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Abstract 

 

The use of Machine Learning (ML) models in Intrusion Detection Systems (IDS) tailored for Industrial 

Control Systems (ICS) has increased the level at which malicious activity can be detected. However, 

newer methods of by-passing IDSs are becoming more prominent. These methods are defined as 

adversarial machine learning or adversarial attacks which share the common goal of reducing a ML 

models accuracy. Adversarial attacks have been proven to be effective within the image classification 

domain. This paper aims to discover the effectiveness of adversarial attacks generated using Fast 

Gradient Sign Method (FGSM) applied to data obtained from an ICS testbed. This paper will further 

explore the effectiveness of utilising the adversarial examples generated by FGSM originally intended 

to lower the performance of a model, but instead are harnessed to improve the ŵodel’s robustness 

to adversarial attacks. Random Forest, J48 and Jrip are the three classifiers this paper focuses on. 

Overall, Random Forest and Jrip adapt better to adversarial training than J48 which is supported by 

their significant increase in classification accuracy when applied to unseen adversarial examples. 

 

 

I. Introduction  
 

Industrial control systems (ICS) are a branch of operational technology (OT) networks that govern the 

monitoring of industrial operations. Features of an ICS include sensors, actuators and commands from 

an operator. ICS networks are found in critical national infrastructure, for example, water treatment 

facilities, electrical power system plants as well as other discrete manufacturing plants. The number 

of targeted cyber-attacks on ICS networks is ever rising [23]. The perceived security of ICS previously 

focused solely on physical extremities, for example, fences and secure barriers to stop intruders. While 

this may deter the physical attacker a newer threat which targets the network vulnerabilities of ICS 

renders this type of security redundant. This branch of cyber-attacks are called adversarial machine 

learning or adversarial attacks. Adversarial attacks are becoming more common in the field of ICS and 

this is one of the major motivations behind this project. Intrusion detection systems (IDS) and 

adversarial attacks have been well researched in the context of Information technology (IT) networks 

however the latter is only recently becoming a well researched topic. There are some similarities 

behind the main functions of an IDS for ICS and IT networks however there are some fundamental 

differences that need to be addressed. The notion that OT networks are completely segmented from 

IT networks and thus the internet, is a concept that is fading. There was an understanding that this 

͞air gap͟ plaĐed ďetǁeeŶ the tǁo Ŷetǁorks autoŵatiĐallǇ eŶsured the security of the OT network 

from the outside world. However, in parallel to the information age, the concept of interconnections 

between networks and IoT devices is growing within CNI and ICS. This new level of connectivity to the 

internet has introduced new security threats to ICS, thus highlighting the importance of improving the 

network-based security for these types of systems.  

This project will build on the foundations of established machine learning algorithms to build a robust 

model that could become the basis of an IDS tailored to ICS networks. Once this model has been 

finalised adversarial techniques will be used to create adversarial examples that alter both malicious 

and benign traffic in an attempt to force the model to misclassify datapoints. The model will then be 

re-tested, and an evaluation of the models performance will be observed and analysed. This project 
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will further observe the performance of different classifier models by introducing adversarial training 

with the foresight of improving the classifiers robustness to such adversarial attacks.  

 

A. Aims of the Project 

 

The first aim of this project is to evaluate the performance of state of the art classification models in 

the context of ICS network data. This evaluation will be used to extract a number of models that 

perform well and can form the basis of further experiments working towards finding a model suitable 

for an IDS tailored to ICS networks. To achieve this first aim a dataset comprised of ICS sample data 

which will contain both benign and malicious datapoints will be used to evaluate and analyse the 

classifier models. The use of adversarial methods will be applied to the dataset to evaluate the 

robustness of each classifier. Another aim of this project is to obverse the effectiveness of adversarial 

training methods used to improve a classifiers robustness to unseen adversarial attacks.  

This projeĐt’s iŶteŶded audieŶĐe is aŶǇone who is interested in the security of ICS networks in regards 

to machine learning algorithms and there use in IDS. This project should also be of interest to those 

who have experience or wish to gain experience in the use of adversarial techniques, methods and 

their effect on the performance of classification models. This is especially true for those who work in 

network positions within CNI or other ICS network-based plants. Another possible area of interest is 

for those wishing to investigate the potential generalisation of producing adversarial examples 

generated specifically for one model and the possibility of those examples also affecting other types 

of classification models.  

The scope of this project includes research into suitable machine learning classifiers, IDS 

methodologies and adversarial techniques used. Firstly to reduce the performance of a machine 

learning classifier and secondly to be utilised to improve a ŵodel’s robustness to such attack 

techniques.  

The major outcome of this project is to highlight the robustness of classifier models used in the field 

of ICS and IDS. Adversarial techniques are becoming common attack methods to force miss-

classification and disrupt the function of an IDS. Therefore, choosing a classifier model that is robust 

to data perturbation is becoming as important as choosing a classifier model with good performance 

on a particular dataset. Another outcome of this project is to highlight the ability to use adversarial 

methods that are commonly available to fool well researched classifier algorithms. This in turn will 

show the need to use adversarial training on these models to improve their performance on 

adversarial attacks and thus, improving the effectiveness of IDS.  

The effectiveness and suitability of adversarial training in an ICS context will be evaluated with the 

intention of improviŶg a ŵodel’s roďustŶess to adversarial attacks. This project aims to provide 

evidence that supports the need for adversarial training whist evaluating the effectiveness of 

adversarial training on different types of classifier models. 
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II. Related Work and Background  
 

Intrusion detection systems are at the fore-front of detecting and alerting security engineers of a 

potential network breach. A fundamental aspect of IDS is the machine learning algorithm that needs 

to establish whether the traffic it is analysing is normal everyday network traffic or malicious activity 

that could be a cyber-attack. To be able to make these predictions the machine learning model must 

first understand the different types of traffic and then identify the features in the network that change 

when a cyber-attack is occurring or has occurred. To achieve this, datasets that contain a mixture of 

normal (benign) network traffic and attack (malicious) network traffic are needed to train a model and 

then an unseen dataset is needed to evaluate its performance and transferability to practical 

implementations. Training a model too closely to training data will produce a very good model for that 

training set but will produce poor predictions for any unseen dataset. This is the notion of overfitting. 

10-fold cross validation can be used to reduce the likelihood of overfitting. Conventionally the dataset 

is split into training, validation and then testing sets. There are 3 main performance metrics used to 

evaluate the performance of a classifier model namely, Precision, Recall and F-measure or score. 

These matrices and their use in this projeĐt’s context are discussed in more detail in later sections of 

this paper.  

The problem with such models is that the field of adversarial machine learning has emerged which 

highlights the opportunity to by-pass such IDS by carefully modifying data points in a fashion that 

causes miss-classification. If adversarial techniques are successfully used in an ICS network this could 

cause major damage to equipment and have a large impact on a multitude of people. ICS networks 

are controlling large scale equipment with extreme precision where any error made by the IDS could 

cause massive concern. 

A. Adversarial attack types 

 

Adversarial attacks can be categorised depending on how they are designed to impact the machine 

learning algorithm and what elements of the model they exploit. 

Huang et al (2011) has created a taxonomy for classifying the different types of adversarial attacks 

based on what stages of a machine learning model the attack targets and the underlying motive 

behind the attack. The resulting taxonomy is divided into the following segments.  

