~ - to create a cosine wave
• vline~ - to create a volume ramp
• r temp - to create a receiver called temp

The input to the Pure Data objects are called inlets and the outputs are called outlets. The main
element of Pure Data that a developer needs to know is, when a value/trigger is inserted to the left
inlet of a Pure Data object, the object is triggered. If a value is inserted to n inlet which isn't the
leftmost one, the object won't be triggered; these types of inlets are called cold inlets.

2.1.1 Simple Patch
Figure 30 below shows what objects can be placed into the Pure Data patch. As said, when you want
to add something to the patch then you place the required object onto the screen. For my simple
patch, I am creating a simple cosine wave to output a single sound to the Macintosh computer.

Figure 30 - Objects that can be Placed on Screen

Page 34 of 79

Project 152 Steffan
Walters

For the patch, I need two objects. I name the first osc~ 220, which creates a simple cosine wave at
the default frequency of 220Hz. The other object I need is a dac~ to convert the wave to digital
sound. To allow the data to pass from the osc~ object to the dac~ object, I have connected the outlet
of the osc~ object with the right and left inlet of the dac~ object. With the left and right inlets of the
dac~ connected, a sound is outputted through the speakers. The completed patch is shown in figure
31.

Figure 31 - Simple Patch

After creating a few patches like the one in figure 31, I moved on to more complex patches. There is
an extensive list of objects that Pure Data makes use of, but the principle of connecting each object
is the same.

Page 35 of 79

Project 152 Steffan
Walters

2.2 Arpeggio Synthesiser
The arpeggio synthesiser allows a user to play a random note from an arpeggio or an arpeggio going
up in scale. There are four receivers; each gets inputted to the upArpeggio sub-patch. The poly, pack
and route objects are again used to ensure that four notes can be played at the same time. Unlike
the main synthesiser, the values from the list are unpacked after the route and inputted into the
sub-patch.

Figure 32 - Arpegigio Synthesiser

Inside the upArpegio sub-patch we find the code required for the up arpeggio and the random
arpeggio effects, as we can see, the patch is complicated so I am going to break it down into two
stages:

• Finding the arpeggio effect to use and the note
• Adding the sound type effect to the note

Page 36 of 79

Project 152 Steffan
Walters

Figure 33 - Up Arpeggio Sub-Patch

(Figure 34) Here we can see the top half of the upArpeggio sub-patch. The arpeggio effect is decided
upon using the inlet 'On', if the value of this is 0 then we use the random arpeggio which, every
500ms chooses a random number between 0 and 3. If the up arpeggio effect is to be used, then

Page 37 of 79

Project 152 Steffan
Walters

every 500 ms, the value stored in float is incremented by 1, this is then passed to a 'sel' object which
compares it to the value -1, if it isn't -1 it passes the value to the 'mod' object which does the 'mod'
operation on the number to gain a number between 0 and 3.If the arpeggio effect is stopped, then
the float value is changed to be -1 and a 0 value is placed in the left inlet of the metro object so that
it stops producing a 'bang' every 500ms.

Once we have a value between 0 and 3, the value then passes through a series of 'sel' objects which
compares the value to 0, 1, 2 and 3 if it is one of these then it takes the MIDI note number and adds
the corresponding value (0 for 0, 4 for 1, 7 for 2 and 12 for 3), if it isn't then it sends a 'bang' to the
stop trigger. Once the MIDI number has been obtained it is then passed to the 'mtof' object to
convert it to the frequency. This along with the volume and sound type are then packed into a list.

Figure 34 - Select Which Note to Play

The bottom half of the patch first re-orders the list and then plays the MIDI note depending on the
sound type as we see in the main synthesiser. It outputs the signal to the signal outlet.

Page 38 of 79

Project 152 Steffan
Walters

Figure 35 - Select Which Sound Type to Play

2.3 Diminish Synthesiser
The simplest synthesiser I have implemented is the diminish synthesiser. This part of my Pure Data
patch is responsible for adding the diminish effect to the users input. Two parameters are used in
this synthesiser, the MIDI note and the volume.

To allow the user to play more than one note at a time, the poly object is used. In my
implementation I have used [poly 4 1], which allows for four notes to be played at the same time,
the 1 indicates that voice stealing is on. Voice stealing is when a fifth note is played, it overwrites the
first note. The output of the poly object is passed to the [pack f f f] which creates a list of the three
values it is sent, this list is of the order: voice number, MIDI note number then volume. The final
stage before audio processing begins is the routing of the list to a specific path; the route object is
used for this. When the list is passed to the route object, the first item is removed (voice number), it
then checks this value and sends the rest of the list on the correct path (i.e. a list with voice number
1 will be passed to the first route etc.).

Once the information has been routed to the correct path, the unpack method is used to retrieve
the values from the list. The MIDI note number is passed through the mtof object and osc~ object,
this process converts the number to the frequency and creates a cosine wave. The volume on the
other hand, is passed to a message object, it is inserted to this object and replaces the $1 holder,
this message means that it will ramp the volume to the volume specified in 5ms, then ramp back
down to 0 in 5000ms after a 10ms wait. This is then passed to the vline~ which creates the volume
ramp. Finally, the cosine wave and volume ramp are multiplied together and passed to the dac~
object which is a digital to analogue converter which converts the digital signals to analogue sounds.

Page 39 of 79

Project 152 Steffan
Walters

Figure 36 - Diminish Synthesiser

Page 40 of 79

Project 152 Steffan
Walters

2.4 Main Synthesiser
The main synthesiser for my application is displayed below. This synthesiser includes the ability to
change the sound type, the envelope function, the amplitude modulation and the chord effect. The
main synthesiser is split into three sections, the overall synthesiser, then the Pure Data sub-patch
chooseEffect and inside this sub-patch there are another three sub-patches for each different sound
type. The overall synthesiser is pretty basic, there are 10 receiver objects. To stop a note playing,
one of these is used, the MIDI note of which to stop is read in from the midiOffNote receiver which is
then passed to a message object. This then stops the play of the specific note. To stop all notes, the
'stopAll' receiver is given a 'bang' from the objective-C code which triggers the stop message, which
in turn, stops all notes from being played.

To play a note, 8 of the receivers are used. First, the MIDI note and volume are read in by a poly
object which outputs the voice number, MIDI note number and volume, the voice number is used
for polyphonic output. The output is then packed with the other 6 receivers in the order: voice
number, sound type (type of sound to be played, normal, sawtooth, square), attack, decay, sustain,
release(envelope parameters) and chord (used to trigger the chord effect or not).

