
1

DeteĐtiŶg Ŷetwork ďased attaĐks iŶ
IŶdustrial CoŶtrol Systeŵs

By Oliver Gunnell

2

Contents

Abstract ... 3

I. Introduction .. 3

A. Aims of the Project .. 4

II. Related Work and Background ... 5

A. Adversarial attack types .. 5

B. Adversarial Methods & Defence Techniques .. 7

C. Adversarial Training and Defence mechanisms .. 8

III. Dataset .. 9

IV. Training and Evaluating the Models ... 11

A. Data Pre-processing .. 12

 .. 12

B. Evaluating the Models .. 12

V. Adversarial Example Generation .. 14

A. Outline of Manual Approach for Adversarial Attacks ... 14

B. Outline of FGSM Approach for Adversarial Attacks .. 14

VI. Results ... 16

A. Results for Manual Adversarial Example Generation ... 16

B. Results for Adversarial Examples Generated Using FGSM ... 19

VII. Adversarial Training .. 25

VIII. Conclusion ... 27

IX. Future Work .. 28

X. Reflection .. 29

XI. References .. 31

XII. Appendix ... 33

3

Abstract

The use of Machine Learning (ML) models in Intrusion Detection Systems (IDS) tailored for Industrial

Control Systems (ICS) has increased the level at which malicious activity can be detected. However,

newer methods of by-passing IDSs are becoming more prominent. These methods are defined as

adversarial machine learning or adversarial attacks which share the common goal of reducing a ML

models accuracy. Adversarial attacks have been proven to be effective within the image classification

domain. This paper aims to discover the effectiveness of adversarial attacks generated using Fast

Gradient Sign Method (FGSM) applied to data obtained from an ICS testbed. This paper will further

explore the effectiveness of utilising the adversarial examples generated by FGSM originally intended

to lower the performance of a model, but instead are harnessed to improve the ŵodel’s robustness

to adversarial attacks. Random Forest, J48 and Jrip are the three classifiers this paper focuses on.

Overall, Random Forest and Jrip adapt better to adversarial training than J48 which is supported by

their significant increase in classification accuracy when applied to unseen adversarial examples.

I. Introduction

Industrial control systems (ICS) are a branch of operational technology (OT) networks that govern the

monitoring of industrial operations. Features of an ICS include sensors, actuators and commands from

an operator. ICS networks are found in critical national infrastructure, for example, water treatment

facilities, electrical power system plants as well as other discrete manufacturing plants. The number

of targeted cyber-attacks on ICS networks is ever rising [23]. The perceived security of ICS previously

focused solely on physical extremities, for example, fences and secure barriers to stop intruders. While

this may deter the physical attacker a newer threat which targets the network vulnerabilities of ICS

renders this type of security redundant. This branch of cyber-attacks are called adversarial machine

learning or adversarial attacks. Adversarial attacks are becoming more common in the field of ICS and

this is one of the major motivations behind this project. Intrusion detection systems (IDS) and

adversarial attacks have been well researched in the context of Information technology (IT) networks

however the latter is only recently becoming a well researched topic. There are some similarities

behind the main functions of an IDS for ICS and IT networks however there are some fundamental

differences that need to be addressed. The notion that OT networks are completely segmented from

IT networks and thus the internet, is a concept that is fading. There was an understanding that this

͞air gap͟ plaĐed ďetǁeeŶ the tǁo Ŷetǁorks autoŵatiĐallǇ eŶsured the security of the OT network

from the outside world. However, in parallel to the information age, the concept of interconnections

between networks and IoT devices is growing within CNI and ICS. This new level of connectivity to the

internet has introduced new security threats to ICS, thus highlighting the importance of improving the

network-based security for these types of systems.

This project will build on the foundations of established machine learning algorithms to build a robust

model that could become the basis of an IDS tailored to ICS networks. Once this model has been

finalised adversarial techniques will be used to create adversarial examples that alter both malicious

and benign traffic in an attempt to force the model to misclassify datapoints. The model will then be

re-tested, and an evaluation of the models performance will be observed and analysed. This project

4

will further observe the performance of different classifier models by introducing adversarial training

with the foresight of improving the classifiers robustness to such adversarial attacks.

A. Aims of the Project

The first aim of this project is to evaluate the performance of state of the art classification models in

the context of ICS network data. This evaluation will be used to extract a number of models that

perform well and can form the basis of further experiments working towards finding a model suitable

for an IDS tailored to ICS networks. To achieve this first aim a dataset comprised of ICS sample data

which will contain both benign and malicious datapoints will be used to evaluate and analyse the

classifier models. The use of adversarial methods will be applied to the dataset to evaluate the

robustness of each classifier. Another aim of this project is to obverse the effectiveness of adversarial

training methods used to improve a classifiers robustness to unseen adversarial attacks.

This projeĐt’s iŶteŶded audieŶĐe is aŶǇone who is interested in the security of ICS networks in regards

to machine learning algorithms and there use in IDS. This project should also be of interest to those

who have experience or wish to gain experience in the use of adversarial techniques, methods and

their effect on the performance of classification models. This is especially true for those who work in

network positions within CNI or other ICS network-based plants. Another possible area of interest is

for those wishing to investigate the potential generalisation of producing adversarial examples

generated specifically for one model and the possibility of those examples also affecting other types

of classification models.

The scope of this project includes research into suitable machine learning classifiers, IDS

methodologies and adversarial techniques used. Firstly to reduce the performance of a machine

learning classifier and secondly to be utilised to improve a ŵodel’s robustness to such attack

techniques.

The major outcome of this project is to highlight the robustness of classifier models used in the field

of ICS and IDS. Adversarial techniques are becoming common attack methods to force miss-

classification and disrupt the function of an IDS. Therefore, choosing a classifier model that is robust

to data perturbation is becoming as important as choosing a classifier model with good performance

on a particular dataset. Another outcome of this project is to highlight the ability to use adversarial

methods that are commonly available to fool well researched classifier algorithms. This in turn will

show the need to use adversarial training on these models to improve their performance on

adversarial attacks and thus, improving the effectiveness of IDS.

The effectiveness and suitability of adversarial training in an ICS context will be evaluated with the

intention of improviŶg a ŵodel’s roďustŶess to adversarial attacks. This project aims to provide

evidence that supports the need for adversarial training whist evaluating the effectiveness of

adversarial training on different types of classifier models.

5

II. Related Work and Background

Intrusion detection systems are at the fore-front of detecting and alerting security engineers of a

potential network breach. A fundamental aspect of IDS is the machine learning algorithm that needs

to establish whether the traffic it is analysing is normal everyday network traffic or malicious activity

that could be a cyber-attack. To be able to make these predictions the machine learning model must

first understand the different types of traffic and then identify the features in the network that change

when a cyber-attack is occurring or has occurred. To achieve this, datasets that contain a mixture of

normal (benign) network traffic and attack (malicious) network traffic are needed to train a model and

then an unseen dataset is needed to evaluate its performance and transferability to practical

implementations. Training a model too closely to training data will produce a very good model for that

training set but will produce poor predictions for any unseen dataset. This is the notion of overfitting.

10-fold cross validation can be used to reduce the likelihood of overfitting. Conventionally the dataset

is split into training, validation and then testing sets. There are 3 main performance metrics used to

evaluate the performance of a classifier model namely, Precision, Recall and F-measure or score.

These matrices and their use in this projeĐt’s context are discussed in more detail in later sections of

this paper.

The problem with such models is that the field of adversarial machine learning has emerged which

highlights the opportunity to by-pass such IDS by carefully modifying data points in a fashion that

causes miss-classification. If adversarial techniques are successfully used in an ICS network this could

cause major damage to equipment and have a large impact on a multitude of people. ICS networks

are controlling large scale equipment with extreme precision where any error made by the IDS could

cause massive concern.

A. Adversarial attack types

Adversarial attacks can be categorised depending on how they are designed to impact the machine

learning algorithm and what elements of the model they exploit.

Huang et al (2011) has created a taxonomy for classifying the different types of adversarial attacks

based on what stages of a machine learning model the attack targets and the underlying motive

behind the attack. The resulting taxonomy is divided into the following segments.

• Influence: Influence is further subcategorised into two sections; Causative attacks rely on

manipulating the training process by possessing influence over the training data. Using the

above metric causative attacks would be classed as a poison attack. Exploratory attacks have

no direct influence over the training data and thus, the training process is not altered during

this attack. This attack focuses on extracting information about the detector/classifier or the

data used to train the model.

