
 1

Final Report

Hyperpartisan News Detection

Cardiff University

School of Computer Science and Informatics

CM3203 - One Semester Individual Project

Author: Patrick Noyau

Student Number: 1723822

Supervisor: Luis Espinosa-Anke

Moderator: Dr Daniel J. Finnegan

 2

Abstract

Hyperpartisan news publishers are far more likely to produce news articles containing

falsehoods than neutral mainstream publishers. The impact fake news can have on

societies and democracies is huge, and since 2016 there has been much hype

surrounding the issue, with companies and governments seeking to crack down on

its emergence.

The aim of this project is to create a machine learning classification system, that can

successfully predict if a news article is hyperpartisan or not, and to see which features

of news articles are most successful at differentiating between hyperpartisan and

neutral news.

 3

Table of Contents

Abstract ... 2

Table of Contents .. 3

Table of Figures ... 4

Introduction ... 5

Outcomes .. 6

Background .. 7

The prevalence and effects of Hyperpartisan News ... 7

Associated Theory ... 9

Potential Stakeholders ... 11

Potential tools to solve the problem .. 12

Approach and Implementation .. 13

Loading files into the system ... 13

Transforming the dataset .. 18

Features ... 19

Classification ... 21

Testing Features with Classifiers .. 22

Creating a command line tool ... 24

Feature Significance ... 25

Results and Evaluation .. 26

Classifier Results ... 26

Feature Analysis .. 29

Feature Importance in Random Forest .. 34

Decision Tree Visualisation ... 37

Ranking change in Gini Impurity .. 40

Summary .. 43

Future Work .. 44

Conclusion ... 46

Reflection on Learning .. 46

References .. 48

 4

Table of Figures

Figure 1- Summary of categorisation. ... 7

Figure 2- Unmasking curve ... 9

Figure 3- Unmasking curve ... 10

Figure 4 - Results of submissions to SemEval 2019 ... 10

Figure 5 - Articles from dataset .. 13

Figure 6- Extract from XML Label Document .. 14

Figure 7 - Diagram detailing readXML() function .. 15

Figure 8 - Diagram of readTXT() function ... 16

Figure 9 - Diagram showing how readFiles() function works 17

Figure 10 - Table showing textToFeature output ... 18

Figure 11 – Diagram of textToFeatures function .. 18

Figure 12 - K-fold cross validation .. 22

Figure 13 - Diagram of whole classification ... 22

Figure 14 - Iterating through different feature combinations 23

Figure 15 - Diagram of command line tool ... 24

Figure 16 - Screenshot showing ouput of command line terminal 25

Figure 17 - Best accuracy score of each classifier type .. 27

Figure 18 – Precision and recall of the best random forest classifier 28

Figure 19 - Results of each feature tested on it's own with each classifier type 29

Figure 20 - Usage of feature in decision tree classifier’s best and worst results.. 31

Figure 21 Usage of feature in logistic regression classifier’s best and worst results 32

Figure 22 - Usage of feature in random forest classifier’s best and worst results. . 33

Figure 23 - Feature importance for random forest classifier 35

Figure 24 – Top 30 feature importancse for random forest classifier 36

Figure 25 - Entire decision tree, top portion of tree shown on next page 38

Figure 26 - Top portion of decision tree ... 39

Figure 27 - Graph of change in Gini impurity, relative to the depth of the node 41

Figure 28 - Top 30 changes in Gini impurity, relative to the depth 42

 5

Introduction

Since starting this project in January much in the world has changed; the way we all

live our lives, for at least the apparent future will be highly unfamiliar. The way that

many people accrue their news has changed, and although not a trend that started

during the Coronavirus Pandemic (Ponsford 2019), in the UK at least, the restrictions

on people’s ability to buy traditional print newspapers in shops have driven rises in

reading news online (Sweney 2020). However, consuming news online, especially

through social media sites like Facebook, can cause issue due to the prevalence of

‘fake news’. As stated in (Bakir and McStay 2018), ‘fake news’ produces uninformed

citizens, that remain uninformed due to the echo-chamber (only encountering

opinions that coincide with your own) effect of social media. Research shows that

hyperpartisan (very left-wing or very right-wing) news publishers have far higher

numbers of falsehoods in their articles compared to neutral mainstream publishers

(Silverman et al. 2016).

This is the motivation behind this project’s aims; to create a machine learning

classification system to detect hyperpartisan news. The creation of such a system

could be very beneficial to many. Currently, immobilising fake news can rely on

organisations or charities such as FullFact1 to manually fact-check claims in a news

article to assess their trustworthiness. The process is lengthy, especially when

compared to the rate at which articles will be published online, meaning that by the

time a rebuttal can be produced, the damage of the ‘fake news’ has already been done.

A system that can quickly predict if an article is hyperpartisan could be embedded

into social media websites to provide users with a fast indication if the article they

are reading is reliable or not.

1 fullfact.org

 6

Outcomes

• Creation of system that can accept plain text files and convert them into

Python objects in order to be classified

• Creation of functionality that can transform a text piece into an array of the

key features it contains

o Features are custom made, and also come from libraries

• Identification of which features best discern between hyperpartisan news

articles and neutral news articles from established mainstream publishers

• Creation of system that can accept text from a command line, analyses the

features it contains and outputs if it is predicted to be hyperpartisan or not

 7

Background

The prevalence and effects of Hyperpartisan News

As discussed in the introduction, ‘fake news’ proves a big problem for democracies

and societies. (Bakir and McStay 2018) references Jürgen Habermas’ “democratic

ideal”, where people in democracies rationally speak and listen to each others

viewpoints before agreeing the best way forward. They find that if people are

“indoctrinated to disbelieve truthful facts” and rather believe falsehoods, then

discontent with the democratic process and outcome is likely. The alarming end result

that (Bakir and McStay 2018) predict says that societies will become highly polarised,

with people who did not vote with the majority’s confidence in a governments

legitimacy decreased.

Just before the 2016 United States Presidential Election, investigators at Buzzfeed

News published their research into hyperpartisan Facebook pages and the role they

were playing in spreading false information (Silverman et al. 2016). Selecting pages

with large followings from left-wing, right-wing and neutral mainstream

organisations, they manually fact checked every post by these pages over a period of

seven days, marking their content as ‘mostly true’, ‘mostly false’ or a mix of both .

Publisher type

(articles

analysed)

Mostly True Mostly False Mix Combined

Scores – Mix

and Mostly

False

Neutral (826) 97.6% 0% 0.969% 0.969%

Left-wing

(256)

71.1% 5.86% 19.9% 25.8%

Right-wing

(545)

50.6% 13.2% 8.07% 21.3%

Figure 1- Summary of categorisation. Excludes articles with “no factual claim or content” (Silverman et al. 2016)

Figure 1 shows the results, with the content of neutral mainstream publishers being

categorised overwhelmingly as ‘mostly true’, whereas left-wing having just under 6%

of articles being classed ‘mostly false’ and around a quarter being either ‘mostly false’

or a mixture of false and true. Right-wing publishers performed even more

 8

unfavourably, with 13% of its articles being classed ‘mostly false’, and 21% either

mostly false or mixed.

Left- wing and right- wing articles containing higher proportions of falsehoods is

significant as research by (Vosoughi et al. 2018) into the circulation of false news

online, found that falsehoods spread online much faster than truths, with a falsehood

reaching 1500 people online six times faster than a truth would. The research also

found that false- political news spread even faster than other types of falsehoods. The

emotional content of the replies to falsehoods online/ social media were more likely

to be ‘disgust’, ‘anger’ or ‘surprise’ compared to the responses for truths, which were

‘anticipation’, ‘joy’, ‘trust’ and ‘sadness’ (Vosoughi et al. 2018). Finally, the research

also found that false news was also more likely to be spread by humans peer to peer,

essentially going ‘viral’.

(Vargo et al. 2018) studied the online media landscape between 2014 and 2016,

found that the subject matter of fake news spread online would then influence the

agendas of traditional partisan news outlets - perhaps with the justification for an

issue being reported in a traditional outlet originating from the high levels of

discussion happening online, that caused by dissemination of fake news. The impact

of fake news setting the agenda for other, more traditional, media settings is

significant, as it shows that fake news can be used to make certain issues a talking

point.This may also explain the left- wing and right- wing news websites having still

having significant levels of content classified as ‘mostly true’ in Figure 1. These

outlets may be able to utilise the rapid spread of fake news to generate interest in a

certain topic, which then can be used as basis for increased truth based reporting on

a particular issue.

The high levels of falsehoods contained in news articles from right- wing and left-

wing publishers, combined with the effects that false news can cause, indicate the

need for a tool that can identify articles that originate from these sources.

 9

Associated Theory

(Potthast et al. 2020)’s research into hyperpartisan news sought to establish if

hyperpartisan news articles can be distinguished from neutral mainstream articles

using it’s stylistic features. Using the technique ‘Unmasking’ proposed by (Koppel et

al. 2007), where in order to predict the author of a given text the most distinguishing

features are recursively removed. With each recursion, the text with less

distinguishing features is classified and the cross-validation accuracy is measured;

the faster the accuracy degrades, the more likely the text was written by that author.

