
 1

IoT Data Trading User Study

Platform

Benjamin Thornton

Supervisor: Charith Perera

Moderator: Padraig Corcoran

CM3203: One Semester Individual Project | 40 Credits

 2

Abstract

This project develops a web application which takes the user-centric approach of

investigating the problem of the willingness of people to trade different types of IoT data to

different organisations by creating a platform where people can create user studies,

participate and analyse responses to them. It also involves conducting a user study to

address the problem at hand and analyse how well the application is able to analyse the

trends in responses from the user study.

 3

Acknowledgements

I would like to thank my project supervisor Chairth Perera for his direction and suggestions

which have been critical in the completion and success of this project. I would also like to

thank those who have taken their time to participate in the user studies.

 4

Table of Contents

Abstract .. 2

Acknowledgements .. 3

Table of Contents ... 4

Table of Figures .. 6

1. Introduction .. 8

1.1. Problem ... 8

1.2. Solution ... 8

1.3. Outcomes .. 9

2. Background ... 9

2.1. Internet of Things (IoT) and Sensing as a Service (S2aaS) 9

2.2. Surveys .. 10

2.3. Data Pricing Models ... 10

3. Specification .. 11

3.1. Functional Requirements ... 11

3.2. Non-Functional Requirements ... 14

3.3. Changes to Requirements .. 16

4. Design ... 16

4.1. Static Architecture ... 16

4.2. User Interface .. 21

5. Implementation .. 26

5.1. Back-end ... 26

5.2. Front-end .. 36

5.3. Dev Ops ... 43

6. User Study ... 46

6.1. Procedure .. 46

7. Results and Evaluation .. 48

7.1. Functionality Results and Appraisal ... 48

7.2. User Study Results ... 49

7.3. Evaluation of Application ... 54

8. Future Work .. 55

9. Conclusions ... 56

10. Reflection .. 56

 5

11. Appendix I: User Interface Designs ... 58

12. Appendix II: Supporting Video .. 60

13. Appendix III: Test Summary Report ... 61

14. Bibliography .. 62

 6

Table of Figures

Figure 1: Futuristic scenario showing the interactions in the sensing as a service model

(Perera, et al., 2014) .. 10

Figure 2: Survey interface requirement ... 14

Figure 3: Multi-Tier Architecture ... 17

Figure 4: Model-View-Controller (MVC) Architecture ... 18

Figure 5: Entity Relationship Diagram .. 19

Figure 6: Admin Home Wireframe ... 22

Figure 7: Admin Home Wireframe 2 .. 22

Figure 8: Admin Create Card Set Wireframe .. 24

Figure 9: Participant Survey Wireframe ... 25

Figure 10: Separate environment databases ... 27

Figure 11: Assignment of value in a tuple in the object-oriented paradigm 28

Figure 12: Admin Protected Endpoint Wrapper Function .. 29

Figure 13: Example of decorator usage on endpoint function ... 29

Figure 14: Example form definition in Flask-WTF .. 30

Figure 15: Example usage of form validation method ... 30

Figure 16: User Group form definition containing a FieldList .. 32

Figure 17: User sub form definition ... 32

Figure 18: Schedule job code ... 32

Figure 19: Scheduler function to send invites .. 33

Figure 20: Conversion for the heat map showing the frequency of placement of a pair of

cards. .. 34

Figure 21: Conversion for the heat map showing the average normalised value given to a

pair of cards. .. 35

Figure 22: API authentication and JWT access token creation .. 36

Figure 23: API get participant endpoint ... 36

Figure 24: Participant survey interface .. 38

Figure 25: JQuery to process participant response .. 39

Figure 26: AJAX code to send data back to server ... 39

Figure 27: Administration homepage interface ... 40

Figure 28: Create study interface ... 40

Figure 29: Create User Group interface ... 41

Figure 30: Overview of responses interface ... 42

Figure 31: Heatmaps of responses interface ... 43

Figure 32: Dockerfile for creating Docker image .. 44

Figure 33: Shell script run by OpenShift container .. 45

Figure 34: Development workflow ... 45

Figure 35: Participant sensitivity of different data types ... 50

Figure 36: Heat maps showing price and attitude of trading communication data with social

media companies. .. 50

Figure 37: Average trust in different organisations ... 51

Figure 38: Participant trust in different organisations. .. 52

Figure 39: Average normalised data values across all responses for each position in the grid.

 ... 53

 7

Figure 40: Giving away data for free to public and research organisations 54

Figure 41: Admin Create User Group Wireframe ... 58

Figure 42: Admin Create Study Wireframe .. 59

Figure 43: Participant Details Form Wireframe ... 60

 8

1. Introduction

1.1. Problem

The number of connected Internet of Things (IoT) devices is skyrocketing, with expectations

of over 125 billion connected devices in 2030 (IHS Markit, 2017). Alongside the growth of

physical devices comes an even larger amount of data produced by them. This vast amount

of data leads to opportunities not only for data consumers to gain a greater amount of

knowledge about their customers or area of interest but to give sensor owners greater

control over their data and the ability to monetise it for these data consumers (Perera, et

al., 2014).

Such a model which involves data exchange between sensor owners and data consumers is

known as Sensing as a Service (S2aaS). Implementing such a service has challenges in terms

of its economic sustainability, requiring it to have a fair and transparent financial model

(Perera, et al., 2014). The S2aaS model is a market where there are many different types of

data and many different types of data consumer. Sensor owners’ attitudes towards data

consumers differs, similarly their willingness towards selling different types of data is

inconsistent. Therefore, there is a problem understanding what data a sensor owner would

be willing to sell to different data consumers and the differences in prices required for the

data. Such a problem needs to be investigated in order to address some of the economic

challenges which could face such a service if it was implemented in the future.

1.2. Solution

Many companies attempt to strike parity between a product price and a customer’s

perceptions by utilising customer focus groups or surveys, etc (Cross & Dixit, 2005). The

same user-centric approach will be applied here to analyse perception towards the sale of

their data. In order to conduct such a survey, the design, development and testing of an

application is proposed which allows the creation and participation of an interactive study.

The study will allow its participants to rank items in one category against items in another

and to give numerical values to their ranking. To get insights behind how participants are

responding, the project also involves creating tools to analyse the data from the survey in a

variety of ways.

User studies using the developed application were also conducted to attempt to address the

problem of willingness to trade data to different organisations and at what price. The user

studies were also performed to see how well the application could identify the kind of

patterns in participant responses, verifying its potential to solve the data trading problem.

Beyond the use-case utilised in this project using such an abstract solution could be useful

to researchers who are doing user studies to understand the relationships between pairs of

categories over many different demographics. Alternatively, organisations wishing to

implement such a marketplace of data in exchange for rewards in the future may want to

quantify the rewards required for different data types over different demographics and this

application may be a tool for them to achieve that.

 9

1.3. Outcomes

The main outcomes resulting from this project are:

• To create an adaptable web application allowing:

o Creation of studies where participants can respond by ranking and give

numerical valuation to pairs of categories

o Evaluation of those responses through various metrics.

• To conduct user studies with the application to investigate the willingness a group of

people possess on trading different types of data to different organisations and the

price required for the trade to take place. The user studies will also verify the

applications potential to solve the data trading problem through its analysis tools.

2. Background

2.1. Internet of Things (IoT) and Sensing as a Service (S2aaS)

The Internet of Things (IoT) describes the network of physical objects embedded with

sensors and/or actuators, software and other technologies. These now have the ability to

communicate over a network without needing human-to-human or human-to-computer

interaction (Rouse, et al., 2020). IoT has a vast number of applications from consumer to

health to military and solutions such as wearables, thermostats, trackers which have all

come to the market in recent years. This has resulted in an explosion of data.

These IoT solutions all store data collected via sensors or otherwise independently.

However, a significant amount of knowledge can be gained by aggregating these stores

together hence improving both data consumers operations through increased consumer

knowledge, reduced resource wastage, etc. Data owners (IoT device owners) may also

receive the benefit of such data aggregated analysis through a greater personalisation of a

service.

By giving a data owner the ability to trade data about themselves they could gain the

benefit of having greater control over their data and rewards for sharing that data (i.e.

monetary, loyalty points, gifts etc) to potentially recoup (or in part) the cost of their IoT

device investment. In turn, data consumers (i.e. organisations) gain the benefit of an

increased number of different data points so they can understand users better, have a

better idea of where to invest and make more informed product or services decisions

(Perera, 2017).

Figure 1 illustrates the steps behind the sensing as a service model. In steps 1-2 the figure

shows information about the sensors being uploaded to the cloud so their potential to

collect data can be recognised. Step 3 shows Mike giving permission for the sensor data to

be uploaded to the cloud. After Mike has given permission, a data consumer requests the

data held by the cloud service and provides an offer of value to Mike, be it monetary or

otherwise. In step 5 he can choose to accept or reject the offer. If the offer is accepted, step

6 indicates the flow of data from the sensors to the data consumer. This scenario shows all

of the interactions required in the model for background, however this project intends to

focus on step 4 and 5 of the model and more specifically creating a tool to have

 10

understanding between an data consumer and sensor owner about what kind of benefit a

user would need to see for a certain type of data i.e. the sidedness of the trade.

FIGURE 1: FUTURISTIC SCENARIO SHOWING THE INTERACTIONS IN THE SENSING AS A SERVICE MODEL

(PERERA, ET AL., 2014)

2.2. Surveys

A survey is often used an examination of thoughts, opinions and behaviour through a set of

predetermined questions given to a sample (Shaughnessy, et al., 2000). They are utilised to

draw attitudes on a particular subject matter of a particular population, if that sample in the

survey is representative of the larger population of interest. Surveys are conducted through

many different physical mediums such as in person, paper based and on the web.

Over the past decade, online surveys have been increasingly popular over paper based or

traditional surveys as they have shown to receive a greater number of responses due to

their simplicity, a similar accuracy of response and ultimately are much more cost effective

(Greenlaw & Brown-Welty, 2009; W3Counter, 2020). It is clear that by using a web-based

solution, it would provide the best way to address the data trading problem at hand.

Many such online survey applications already exist for market researchers to take

advantage of, they range from the more basic implementations such as Google Forms to

more professional systems such as Typeform which allows more control over the UI and

more advanced analysis.

I kept these solutions in mind when developing my application, however, these applications

are general solutions and only utilise general HTML form components like text boxes, select

boxes, radio buttons albeit with a few extras. In order to address the problem of the

willingness to trade data I needed to create a more unique survey tool which could be able

to draw attitudes of a representative population whilst still remaining relevant beyond the

particular use case I am utilising it for.

2.3. Data Pricing Models

There have already been a number of research articles (Niyato, et al., 2015; Liang, et al.,

2018; Mao, et al., 2019) published discussing and proposing new pricing models which

should be implemented in order to maximise data consumers profitability. However,

 11

research in this area tends to focus more on the economics from a data consumer side

rather than taking a sensor owner centric approach in determining the sensitivity towards

different types of data.