After the values are packed, they become a list which is then routed to different paths using the
route object. This route object removes the first element from the list and passes it to the
corresponding outlet (if 1 is at the start, the list would be passed to the first sub-patch).

Once the sub-patch has been processed, there are two signal outlets which are passed to the dac~
object which converts the signals to sound.

Figure 37 - Main Synthesiser

Page 41 of 79

Project 152 Steffan
Walters

chooseEffect Sub-Patch
The 'chooseEffect' patch is used to route the list of values to the correct sound type sub-patch. It
takes a list as the input with the value for the sound type at the front of the list. The list is passed to
the route object, which removes the first value (sound type) and forwards it to the corresponding
sub-patch (if sound type = 1 then it would route it to the normal sub-patch, sound type = 2 the
phasor sub-patch, sound type = 3 the square sub-patch).

When the sub-patch has completed its processing, it returns two signals, these two signals are then
returned to the main synthesiser using two signal outlets.

Figure 38 - Choose Effect Sub-Patch

Choose Effect Sub-Patches
The three sub-patches of the 'chooseEffect' patch are almost identical. In these sub-patches, the
main signal processing is done to manipulate the input and create an audio signal depending on the
input parameters. For simplicity of explanation, I have split the patches into three sections, the
modulation area, MIDI note section and volume section. In the modulation area, a cosine wave is
created based on the modulation input from the Objective-C application. This is then used to
modulate the other cosine waves created using the MIDI note that a user has played.

The volume envelope is created in the volume section. Firstly the volume is inputted into the 'sel 0'
object to test whether the volume is above 0 (note played) or 0 (note off), depending on which case
is satisfied the pack objects are triggered. To create the envelope, the volume will be above 0 and
the [pack f f f f f] object will be triggered. The list created will be the volume, attack, decay and
sustain values. These are then re-ordered and placed in a message object. This message object is
then passed to the vline~ object to create the volume envelope. If a note off is played, then the
volume will be 0 and the [pack f f] object will be triggered. The list will consist of the 0 value and the
decay time, these are passed into a message object and then to the vline~ object to create the ramp
down to 0.

Page 42 of 79

Project 152 Steffan
Walters

Finally the MIDI note section. Two parameters are passed to this part, the MIDI note number and the
chord number. These two are packed to create a list and re-ordered so the chord number is at the
front of the list. I have then made use of the route object again, if the chord number is 0, then only
the MIDI note number is used to create a cosine wave, otherwise the MIDI note number and the two
notes above it in the arpeggio scale are used to create three cosine waves. After each note number
has been translated to its frequency, they are modulated by the modulating signal before the cosine
waves are created. These waves are then multiplied by the volume envelopes and passed to the
signal outlets.

Figure 39 - Normal Sub-Patch

In the phasor sub-patch, the only difference is that a phasor~ object is used to create a sawtooth
wave instead of an osc~ object.

Page 43 of 79

Project 152 Steffan
Walters

Figure 40 - Phasor Changes

Similarly, the square sub-patch has only minor changes to create a square wave form.

Figure 41 - Square Changes

Page 44 of 79

Project 152 Steffan
Walters

3. Drum Section
The drum section of the application is where the generation of the drum tracks occur. I have made
use of a simplistic interface to allow the user to create drum tracks easily.

Figure 42 - Drum Interface

3.1 Choosing a Drum Pattern

3.1.1 Storing the Status of the Drums
In my application, I decided upon using a drum array for each of the drums to hold the status of the
drum at different beats. In each drum array there are 16 objects, each object in the array stores
either a 1 (to indicate that the drum is on at that specific beat) or a 0 (to indicate the drum is off).
The values in the array are changed when a user touches one of the views in the drum grid
(UICollectionView).

3.1.2 Test drums
To allow the user to hear what the drum sounds like before deciding upon using it, I have
implemented a method for each drum that plays the drum for its duration. When a user touches the
button to test the drums, the method actionTestDrum1 (where '1' is the drum number) is used; this
calls the play method of the AVAudioPlayer for the specified drum.

Page 45 of 79

Project 152 Steffan
Walters

Figure 43 - actionTestDrum

3.1.3 Interface for drum selection[4]
To create the grid of drums, I firstly tried to use a series of switches which would be changed by the
user (from on to off depending on their choice). I did get these to work, but unfortunately the
switches didn't provide my application with the best of usability and it wasn't aesthetically pleasing.
Therefore I decided to think of a different way to get around the problem. I finally decided upon
using the UICollectionView object, which as the name suggests, is a collection of views with each
view in the collection view being of the type UICollectionViewCell, by default the background colour
is white with a green border. Figure 43 below has the four methods that are required for a
UICollectionView to work in an application.

Figure 44 - UICollectionView Methods

Page 46 of 79

Project 152 Steffan
Walters

As I decided on using 16 beats for each drum, the method numberOfItemsInSection is self-
explanatory, it means that each section of the collection has 16 items in it(or views) as there as 16
beats. The numberOfSectionsInCollectionView method defines how many sections you want in the
collection, each section is related to one drum sample. As I have struggled to find good drum
samples, I have only implemented 2 drums for this application. The final self explanatory method
here is the cellForItemAtIndexPath which returns a cell at a specific index path (e.g. section 1, row
1).

The final method required for the UICollectionView is the didSelectItemAtIndexPath. This method is
called when a user touches any of the views in the collection table to change the status of the
specific drum at that specific beat. Firstly, the cellForItemAtIndexPath method is used to return a
reference of the drum cell that the user has touched and then the drum which was touched is
discovered by getting the section of the index path. The switch statement is pretty simple, the basic
idea is that it checks what drum has been changed and then updates the drum array relating to that
drum. Figure 45 shows the if statement used, this checks the value that is contained at the specified
beat (if beat 3 had been changed, then indexPath.row would be 3), if the drum is off at that beat (i.e
== 0) then the value in the array is changed to be 1 and the background colour of the view is set to
be red so that the user notices the change. If the drum is playing on that beat, the reverse of the
process above happens, a 0 is placed in the array and the background colour reverts to white.

Figure 45 - Check Value in Drum Array

3.1.4 Play / Stop
After a user has created their drum track (or even during), they may select to play the track to hear
what it sounds like. If they select to play the drums the actionPlayDrums method is called. The main
part of this method is the infinite loop that is based around the boolInfiniteLoop Boolean variable,
while this is true, the drums keep playing. To allow a user to keep doing other things to the drum
track while this infinite loop is running, I make use of dispatch_async() which allows concurrent
execution of more than one task, this is needed as otherwise, when the loop is running, no other
interaction with the application will be possible and eventually the application will crash.