When plotted on a graph, the gradient of the curve produced provides an indication

of the similarity (steeper curve = more similar).

Figure 2- The steeper curve indicates the document is more similar to the previous ones by the author. (Koppel et al. 2007)

Potthast et al. applied the same principle to hyperpartisan and neutral mainstream

news articles, unmasking left-wing and right-wing articles against neutral ones. Their

results in Figure 2 show that when left-wing and right-wing articles are unmasked

against each other their curve decreases considerably more rapidly than when

compared unmasking against neutral mainstream ones. This means that left-wing

articles are similar in style to right-wing ones (and vice versa), which is crucial as it

means that we can simply classify between hyperpartisan and neutral articles rather

than a three-way classification of left-wing, right-wing and neutral.

 10

Figure 3- The steep blue curve shows that left-wing articles are similar in style to right-wing ones (Potthast et al.)

The 13th International Workshop on Semantic Evaluation in 2019 (SemEval – 2019),

an “ongoing series of evaluations” of semantic evaluation systems to improve the

state of semantic analysis (Association for Computational Linguistics 2019). Part of

SemEval – 2019 included a task where teams were invited to create and submit a

classification system to detect hyperpartisan news articles (Kiesel et al. 2019). All

teams were given the same dataset of news articles to train their classification system

with, which were manually classified as neutral or hyperpartisan. After the

competition was completed, the entries were ranked by their accuracy and the results

were published for the workshop.

Figure 4 - Results of submissions to competition

 11

The teams submissions were analysed and the competition organisers collated which

methods worked effectively for the teams , which can be useful for this project, giving

a head start on what makes an effective system.

Potential Stakeholders

Much of the hyperpartisan news is spread on social media websites, particularly in

the 2016 presidential election, on Facebook (Potthast et al. 2020). Given this, the

ability to be able to detect hyperpartisan news could be of potential interest to social

media platforms looking to remove such content from their websites. This is

especially credible following statements made by Facebook in the wake of the 2016

US Presidential election, where the company stated it’s aim to fight the spread of false

news on their platforms (Mosseri 2017).

Other potential stakeholders could include national governments around the world

seeking to limit the damaging effect false news can have on democracies (Bakir and

McStay 2018). For example in 2019, the UK Government stated it’s aim to fight fake

news and inroduced an £18 million package to that end (Foreign & Commonwealth

Office 2019).

 12

Potential tools to solve the problem

Scikit- learn (SK-Learn)2, is Python library specifically designed for machine learning

created by (Pedregosa et al. 2011). The library contains many tools for formatting and

processing data in order to be classified, and also classifiers themselves that can learn

from data inputted and make predictions.

The ‘Sentiment Intensity Analyser’ module from the Natural Language Toolkit3 (Bird

et al. 2009), provides a tool to analyse the sentiment intensity of a piece of text.

Created by (Hutto and Gilbert 2014), the ‘VADER’ tool utilises a sentiment lexicon

created from ‘micro-blog’ continent such as Twitter and Facebook and generic rules

to return a prediction of the sentiment that the text is inputted. The tool was designed

to be ‘computationally economical’, while also not sacrificing its accuracy.

A ‘Spelling Corrector’ from the Python Package Index4 , which is designed to be used

as a tool to return predictions for the correct spelling of a word that is incorrectly

spelt. The tool uses a dataset of the words in the English language, and the frequency

of their common usage. The tool can return words that are not on this frequency list,

so therefore are likely to be misspelled.

2 scikit-learn.org
3 www.nltk.org
4 www.pypi.org/project/pyspellchecker/

 13

Approach and Implementation

Loading files into the system

The system accepts its training and testing data from plaintext files that the Python

program converts into python objects that the classifier can process. Each line from

an article is stored as a line in a text file, where the first 6 characters are a unique

article ID and the rest of the line is the text from the article.

Figure 5 - Articles from dataset. Lefthand side shows the unique article ID

 14

The labels (if the article is hyperpartisan / neutral) for each article are stored in an

XML file where the attributes for each XML element are the unique article ID, the

URL to the original article, who performed the manual labelling and a Boolean value

based on if it is hyperpartisan or not.

Figure 6- Extract from XML Label Document

 15

The readXML function accepts the name of the XML file to process as string object, it

then uses the XML Element Tree API 5from the Python library to parse the XML

document and create an Element Tree object. The program then iterates through the

element tree, and creates two list objects- one containing the IDs of all the

hyperpartisan articles and the other all the neutral articles.

Figure 7 - Diagram detailing readXML() function

5 https://docs.python.org/3.8/library/xml.etree.elementtree.html

 16

The readTXT function parses through the text file, from each line it reads the first 6

characters to identify the unique article ID. The line of text after the ID is then added

to a string object. When it reads the next line, if the article ID is the same as the line

before, it appends that line to the string object too. The process is repeated until it

reaches a new article ID, meaning that the previous article has ended. The string

object is added to the dictionary of articles, where the key is the article ID. The process

then repeats itself until the end of the text file is reached.

Figure 8 - Diagram of readTXT() function

 17

The readFiles function utilises both the readXML and readTXT methods, which return

two lists containing the article IDs for all the hyperpartisan/ neutral articles and a

dictionary with the articles referenced to it’s article ID. Two further lists are then

created, an allArticles list where the strings of every article can be contained and the

other list for the labels of each article called allLabels. The two lists are ordered, so the

first item of the allLabels list relates to the first string in the allArticles list. Starting

with the list of hyperpartisan article IDs, the list is iterated through so for each

hyperpartisan article added to the allArticles list, then the number ‘1’ (indicating the

article is hyperpartisan) is then added to the allLabels list. The same is then done with

the neutral articles ID list, adding a ‘0’ to the allLabels list to indicate that it is not

hyperpartisan.

Figure 9 - Diagram showing how readFiles() function works

 18

Transforming the dataset

The program has the textToFeatures function, which converts a list of news articles

into an array of features that they contain. As input, the function takes the list of

news articles, and Boolean arguments for each feature (essentially an on-off switch

for that feature).

Example

Using as an example a sentence from a news article classed as hyperpartisan :

“ The left’s obsession with gun “control” is just that , control .”

The result of this sentence going through textToFeatures function with these features

would be:

• Feature 1: Contains the word ‘left’ once or more

• Feature 2: Uses one or more exclamation mark (!)

• Feature 3: Number words that are 4 characters or longer

The output vector would be as follows:

Feature 1 Feature 2 Feature 3 Output

1 0 7 [1,0,7]

Figure 10 - Table showing textToFeature output

The vector for each news article from the textToFeatures function is then used by the

classifier later on to predict the class of the article. The following features can be

calculated using the textToFeatures function:

Figure 11 - textToFeatures function

 19

Features

CountVectorizer (Word vectorizer): Utilising SK-Learn’s Count Vectorizer feature,

the vectorizer analyses the most common words across all the news articles, then for

each article indicates if it contains each of the most common words or not.

TF-IDF Vectorizer: This vectorizer works in a similar way to the count vectorizer,

but rather than just returning the most common words, it calculates the term

frequency multiplied by the inverse document frequency.

Term Frequency (TF) – How many times a word appears in the news article

Inverse Document Frequency (IDF) – How common the word is across all the news

articles. If a word is very common and therefore appears across multiple article the

IDF will be close to 0, and conversely if it is very rare the IDF will be close to 1.

A higher TF-IDF score, means that the word is more relevant to the document.

Average Sentence Length: For each article, calculates the average number of

characters per sentence in the article. (Sentence is defined as words between bullet

points)

Word Lengths: For each article, calculates the percentage of words in the document

that are: 10 characters or longer, 11 characters or longer and 12 characters or longer.

Sentiment Analysis: Using a tool from the Natural Language Tool Kit6, which

analyses the input news article for its sentiment (how emotional the words are). The

tool outputs four scores for the input news articles positive, negative and neutral

sentiment. It also releases a compound score, which summarises all three sentiment

scores

For example, the sentence “Donald Trump has done a very bad job!”, receives these

scores:

6 https://www.nltk.org/api/nltk.sentiment.html

Sentence: “Donald Trump has done a very bad job!”

Negative Neutral Positive Compound

0.405 0.595 0.0 -0.623

 20

Conversely, the sentence “Today, United States President visited Michigan for the

first time.”, measures as follows:

Punctuation: Measures the percentage of characters in the news articles that are

exclamation points (!) and the percentage that are full stops (.).

Bias Words: This utilises a lexicon 654 of ‘bias-inducing’ words from researchers at

Stanford University (Recasens et al. 2013). For each word in the lexicon, the number

of times it appears in each news article is recorded.