Consumer centric methods for determining price preferences such as Van Westendorp’s

Price Sensitivity Meter (Westendorp, 1976) have been used by a wide variety of researchers

in the market research industry. However, this method focuses on a physical product or

service that a consumer would want to buy rather than a piece of data they would want to

sell.

3. Specification

3.1. Functional Requirements

The following functional requirements entail the specific functions that the application must

implement in order to be useful to address the problem at hand, remaining within the scope

of the project whilst still being useful beyond the problem that it is utilised for in this report.

The functional requirements left out detail to allow for implementation specific constraints

and for the application to be adjusted or added to easily upon review.

3.1.1. Requirement 1

Title: An admin must be able to create “Card Sets”

Description: In order to represent items in a category that a participant can rank in a survey

an administrator must be able to create a logical grouping of these items known as “Cards”

into groupings known as a “Card Set”

Acceptance Criteria:

• An administrator must be able to create a group of cards where each card has a

name and an optional description and image.

• An administrator must be able to specify a name for a card set and a measure by

which the cards are ranked against in the study.

3.1.2. Requirement 2

Title: An administrator must be able to create “User Groups”

Description: In order to add any number of participants to a survey, a set of users must be

created.

Acceptance Criteria:

• An administrator must be able to create a group of users where each user is

specified by an email.

• An administrator must be able to specify a name for the user group.

3.1.3. Requirement 3

Title: An administrator must be able to create “Studies”

 12

Description: In order to allow a User Group to participate in a study and allow the

administrator to control what Card Sets the participants will be ranking and under what

question(s) they will be providing a value for their reasoning.

Acceptance Criteria:

• Admin must be able to select 2 card sets for the study.

• Admin must be able to select 1 User Group For the study.

• Admin must be able to select how many numerical values the participant will be

entering & their associated label.

3.1.4. Requirement 4

Title: A participant must be able to provide details about themselves.

Description: In order to draw an opinion of a given population, we need to identify the

demographics of the participants taking part in the study.

Acceptance Criteria:

• Participant must be able to enter their age group, salary range, occupation,

country of birth, current country, education level.

3.1.5. Requirement 5

Title: A participant must be able to participate in a study.

Description: In order to collect opinions on the ranking of different items in Card Sets

against each other and the value behind their reasoning we must allow them to participate

in such a study which makes this possible.

Acceptance Criteria:

• Participant must be able to rank the cards in each card set against each other

• Participant must be able to give numerical value(s) related to their ranking

3.1.6. Requirement 6

Title: An admin must be able to view the responses of the studies they have created

Description: In order for opinions to be identified from a particular study, processed

responses and unprocessed responses must be able to be viewed.

Acceptance Criteria:

• Admin must be able to view the following for each study they have created:

o Individual responses from participants

o Average responses from participants

o Heat maps showing a count of the position for every combination of cards

from both Card Sets in the study.

o Heat maps showing the average of normalised numerical values from each

response for every combination of cards from both Card Sets in the study.

o Charts showing the frequency of a rank given to each item over all responses

in both Card Sets.

 13

3.1.7. Requirement 7

Title: Access to the admin functionality should be secured

Description: To prevent unauthorised creation of responses and access to response data

Acceptance Criteria:

• Any attempt to access this functionality if the user is not authenticated and does

not have the correct access rights should be rejected.

3.1.8. Requirement 8

Title: Access to participate in a Study should be secured

Description: In order to ensure the integrity of studies, nobody but those intended by the

admin should be able to participate in a study.

Acceptance Criteria:

• Any attempt to access this functionality, if the user is not authenticated and does

not have the correct access rights should be rejected.

3.1.9. Requirement 9

Title: Ensure an admin can retrieve data from the application using some common standard.

Description: In order to support analysis of data collected by the application further than

what is provided with the application some method of retrieval of raw data is required.

Acceptance Criteria:

• Admin should be able to access data that they have produced themselves or by

participants responding to their studies by other means than through the

application.

3.1.10. Requirement 10

Title: Ensure any sensitive data about a participant cannot be traced back to the participant.

Description: Article 5(1)c of GDPR describes that personal data shall be “limited to what is

necessary in relation to the purposes for which they are processed” (ICO, n.d.) as sensitive

information is recorded about the demographics of the person who has participated and the

information required to identify the person is no longer required, it should be removed.

Acceptance Criteria:

• By the time any sensitive information is stored in the database, no personally

identifiable information shall be stored in the database.

3.1.11. Requirement 11

Title: The interface of the study should be modelled after the diagram shown in Figure 2.

Acceptance Criteria:

 14

• The interface where participants rank items in one category against items in another

category and give numerical values to their ranking should be similar to that of the

representation in Figure 2.

FIGURE 2: SURVEY INTERFACE REQUIREMENT

3.2. Non-Functional Requirements

The following non-functional requirements were identified to ensure the accessibility,

security, reliability, performance, usability of the application. These non-functional

requirements ensured that the despite the functionality the application was secure and

those utilising the application could do so with ease.

3.2.1. Accessibility

1.1.1.1. Requirement 1

Title: The application should be supported across the main browsers

Description: In order to support the varying systems and settings of the users of the system

it is important that there is cross-browser compatibility in order to ensure the experience is

Acceptance Criteria:

 15

• The application must render the content in the same or very similar way across the

top 5 Web browsers by market share which include Chrome, Safari, Edge, Firefox,

Opera (W3Counter, 2020)

3.2.2. Security

1.1.1.2. Requirement 3

Title: All data shall be stored in a secure database

Description: As personal data is being collected, actions must be taken to minimise risk of

any unauthorised access to the data

 Acceptance Criteria:

• All data shall be stored within a database that is only accessible through the

university network and is password secured.

1.1.1.3. Requirement 4

Title: The application should be hosted within the university network.

Description: As the application uses data from the database which stores personal

information and is only intended for use within the university for this project. The risk of

unauthorised access to personal data should be mitigated by limiting access to the

application to only those who have access to the university network.

Acceptance Criteria:

• Application should not be accessible in any way to those who do not have access to

the university network.

3.2.3. Reliability

1.1.1.4. Requirement 5

Title: The application must be able to operate as intended even under incorrect or

unexpected use.

Description: In order to maintain the integrity of the system.

Acceptance Criteria:

• Errors must be handled appropriately as to not cause any harm to the operation of

the system.

3.2.4. Performance

1.1.1.5. Requirement 6

Title: The application must respond quickly to any user action

Description: In order to support users on any system or network speed, it is essential that

the system performs quickly even under load.

Acceptance Criteria:

• Application must load each view fully within 10 seconds

 16

3.2.5. Usability

1.1.1.6. Requirement 7

Title: The application must be simple and intuitive to use.

Description: As there is no target demographic for this application, it is assumed people of

all technological experience could potentially utilise the system hence it needs to be simple

and attractive for anyone to use.

Acceptance Criteria:

• Where there are user interfaces, they should follow user interface design heuristics,

common interface design patterns and any other guidelines or best practices.

3.3. Changes to Requirements

Only one notable change occurred to the functional requirements, namely functional

Requirement 10 was incorporated to ease the ethics concerns of storing personal and

sensitive data collected by the user study.

4. Design

4.1. Static Architecture

4.1.1. Modules

From the functional requirements, the application has been divided into a series of modules

appropriate for each handling a subset of the requirements. Each module will also attempt

to address every non-functional requirement where possible. Different viewpoints involved

with the design of the application will then be applied to these modules.

1.1.1.7. Authentication

To authorise both participants and admins of the application as described in functional

Requirement 7 and Requirement 8, we are required to create a module for authentication.

Such a module will handle the login and logout flows for both parties.

1.1.1.8. Participation

To handle Requirement 4 and Requirement 5, allowing participant to enter details about

themselves and to participate in a study we need a module to encapsulate such

functionality.

1.1.1.9. Administration

To permit an admin to create studies, user groups and card sets as described in

Requirement 1, Requirement 2 and Requirement 3 have been encapsulated into their own

module.

1.1.1.10. Responses

In order to satisfy Requirement 6 another module is needed to handle the required

methods in the ways desired.

 17

1.1.1.11. API

In order to allow access to data for admins other than through the application as specified in

Requirement 9, the API module is established to handle such functionality.

4.1.2. Application Architecture

For the general design of the of the application a web architecture was chosen in order to

be able to support the majority of different hardware that the users of the application may

have.

A web application architecture is a pattern of interaction between the web application

components which consists of a client and server (Yaskevich, 2017). A client is typically a

user’s device which is capable of connecting to the internet and has web accessing software

such as a web browser (Mozilla, n.d.). The client requests resources using a HTTP request

from the server and is where the user interacts in some way with the requested resources.

The server, on the other hand responds to requests for resources which it stores also using

the HTTP protocol.

More specifically for the design of the proposed application, a multi-tier architecture was

chosen which is slightly different from the single-tier architecture described above as the

database is separate from the application server (Faircloth, 2017). Security is one reason of

choosing such a multi-tiered design as it means that separating server code from data

makes gaining both these entities more difficult as they are stored separately. Having a

separate database server also lends itself to scalability benefits as multiple instances of a

web server can be running simultaneously whilst all having the ability to access the same

data. Consequently the application has the ability to have a greater amount of availability as

if one instance of a web server fails, a new one can be created without losing any data

(Bitnami, n.d.). Figure 3 shows the multi-tier architecture in use within the application.

FIGURE 3: MULTI-TIER ARCHITECTURE

There are two main approaches when designing the interaction between web server and

client. One can either choose to utilise a single page application (SPA) or multi-page

application (MPA). A SPA operates by retrieving all necessary resources such as HTML,

JavaScript and CSS on initial request then page components are replaced by other

components depending on user interaction. This means that the page does not need to be

reloaded upon every user action (Madhuri, et al., 2015). One of the aims of SPAs is to make

the user interface more fluid as a response is not always required from the web server in

order to respond to a user action. Another big factor for larger companies such as Twitter

and Facebook who use SPAs is that client-side loading reduces the pressure on servers

handling requests. MPAs on the other hand require that resources are to be requested each

time upon each user action (i.e. page change or data submission) and subsequently results

in rendering a new page in the client (Lipski, 2017). In very large applications where large

 18

resources are used across the application, MPAs can result in vast increases in average load

times over SPAs.

Although there are clear benefits to SPAs in theory, many suggest that SPAs have greater

amount of complexity involved in testing, error handling, etc (Łępicki, 2017; Navis, n.d.).

Alongside the complexity gripes, I had little knowledge of JavaScript or TypeScript which are

common languages amongst frameworks that utilise the SPA architecture and some of

which have steep learning curves (Naumovski, 2017) making meeting deadlines more

difficult provided the ambitious tasks of the project. Furthermore, given the size of the

application and the number of users required to use the application would be small in

respect to those companies who generate value from a SPA, It does not seem worth the

additional complexities for minimal additional value.

Therefore, choosing a mixture of both an MPA for the majority of the application

implementation whilst also incorporating features SPAs in some areas to meet some of the

more interactive features required of the application that are challenging to be met with

MPA’s using a technology called AJAX which will be discussed later in the implementation

section.

In order to focus on the main requirements of the application, and to not get too involved in

areas outside of the scope of the project, a web framework was incorporated into the stack.