To play the drums, a for loop is used, which at every pass checks what drums are supposed to be on
and plays them accordingly. This is achieved by comparing the values in the separate drum arrays to
see if the value stored in it is a 1 at that specific beat, if it is, the AVAudioPlayer for that specific
drum is played. After checking all of the drums, the [NSThread
sleepForTimeInterval:floatBeatsPerMin] method is called, the parameter
floatBeatsPerMin(explained in BPM above) is passed to it and the thread sleeps for that amount of
time.

The final part of this code is the if condition to see if the stop button has been pressed, if it has there
is a 'break;' statement to break out of the loop so that the drums stop playing.

Page 47 of 79

Project 152 Steffan
Walters

Figure 46 - actionPlayDrums

To stop the playing of the drums, the user must click the 'Stop' button which then sets
boolInfiniteLoop to be false. By setting this variable to be false, the application breaks out of the
infinite while loop in the play method using the 'break;' statement as explained above.

Figure 47 - actionStopDrums

Page 48 of 79

Project 152 Steffan
Walters

3.1.5 Reset Drum Grid
As with any changes made, the user may wish to revert back to the initial state, therefore the
application makes use of a reset method to reset the drum arrays and the interface to its default
state. Two methods are used in the application to reset the drum generator. Firstly, when a user
touches the reset button the actionResetGrid() method is called. Through this all of the variables are
reset (volume, bpm and drum arrays) and the interface is reset with the play button being enabled
and stop button being disabled. To reset the UICollectionView, the method calls the
resetCollectionRow() method with the parameters for the row and section given so that each cell in
the UICollectionView can be turned back to having a white background. Resetting the collection view
and drum arrays are done inside a for loop, the 'i' variable is used as the index of the current beat to
be reset in the drum arrays and it is also used as the index for the row (beat) to reset in the
collection view.

Figure 48 - actionResetGrid Method

Figure 49 - resetCollectionRow Method

3.2 Save / Load / Delete a Track

3.2.1 Save
A key part of the application is to save the drum tracks generated for future use. When a user
decides to save a track the actionSaveFile method is called. The code below in figure 50 illustrates
the process that is undertaken when a user saves their track, saving the drum track involves saving
one array to a specific file. Firstly a 'voumeArray' is created to hold the beats per minute of the track
and the volumes of each drum. To add these into the array, three NSString variables have to be
created with the values of the different variables to be stored, then the three are added to the
'volumeArray'. Then another array is created called 'array' to store all of the information on the
track, the 'volumeArray' is added to it, and then the two drum arrays.

Page 49 of 79

Project 152 Steffan
Walters

The users chosen file name is retrieved from the 'tfTextSaveFile' text field edit box and stored as a
NSString variable and the path of where to save the text file is retrieved using the
NSSearchPathForDirectoriesInDomains, getting the object at the first index of the array returned
from this method and storing it in an NSString variable.

 Finally, the array is written to the specified path using the 'writeToFile' method of the
NSMutableArray class, the file name is appended to the end of the path found from the method
above. I have included a simple if statement to check whether that track name is already in the table
displaying all of the saved files, if it isn't, it is added to the array that populates the table and the
table is reloaded, if the name already exists in the table then nothing is done as the track will have
just been overwritten into that file (an error message could easily be added to ensure the user
knows they are overwriting another track).

Figure 50 - actionSaveFile

3.2.2 Load
To allow the user access to their saved drum tracks, the application has a load feature which loads
the drum track to the screen to allow the user to manipulate it further if they wish. When a user
wishes to load a drum track, the first method called is the actionResetGrid method to reset the
collection view on the screen. The track to be loaded is discovered using a method call on the
UITableView that is on the screen, this is explained in detail further on in the report. The 'filePath' of
the file is discovered by using the NSSearchPathForDirectoryInDomains method again to get to the
place where the files are saved (this is stored in an array called paths), the file is then loaded into a
NSString variable 'filePath', after the name of the file to be loaded (strTableSelectedFile) is appended

Page 50 of 79

Project 152 Steffan
Walters

to the first element from the paths array. From here, the reverse process of the save method is used,
where we allocate an array to store the contents of the 'filePath' variable. In this array, there will be
three other arrays, the 'loadedVolume' array and two drum arrays. The main drum arrays are then
loaded with a mutable copy of the drum arrays found in the file.

From the 'loadedVolume' array, we retrieve the beats per minute(bpm) of the saved track and set
the text of the 'tfBPM' text field to be this, we also set the main 'floatBeatsPerMin' variable to be 60
divided by the bpm value.

The two volumes for the different drums are then retrieved from the array and each drum is
assigned it's volume. The value of the volume sliders on the screen are also changed so they display
the correct value.

The final thing to do is to update the collection view. This is done again in a for loop which loops
over each element in the two drum arrays and sets the background colour of a specific cell to be red
if the drum is meant to be played at that specific beat.

Figure 51 - actionLoadFile

Page 51 of 79

Project 152 Steffan
Walters

3.2.3 Delete
The final method that a user can use in the drum section is the delete method to delete a saved
track. When a user decides to delete a file, an alert is displayed on the screen asking if they are sure
that they want to delete the specified track. Once a user presses either the cancel or delete button
on the alert, the [alertView:(UIAlertView *) clickedButtonAtIndex:] method is called, this will be
detailed later. If the user decides to delete the file, the delete() method is called.

Again, the path of the file to be deleted is discovered and stored in the NSString variable 'filePath'.
To delete a file, a file manager is used and a Boolean variable is setup to allow the application to
send out a different response if the deletion was successful or not. This Boolean variable is set as the
response to the deletion call, we make use of the removeItemAtPath: method of the file manager to
delete the selected file. We also remove the file, from the array of files that is used to display the
saved files and update the table.

To finish the delete method, there are two if statements, the first one displays an alert on the screen
to inform the user if the file has been deleted. The second statement checks whether there are any
more files in the array of files, if there isn't the load and delete buttons are disabled.

Figure 52 - actionDeleteFile

Figure 53 - Delete Method

Page 52 of 79

Project 152 Steffan
Walters

3.2.4 Alert View Method
When a button on a UIAlertView is pressed, the following method is called:

Figure 54 - Alert View Method

The alert view method above is implemented to check the users response to an alert box that has
appeared on the screen. In this application I have used two alert boxes. If a user has entered an
invalid number into the bpm text field then an alert is shown. The code above shows that to test
whether this is the case, we check the title of the UIAlertView that has appeared. If the alert view
has been called due to an invalid number being entered, then the value of 'floatBeatsPerMin' is set
as 0.5 and the value in the 'tfBPM' is set to 120.