• Influence: Influence is further subcategorised into two sections; Causative attacks rely on 

manipulating the training process by possessing influence over the training data. Using the 

above metric causative attacks would be classed as a poison attack. Exploratory attacks have 

no direct influence over the training data and thus, the training process is not altered during 

this attack. This attack focuses on extracting information about the detector/classifier or the 

data used to train the model.  

• Security Violation: These attacks target the integrity and availability of a model by producing 

adversarial examples that cause a model to generate False Negatives or by severely reducing 

classification performance. This is achieved by producing a large number of classification 

errors which render the model unusable. If an attack focuses on the integrity of the model this 

is an example of an evasion attack. Another subsection of security violation attacks focuses 

on extracting information from the learner to gain private information about the users of a 

system. These are further subcategorised under security violations as privacy attacks.  
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Huang et al (2011) further discusses the level of knowledge an adversarial may have about the IDS and 

the underlying model used for classification and detection. They describe the different elements of 

the classification system the attacker may or may not have obtained knowledge about. They outline 

that much like an attack on an encrypted system where the encryption method used will be known by 

the attacker and could even be open source, the classification algorithm used by the IDS needs to be 

assumed that this knowledge is also known by an attacker. It is also highlighted that knowledge about 

the features and training data could also be known by an attacker. Whilst it is easier to reduce the 

likelihood of an attacker knowing the exact format of the training data used to train a model, as with 

many ICS applications they follow similar methodologies and frameworks furthermore, some will use 

the same equipment. One example of this is the majority of water treatment plants which use similar 

protocols, sensors and actuators controlled and monitored in similar ways resulting in comparable 

frameworks. Even if the system designer has kept one particular feature space hidden, an attacker is 

likely to have gained knowledge from similar systems with less discrete feature choices that could 

indicate the type of training data used which could be transferable.  

Yuan et al (2017) introduced a treat model for adversarial attacks that is devised of 4 subsections 

• Adversarial falsification  

o This describes the method of using adversarial examples to produce False Positives or 

False Negatives (evasion)   

• Adversarial’s knowledge: This has been described in the above section of this paper however, 

this paper introduces the notion of white-box and black-box attacks.  

o Whitebox attacks rely on the adversaries having extensive overall knowledge of the 

machine learning model. This covers all areas of the learning process including 

knowledge of the training set and the learner algorithm.  

o Black-box attacks assume the adversarial has no knowledge of the model or the ability 

to gain information about the training data. They only know the output of the 

confidence score of the model but not the exact model itself. 

•  Adversarial specificity  

o Targeted attacks focus on misclassifying data points to a specific target class. This type 

of attack is usually designed for multiclass applications. 

o Non-targeted attacks do not specify which class a datapoint should be misclassified 

as providing the adversarial class is not the original class of that datapoint.  

In the context of binary class datasets targeted and non-targeted are regarded as equal and there is 

only one target class available for the adversarial Đlass that isŶ’t the origiŶal.  

• Adversarial frequency  

o one-time attacks offer the notion of producing an adversarial example from one run 

through of the method 

o iterative attacks require iterative methods for optimising an adversarial example 

Adversarial attacks on ICS networks can also be categorised depending on how they are designed to 

impact the IDS monitoring the ICS network. Many types of attack designed for IDS exist. Attacks that 

are designed to go unnoticed by the IDS or to overload a piece of equipment on the ICS causing this 

equipment to be unusable are just two examples of attacks that can be leveraged to cause damage to 

ICS. Corona et al (2013) created a taxonomy of the different types of adversarial attacks designed for 

ICS networks. This taxonomy outlined 6 types of attacks which have been summarised below. 
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• Evasion Attacks: The intrusion pattern intended to disturb the system aims to go undetected 

and therefore creating no alerts to operators of its presence. 

• Overstimulation: This attack creates a large number of false alerts with the aim to confuse 

the system and the operators monitoring the system. 

• Poisoning: Well-designed patterns are introduced to the IDS learning algorithm with the 

intension to lower detection accuracy and classification performance. 

• Denial of Service: Overloading a sensor in an IDS causing the sensor to shut down decreasing 

the IDS detection performance.   

• Response Hijacking: Forces the IDS to produce incorrect alert descriptions which mislead the 

IDS response protocols.  

• Reverse Engineering: This involves the attacker gaining knowledge about the IDS and more 

specifically the features used within the IDS and even what detection algorithm is being used. 

This attack improves the likelihood of the above methods as they can be tailored to specific 

IDS.  

 

B. Adversarial Methods & Defence Techniques  

  

Adversarial machine learning in its simplest form is the practice of adding noise to datapoints in a 

sufficient way to cause a classifier model to misclassify a datapoint. The art of calculating the optimal 

amount of noise needed to achieve this goal whilst minimising this noise level is a well researched 

area.  

There are many adversarial methods available that are widely researched, the leading research in this 

area focuses on the image classification domain. Goodfellow et al (2015) outlined and implemented 

the Fast Gradient Sign Method (FGSM) on different image classification tasks. Using the ImageNet 

dataset, they show that FGSM can create adversarial examples for individual pixels in an image that 

force a convolutional neural network (GoogeLeNet) to misclassify images. They go further and show 

that this method can be used to make the classifier produce a 99.3% confidence level that an image is 

of an incorrect class. This shows the effectiveness of this adversarial generation method.  

The formula for FGSM method is found below.  

η = ε sign (∇xJ(θ, x, y))  

where: 

• η = Adǀersarial eǆaŵple  
• θ = Model paraŵeters 

• x = The input to the model  

• y = Input labels associated with x 

• J = Cost 

• ε = Multiplier to ensure perturbation is within controlled bounds 

This method uses gradients of the neural network to create an adversarial example. More specifically 

it adds perturbations based on the gradient of the cost function with respect to the input data. 

Different values of ε controls the size of the perturbation. This value must be large enough to create 

an effective adversarial example but not too large that the example is obviously detected as being 

malicious.  
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There has been related work in the area of adversarial attacks in an ICS context, a particular example 

of this is Zizzo et al (2019a). They construct a simple adversarial attack on a long short-term memory 

(LSTM) classifier used on the SWAT dataset. For this attack to be successful the attacker needed a vast 

knowledge of the IDS and required information regarding the features used for classification. This 

attack may not be transferable to many real-world applications, but it re-enforces the opportunity to 

by-pass machine learning based IDS within the ICS field. Zizzo et al (2019b) outlines a method to 

generate adversarial attacks on a time series IDS. This study uses a more sophisticated method of 

adversarial generation to fool the LSTM.  

C. Adversarial Training and Defence mechanisms  

 

The goal of defending against adversarial attacks is to improve a ML models robustness to adversarial 

attacks. Two methods of achieving this will be discussed in this section, the first uses adversarial 

training and the second uses the concept of defence distillation.  

Adversarial training has been introduced within the computer vision field of machine learning. 

Goodfellow et al (2015) observed the performance change of a neural network when applied to 

unseen adversarial examples when re-trained on a training set that contained a sample of adversarial 

examples and original training data. The conclusion of that experiment shows that adversarial training 

can improve the robustness of a model against adversarial examples. Szegedy et al (2014b) 

experiment using the MNIST dataset and a non-convolutional neural network. The model again, is 

trained using a sample of adversarial examples mixed into the original training data. The resulting test 

error rate is extremely low. 