A web framework commonly handles low level implementation overhead so that areas

concerning web development such as HTTP specification, preventing common security

flaws, etc. were not required to be developed alongside the project requirements and

permit the project objectives to be achieved on time.

When designing the structure of the software I decided to use a Model-View-Controller

(MVC) design pattern. The pattern is comprised of 3 modules; the model which defines

what data is stored and is where data is stored, the view is what the user interacts with and

finally the controller is the middleman between both view and model in that it updates the

model when the user manipulates the view and visa-versa (Google, n.d.). When coding to

such a pattern there are high amounts of cohesion amongst the elements in the modules.

There is also loose coupling amongst the modules as they all serve a different purpose

hence if a change in requirements occurred, large amounts of the application would not

have to be altered as would be the case in a tightly coupled application. Both loose coupling

and high cohesion are principles lead to a greater maintainability and reduced complexity of

the module which is required as the application grows. Following such a pattern ensures

that it will be manageable to both develop the application and to test the different

components to see how far I have satisfied the requirements.

FIGURE 4: MODEL-VIEW-CONTROLLER (MVC) ARCHITECTURE

 19

4.1.3. Entity Relationship Diagram

The following entity relationship diagram displays the final structure which the database has

taken to store the data associated with the different modules described above.

FIGURE 5: ENTITY RELATIONSHIP DIAGRAM

 20

The ‘user’ table has two subclasses; admin and participant. These are used to store the two

types of users of the application. Both subclasses are used to identify the user’s permissions

i.e. what they can access within the application to uphold Requirement 7 and Requirement

8. The participant subclass stores the details about the participant for Requirement 4 and

whether they have completed their study and details form. Most tables also contain a

‘creator’ attribute to identify which administrator created that tuple. This verifies that if

there are multiple administrators in a single instance of the application, only data which

they have created themselves or as a result of their studies can be retrieved. Such an

attribute helps maintain the security requirements across the application.

The ‘user_group’ table is used to form logical groups of participants together so that they

can then be assigned to a study, to enable those participants to have the permission to

participate in that study.

The ‘card’ table represents an item which can be ranked, it stores related information such

as a name, description to give the participant context behind what they are ranking. the

‘card_set’ table represents a category and constitutes a grouping of ‘cards’. The ‘card_set’

table also contains a ‘measure’ attribute which gives further context behind how the items

(cards) should be ranked.

The ‘study’ table is then used to group two card sets and a user group together which make

up the basic constituents of a study. two fields are used to explicitly connect a card set with

an axis on the interface, because by only using a single foreign key we cannot ensure that

some sort of order is enforced in the database. The model also stores other information for

greater customisation of the study to make it more adaptable to the requirements of

somebody conducting such a survey.

The data value label model is used to provide the label for the user entry in the study. Such

a label helps to give context behind the numerical values participants are providing for their

ranking of the cards within the study. Using a relationship between the study and

data_value_label table for this feature means the user can define how many user entries

they wish their study to have, allowing for a greater degree of freedom for the potential

uses of the application.

The response table represents a link between a participant and how they responded to a

study. In order to record how a participant has ranked items in a category, the

‘card_position’ table stores what position a participant has placed a card. Similarly, the

numerical value placed upon a comparison of two items is represented using the

‘data_value’ table which stores the position of the value, value itself and the context behind

the value with the relationship to the ‘data_value_label’ table. Both column and row

attributes are used in the ‘data_value’ table in order to be able to locate the corresponding

positions of cards in the ‘card_position’ table.

Previously, the ‘response’ table contained several attributes of type JSON which stored the

ranking of items in a category and the values given to their ranking. This was not a good

design, as by mixing the existing column-per-value schema that existed across every other

table with JSON columns, it prevented the querying of individual items stored within that

JSON structure.

 21

4.2. User Interface

When designing the user interface (UI) for the application, I decided to create wireframes

for the for each view in my application. Such an approach made me be able to try different

layout rapidly the wireframes were able to be altered easily upon review.

When constructing the wireframes, I made sure to consider the usability non-functional

requirements and went further by sticking to the Nielsen’s 10 Usability Heuristics for User

Interface Design (Nielsen, 1994). Heuristics are also called “mental shortcuts” they allow

people to take off the cognitive load complex scenarios by consciously or unconsciously

ignoring some information that is coming into the brain by applying these heuristics or

“rules of thumb” (Lim, 2018). The heuristics made the prototyping of wireframes faster

whilst still having a solid, factual usability reasoning behind the designs chosen.

For more specific, common problems, I applied UI design patterns which are tried and

tested solutions that have proven to be effective at common usability requirements. Using

such patterns reduced the time taken to create some elements of the interfaces and

created a consistent look where these elements would persist across interfaces. As many

other applications follow similar design patterns, they created a simple translation for the

users from other applications, enhancing the intuitiveness of the application overall.

For the visual design of the wireframes and leading into the interface development I

ensured I kept to the CARP principles (Williams, 1994). The name is an acronym for

Contrast, Alignment, Repetition and Proximity. They aim to give the page visual interest

through contrast, whilst giving a good page structure by organisation groups of related

content together and repeating elements where needed to give a consistent look. This helps

the application be more navigable and friendly for both types of user interacting with the

system ensure that the usability requirements are met.

Beyond the visual elements I also thought about the information architecture on each page

to ensure that different elements were easy to find through using one of location, alphabet,

time, category and hierarchy (LATCH) to organise content where necessary (Wurman, 1989).

The figures below show some of the wireframes for the main requirements of the

application and their justification relevant to the principles, design patterns and heuristics

that have been discussed. All of the wireframes are available section 11.

 22

FIGURE 6: ADMIN HOME WIREFRAME

FIGURE 7: ADMIN HOME WIREFRAME 2

 23

The administration home page shown in Figure 6 and Figure 7 gives an overview of all the

studies, card sets or user groups the administrator has created. This gives them visibility

about all of the different elements they have created.

Each object is represented as a ‘card’, Representing information like this gathers the

attributes of the objects together into one coherent piece. Separating information in this

way makes the information more digestible, hence the administrator can find information

they are interested in easier (UI Patterns, n.d.).

Cards are also intuitive, in that they are used across many domains such as trading cards,

business cards, etc. there is a match between the application and real world, following

heuristic 8 of Nielsen’s usability heuristics (Nielsen, 1994). Such a design therefore makes

the design more approachable for the administrator and hence enhance the application

usability.

Comparing Figure 6 and Figure 7 you can see Figure 7 contains more information on each

card. Such an approach follows the Progressive Disclosure design pattern which allows the

user to focus on their task at hand by reducing cognitive load whilst still being able to

retrieve more information about a given object if needed (UI Patterns, n.d.). Revealing

information in such a manner also reduces what could have been a multi-step page loading

process into one, following more of the SPA approach as discussed above, reducing the

interaction time for the end user.

The information architecture orders the sets of cards into a hierarchy of importance (the

studies having greater importance than card sets and user groups) with the most important

at the top. The size of the card is also representative of it’s importance, giving a visual cue to

the user that the card has high importance which is consistent with the ‘recognition rather

than recall’ heuristic (Nielsen, 1994), making more important elements easier to find. Each

group of cards is then ordered by the time they were added, giving them a familiar, logical

ordering.

The mix of design patterns, “rules of thumb” heuristics and information architecture helps

ensure that the administration home page is familiar, gives the user just enough information

with the option to delve deeper and ensuring a logical information architecture so they can

find what they are looking for to aid the usability of the application.

 24

FIGURE 8: ADMIN CREATE CARD SET WIREFRAME

Figure 8 shows a wireframe for the form which allows an administrator to add cards and

associated attributes to a card set.

The alignment of the user input’s and their labels unifies the form as one set, leading to

reduced cognitive load on the user as they don’t have to link the label with its input, making

the form easier to fill out.

The simplicity of the minus button next to each card makes it simple for the administrator to

remove a card if it’s added by accident without having to go through extra dialogue, in line

with heuristic 3; user control and freedom (Nielsen, 1994).

The use of cards design pattern has its benefits as mentioned above, however there is also

consistency between how they are created and how they are represented within the admin

form and the actual survey as shown later. This parity gives greater understanding between

the construction of a card in the administration interface and its actual representation to

the participant in the study.

The aim of this UI was to make it as easy as possible for an admin to fill out the form and to

give a link between what they are defining and the actual representation in the study,

enabling the admin to create a study that they wish to create easier.

 25

FIGURE 9: PARTICIPANT SURVEY WIREFRAME

The wireframe shown in Figure 9 is for the actual survey that the participant completes

which is based upon functional Requirement 11 of the application. The wireframe has two

axes where the participant can rank the cards in one card set on one axis against cards in

another card set on the other axis. The ranking of a card in its card set is given context by a

measure, ensuring the participant understands how to rank the cards. The input boxes also

 26

provide a place for participants to give numerical values to their ranking of the cards they

have placed on corresponding positions of both axes.

Each card set in Figure 9 is shown to be close to its respective axes. The proximity of these

two elements is used to show these two items are related, decreasing the cognitive load of

associating one element with another.

This UI also uses the ‘drag and drop’ design pattern. This allows participants to drag and

drop cards onto the grid. Such a pattern has a match between the system and real world as

in Nielsen’s heuristics as participants are familiar with organising items by manually

dragging them around into their desired position (Nielsen, 1994). This pattern makes it

simpler and faster for a participant to organise data rather than going through an extended,

confusing dialogue.

5. Implementation

5.1. Back-end

To implement the backend business-logic of the web application which was run on the

server and something which enabled the use of the model-view-controller pattern as

discussed in the design section, I decided to use the lightweight Python web application

microframework called Flask.

A microframework is a framework which keeps the core simple but extensible, it does not

enforce any dependencies or project layout, it is up to you, the developer, what tools and

libraries you use. Unlike other generic web application frameworks, Flask does not include a

database abstraction layer, form validation or anything else which can be provided by a 3rd

party package. Rather, Flask gives you the ability to use extensions as if it was part of Flask

itself (Flask, n.d.). Giving the choice and the barebones of a web application enables the

developer to be more informed about how the application works and keeps the project

more lightweight as there aren’t any unused dependencies which is great for portability as

discussed in the DevOps section below.

Flask does, however, provide you with a template engine which allows you create dynamic

HTML. It also provides you with a WSGI web application library for creating request,

response objects, a routing system for matching URLs and endpoints and testing features

such as a development WSGI server, test client and debugger. Such features allow for a

greater focus on requirements of the project and rapid development rather than on the

lower level operation of a web application. Furthermore, these features also handle some of

the common security flaws in web applications taking the burden of this knowledge and

implementation away whilst still meeting security requirements.

The following details the implementation and its associated justification for each module as

defined in the design section above. Only code that is critical to the application or is

particularly interesting is has been described.

5.1.1. Database

When developing the application, I decided to use separate databases for each environment

the application would be used in; development, testing and production. Using separate

 27

databases meant that any modifications to the schema made in the development

environment did not affect the production application and hence it could operate without

disruption as a result of mismatch between the database and application code or error in

the schema definition. Using a 3rd database for testing meant that the testing environment

could set up and tear down a database needed to test the isolated functionality of the

application without removing or altering vital data from the production or development

database.