Reduced Bias Words: When processing the occurrences of the above bias words in

the news articles, the processing time was very high due the high computational cost

of searching for 600 plus words across 600 news articles (the nested for loops have a

big-O7 notation of O(n2)). In order to reduce the number of words in the list, the

SKLearn Recursive Feature Elimination (RFE)8 module was used. RFE ranked the

features based on their importance in a decision tree classifier. K-fold validation was

used to cross validate the classification, and the average importance of each feature

across each fold was taken. The average importance of each feature was then ranked

from best to worst, and the 100 most important bias words were extracted. Having a

shorter list of bias words also may prevent overfitting of the data, where the classifier

is too complex and starts trying to explain random errors in the dataset.

Total Bias Words: Using the same lexicon as above, for each article it returns the

total number of bias words in the text.

Spelling Mistakes: Using a spell checker module9 , which returns a list of words it

doesn’t know (therefore may be spelled incorrectly). The feature returns the

percentage of words in the news article that are unknown.

7 https://en.wikipedia.org/wiki/Big_O_notation
8 https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
9 https://pypi.org/project/pyspellchecker/

Sentence: “Today, United States President visited Michigan for the first time.”

Negative Neutral Positive Compound

0.0 0.763 0.237 0.4215

 21

Classification

The returned news articles, now represented as a list of the features they contain, are

then entered into a classifier. The SK-Learn module offers many different classifiers

in its package, so various options were tried in an attempt to find the most accurate

results. The experiments carried out used three different classifiers from SKLearn;

• The first is a decision tree classifier. At each stage of the tree, a feature is picked

which best splits the data so the Gini Impurity of the data either side is as low

as possible (Zhou 2019). The Gini Impurity in this context is the probability

of a random news article from the dataset being in the wrong category. Then

at each split created, a new feature is chosen to best split the data again so that

the Gini value is as low as possible. This process is repeated until the Gini

value is zero or the tree has reached a maximum depth (Géron 2017).

• The next classifier is Logistic Regression, which works by estimating the

probability that an news article is hyperpartisan or not (neutral), if the

probability is greater than 50%, the article is classified as hyperpartisan.

• The last classifier tested was a random forest classifier, which trains lots of

decision tree classifiers, each with a subset of features from the training data.

When making a prediction, the data is processed through each decision tree,

and the most common prediction from all the trees is returned as the

prediction (Kirk 2017).

The data is split, so that some can be used for training the classifier, and the rest can

be used to test the classifiers effectiveness. In order to ensure that any classifier is

not effective purely by chance, K-Fold Cross validation was implemented, where the

data is shuffled and split into k different folds (sets), where k can be any number (in

this case it was 5). Each fold is then used once as a testing set, while the others are

used as training data. The process is repeated, so each fold used as a testing set is

changed with each iteration. When the classifier has been tested across all k groups,

where an average can be taken from all the sets of results.

 22

Figure 12 - K-fold cross validation (Data Driven Investor 2018)

Figure 13 - Diagram of whole classification

Testing Features with Classifiers

In order to see which features were most effective with each classifier type, each

classifier was tested with every possible combination of features. Using Python’s

‘itertools’ module 10, a list was created of dictionaries, each containing a unique

combination of feature booleans (True or False values), indicating if that feature

should be used or not. Initially, the feature dictionary was passed straight to the

TextToFeatures module to output a matrix with the feature information that could be

classified by the classifier, however this method meant that the features in each article

were being re-processed with each permutation, which was very time consuming

considering that the articles used to test the classifier were kept the same each time

so the TextToFeatures module was also outputting the same values every time. To

remove this redundancy, at the start of the program the TextToFeatures module

produces a ‘master dictionary’, where each key is the feature name and the value is

the array of feature information for each article. For each dictionary in the feature

10 https://docs.python.org/3/library/itertools.html

 23

boolean list, the program makes a copy of the ‘master dictonary’, and deletes any

features that have a false value. The remaining values in the copy of the ‘master

dictionary’ are converted into a 2 -dimensional array, which can then be inputted into

the classification module.

Figure 14 - Diagram showing process of iterating through different feature combinations

The classification module splits the articles with k-fold cross validation, using the

module from SKLearn11. In order to make sure each permutation of features is tested

fairly, before the articles are split into folds, they are shuffled in the same way every

time by fixing the random state, meaning that the same articles are submitted for

training and testing for each permutation.

When testing different combinations of articles with the random forest classifier, the

processing time to classify each combination was taking around 15-20 seconds, which

repeated over 500 or so combinations would mean that the total time to test that

classifier would total around 10,000 seconds or just under 3 hours. In order to try

and improve the processing time for this classifier, multiprocessing was

implemented. Multiprocessing makes use of the multiple processors built into most

computers, splitting the processing operations are done in parallel on each processor

rather than one by one (serial operation), meaning that overall the processing can be

done quicker. Utilising Python’s multiprocessing12 module, the processing average

processing time for each combination of features was reduced by 70% to around 6

11 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
12 https://docs.python.org/3/library/multiprocessing.html

 24

seconds. This meant the overall processing time was around 45 minutes. The results

of each combination of features with each classifier was then saved to a CSV file, so

that they could be analysed in Microsoft Excel.

Creating a command line tool

After the most effective classifier – feature combination was found, the classifer can

be retrained with all the available data, without the cross validation. The Pickle13

module from the Python library was used to save a copy of the most effective

classifier. The other feature that required initial ‘fitting’ to the data was the TFIDF

vectorizer, therefore a copy of the vectorizer was stored using Pickle too. This allowed

for a program to be created that could accept a news article in the form of a string

object as input from the command line terminal. The classifier and vectorizer that

was previously fit could be loaded into the program; the vectorizer used to identify

the presence of certain key words and the classifier used to make a prediction of the

news article’s partisanship. The program then outputs this information to the

command line, along with the percentage certainty of the prediction.

Figure 15 - Diagram of command line tool

13 https://docs.python.org/3/library/pickle.html

 25

Figure 16 - Screenshot showing ouput of command line terminal, when tested with article from CNN

Feature Significance

One of the benefits of using a decision tree classifier, is the ability to view the tree

structure of the classifier to understand the decision process of the classifier. Using

the GraphViz14 module from SK-Learn, the decision tree can be automatically

generated. In order to investigate which features were the best at dividing the data by

partisanship, a tutorial15 from SK-Learn’s user guide , which was designed to output

the decision tree structure in a text based way. The program was updated to calculate

the difference in the Gini Impurity(the probability a random article in the set would

be incorrectly classified) between each parent and child node in the decision tree.

The change in Gini impurity is then divided by how many nodes are behind the child

node in the tree, as a feature lower down in the decision tree will have less impact on

the split of the data. The data is then exported in a CSV file format, so that the results

could be easily viewed in another program (Microsoft Excel).

14 https://scikit-learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html
15 https://scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html#sphx-glr-auto-

examples-tree-plot-unveil-tree-structure-py

 26

• Average Sentence Length of Article

• Average Word Length

• Sentiment Analysis

• TFIDF Vectorizer

• Reduced bias words list

• Average Sentence Length of Article

• Average Word Length

• Sentiment Analysis

• TFIDF Vectorizer

• Percentage of all words in article

classified as ‘bias’

• Percentage of words with possible

spelling mistakes

Results and Evaluation

Classifier Results

The initial focus of the experiments carried out was to produce a classifier with the

highest possible accuracy score for differentiating between hyperpartisan and neutral

news articles. Experiments were carried out using three different classifier types from

SKLearn’s machine learning library, a Decision Tree Classifier16, Logistic Regression

Classifier17 and a Random Forest Classifier18. The data for the system’s training/

testing was a collection of 645 news articles and their corresponding labels, given to

participants of the 2019 International Workshop on Semantic Evaluation

competition. Different features were inputted into each classifier type, in order to see

which features were optimal for each type of classifier. Iteratively, all possible

combinations of the nine features were tested, and if the classifier returned a higher

accuracy score with those features than the features tested before, this was stored as

the current best combination.

The most effective classifier was the Random Forest Classifier, which achieved a

maximum accuracy score of 79.5% using these features:

An accuracy score of 79.5% signifies that 513 news articles out of the total 645 were

classified correctly and 132 were classified incorrectly. The best accuracy score

achieved by the decision tree classifier was 68.9%, using the features:

16 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.htmlr
17 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
18 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

 27

• Sentiment Analysis

• TFIDF Vectorizer

• Full bias words list

The logistic regression classifier, positioned in the middle of the other two classifiers,

reaching a best accuracy score of 75.0% using the following features:

Figure 17 - Best accuracy score of each classifier type, with the features used to achieve the score

The precision of a classifier measures the percentage of positive results that were

predicted correctly, compared to the amount of positives results that were predicated.

A low precision score for the hyperpartisan class would mean that the classifier was

predicating a high number of neutral articles as hyperpartisan incorrectly. The recall

score of a classifier measures the percentage of positive results that were predicted

correctly compared to the total of actual positive results. A low recall score for the

hyperpartisan class would mean that the classifier was classing a lot of hyperpartisan

articles as neutral ones.