Szegedy et al (2014b), discuss the transferability between the generation of adversarial examples for 

one type of model and the effectiveness of these examples when applied to other types of ML model 

[10]. They also discuss the generalisation of training sets, showing that a large portion of adversarial 

examples generated specifically from one training set will be misclassified by a model trained on a 

mutually exclusive training set. Again, these papers focus on the image classification domain, 

nevertheless, showing the potential of adversarial training and suggesting more universal 

characteristics of adversarial machine learning.   

Another approach to adversarial training outlined by Papernot el at (2015) uses defence distillation. 

This research shows the effectiveness of this type of adversarial training on the MNIST dataset and 

CIFAR10. While this method seems very effective at improving the robustness of the model, there is 

little research in using defence distillation on larger datasets. For this reason, this method of 

adversarial training will not be employed in this paper as the classifier used for an IDS needs to show 

effectiveness on a range of dataset sizes. 

As there is further evidence to support the effectiveness of adversarial machine learning this paper 

will focus on this method of improving a ŵodel’s robustness to adversarial attacks.  
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III. Dataset 
 

This section of the paper will outline in detail the power system testbed used for all experiments 

constructed for this project. The data set used for this project was made publicly available by 

Mississippi State University and Oak Ridge National Laboratory - 4/15/2014. They have devised a small 

overview of a power system framework. See Fig. 1 for a more complete structure of the power system 

used to produce the data sets.  

 

 

Looking at Fig.1, G1 and G2 are power generators whilst R1-R4 are Intelligent Eectronic Devices (IED’s) 

which control the operation of the breakers (BR1-BR4). The IEDs use a distance protection scheme to 

identify faults and trip the required breaker. Each IED controls one breaker. Distance protection 

schemes use voltage, current phase angles and other metrics to ensure that if a fault occurs only an 

isolated section of the power system is shut off. There is no internal method to validate whether a 

fault is faked or legitimate. Operators can also manually issue commands to the IEDS to trip the 

breakers. This usually occurs during maintenance on the line.  

There are ϰ PMU’s iŶ this fraŵeǁork of which 29 are synchrophasor measurements are taken for each 

giving a total of 116 measurement columns, 12 columns for control panel logs, Snort alerts and relay 

logs totalling 128 features. A more in-depth outline of the features included in this dataset are 

displayed in Table. 1.  The iŶdeǆ of eaĐh ĐoluŵŶ is iŶ the forŵ of ͞R#-“igŶal RefereŶĐe͟ that iŶdiĐates 
a type of measurement from a PMU speĐified ďǇ ͞R#͟. The sigŶal references and corresponding 

descriptions are listed below. For example, R1-PA1:VH means Phase A voltage phase angle measured 

by PMU R1 

 

 

 

Fig. 1: Power System Testbed [19]  
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Feature Description  

PA1:VH – PA3:VH Phase A - C Voltage Phase Angle 

PM1: V – PM3: V Phase A - C Voltage Phase Magnitude 

PA4:IH – PA6:IH Phase A - C Current Phase Angle 

PM4: I – PM6: I Phase A - C Current Phase Magnitude 

PA7:VH – PA9:VH Pos. – Neg. – Zero Voltage Phase Angle 

PM7: V – PM9: V Pos. – Neg. – Zero Voltage Phase Magnitude 

PA10:VH - 

PA12:VH 

Pos. – Neg. – Zero Current Phase Angle 

PM10: V - PM12: V Pos. – Neg. – Zero Current Phase Magnitude 

F Frequency for relays 

DF Frequency Delta (dF/dt) for relays 

PA:Z Appearance Impedance for relays 

PA:ZH Appearance Impedance Angle for relays 

S Status Flag for relays 

 

 

 

There is a total of 15 data sets produced from this testbed that contain both benign and malicious 

data points. These data points were originally categorised into three classes, ͞Natural events͟, ͞No 

events͟ and ͞Attack events͟.  Natural and No events have been grouped together and classed as 

benign activity leaving the Attack events as malicious data points and thus creating a binary 

classification set. 

There are four types of scenario manufactured on this power system framework. 

1. Short-circuit fault- Short in the power line that can occur at multiple locations along the line. 

2. Line maintenance- One or more relays are disabled on a specific line to allow maintenance on 

that line 

3.  Remote tripping command injection (Attack)- This is an attack that sends commands to a 

relay which causes a breaker to open.  

4. Relay setting change (Attack)- Relays are configured with a distance protection scheme and 

the attacker modifies the relays settings to disable the relays function. This causes it not to 

trip on a valid fault or valid command sent by an operator.  

5. Data injection (Attack)- Valid fault is imitated by changing values to parameters such as 

current, voltage sequence components etc. this attack aims to blind the operator and causes 

a black out. 

The finalised output of this testbed data in regards to this project is a binary class set that uses all 15 

datasets that includes malicious or benign datapoints.   

 

 

Table. 1: List of Features with a brief description used in 

the power system testbed.  
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IV.  Training and Evaluating the Models 
 

This section of the paper will outline the process used to train and evaluate each classification model 

chosen to be evaluated in this project. This section will also include the evaluation matrices used to 

record and analyse each classifiers performance  

To evaluate the effectiveness of machine learning algorithms in the context of ICS, the dataset 

discussed in the previous section was used to analyse commonly used classifiers in IDS. The metric 

used to evaluate the accuracy of a classifier is discussed below. Weka outputs a number of important 

results when evaluating any classifier which help to give an understanding of that classifiers 

performance. 

-True Positive: Where the classifier has correctly predicted a data point as being malicious and 

it is confirmed to be of that class. 

- True Negative: Classifier has correctly predicted that a data point is benign, and it is 

confirmed to be of that class 

- False Positive: Classifier has predicted a data point is malicious, but it is confirmed to be of 

the benign class 

- False Negative: Classifier has predicted that a data point is benign, but it is confirmed to be 

of the malicious class. 

Once the above metrics are calculated a further 3 metrics that give an overall good understanding of 

the performance of a classifier can be calculated namely, Precision (P), Recall (R) and F-score (F). The 

equations to achieve these metrics are found below. 

 

P = TP/ TP + FP 

R = TP/TP + FN 

F = 2 · P · R/ P + R 

 

All classifiers used in this paper were from those available within the Weka platform and thius, used 

this implementation. Each classifier was initially evaluated using 10 -fold cross validation to reduce 

overfitting. A variety of classifiers were chosen based on their performance in ICS scenarios discussed 

in previous studies of IDS, namely Random Forest, J48, Naive Bayes ZeroR and finally Jrip. The 

classifiers evaluated are described in more detail below. 

-Random Forest: Uses an ensemble learning method, which creates a number of decision trees where 

each tree outputs a class prediction. These predictions are aggregated and the class with the highest 

number of individual predictions is chosen as the overall output prediction. 

-J48: An implementation of C4.5 which itself is an extension of the ID3 algorithm. Trees are built using 

information entropy, each node is split using information gain. This classifier uses single pass pruning 

to reduce the risk of overfitting.  
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- Naïve Bayes: Generative learning model, this model is based on Bayes theorem cite. Where the 

model assumes that the presence of a particular feature in a class is irrelevant to the presence of any 

other feature.   

-ZeroR: Simply predicts the majority class for every datapoint. For this reason, this classifier serves as 

a good baseline. If a classifier does not out-perform this classifier the classifier is not suitable for the 

application.  

