Final Report

Hyperpartisan News Detection

CARDIFF

UNIVERSITY

PRIFYSGOL

(AFRDYD

Cardiff University

School of Computer Science and Informatics

CM3203 - One Semester Individual Project
Author: Patrick Noyau
Student Number: 1723822
Supervisor: Luis Espinosa-Anke

Moderator: Dr Daniel J. Finnegan

Abstract

Hyperpartisan news publishers are far more likely to produce news articles containing
falsehoods than neutral mainstream publishers. The impact fake news can have on
societies and democracies is huge, and since 2016 there has been much hype
surrounding the issue, with companies and governments seeking to crack down on
its emergence.

The aim of this project is to create a machine learning classification system, that can
successfully predict if a news article is hyperpartisan or not, and to see which features
of news articles are most successful at differentiating between hyperpartisan and
neutral news.

Table of Contents

PN o - T TR 2
Table Of CONEENLSccciiiiiiiiiiiiiiiittirriirrtieecceeeeeeenssrataarrrrre e eeeeeesssssssssssssssssssssnsnnees 3
Table Of FIGUIES ...cccciiiiiiiiiiiiitiiiiiiiiiiiiiiiiintnnttetectttteeeeeeasasassssssssssssssssssssessssssssees 4
6o o Ta 1L Tl 1o) o R 5
OULCOIMIES «.evieiiiieiiiieeeiite ettt et e ettt e ettt e eount e eantesetatessaneesemntessasaeemnaessmsaeeonnnesmreessnnaesnnaessnnaeesnnnes 6
BaCKGIrOUNduuuuiiiiiiiiiiiiiiiiiiiiiiiitittiiiirrrisseee et eteeeestesasasssssssssssssssssssssesessssseaes 7
The prevalence and effects of Hyperpartisan INEWS..........ccocccevierriiniinneenienneeniceeeeceeceseeeeaee 7
ASSOCIALEA TREOIY ..ttt ettt et ettt e be e sabe et e ebae s e esaesanee 9
Potential StakehOIAETS.......coouiiiiiiriiiiiiiiteecet ettt ettt et e e e 11
Potential tools to solve the Problem.........cccccoiiiiiriiiniiiiiiicneteceteere ettt 12
Approach and Implementationccooeuuuueeeerreeiiiiiiiiiiiiiininininnrrrreeeeeeeeeeesessssssnes 13
Loading files INtO the SYSTEIML......ccouiitiriirieeieiiteeiteteetteete ettt et et ene e s e e s e esaaesanes 13
Transforming the datasetccoceeeuiiiiriiiieicetert ettt ettt e et e esaee s st e seesmneenne 18
FRATUIES ..ciiiiiiiiiiiiiiiiiiiii ittt ettt e a e s saans 19
ClaSSIFICALION «..eenvteriiiiniieieeet ettt ettt ettt st e bt st e st e st e e e st e e bt e maeembaesmneesmeesanes 21
Testing Features With CIassifIersccc.ceeuerrierierniiniiiiinieeteeteeteeeeeeec et et esee e 22
Creating a command liNe tOO]c...covuiiriiriiiriiiiitinititcet ettt ettt e e s e e 24
Feature SIGNIfICANCE.civuiiriiiieiieteet ettt ettt et e ae e s e e e s e b e sanes 25
Results and EvalUationuueeeeiiiiiiiiiiiiiiiiiiiiiiiiirnriecccceeenessssssssssssssssseeeseeeeens 26
ClasSIfIEr RESUIES ..c.uvtiruiiiiiiiiiiterteteettet ettt ettt ettt ebe e s e e s e esaaeesaeesanes 26
FEAtUI® ANALYSIS -..eeuriiiieiiiiniciteetet ettt ettt et s e s et e e e e s e beesanes 29
Feature Importance in Random FOTeSt.........ccocueiuiiriiinienniiinienitinieniteteete et eseee e 34
Decision Tree VISUaliSAtiON....c...ceocueiuiiriirrteenieiiteniteiteeieeitesee et eseeesreeereeneesaeesraesneesaeesnnes 37
Ranking change in GIni IMPUIILY c...cooeiriiiiiiniiiiieieteeeeteteetc ettt 40
SUIMIMATY ..ttt ettt et st e e s aa et e e e saae e e e saaaeeessaasaeessnanns 43
FULUIE WOTK cooiiiiiiiiiiiiiiiiiiiiiireriittcnnnnnnnttntnrrrrer s s s sssssssssssssse s seseess 44
(076) 0T 11T T) o PP 46
Reflection 0N Learningueeeeeeeeiiiiiiiiiiiniiimiiiinrnreeeeeeeeeeessssssssssssssssessseeseess 46
S 15 7<) 4 o1 48