 28

The best random forest classifier 77.7% precise at classifying neutral articles, and

85.8% precise at classifying hyperpartisan ones, meaning the classifier was rarely

classifying hyperpartisan articles as neutral ones, and vice versa. The recall for neutral

news articles was 94.8%, and the recall for hyperpartisan articles was 53.4%; neutral

articles were extremely unlikely to be predicted incorrectly, but hyperpartisan articles

were predicted incorrectly around 47% of the time.

Figure 18 - Diagram showing precision and recall of the best random forest classifier

386 Neutral
Predicted Correct

Neutral Precision:

77.7%

111 Hyperpartisan
Predicted Incorrect

127 Hyperpartisan
Predicted Correct

21 Neutral Predicted
Incorrect

Hyperpartisan Precision:

85.8%

≈ 5 Neutral News Articles ≈ 5 Hyperpartisan News Articles

386 Neutral
Predicted Correct

21 Neutral
Predicted Incorrect

127 Hyperpartisan
Predicted Correct

111 Hyperpartisan
Predicted Incorrect

Neutral Recall:

94.8%

Hyperpartisan Recall:

53.4%

≈ 5 Neutral News Articles ≈ 5 Hyperpartisan News Articles

 29

Feature Analysis

Next focus was on finding which features were the best for discerning hyperpartisan

news articles. The first investigation was to test each feature individually on its own

with each classifier type, to identify how well they were at categorising hyperpartisan

news by themselves. The graphs below show each feature’s accuracy score for each

type of classifier.

Figure 19 - Results of each feature tested on it's own with each classifier type

As the results show the TF-IDF vectorizer , on average, worked the best at splitting

hyperpartisan news articles from neutral ones. The features which involved words

from the bias lexicon performed particularly well with the random forest classifier,

achieving close to 76% accuracy on its own. Another interesting performance is the

feature that identifies the percentage of words with potential spelling mistakes, which

performed around 10% better with the logistic regression classifier compared to the

others. Given the nature of how random forest classifiers work (creating lots of trees

from a subset of features), it is not unsurprising that features that only returned one

Random Forest 75.3%

Random Forest 76.7%

Random Forest 65.4%

Random Forest 73.3%

Random Forest 53.6%

Random Forest 63.1%

Random Forest 61.6%

Random Forest 75.8%

Random Forest 62.8%

Random Forest 58.4%

Decision Tree 63.3%

Decision Tree 64.7%

Decision Tree 57.7%

Decision Tree 64.8%

Decision Tree 55.8%

Decision Tree 61.9%

Decision Tree 59.4%

Decision Tree 63.3%

Decision Tree 62.5%

Decision Tree 56.3%

Logistic Regression 73.5%

Logistic Regression 71.2%

Logistic Regression 64.7%

Logistic Regression 64.2%

Logistic Regression 64.2%

Logistic Regression 64.2%

Logistic Regression 64.2%

Logistic Regression 64.3%

Logistic Regression 64.3%

Logistic Regression 67.3%

50% 55% 60% 65% 70% 75% 80%

Word Vectorizer

TFIDF Vectorizer

Sentiment Analysis

Presence of selected ‘bias words’

Percentage of words with spelling mistakes

Percentage of words classified as ‘biased’

Percentage of exclamation marks/full stops

Full Bias Words List

Average Word Length

Average Sentence Length

Accuracy Score

F
e
at

u
re

 N
am

e
s

Features Individually with Different Classifiers

Logistic Regression

Decision Tree

Random Forest

 30

data point (i.e average sentence length) did not perform as well for this classifier, as

there was not enough data to divide into subsets.

As the TFIDF vectorizer had the most effective performance, and highest average

accuracy score across all the features, to reduce the number of iterations required in

the next experiment, the tests were carried out using the TFIDF vectorizer as a base

level to identify which features could work with it to improve the accuracy score.

Different classifiers utilised different features for their optimal results. In order to see

which features contributed the most to achieving a high accuracy score, the amount

of times they were used in a classifiers best and worst results were calculated. If a

feature is consistently used in the best results for a classifier and conversely never

used in its worst, then the feature must be contributing to its high accuracy score.

The decision tree classifier used the sentiment analysis and the average sentence

length features most commonly in its best performing accuracy scores, with

sentiment analysis appearing in 81% of its best scores and average sentence length

appearing in 62%. The same features only were used in 4% (sentiment analysis) and

15% (average sentence length) of the worst results for the feature.

When testing a logistic regression classifier, only the sentiment analysis feature

worked extremely well to contribute to a high accuracy score along side the TFIDF

vectorizer, being utilised in 100% of the best results for the classifier and 0% of the

classifiers worst accuracy scores. The pared-back list of words from the bias lexicon

also appeared in 100% of the random forest classifier’s best scores and 38% of the

classifiers worst. The average sentence length appeared in 69% of the classifiers best

results and, similarly, appeared in 38% of the worst accuracy scores. Sentiment

analysis generally also appeared to benefit the random forest classifier, with a net

difference of 19% between the best and worst accuracy scores where it was used.

 31

Decision Tree Classifier

Figure 20 - Usage of feature in decision tree classifier’s best and worst results. The TF-IDF vectorizer was used in every result, so

is therefore in 100% of the worst and best results.

62% 62%

81%

100%

46%

23%

38% 38%

73%

-15%

-50%

-4%

-100%

-54%

-81%

-54%
-58%

-50%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Average

Sentence

Length

Average Word

Length

Sentiment

Analysis

TFIDF

Vectorizer

Percentage of

exclamation

marks/full

stops

Full Bias

Words List

Percentage of

words

classified as

‘biased’

Presence of

selected ‘bias

words’

Percentage of

words with

spelling

mistakes

Usage of Feature in Best and Worst Results for Decision Tree Classifier

Usage in Best 10%

Usage in Worst 10%

46%

12%

77%

0%

-8%

-58%

-15%
-19%

23%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Average

Sentence

Length

Average Word

Length

Sentiment

Analysis

TFIDF

Vectorizer

Percentage of

exclamation

marks/full

stops

Full Bias

Words List

Percentage of

words

classified as

‘biased’

Presence of

selected ‘bias

words’

Percentage of

words with

spelling

mistakes

Net Usage of Feature in Best and Worst Results for Decision Tree Classifier

 32

Logistic Regression Classifier

Figure 21 Usage of feature in logistic regression classifier’s best and worst results. The TF-IDF vectorizer was used in every result,

so is therefore in 100% of the worst and best results.

15%

27%

100% 100%

50%

85%

35%

54% 54%

-38%

-15%

0%

-100%

-54%

-81%

-54%
-46% -46%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Average Sentence

Length

Average Word

Length

Sentiment

Analysis

TFIDF Vectorizer Percentage of

exclamation

marks/full stops

Full Bias Words

List
Percentage of

words classified as

‘biased’

Presence of

selected ‘bias

words’

Percentage of

words with

spelling mistakes

Usage of Feature in Best and Worst Results for Logistic Regression Classifier

Usage in Best 10%

Usage in Worst 10%

-23%

12%

100%

0%

-4%

4%

-19%

8% 8%

-40%

-20%

0%

20%

40%

60%

80%

100%

Average

Sentence

Length

Average Word

Length

Sentiment

Analysis

TFIDF

Vectorizer

Percentage of

exclamation

marks/full

stops

Full Bias

Words List

Percentage of

words

classified as

‘biased’

Presence of

selected ‘bias

words’

Percentage of

words with

spelling

mistakes

Net Usage of Feature in Best and Worst Results for Logistic Regression Classifier

 33

Random Forest Classifier

Figure 22 - Usage of feature in random forest classifier’s best and worst results. The TF-IDF vectorizer was used in every result,

so is therefore in 100% of the worst and best results.

69%

54%
58%

100%

38%

0%

46%

100%

54%

-38%

-58%

-38%

-100%

-54%
-58%

-42%
-38%

-42%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Average Sentence

Length

Average Word

Length

Sentiment

Analysis

TFIDF Vectorizer Percentage of

exclamation

marks/full stops

Full Bias Words

List
Percentage of

words classified as

‘biased’

Presence of

selected ‘bias

words’

Percentage of

words with

spelling mistakes

Usage of Feature in Best and Worst Results for Random Forest Classifier

Usage in Best 10%

Usage in Worst 10%

31%

-4%

19%

0%

-15%

-58%

4%

62%

12%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

Average

Sentence

Length

Average Word

Length

Sentiment

Analysis

TFIDF

Vectorizer

Percentage of

exclamation

marks/full

stops

Full Bias

Words List

Percentage of

words

classified as

‘biased’

Presence of

selected ‘bias

words’

Percentage of

words with

spelling

mistakes

Net Usage of Feature in Best and Worst Results for Random Forest Classifier

 34

Feature Importance in Random Forest

When generating a random forest classifier, the SK Learn library enables the data

output of an importance score for each feature, signifying the usefulness of the feature

to the overall classification. The importance scores were then ranked to see which

features were the most useful to the random forest classifier.