-Jrip: Rule based classifier that uses Repeated Incremental Pruning to Produce Error Reduction 

(RIPPER) [12].  

Previous studies evaluating power system data have used Jrip + Ada boost on a reduced sample size. 

This produced promising results, however, this classifier is not feasible for large datasets as the time 

taken to train and evaluate the classifier is extremely large. Therefore, this model has not been 

evaluated in this project. 

A. Data Pre-processing 

 

Data pre-processing is an important step in machine learning. Carefully analysing the data points being 

used to evaluate a classifiers performance is paramount to the reliability of the results obtained. 

Python using scikit and pandas were used to handle the pre-processing needs for this project [22]. 

Infinite values were removed, and the data set was checked for missing values or outliers before any 

classification tests were executed. Due to the datasets being in csv format when loaded into Weka the 

feature used to indicate the class of a datapoint was originally of type numeric. This features data type 

was then changed to nominal as this is supported by the majority of classifiers on the Weka platform. 

Weka also provides an ARFF viewer application, this can be used to analyse the features in more detail 

and simplifies the conversion from csv files to arff. These can then be Imported into Weka explorer 

keeping all the predefined feature types and finally be used to train and then test models. 

  

   

 

 

 

 

 

 

B. Evaluating the Models  
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Fig.2: Distribution of Benign and Malicious datapoints across both the training and test sets 
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The 15 dataset files discussed in section III were combined into one csv. A python program using scikit 

learn and pandas were used to split the dataset into approximately 60% training and 40% testing sets. 

Once split the sets were converted to .arff which is a recognised machine learning file format for Weka. 

Each classifier model was first trained using the training set and 10-fold cross validation. Cross 

validation was used to reduce overfitting. This process involves partitioning the dataset into a number 

of subsets and holding one set back as the testing set. For K- fold cross validation the dataset is split 

into K subsets with 1 set held for testing the others are used to train the model, this process is repeated 

K times holding out a different subset each time. For each fold the evaluation score is recorded and 

thus giving one overall score for the K folds.  Each classifier was then evaluated on the unseen test set 

ǁhere the results ǁere used as the ďaseliŶe of that ŵodel’s perforŵance. Results for the baseline 

accuracy is displayed in table Fig. 3. 

 

Once this baseline was achieved for all classifiers the next step was to investigate the features 

themselves. Understanding which features rank highest and therefore have the greatest influence 

over the classification of a datapoint is very important. Modifying sample values in features that have 

little or no overall impact on that datapoints overall classification is redundant. Weka includes a filter 

called InfoGainAttributeEval, this filter evaluates the entropy value for each feature which displays 

each features contribution to the overall class decision.  Using Weka’s iŶfogaiŶ filter, the 128 features 

were ranked in order of influence. This list was then used to identify which features require the most 

attention from an adversarial perspective. The top 3 ranking features are shown in table. 2.  

Feature Rank  

R4-PM2:V 1 

R1-PA2:VH 2 

R1-PA3:VH 3 

 

 

 

The trained models using the method described in this section of the paper will be used for all future 

experiments in the context of this report. The only exception of this is in the adversarial training 

section of this paper.  
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Fig.3: Accuracy Score as a percentage for; ZeroR, J48, Random Forest, Naïve Bayes and Jrip 

applied to the unseen test set. 

Table.2: Top ϯ raŶked features eǆtraĐtiŶg usiŶg Weka’s IŶfogaiŶ Filter  
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V. Adversarial Example Generation 
 

This section of the paper will outline and discuss two methods of generating adversarial examples. 

The first approach was a simplistic approach that was designed for this project with the idea of 

producing a baseline for potential levels of misclassification within the test set used without being as 

strict on the amount of perturbation needed to be applied to achieve such misclassifications. The 

second method described in this paper involves the Fast Gradient Sign Method (FGSM) introduced by 

Goodfellow [7]. This method will aim to use much stricter perturbation levels to achieve high levels of 

misclassification. FGSM has been applied in two concepts, the first focusing on increasing the number 

of false negatives and the second increasing the number of false positives. Both concepts will be used 

to further analyse the robustness of ML classifiers. 

 

A. Outline of Manual Approach for Adversarial Attacks 

 

The first approach adopted was to manually introduce noise to the top 10 ranked features values to 

force the classification models to miss-classify malicious datapoints as benign. Using the 

InfoGainAttributeEval filter within the Weka environment meant extracting the features that influence 

the class decision the most was a trivial task. Initial steps in implemented this method involved 

extracting the malicious datapoints from the test set to begin modifications. Once a malicious set was 

constructed the next step was introducing a method to modify these values to explore the difference 

in classifier performance. Using python pandas and data frame objects made handling and 

manipulating csv files relatively trivial, using the feature labels it was simple to modify sample data 

points independently. Focusing on one feature at a time resulted in the ability to calculate a min-max 

range for each filter, then a percentage of that range, for example, 1% and finally increasing each 

sample value by the chosen percentage level. For each percentage value a new csv file was produced 

which included the adversarial examples generated for all malicious datapoints in the test set. These 

adversarial examples where then reintroduced to the benign datapoints creating a new test set for 

each percentage value used in this experiment. These newly created test sets were then used to re-

evaluate the models in Weka. To explore whether decreasing certain values had a more detrimental 

effect to the overall classification performance of the chosen models the experiments were repeated 

but this time applying the method in a negative direction for each feature.  

 

B. Outline of FGSM Approach for Adversarial Attacks 

 

The second approach of producing adversarial examples for this project was using FGSM. Szegedy et 

al (2014b) shows that generating adversarial examples for one type of classifier model can be 

transferable and have an effect on other models, it is for this reasoŶ that I Đhose to use “klearŶ’s 
Support Vector Machine as the model to train and use as the basis of generating adversarial examples 

using FGSM. The SVM kernel configuration used for these experiments was the Gaussian orientation 

as this is a common kernel to use for non-linear classification problems. SVM is also a classifier used 
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in previous studies [13] and it has shown to be suitable for ICS data and thus can be used as the base 

for an IDS. This again supports the decision to use this classifier as the base for generating adversarial 

examples.  

The approach of generating adversarial examples using FGSM was to first train a model on 4% of the 

entire dataset. This percentage was chosen as this was approximately 10% of the testing set used in 

all previous experiments. This reduced sample set was used due to performance conditions. The time 

taken to execute FGSM attacks on a large dataset was excessive for this project. This could be due to 

hardware limitations on the computer used to execute the experiments. To generate an adversarial 

example for each malicious data point in the test set, all the malicious data points were extracted from 

the test set into a single csv file. Once this file had been produced these malicious datapoints were 

parsed to the FGSM along with the parameter Epsilon. The implementation of FGSM used in this paper 

was supplied by Adversarial Robustness Toolbox using their Fast Gradient Method implementation 

[ϭϱ]. DiffereŶt ǀalues of FG“M’s paraŵeter epsiloŶ ǁere used to ĐoŶtrol the leǀel of perturďatioŶ 
applied to each malicious datapoint. Larger values of epsilon introduce larger data perturbation levels. 

Table. 3 shows an example of two features that have had FGSM applied with different values of 

epsilon. This project has focused on re-evaluating the adversarial examples on Random Forest, Jrip 

and J48. This is due to the nature of ZeroR which predicts the majority class for every datapoint, thus 

rendering adding noise to features and generating adversarial examples for this classifier to be 

redundant. Naive Bayes performed significantly worse than the other 4 classifiers used in these 

experiments and therefore displayed its lack of suitability to this form of classification. It will therefore 

not be included in the further evaluations discussed in this paper.  