For development and testing I used 2 instances of a SQLite database which were hosted

locally on the development machine. ‘Lite’ does not refer to its capability, rather, it being

lightweight in respect to the setup time, administration and resource usage (Kreibich, 2010).

SQLite is a server-less architecture unlike many database products it packages the database

into a file and the database engine is implemented into the application which requires

access to the database (Kreibich, 2010). SQLite was perfect for use in both development and

test environments as the file can easily be deleted and reconstructed when needed.

My choice of production database to implement the structure shown Figure 5 was

constrained by non-functional security requirements of the project stating that the database

had to be hosted from within the university. Due to this the relational database, MySQL,

which the school hosts was chosen. The school also hosts a database (MongoDB) which

does not follow the relational model- often known as NoSQL. I chose to follow the relational

model as in my opinion relational databases are better for use in an application which has a

well-defined structure, such as the one being developed for this project, while NoSQL

databases are better for those applications with less of a defined model structure. Each

environment and their associated database are shown in Figure 10.

FIGURE 10: SEPARATE ENVIRONMENT DATABASES

To make working with the databases simpler an object-relational mapper (ORM) called

SQLAlchemy was brought into the development dependencies. An ORM implements the

 28

object-relational mapping technique which involves the conversion from complex SQL

queries to an object-oriented paradigm, bridging the impedance mismatch between tabular

data and appropriate objects (O'Neil, 2008). Writing updates, deletions, creations in an

object-oriented manner in Python is much simpler than writing arduous SQL code that can

take up many lines (see Figure 11). SQLAlchemy went further by taking away the burden of

writing application code to interface with the database you are using making switching

between different databases simple (SQLAlchemy, n.d.), so the application code could

remain the same across all environments even if they used different databases. Queries are

also optimised with an ORM so you can focus on feature implementation as queries are

often more performant than someone who is not a SQL expert (SQLAlchemy, n.d.).

FIGURE 11: ASSIGNMENT OF VALUE IN A TUPLE IN THE OBJECT-ORIENTED PARADIGM

5.1.2. Authentication

For authentication the Flask-Login package was used. This provides; user session

management, login and logout methods. Similar to the microframework approach, Flask-

Login does not impose any restrictions on the method of authentication, user permissions

or the user model. The package benefits are similar to that of Flask as focus could be put on

requirements rather than user session management.

To handle the two different users of the application; administrators and participants I

inherited from a base user class as discussed in the design section. Although relational

databases don’t support inheritance, the ORM provided me with the ability to map class

inheritance to relational schema. The ORM only creates a single table from the base user

class and using a discriminator attribute in the base class indicates the type of object

represented within that tuple. This means that both administrators and participants can be

queried as though they are separate tables although their data is actually contained within

the same table. Using inheritance for defining relational schema has benefits similar to that

of any class inheritance, such as code reuse, maintainability, however, it allowed me to

differentiate between the two actors for authentication purposes.

In order to prevent a participant from accessing administrator endpoints or visa-versa, I

used decorators, which wrap an endpoint function to modify its behaviour. The decorators

for the authentication module check the discriminator attribute of the currently logged in

user to see if they had permission to access a particular endpoint and redirect them if they

did not. The wrapper function for checking for admin permissions is shown in Figure 12 and

how an endpoint is decorated with @admin_required is illustrated in Figure 13. The use of

 29

decorators in this scenario enabled me to reuse code rather than checking for correct

permissions manually at each endpoint which decreases the size of the application, making

it more readable and in turn it increases the application’s maintainability as only one

method has to be updated or modified if there was any change required in the process of

checking for permissions.

FIGURE 12: ADMIN PROTECTED ENDPOINT WRAPPER FUNCTION

FIGURE 13: EXAMPLE OF DECORATOR USAGE ON ENDPOINT FUNCTION

5.1.3. Participation

The main sections of the participation module consisted of forms both for the user

information entry and the actual study itself.

For the user information entry, the Flask-WTF package was used which is an integration of

Flask and WTForms. Flask-WTF was chosen for its simplicity in the rendering of generic

HTML5 forms and their validation which are prevalent throughout the application. The

package also came with security features to prevent against Cross-Site Request Forgery

(CSRF) which is an attack where an “adversary causes a victims browser to perform an

unwanted action on a trusted website via a malicious link or other content” (Lin, et al.,

2009) further supporting the security requirements of the application. Flask-WTF was also

able to handle file uploads which was helpful where uploading images was required in

functional Requirement 1.

An example form definition for user information entry using Flask-WTF is shown in Figure

14. The UserInfoForm inherits FlaskForm which itself inherits the WTForms Form class, the

fields are then specified declaratively as class attributes. Here, each field is a SelectField

with choices that are a list of tuples generated from JSON files, making the updating of the

potential choices simple. WTForms also ships with built-in validators for common use cases

such as DataRequired validator shown Figure 14 which, along with the FlaskForm method

 30

validate_on_submit (see Figure 15) allows the automatic validation of forms that have been

submitted as and a corresponding error message to be displayed alongside the invalid field.

FIGURE 14: EXAMPLE FORM DEFINITION IN FLASK-WTF

FIGURE 15: EXAMPLE USAGE OF FORM VALIDATION METHOD

For the actual participation in the study, generic HTML5 form elements provided by

WTForms would not suffice for the UI that was designed, therefore a different method was

required to capture the participant response to the study which will be discussed later in the

front-end section of the implementation.

Once a response has been submitted, it is turned into an instance of the Response class

defined in the database section. The data that is used to analyse the responses themselves

also need to be updated as a new response would alter any existing heat map or average

response.

5.1.4. Administration

The administration implementation was one of the more difficult sections to complete for

the backend of the application. There was a lot of business logic required for this module

 31

which limited the ways in which objects could be created and modified by the administrator

which impacted the functionality of the system.

Some of the difficulties stemmed from the requirements of the application, such as

functional Requirement 10 which created the problem that a participant’s email had to be

deleted after an invite was sent to ensure that sensitive information collected from a

participant was not stored alongside personally identifiable data. This meant that modifying

a user group after it had been assigned to a study was impossible as no user could be

identified. The same user group could not be applied to multiple studies, because they

would not be able to receive an invite to a later study due to their email having been

removed.

Other difficulties were concerned with the modification of card sets which had or were

being used in existing studies if a study’s card sets were to be altered, existing response data

for the old card sets would be invalidated, making analysis of the data very difficult.

Alongside this problem, when choosing to edit a card set from the interface, pre-populating

the value of the HTML file input value is prevented due to security reasons. This made it

difficult to understand if an image was desired to be removed from a card or not.

There was significant time dedicated to attempting to resolve these difficulties, however

due to time constraints of the project these difficulties eventually materialised into

limitations of the project. Although these are limitations of the project, they do not fail to

meet the requirements of the project, rather, they slightly limit the flexibility of the

application.

In order to address these limitations on modification and deletion of studies, card sets and

user groups in the implementation of the applications, decorators were used to ensure that

the object does not have any restrictions on modification, or deletion. These decorators

operate and have benefits similar to how they were described in the Authentication

implementation section.

For the administration controller, there are 3 sets of 3 URL endpoints, each endpoint

managing the creation, deletion and modification of each of the study, card set and user

group objects. Although object instantiation and deletion are simple through code, separate

endpoints were needed to handle the functionality which enabled the deletion and creation

of objects through the administration page. To be clear, when talking about modification I

mean both the assigning attributes from null and reassignment of attributes or, in simpler

terms filling out a form from blank or changing the values on a form you have previously

submitted.

The majority of the implementation for the modification of each of the objects constituted

handling the submission of forms or pre-populating forms with existing data.

To enforce the business logic, custom queries for forms had to be created to ensure only

user groups not assigned to a study could be chosen. Custom validators ensured that cases

such as the same card set for both axes being chosen, or incorrect date combinations being

chosen were not possible and gave the user satisfactory feedback when such criteria were

not met.

 32

To allow both card sets and user groups to contain any number of cards or users

respectively, FieldLists from Flask-Forms were used. A FieldList is a wrapper for a group of

fields, this allows us to embed any number of sub-forms into a form, warranting the ability

to create multiple users or cards within one form rather than submitting multiple forms for

each user or card. How such forms were defined are shown in Figure 16 and Figure 17.

FIGURE 16: USER GROUP FORM DEFINITION CONTAINING A FIELDLIST

FIGURE 17: USER SUB FORM DEFINITION

To invite participants to participate in a study at the correct time, I used both Flask-

APScheduler and Flask-Mail packages. Flask-APScheduler adds support for Flask from the

regular APScheduler library. This library allowed me to schedule a Python function to be

executed periodically, every hour to check if there were any current studies which needed

an invite to be sent. Flask-Mail was used inside the function to send emails via the SMTP

protocol to invite participant to the studies, providing them with a username, password and

instructions for accessing the application from their machine. The combination of the two

packages and functionality is shown in

FIGURE 18: SCHEDULE JOB CODE

 33

FIGURE 19: SCHEDULER FUNCTION TO SEND INVITES

5.1.5. Responses

Along with the Administration module implementation, the Responses module also took up

a large amount of time in the development stage. Unfamiliarity around working with data

analytics and how to transform data into something meaningful proved difficult. A lot of

data was being collected by the application, demographic data paired with response data

leads to potentially thousands of ways of interpreting the data. Time limitations and

challenges of implementing the project meant I focused on a few key indicators of how a

particular user group was responding to a study so some conclusions could be drawn. In the

end, no analytics based upon responses over different demographics within a study was

developed.

The main crux of the Responses module back-end revolved around functions which parsed

data from the ‘response’, ‘card_position’ and ‘data_value’ tables. The functions transformed

data into different forms so each view in the module could show a different representation

of the data that the other views may miss.

The parsing function which created an average position of the cards for a study involved

going through all responses for a study, totalling the position for each card. Each total was

then divided by the number of participants who have responded to get an average position

for each card. A similar process was also involved in the function that calculated the average

numeric values for the study, by totalling the value entered for each data value position in

the grid over all responses. Each total was then divided by the number of participants who

entered a value in that position. Results from both functions were then combined to

produce the overall average response.

 34

Once a participant had submitted their response, the position of each card, as placed by the

participant is stored in the ‘card_position’ table. Each value along with its position and the

data value label which gives the description of the value is stored in the ‘data_value’ table.

To create a heat map showing the frequency of placement of a pair of cards, the position of

each card is queried for each response and the counter is incremented at the intersection of

the positions of each card (see Figure 20 for a diagram of the conversion).

FIGURE 20: CONVERSION FOR THE HEAT MAP SHOWING THE FREQUENCY OF PLACEMENT OF A PAIR OF

CARDS.

To create a heat map showing the average normalised value given to a pair of cards and a

data value label, first, for each response the position of each card is queried. The value for

the data value label that intersects the positions of the cards is then queried and normalised

based upon the normalisation across all data values for that participant’s response and

specific data value label. The normalised value is then added to a running total for the

position of the pair of cards. After going through all responses in this process, totals for the

pair of cards in each position on the grid are then divided by the number of participants who

have placed the pair of cards which intersect with the position on the grid (see Figure 21 for

a diagram of the conversion)

 35

FIGURE 21: CONVERSION FOR THE HEAT MAP SHOWING THE AVERAGE NORMALISED VALUE GIVEN TO A

PAIR OF CARDS.