• Security Violation: These attacks target the integrity and availability of a model by producing

adversarial examples that cause a model to generate False Negatives or by severely reducing

classification performance. This is achieved by producing a large number of classification

errors which render the model unusable. If an attack focuses on the integrity of the model this

is an example of an evasion attack. Another subsection of security violation attacks focuses

on extracting information from the learner to gain private information about the users of a

system. These are further subcategorised under security violations as privacy attacks.

6

Huang et al (2011) further discusses the level of knowledge an adversarial may have about the IDS and

the underlying model used for classification and detection. They describe the different elements of

the classification system the attacker may or may not have obtained knowledge about. They outline

that much like an attack on an encrypted system where the encryption method used will be known by

the attacker and could even be open source, the classification algorithm used by the IDS needs to be

assumed that this knowledge is also known by an attacker. It is also highlighted that knowledge about

the features and training data could also be known by an attacker. Whilst it is easier to reduce the

likelihood of an attacker knowing the exact format of the training data used to train a model, as with

many ICS applications they follow similar methodologies and frameworks furthermore, some will use

the same equipment. One example of this is the majority of water treatment plants which use similar

protocols, sensors and actuators controlled and monitored in similar ways resulting in comparable

frameworks. Even if the system designer has kept one particular feature space hidden, an attacker is

likely to have gained knowledge from similar systems with less discrete feature choices that could

indicate the type of training data used which could be transferable.

Yuan et al (2017) introduced a treat model for adversarial attacks that is devised of 4 subsections

• Adversarial falsification

o This describes the method of using adversarial examples to produce False Positives or

False Negatives (evasion)

• Adversarial’s knowledge: This has been described in the above section of this paper however,

this paper introduces the notion of white-box and black-box attacks.

o Whitebox attacks rely on the adversaries having extensive overall knowledge of the

machine learning model. This covers all areas of the learning process including

knowledge of the training set and the learner algorithm.

o Black-box attacks assume the adversarial has no knowledge of the model or the ability

to gain information about the training data. They only know the output of the

confidence score of the model but not the exact model itself.

• Adversarial specificity

o Targeted attacks focus on misclassifying data points to a specific target class. This type

of attack is usually designed for multiclass applications.

o Non-targeted attacks do not specify which class a datapoint should be misclassified

as providing the adversarial class is not the original class of that datapoint.

In the context of binary class datasets targeted and non-targeted are regarded as equal and there is

only one target class available for the adversarial Đlass that isŶ’t the origiŶal.

• Adversarial frequency

o one-time attacks offer the notion of producing an adversarial example from one run

through of the method

o iterative attacks require iterative methods for optimising an adversarial example

Adversarial attacks on ICS networks can also be categorised depending on how they are designed to

impact the IDS monitoring the ICS network. Many types of attack designed for IDS exist. Attacks that

are designed to go unnoticed by the IDS or to overload a piece of equipment on the ICS causing this

equipment to be unusable are just two examples of attacks that can be leveraged to cause damage to

ICS. Corona et al (2013) created a taxonomy of the different types of adversarial attacks designed for

ICS networks. This taxonomy outlined 6 types of attacks which have been summarised below.

7

• Evasion Attacks: The intrusion pattern intended to disturb the system aims to go undetected

and therefore creating no alerts to operators of its presence.

• Overstimulation: This attack creates a large number of false alerts with the aim to confuse

the system and the operators monitoring the system.

• Poisoning: Well-designed patterns are introduced to the IDS learning algorithm with the

intension to lower detection accuracy and classification performance.

• Denial of Service: Overloading a sensor in an IDS causing the sensor to shut down decreasing

the IDS detection performance.

• Response Hijacking: Forces the IDS to produce incorrect alert descriptions which mislead the

IDS response protocols.

• Reverse Engineering: This involves the attacker gaining knowledge about the IDS and more

specifically the features used within the IDS and even what detection algorithm is being used.

This attack improves the likelihood of the above methods as they can be tailored to specific

IDS.

B. Adversarial Methods & Defence Techniques

Adversarial machine learning in its simplest form is the practice of adding noise to datapoints in a

sufficient way to cause a classifier model to misclassify a datapoint. The art of calculating the optimal

amount of noise needed to achieve this goal whilst minimising this noise level is a well researched

area.

There are many adversarial methods available that are widely researched, the leading research in this

area focuses on the image classification domain. Goodfellow et al (2015) outlined and implemented

the Fast Gradient Sign Method (FGSM) on different image classification tasks. Using the ImageNet

dataset, they show that FGSM can create adversarial examples for individual pixels in an image that

force a convolutional neural network (GoogeLeNet) to misclassify images. They go further and show

that this method can be used to make the classifier produce a 99.3% confidence level that an image is

of an incorrect class. This shows the effectiveness of this adversarial generation method.

The formula for FGSM method is found below.

η = ε sign (∇xJ(θ, x, y))

where:

• η = Adǀersarial eǆaŵple
• θ = Model paraŵeters

• x = The input to the model

• y = Input labels associated with x

• J = Cost

• ε = Multiplier to ensure perturbation is within controlled bounds

This method uses gradients of the neural network to create an adversarial example. More specifically

it adds perturbations based on the gradient of the cost function with respect to the input data.

Different values of ε controls the size of the perturbation. This value must be large enough to create

an effective adversarial example but not too large that the example is obviously detected as being

malicious.

8

There has been related work in the area of adversarial attacks in an ICS context, a particular example

of this is Zizzo et al (2019a). They construct a simple adversarial attack on a long short-term memory

(LSTM) classifier used on the SWAT dataset. For this attack to be successful the attacker needed a vast

knowledge of the IDS and required information regarding the features used for classification. This

attack may not be transferable to many real-world applications, but it re-enforces the opportunity to

by-pass machine learning based IDS within the ICS field. Zizzo et al (2019b) outlines a method to

generate adversarial attacks on a time series IDS. This study uses a more sophisticated method of

adversarial generation to fool the LSTM.

C. Adversarial Training and Defence mechanisms

The goal of defending against adversarial attacks is to improve a ML models robustness to adversarial

attacks. Two methods of achieving this will be discussed in this section, the first uses adversarial

training and the second uses the concept of defence distillation.

Adversarial training has been introduced within the computer vision field of machine learning.

Goodfellow et al (2015) observed the performance change of a neural network when applied to

unseen adversarial examples when re-trained on a training set that contained a sample of adversarial

examples and original training data. The conclusion of that experiment shows that adversarial training

can improve the robustness of a model against adversarial examples. Szegedy et al (2014b)

experiment using the MNIST dataset and a non-convolutional neural network. The model again, is

trained using a sample of adversarial examples mixed into the original training data. The resulting test

error rate is extremely low.

Szegedy et al (2014b), discuss the transferability between the generation of adversarial examples for

one type of model and the effectiveness of these examples when applied to other types of ML model

[10]. They also discuss the generalisation of training sets, showing that a large portion of adversarial

examples generated specifically from one training set will be misclassified by a model trained on a

mutually exclusive training set. Again, these papers focus on the image classification domain,

nevertheless, showing the potential of adversarial training and suggesting more universal

characteristics of adversarial machine learning.

Another approach to adversarial training outlined by Papernot el at (2015) uses defence distillation.

This research shows the effectiveness of this type of adversarial training on the MNIST dataset and

CIFAR10. While this method seems very effective at improving the robustness of the model, there is

little research in using defence distillation on larger datasets. For this reason, this method of

adversarial training will not be employed in this paper as the classifier used for an IDS needs to show

effectiveness on a range of dataset sizes.

As there is further evidence to support the effectiveness of adversarial machine learning this paper

will focus on this method of improving a ŵodel’s robustness to adversarial attacks.

9

III. Dataset

This section of the paper will outline in detail the power system testbed used for all experiments

constructed for this project. The data set used for this project was made publicly available by

Mississippi State University and Oak Ridge National Laboratory - 4/15/2014. They have devised a small

overview of a power system framework. See Fig. 1 for a more complete structure of the power system

used to produce the data sets.

Looking at Fig.1, G1 and G2 are power generators whilst R1-R4 are Intelligent Eectronic Devices (IED’s)

which control the operation of the breakers (BR1-BR4). The IEDs use a distance protection scheme to

identify faults and trip the required breaker. Each IED controls one breaker. Distance protection

schemes use voltage, current phase angles and other metrics to ensure that if a fault occurs only an

isolated section of the power system is shut off. There is no internal method to validate whether a

fault is faked or legitimate. Operators can also manually issue commands to the IEDS to trip the

breakers. This usually occurs during maintenance on the line.