 

Dataset  R1-PA1:VH R1-PM5:I 

Original Test set  85.16444667 297.7369 

Epsilon = 0.1 85.26444244 297.6369 

Epsilon = 1.0 86.16444397 296.7368 

 

 

 

Another type of adversarial attack which is described by Corona et al (2013) is overstimulation. This 

attack focuses on creating false alerts that aim to overwhelm the operator. This attack essentially 

causes the classifier model to produce a large number of false positives. False positives are when a 

benign data point gets classified as being malicious. An IDS that is constantly producing false alerts 

that bombards the operators can have many negligible effects of the monitoring of a network. For 

example, it can lead to an operator missing true positive datapoints due to the number of false 

positives clouding causing a cyber-attack to go unnoticed and disrupt the operations of the system. 

To analyse the potential impact of such an attack, the same FGSM implementation as discussed in the 

first part of this section was used to generate adversarial examples on the benign data points in the 

test set. Again, using the same range of epsilon values, the performance and False positive rate of 

each classifier was analysed. This attack is focused on raising the False positive rate for the benign 

class.  

Due to the imbalance of classes within the dataset the F-score will not be the only metric used to 

evaluate the effectiveness of this attack. The confusion matrix the classifier produces will be used 

Table. 3: Adversarial examples generated by FGSM with 0.1 and 1.0 epsilon 

values applied to original test set. 
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alongside the F-score to give a better understanding on the effect this type of attack is having on the 

classifier models. 

 

VI. Results 
 

This section of the paper will outline and display the findings produced by implementing the methods 

discussed in section V.  

A. Results for Manual Adversarial Example Generation  

 

This section will discuss the results found by applying the methods outlined in section V.A. The first 

method explained in this section involves increasing the selected feature sample values by varying 

percentage values ranging from 1 – 10 %.  

Random Forest and Jrip showed improvement in F-scores due to the adversarial examples produced 

for every percentage value over the F-score produced on the original unseen test set. This could 

indicate that the noise introducing in a positive direction has aided these classifiers in distinguishing 

between benign and malicious datapoints. J48 showed a slight decline in F-score most convincingly 

for 1 and 2 % perturbation which then levelled off for all other perturbation values. Fig. 4 displays all 

results found by employing this method of adversarial generation for each classifier.  
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Fig. 4: F-scores for each classifier against the original unseen test set and 

ranges 1 – 10% perturbation applied to the top 10 ranked features in a 

positive direction.  
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The second manual approach taken was to apply the same methodology of perturbation level but to 

implement this in a negative direction to produce adversarial examples. This approach had 

sigŶifiĐaŶtlǇ ŵore iŵpaĐt oŶ eaĐh ŵodel’s perforŵaŶĐe over the method applying perturbation in a 

positive direction. See Fig.5 for all F-scores plotted against the percentage ranges. See Table. 4 for the 

confusion matrices of each classifier when applied to the unseen test set. 

 

 

 

 
Predicted 

 

 

 
0 1 

Actual 0 5376 3026 

 1 1843 18585 

 

 

 

 
Predicted 

 

 

 
0 1 

Actual 0 2065 6337 

 1 692 19736 

 

 

 

 

Jϰϴ’s F-score ranges from 0.827 which was achieved against the unseen test set with no adversarial 

examples introduced, to 0.684 which was achieved on adversarial examples generated with 10% 

perturbation. This is a drop of 0.143. The confusion matrix produced by J48 when applied to the 

adversarial examples generated with a 10% perturbation reduction is shown in Table. 5. This shows 

that the percentage of malicious data points that were misclassified as benign (false negatives) in the 

original test set increases from approximately 9% to 31%. This demonstrates the effect of the 

adversarial examples generated using this method on the ŵodel’s ĐlassifiĐatioŶ F-score. This classifier 

conforms to the hypothesis that the larger the perturbation the lower the classification accuracy. 

However, looking at Fig. 5 this demonstrates that the biggest difference in F-score between two points 

in the graph was between the test set and applying the classifier to the 1% adversarial example set. 

Table. 5 shows the confusion matrix for 1% perturbation. This shows that 4092 malicious data points 

have been misclassified as benign. When compared to the origin test set this is a rise of 2249 with only 

a 1% perturbation. The F-score has also dropped from 0.827 to 0.757. This shows a significant drop in 

F-score alongside a large increase in false negatives for a very small perturbation size. 
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0 1 

Actual 0 6439 1963 

 1 339 20089 

J48   Random Forest   

Jrip  

Table. 4: Confusion matrices for J48, Random Forest and Jrip when 

applied to the unseen test set (Benign = 0, Malicious = 1) 
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Random Forest showed less change is F-score with the same perturbation levels applied when 

compared to both J48 and Jrip. As seen in Fig. 5 at ϴ% perturďatioŶ leǀel the Đlassifier’s F-score is at 

its lowest of 0.895 this is still relatively high. This is only a 0.022 total drop Đoŵpared to Jϰϴ’s total 

drop of 0.143 is not a significant amount. This could indicate that the Random Forest classifier is more 

robust to this type of adversarial example generation method. Further analysis can be drawn that for 

9 and 10% the classifier performs better. This could suggest that when bigger values are applied to 

the samples it helps Random Forest distinguish between classes and thus, reducing the classification 

error. 

Jrip performed worst out of the three classifiers on the unseen test set, having 0.709 as its F-score. 

Alongside J48 the larger the perturbation size applied to the sample values the lower the F-score. The 

total drop in F-score for Jrip was 0.208. This is the biggest change in classification accuracy out of the 

3 models. This lowest F-score was produced on the test set with 10% perturbation. The biggest drop 

from 1 percentage difference is from the 1% and 2% percent example generations. At 1% the F-score 

is at 0.675 which drops to 0.615 at 2%. Adversarial examples generated from a 2% perturbation causes 

the F-score of Jrip to drop from a total of 0.094. Which again, is a significant amount that supports the 

effect this adversarial generation method is achieving. 

Observing the behaviours of all three classifiers  when applied to adversarial examples produced from 

decreasing sample values it is noticeable that Jrip had the biggest change drop in F-score, whilst J48 

produced lower F-scores directly correlated to increasing perturbation size it is still justifiable to say 

that Jrip is more susceptible l to this type of adversarial example generation. Random Forest showed 

the smallest performance drop and overall produced better classification than the other two models 

suggesting that this model is more robust to this type of adversarial attack. 
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Fig. 5: Perturbation applied in negative direction for range 1 – 10%  
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Dataset  R1-PA2:VH R4-PM:V 

Original test set 97.44866 132495.2188 

1% perturbation  93.84877 131975.041882 

10% 61.44972 127293.4 

 

  

B. Results for Adversarial Examples Generated Using FGSM 

 

This section of the paper will display and analyse the results from applying the methodology defined 

in section V.B. This method involves using FGSM with varying levels of its epsilon parameter to 

introduce different levels of perturbation to the data set.  