Comparisons of responses for a study was also enabled in this module by reproducing

individual responses from the data stored in the Responses table. This functionality was

made simple by using a slightly modified version of the HTML structure coded for the actual

survey. The HTML structure was also reused further by giving the administrator the ability to

reproduce a participant’s response in a PDF form, rather than a webpage. To create this

feature I used a package called pdfkit which was a python wrapper for wkhtmltopdf that

handled the conversion of the responses represented in HTML to a PDF, however this

feature is only partially implemented due to the difficulty in incorporating images into the

pdf and some CSS features present not being supported in the package.

5.1.6. API

The API was one of the easiest modules to implement in the whole system as it largely

involved building endpoints for each of the tables shown in the entity relationship diagram

then using the URL arguments for that endpoint to query the table and return the data in a

JSON format.

The main challenge came with how to authenticate those who were requesting data

through the API, for this, I used the package called Flask-JWT-Extended. This package gave

me the ability to create access tokens upon validation of an existing administrator’s

 36

username and password. The access tokens returned are JSON Web Tokens (JWT) and

importantly, they are signed using a private secret so they cannot be manipulated to

retrieve another user’s data.

When requesting data from an endpoint in the API module, the administrator would send

this access token in the authorisation header of their HTTP request. A decorator provided by

the package would then validate the access token before allowing the endpoint to be called.

The package also enabled the storage of an identity within the token, this is used to identify

the specific user requesting data and ensured only the data created would be returned.

Figure 22 shows a section of the authentication of users for an access token and Figure 23

shows an API endpoint which provides data about a participant in JSON format and is

protected by a decorator which checks for the validity of the access token.

FIGURE 22: API AUTHENTICATION AND JWT ACCESS TOKEN CREATION

FIGURE 23: API GET PARTICIPANT ENDPOINT

5.2. Front-end

For the front-end implementation I used a range of software to help me create an interface

to meet the design requirements for the user interface, which was responsive to different

types of browsers and viewport sizes. To meet some of the more rich, interactive interface

designs I needed scripting software which allowed the manipulation of the HTML DOM tree

after the page has rendered.

For the structure of the content on the webpages returned from the webserver I used Hyper

Text Mark-up Language (HTML) this gave me the means to represent the forms defined in

the backend, denote structural semantics for headings, lists, etc (W3C, [no date]). As

mentioned in the back-end section Flask wraps a templating engine called Jinja. This

templating language allows you to create dynamic HTML using loops, template inheritance,

etc and has added security features such as “automatic HTML escaping system for XSS

prevention” to supplement the security requirements of the application. This engine

supports the requirements of creating user interfaces that are derivatives of user input

whilst having the added benefits of template inheritance to create consistency needed

across user interfaces for the application as shown in the UI design.

 37

I assisted the HTML structure with Cascading Style Sheets (CSS) for the presentation of the

HTML elements on screen which include colours, layouts and fonts (W3C, [no date]).

Alongside the use of pure CSS, I also used the CSS framework called Bootstrap. This

framework shipped with predefined style sheets to create visually appealing styles across all

of the interfaces. Bootstrap comes with rich abilities with its content and components

features. These features enabled the application to easily apply the heuristics, principles and

patterns that were discussed in the UI design section. The layout feature of Bootstrap this

allowed the application’s interfaces to be responsive and adapt to the size of the browser

viewport so a greater amount of hardware could also be supported.

Interactive capabilities of the interface were enabled through the use of JavaScript a client-

side scripting language. I decided to use a JavaScript library called jQuery as it took common

tasks that require many lines of pure JavaScript and condenses them into a single method.

This overall made the codebase smaller for the front-end and made manipulating the DOM

and CSS simpler. Alongside this functionality, jQuery also made it easier to send AJAX

requests to a web server. AJAX allows data to be exchanged with a web server and update

parts of the webpage without it being reloaded, similar to how a SPA works, which was

desired for the more interactive elements of the application.

The templating engine, Jinja, provides the ability to template inheritance as mentioned. This

was used widely throughout the HTML files that constituted the structure for each of the

user interfaces implemented in the application. A large proportion of wireframes include a

navigation bar at the top of the interface to allow the user to easily access different views of

the application from any other view. By using inheritance where there was commonality

between different interfaces it means that HTML would not have to be repeated and

resulted in only one file needing to be updated to alter the common elements among many

views, making the code more maintainable, saving time and reducing the codebase.

Similarly, to the backend, the following sections detail the implementation and its

associated justification for each module. Only code that is critical to the application or is

particularly interesting is has been described. Note that the API module has been omitted as

it does not require any front-end implementation and Authentication has been omitted as

its front-end implementation is relatively standard and uninteresting.

5.2.1. Participation

This module proved to be the trickiest for implementing the interface that those

participating in the study would use to rank different elements of different categories

against each other and give numerical reasoning behind those rankings. The drag and drop

design pattern mentioned tied in with the tabular representation of the study created

difficulties in effectively styling the interface so it was appropriate for a range of viewports

and different studies.

In order to represent the cards shown on the wireframe in Figure 9: Participant Survey

Wireframe the card component was used from Bootstrap. It offered a vast amount of

flexibility in terms of their content and sizing and met the design that was desired for the

interface. In order to rank these cards on the axes as shown, jQuery’s sortable interaction

was used to enable the card element to be clicked and dragged to a desired position on the

axes and have all other cards adjust to fit.

 38

To represent the area where the participant ranks the cards and fills in the numerical values,

a HTML table was used as it matched the design of the interface in Figure 9: Participant

Survey Wireframe. The actual developed interface for participation in the survey is shown in

Figure 24.

FIGURE 24: PARTICIPANT SURVEY INTERFACE

Difficulty was also encountered regarding how to send the response data back to the server

to be processed and stored. A standard HTML form could not be utilised for this interface as

the positions of the cards on the axes cannot be obtained using generic HTML5 form

elements.

In order to overcome this difficulty, jQuery was used to scrape and transform the relevant

sections of the DOM and AJAX was used to post this data back to the server to be processed

and stored. Once the study had been submitted, the jQuery code traverses the table and

adding each card to its correct position in a JavaScript object, according to where the

participant has placed them. Similarly, during the traversal, the numerical values entered by

the user are added to an object depending on their position in the table. The jQuery code

also validates the user input to check they have added all cards to the table and the relevant

user input values are also filled out. Validation on the client-side means that the page is not

reloaded and hence any progress is not lost as a result of an incomplete study. Once the

form has been validated, the processed data is sent back to the web server using AJAX

where it can be processed for the analytics of the responses.

A section of code which processes the cards placed on the y-axis so they can be sent back to

the server is shown in Figure 25 and the method used to send the response back to the

server asynchronously using AJAX can be seen in Figure 26.

 39

FIGURE 25: JQUERY TO PROCESS PARTICIPANT RESPONSE

FIGURE 26: AJAX CODE TO SEND DATA BACK TO SERVER

5.2.2. Administration

The card component from Bootstrap was also used in the administration home page to

represent the user groups, card sets and studies that the administrator had created. They

were structured in the desired format as shown in Figure 6 by using the grid system built

into Bootstrap’s layout feature. It uses a series of containers, rows and columns to align and

organise content. The feature is built using flexbox – the CSS layout module so is fully

responsive different to viewport sizes ensuring it can be used across different hardware

which was specified as a requirement.

 40

FIGURE 27: ADMINISTRATION HOMEPAGE INTERFACE

The interfaces for creating user groups, card sets and studies were largely structured using

standard HTML form elements and styled using Bootstraps form component which

simplified alignment of the form elements and their tags. The component also enhanced the

visual appeal of the form elements more than their standard HTML counterparts.

FIGURE 28: CREATE STUDY INTERFACE

To allow the administrator to define any number of participants or cards from one single

view the application was required to have the functionality on the client side to duplicate a

group of form elements or remove a specific group of form elements. As mentioned

 41

previously, the FieldList form field from the Flask-Forms package was used to provide this

extensibility in the backend, however there was a challenge at the front-end to implement

this flexibility. The problem was Flask-Forms renders each group of fields in a Field List using

a unique identifier- this identifies the position of the fields within the group, therefore when

duplicating the fields, you need to modify the identifier and when removing a specific field

the trailing identifiers in the group need to be modified too. In order to duplicate DOM and

modify the identifier, I used a jQuery plugin called czMore.

Figure 29 shows the interface for grouping users together and utilises the czMore plugin to

add or remove email fields. Further ‘nice to have’ features were implemented in this

interface including uploading a csv file of emails to make it simpler to add multiple emails to

the user group form. This functionality used a file reader and DOM manipulation to make

this possible.

FIGURE 29: CREATE USER GROUP INTERFACE

5.2.3. Responses

The Responses module was split across many different interfaces, each to represent the

response data in a different way that may be meaningful for the administrator.

Some of the interfaces in the response’s module were simple reconstructions of the

responses submitted by the participants or the average of all responses. These

reconstructions used a HTML structure similar to that from the study view from the

participation module discussed earlier.

Some other interfaces required for the application represented the data in such a way

beyond the capabilities of HTML and CSS. For this, a visualisation library called Bokeh was

used. Bokeh allowed me to create interactive plots using Python quickly and easily. This

library would generate JavaScript representing plots derived from the response data. This

 42

JavaScript would then be embedded into the HTML. Figure 30 shows the ‘general’ responses

interface, using Bokeh to produce bar graphs to show frequency of the placement of cards

at different positions on the grid for each card set in the study.

Figure 31 shows the options to add heat maps to the page. AJAX is used to send the form

options back asynchronously to the server which then produces the JavaScript for the heat

map based upon those options and is subsequently added to the page without reloading. I

also used jQuery’s draggable to allow the heat maps to be positioned to the users liking,

making comparisons easier.

FIGURE 30: OVERVIEW OF RESPONSES INTERFACE

 43

FIGURE 31: HEATMAPS OF RESPONSES INTERFACE

5.3. Dev Ops

DevOps is about integrating development and operations, it facilitates the connections

between these traditionally separated workflows. Using automated tools across these

workflows DevOps can help to deliver code to production faster and accelerate problem

resolution (Ebert, et al., 2016).

5.3.1. Version Control

For the application a version control platform called GitHub was used. Using this software

would help address risk concerns around data loss as mentioned in the Initial Plan as GitHub

stores a remote repository of all code committed to it. Therefore, any code committed to

GitHub would not be lost as a result of data loss on a local, development device. GitHub also

gave me the freedom to revert changes where certain implementations or features did not

work which came in useful when encountering some of the more difficult implementation

features of the application.

GitHub also ships with the ability to connect other tools that were used in the DevOps

pipeline for the project. This allowed for the automated processes that DevOps embodies to

occur seamlessly between developer environment to production deployment of the

application.