The second of the alert boxes I have implemented in this application checks if the user intended to
delete their file, it is displayed when the user clicks on the 'Delete File' button. If the user selects
cancel from this alert box then the file will be kept, however, if the user selects the delete button,
then the delete() method will be called to remove the file.

3.3 Drum Parameters changed (volume and tempo)

3.3.1 Volume for drums
Each drum used in the drum generator section has been given its own volume so that a user can
chose to customise what drum is played louder etc. As each drum has its own AVAudioPlayer, I have
used the volume feature of the AVAudioPlayer to allow the allocation of a volume to the drum.
When a user changes either of the volume sliders included in the interface, the corresponding action
is called (drum 1 uses actionDrum1Volume etc.). In these methods, a simple call is used to get the
current value of the slider; this is divided by 10 and then set as the audio players volume.

Figure 55 - actionDrum1Volume

3.3.2 BPM
Included in my application, is a feature to allow a user to change the tempo of their created drum
track. To change the tempo, a user is required to input a value for the beats per minute of the track ,
if the value entered is less than 60, greater than 180 or not a number, I have displayed an alert to ask
for a more reasonable number. To allow the play method to take account of the BPM, the variable

Page 53 of 79

Project 152 Steffan
Walters

'floatBeatsPerMin' is used as a holder of the BPM, this is assigned to be 60 (60 seconds in a minute)
divided by the value that the user entered into the BPM text box.

Figure 56 - actionBPM

3.4 Populate the Drum Table

3.4.1 Table View Methods
When a user wants to load or delete a file, they have to select a file from the table on the screen,
also when they save a track, the filename is inserted into a table. A NSMutableArray variable
'marrOfFiles' is used to store all of the tracks that have been saved to the iPad, this variable is set up
in the viewDidLoad method discussed in section 3.5 below. For the application, I have used a
UITableView, there are four mandatory methods when you implement a UITableView. The first two
define the number of rows and sections in the table, there is one section in the table and the
number of rows contained in the table will be dependant on how many files are saved to the iPad
(each file saved will be stored in an array called 'marrOfFiles'). The third method returns the file
name of a selected file from a table. This file name is then used in the delete and load methods.

Page 54 of 79

Project 152 Steffan
Walters

Figure 57 - Table View Methods

The final method creates the cells for the table, formatting them and placing the correct text into
the label on the row.

3.5 - viewDidLoad Method
In the viewDidLoad method, all of the default variables are set or allocated space. Each drum array is
filled with all 0's as when the screen loads, no drum is selected at any beat. Two AVAudioPlayers are
defined for each drum, the AVAudioPlayer method 'initWithContentsOfURL' is used to find the drum
samples in the resource folder of the application. The initial volume of each drum is also set and the
'prepareToPlay' method is called so that the players are ready to play the drum tracks when
required. The final thing that happens in this method is to populate the array of files stored by the
application. To do this, the path to the files is used alongside a file manager, the contents at the
given path is then loaded into the 'marrOfFiles' variable.

Page 55 of 79

Project 152 Steffan
Walters

Figure 58 - View Life Cycle

Page 56 of 79

Project 152 Steffan
Walters

Results and Evaluation
In my opinion, the development of my application has been a success as I have completed all the
aims that I had set myself in the initial plan, however, I believe that the overall application is only
partially completed as there are so many other features that could be added to the application.

I have split the results and evaluation of my application into five separate sections:

• Unique features of my application
• Advantages/Disadvantages of my application
• Evaluation against the aims and objectives
• Evaluation of the key methods
• External Evaluation

Unique Features
My developed application has a few unique features that other similar application do not have. Most
of these features come from the combining the MIDI input aspect and drum track creator into one
application. Here is a list of the unique features:

• The ability to change the tempo of the drum track - Not many of the applications that I had
researched had this feature, most had a fixed tempo which I thought limited the
customisability of the drum track.

• The ability to play the drum track when the user is playing notes from a keyboard.
• The ability to save the drum track - Few applications that I researched had this ability.

However, I didn't research the paid for application and therefore this may be a feature
included in many of these applications.

• The ability to change an effect by swiping the screen is fairly unique. Most similar
applications use sliders and knobs to control the parameters

Advantages/Disadvantages of my Application

Advantages
The main advantages of my application are:

• Simplistic interface - touch to control most of the parameters and/or effects
• Ability to change the tempo of the drum track created
• Ability to save the drum tracks and play them over MIDI input
• Ability to modulate input using a swipe and touch gesture

Disadvantages
The main disadvantages of my application are:

• The fact that the user needs a keyboard and the camera connection kit to use the whole
functionality of the application. Other applications get around this problem by implementing
an on-screen keyboard, therefore this could be a solution to this specific problem.

• Not a very interesting interface.

Page 57 of 79

Project 152 Steffan
Walters

Aims and Objectives
Here are the aims and objectives that I set out in my initial plan. After each aim/objective, I have
discussed whether I have completed them, if I haven't, then I give a reason as to why I didn't
implement it.

• Create a tactile music application for the iPad
 Music creator
 Backing Drums and MIDI Accompany
 Real-time audio controllable effects
 MIDI control for the iPad

The main aim of the project was to create a tactile music application for the iPad and I believe have
done this. I have implemented the ability to create drum tracks and play these while playing music
through a MIDI enabled keyboard. While playing the keyboard, a user can also change the effects
applied to the music in real-time.

Detailed Aims and Objectives
• Implement the ability to input MIDI events to the iPad via a keyboard
 Change the volume using the iPad
 Add different effects to the MIDI input
 Record input and play it back

My iPad application, allows a user to connect a MIDI enabled keyboard and play musical data using
this keyboard via a connector. Effects can be placed upon the notes in real-time, such effects
include: diminish, up arpeggio and random arpeggio. I have implemented a record function that
works with most effects. I decided not to implement a way to change the volume as I later
implemented a more advanced volume envelope(the volume envelope parameters do not get saved,
but the user can then modify the recorded piece using the volume envelope parameters).

• Implement the drum/beat generator
 Create a drum generator based on an x,y grid
 Each point x,y would have some option to allow the drum to be played at that point if

required
 Implement a way to have different volumes for each different drum
 Create a drum track with either 4 or 8 beats with a time signature of 4/4
 Save the drum beat
 Play the saved drum beat while recording/inputting MIDI via a keyboard

A user can create a drum track with my application using two drum samples (more can easily be
added at a later stage of development). Each drum has its own separate volume. Instead of asking
the user to chose between having 4 and 8 beats, I decided to implement 16 beats as I thought it
would give the user more choice. I have also decided to implement the ability to allow the user to
slow down or quicken the tempo of the track, but it still has a 4 /4 time signature. The drum track
can be saved and stored on the iPad, these tracks can then be loaded or deleted by using the table

Page 58 of 79

Project 152 Steffan
Walters

provided. A user can listen to their drum tracks in the drum section, but after saving their track, they
can then play the drum track in the MIDI section whilst also playing music via their connected
keyboard.