There are ϰ PMU’s iŶ this fraŵeǁork of which 29 are synchrophasor measurements are taken for each

giving a total of 116 measurement columns, 12 columns for control panel logs, Snort alerts and relay

logs totalling 128 features. A more in-depth outline of the features included in this dataset are

displayed in Table. 1. The iŶdeǆ of eaĐh ĐoluŵŶ is iŶ the forŵ of ͞R#-“igŶal RefereŶĐe͟ that iŶdiĐates
a type of measurement from a PMU speĐified ďǇ ͞R#͟. The sigŶal references and corresponding

descriptions are listed below. For example, R1-PA1:VH means Phase A voltage phase angle measured

by PMU R1

Fig. 1: Power System Testbed [19]

10

Feature Description

PA1:VH – PA3:VH Phase A - C Voltage Phase Angle

PM1: V – PM3: V Phase A - C Voltage Phase Magnitude

PA4:IH – PA6:IH Phase A - C Current Phase Angle

PM4: I – PM6: I Phase A - C Current Phase Magnitude

PA7:VH – PA9:VH Pos. – Neg. – Zero Voltage Phase Angle

PM7: V – PM9: V Pos. – Neg. – Zero Voltage Phase Magnitude

PA10:VH -

PA12:VH

Pos. – Neg. – Zero Current Phase Angle

PM10: V - PM12: V Pos. – Neg. – Zero Current Phase Magnitude

F Frequency for relays

DF Frequency Delta (dF/dt) for relays

PA:Z Appearance Impedance for relays

PA:ZH Appearance Impedance Angle for relays

S Status Flag for relays

There is a total of 15 data sets produced from this testbed that contain both benign and malicious

data points. These data points were originally categorised into three classes, ͞Natural events͟, ͞No

events͟ and ͞Attack events͟. Natural and No events have been grouped together and classed as

benign activity leaving the Attack events as malicious data points and thus creating a binary

classification set.

There are four types of scenario manufactured on this power system framework.

1. Short-circuit fault- Short in the power line that can occur at multiple locations along the line.

2. Line maintenance- One or more relays are disabled on a specific line to allow maintenance on

that line

3. Remote tripping command injection (Attack)- This is an attack that sends commands to a

relay which causes a breaker to open.

4. Relay setting change (Attack)- Relays are configured with a distance protection scheme and

the attacker modifies the relays settings to disable the relays function. This causes it not to

trip on a valid fault or valid command sent by an operator.

5. Data injection (Attack)- Valid fault is imitated by changing values to parameters such as

current, voltage sequence components etc. this attack aims to blind the operator and causes

a black out.

The finalised output of this testbed data in regards to this project is a binary class set that uses all 15

datasets that includes malicious or benign datapoints.

Table. 1: List of Features with a brief description used in

the power system testbed.

11

IV. Training and Evaluating the Models

This section of the paper will outline the process used to train and evaluate each classification model

chosen to be evaluated in this project. This section will also include the evaluation matrices used to

record and analyse each classifiers performance

To evaluate the effectiveness of machine learning algorithms in the context of ICS, the dataset

discussed in the previous section was used to analyse commonly used classifiers in IDS. The metric

used to evaluate the accuracy of a classifier is discussed below. Weka outputs a number of important

results when evaluating any classifier which help to give an understanding of that classifiers

performance.

-True Positive: Where the classifier has correctly predicted a data point as being malicious and

it is confirmed to be of that class.

- True Negative: Classifier has correctly predicted that a data point is benign, and it is

confirmed to be of that class

- False Positive: Classifier has predicted a data point is malicious, but it is confirmed to be of

the benign class

- False Negative: Classifier has predicted that a data point is benign, but it is confirmed to be

of the malicious class.

Once the above metrics are calculated a further 3 metrics that give an overall good understanding of

the performance of a classifier can be calculated namely, Precision (P), Recall (R) and F-score (F). The

equations to achieve these metrics are found below.

P = TP/ TP + FP

R = TP/TP + FN

F = 2 · P · R/ P + R

All classifiers used in this paper were from those available within the Weka platform and thius, used

this implementation. Each classifier was initially evaluated using 10 -fold cross validation to reduce

overfitting. A variety of classifiers were chosen based on their performance in ICS scenarios discussed

in previous studies of IDS, namely Random Forest, J48, Naive Bayes ZeroR and finally Jrip. The

classifiers evaluated are described in more detail below.

-Random Forest: Uses an ensemble learning method, which creates a number of decision trees where

each tree outputs a class prediction. These predictions are aggregated and the class with the highest

number of individual predictions is chosen as the overall output prediction.

-J48: An implementation of C4.5 which itself is an extension of the ID3 algorithm. Trees are built using

information entropy, each node is split using information gain. This classifier uses single pass pruning

to reduce the risk of overfitting.

12

- Naïve Bayes: Generative learning model, this model is based on Bayes theorem cite. Where the

model assumes that the presence of a particular feature in a class is irrelevant to the presence of any

other feature.

-ZeroR: Simply predicts the majority class for every datapoint. For this reason, this classifier serves as

a good baseline. If a classifier does not out-perform this classifier the classifier is not suitable for the

application.

-Jrip: Rule based classifier that uses Repeated Incremental Pruning to Produce Error Reduction

(RIPPER) [12].

Previous studies evaluating power system data have used Jrip + Ada boost on a reduced sample size.

This produced promising results, however, this classifier is not feasible for large datasets as the time

taken to train and evaluate the classifier is extremely large. Therefore, this model has not been

evaluated in this project.

A. Data Pre-processing

Data pre-processing is an important step in machine learning. Carefully analysing the data points being

used to evaluate a classifiers performance is paramount to the reliability of the results obtained.

Python using scikit and pandas were used to handle the pre-processing needs for this project [22].

Infinite values were removed, and the data set was checked for missing values or outliers before any

classification tests were executed. Due to the datasets being in csv format when loaded into Weka the

feature used to indicate the class of a datapoint was originally of type numeric. This features data type

was then changed to nominal as this is supported by the majority of classifiers on the Weka platform.

Weka also provides an ARFF viewer application, this can be used to analyse the features in more detail

and simplifies the conversion from csv files to arff. These can then be Imported into Weka explorer

keeping all the predefined feature types and finally be used to train and then test models.

B. Evaluating the Models

0

10000

20000

30000

Benign

Test Set

Benign

Malicious
0

10000

20000

30000

40000

Benign

Training Set

Benign

Malicious

Fig.2: Distribution of Benign and Malicious datapoints across both the training and test sets

13

The 15 dataset files discussed in section III were combined into one csv. A python program using scikit

learn and pandas were used to split the dataset into approximately 60% training and 40% testing sets.

Once split the sets were converted to .arff which is a recognised machine learning file format for Weka.

Each classifier model was first trained using the training set and 10-fold cross validation. Cross

validation was used to reduce overfitting. This process involves partitioning the dataset into a number

of subsets and holding one set back as the testing set. For K- fold cross validation the dataset is split

into K subsets with 1 set held for testing the others are used to train the model, this process is repeated

K times holding out a different subset each time. For each fold the evaluation score is recorded and

thus giving one overall score for the K folds. Each classifier was then evaluated on the unseen test set

ǁhere the results ǁere used as the ďaseliŶe of that ŵodel’s perforŵance. Results for the baseline

accuracy is displayed in table Fig. 3.

Once this baseline was achieved for all classifiers the next step was to investigate the features

themselves. Understanding which features rank highest and therefore have the greatest influence

over the classification of a datapoint is very important. Modifying sample values in features that have

little or no overall impact on that datapoints overall classification is redundant. Weka includes a filter

called InfoGainAttributeEval, this filter evaluates the entropy value for each feature which displays

each features contribution to the overall class decision. Using Weka’s iŶfogaiŶ filter, the 128 features

were ranked in order of influence. This list was then used to identify which features require the most

attention from an adversarial perspective. The top 3 ranking features are shown in table. 2.

Feature Rank

R4-PM2:V 1

R1-PA2:VH 2

R1-PA3:VH 3

The trained models using the method described in this section of the paper will be used for all future

experiments in the context of this report. The only exception of this is in the adversarial training

section of this paper.