5.3.2. Deployment

As there was a requirement to host the application from within the university network for

security reasons, there was limited options for hosting the site. There was a project web

server which the school maintains which can only serve static files or PHP which was

unsuitable for my applications ecosystem and there was also the option of using OpenShift

which is a container-based deployment and management platform for applications which

was much more suitable for the needs of the application.

 44

In order to fully support the portability of the application and automation when it came to

move the code from the development environment to OpenShift, the production

environment I enlisted the OS-level virtualisation tool called Docker. This allows for the

creation of an ‘image’ which represents a packaged application with all its dependencies in

one file. A ‘Dockerfile’ included with the source code describes how the image should be

created. Each command in a ‘Dockerfile’ creates a new layer in the image, where a layer is a

change in an image or an intermediary image.

The ‘Dockerfile’ for creating the image for the application in Figure 32 displays the first line

as using the Linux Alpine image hosted on Docker Hub as the base image. Alpine was used

as it is a very resource efficient, by stripping out the unnecessary Linux features as the

image is only 5mb in size (Alpine, n.d.) it also provided the apk package manager to easily

install dependencies needed for the application (Alpine, n.d.) shown with the ‘RUN apk’

command in the Dockerfile below. The Dockerfile also shows the use of the COPY command

which copies the required folders/ files for the application from the current directory on

local machine to the image. The ENTRYPOINT command points to the boot.sh file (seen in

Figure 33) which will be run once the container for this image is started.

FIGURE 32: DOCKERFILE FOR CREATING DOCKER IMAGE

For the building and storage of images the Docker Hub registry was employed for its

simplicity and integration with GitHub and OpenShift to link the two pieces of software

making the automatic workflow desired possible. A webhook alerted the Docker Hub once

new code had been pushed to the GitHub repository, Docker Hub would then begin building

the image from the Dockerfile. Once a new build was finished, OpenShift would pull this

new image and spawn a new container of this image, running the shell script presented in

Figure 33 below. The script which would check for any new migrations which needed

applying to the production database and start then web server. The workflow from the

development machine to actual production deployment can be seen in Figure 34.

 45

FIGURE 33: SHELL SCRIPT RUN BY OPENSHIFT CONTAINER

Instead of running the development web-server gateway interface (WSGI) which ships with

Flask and is poorly optimised towards a production environment where speed and

robustness is desired, I used Gunicorn which is a python production WSGI. Gunicorn allows

you to configure a number of workers which are each able to serve requests concurrently to

handle a greater amount of users it is very simple to set up but is used across many

production environments as it’s light on server resources but fairly speedy (Gunicorn, n.d.).

FIGURE 34: DEVELOPMENT WORKFLOW

 46

6. User Study

6.1. Procedure

I originally planned and organised to carry out the user studies with a group of people in

person in late March 2020 however, as a result of the COVID-19 pandemic and the

subsequent UK Government lockdown meant that meeting in person was infeasible. This

meant that some content and procedures that would have been carried out in the meeting

would have to be fully remote. Extra time was allocated for this transition and as a result, an

informational video on how to complete the survey was created and participants were

asked to send a digital consent form via email.

6.1.1. Participants

As there was a requirement to host the application internally, only those people who had

access to the university network could be invited to participate. The participants were a

range of students from varying countries, ages, some had a job alongside studying whilst

others were working on placement years. Table 1 shows the participants and their

information as entered by them into the application. As the information was not entered

under supervision as originally intended when meeting in person, the information is only as

good as how the participant perceived the question. Although the questions are common

throughout online forms, hastiness or reluctancy to ask questions over a remote medium

could lead them to not wishing to ask if they had a simple query about what was required of

them. Such a problem could have been reduced by conducting the study with participants in

person.

ID Age Group Salary Range Country of Birth Current

Country

Education

Level

1 40-49 £10000-£20000 Sudan United

Kingdom

7

2 30-39 £20000-£30000 Saudi Arabia Saudi Arabia 7

3 20-29 £0-£10000 Turkey Turkey 8

4 20-29 £20000-£30000 United Kingdom United

Kingdom

6

5 20-29 £0 United Kingdom United

Kingdom

3

6 20-29 £10000-£20000 Switzerland United

Kingdom

5

7 20-29 £0 United Kingdom United

Kingdom

6

TABLE 1: USER STUDY PARTICIPANTS

 47

The ‘current country’ column indicates the country that participant has lived In most for the

past 10 years and the ‘education level’ indicates the highest level of qualification achieved

by the participant as defined by the UK Government (UK Govenrment, n.d.).

6.1.2. Invitations

As mentioned in Section 5.1.4, the application sent out emails to prospective participants

which was the reason behind the administrator to enter participant emails as a part of

creating a user group. The email contained information on how to access the university

network using a VPN as well as the credentials for the application.

6.1.3. How-To

A screen-capture video of how to fill out the survey was created in order to replace the in-

person demonstration of how to respond to the survey. A link to the video can be found in

Section 12.

6.1.4. Study Parameters

Two different types of card set were created; the first representing different types of data

and the second representing different types of organisations. These separate card sets allow

us to be able to rank both different types of data against different types of organisation, as

required by the problem that is being investigated. The following comprises the cards used

within the data types card set along with a description of the data type:

• Entertainment – Information about what TV programmes, films and genres you

watch.

• Sensitive health report – sensitive health information including fertility tests, blood

report and DNA test.

• Activity and sleep – Exercise and sleep data from exercise apps or smart watches.

• Demographics data - data about your Age, Gender, Address, Religion, Political

opinions, height, weight etc.

• Household data - data about your home i.e. energy/ water consumption, fridge

contents etc.

• Service contracts – information about recurring bills such as gym membership,

broadband contract, phone contract, etc.

• GP Health Records – data collected from general practitioner (GP) visits.

• Fashion – Information about clothes stored in wardrobe.

• Communications – Data about specific messages, call history, etc.

• Financial - data about bank statements/ contracts/ insurance/ stocks.

• Food and Beverage - data about food and beverage consumption through smart

ovens, coffee machines etc.

• Location - data about places you visit.

The following list comprises the cards used within the organisations card set and any

associated examples or description:

• Electricity Companies – companies that supply electricity to domestic households.

• Government.

• City Council – i.e. Cardiff City Council who provide services such as waste collection,

street cleaning and community centres.

 48

• Banks.

• Research Institute – i.e. Medical research, Science and technology research, Natural

world research.

• Supermarkets.

• Religious Groups.

• Health Service – National Health Service (NHS).

• Social Media – i.e. Facebook, Instagram, Snapchat, Twitter.

• Government Regulated – i.e. Network Rail, BBC.

• Education Institute – i.e. Universities, Colleges, Sixth Forms, Secondary Schools.

• Insurance – i.e. Car, Home, Life insurance.

• Products and Services – i.e. Amazon, BT, Google, Spotify.

• Authorities - i.e. Police and Courts.

These cards were chosen as they represented a wide variety of data collected by IoT

devices. Similarly, these organisations were chosen as they represented the large sectors of

industry both public and private. The cards within each card set was ranked according to a

measure which ranged from low to high for that given measure. The measure for the data

types card set was defined as ‘Sensitivity’, meaning how sensitive you are towards selling

that type of data. The measure for the organisations card set is defined as ‘Value (Price)’,

meaning how willing you are to sell any type of data to that organisation.

Two different numeric values were also associated with the study, each of which

represented the consequence of selling the data to an organisation under different

circumstances. The first numeric fields label described the price you would sell the

corresponding data type(s) to the corresponding organisation(s) if you, the sensor owner,

apart from the monetary gain, saw the benefit of the data being sold, such as a personalised

service. The second numeric value label allowed the participant to define the price they

would be willing to sell the corresponding data type(s) to the corresponding organisation(s)

if, apart from the monetary gain, only the organisation saw the benefit, such as a better

supply chain management. These two labels allow us to identify price preferences for a

group under two common business cases for companies collecting such IoT data.

Each participant ranked the cards within each card set according to their respective

measure and filled out the numeric value inputs in the grid according to the intersecting

data type(s) and organisation(s). Finally, they submitted their final ordering and values to be

analysed by the application.

7. Results and Evaluation

7.1. Functionality Results and Appraisal

In order to check the backend of the application, tests needed to be performed which

addressed to what extent the requirements set out in section 3.1. had been achieved.

Functional testing of the application was carried out to instil confidence in the code about

meeting those requirements and the wider operation of the application under adverse user

input. A Python testing framework called pytest was used to aid the testing of the backend

code. Each functional test constituted of an instance of the application, and when needed,

an instance of the testing database. To ensure the integrity of each test was not

 49

undermined by previous tests, the testing database was torn down after each test and

reconstructed for the next.

Each module was subject to testing on the correct rendering of its views based upon data its

dependent on that was created within the test. Where a module contained forms, the

submission of correct and invalid data from a test checked whether the data was processed

correctly, or the correct error message was shown respectively. Decorators described in

section 5.1 which provide access control to endpoints and enforce some of the limitations

on the flexibility of the application were also tested across every decorated endpoint to

prove those endpoints were properly protected. The API module was tested validating that

each endpoint required a valid access token and the correct JSON data was returned.

Alongside functional testing, unit testing of the singular functions, outside of the endpoints

was also employed. The unit tests covered testing the parsing functionality of the response’s

module covered in section 5.1.5..

Out of the 85 automated tests for the application, 82 passed and 3 failed, I expected a 100%

pass rate as I was developing the application to pass the tests to ensure I was meeting the

requirements of the project. The 3 failed tests were due difficulties encountered in

developing tests for forms which were defined with the FieldList functionality of the

WTForms package. Despite this failure using pytest, the functionality was shown to be

working upon manual testing, by manually submitting valid and invalid forms and checking

for a valid response. A summary of all the tests performed can be found in section 13.

Despite a good test coverage of the backend of the implementation, automated testing of

the front-end implementation of the application was not completed. Despite this, Chrome

Developer Tools feature came in handy when performing manual testing of the application,

giving you the ability to manipulate viewport sizes to simulate the interface across different

viewport sizes and to set breakpoints in JavaScript to validate the correctness of the code.

Manual testing through such methods only gave a slight confidence about the robustness of

the interface, for full confidence automated testing frameworks would need to be used to

ensure a coverage of the front-end that is similar to that of the backend.

7.2. User Study Results

After the study responses had been submitted, the analysis tools that had been developed

for the application were used to identify trends and anomalies in participant responses.

These tools illustrated the willingness to trade different types of data to different

organisations and the prices required for such a trade to take place. The following discusses

some of the results identified from the study using these tools.

7.2.1. Not just special category data is highly sensitive

Under the GDPR, special category data is data which may create significant risks to an

individual’s fundamental rights and freedoms (ICO, n.d.). Figure 35 shows the special

category data which includes sensitive health report data and GP health records being

placed exclusively by participants in the highest two columns for sensitivity. This correlates

with the ICO’s view that this data is very sensitive to the data subject.