• Add effects to the MIDI input using different gesture controls e.g. two finger swipe, three finger
press

I have implemented the ability to allow the user to modulate the sounds they create using a
separate view which they can touch or swipe to control the parameters of the modulating signal.
They can also modulate the signal using two sliders. (The modulation parameters do not get saved, a
user can however modify the recorded piece using this effect)

• Implement additional features, such as some from the devices I researched during the
completion of my interim report.

Additional features that I have included in the application are: a volume envelope, a chord effect,
the changing of the track tempo and the ability to chose from three sound types (cosine , sawtooth
and square waves).

Page 59 of 79

Project 152 Steffan
Walters

Evaluate Strategy for Key Methods

MIDI section

MIDI input
Check whether the application allows for MIDI input.

Ways to Test:

• Connect keyboard to the application
• Select 'Connect Keyboard'
• Play a few notes

If a user can hear the notes that they are playing then I would deem this method to be functioning.

Effects
Check whether the user can add different effects to the MIDI input.

Ways to Test:

• Play notes without effect
• Select effect
• Play notes with effect
• Re-test for each effect

If a user can hear that the effects have been added, then I would deem this method to be
functioning. The user should also notice some of the effects being disabled when certain effects are
applied as not all effects can be used together.

Record
Check whether a user can record a series of notes into the application and be able to play back the
recording.

Ways to Test:

• Select the record button and play a series of notes. Then playback the recording to see
whether the notes have been recorded in the correct sequence.

• Select the record button and play a series of notes. Change what effects are used while
recording. When playing back the recording, listen to whether the effects have been added
and changed at the correct time.

If a user can hear that their piece has been recorded and played back correctly (with the effects
added) I deem the record and playback methods to be working correctly.

Page 60 of 79

Project 152 Steffan
Walters

Modulation
Check whether the user can apply the modulating signal to their input.

Ways to Test:

• Play notes using the connected keyboard.
• Change the slider values or tap or swipe the view to change the modulating parameters.
• Listen for the change in the audio sound

If a user can apply the modulation and hear the difference between the original and modulated
wave form I deem this method to be working correctly.

Drum section

Set Drums
Check whether a user can change the status of the drums at a specific note.

Ways to Test:

• Select a drum at a specific beat - the view under the beat should change to red
• Play the drum track to see if the drum plays at the specified beat.

If the drum plays on the correct beat, I deem this method to be functioning.

Save/Load/Delete
Check whether a user can save a track, load a track and then delete the track.

Ways to Test:

• Select a pattern for the drums by changing the drums status at different beats
• Type a name for the track in the text box on screen.
• Save the file.
• Re-set the drum track so that all drums are off.
• Load the file.
• Delete the file.

For this method to be deemed successful, a few things have to be tested. Once a user has saved
their track, the name that they specified should be placed in the table of tracks on the screen.

To test whether the track was saved, the interface needs to be reset to its original state and a saved
track needs to be loaded from the table by using the 'load' button. If the correct pattern of drums
has been loaded, then the save and load methods are functioning.

 The delete method is tested by deleting the file, if an alert pops up asking if the user wanted to
delete the file and they chose yes, then the file should be removed from the track table. If the three
methods work, I deem this part of the application to be a success.

Page 61 of 79

Project 152 Steffan
Walters

External Evaluation
To determine how well the application functions and how useable it is, I have asked another student
to conduct a test of my application. Unfortunately, due to time constraints, only one student was
able to test my application for me and provide feedback. In general I would've like to have at least
ten people test it and give me their views on it but it wasn't possible. The testing method that I have
used, is a mixture between a questionnaire and observation. I asked the student to carry out the
testing of the application following the questionnaire and I observed how efficiently he managed to
complete the tasks. A complete copy of the questionnaire results is attached in the appendix.

When designing the questionnaire, I wanted to ensure that all aspects of the application were tested
by the user. Therefore, instead of giving them the application and asking for their thoughts on it, I
decided to outline a number of tasks that I would want the user to complete. This way, I made sure
the user tested all of the functionality provided by the application. After each task in the
questionnaire, I asked him for further comments on the usability of the application for that specific
task. I have also asked the tester whether he was happy with the functionality of the device or not, I
provided clear questions asking what they like most and if they would change anything.

While the tester used my application, I sat in the room and observed how he interacted with the
device to gauge whether other people understood the process that is required to use the
application, for example, you need to connect the keyboard through a button because it doesn't find
it automatically.

Results
Feedback of the drum section from the participant was of a positive nature. He liked the way in
which the drum patterns are selected and generally thought the drum section was easy to use with
every task being classified as easy apart from testing the drum. Unfortunately, he had a bit of a
problem with testing the drums as he thought it was unclear what test actually meant and it took
him awhile to realise that the two drum buttons actually played the two drums. These may need to
be reworked in future to make the user aware that they can actually test the drums.

As with the drums, he generally thought every task asked of him in the MIDI section was easy, again
he struggled on one task and that was to connect the keyboard to the application. He thought it
would be better if the application could automatically detect a connected keyboard which I agree
with. He didn't like the arpeggio effects as he thought there wasn't much point to them, this could
be rectified by creating a more advanced arpeggiation technique. The overall feedback I received
from the participant was positive on this section, the final comments he made were that he liked the
fact that buttons are disabled if you can't use them and he was really impressed with the modulation
feature.

Functionality
The participant of the testing process did think the functionality of the application was good overall,
he particularly enjoyed the touch screen modulation process. He would however, like to be able to
add more effects to his input in the MIDI section (e.g. a wah-wah effect) and he also commented
that he would perhaps like to be able to add effects to the drum track created. He didn't really see
the point in the random arpeggio and he said that it sounded pretty strange. Finally, he would like
the ability to not only save the drum track, but to also save the recorded MIDI input which, if

Page 62 of 79

Project 152 Steffan
Walters

implemented, could give the application an edge as not many other applications that I have
researched allows this.

General
The participant thought the application was easy to use overall and enjoyed the experience. He liked
the fact that the interface was easy to use but he did have some reservations on the design of it, he
thought that the design could be improved graphically which I do agree with. Finally, he didn't report
any problems with his experience.