0

10

20

30

40

50

60

70

80

90

100

ZeroR J48 Random

Forest

Naive

Bayes

Jrip

Accuracy

Fig.3: Accuracy Score as a percentage for; ZeroR, J48, Random Forest, Naïve Bayes and Jrip

applied to the unseen test set.

Table.2: Top ϯ raŶked features eǆtraĐtiŶg usiŶg Weka’s IŶfogaiŶ Filter

14

V. Adversarial Example Generation

This section of the paper will outline and discuss two methods of generating adversarial examples.

The first approach was a simplistic approach that was designed for this project with the idea of

producing a baseline for potential levels of misclassification within the test set used without being as

strict on the amount of perturbation needed to be applied to achieve such misclassifications. The

second method described in this paper involves the Fast Gradient Sign Method (FGSM) introduced by

Goodfellow [7]. This method will aim to use much stricter perturbation levels to achieve high levels of

misclassification. FGSM has been applied in two concepts, the first focusing on increasing the number

of false negatives and the second increasing the number of false positives. Both concepts will be used

to further analyse the robustness of ML classifiers.

A. Outline of Manual Approach for Adversarial Attacks

The first approach adopted was to manually introduce noise to the top 10 ranked features values to

force the classification models to miss-classify malicious datapoints as benign. Using the

InfoGainAttributeEval filter within the Weka environment meant extracting the features that influence

the class decision the most was a trivial task. Initial steps in implemented this method involved

extracting the malicious datapoints from the test set to begin modifications. Once a malicious set was

constructed the next step was introducing a method to modify these values to explore the difference

in classifier performance. Using python pandas and data frame objects made handling and

manipulating csv files relatively trivial, using the feature labels it was simple to modify sample data

points independently. Focusing on one feature at a time resulted in the ability to calculate a min-max

range for each filter, then a percentage of that range, for example, 1% and finally increasing each

sample value by the chosen percentage level. For each percentage value a new csv file was produced

which included the adversarial examples generated for all malicious datapoints in the test set. These

adversarial examples where then reintroduced to the benign datapoints creating a new test set for

each percentage value used in this experiment. These newly created test sets were then used to re-

evaluate the models in Weka. To explore whether decreasing certain values had a more detrimental

effect to the overall classification performance of the chosen models the experiments were repeated

but this time applying the method in a negative direction for each feature.

B. Outline of FGSM Approach for Adversarial Attacks

The second approach of producing adversarial examples for this project was using FGSM. Szegedy et

al (2014b) shows that generating adversarial examples for one type of classifier model can be

transferable and have an effect on other models, it is for this reasoŶ that I Đhose to use “klearŶ’s
Support Vector Machine as the model to train and use as the basis of generating adversarial examples

using FGSM. The SVM kernel configuration used for these experiments was the Gaussian orientation

as this is a common kernel to use for non-linear classification problems. SVM is also a classifier used

15

in previous studies [13] and it has shown to be suitable for ICS data and thus can be used as the base

for an IDS. This again supports the decision to use this classifier as the base for generating adversarial

examples.

The approach of generating adversarial examples using FGSM was to first train a model on 4% of the

entire dataset. This percentage was chosen as this was approximately 10% of the testing set used in

all previous experiments. This reduced sample set was used due to performance conditions. The time

taken to execute FGSM attacks on a large dataset was excessive for this project. This could be due to

hardware limitations on the computer used to execute the experiments. To generate an adversarial

example for each malicious data point in the test set, all the malicious data points were extracted from

the test set into a single csv file. Once this file had been produced these malicious datapoints were

parsed to the FGSM along with the parameter Epsilon. The implementation of FGSM used in this paper

was supplied by Adversarial Robustness Toolbox using their Fast Gradient Method implementation

[ϭϱ]. DiffereŶt ǀalues of FG“M’s paraŵeter epsiloŶ ǁere used to ĐoŶtrol the leǀel of perturďatioŶ
applied to each malicious datapoint. Larger values of epsilon introduce larger data perturbation levels.

Table. 3 shows an example of two features that have had FGSM applied with different values of

epsilon. This project has focused on re-evaluating the adversarial examples on Random Forest, Jrip

and J48. This is due to the nature of ZeroR which predicts the majority class for every datapoint, thus

rendering adding noise to features and generating adversarial examples for this classifier to be

redundant. Naive Bayes performed significantly worse than the other 4 classifiers used in these

experiments and therefore displayed its lack of suitability to this form of classification. It will therefore

not be included in the further evaluations discussed in this paper.

Dataset R1-PA1:VH R1-PM5:I

Original Test set 85.16444667 297.7369

Epsilon = 0.1 85.26444244 297.6369

Epsilon = 1.0 86.16444397 296.7368

Another type of adversarial attack which is described by Corona et al (2013) is overstimulation. This

attack focuses on creating false alerts that aim to overwhelm the operator. This attack essentially

causes the classifier model to produce a large number of false positives. False positives are when a

benign data point gets classified as being malicious. An IDS that is constantly producing false alerts

that bombards the operators can have many negligible effects of the monitoring of a network. For

example, it can lead to an operator missing true positive datapoints due to the number of false

positives clouding causing a cyber-attack to go unnoticed and disrupt the operations of the system.

To analyse the potential impact of such an attack, the same FGSM implementation as discussed in the

first part of this section was used to generate adversarial examples on the benign data points in the

test set. Again, using the same range of epsilon values, the performance and False positive rate of

each classifier was analysed. This attack is focused on raising the False positive rate for the benign

class.

Due to the imbalance of classes within the dataset the F-score will not be the only metric used to

evaluate the effectiveness of this attack. The confusion matrix the classifier produces will be used

Table. 3: Adversarial examples generated by FGSM with 0.1 and 1.0 epsilon

values applied to original test set.

16

alongside the F-score to give a better understanding on the effect this type of attack is having on the

classifier models.

VI. Results

This section of the paper will outline and display the findings produced by implementing the methods

discussed in section V.

A. Results for Manual Adversarial Example Generation

This section will discuss the results found by applying the methods outlined in section V.A. The first

method explained in this section involves increasing the selected feature sample values by varying

percentage values ranging from 1 – 10 %.

Random Forest and Jrip showed improvement in F-scores due to the adversarial examples produced

for every percentage value over the F-score produced on the original unseen test set. This could

indicate that the noise introducing in a positive direction has aided these classifiers in distinguishing

between benign and malicious datapoints. J48 showed a slight decline in F-score most convincingly

for 1 and 2 % perturbation which then levelled off for all other perturbation values. Fig. 4 displays all

results found by employing this method of adversarial generation for each classifier.

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Test set 1 2 3 4 5 6 7 8 9 10

F-Score

Percenatge used for Pertubation

Increasing Sample Values

Random Forset

J48

Jrip

Fig. 4: F-scores for each classifier against the original unseen test set and

ranges 1 – 10% perturbation applied to the top 10 ranked features in a

positive direction.

17

The second manual approach taken was to apply the same methodology of perturbation level but to

implement this in a negative direction to produce adversarial examples. This approach had

sigŶifiĐaŶtlǇ ŵore iŵpaĐt oŶ eaĐh ŵodel’s perforŵaŶĐe over the method applying perturbation in a

positive direction. See Fig.5 for all F-scores plotted against the percentage ranges. See Table. 4 for the

confusion matrices of each classifier when applied to the unseen test set.

Predicted

0 1

Actual 0 5376 3026

 1 1843 18585

Predicted

0 1

Actual 0 2065 6337

 1 692 19736

Jϰϴ’s F-score ranges from 0.827 which was achieved against the unseen test set with no adversarial

examples introduced, to 0.684 which was achieved on adversarial examples generated with 10%

perturbation. This is a drop of 0.143. The confusion matrix produced by J48 when applied to the

adversarial examples generated with a 10% perturbation reduction is shown in Table. 5. This shows

that the percentage of malicious data points that were misclassified as benign (false negatives) in the

original test set increases from approximately 9% to 31%. This demonstrates the effect of the

adversarial examples generated using this method on the ŵodel’s ĐlassifiĐatioŶ F-score. This classifier

conforms to the hypothesis that the larger the perturbation the lower the classification accuracy.

However, looking at Fig. 5 this demonstrates that the biggest difference in F-score between two points

in the graph was between the test set and applying the classifier to the 1% adversarial example set.

Table. 5 shows the confusion matrix for 1% perturbation. This shows that 4092 malicious data points

have been misclassified as benign. When compared to the origin test set this is a rise of 2249 with only

a 1% perturbation. The F-score has also dropped from 0.827 to 0.757. This shows a significant drop in

F-score alongside a large increase in false negatives for a very small perturbation size.