 35

0

0.005

0.01

0.015

0.02

0.025

0.03
N

e
u
tr

al
 S

en
ti

m
en

t

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
d
ay

N
e

ga
ti

ve
 S

en
ti

m
e

n
t

ri
g
h
t

h
il

la
ry

am
e
ri

ca
n

p
re

si
d
en

t

o
b
am

a

li
k
e

g
o
ve

rn
m

en
t

u
se

d

d
o
es

n
e
w

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
cl

e
ar

co
u
n

tr
y

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
co

u
n
tr

y

ti
m

e

w
o

m
en

cl
in

to
n

th
in

g
s

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
b
el

ie
ve

g
o
o
d

g
o
in

g

ac
co

rd
in

g

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
b
re

ak sa
y

th
in

k

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
at

ta
ck

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
b
ad

su
p
p
o
rt

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
b
la

m
e

le
ft

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ev

e
n
t

d
ep

a
rt

m
e
n
t

ca
ll

ed

w
ar

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
d
em

o
cr

a
ti

c

p
o
li

ce

tw
it

te
r

o
ld

at
ta

ck

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
co

m
m

e
n
t

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ce

rt
ai

n

p
re

ss

lo
n
g

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
aw

ay

vi
d
e
o

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
fa

m
o

u
s

p
er

c.
 w

o
rd

s
 1

0
+

 c
h

ar
ac

te
rs

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ag

re
e

ar
ti

cl
e

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
cr

it
ic

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
fi
g
h
t

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
w

ri
te

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
d
es

p
it

e

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ci

ti
ze

n

fa
m

il
y

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
b
u
si

n
es

s

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
al

te
rn

at
iv

e

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ex

p
o

se

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ar

g
u
e

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
co

rr
ec

t

d
ai

ly

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
b
eh

a
vi

o
r

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
co

m
m

u
n
it

y

in
ve

st
ig

a
ti

on

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
co

n
d
em

n

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ch

ri
st

ia
n

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ef

fe
ct

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ad

va
n
c

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
b
o

m
b
in

g

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
d
en

y

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
b
ea

r

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
as

se
rt

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
co

rr
es

p
o

n
d
e

n
t

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ch

al
le

n
g
e

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
fa

sc
is

t

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
b
ri

ti
sh

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
es

ti
m

at
e

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
cr

it
ic

is
m

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
co

m
p
le

x

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
d
es

ig
n

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ar

m
y

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
es

se
n

ti
al

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
en

su
re

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
d
es

tr
u
ct

iv
e

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
cl

u
b

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
co

n
tr

o
ve

rs
y

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
af

fi
rm

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
d
eb

u
n

k

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
b
is

h
o

p

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ab

u
si

ve

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
fi
g
h
te

r

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ex

ec
u
te

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
co

rn
e

rs
to

n
e

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
b
ib

li
ca

l

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
d
en

o
m

in
at

io
n

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ea

rm
ar

k

p
er

c.
 w

o
rd

s
1
1
+

 c
h
a
ra

ct
er

s

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
d
is

a
st

er
o

u
s

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
ex

p
u
ls

io
n

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
cr

o
at

iu
m

A
p
p
ea

ra
n
ce

 o
f

b
ia

s
w

o
rd

:
an

ti
-s

e
m

it
is

m

Feature Importance for Random Forest Classifier

Figure 23- Feature importance for random forest classifier

 36

Given there were around 300 individual features used in the best random forest

classifier, there is some quite significant differences in the importance of all the

features. On average, the top 30 features were 5 times more important than the next

278.

Figure 24 – Top 30 feature importancse for random forest classifier

The most important feature to the random forest classifier was the percentage of

neutral sentiment the news article contained. All the sentiment analysis features

(positive sentiment, negative sentiment, neutral sentiment and compound

sentiment) ranked in the top 20 features for the classifier. The average sentence

length of an article was the second most important feature to the classifier. When

analysing features that looked at the pervasiveness of certain words, features with

some variation on the word America (‘America’/ ‘Americans’/ ‘American’), again all

performed well, with the use of the word America being the third ranking feature in

the classifier. This perhaps reflects the nature of the 2016 Presidential Election, with

Republican candidate Donald Trump pushing for a more isolationist foreign policy to

his predecessors (Schneider 2019). The name- checking of political figures relevant

to the election also seemed to be an effective indicator for the classifier, with words

such as ‘Trump’, ‘Hillary’, and ‘Obama’ all featuring near the top of the ranking.

0

0.005

0.01

0.015

0.02

0.025

0.03

N
eu

tr
al
 S

en
tim

en
t

av
er

ag
e
se

nt
an

ce
 le

ng
th

A
pp

ea
ra

nc
e
of

 b
ia

s w
or

d:
 a
m

er
ic
a

A
pp

ea
ra

nc
e
of

 b
ia

s w
or

d:
 d

ay

tr
um

p

Po
si
tiv

e
Se

nt
im

en
t

N
eg

at
iv
e
Se

nt
im

en
t

A
pp

ea
ra

nc
e
of

 b
ia

s w
or

d:
 a
m

er
ic
an

po
lit

ic
al

rig
ht

A
pp

ea
ra

nc
e
of

 b
ia

s w
or

d:
 fa

ct

m
ak

e

hi
lla

ry
ju

st

A
pp

ea
ra

nc
e
of

 b
ia

s w
or

d:
 a
ct

am
er

ic
an

ye
ar

s

Com
po

un
d

Se
nt

im
en

t

pr
es

id
en

t

am
er

ic
an

s

A
pp

ea
ra

nc
e
of

 b
ia

s w
or

d:
 e
nd

ob
am

a
fa

ct
sa

id
lik

e

am
er

ic
a

A
pp

ea
ra

nc
e
of

 b
ia

s w
or

d:
 c
on

se
rv

at
iv
e

go
ve

rn
m

en
t

do
n

A
pp

ea
ra

nc
e
of

 b
ia

s w
or

d:
 c
ha

ng
e

Top 30 Feature Importances for Random Forest Classifier

 37

Decision Tree Visualisation

The decision tree classifier brings the benefit that the classifier can be extracted and

visualised as a flow chart showing how the decisions for a classification are made.

The decision tree for classifier with the highest accuracy score is shown below.

 38

Highest accuracy scoring decision tree

Figure 25 - Entire decision tree, top portion of tree shown on next page

 39

Figure 26 - Top portion of decision tree

 40

The tree shows that the best feature at splitting the entire dataset of news articles

was the commonality of the word ‘America’, with articles with a higher TF-IDF value

for the word ‘America’ more likely to be hyperpartisan. Node #1 checks for the TF-

IDF value for the word ‘make’, with articles with higher values more likely to be

hyperpartisan. This appears to be checking if the article for the phrase ‘Make America

Great Again’, especially due to the next node checking for positive sentiment, possibly

as this would be boosted by the word ‘great’.

Ranking change in Gini Impurity

A similar ranking to the random forest classifiers feature importance was extracted

from the decision tree classifier, however extracting this information from the

decision tree has the added benefit that you can see how each feature benefits the

classification towards hyper-partisanship or not. In order to investigate this, the GINI

impurity (probability a randomly picked article is wrongly classified) change in from

a parent node to a child was measured, and then divided by how far down the tree

the child node was. The metric calculated balanced the fact that nodes higher up the

tree have less features splitting them, so therefore any change in impurity is more

dependent on that specific feature.

 41

-0.1

-0.05

0

0.05

0.1

0.15

0.2
N

o
d
e
 8

5
 :
 '

P
o
si

ti
ve

 S
en

ti
m

e
n
t

' l
e
ss

 t
h

an
 0

.0
5
1
5

N
o

d
e
 6

7
 :
 '

C
o
m

p
o
u
n

d
 S

en
ti
m

e
n
t

' l
e
ss

 t
h
an

 -
0
.8

2
0
3

N
o

d
e
 1

2
0
 :
 '

go
in

g
 '

le
ss

 t
h
a
n
 0

.1
1
1
7
3

N
o

d
e
 7

5
 :
 '

ca
m

p
ai

g
n
 '

le
ss

 t
h
a
n
 0

.0
6
9
1
1

N
o

d
e
 8

8
 :
 '

re
p
u
b
li
ca

n
 '

m
o
re

 t
h
a
n
 0

.0
5
4
1
4

N
o

d
e
 7

9
 :
 '

d
id

 '
m

o
re

 t
h
an

 0
.0

2
5
1
7

N
o

d
e
 1

2
9
 :
 '

p
eo

p
le

 '
m

o
re

 t
h
a
n
 0

.0
2
4
5
1

N
o

d
e
 6

9
 :
 '

su
p
p
o
rt

 '
le

ss
 t

h
a
n
 0

.0
2
0
4
7

N
o

d
e
 5

9
 :
 '

d
o
es

 '
m

o
re

 t
h
a
n
 0

.0
4
1
1
9

N
o

d
e
 1

3
5
 :
 '

tr
u

m
p
 '

m
o
re

 t
h
an

 0
.0

2
6
9

N
o

d
e
 1

2
5
 :
 '

w
ay

 '
m

o
re

 t
h

an
 0

.0
1
5
5
3

N
o

d
e
 1

2
4
 :
 '

av
e
ra

ge
 s

e
n
ta

n
ce

 l
e
n
g
th

 '
m

o
re

 t
h
a
n
 4

3
6
.2

N
o

d
e
 5

5
 :
 '

ju
st

 '
le

ss
 t

h
a
n
 0

.0
6
9
7
7

N
o

d
e
 1

3
2
 :
 '