The first implementation of FGSM involves generating adversarial examples for all malicious 

datapoints within the test set. Fig. 6 displays the F-score for Jrip, Random Forest and J48 against 

epsilon values ranging from 0.1 to 1. The starting value of epsilon used by Goodfellow (2015) was 0.1 

and this paper has followed that guideline [7].  
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Adversarial examples generated with 

10% decrease applied (Benign = 0, 

Malicious = 1)  

Adversarial examples generated with 

1% decrease applied (Benign = 0, 

Malicious = 1)  

Table. 5: J48 confusion matrix produced when applied to 

adversarial examples  

Table. 6: Adversarial examples generated by decreasing varying percentage levels of the 

selected features range. 



20 

 

 

 

 

 

The results shown in Fig. 6 suggest that Jrip has the lowest F-score out of the 3 classifiers across all 

adversarial examples generated, the F-score for Jrip on the unseen test set is also the lowest out of 

the 3 being only 0.709. With FGSM generating adversarial eǆaŵples ǁith aŶ epsiloŶ ǀalue of Ϭ.ϭ Jrip’s 
F-score drops to 0.567. This is the biggest performance drop of all epsilon values across all 3 classifiers. 

The confusion matrix for Jrip produced on the unseen test set and for epsilon value 0.1 is shown in 

Table. 7. The number of False Negatives for the unseen test set is 692 which is 3%, compared with 

6097 which is approximately 30% for the epsilon value of 0.1 This is a significant increase in False 

Negatives. Jrip applied to adversarial examples generated with epsilon values larger than 0.1 did show 

an increase in the number of False Negatives. However, as the increase was minimal this paper has 

focused on highlighting FGSM with epsilon 0.1. The reason for this is that finding the smallest 

perturbation needed for maximal performance decrease is the aim for all adversarial attacks.  
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Fig. 6: RaŶdoŵ Forest, Jrip aŶd Jϰϴ’s F-score for each adversarial example 

produced using epsilon values (0.1 - 1).  

Unseen Test set Epsilon = 0 Epsilon = 0.1  

Table. 7: Confusion matrices produced by Jrip for (clean) test set 

and adversarial generated examples (Benign = 0, Malicious = 1)   
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J48 and Random Forest performed better than Jrip on the unseen test set also performing better than 

Jrip over all adversarial eǆaŵples geŶerated. Jϰϴ’s F-score dropped by 0.041 when epsilon equalled 

0.7 which was its lowest score, see Table 8. for the confusion matrix for J48 applied to adversarial 

examples generated using epsilon 0.7. More interestingly, the J48 classifier showed very slight 

classification improvement after epsilon = 0.7 and continued to rise slowly for the remainder of the 

epsilon values used in this experiment. One possible reason for this is that the larger perturbations 

added to the datapoints helped distinguish the malicious points from the benign and therefore slightly 

improving the ŵodel’s performance. J48 followed a similar pattern to Jrip regarding the biggest 

change in performance F-scores relative to epsilon values. Again, epsilon equal to 0.1 had the greatest 

impact on J48s F-score. Adversarial examples generated from this epsilon value would be the optimum 

level of perturbation used to achieve the highest relative performance impact. 
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Random forest performed the best on the unseen test set and also was the classifier that showed the 

smallest decrease in performance over all adversarial examples. This is shown by the total drop of 

0.045 in Random Forest’s F-score from unseen test set to epsilon equal to 1. See Table. 9 for confusion 

matrix where epsilon = 1. 

 

These results show that adversarial examples generated using FGSM has affected the performance 

accuracy of all three models. For all models expect J48 as the epsilon value increased the classifiers F-

score decreased. The original model used for adversarial generation was a SVM. The results show that 

examples produced for SVM are generalisable and therefore have affected the performance of 

Random Forest, Jrip and J48 models. This also is at harmony with Szegedy et al (2014b) theory that 

adversarial examples are generalisable between models. Further demonstrating that without knowing 

the exact model being used for an IDS, FGSM can be used to create adversarial examples that could 
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Table. 8: J48 applied to Malicious datapoints using epsilon = 0.7 

(Benign = 0, Malicious = 1) 

Table. 9: Random Forest applied to Malicious datapoints using epsilon = 1 

(Benign = 0, Malicious = 1) 
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reduce the accuracy of a number of classifiers that are used in the field of ICS. With small values of 

epsilon classification accuracies are shown to drop. Fig. 6 shows the extent of miss-classifications if 

larger epsilon values and thus larger perturbations are applied to the dataset. While these adversarial 

examples are more likely to be spotted due to the large level of noise added to the datapoints the 

effeĐt oŶ the ŵodel’s perforŵaŶĐe should these examples be undiscovered is considerable. For both 

J48 and Jrip the difference in F-scores for epsilon values greater than 0.1 is fractional. This could 

indicate that these models are more sensitive to smaller data perturbations but when handling larger 

perturbations, the accuracy of the model does not decrease in parallel as the model can distinguish 

between datapoints. On the other hand, Random Forest behaved as predicted, as epsilon increased 

the ŵodel’s aĐĐuraĐǇ deĐreased. The oǀerall aĐĐuraĐǇ of Random Forest was better than the two other 

models furthermore, Random Forest had the lowest drop in F-score over all adversarial examples used 

in this experiment. Indicating that this model is the most robust to this adversarial generation method 

outlined in section V.B. 

The remainder of this section will analyse the results of an overstimulation attack type. This is the 

second method of utilising FGSM to create adversarial examples discussed in this paper. This attack 

focuses on raising the false positive rate produced by a classifier. This is achieved by increasing the 

number of benign datapoints classified as being malicious.   

The adversarial examples generated using this method had drastic effects on Jϰϴ’s false positive rate. 

Table. 4 and 10 show the confusion matrices for J48 on the unseen test set and adversarial examples 

generates with epsilon 0.1 respectively. J48 applied to the unseen test set has a total of 3026 False 

Positives. This is approximately 36% misclassification for the benign class. Adversarial examples 

generated using epsilon value of 0.1 forced J48 to produce 6630 False Positives, a misclassification 

percentage of 79% for the benign class, this is a 43 percentage point increase in the number of false 

positives. The number of False Positives increases very slightly for the rest of the epsilon values used 

in this experiment. This indicates that smaller epsilon values and thus, smaller perturbations to data 

points ŵaǇ haǀe greater iŵpaĐt oŶ the ŵodel’s ĐlassifiĐatioŶ perforŵaŶĐe. This should be further 

evaluated as the main goal of any adversarial attack is to be undetected by the classifier model, this is 

more likely achieved using the smallest perturbation levels possible that still effect the classifiers 

performance.   
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Jrip has less significant performance change when applied to the range of adversarial examples 

introduced by this attack method. One possible reason for this is that Jrip has a much higher number 

of False Positives when applied to the original unseen test set meaning there is a much smaller number 

of True Negatives that the adversarial examples can leverage and force the model to misclassify. The 

number of False Positives Jrip displays when applied to the unseen test set is 6337, a misclassification 

percentage of approximately 75% for the benign class. Comparing this starting False Positive 

percentage to that produced by J48 on the same test set could explain the difference in performed 

drops between the model when applied to adversarial examples. See Table. 10 for the confusion 

matrix produced by Jrip when applied to FGSM with epsilon equal to 0.1. 