Predicted

0 1

Actual 0 6439 1963

 1 339 20089

J48 Random Forest

Jrip

Table. 4: Confusion matrices for J48, Random Forest and Jrip when

applied to the unseen test set (Benign = 0, Malicious = 1)

18

Random Forest showed less change is F-score with the same perturbation levels applied when

compared to both J48 and Jrip. As seen in Fig. 5 at ϴ% perturďatioŶ leǀel the Đlassifier’s F-score is at

its lowest of 0.895 this is still relatively high. This is only a 0.022 total drop Đoŵpared to Jϰϴ’s total

drop of 0.143 is not a significant amount. This could indicate that the Random Forest classifier is more

robust to this type of adversarial example generation method. Further analysis can be drawn that for

9 and 10% the classifier performs better. This could suggest that when bigger values are applied to

the samples it helps Random Forest distinguish between classes and thus, reducing the classification

error.

Jrip performed worst out of the three classifiers on the unseen test set, having 0.709 as its F-score.

Alongside J48 the larger the perturbation size applied to the sample values the lower the F-score. The

total drop in F-score for Jrip was 0.208. This is the biggest change in classification accuracy out of the

3 models. This lowest F-score was produced on the test set with 10% perturbation. The biggest drop

from 1 percentage difference is from the 1% and 2% percent example generations. At 1% the F-score

is at 0.675 which drops to 0.615 at 2%. Adversarial examples generated from a 2% perturbation causes

the F-score of Jrip to drop from a total of 0.094. Which again, is a significant amount that supports the

effect this adversarial generation method is achieving.

Observing the behaviours of all three classifiers when applied to adversarial examples produced from

decreasing sample values it is noticeable that Jrip had the biggest change drop in F-score, whilst J48

produced lower F-scores directly correlated to increasing perturbation size it is still justifiable to say

that Jrip is more susceptible l to this type of adversarial example generation. Random Forest showed

the smallest performance drop and overall produced better classification than the other two models

suggesting that this model is more robust to this type of adversarial attack.

0.48
0.5

0.52
0.54
0.56
0.58

0.6
0.62
0.64
0.66
0.68

0.7
0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94

Test set 1 2 3 4 5 6 7 8 9 10

F-Score

Percenatge used for Pertubation

Decreasing Sample Values

Random Forset

J48

Jrip

Fig. 5: Perturbation applied in negative direction for range 1 – 10%

19

Dataset R1-PA2:VH R4-PM:V

Original test set 97.44866 132495.2188

1% perturbation 93.84877 131975.041882

10% 61.44972 127293.4

B. Results for Adversarial Examples Generated Using FGSM

This section of the paper will display and analyse the results from applying the methodology defined

in section V.B. This method involves using FGSM with varying levels of its epsilon parameter to

introduce different levels of perturbation to the data set.

The first implementation of FGSM involves generating adversarial examples for all malicious

datapoints within the test set. Fig. 6 displays the F-score for Jrip, Random Forest and J48 against

epsilon values ranging from 0.1 to 1. The starting value of epsilon used by Goodfellow (2015) was 0.1

and this paper has followed that guideline [7].

Predicted

0 1

Actual 0 5376 3026

 1 4092 16336

Predicted

0 1

Actual 0 5376 3026

 1 6467 13961

Adversarial examples generated with

10% decrease applied (Benign = 0,

Malicious = 1)

Adversarial examples generated with

1% decrease applied (Benign = 0,

Malicious = 1)

Table. 5: J48 confusion matrix produced when applied to

adversarial examples

Table. 6: Adversarial examples generated by decreasing varying percentage levels of the

selected features range.

20

The results shown in Fig. 6 suggest that Jrip has the lowest F-score out of the 3 classifiers across all

adversarial examples generated, the F-score for Jrip on the unseen test set is also the lowest out of

the 3 being only 0.709. With FGSM generating adversarial eǆaŵples ǁith aŶ epsiloŶ ǀalue of Ϭ.ϭ Jrip’s
F-score drops to 0.567. This is the biggest performance drop of all epsilon values across all 3 classifiers.

The confusion matrix for Jrip produced on the unseen test set and for epsilon value 0.1 is shown in

Table. 7. The number of False Negatives for the unseen test set is 692 which is 3%, compared with

6097 which is approximately 30% for the epsilon value of 0.1 This is a significant increase in False

Negatives. Jrip applied to adversarial examples generated with epsilon values larger than 0.1 did show

an increase in the number of False Negatives. However, as the increase was minimal this paper has

focused on highlighting FGSM with epsilon 0.1. The reason for this is that finding the smallest

perturbation needed for maximal performance decrease is the aim for all adversarial attacks.

Predicted

0 1

Actual 0 2056 6337

 1 692 19736

0.45

0.55

0.65

0.75

0.85

0.95

Test

set

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-score

Epsilon

Random Forest

Jrip

J48

Predicted

0 1

Actual 0 2056 6337

 1 6097 14331

Fig. 6: RaŶdoŵ Forest, Jrip aŶd Jϰϴ’s F-score for each adversarial example

produced using epsilon values (0.1 - 1).

Unseen Test set Epsilon = 0 Epsilon = 0.1

Table. 7: Confusion matrices produced by Jrip for (clean) test set

and adversarial generated examples (Benign = 0, Malicious = 1)

21

J48 and Random Forest performed better than Jrip on the unseen test set also performing better than

Jrip over all adversarial eǆaŵples geŶerated. Jϰϴ’s F-score dropped by 0.041 when epsilon equalled

0.7 which was its lowest score, see Table 8. for the confusion matrix for J48 applied to adversarial

examples generated using epsilon 0.7. More interestingly, the J48 classifier showed very slight

classification improvement after epsilon = 0.7 and continued to rise slowly for the remainder of the

epsilon values used in this experiment. One possible reason for this is that the larger perturbations

added to the datapoints helped distinguish the malicious points from the benign and therefore slightly

improving the ŵodel’s performance. J48 followed a similar pattern to Jrip regarding the biggest

change in performance F-scores relative to epsilon values. Again, epsilon equal to 0.1 had the greatest

impact on J48s F-score. Adversarial examples generated from this epsilon value would be the optimum

level of perturbation used to achieve the highest relative performance impact.

Predicted

0 1

Actual 0 5376 3026

 1 3142 17286

Random forest performed the best on the unseen test set and also was the classifier that showed the

smallest decrease in performance over all adversarial examples. This is shown by the total drop of

0.045 in Random Forest’s F-score from unseen test set to epsilon equal to 1. See Table. 9 for confusion

matrix where epsilon = 1.

These results show that adversarial examples generated using FGSM has affected the performance

accuracy of all three models. For all models expect J48 as the epsilon value increased the classifiers F-

score decreased. The original model used for adversarial generation was a SVM. The results show that

examples produced for SVM are generalisable and therefore have affected the performance of

Random Forest, Jrip and J48 models. This also is at harmony with Szegedy et al (2014b) theory that

adversarial examples are generalisable between models. Further demonstrating that without knowing

the exact model being used for an IDS, FGSM can be used to create adversarial examples that could

Predicted

0 1

Actual 0 6439 1963

 1 1708 18720

Table. 8: J48 applied to Malicious datapoints using epsilon = 0.7

(Benign = 0, Malicious = 1)

Table. 9: Random Forest applied to Malicious datapoints using epsilon = 1

(Benign = 0, Malicious = 1)

22

reduce the accuracy of a number of classifiers that are used in the field of ICS. With small values of

epsilon classification accuracies are shown to drop. Fig. 6 shows the extent of miss-classifications if

larger epsilon values and thus larger perturbations are applied to the dataset. While these adversarial

examples are more likely to be spotted due to the large level of noise added to the datapoints the

effeĐt oŶ the ŵodel’s perforŵaŶĐe should these examples be undiscovered is considerable. For both

J48 and Jrip the difference in F-scores for epsilon values greater than 0.1 is fractional. This could

indicate that these models are more sensitive to smaller data perturbations but when handling larger

perturbations, the accuracy of the model does not decrease in parallel as the model can distinguish

between datapoints. On the other hand, Random Forest behaved as predicted, as epsilon increased

the ŵodel’s aĐĐuraĐǇ deĐreased. The oǀerall aĐĐuraĐǇ of Random Forest was better than the two other

models furthermore, Random Forest had the lowest drop in F-score over all adversarial examples used

in this experiment. Indicating that this model is the most robust to this adversarial generation method

outlined in section V.B.