Table of Figures

Figure 1- Summary of categorisation.ccocuieeiiiiiiiiiiiiiiniiiieriiecieeeiee e 7
Figure 2- Unmasking CUIVe........coccuiiiiiiiiiiiiiiiiiiieiiieciieceieccrcecee e e 9
Figure 3- Unmasking CUIVe........ccoouiiiiiiiiiiiiiiiiiiiiieiiiieeiee e 10
Figure 4 - Results of submissions to SemEval 2019..........ccccceeiviiiniinniinnniinnnnnen. 10
Figure 5 - Articles from datasetcccceevviiiiiiiiiiiiiiiiiiiiiiiiecciiccieceee e 13
Figure 6- Extract from XML Label Documentcccccceevieeiiiiiniiiiiniiienniiennieenneenn. 14
Figure 7 - Diagram detailing readXML() function.......c.c.cceceeevveeviinvicnnienncinienncenn 15
Figure 8 - Diagram of read TXT () functionccccceveerieinieniieeniennieennenieeneeneenn 16
Figure 9 - Diagram showing how readFiles() function wWorks..........cccccceeeeeviennneenne 17
Figure 10 - Table showing textToFeature OUtPUL.........cceevvuieeerrriieerniieeeenieeeeeneeens 18
Figure 11 — Diagram of textToFeatures function..........ccccceeeuveevviieiniiiinnniennneennnenn. 18
Figure 12 - K-fold cross validation........cccccceeeuiiiiiiiiniiiiiiiiiiieiiicciiccciec e 22
Figure 13 - Diagram of whole classificationccccccceeiiiiiiiiniiiiniiinnniinnienneen. 22
Figure 14 - Iterating through different feature combinationsc.c..cccceeveiennncen. 23
Figure 15 - Diagram of command line tool.......c..c.cccecuiiiiiiiiiiiiniiinniiiniiiiiiccneee 24
Figure 16 - Screenshot showing ouput of command line terminal...............cccco..c... 25
Figure 17 - Best accuracy score of each classifier type.......cccoccceevvieriiiiniiiiniicnnnnn. 27
Figure 18 — Precision and recall of the best random forest classifier 28
Figure 19 - Results of each feature tested on it's own with each classifier type....... 29
Figure 20 - Usage of feature in decision tree classifier’s best and worst results......31

Figure 21 Usage of feature in logistic regression classifier’s best and worst results 32

Figure 22 - Usage of feature in random forest classifier’s best and worst results..33

Figure 23 - Feature importance for random forest classifierccccccceeeeeveuiennncen. 35
Figure 24 — Top 30 feature importancse for random forest classifier....................... 36
Figure 25 - Entire decision tree, top portion of tree shown on next page................ 38
Figure 26 - Top portion of deciSion treeccoecuiieriiiiiiieniiieiniiieieiieeieeeieecneens 39
Figure 27 - Graph of change in Gini impurity, relative to the depth of the node.....41
Figure 28 - Top 30 changes in Gini impurity, relative to the depth 42

Introduction

Since starting this project in January much in the world has changed; the way we all
live our lives, for at least the apparent future will be highly unfamiliar. The way that
many people accrue their news has changed, and although not a trend that started
during the Coronavirus Pandemic (Ponsford 2019), in the UK at least, the restrictions
on people’s ability to buy traditional print newspapers in shops have driven rises in
reading news online (Sweney 2020). However, consuming news online, especially
through social media sites like Facebook, can cause issue due to the prevalence of
‘fake news’. As stated in (Bakir and McStay 2018), ‘fake news’ produces uninformed
citizens, that remain uninformed due to the echo-chamber (only encountering
opinions that coincide with your own) effect of social media. Research shows that
hyperpartisan (very left-wing or very right-wing) news publishers have far higher
numbers of falsehoods in their articles compared to neutral mainstream publishers
(Silverman et al. 2016).