 50

FIGURE 35: PARTICIPANT SENSITIVITY OF DIFFERENT DATA TYPES

Interestingly, non-special category data such as communication data also featured mostly in

the highest column for sensitivity, as shown in Figure 35. This is interesting as nearly 2.5

billion people use messaging apps such as Facebook Messenger and WeChat (Clement,

2020) which do not enable end-to-end encryption by default or support it at all (Morse,

2019; Chiu, 2019). This essentially allows these companies to read all communications

through these apps as if they had bought the communication data through the Sensing as a

Service model itself. With Facebook and WeChat both being social media companies, it

could be inferred that with such high market share within the communication market that

their users trust their communications data with them. However, data collected from the

study that was conducted shows that social media companies would have some of the

highest costs for purchasing communication data relative to all types of data (see Figure 36),

suggesting that participants have mistrust in social media handling their communication

data, a direct contradiction with the previous remark.

FIGURE 36: HEAT MAPS SHOWING PRICE AND ATTITUDE OF TRADING COMMUNICATION DATA WITH

SOCIAL MEDIA COMPANIES.

 51

7.2.2. Mistrust in trading data with organisations

On average, banks appeared highest on the ranking in terms of the price required to obtain

data above that of the government (see Figure 37), suggesting that they are not as

trustworthy. This is not what I expected as some research suggests that up to 70% of the

public trust financial institutions accessing their personal data, greater than the percentage

for the central government (Black, et al., 2018). This could be due to the large proportion of

the participants in the study being younger and study conducted by Facebook has shown

that only 8% of millennial’s have trust in financial institutions (Facebook, 2016) leading them

to charge banks the most for their data.

Carrying on with this idea of mistrust amongst organisations, Figure 37 shows that on

average, there were no cards in the lowest position for value. This highlights the fact that

many of the participants may not be very willing to trade their data with any organisation.

This is further backed up in Figure 38 where 37% of all the organisations were placed in the

highest value position. Such placement of cards could be related to distrust about the

organisations ability to handle IoT data responsibly once the trade has occurred, with one

report suggesting that only 25% of respondents believing that most companies handle their

sensitive data responsibly (PwC, 2017).

FIGURE 37: AVERAGE TRUST IN DIFFERENT ORGANISATIONS

 52

FIGURE 38: PARTICIPANT TRUST IN DIFFERENT ORGANISATIONS.

7.2.3. Participants don’t care about the benefits of selling data beyond the monetary

gain.

The study allowed participants to fill out 2 values for each combination of positions for an

organisation and data type. It was thought that the price for which the participant was

willing to sell their data to an organisation and receive some kind of extra benefit (such as a

personalised service) would be less than that if they did not receive any extra benefit from

selling their data. However, in many instances this was not the case as the price to sell data

and receive extra benefit was greater than receiving no extra benefit at all (see Figure 39 for

the average normalised values across the whole grid). In one extreme case participant ID 7,

would actually give away some data for free if they received no extra benefit, but charge for

selling data where they got extra benefit. Such a trend could be due to people not believing

that companies will use their data to improve their lives, with one study showing that only

15% of people that participated in a survey believed they could (PwC, 2017). However, this

fact does not offer a reasoning behind why people would want to charge more for selling

 53

their data if they have the chance of receiving extra benefits, rather, it could be due to a

misunderstanding of what the question means.

FIGURE 39: AVERAGE NORMALISED DATA VALUES ACROSS ALL RESPONSES FOR EACH POSITION IN THE

GRID.

7.2.4. Free data for ‘public good’

Despite the sensing as a service model being geared towards providing sensor owners

control over their data and the ability to make a profit from it, 2 participants were willing to

give data away to some organisations. Participant ID 7 was willing to sell basic, non-

sensitive, fashion and entertainment data to public organisations and research institutes for

free and participant ID 4 was willing to give away all their data to the same organisations

(see Figure 40). This opinion is shared among other research, which showed that 47% of

 54

respondents people are willing to share their medical data if it contributed to some ‘public

good’, such as it helping develop new medicines and treatments (Black, et al., 2018).

FIGURE 40: GIVING AWAY DATA FOR FREE TO PUBLIC AND RESEARCH ORGANISATIONS

7.3. Evaluation of Application

In light of some of the results that were identified using the application developed, it is clear

that the tools used to analyse the responses of the willingness and price required to sell

data to different organisations can be investigated to some extent.

It is very clear to see trends amongst where participants positioned organisations and data

types respective of their measure, telling the story of how participants value different types

of data and organisations independently.

Knowledge of the relationship between both data type and organisation was also able to be

investigated through the heat maps. One type of heat map showed themes about the

intersection of the placement of both data type and organisation, giving value towards the

question of attitudes of a group of users towards any given organisation for any data type.

The other type of heat map was useful in showing the price relative to all other prices

required for an organisation to purchase a given data type by using an average of

normalised values across all responses. Normalising a participants values by scaling them

from 0 to 1 meant that the results were not adversely affected by the units of measurement

that the participant used to give a price, for example, a participant in Nigeria may enter

‘470’ as the price in Nigerian Naira whereas somebody in the UK may enter ‘1’ as the price

in Pound sterling. These two values are equivalent as 1 GPB ≈ 470 NGN, however the

application cannot understand context of the users unit of measurement so by normalising

we can remove any potential bias in the results for differences in units of measurements

 55

across all participants. By averaging the normalised values for each response, we can see

the trend of pricing across all positions for an organisation and data type.

Despite the benefits that the tools bring in terms of representing the results of the study,

there are still some shortcomings of the tools, preventing some conclusions to be made. For

instance, you cannot analyse responses to see how opinions change over different

demographics. This along with other omissions in the representation of the data could lead

to a failure to satisfy all questions about people’s willingness to trade different types of IoT

data with different organisations.

In terms of the findings of the user study, although there were inklings towards a

representative opinion for the problem investigated in the study, not enough responses

were collected to form any valid conclusion. Thousands of participants were involved in

other reports of a similar nature (PwC, 2017; Black, et al., 2018), meaning a similar number

would be required to gain a representative population to address the problem fully. Due to

practical constraints, limiting the study to those within the university, reluctancy of people

to participate and the advent of the pandemic, it was hard to get a large participant group

together. As a result, the study served as more of a use case to show that it was effective at

representing results from a study rather than being scientifically sound research of the

problem.

Although there is no correct way to fill in the survey, the way that some participants filled in

the two different prices, showing that they would charge more for receiving a greater

benefit from selling their data leads to the belief that they did not understand the question

posed. This could be explained by the interface that was required to be developed was not

very self-explanatory. Although it is not possible to determine if the participant was

confused by the question due to the way the studies were required to be carried out and

the anonymity behind the responses, any survey should seek to be as self-explanatory as

possible to mitigate any misunderstanding of the question.

8. Future Work

Although largely the application meets the requirements of the project and satisfied its

main objectives, there are always areas that can be expanded and improved on for the

development of the application and research of the problem.

The following future work for the development of the application encapsulates extra

features which enhance the functionality of the application as well as improvements that

could be made to the design and implementation of the application.

• Allow comparisons of responses over the different demographics collected by the

application to aid the ability to make conclusions about a particular survey over a

representative population.

• Make the survey interface more intuitive, potentially by splitting it across multiple

interfaces, making it more obvious how different parts of the survey link together.

• Addressing the problems encountered in Section 5.1.4 by making the administration

module more flexible, giving the ability to update and delete different card sets,

studies, and user groups under more conditions than are currently supported whilst

 56

still maintaining the integrity of other modules that rely on a previous state of these

entities.

The future work possible in terms of researching the problem further are:

• Collecting a greater number of responses from a wide variety of different

demographics so more reliable conclusions can be drawn across those different

demographics.

9. Conclusions

I have fulfilled my objective of creating an adaptable web application which supports the

ability to create studies for user group. I met all of the requirements of the project both

functional and non-functional. In particular, the implementation of the survey itself was

particularly good, being close to the design provided and using a combination of different

technologies to achieve both the interactivity required in the interface and a backend which

supported being able to analyse the data produced by the survey responses.

The design of the database supported the requirements of the project whilst ensuring the

simplicity of the implementation of the back-end of the codebase. The use of external

software throughout the stack such as Flask, SQLAlchemy and Bootstrap aided the ability to

deliver the project on time whilst taking out some of the pains of developing a web

application. The pytest package helped create confidence behind the code that was

developed and showed that the requirements of the project had been met. Despite the

painless benefits that much of the external software provided, others, such as Bokeh came

with their challenges to use and integrate with the existing code.

The DevOps workflow that helped streamline the process of moving from a development

environment to a production environment, making it painless when the time came for

people other than myself to use the application to participate in the user studies.

The user study conducted found some insights into understanding the willingness to trade

different types of IoT data to different organisations, however with a larger sample set and

greater functionality in the analysis of the data more reliable conclusions could be inferred.

Despite this, the user studies did show the applications potential to solve the data trading

problem through the analysis tools that were developed.

Overall, I believe the project has been a large success in meeting the aims that were set out.

10. Reflection

Throughout the whole lifecycle of the project, there has been a lot learnt and many

decisions made about what was believed to be the best options for the project. The

following is a reflection on the impact of the various decisions or approach taken for

different characteristics of the project.

The design of the various constituents of the application proved difficult, in particular many

revisions had to be made with the entity relationship diagram (see Figure 5). As the

approach of iterative development was followed; designing, developing and then testing

 57

different sections of the application, often there was an unequivocal rush to implement a

feature and not spend much time thinking about design. Such a rushed approach often

materialised themselves into problems when the application was larger, resulting in

multiple revisions to the codebase. In the future, a greater consideration for the design of

the components should be undertaken to prevent wasting time on implementations that

wouldn’t work.

The discussion of a MPA or SPA approach to creating a web application and the decision to

use a MPA was justified within section 4.1.2. This decision was based upon various opinions

about SPAs being more complex and worries a lack of knowledge in front-end development

frameworks and languages. However, as the project matured and a greater understanding

of SPAs grew through my own personal interests, there was vague doubts surrounding

whether the MPA approach outweighed the negatives of a SPA. In the future, rather than

rushing into using a technology that one may be comfortable with, much more careful

consideration needs to be taken in terms of the options available for development. This

ensures that the application is being developed with the most appropriate technologies

available to it.

Beyond the design and implementation of the project, A great deal behind producing a

quality product was learnt. By deciding to implement automated tests from the early stages

of developing a feature of the application, I could prove consistently that I was meeting

those requirements which made my confidence in the application greater than that of an

untested one. In light of the testing procedure that was undergone, I felt there was still

more which could be achieved. By practicing test-driven development (TDD), where tests

are written before implementation (Janzen & Saiedian, 2005), you can use tests to drive

design processes and software development, only producing enough code to make the tests

pass, then have it refactored. By manipulating the order in which these tasks occur we can

influence the projects maintainability, reusability and overall increase the quality of the

software (Janzen & Saiedian, 2005).

Hofstadter’s Law “It always takes longer than you expect even when you take into account

Hofstadters Law” (Hofstadter, 1999) rang true for the course of the development of the

project. Often, during the latter stages of each module, there was time devoted to extra

features such as uploading a CSV file of emails or a display picture for a study. Whilst having

these features was nice, they were never a requirement of the application and meant that

time pressure would be placed on the next module. Amounting time pressures through

these extra features, problems encountered with implementation and extra learning

required lead to time pressures on some of the later parts of the project such as the user

studies and the report writing. By sticking to a strict list of what needed to be implemented

rather than going beyond could help me save some more time to focus on other, important

areas of the project.