2
0
1
7
 '

le
ss

 t
h
a
n
 0

.0
3
7
2
4

N
o

d
e
 0

 :
 '

am
er

ic
a

' l
es

s
th

a
n
 0

.0
3
4
4
8

N
o

d
e
 8

0
 :
 '

p
o
li
ti

ca
l
' m

o
re

 t
h
a
n
 0

.2
9
9
3
3

N
o

d
e
 1

0
6
 :
 '

lo
n

g
' m

o
re

 t
h

an
 0

.0
3
6
2
8

N
o

d
e
 1

1
4
 :
 '

N
eg

at
iv

e
Se

n
ti

m
en

t
' m

o
re

 t
h
an

 0
.0

7
3
5

N
o

d
e
 4

3
 :
 '

ar
ti
cl

e
 '

m
o
re

 t
h
an

 0
.0

5
5
0
2

N
o

d
e
 9

7
 :
 '

h
il
la

ry
 '

m
o
re

 t
h
a
n
 0

.0
7
6
8
7

N
o

d
e
 8

9
 :
 '

el
ec

ti
o
n
 '

le
ss

 t
h
an

 0
.2

2
2
4
4

N
o

d
e
 1

0
7
 :
 '

u
se

d
 '

le
ss

 t
h
an

 0
.0

8
2
3
4

N
o

d
e
 1

2
6
 :
 '

ac
co

rd
in

g
' l

e
ss

 t
h

an
 0

.0
2
5
4
6

N
o

d
e
 1

2
7
 :
 '

ca
m

p
ai

g
n
 '

le
ss

 t
h
a
n
 0

.1
2
0
6

N
o

d
e
 6

4
 :
 '

at
ta

ck
 '

le
ss

 t
h
a
n
 0

.0
4
4
2
5

N
o

d
e
 1

3
9
 :
 '

m
en

 '
m

o
re

 t
h

an
 0

.3
2
6
5
7

N
o

d
e
 5

9
 :
 '

d
o
es

 '
le

ss
 t
h

an
 0

.0
4
1
1
9

N
o

d
e
 5

0
 :
 '

co
m

e
' l

e
ss

 t
h

an
 0

.1
0
2
2

N
o

d
e
 6

 :
 '

p
er

c.
 w

o
rd

s
th

a
t
a
re

 u
n

kn
o
w

n
 '

le
ss

 t
h
a
n
 0

.0
0
1
3
7

N
o

d
e
 4

4
 :
 '

ri
g
h
t

' m
or

e
th

a
n
 0

.1
4
9
8
6

N
o

d
e
 3

2
 :
 '

p
er

c.
 w

o
rd

s
th

a
t
a
re

 u
n

kn
o
w

n
 '

m
o
re

 t
h
a
n
…

N
o

d
e
 2

9
 :
 '

P
o
si

ti
ve

 S
en

ti
m

e
n
t

' l
e
ss

 t
h

an
 0

.0
9
3

N
o

d
e
 3

5
 :
 '

N
eg

at
iv

e
Se

n
ti

m
en

t
' l

es
s

th
a
n
 0

.1
2
3

N
o

d
e
 7

9
 :
 '

d
id

 '
le

ss
 t

h
an

 0
.0

2
5
1
7

N
o

d
e
 9

 :
 '

re
p
u
b
li
ca

n
 '

m
o
re

 t
h
a
n
 0

.4
6
4
8
5

N
o

d
e
 2

6
 :
 '

le
ft

 '
m

o
re

 t
h
a
n
 0

.1
4
0
7
7

N
o

d
e
 6

0
 :
 '

p
er

c.
 w

o
rd

s
th

a
t
a
re

 u
n

kn
o
w

n
 '

le
ss

 t
h
a
n
…

N
o

d
e
 2

 :
 '

p
o
li
ti

ca
l
' l

es
s

th
a
n
 0

.0
2
3
7

N
o

d
e
 5

8
 :
 '

p
eo

p
le

 '
le

ss
 t
h

an
 0

.1
4
3
4
1

N
o

d
e
 2

3
 :
 '

u
n
it

e
d
 '

m
o
re

 t
h
an

 0
.0

9
5
4
8

N
o

d
e
 1

1
7
 :
 '

u
se

d
 '

m
o
re

 t
h

an
 0

.1
0
3
1
2

N
o

d
e
 8

7
 :
 '

av
e
ra

ge
 s

e
n
ta

n
ce

 l
e
n
g
th

 '
le

ss
 t
h

an
 3

5
7
.1

4
9
9
9

N
o

d
e
 7

2
 :
 '

n
ew

 '
m

o
re

 t
h

an
 0

.0
0
9
1
1

N
o

d
e
 1

3
8
 :
 '

o
ld

 '
le

ss
 t

h
an

 0
.1

4
0
8
7

N
o

d
e
 4

3
 :
 '

ar
ti
cl

e
 '

le
ss

 t
h
an

 0
.0

5
5
0
2

N
o

d
e
 1

2
 :
 '

p
er

c.
 w

o
rd

s
th

a
t
a
re

 b
ia

s:

'
m

o
re

 t
h
a
n
 0

.2
5
3
0
6

N
o

d
e
 1

4
1
 :
 '

st
o
ry

 '
m

o
re

 t
h
an

 0
.4

0
6
2
2

N
o

d
e
 1

3
 :
 '

fb
i
' m

o
re

 t
h

an
 0

.9
0
1
1
1

N
o

d
e
 9

4
 :
 '

m
o
n
ey

 '
le

ss
 t

h
an

 0
.2

2
1
5
9

N
o

d
e
 1

4
 :
 '

o
b
am

a
' m

o
re

 t
h

an
 0

.9
5
4
5

N
o

d
e
 9

3
 :
 '

d
ay

 '
 l
es

s
th

an
 0

.2
3
6
9
3

N
o

d
e
 3

 :
 '

am
er

ic
an

s
' l

e
ss

 t
h

an
 0

.1
4
5
0
7

N
o

d
e
 1

6
 :
 '

d
o
n
 '

m
o
re

 t
h
a
n
 0

.4
7
8
5
7

N
o

d
e
 1

0
2
 :
 '

st
at

es
 '

m
o
re

 t
h
a
n
 0

.6
6
0
4
2

N
o

d
e
 1

4
1
 :
 '

st
o
ry

 '
le

ss
 t

h
a
n
 0

.4
0
6
2
2

N
o

d
e
 1

4
2
 :
 '

ve
 '

m
o
re

 t
h
an

 0
.2

N
o

d
e
 1

0
 :
 '

w
o
m

en
 '

le
ss

 t
h

an
 0

.0
9
5
6
7

N
o

d
e
 5

 :
 '

d
ep

a
rt

m
e
n
t

' l
e
ss

 t
h

an
 0

.2
9
7
6
8

N
o

d
e
 6

 :
 '

p
er

c.
 w

o
rd

s
th

a
t
a
re

 u
n

kn
o
w

n
 '

m
o
re

 t
h
a
n
…

N
o

d
e
 8

 :
 '

to
d
ay

 '
le

ss
 t

h
a
n
 0

.2
6
9
1
7

N
o

d
e
 1

2
 :
 '

p
er

c.
 w

o
rd

s
th

a
t
a
re

 b
ia

s:

'
le

ss
 t

h
an

 0
.2

5
3
0
6

N
o

d
e
 1

4
 :
 '

o
b
am

a
' l

e
ss

 t
h
an

 0
.9

5
4
5

N
o

d
e
 1

6
 :
 '

d
o
n
 '

le
ss

 t
h

an
 0

.4
7
8
5
7

N
o

d
e
 1

9
 :
 '

ar
ti
cl

e
 '

le
ss

 t
h
an

 0
.8

8
3
3
4

N
o

d
e
 2

1
 :
 '

b
la

ck
 '

le
ss

 t
h
an

 0
.6

0
1
6

N
o

d
e
 9

6
 :
 '