Similar to the first adversarial attack mentioned in this subsection, Random Forest behaved as 

expected. As the perturbations applied increased alongside epsilon, the classification accuracy 

decreased. Unlike Jrip, Random Forest when applied to the test set only misclassified a small fraction 

approximately 23% of the benign datapoints as being malicious, a much better initial False Positive 

rate than Jrip. This percentage rose to approximately 58% when applied to adversarial examples with 

epsilon equal to 1. See Table. 11 for the confusion matrix for epsilon equal to 1. 
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Table. 10: Confusion matrix for J48, Random Forest and Jrip. Epsilon = 0.1 applied to Benign data points         

(Benign = 0, Malicious = 1) 
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The observation of the behaviour for Random Forest, Jrip and J48 when introduced to this 

overstimulation attack can conclude that all 3 models produced increased levels of False Positives 

alongside decreased F-scores indicating the effectiveness of this attack and thus the methodology 

outline in section V.B.  This attack has produced almost parallel F-score trends when compared to the 

first attack implemented using FGSM. The results produced from this attack also highlight that in all 3 

cases, the most efficient epsilon value to use for adversarial generation is 0.1. This again opens the 

door to further research in smaller epsilon permutations to identify the optimum noise level needed 

to create the most relative impact of the classifier algorithm. Moreover, this attack has again shown 

the generalisation between models and has also highlighted that FGSM can be used in an ICS context 

for adversarial machine learning.  
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Fig. 7: Random Forest, Jrip and J48 applied to the test set and all ranges (0.1 – 1) of 

epsilon values generated for all benign datapoints. 

Table. 11: Confusion matrix for Random Forest with 

FGSM applied to benign datapoints with epsilon = 1. 

                     (Benign = 0, Malicious = 1) 
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VII. Adversarial Training  
 

This section of the project will discuss and apply adversarial training to the models evaluated in section 

VI leading to further analysing the ŵodel’s robustness to the adversarial methods discussed in VI.B 

Adversarial training focuses on improving a classifiers performance at recognising perturbations 

added to datapoints intended to force a classifier to misclassify datapoints and therefore, reduce the 

classifiers accuracy. Szegedy et al (2014b) suggest that by adding a portion of the adversarial examples 

to the training set will improve a ŵodel’s roďustŶess to adversarial attacks. The first attack method 

outlined in section V.B will be used to evaluate the effectiveness of adversarial training on the 

robustness of a classifiers accuracy when identifying malicious datapoints. 

Both Jrip and Random Forest models achieved their lowest F-score with epsilon value of 1.0. For this 

reason, 25% of the adversarial examples generated with this epsilon value have been added to the 

original training set. Both models were retrained using this new test set and then re-evaluated on all 

unseen adversarial examples. J48 performance was at its lowest with epsilon value 0.7 again, 25% of 

the adversarial examples generated with epsilon 0.7 were added to original test set to create a new 

test set and the model re-trained and re-evaluated on all adversarial examples.  

Random Forest and Jrip both performed significantly better with adversarial training over the entire 

array of adversarial examples compared to the same classifier model without adversarial training. 

Random Forest with adversarial training had its lowest F-score at 0.901 this compared to 0.882 from 

the model without adversarial training is a noticeable difference, an increase of 2 percentage points. 

What’s ŵore iŶterestiŶg is that for epsiloŶ ǀalues aďoǀe Ϭ.ϱ the Đlassifier with adversarial training 

produced 0 False Negatives when classifying malicious datapoints. This means that all malicious 

datapoints were predicted to be malicious with no errors. Random Forest with no adversarial training 

performed slightly worse as the epsilon value increased however, as already discussed for the classifier 

with adversarial training improved with the increase of epsilon for 80% of the epsilon values used. Fig. 

8 shows Random Forest F-scores across all adversarial examples for the model adversarial training and 

without.  
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Jrip in every case saw the accuracy of predicting malicious datapoints improve with adversarial training 

over all unseen adversarial examples. For epsilon values 0.3 - 1 Jrip had an F-score of 0.718. In 

comparison the highest F-score recorded for Jrip without adversarial training was 0.567, furthermore, 

this highest F-score was achieved with the smallest epsilon value used, 0.1.  With adversarial training 

Jrip produced an F-score of 0.71 or greater across the whole range of adversarial examples. Jrip with 

adversarial training produced 0 False negatives when classifying malicious datapoints for epsilon 

values 0.8 to 1, this could be due to the effectiveness of this adversarial training method or slightly 

due to overfitting as the adversarial examples added to the original test set were generated using 

epsilon equal to 1. Fig. 9 shows the difference is accuracy performance between adversarial training 

applied to Jrip and non-adversarial training models. Although overfitting was mentioned as a possible 

reason for certain epsilon values achieving better F-scores the overwhelming increase in accuracy 

performance across all adversarial examples reinforces the impact adversarial training has had on the 

classifier. 

 

 

 

 

J48 without adversarial training had very consistent F-scores across the entire epsilon range. J48 

showed less improvement with adversarial training compared with both Jrip and Random Forest but 

still slight improvement across all combinations of adversarial examples. Fig. 10 displays the F-score 

for every adversarial ĐoŵďiŶatioŶ geŶerated usiŶg differeŶt ǀalues of FG“M’s epsiloŶ ǀalue agaiŶst 
the model with and without adversarial training. 
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Fig. 8: Random Forest F-score for each epsilon value (0.1 – 1) with and without 

adversarial training 

 

Fig. 9: Jrip classifier F-score for score for each epsilon value (0.1 – 1) with 

and without adversarial training. 
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Fig. 10: Jrip classifier with and without adversarial training applied to all epsilon values (0.1 – 1) 

 

See appendix 1 and 2 for the comparison of confusion matrices produced for epsilon values 0.1 and 1 

between models with and without adversarial training.  

Jrip displays the most improvement as a result of adversarial training. Followed by Random Forest. 

J48 showed the least performance increase due to adversarial training. 

 

VIII. Conclusion 
 

Machine learning classifiers are a fundamental element of IDS. The advancements of the internet have 

introduced interconnectivity between the once secluded ICS and the external world. Whilst this new 

level of connectivity has greatly improved some aspects of monitoring and performing operations on 

an ICS network it has also introduced a new attack vector to ICS. Adversarial attacks are known to 

hinder the performance of such classifiers, furthermore, disrupting the ICS operations which can cause 

massive problems, as CNI use ICS if an adversarial successfully bypasses an IDS monitoring the ICS 

using adversarial machine learning the consequences could be astronomical. Not only can cyber-

attacks go unnoticed causing copious amounts of problems. The magnitude of alerts a security 

engineer is faced with on a day to day basis whilst monitoring an ICS is cumbersome without the added 

danger of an adversarial attack causing extra false positive alerts. 

This paper has discussed the effect of generating adversarial examples is a number of ways with the 

intention of decreasing the accuracy performance of a number of classifiers that show promising 

performance measures in the context of classifying data found in ICS. Two methods of generating 

adversarial examples were outlined in this paper. One method consisted of manually adding various 

levels of noise to the dataset and observing their impact of the classification models and the second 

method utilised FGSM to generate optimised noise levels within varying bounds, controlled by the 

parameter epsilon. The manual method of data perturbation did produce promising results. However, 
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the level of noise introduced to achieve significant performance reduction for each classifier was much 

larger than those examples generated using FGSM.   

This paper has evaluated the effectiveness of FGSM when generating adversarial examples on a power 

system testbed varying the level of perturbation applied to the features. The analysis reported in this 

paper shows that J48, Jrip and Random Forest all display a decrease in F-score performance when 

applied to adversarial examples generated using FGSM. Random Forest performed the best when 

applied to the adversarial examples generating using FGSM. This in turn indicates the higher 

robustness level of this model furthermore indicating its potential use for an IDS for ICS. 