This is the motivation behind this project’s aims; to create a machine learning
classification system to detect hyperpartisan news. The creation of such a system
could be very beneficial to many. Currently, immobilising fake news can rely on
organisations or charities such as FullFact! to manually fact-check claims in a news
article to assess their trustworthiness. The process is lengthy, especially when
compared to the rate at which articles will be published online, meaning that by the
time a rebuttal can be produced, the damage of the ‘fake news’ has already been done.
A system that can quickly predict if an article is hyperpartisan could be embedded
into social media websites to provide users with a fast indication if the article they

are reading is reliable or not.

! fullfact.org

Qutcomes

Creation of system that can accept plain text files and convert them into
Python objects in order to be classified
Creation of functionality that can transform a text piece into an array of the
key features it contains

o Features are custom made, and also come from libraries
Identification of which features best discern between hyperpartisan news
articles and neutral news articles from established mainstream publishers
Creation of system that can accept text from a command line, analyses the

features it contains and outputs if it is predicted to be hyperpartisan or not

Background

The prevalence and effects of Hyperpartisan News

As discussed in the introduction, ‘fake news’ proves a big problem for democracies
and societies. (Bakir and McStay 2018) references Jiirgen Habermas’ “democratic
ideal”, where people in democracies rationally speak and listen to each others
viewpoints before agreeing the best way forward. They find that if people are
“indoctrinated to disbelieve truthful facts” and rather believe falsehoods, then
discontent with the democratic process and outcome is likely. The alarming end result
that (Bakir and McStay 2018) predict says that societies will become highly polarised,
with people who did not vote with the majority’s confidence in a governments

legitimacy decreased.

Just before the 2016 United States Presidential Election, investigators at Buzzfeed
News published their research into hyperpartisan Facebook pages and the role they
were playing in spreading false information (Silverman et al. 2016). Selecting pages
with large followings from left-wing, right-wing and neutral mainstream
organisations, they manually fact checked every post by these pages over a period of

seven days, marking their content as ‘mostly true’, ‘mostly false’ or a mix of both .

Publisher type | Mostly True | Mostly False Mix Combined

(articles Scores — Mix

analysed) and Mostly
False

Neutral (826) | 97.6% 0% 0.969% 0.969%

Left-wing 71.1% 5.86% 19.9% 25.8%

(256)

Right-wing 50.6% 13.2% 8.07% 21.3%

(545)

Figure 1- Summary of categorisation. Excludes articles with “no factual claim or content” (Silverman et al. 2016)

Figure 1 shows the results, with the content of neutral mainstream publishers being
categorised overwhelmingly as ‘mostly true’, whereas left-wing having just under 6%
of articles being classed ‘mostly false’ and around a quarter being either ‘mostly false’

or a mixture of false and true. Right-wing publishers performed even more

unfavourably, with 13% of its articles being classed ‘mostly false’, and 21% either

mostly false or mixed.

Left- wing and right- wing articles containing higher proportions of falsehoods is
significant as research by (Vosoughi et al. 2018) into the circulation of false news
online, found that falsehoods spread online much faster than truths, with a falsehood
reaching 1500 people online six times faster than a truth would. The research also
found that false- political news spread even faster than other types of falsehoods. The
emotional content of the replies to falsehoods online/ social media were more likely
to be ‘disgust’, ‘anger’ or ‘surprise’ compared to the responses for truths, which were
‘anticipation’, ‘joy’, ‘trust’ and ‘sadness’ (Vosoughi et al. 2018). Finally, the research
also found that false news was also more likely to be spread by humans peer to peer,

essentially going ‘viral’.

(Vargo et al. 2018) studied the online media landscape between 2014 and 2016,
found that the subject matter of fake news spread online would then influence the
agendas of traditional partisan news outlets - perhaps with the justification for an
issue being reported in a traditional outlet originating from the high levels of
discussion happening online, that caused by dissemination of fake news. The impact
of fake news setting the agenda for other, more traditional, media settings is
significant, as it shows that fake news can be used to make certain issues a talking
point.This may also explain the left- wing and right- wing news websites having still
having significant levels of content classified as ‘mostly true’ in Figure 1. These
outlets may be able to utilise the rapid spread of fake news to generate interest in a
certain topic, which then can be used as basis for increased truth based reporting on

a particular issue.