N
eg

at
iv

e
Se

n
ti

m
en

t
' l

es
s

th
a
n
 0

.0
3
1
5

N
o

d
e
 1

7
 :
 '

tr
u

m
p
 '

m
o
re

 t
h
an

 0
.5

9
6
5
9

N
o

d
e
 5

 :
 '

d
ep

a
rt

m
e
n
t

' m
or

e
th

a
n
 0

.2
9
7
6
8

N
o

d
e
 1

8
 :
 '

h
il
la

ry
 '

m
o
re

 t
h
a
n
 0

.5
0
4
4
6

N
o

d
e
 1

0
0
 :
 '

b
el

ie
ve

 '
m

o
re

 t
h
an

 0
.0

6
2
0
3

N
o

d
e
 3

 :
 '

am
er

ic
an

s
' m

o
re

 t
h
a
n
 0

.1
4
5
0
7

N
o

d
e
 1

 :
 '

m
ak

e
' m

o
re

 t
h

an
 0

.0
4
7
4
4

N
o

d
e
 1

2
4
 :
 '

av
e
ra

ge
 s

e
n
ta

n
ce

 l
e
n
g
th

 '
le

ss
 t
h

an
 4

3
6
.2

N
o

d
e
 7

3
 :
 '

el
ec

ti
o
n
 '

m
o
re

 t
h

an
 0

.0
6
7
3
4

Change in Gini impurity from parent to child node, relative to depth of node

Neutral

Hyperpartisan

Figure 27 - Graph of change in Gini impurity, relative to the depth of the node

 42

Figure 28 - Top 30 changes in Gini impurity, relative to the depth

The greatest change in Gini, relative to the depth of the node, is the amount of

positive sentiment in node #85, again possible due to the phrase ‘Make America Great

Again’ being a good indicator of the article being hyperpartisan. Generally, the

sentiment performed well in splitting the articles, appearing twice in the top three

changes. Many of the jumps appear twice on the graph, such as node #135 for the TF-

IDF value of the word ‘trump’. This is because the node splits into two leaf nodes,

and therefore the difference in Gini change between is identical as the Gini impurity

for leaf nodes is zero. Node #135 shows that a higher TF-IDF value for the word

‘trump’ causes a hyperpartisan prediction, and #75 shows a higher value for the word

‘campaign’ will cause a neutral prediction. The data in this chart is useful in

identifying some interesting splits, however due to the relatively small amount of

articles, some high changes in Gini impurity are just due to some chance

characteristics in the data.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N
o
d
e
 8

5
 :
 '

P
o
si

ti
ve

 S
en

ti
m

e
n
t

' l
e
ss

 t
h

an
 0

.0
5
1
5

N
o
d
e
 1

1
5
 :
 '

u
se

 '
m

o
re

 t
h

an
 0

.0
4
3
4
6

N
o
d
e
 6

7
 :
 '

C
o
m

p
o
u
n

d
 S

en
ti
m

e
n
t

' l
e
ss

 t
h
an

 -
0
.8

2
0
3

N
o
d
e
 7

8
 :
 '

li
k
e

' m
o
re

 t
h

an
 0

.0
2
5
4
7

N
o
d
e
 1

2
0
 :
 '

go
in

g
 '

le
ss

 t
h
a
n
 0

.1
1
1
7
3

N
o
d
e
 1

2
0
 :
 '

go
in

g
 '

m
o
re

 t
h
a
n
 0

.1
1
1
7
3

N
o
d
e
 7

5
 :
 '

ca
m

p
ai

g
n
 '

le
ss

 t
h
a
n
 0

.0
6
9
1
1

N
o
d
e
 7

5
 :
 '

ca
m

p
ai

g
n
 '

m
o
re

 t
h
a
n
 0

.0
6
9
1
1

N
o
d
e
 8

8
 :
 '

re
p
u
b
li
ca

n
 '

m
o
re

 t
h
a
n
 0

.0
5
4
1
4

N
o
d
e
 9

3
 :
 '

d
ay

 '
 m

o
re

 t
h
an

 0
.2

3
6
9
3

N
o
d
e
 7

9
 :
 '

d
id

 '
m

o
re

 t
h
an

 0
.0

2
5
1
7

N
o
d
e
 1

2
9
 :
 '

p
eo

p
le

 '
le

ss
 t
h

an
 0

.0
2
4
5
1

N
o
d
e
 1

2
9
 :
 '

p
eo

p
le

 '
m

o
re

 t
h
a
n
 0

.0
2
4
5
1

N
o
d
e
 9

4
 :
 '

m
o
n
ey

 '
m

o
re

 t
h
an

 0
.2

2
1
5
9

N
o
d
e
 6

9
 :
 '

su
p
p
o
rt

 '
le

ss
 t

h
a
n
 0

.0
2
0
4
7

N
o
d
e
 6

9
 :
 '

su
p
p
o
rt

 '
m

o
re

 t
h
an

 0
.0

2
0
4
7

N
o
d
e
 5

9
 :
 '

d
o
es

 '
m

o
re

 t
h
a
n
 0

.0
4
1
1
9

N
o
d
e
 1

3
5
 :
 '

tr
u

m
p
 '

le
ss

 t
h
a
n
 0

.0
2
6
9

N
o
d
e
 1

3
5
 :
 '

tr
u

m
p
 '

m
o
re

 t
h
an

 0
.0

2
6
9

N
o
d
e
 7

3
 :
 '

el
ec

ti
o
n
 '

le
ss

 t
h
an

 0
.0

6
7
3
4

N
o
d
e
 1

2
5
 :
 '

w
ay

 '
m

o
re

 t
h

an
 0

.0
1
5
5
3

N
o
d
e
 7

2
 :
 '

n
ew

 '
le

ss
 t

h
an

 0
.0

0
9
1
1

N
o
d
e
 1

2
4
 :
 '

av
e
ra

ge
 s

e
n
ta

n
ce

 l
e
n
g
th

 '
m

o
re

 t
h
a
n
 4

3
6
.2

N
o
d
e
 1

3
8
 :
 '

o
ld

 '
m

o
re

 t
h

an
 0

.1
4
0
8
7

N
o
d
e
 5

5
 :
 '

ju
st

 '
le

ss
 t

h
a
n
 0

.0
6
9
7
7

N
o
d
e
 5

5
 :
 '

ju
st

 '
m

o
re

 t
h
an

 0
.0

6
9
7
7

N
o
d
e
 1

3
2
 :
 '

2
0
1
7
 '

le
ss

 t
h
a
n
 0

.0
3
7
2
4

N
o
d
e
 1

3
2
 :
 '

2
0
1
7
 '

m
o
re

 t
h
an

 0
.0

3
7
2
4

N
o
d
e
 0

 :
 '

am
er

ic
a

' l
es

s
th

a
n
 0

.0
3
4
4
8

N
o
d
e
 8

0
 :
 '

p
o
li
ti

ca
l
' l

es
s

th
a
n
 0

.2
9
9
3
3

N
o
d
e
 8

0
 :
 '

p
o
li
ti

ca
l
' m

o
re

 t
h
a
n
 0

.2
9
9
3
3

Largest 30 changes in Gini impurity from parent to child node, relative to depth of node

Neutral

Hyperpartisan

 43

Summary

Overall, the system works moderately effectively for classifying news articles,

although there are some caveats to it’s performance. The best accuracy score the

system was able to accomplish was 79.5%, so can effectively detect 4 out of every 5

articles correctly. When compared to teams who completed the Semantic Evaluation

Workshop (SemEval) challenge in 2019, this system compares favourably- out of the

42 submissions this system would have ranked 6th for the accuracy score that it

achieved. The highest accuracy score achieved in the competition was 82.2%, so this

system is 2.7% less accurate than the best submission. Similarly, the precision of the

classifier at detecting hyperpartisan news articles performs comfortably compared to

the other submissions with a performance of 85.8%, with the best score from the

competition being 88.3%. The classifier has a low recall score however, meaning that

there were too many false negative results for hyperpartisan news articles. Again,

comparing to other teams in the SemEval - 2019 challenge, it seemed a common

among high accuracy scoring entries to struggle with lower recall values.

The original accuracy of the random forest classifier with just the TF-IDF vectorizer

was 76.7%, so the custom features that were created for the classifier were effective

in boosting the score by around 3%, which is satisfactory given the trickiness in

increasing accuracy scores for classifier the closer to 100% accuracy they get.

Furthermore, compared to the initial version of the system which used a decision tree

classifier and word vectorizer its only feature (which was 63.3% accurate), the

development has been successful.

Across all the classifiers, sentiment analysis worked the best in combination with a

TF-IDF vectorizer. The net usage of the feature in the classifiers best scores were 77%

for the decision tree classifier, 100% for the logistic regression classifier, and 19% for

the random forest classifier, meaning that the feature consistently helped the

classifiers reach the best accuracy scores. Furthermore, neutral sentiment ranked as

the most important feature in the random forest classifier’s feature importance, with

all four sentiment analysis features ranking in the top 20 features for the classifier.