The remainder of this section will analyse the results of an overstimulation attack type. This is the

second method of utilising FGSM to create adversarial examples discussed in this paper. This attack

focuses on raising the false positive rate produced by a classifier. This is achieved by increasing the

number of benign datapoints classified as being malicious.

The adversarial examples generated using this method had drastic effects on Jϰϴ’s false positive rate.

Table. 4 and 10 show the confusion matrices for J48 on the unseen test set and adversarial examples

generates with epsilon 0.1 respectively. J48 applied to the unseen test set has a total of 3026 False

Positives. This is approximately 36% misclassification for the benign class. Adversarial examples

generated using epsilon value of 0.1 forced J48 to produce 6630 False Positives, a misclassification

percentage of 79% for the benign class, this is a 43 percentage point increase in the number of false

positives. The number of False Positives increases very slightly for the rest of the epsilon values used

in this experiment. This indicates that smaller epsilon values and thus, smaller perturbations to data

points ŵaǇ haǀe greater iŵpaĐt oŶ the ŵodel’s ĐlassifiĐatioŶ perforŵaŶĐe. This should be further

evaluated as the main goal of any adversarial attack is to be undetected by the classifier model, this is

more likely achieved using the smallest perturbation levels possible that still effect the classifiers

performance.

23

Jrip has less significant performance change when applied to the range of adversarial examples

introduced by this attack method. One possible reason for this is that Jrip has a much higher number

of False Positives when applied to the original unseen test set meaning there is a much smaller number

of True Negatives that the adversarial examples can leverage and force the model to misclassify. The

number of False Positives Jrip displays when applied to the unseen test set is 6337, a misclassification

percentage of approximately 75% for the benign class. Comparing this starting False Positive

percentage to that produced by J48 on the same test set could explain the difference in performed

drops between the model when applied to adversarial examples. See Table. 10 for the confusion

matrix produced by Jrip when applied to FGSM with epsilon equal to 0.1.

Similar to the first adversarial attack mentioned in this subsection, Random Forest behaved as

expected. As the perturbations applied increased alongside epsilon, the classification accuracy

decreased. Unlike Jrip, Random Forest when applied to the test set only misclassified a small fraction

approximately 23% of the benign datapoints as being malicious, a much better initial False Positive

rate than Jrip. This percentage rose to approximately 58% when applied to adversarial examples with

epsilon equal to 1. See Table. 11 for the confusion matrix for epsilon equal to 1.

Predicted

0 1

Actual 0 1772 6630

1 1843 18585

Predicted

0 1

Actual 0 5864 2538

1 339 20089

Predicted

0 1

Actual 0 1554 6858

1 692 19736

Table. 10: Confusion matrix for J48, Random Forest and Jrip. Epsilon = 0.1 applied to Benign data points

(Benign = 0, Malicious = 1)

Jrip

J48 Random Forest

24

The observation of the behaviour for Random Forest, Jrip and J48 when introduced to this

overstimulation attack can conclude that all 3 models produced increased levels of False Positives

alongside decreased F-scores indicating the effectiveness of this attack and thus the methodology

outline in section V.B. This attack has produced almost parallel F-score trends when compared to the

first attack implemented using FGSM. The results produced from this attack also highlight that in all 3

cases, the most efficient epsilon value to use for adversarial generation is 0.1. This again opens the

door to further research in smaller epsilon permutations to identify the optimum noise level needed

to create the most relative impact of the classifier algorithm. Moreover, this attack has again shown

the generalisation between models and has also highlighted that FGSM can be used in an ICS context

for adversarial machine learning.

0.6
0.63
0.66
0.69
0.72
0.75
0.78
0.81
0.84
0.87

0.9
0.93
0.96

F-Score

Epsilon

FGSM on Benign Datapoints

Random Forest

Jrip

J48

Predicted

0 1

Actual 0 4876 3526

1 339 20089

Fig. 7: Random Forest, Jrip and J48 applied to the test set and all ranges (0.1 – 1) of

epsilon values generated for all benign datapoints.

Table. 11: Confusion matrix for Random Forest with

FGSM applied to benign datapoints with epsilon = 1.

 (Benign = 0, Malicious = 1)

25

VII. Adversarial Training

This section of the project will discuss and apply adversarial training to the models evaluated in section

VI leading to further analysing the ŵodel’s robustness to the adversarial methods discussed in VI.B

Adversarial training focuses on improving a classifiers performance at recognising perturbations

added to datapoints intended to force a classifier to misclassify datapoints and therefore, reduce the

classifiers accuracy. Szegedy et al (2014b) suggest that by adding a portion of the adversarial examples

to the training set will improve a ŵodel’s roďustŶess to adversarial attacks. The first attack method

outlined in section V.B will be used to evaluate the effectiveness of adversarial training on the

robustness of a classifiers accuracy when identifying malicious datapoints.

Both Jrip and Random Forest models achieved their lowest F-score with epsilon value of 1.0. For this

reason, 25% of the adversarial examples generated with this epsilon value have been added to the

original training set. Both models were retrained using this new test set and then re-evaluated on all

unseen adversarial examples. J48 performance was at its lowest with epsilon value 0.7 again, 25% of

the adversarial examples generated with epsilon 0.7 were added to original test set to create a new

test set and the model re-trained and re-evaluated on all adversarial examples.

Random Forest and Jrip both performed significantly better with adversarial training over the entire

array of adversarial examples compared to the same classifier model without adversarial training.

Random Forest with adversarial training had its lowest F-score at 0.901 this compared to 0.882 from

the model without adversarial training is a noticeable difference, an increase of 2 percentage points.

What’s ŵore iŶterestiŶg is that for epsiloŶ ǀalues aďoǀe Ϭ.ϱ the Đlassifier with adversarial training

produced 0 False Negatives when classifying malicious datapoints. This means that all malicious

datapoints were predicted to be malicious with no errors. Random Forest with no adversarial training

performed slightly worse as the epsilon value increased however, as already discussed for the classifier

with adversarial training improved with the increase of epsilon for 80% of the epsilon values used. Fig.

8 shows Random Forest F-scores across all adversarial examples for the model adversarial training and

without.

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Test

set

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-score

Epsilon

Random Forest

With Adv Trainng

Without Adv training

26

Jrip in every case saw the accuracy of predicting malicious datapoints improve with adversarial training

over all unseen adversarial examples. For epsilon values 0.3 - 1 Jrip had an F-score of 0.718. In

comparison the highest F-score recorded for Jrip without adversarial training was 0.567, furthermore,

this highest F-score was achieved with the smallest epsilon value used, 0.1. With adversarial training

Jrip produced an F-score of 0.71 or greater across the whole range of adversarial examples. Jrip with

adversarial training produced 0 False negatives when classifying malicious datapoints for epsilon

values 0.8 to 1, this could be due to the effectiveness of this adversarial training method or slightly

due to overfitting as the adversarial examples added to the original test set were generated using

epsilon equal to 1. Fig. 9 shows the difference is accuracy performance between adversarial training

applied to Jrip and non-adversarial training models. Although overfitting was mentioned as a possible

reason for certain epsilon values achieving better F-scores the overwhelming increase in accuracy

performance across all adversarial examples reinforces the impact adversarial training has had on the

classifier.

J48 without adversarial training had very consistent F-scores across the entire epsilon range. J48

showed less improvement with adversarial training compared with both Jrip and Random Forest but

still slight improvement across all combinations of adversarial examples. Fig. 10 displays the F-score

for every adversarial ĐoŵďiŶatioŶ geŶerated usiŶg differeŶt ǀalues of FG“M’s epsiloŶ ǀalue agaiŶst
the model with and without adversarial training.

0.5

0.6

0.7

0.8

0.9

Test

set

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-score

Epsilon

Jrip

Without Adv Training

With Adv Training

Fig. 8: Random Forest F-score for each epsilon value (0.1 – 1) with and without

adversarial training

Fig. 9: Jrip classifier F-score for score for each epsilon value (0.1 – 1) with

and without adversarial training.

27

Fig. 10: Jrip classifier with and without adversarial training applied to all epsilon values (0.1 – 1)

See appendix 1 and 2 for the comparison of confusion matrices produced for epsilon values 0.1 and 1

between models with and without adversarial training.

Jrip displays the most improvement as a result of adversarial training. Followed by Random Forest.