The high levels of falsehoods contained in news articles from right- wing and left-
wing publishers, combined with the effects that false news can cause, indicate the

need for a tool that can identify articles that originate from these sources.

Associated Theory

(Potthast et al. 2020)’s research into hyperpartisan news sought to establish if
hyperpartisan news articles can be distinguished from neutral mainstream articles
using it’s stylistic features. Using the technique ‘Unmasking’ proposed by (Koppel et
al. 2007), where in order to predict the author of a given text the most distinguishing
features are recursively removed. With each recursion, the text with less
distinguishing features is classified and the cross-validation accuracy is measured;
the faster the accuracy degrades, the more likely the text was written by that author.
When plotted on a graph, the gradient of the curve produced provides an indication

of the similarity (steeper curve = more similar).

100 —— —
F_:"‘—’::\ !:.-_——.w"’it — = [
90
80
\
X
70
\
60 S
50 : r] —_—
0 1 2 3 4 5 6 7 8

Figure 2- The steeper curve indicates the document is more similar to the previous ones by the author. (Koppel et al. 2007)

Potthast et al. applied the same principle to hyperpartisan and neutral mainstream
news articles, unmasking left-wing and right-wing articles against neutral ones. Their
results in Figure 2 show that when left-wing and right-wing articles are unmasked
against each other their curve decreases considerably more rapidly than when
compared unmasking against neutral mainstream ones. This means that left-wing
articles are similar in style to right-wing ones (and vice versa), which is crucial as it
means that we can simply classify between hyperpartisan and neutral articles rather

than a three-way classification of left-wing, right-wing and neutral.

mainstream vs left v
mainstream vs right ¢
0.6 left vs right X

Nomralized accuracy
o
S

&
(V)
1

0-0 T T T T 1
0 3 6 9 12 15

lterations

Figure 3- The steep blue curve shows that left-wing articles are similar in style to right-wing ones (Potthast et al.)

The 13th International Workshop on Semantic Evaluation in 2019 (SemEval - 2019),
an “ongoing series of evaluations” of semantic evaluation systems to improve the
state of semantic analysis (Association for Computational Linguistics 2019). Part of
SemEval - 2019 included a task where teams were invited to create and submit a
classification system to detect hyperpartisan news articles (Kiesel et al. 2019). All
teams were given the same dataset of news articles to train their classification system
with, which were manually classified as neutral or hyperpartisan. After the
competition was completed, the entries were ranked by their accuracy and the results

were published for the workshop.

Submission By-article dataset

Team name Authors Code Rank Acc. Prec. Recall F;

Bertha von Suttner Jiang et al. % 1 0.822 0.871 0.755 0.809
Vernon Fenwick Srivastava et al. 2 0.820 0.815 0.828 0.821
Sally Smedley Hanawa et al. 3 0.809 0.823 0.787 0.805
Tom Jumbo Grumbo Yeh et al. % 4 0.806 0.858 0.732 0.790
Dick Preston Isbister and Johansson 5 0.803 0.793 0.818 0.806
Borat Sagdiyev Pali¢ et al. 6 0.791 0.883 0.672 0.763
Morbo Isbister and Johansson 7 0.790 0.772 0.822 0.796
Howard Beale Mutlu et al. 8 0.783 0.837 0.704 0.765
Ned Leeds Stevanoski and Gievska 9 0.775 0.865 0.653 0.744
Clint Buchanan Drissi et al. % 10 0.771 0.832 0.678 0.747
Yeon Zi Lee et al. 11 0.758 0.744 0.787 0.765
Tony Vincenzo Staykovski 12 0.750 0.764 0.723 0.743
Paparazzo Nguyen et al. % 13 0.747 0.754 0.732 0.743
Steve Martin Joo and Hwang 14 0.745 0.853 0.592 0.699

Figure 4 - Results of submissions to competition

10

The teams submissions were analysed and the competition organisers collated which
methods worked effectively for the teams , which can be useful for this project, giving

a head start on what makes an effective system.