Critical Evaluation of the Application

Design
During the implementation of the project, I intended to keep the design of the application as
simplistic and easy to use as possibly to help the users learn the application quicker. I believe that
the interface that I have designed is simplistic and easy to use, however, as I focused more on the
functionality, the interface isn't very graphically pleasing. A lot of improvement could be done to
improve the look of the application but hopefully keeping it simple enough for a novice user.

Usability
As stated, I have tried to implement the application in such a way, that a novice user could use it and
still be able to use all of the functionality of the application. Mostly, I believe this is the case, there is
a simple way to navigate between the two sections, and most of the interface is self-explanatory
(e.g. chord button adds the chord effect). However, some things do need to change to make the
application more usable, for example, it would be better if the application could detect a keyboard
automatically and some more helpful labels could be added. Finally, as I have made use of disabling
certain objects from the screen, I believe this does enhance the usability of the application, due to
the user not being able to use certain objects and therefore the application won't fail due to user
error.

Functionality
As I will discuss later in the future work section, I believe that the functionality of this application is
only half implemented as there are a lot more effects which could be added to the application. I
believe most of the effects that I have implemented are good, however, I would consider removing
the random arpeggio and diminish effect in future as they aren't very useful. As already discussed, I
would add more drums to the drum section to give the user more of a choice when it came to
creating their tracks.

Page 63 of 79

Project 152 Steffan
Walters

Future Work

Problems Encountered
The main problem that I encountered whilst developing my application was the fact that I could only
program the application on my Macintosh computer. This meant that when I was away from this
computer I could not work on the project, e.g. using my laptop or other computers (as they are all
Windows) as they did not have the required software (Xcode) needed for iPhone/iPad development.
This caused significant problems during the implementation phase of the project as I was unable to
spend as much time as I would've liked to on developing the application.

Another problem that hindered my progress in developing the application was the fact that I used
Pure Data as the means of creating / processing the audio signals. As I did not have any prior
experience using Pure Data, I had to learn the language as I was developing the application. At first I
managed to use the language very easily and thought that I had created a good synthesiser for the
application, but after finishing the implementation of the drum section of the application, I went
back and realised that I had barely scratched the surface with regards to my knowledge on Pure
Data. It can be a very complex application and there is not much direction with regards to learning
how to program well in it. However, there is a strong community of users that post regularly in the
forums if you need some guidance. Pure Data is also split into two versions, there is a vanilla version
of Pure Data that means there are less objects that you can use and there is an extended version of
Pure Data with more objects available. Unfortunately, I use libpd to enable me to use Pure Data on
the iPad and this contains the vanilla version of Pure Data. One thing that I didn't realise was that my
computer holds the extended version of Pure Data, which meant that I coded some good features
such as a guitar effect or flute effect and these worked when I tested them on the computer.
However, once I put them onto the iPad they didn't work due to the fact that these patches made
use of the extended objects in Pure Data. I didn't realise that this was the case until I had spent a lot
of effort trying to figure out why they worked on the computer but didn't work on the iPad.

Finding books about the Pure Data and Core MIDI technologies was difficult to start with, I checked a
number of different libraries in Cardiff and none of them really had any relevant books that I could
learn from. My supervisor did order a book to the university library for me, but that took awhile to
get here. This book was on Core Audio and it did contain useful information about Core MIDI which I
ended up using in my application. With regards to Pure Data, I eventually bought the 'Making
Musical Apps'[3] book which contained good information on how to use Pure Data in an iPad
application but it still lacked information on the more complex ideas and I have yet to find a good
book explaining Pure Data.

A minor problem that I had, was the fact that I had updated my iPad to the newest version of iOS
without realising, that by doing this, it meant that my iPad was no longer compatible with Xcode. To
solve this, I had to update Xcode to the newest version available which luckily did support the new
version of the iOS. This wasn't a major problem, but it has made me think about refraining from
updating my iPad whilst using it for development in the future, just in case.

Page 64 of 79

Project 152 Steffan
Walters

General Improvements
I have achieved everything that I set out to implement in the initial plan, however, I believe that
there is still scope for improving the project, as there is with any iPad application that is brought out,
with general updates brought out to improve the application or to fix certain bugs found. The main
way that the application could be improved, would be to implement some of the features that I
drifted away from during the early stages of my research. The original idea behind my application,
was to emulate some of the features found on the 'KORG Chaos Pad' but as said, I moved away from
this slightly, but I believe that my application sets a good foundation for the implementation of the
more complex ideas found on the 'KORG Chaos Pad'.

As I focused more on the functionality of the application, the interface design isn't as good as it
could be and therefore I believe this could be improved. At the end of my implementation, the
interface of the application is very basic using the default views, buttons, sliders, textboxes and
labels provided by the Xcode development team. These objects have been customised slightly e.g.
by using different colours, and with regards to the UICollectionView I have customised what appears
on this screen(drum selection), but I believe that the interface could be improved with the further
customisation of the on screen objects to enhance the look and feel of the application.

They key limitation of the application is the fact that it isn't very portable, it can't be used on other
operating systems such as Android or Windows 8, therefore, limiting the potential market for the
application. Future work could be focused on the development of an Android or Windows 8 version
of my iPad application to make use of the fact that there are a lot of tablets using the android /
Windows 8 operating system.

One of the key limitations of my application is the need for the camera connection kit to connect a
MIDI enabled keyboard to the iPad device. These camera connection kits usually cost £25 and it may
put some people off using the application. To improve the usability of the application, future work
could be focused on different ways to input musical data to the application. A possible way of doing
this would be to use wireless MIDI to input the MIDI signals instead of using a MIDI keyboard (this
would get rid of the need for the camera connection kit and would appeal to a wider range of users),
or to use audio tracks that are already on the iPad. This data could then be used and manipulated by
the users within the application (similar to the original idea of the project).

 Midi Section Improvements
Most of the future work of this application would be to improve the MIDI section as this is the main
feature of my application. As discussed above, the first thing to improve would be to include some
adapted versions of the features in not only the KORG Chaos Pad but also the Yamaha Tenori and
other similar applications.

There are two similar effects in my application, these are the diminish effect and the volume
envelope (these are both discussed in the implementation section above). I believe that both of
these effects could be combined into one due to how similar they are, the only difference is that
when a user releases a key, the diminish effect keeps playing until the sound fades out and while

Page 65 of 79

Project 152 Steffan
Walters

using the envelope the sound cuts out immediately, however, if you hold the key long enough the
sound will fade out if you set the correct parameters.