J48 showed the least performance increase due to adversarial training.

VIII. Conclusion

Machine learning classifiers are a fundamental element of IDS. The advancements of the internet have

introduced interconnectivity between the once secluded ICS and the external world. Whilst this new

level of connectivity has greatly improved some aspects of monitoring and performing operations on

an ICS network it has also introduced a new attack vector to ICS. Adversarial attacks are known to

hinder the performance of such classifiers, furthermore, disrupting the ICS operations which can cause

massive problems, as CNI use ICS if an adversarial successfully bypasses an IDS monitoring the ICS

using adversarial machine learning the consequences could be astronomical. Not only can cyber-

attacks go unnoticed causing copious amounts of problems. The magnitude of alerts a security

engineer is faced with on a day to day basis whilst monitoring an ICS is cumbersome without the added

danger of an adversarial attack causing extra false positive alerts.

This paper has discussed the effect of generating adversarial examples is a number of ways with the

intention of decreasing the accuracy performance of a number of classifiers that show promising

performance measures in the context of classifying data found in ICS. Two methods of generating

adversarial examples were outlined in this paper. One method consisted of manually adding various

levels of noise to the dataset and observing their impact of the classification models and the second

method utilised FGSM to generate optimised noise levels within varying bounds, controlled by the

parameter epsilon. The manual method of data perturbation did produce promising results. However,

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

Test

set

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-score

Epsilon

J48

Without Adv Training

With Adv Training

28

the level of noise introduced to achieve significant performance reduction for each classifier was much

larger than those examples generated using FGSM.

This paper has evaluated the effectiveness of FGSM when generating adversarial examples on a power

system testbed varying the level of perturbation applied to the features. The analysis reported in this

paper shows that J48, Jrip and Random Forest all display a decrease in F-score performance when

applied to adversarial examples generated using FGSM. Random Forest performed the best when

applied to the adversarial examples generating using FGSM. This in turn indicates the higher

robustness level of this model furthermore indicating its potential use for an IDS for ICS.

The results from this paper also suggest that using adversarial training and introducing 25% of

adversarial examples generated using FGSM to the original training set and then re-training the

models improves the robustness against unseen adversarial examples significantly for both Random

Forest and Jrip.

This model has also reinforced the theory put forward by Szegedy et al (2014b) suggesting the

generalisation of adversarial examples generated by one model effecting the performance of other

types of model. This has been shown by using a SVM to generate adversarial examples using FGSM

and observing the behaviour of Random Forest, Jrip and J48.

IX. Future Work

An aspect of this project that requires further attention is the scope of classifiers used in the

experiments. Expanding this list to include more models would help fortify a good model to use for

and IDS tailored to ICS. This project used Weka as the implementation of each classifier model. The

robustness of SVM was not evaluated in this project but has been suggested to be effective in IDS.

Further research into the feasibility of using such a classifier in this context is needed.

Future work could also include the implementation of other adversarial methods like Carlini and

Wagner (2016) and Newton-fool (2017). The scope of this project focuses on FGSM which is a popular

adversarial method within the image classification domain however, more research into a more

suitable method for ICS applications may be needed to extensively explore the ability of adversarial

machine learning within this context. To test the effectiveness of FGSM this project focuses on epsilon

values below 1. Future work could provide an insight into using larger epsilon values and their effect

on the robustness of classifiers against the size of perturbations.

Most IDS using machine learning classifiers will be assigned the task of not only identifying a data point

as malicious but also what type of attack is occurring within in the system. Or this type of classification

a multiclass dataset Is required. As this project focuses on binary class datasets future work could

involve working with multiclass datasets and evaluating the impact adversarial examples produced

using methods like FGSM have on multiclass accuracy. The overall goal of the adversarial example will

still be to fool the classifier to misclassify a malicious datapoint as being benign, but the extra level of

sensitiveness needed to train a model to classify data points correctly in a multiclass set is higher than

that of a binary set. Discovering whether this more sophisticated training paradigm will influence a

ŵodel’s susceptibility to adversarial examples could be included in future work now this project can

be used as a baseline.

Another area of future work would focus on finding an optimal level of adversarial examples

reintroduced to a training set that both improves a ŵodel’s robustness but does not lend itself to

overfitting.

29

This project did not look into the effects of defence distillation used as an adversarial training method

in an ICS context, this method has showed promising results for smaller datasets [12] and therefore

requires further research into its capabilities in larger scenarios. Future work could identify the

applicability of such defence methods in larger contexts providing critical research into the use of

adversarial training for IDS.

X. Reflection

On reflection deciding on a machine learning project with no background knowledge in this area was

a steeper learning curve than initially thought. Whilst knowledge of ICS and protocols was beneficial

to this project as it helped to identify the application of this work and the motivation of the research

area it did not serve as any technical help. However, my new understanding of machine learning as a

broad concept has increased exponentially. Concepts like, decision trees, adversarial attacks and F-

measures were all alien to me prior to this project. I know feel comfortable talking about such concepts

in an academic environment.

My methodology was to first try to understand the concept of machine learning which I still believe

was the intuitive starting point. However, now I see that practice with documented and well

researched datasets would have given me a much better understanding of the stages of machine

learning i.e. pre-processing, training, validation, testing and understanding the results output by the

Weka platform. This would have also aided my overall knowledge of the Weka platform and all the

features that was at my disposal. I decided to by-pass this stage and focus straight on the power

system dataset which had minimal work related to it and a small document which described the

dataset in technical terms that I was not accustom to. This made analysing results and attempting

create adversarial examples for this dataset difficult and time consuming.

Research is a very different concept to anything I have approached in the past and adapting to the

unknown was a challenging concept. This was also the reason I adopted this project as a way of

expanding my work methodologies and mental focus.

Adversarial attacks was not a concept I had encountered or worked on before therefore, considerable

amounts of time was needed to understand some of the theory behind common adversarial methods.

This also meant that implementing these methods even without the need to understanding exactly

how they worked was challenging. FGSM is a fairly basic method which can be modified to produce

larger perturbations to data by modifying one parameter. Other methods such as JSMA require further

knowledge of the foundations of the method to manipulate them in order to produce desired results.

Methods more complex like JSMA would have required more time to decipher and implement in an

ICS context due to the lack of resources and research focuses on non-image-based adversarial

generation.

An aspect of my approach to this project was that slightly lacking the early stages was the extent of

the literature reviews surrounding this area. As highlighted, this is a fairly new research area with

limited relevant papers especially on non-image focuses adversarial implementations. However, upon

further inspection there was a number of papers that discussed related work which would have been

beneficial earlier in this project.

30

The phrase ͞ǁalk ďefore Ǉou ĐaŶ ruŶ͟ is ǀerǇ apt for this is projeĐt. UŶderstaŶdiŶg the fuŶdaŵeŶtals
to build upon was the correct approach which I will use again in similar scenarios.

Another unforeseen factor during this project was the global pandemic covid-19. Numerous

days/weeks was lost due to the unprecedented times that this pandemic introduced. Moving back

home and self-isolating impacted productivity greatly. My mental attitude much like the economy was

crashing. Lack of motivation was not a risk that was included in the initial plan risk assessment as this

has never been a factor in previous work.

One learning of machine learning that I did not predict was the excessive amount of processing

training classifier models and evaluating them took. In the early stages of this project following a

literature review of a paper using the same dataset I chose for this project I decided to use the classifier

Jrip with ada boost as this classifier performed best on this ICS data. What I failed to notice was that

this classifier was only tested on a small fraction of the total dataset due to the lengthy training time.

Unfortunately, a number of days was wasted waiting for this model to be trained on a large dataset.

Being unpractised and inexperienced with machine learning as a whole I did not realise that this was

abnormal and shows how the classifier in question is not suitable to real world applications and was

only used to show potential not application.

An element of pre-processing which on reflection may have been slightly overlooked is class balancing,

the amount of benign data points is much smaller compared to the amount of malicious datapoints

within the dataset I have used for all experiments. Having unbalanced classes could impact the

reliability of results.

Focusing more on the technical implementation and experiments, after analysing the results drawn

from Fig. 6 perhaps, I should have experimented with smaller values of epsilon to observe the effects

on the classifiers performance. All 3 classifiers F-scores dropped significantly when applied to

adversarial examples generated with FGSM and an epsilon value of 0.1. Experimenting with epsilon

values of below 0.1 could have shown worst performance drops or demonstrated the optimum level

of perturbation for greatest adversarial effect. This is definitely an area of this paper that should have

been further explored.