The results from this paper also suggest that using adversarial training and introducing 25% of 

adversarial examples generated using FGSM to the original training set and then re-training the 

models improves the robustness against unseen adversarial examples significantly for both Random 

Forest and Jrip.  

This model has also reinforced the theory put forward by Szegedy et al (2014b) suggesting the 

generalisation of adversarial examples generated by one model effecting the performance of other 

types of model. This has been shown by using a SVM to generate adversarial examples using FGSM 

and observing the behaviour of Random Forest, Jrip and J48.  

IX. Future Work 
 

An aspect of this project that requires further attention is the scope of classifiers used in the 

experiments. Expanding this list to include more models would help fortify a good model to use for 

and IDS tailored to ICS. This project used Weka as the implementation of each classifier model. The 

robustness of SVM was not evaluated in this project but has been suggested to be effective in IDS. 

Further research into the feasibility of using such a classifier in this context is needed.  

Future work could also include the implementation of other adversarial methods like Carlini and 

Wagner (2016) and Newton-fool (2017). The scope of this project focuses on FGSM which is a popular 

adversarial method within the image classification domain however, more research into a more 

suitable method for ICS applications may be needed to extensively explore the ability of adversarial 

machine learning within this context. To test the effectiveness of FGSM this project focuses on epsilon 

values below 1. Future work could provide an insight into using larger epsilon values and their effect 

on the robustness of classifiers against the size of perturbations. 

Most IDS using machine learning classifiers will be assigned the task of not only identifying a data point 

as malicious but also what type of attack is occurring within in the system. Or this type of classification 

a multiclass dataset Is required. As this project focuses on binary class datasets future work could 

involve working with multiclass datasets and evaluating the impact adversarial examples produced 

using methods like FGSM have on multiclass accuracy. The overall goal of the adversarial example will 

still be to fool the classifier to misclassify a malicious datapoint as being benign, but the extra level of 

sensitiveness needed to train a model to classify data points correctly in a multiclass set is higher than 

that of a binary set. Discovering whether this more sophisticated training paradigm will influence a 

ŵodel’s susceptibility to adversarial examples could be included in future work now this project can 

be used as a baseline.  

Another area of future work would focus on finding an optimal level of adversarial examples 

reintroduced to a training set that both improves a ŵodel’s robustness but does not lend itself to 

overfitting. 
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This project did not look into the effects of defence distillation used as an adversarial training method 

in an ICS context, this method has showed promising results for smaller datasets [12] and therefore 

requires further research into its capabilities in larger scenarios. Future work could identify the 

applicability of such defence methods in larger contexts providing critical research into the use of 

adversarial training for IDS. 

 

 

X. Reflection 
 

On reflection deciding on a machine learning project with no background knowledge in this area was 

a steeper learning curve than initially thought. Whilst knowledge of ICS and protocols was beneficial 

to this project as it helped to identify the application of this work and the motivation of the research 

area it did not serve as any technical help. However, my new understanding of machine learning as a 

broad concept has increased exponentially. Concepts like, decision trees, adversarial attacks and F-

measures were all alien to me prior to this project. I know feel comfortable talking about such concepts 

in an academic environment.  

My methodology was to first try to understand the concept of machine learning which I still believe 

was the intuitive starting point. However, now I see that practice with documented and well 

researched datasets would have given me a much better understanding of the stages of machine 

learning i.e. pre-processing, training, validation, testing and understanding the results output by the 

Weka platform. This would have also aided my overall knowledge of the Weka platform and all the 

features that was at my disposal. I decided to by-pass this stage and focus straight on the power 

system dataset which had minimal work related to it and a small document which described the 

dataset in technical terms that I was not accustom to. This made analysing results and attempting 

create adversarial examples for this dataset difficult and time consuming. 

Research is a very different concept to anything I have approached in the past and adapting to the 

unknown was a challenging concept. This was also the reason I adopted this project as a way of 

expanding my work methodologies and mental focus.  

Adversarial attacks was not a concept I had encountered or worked on before therefore, considerable 

amounts of time was needed to understand some of the theory behind common adversarial methods. 

This also meant that implementing these methods even without the need to understanding exactly 

how they worked was challenging. FGSM is a fairly basic method which can be modified to produce 

larger perturbations to data by modifying one parameter. Other methods such as JSMA require further 

knowledge of the foundations of the method to manipulate them in order to produce desired results. 

Methods more complex like JSMA would have required more time to decipher and implement in an 

ICS context due to the lack of resources and research focuses on non-image-based adversarial 

generation.  

An aspect of my approach to this project was that slightly lacking the early stages was the extent of 

the literature reviews surrounding this area. As highlighted, this is a fairly new research area with 

limited relevant papers especially on non-image focuses adversarial implementations. However, upon 

further inspection there was a number of papers that discussed related work which would have been 

beneficial earlier in this project.  
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The phrase ͞ǁalk ďefore Ǉou ĐaŶ ruŶ͟ is ǀerǇ apt for this is projeĐt. UŶderstaŶdiŶg the fuŶdaŵeŶtals 
to build upon was the correct approach which I will use again in similar scenarios.  

Another unforeseen factor during this project was the global pandemic covid-19. Numerous 

days/weeks was lost due to the unprecedented times that this pandemic introduced. Moving back 

home and self-isolating impacted productivity greatly. My mental attitude much like the economy was 

crashing. Lack of motivation was not a risk that was included in the initial plan risk assessment as this 

has never been a factor in previous work.   

One learning of machine learning that I did not predict was the excessive amount of processing 

training classifier models and evaluating them took. In the early stages of this project following a 

literature review of a paper using the same dataset I chose for this project I decided to use the classifier 

Jrip with ada boost as this classifier performed best on this ICS data. What I failed to notice was that 

this classifier was only tested on a small fraction of the total dataset due to the lengthy training time. 

Unfortunately, a number of days was wasted waiting for this model to be trained on a large dataset. 

Being unpractised and inexperienced with machine learning as a whole I did not realise that this was 

abnormal and shows how the classifier in question is not suitable to real world applications and was 

only used to show potential not application.   

An element of pre-processing which on reflection may have been slightly overlooked is class balancing, 

the amount of benign data points is much smaller compared to the amount of malicious datapoints 

within the dataset I have used for all experiments. Having unbalanced classes could impact the 

reliability of results. 

Focusing more on the technical implementation and experiments, after analysing the results drawn 

from Fig. 6 perhaps, I should have experimented with smaller values of epsilon to observe the effects 

on the classifiers performance. All 3 classifiers F-scores dropped significantly when applied to 

adversarial examples generated with FGSM and an epsilon value of 0.1. Experimenting with epsilon 

values of below 0.1 could have shown worst performance drops or demonstrated the optimum level 

of perturbation for greatest adversarial effect. This is definitely an area of this paper that should have 

been further explored.  
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XII. Appendix 
 

1) Confusion matrices for Random Forest, Jrip and J48 for epsilon value 0.1. Left hand column 

shows results with adversarial training and right hand column shows original training method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Confusion matrices for Random Forest, Jrip and J48 for epsilon value 0.1. Left hand column 

shows results with adversarial training and right hand column shows original training method. 
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