The Final improvements that could be made to the MIDI section would be to include more effects
that could be utilised by a user to give them a wider palette of effects to chose from. Some features
that could be added are:

• Adding a wah-wah effect to the audio
• Improving the arpeggio effect by splitting the effect in two

o Keep the ability for users to play an arpeggio.
o Improve on the arpeggio synthesiser so that it acts like an arpeggiator. Possible

inclusions could be the choosing of notes to play as an arpeggio and the ability to
keep playing the arpeggio after releasing the note.

• Allowing the user to adjust the speed of a recording
• Allowing the user to use all of the effects while recording (merge the three Pure Data

synthesisers into one)
• Adding an echo effect to the audio
• Adding a reverb effect to the audio
• Adding different instruments (this would more than likely require the ability to use the

extended objects of Pure Data , currently I do not think this is available)

Drum Section Improvements
Overall, I do not believe that a lot of improvements need to be made to the drum section as I am
pleased with how I have implemented it. There are however, two improvements that I would
suggest.

Currently, there are only two drum samples that can be used when creating your drum tracks.
Obviously this means that it will be very limited with regards to the patterns that can be created
using these two drums and therefore, I would like to add more drums to the drum section in the
future. I have already set out the space required for a number of other drums to be added into the
application, it will just be a matter of finding good drum samples to include as the code required to
use these drums will be exactly the same as the code used for the two drums that are currently
being used within the application. It may also be a good idea to conduct research into allowing a
user to input some of their own drum samples to the application to provide a very customisable
experience.

The final improvement that I would like to make to the drum section, would be to improve the
interface that is utilised by the users to pick which drum is played at which beat. With regards to all
the other elements of the interface, this is also pretty basic and as such I believe it could be
improved to make it have a more sleek design.

Page 66 of 79

Project 152 Steffan
Walters

Pure Data Synthesiser Patch Improvements
The main improvement that could be made to the synthesiser patch would be to combine the three
different patches together to create one main Pure Data patch that contained everything. This can
be done, however, during my implementation I didn't have enough time to combine the three into
one as it would've been time consuming to ensure that every effect has been ported over into the
one synthesiser correctly.

Page 67 of 79

Project 152 Steffan
Walters

Conclusions
Upon completing the implementation phase of my application and evaluating it, I believe that my
application meets the needs of the aims and objectives set out in my initial plan. However, I believe
that my project has taken a slightly different approach to solving the original problem. The project
was initially meant to bean emulation of the Korg KAOSS pad, some features on my application are
'Korg like' but some aren't. I do believe that with my implementation, that there is scope to further
improve it by not only adding some of the advanced features found on the Korg Kaoss pad, but some
features that are included on other similar applications.

Overall, I am satisfied with how my project has been implemented and with the amount of work that
I have done. I believe that I have implemented a good application that could be further improved
upon in future. Even though I have completed all of my aims set out in the initial plan, I feel that the
application is only half completed and could easily be carried on in future to improve upon it. With
regards to the audio effects, I am satisfied with the effects that I have included and I am very fond of
the way in which the modulation parameters are changed (using the UIView whilst tapping or
swiping).

My methods of development were quite efficient, mostly I worked well and on schedule, however, I
did struggle with Pure Data. After finishing the basic implementation of the MIDI section, I felt as if I
had nearly finished with the Pure Data patch, however, after completing the drum section I realised
that I had only just touched the surface in what Pure Data could actually do. After this realisation, I
spent most of my time trying to understand what Pure Data was able to do. I did manage to finish
the implementation but I have three Pure Data synthesisers within my Pure Data patch, which I
would ideally like to combine sometime in the future. With regards to the time spent on developing
the application, I believe that I managed my time efficiently, I set myself deadlines and I managed to
stick to these and finish the implementation on time.

Next time, I would do a few things differently. The main thing I would do, would be to research the
technologies I need in more detail and make sure I understand exactly what they can or can't do.
This would save me time in the long run compared to learning the technologies whilst implementing
the application like I tried to do with Pure Data. Perhaps, I would also make more detailed notes as I
was implementing the application so that I could refer back to them at a later stage. I wrote a few
things down this time, but not enough to understand exactly why I did things in a specific way.

Finally, as I have a background in music, I have enjoyed creating this application, mainly as I was able
create different sounding effects from my input and I was able to create some interesting sounding
drum tracks.

Page 68 of 79

Project 152 Steffan
Walters

Reflection on Learning
During the course of this project, the main skill that I have improved upon is my programming skills,
as my project was mostly a programming project. I had a basic understanding of Objective-C before
starting the project as I had developed a few small test applications in the previous summer. My
skills in Objective-C have mainly been improved by developing the application and seeking help from
materials such as online forums, books and tutorials when I wasn't able to implement what I wanted
to do. After programming in Objective-C for two semesters I believe that my skills using this
programming language have improved significantly to the point where I could now create an
application from nothing without the need of looking through different sources for help.

Along with Objective-C, I have used Pure Data during the course of this project. I had never used or
heard of Pure Data before I began researching into the technologies I could use to develop my
application. Unlike Objective-C, I did find using Pure Data hard, this was due to the limited amount of
helpful information about Pure Data online or in books. However there is a committed developer
community behind Pure Data that are very helpful, this is where I have learned most of my Pure
Data knowledge by going through tutorials and explanations on the forum provided by other
developers.

Along with my programming skills, my time management skills have improved due to the fact that I
have not been working with other people and therefore it has been up to me to get the work done
by the deadlines. I mostly managed to keep to the schedule created in the initial plan, sometimes I
was a week behind but at other times, I was a week ahead of the schedule and therefore I have been
able to complete all of my work by the deadlines that I had set myself.

A skill that links in to time management is organisational skills. In the limitation and future work
section, I discussed the fact that I could only develop the application on one computer and
therefore, I had to organise when I could work on my application as for example, when I needed to
be away from my computer I couldn't do any work. Therefore I decided to set some times every
week where I could work on the project. If I needed to be away, I then caught up by setting more
time aside the week after to develop the application. My supervisor also helped improve my time
management skills as we had weekly meetings to discuss the progress of the project, therefore I
tried to complete a different task each week so I could get his opinion on it.

To keep backups of my work or different versions, I used the 'Time Machine' feature of the
Macintosh computers, which stored copies of my work at specific intervals and keeps them until the
hard drive is full before it starts overwriting the old version (my hard drive isn't full and therefore I
didn't need to worry about older versions being overwritten). This feature did help me, as I found
myself needing to look back at previous versions of my implementation when I had gone completely
wrong.

During the course of the project, I have learned more about audio processing due to the nature of
the project. I had little knowledge before but after creating the application and especially the Pure
Data patches I understand the process a bit better. This knowledge will be useful as I have taken the

Page 69 of 79

Project 152 Steffan
Walters

Multimedia module which discusses a bit of audio processing, hopefully when revising for the exam,
my extra knowledge will provide useful.