31

XI. References

[1] Teiǆeira, MarĐio et al. ͞“CADA “Ǉsteŵ Testďed for CǇďerseĐuritǇ ResearĐh UsiŶg MaĐhiŶe
Learning ApproaĐh.͟ Future IŶterŶet ϭϬ.ϴ ;ϮϬϭϴͿ: ϳϲ. Crossref. Weď.

[2] Baskar, D. and Selvam, P., 2020. Machine Learning Framework For Power System Fault Detection

And Classification. 9(02).

[3] A. N. Hasan, P. S. P. Eboule and B. Twala, "The use of machine learning techniques to classify

power transmission line fault types and locations," 2017 International Conference on Optimization of

Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines

and Power Electronics (ACEMP), Brasov, 2017, pp. 221-226, doi: 10.1109/OPTIM.2017.7974974.

[3] R. C. Borges Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari and S. Pan, "Machine

learning for power system disturbance and cyber-attack discrimination," 2014 7th International

Symposium on Resilient Control Systems (ISRCS), Denver, CO, 2014, pp. 1-8.

[4] J. M. Beaver, R. C. Borges-Hink, and M. A. BuckŶer, ͞AŶ eǀaluatioŶ of ŵaĐhiŶe learŶiŶg ŵethods
to deteĐt ŵaliĐious sĐada ĐoŵŵuŶiĐatioŶs,͟ iŶ ϮϬϭϯ ϭϮth IŶterŶatioŶal CoŶfereŶĐe oŶ MaĐhine

Learning and Applications, vol. 2

[5] https://www.doc.ic.ac.uk/~maffeis/papers/dac19.pdf

[6] Corona, I., Giacinto, G. and Roli, F., 2013. Adversarial attacks against intrusion detection systems:

Taxonomy, solutions and open issues. Information Sciences, 239, pp.201-225.

[7] Goodfellow, Ian & Shlens, Jonathon & Szegedy, Christian. (2015). Explaining and harnessing

adversarial examples. 1-10.

[8] G. Zizzo, C. Hankin, S. Maffeis, and K. Jones, “Adversarial machine learning beyond the image
domain,” in 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE, 2019a, pp. 1–4.

[9] Zizzo, Giulio, Chris Hankin, Sergio Maffeis and Kevin Jones. “Intrusion Detection for Industrial
Control Systems: Evaluation Analysis and Adversarial Attacks.” ArXiv abs/1911.04278 (2019b): n. pag.

[10] Szegedy, Christian, Zaremba, Wojciech, Sutskever, Ilya, Bruna, Joan, Erhan, Dumitru, Goodfellow,

Ian J., and Fergus, Rob. Intriguing properties of neural networks. ICLR, abs/1312.6199, 2014b. URL http:

//arxiv.org/abs/1312.6199

[11] Nicolas Papernot, Patrick Drew McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.

Distillation as a defense to adversarial perturbations against deep neural networks. CoRR,

abs/1511.04508, 2015. URL http://arxiv.org/abs/1511.04508.

[12] William W. Cohen. ͞Fast Effective Rule Induction͟ ;ϭϵϵϱͿ

[13] A. Robles-DurazŶo, N. Moradpoor, J. MĐWhiŶŶie, aŶd G. Russell, ͞A superǀised eŶergǇ
monitoring-based machine learning approach for anomaly detection in a clean water supply

sǇsteŵ,͟ iŶ ϮϬϭϴ IŶterŶatioŶal CoŶfereŶĐe oŶ CǇďer “eĐuritǇ aŶd ProteĐtioŶ of Digital “erǀiĐes

(Cyber Security). IEEE, 2018

[14] Nicolae, Maria-Irina and Sinn, Mathieu and Tran, Minh~Ngoc and Buesser, Beat and Rawat,

Ambrish and Wistuba, Martin and Zantedeschi, Valentina and Baracaldo, Nathalie and Chen, Bryant

https://www.doc.ic.ac.uk/~maffeis/papers/dac19.pdf

32

and Ludwig, Heiko and Molloy, Ian aŶd Edǁards, BeŶ. ͞Adversarial Robustness Toolbox ǀϭ.Ϯ.Ϭ͟,

Journal CoRR, Vol 1807.01069 2018 https://arxiv.org/pdf/1807.01069

[15] Pedregosa, F. , Varoquaux, G.,Gramfort, A.,Michel, V.,Thirion, B. ,Grisel, O.,Blondel, M.

,Prettenhofer, P., Weiss, R.,Dubourg, V. , Vanderplas, J. , Passos, A. , Cournapeau, D. ,Brucher, M. ,

Perrot, M. and Duchesnay, E. ͞Scikit-learn: Machine Learning in Python͟. Journal of Machine

Learning Research., Vol 12, pages 2825 -2830, 2011.

[16] Nicolas Papernot and Fartash Faghri and Nicholas Carlini and Ian Goodfellow and Reuben

Feinman and Alexey Kurakin and Cihang Xie and Yash Sharma and Tom Brown and Aurko Roy and

Alexander Matyasko and Vahid Behzadan and Karen Hambardzumyan and Zhishuai Zhang and

Yi-Lin Juang and Zhi Li and Ryan Sheatsley and Abhibhav Garg and Jonathan Uesato and Willi Gierke

and Yinpeng Dong and David Berthelot and Paul Hendricks and Jonas Rauber and Rujun Long.

͞Technical Report on the CleverHans v2.1.0 Adversarial Examples Library͟. arXiv preprint

arXiv:1610.00768. 2018.

[17] L. Huang, A. D. Joseph, B. NelsoŶ, B. I. RuďiŶsteiŶ, aŶd J. D. TǇgar, ͞Adǀersarial ŵaĐhiŶe
learŶiŶg,͟ iŶ ProĐeediŶgs of the ϰth ACM ǁorkshop oŶ “eĐuritǇ aŶd artifiĐial iŶtelligeŶĐe. ACM, ϮϬϭϭ,
pp. 43– 58.

[18] Xiaoyong Yuan and Pan He and Qile Zhu and Xiaolin Li ͞Adversarial Examples: Attacks and

Defenses for Deep Learning͟. ϮϬϭϳ.

[19] ͞PoǁersǇsteŵ dataset readŵe.pdf,͟

[20] Nicholas Carlini and David Wagner, ͞Towards Evaluating the Robustness of Neural Networks͟..
arXiv1608.04644 2016

[21] Uyeong Jang, Xi Wu, and Somesh Jha. 2017. Objective Metrics and Gradient Descent Algorithms

for Adversarial Examples in Machine Learning. In Proceedings of the 33rd Annual Computer Security

Applications Conference (ACSAC 2017). Association for Computing Machinery, New York, NY, USA,

262–277.

[22] Wes McKinney. Data Structures for Statistical Computing in Python, Proceedings of the 9th

Python in Science Conference, 51-56 (2010)

[23] https://ics-cert.kaspersky.com/reports/2019/03/27/threat-landscape-for-industrial-

automation-systems-h2-2018/

https://arxiv.org/pdf/1807.01069

33

XII. Appendix

1) Confusion matrices for Random Forest, Jrip and J48 for epsilon value 0.1. Left hand column

shows results with adversarial training and right hand column shows original training method.

2) Confusion matrices for Random Forest, Jrip and J48 for epsilon value 0.1. Left hand column

shows results with adversarial training and right hand column shows original training method.

Predicted

0 1

Actual 0 1888 6514

1 261 20167

Predicted

0 1

Actual 0 6400 2002

1 767 19661

Predicted

0 1

Actual 0 1888 6514

1 261 20167

Predicted

0 1

Actual 0 2065 6337

1 6097 14331

Predicted

0 1

Actual 0 5372 3030

1 2969 17459

Predicted

0 1

Actual 0 5376 3036

1 3006 17422

Random Forest with Adversarial Training

Jrip

J48

Random Forest Without

Adversarial Training

J48

Jrip

34

Predicted

0 1

Actual 0 6439 1963

1 1708 18720

Predicted

0 1

Actual 0 6400 2002

1 0 20428

Predicted

0 1

Actual 0 1888 6514

1 0 20428

Predicted

0 1

Actual 0 2065 6337

1 6448 13980

Predicted

0 1

Actual 0 5372 3030

1 3039 17389

Predicted

0 1

Actual 0 5376 3026

1 3065 17363

Random Forest

Jrip

Random Forest

Jrip

J48 J48