My decisions for using the DevOps workflow described in section 5.3 helped the purveyance

of a quality piece of software, allowing for continuous updates and simplified the move

from a development environment to a production one. Where there were problems

encountered in production, the workflow ensured that fixes could be brought forward with

speed and little human intervention. This kind of time and consideration to something often

forgot about in development is definitely something that will be taken forward into future

projects.

 58

11. Appendix I: User Interface Designs

FIGURE 41: ADMIN CREATE USER GROUP WIREFRAME

 59

FIGURE 42: ADMIN CREATE STUDY WIREFRAME

Figure 42 shows the form for dealing with the creation of studies bringing together the

other card set and user group forms.

The alignment of the user input’s and their labels unifies the form as one set, leading to

reduced cognitive load on the user as they don’t have to link the label with its input.

To choose the start and end date of the study a calendar picker design pattern (UI Patterns,

n.d.) was used as it simplifies the input of a date. There are many ways to input a date so

manual entry can be fraught with invalid data therefore by using a date picker these

potential errors are mitigated whilst minimising user frustration.

The use of select boxes where there are only finite options to choose also helps minimise

potential errors further.

 60

FIGURE 43: PARTICIPANT DETAILS FORM WIREFRAME

Figure 43 shows the UI for the participant details form, this includes all the details as

mentioned in Requirement 4.

Figure 42 also shows select box menus, similarly this UI is entirely made up of select boxes

minimising the potential space for an invalid form. Such an approach is also useful for

narrowing down the range of values that users can select thereby making comparisons

against different participants easier.

The alignment of select boxes and their labels unifies the form as one set, leading to

reduced cognitive load on the user as they don’t have to link the label with its input.

The information organisation of the form is based upon categories as in the LATCH

principles. Those form elements which have a similar category are placed on the same row

to give a logical connection, making the form simpler to fill out whilst reducing the amount

of real-estate required for the form.

12. Appendix II: Supporting Video

• How-To style video used to aid the correct participation in the survey: Link

 61

13. Appendix III: Test Summary Report

The test summary can be found within the application here (Cardiff University VPN is

required to view the resource) alternatively, view the Appendix III Test Summary Report file.

 62

14. Bibliography

Łępicki, H., 2017. Why you should not build your start-up as Single-Page Application?.

[Online]

Available at: https://www.amberbit.com/blog/2017/9/20/why-you-should-not-build-your-

startup-as-spa/

[Accessed 5 5 2020].

Alpine, n.d. About. [Online]

Available at: https://alpinelinux.org/about/

[Accessed 4 5 2020].

Alpine, n.d. Alpine Docker Images. [Online]

Available at: https://hub.docker.com/_/alpine

[Accessed 2 5 2020].

Bitnami, n.d. Single-Tier Vs. Multi-Tier Architecture: Choosing The Right Bitnami Package.

[Online]

Available at: https://docs.bitnami.com/google-templates/singletier-vs-multitier/

[Accessed 2 5 2020].

Black, C., Setterfield, L. & Warren, R., 2018. Online Data Privacy from Attitudes to Action: an

evidence review, s.l.: s.n.

Chiu, K., 2019. Is WeChat too big to escape from even amid privacy concerns?. [Online]

Available at: https://www.techinasia.com/wechat-big-escape-privacy-concerns

[Accessed 14 May 2020].

Clement, J., 2020. Most popular mobile messaging apps worldwide as of October 2019,

based on number of monthly active users. [Online]

Available at: https://www.statista.com/statistics/258749/most-popular-global-mobile-

messenger-apps/

[Accessed 14 May 2020].

Cross, R. G. & Dixit, A., 2005. Customer-centric pricing: The surprising secret for profitability.

Business Horizons, 48(6), pp. 483-491.

Ebert, C., Gallardo, G., Hernantes, J. & Serrano, N., 2016. DevOps. IEEE Software, 33(3), pp.

94-100.

Facebook, 2016. Millennials + money: The unfiltered journey, s.l.: s.n.

Faircloth, J., 2017. Testing enterprise applications. In: Penetration Tester's Open Source

Toolkit. s.l.:Elsevier, pp. 243-271.

Flask, n.d. Foreword. [Online]

Available at: https://flask.palletsprojects.com/en/1.1.x/foreword/

[Accessed 2 5 2020].

 63

Google, n.d. MVC Architecture. [Online]

Available at: https://developer.chrome.com/apps/app_frameworks

[Accessed 2 5 2020].

Greenlaw, C. & Brown-Welty, S., 2009. A Comparison of Web-Based and Paper-Based Survey

Methods Testing Assumptions of Survey Mode and Response Cost. Evaluation Review, 33(5),

pp. 464-480.

Gunicorn, n.d. Gunicorn - Python WSGI HTTP Server for UNIX. [Online]

Available at: https://gunicorn.org/

[Accessed 2 5 2020].

Hofstadter, D. R., 1999. Gödel, Escher, Bach. Anniversary Edition: An Eternal Golden Braid

ed. s.l.:Basic Books.

ICO, n.d. Guide to the General Data Protection Regulation (GDPR). [Online]

Available at: https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-

general-data-protection-regulation-gdpr/principles/

[Accessed 2 5 2020].

ICO, n.d. What is special category data?. [Online]

Available at: https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-

general-data-protection-regulation-gdpr/special-category-data/what-is-special-category-

data/

[Accessed 14 May 2020].

IHS Markit, 2017. Number of Connected IoT Devices Will Surge to 125 Billion by 2030, IHS

Markit Says. [Online]

Available at: https://news.ihsmarkit.com/prviewer/release_only/slug/number-connected-

iot-devices-will-surge-125-billion-2030-ihs-markit-says

[Accessed 2 5 2020].

Janzen, D. & Saiedian, H., 2005. Test-driven development: Concepts, taxonomy, and future

direction. Computer, 38(9), pp. 43-50.

Kreibich, J. A., 2010. Using SQLite. s.l.:O'Reilly Media, Inc.

Liang, F. et al., 2018. A Survey on Big Data Market: Pricing, Trading and Protection. IEEE

Access, Volume 6, pp. 15132-15154.

Lim, A., 2018. Heuristics: The Psychology of Mental Shortcuts. [Online]

Available at: https://www.thoughtco.com/heuristics-psychology-4171769

[Accessed 2 5 2020].

Lin, X., Zavarsky, P., Ruhl, R. & Lindskog, D., 2009. Threat modeling for CSRF attacks. s.l., s.n.,

pp. 486-491.

Lipski, R., 2017. Single-page applications vs. multiple-page applications: pros, cons, pitfalls.

[Online]

Available at: https://ozitag.com/blog/spa-advantages/

[Accessed 2 5 2020].

 64

Madhuri, J. A., Balkrishna, S. R. & Deshmukh, A., 2015. Single Page Application using

AngularJS. (IJCSIT) International Journal of Computer Science and Information Technologies,

6(3), pp. 2876-2879.

Mao, W., Zheng, Z. & Wu, F., 2019. Pricing for Revenue Maximization in IoT Data Markets:

An Information Design Perspective. s.l., Institute of Electrical and Electronics Engineers Inc.,

pp. 1837-1845.

Morse, J., 2019. Just a reminder: Facebook Messenger isn't end-to-end encrypted by default.

[Online]

Available at: https://mashable.com/article/facebook-messenger-not-encrypted-by-

default/?europe=true

[Accessed 14 May 2020].

Mozilla, n.d. How the Web works. [Online]

Available at: https://developer.mozilla.org/en-

US/docs/Learn/Getting_started_with_the_web/How_the_Web_works

[Accessed 2 5 2020].

Naumovski, A., 2017. Straightening out the React/Redux learning curve part 1 - Intro to

React. [Online]

Available at: https://dev.to/andrejnaumovski/straightening-out-the-reactredux-learning-

curve-part-1---intro-to-react-18b

[Accessed 2 5 2020].

Navis, G., n.d. The Architecture No One Needs. [Online]

Available at: https://www.gregnavis.com/articles/the-architecture-no-one-needs.html

[Accessed 5 5 2020].

Nielsen, J., 1994. Enhancing the explanatory power of usability heuristics. Boston

Massachusetts USA, Association for Computing Machinery, New York, NY, United States, pp.

152-158.

Niyato, D. et al., 2015. Smart Data Pricing Models for Internet-of-Things (IoT): A Bundling

Strategy Approach.

O'Neil, E., 2008. Object/Relational mapping 2008: Hibernate and the entity data model

(EDM). New York, New York, USA, ACM Press, pp. 1351-1356.

Perera, C., 2017. Sensing as a Service (S2aaS): Buying and Selling IoT Data. CoRR, p. c.

Perera, C., Zaslavsky, A., Christen, P. & Georgakopoulos, D., 2014. Sensing as a service model

for smart cities supported by Internet of Things. Transactions on Emerging

Telecommunications Technologies, 25(1), pp. 81-93.

PwC, 2017. Consumer Intelligence Series: Protect.me, s.l.: s.n.

Rouse, M. et al., 2020. internet of things (IoT). [Online]

Available at: https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-

IoT

[Accessed 3 5 2020].

 65

Shaughnessy, J. J., Zechmeister, E. B. & Zechmeister, J. S., 2000. Research methods in

psychology (5th ed.). s.l., McGraw-Hill.

SQLAlchemy, n.d. Key Features of SQLAlchemy. [Online]

Available at: https://www.sqlalchemy.org/features.html

[Accessed 6 5 2020].

UI Patterns, n.d. Calendart Picker Design Pattern. [Online]

Available at: https://ui-patterns.com/patterns/CalendarPicker

[Accessed 2 5 2020].

UI Patterns, n.d. Cards Design Pattern. [Online]

Available at: https://ui-patterns.com/patterns/cards

[Accessed 2 5 2020].

UI Patterns, n.d. Progressive Disclosure Design Pattern. [Online]

Available at: https://ui-patterns.com/patterns/ProgressiveDisclosure

[Accessed 2 5 2020].

UK Govenrment, n.d. What qualification levels mean. [Online]

Available at: https://www.gov.uk/what-different-qualification-levels-mean/list-of-

qualification-levels

[Accessed 5 11 2020].

W3Counter, 2020. Browser & Platform Share. [Online]

Available at: http://www.w3counter.com/globalstats.php?year=2020&month=3

[Accessed 2 5 2020].

Westendorp, P. v., 1976. NSS Price Sensitivity Meter (PSM)—A New Approach to study

Consumer-Perception of Prices. Venice, s.n., pp. 139-167.

Williams, R., 1994. The Non-Designer's Design Book. 1 ed. s.l.:Peachpit Press.

Wurman, R. S., 1989. Information anxiety. s.l.:Doubleday.

Yaskevich, A., 2017. Web application architecture: Components, models and types. [Online]

Available at: https://www.scnsoft.com/blog/web-application-architecture

[Accessed 2 5 2020].