 44

Future Work

If given more time to further develop the system, the initial step to take would be to

source more news articles that can be included to further train and test the system in

order to improve its performance. The current 645 news articles that were used to

test/ train the current system were provided to competitors in the SemEval 2019, and

were all manually labelled as ‘hyperpartisan’ or ‘mainstream’ (neutral) by

factcheckers (Kiesel et al. 2019). To enhance the dataset for the classifier, a task could

be undertaken to further manually label news articles using similar labelling criteria

to those in the SemEval set. Another option would be to use a by-publisher dataset,

where instead of manually checking each news article, you label an entire publisher

as hyperpartisan or neutral by checking a subsection of their publications.

Organizations such as Buzzfeed News have already compiled lists19 of hyperpartisan

news outlets that could be utilised. Once a publisher has been identified, you can

then as suggested by (Kiesel et al. 2019) , use an automated program to trawl through

the publishers output to gather news articles to train the classifier with. Manually

labelling each news article would be a very time consuming task, however the data

produced would be high quality and the labelling guaranteed to be accurate. In

contrast, using by publisher data would be much faster, however there is no guarantee

that every news article published by a hyperpartisan publisher is hyperpartisan, as

shown in the table of Figure 1. Therefore there is some risk that the classifier will be

confused by classifying incorrectly labelled articles. Increasing the number of

hyperpartisan news articles to train with would be especially useful, as there were

about 70% more articles from neutral mainstream publishers to train the classifier

with than from hyperpartisan publishers.

Another component that could be added to improve the system would be to create an

application programming interface (API), which would allow another service to send

news articles to the system and receive in return a classification for the articles and

the probability of the classification. Given that a tool for a command line input has

already been created, the API could be an extension of this programming. Creating

this API system would allow publishers of news articles, such as social media

companies, almost instantaneously receive prediction for any new news article that

was published to their website, meaning that audiences could receive a warning that

the article may be hyperpartisan as soon as it is published, and before it was read and

19 https://github.com/BuzzFeedNews/2017-08-partisan-sites-and-facebook-pages

 45

shared to others. Another benefit of creating an API would be that the system would

receive a lot of new articles that could be used to train the classifier. A procedure

could be implemented where articles coming into the API could be manually labelled,

perhaps by some crowdsourcing method where the people could submit their verdict

on the articles partisanship and the majority vote would be applied. (Raykar and Yu

2012) suggests a method for collecting data labels by crowdsourcing, while avoiding

spammers that could degrade the data quality.

 46

Conclusion

The project successfully met the aim of creating a classification system for predicting

the probability that a news article is hyperpartisan or neutral. The classifier created

was just under 80% accurate, which was very competitive compared to other similar

solutions created by teams at International Workshop on Semantic Evaluation 2019.

The low recall score of the classifier is a slight obstruction to the total success of this

aim, however given more time and more information to train with, the same system

would likely improve in its effectiveness.

There was also the ambition to investigate which features performed most effectively

in the classification of hyperpartisan news, which was accomplished with sentiment

analysis showing as a key feature that worked across all the classifiers tested.

Furthermore, the creation of functionality to predict the classification of a string

object from the command line, opens up the possibility for the system to be used in

an API or as part of some other software package that would require hyperpartisan

news detection.

Reflection on Learning

Doing this project has developed my understanding of machine learning and the

theory behind. Coming into this project, I had little experience using a library like

SK-Learn to program a machine learning system, so being able to actually implement

a system has meant that my understanding of how the theory behind machine

learning works has developed too. Having to deal with some of the convoluted tasks

that are involved in creating real life systems, such as processing data from a text file,

has given me more solid understanding of the time requirements for developing

systems, often the most menial task can take the longest.

Analysing the performance of different combinations of classifiers and features has

improved my ability to perform statistical analysis of data, as a fair amount of the

project was spent exporting data from the machine learning models to Microsoft

Excel to produce graphs and try and identify and understand trends.

 47

Given the different variables in the classification system that can be experimented

with, I spent a lot of time trying out different approaches trying to find more optimal

results. However, the nature of the classifier is that there will not ever be one optimal

solution and therefore it is possible to experiment with the system perpetually. With

hindsight, I should have focused on only allowing experimenting within the time

frames allowed in the initial Gantt chart created at the beginning of the project.

 48

References

Association for Computational Linguistics 2019. SemEval 2020: Call For Participating In

SemEval 2020 Tasks | ACL Member Portal. Available at:

https://www.aclweb.org/portal/content/semeval-2020-call-participating-semeval-2020-tasks

[Accessed: 14 May 2020].

Bakir, V. and McStay, A. [no date][a]. Fake News and the Economy of Emotion. Available at:

https://research.bangor.ac.uk/portal/files/19296816/2017_Fake_news.pdf.

Bakir, V. and McStay, A. [no date][b]. Fake News and The Economy of Emotions., pp. 154–175.

doi: DOI: 10.1080/21670811.2017.1345645.

Bird, S. et al. 2009. Natural Language Processing with Python. O’Reilly Media Inc.

Data Driven Investor 2018. K-Fold Cross Validation. Available at:

https://medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833 [Accessed: 14

May 2020].

FAQs – Full Fact. [no date]. Full Fact . Available at: https://fullfact.org/about/frequently-asked-

questions/.

Foreign & Commonwealth Office 2019. UK Steps Up Fight Against Fake News. Available at:

https://www.gov.uk/government/news/uk-steps-up-fight-against-fake-news [Accessed: 14 May

2020].

Géron, A. 2017. Hands-On Machine Learning with Scikit-Learn and TensorFlow., p. 169.

Hutto, C. and Gilbert, E. 2014. VADER: A Parsimonious Rule-Based Model for Sentiment

Analysis of Social Media Text.

Kiesel, J. et al. 2019. SemEval-2019 Task 4: Hyperpartisan News Detection. Available at:

10.18653/v1/s19-2145 [Accessed: 14 May 2020].

Kirk, M. 2017. Thoughtful Machine Learning with Python., p. 75.

Koppel, M. et al. 2007. Measuring Differentiability: Unmasking Pseudonymous Authors. Journal

of Machine Learning Research 8, pp. 1261–1276.

Mosseri, A. 2017. Working To Stop Misinformation And False News. Available at:

https://www.facebook.com/facebookmedia/blog/working-to-stop-misinformation-and-false-

news.

 49

Pedregosa, F. et al. 2011. Scikit-learn: Machine Learning In Python. Available at:

http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html [Accessed: 14 May 2020].

Ponsford, D. 2019. UK Newspaper And Website Readership 2018: Latest Pamco Figures. Press

Gazette . Available at: https://www.pressgazette.co.uk/uk-newspaper-and-website-readership-

2018-pamco/.

Potthast, M. et al. 2020. A Stylometric Inquiry into Hyperpartisan and Fake News. Available at:

10.18653/v1/p18-1022.

Proceedings, B. [no date]. of the 51st Annual Meeting. In: of the Association for Computational

Linguistics (Volume 1: Long Papers)

Raykar, V.C. and Yu, S. 2012. Eliminating Spammers and Ranking Annotators for

Crowdsourced Labeling Tasks. 13, pp. 491–51. Available at:

http://jmlr.org/papers/v13/raykar12a.html [Accessed: 14 May 2020].

Recasens, M. et al. 2013. Linguistic Models for Analyzing and Detecting Biased Language.

Available at: https://www.aclweb.org/anthology/P13-1162/.

Schneider, B. 2019. Isolationism Creeps Back Over America, As The President Looks Out For

Himself. Available at: https://thehill.com/opinion/international/468690-isolationism-creeps-

back-over-america [Accessed: 14 May 2020].

Silverman, C. et al. 2016. Hyperpartisan Facebook Pages Are Publishing False And Misleading

Information At An Alarming Rate. BuzzFeed News . Available at:

https://www.buzzfeednews.com/article/craigsilverman/partisan-fb-pages-analysis.

Silverman, C. and al., et [no date]. Hyperpartisan Facebook Pages Are Publishing False And

Misleading Information At An Alarming Rate. fb-pages-analysis: Buzzfeed News. Available at:

https://www.buzzfeednews.com/article/craigsilverman/partisan-.

Sweney, M. 2020. Newspapers To Lose £50m In Online Ads As Firms Use Coronavirus

‘blacklist’. The Guardian . Available at:

https://www.theguardian.com/media/2020/apr/01/newspapers-to-lose-50m-in-online-ads-as-

firms-use-coronavirus-blacklist.

Vargo, C.J. et al. 2018. The agenda-setting power of fake news: A big data analysis of the online

media landscape from 2014 to 2016. New Media & Society 20(5), pp. 2028–2049. Available at:

10.1177/1461444817712086 [Accessed: 14 May 2020].

 50

Vosoughi, S. et al. 2018. The spread of true and false news online. Science 359(6380), pp. 1146–

1151. Available at: 10.1126/science.aap9559 [Accessed: 14 May 2020].

Zhou, V. 2019. A Simple Explanation Of Gini Impurity - Victorzhou.com. Available at:

https://victorzhou.com/blog/gini-impurity/ [Accessed: 14 May 2020].