A skill set that I never thought I had were research skills, which I used during the initial stages of my
project to gather ideas of what could or couldn't be included in the application. These skills were
also used when encountering problems during the implementation phase of the project.

Finally, I believe by completing this project, I have gained more knowledge in the process of
completing a project e.g. getting work done by deadlines. Also I have improved my report writing
skills due to the three deliverables that have been submitted as part of this project.

Overall, I feel this project has been of benefit to me personally, due to the number of skills that I
have improved upon and the new skills that I have learned. These skills will hopefully be of use to me
when I leave the university and start a career.

Page 70 of 79

Project 152 Steffan
Walters

Glossary
Term Meaning
Tactile Perceptible to the sense of touch
MIDI Musical Instrument Digital Interface
XCode Apple's development environment for Objective-

C
Objective C Object-oriented programming language used to

create ipad/iPhone/iPod applications
iOS Apple's mobile operating system
Patches A Pure Data program
Tempo Speed of a piece of music
Arpeggio Musical technique of playing a sequence of notes

in a chord
Synthesiser An electronic instrument capable of producing

sounds
Modulation The varying of one waveform or signal using

another.
Vanilla-PD Basic implementation of Pure Data.
Extended-PD Contains more useable objects than the Vanilla-

PD
GitHub Web-based hosting service used by developers

to manage their projects
Boolean A data type with two values, true or false
Debug Testing the system to reduce the amount of

'bugs' found in it
Voice Stealing Voice stealing is a function of the poly object in

Pure Data. Voice stealing occurs when all the
voices are being used and a new sound is played.
The first sound to be played would be stopped
and the channel given to the new sound

Arpeggiation The playing of an arpeggio by aninstrument.
libpd Allows the running of Pure Data on an iPad

application

Table of Abbreviations
Term Meaning
MIDI Musical Instrument Digital Interface
PD Pure Data
Wi-Fi Wireless Fidelity
bpm Beats per minute

Page 71 of 79

Project 152 Steffan
Walters

Appendix

Page 72 of 79

Project 152 Steffan
Walters

Page 73 of 79

Project 152 Steffan
Walters

Page 74 of 79

Project 152 Steffan
Walters

Page 75 of 79

Project 152 Steffan
Walters

Page 76 of 79

Project 152 Steffan
Walters

Page 77 of 79

Project 152 Steffan
Walters

Page 78 of 79

Project 152 Steffan
Walters

References
 [1] - GitHub. libpd / pd-for-ios. [Online]. Available at: https://github.com/libpd/pd-for-ios
[Accessed: 18 October 2012]

[2] - Adamson, C and Avila K. 2012. Learning Core Audio: A Hands-On Guide to Audio Programming
for Mac and iOS. New Jersey: Pearson Education, Inc.

[3] - Brinkmann, P. 2012. Making Musical Apps. Sebastopol, California: O'Reilly

[4] - Adoption Cureve Dot Net. A Simple UICollectionView Tutorial. [Online] Available at:
http://www.adoptioncurve.net/archives/2012/09/a-simple-uicollectionview-tutorial/ [Accessed:12
Feburary 2013]

• Walters, S.R. 2012. Interim Report. Cardiff
• Walters, S.R. 2012. Initial Plan. Cardiff

Page 79 of 79

https://github.com/libpd/pd-for-ios
http://www.adoptioncurve.net/archives/2012/09/a-simple-uicollectionview-tutorial/

	Acknowledgments
	Table of Figures
	Introduction
	Design
	Background Research Update/ Technologies Used
	Objective-C
	Pure Data
	MIDI Input

	Included Features
	MIDI
	Drum

	Design of Interface
	MIDI Section
	Drum Section

	Overall System Diagram

	Implementation
	Approach to Solving the Problem
	Overall Sequence of the Application Steps
	MIDI Section
	Drum Section
	Pure Data

	1. MIDI Section
	1.1 Connect Keyboard
	1.1.1 Keyboard Discovery
	1.1.2 MIDI setup
	1.1.2.1 setupMIDI
	1.1.2.2 MyMIDINotifyProc
	1.1.2.3 CheckError

	1.2 Keyboard Input
	1.3 Record and Playback
	1.3.1 Record
	1.3.2 Playback

	1.4 Effects
	1.4.1 Diminish
	1.4.2 Arpeggiator
	1.4.3 Chords
	1.4.4 Sound Type
	1.4.5 Envelope
	1.4.6 Amplitude Modifier
	1.4.6.1 EffectViewSuper
	1.4.6.2 Effect View
	1.4.6.3 Tap and Swipe Gesture
	1.4.6.4 Sliders

	1.5 Play / Stop drums
	1.6 Populating the table of saved drum tracks
	1.6.1 fileSetup method
	1.6.2 Drum table

	1.7 Text View Methods
	1.8 View Lifecycle Methods

	2. Pure Data Patch
	General Overview
	2.1 How to Create a Simple Pure Data Patch
	2.1.1 Simple Patch

	2.2 Arpeggio Synthesiser
	2.3 Diminish Synthesiser
	2.4 Main Synthesiser
	chooseEffect Sub-Patch
	Choose Effect Sub-Patches

	3. Drum Section
	3.1 Choosing a Drum Pattern
	3.1.1 Storing the Status of the Drums
	3.1.2 Test drums
	3.1.3 Interface for drum selection[4]
	3.1.4 Play / Stop
	3.1.5 Reset Drum Grid

	3.2 Save / Load / Delete a Track
	3.2.1 Save
	3.2.2 Load
	3.2.3 Delete
	3.2.4 Alert View Method

	3.3 Drum Parameters changed (volume and tempo)
	3.3.1 Volume for drums
	3.3.2 BPM

	3.4 Populate the Drum Table
	3.4.1 Table View Methods

	3.5 - viewDidLoad Method

	Results and Evaluation
	Unique Features
	Advantages/Disadvantages of my Application
	Advantages
	Disadvantages

	Aims and Objectives
	Detailed Aims and Objectives

	Evaluate Strategy for Key Methods
	MIDI section
	MIDI input
	Effects
	Record
	Modulation

	Drum section
	Set Drums
	Save/Load/Delete

	External Evaluation
	Results
	Functionality
	General

	Critical Evaluation of the Application
	Design
	Usability
	Functionality

	Future Work
	Problems Encountered
	General Improvements
	Midi Section Improvements
	Drum Section Improvements
	Pure Data Synthesiser Patch Improvements

	Conclusions
	Reflection on Learning
	Glossary
	Table of Abbreviations
	Appendix
	References