Potential Stakeholders

Much of the hyperpartisan news is spread on social media websites, particularly in
the 2016 presidential election, on Facebook (Potthast et al. 2020). Given this, the
ability to be able to detect hyperpartisan news could be of potential interest to social
media platforms looking to remove such content from their websites. This is
especially credible following statements made by Facebook in the wake of the 2016
US Presidential election, where the company stated it’s aim to fight the spread of false
news on their platforms (Mosseri 2017).

Other potential stakeholders could include national governments around the world
seeking to limit the damaging effect false news can have on democracies (Bakir and
McStay 2018). For example in 2019, the UK Government stated it’s aim to fight fake
news and inroduced an £18 million package to that end (Foreign & Commonwealth
Office 2019).

11

Potential tools to solve the problem

Scikit- learn (SK-Learn)?, is Python library specifically designed for machine learning
created by (Pedregosa et al. 2011). The library contains many tools for formatting and
processing data in order to be classified, and also classifiers themselves that can learn

from data inputted and make predictions.

The ‘Sentiment Intensity Analyser’ module from the Natural Language Toolkit* (Bird
et al. 2009), provides a tool to analyse the sentiment intensity of a piece of text.
Created by (Hutto and Gilbert 2014), the ‘VADER’ tool utilises a sentiment lexicon
created from ‘micro-blog’ continent such as Twitter and Facebook and generic rules
to return a prediction of the sentiment that the text is inputted. The tool was designed

to be ‘computationally economical’, while also not sacrificing its accuracy.

A ‘Spelling Corrector’ from the Python Package Index* , which is designed to be used
as a tool to return predictions for the correct spelling of a word that is incorrectly
spelt. The tool uses a dataset of the words in the English language, and the frequency
of their common usage. The tool can return words that are not on this frequency list,
so therefore are likely to be misspelled.

2 scikit-learn.org
3 www.nltk.org
+ www.pypi.org/project/pyspellchecker/

12

Approach and Implementation

Loading files into the system

The system accepts its training and testing data from plaintext files that the Python

program converts into python objects that the classifier can process. Each line from

an article is stored as a line in a text file, where the first 6 characters are a unique

article ID and the rest of the line is the text from the article.

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000001
0000002
0000002
0000002
0000002

NDAAAAATD

At this fateful point , the only way money could be brought into being was to borrow it , whereby mone
The money system transited from public control to private control , and there it has remained .
Instead of following the path set forth by the Founders to create money directly , our government bec:
As a member of Congress , I came to the conclusion that while the debate over taxation was interestin
One must first study how money is created , before one can sensibly have a discussion of how it is to
With the help of staff , I spent a full five years working with legislative counsel to come up with a
The vehicle was H.R .

2990 , the National Emergency Employment ngipgg (NEED Act) , which articulates why the current deb:
How To Easily Kill A1l Indoor Odor , Mold , And Bacteria — Without Lifting A Finger Trump to End the [
Donald Trump ran on many braggadocios and largely unrealistic campaign promises .

One of those promises was to be the best , the hugest , the most competent infrastructure president ti
Trump was going to fix every infrastructure problem in the country and Make America Great Again in the
That is , unless you ' re a brown American .

In that case , you ' re on your own , even after a massive natural disaster like Hurricane Maria .
Puerto Rico ’' s debt , which the Puerto Rican citizens not in government would have no responsibility
The infrastructure is certainly a mess at this point after a Category 5 hurricane ripped through the
Emergency efforts after Hurricanes Irma and Harvey reportedly went very well and Trump praised himsel
However , the insufficient response in Puerto Rico has nothing to do with Trump , in his mind , and c:
They ' re on their own .

Twitter responded with sheer incredulity at Trump ’ s vicious attack on an already suffering people .
Featured image §§[§{Qg[§p via YouTube

Photo By Justin Sullivan/Getty Images In response to Joyce Newman ' s recent letter about a conversat
This makes Planned Parenthood the biggest mass murderer in the history of the world .

Is she willing to have a serious conversation about that ?

Where is her outrage over that ?

Mara nannla dia auvaruv uaar fram auvardncac ar anta arrcidante than fram anne

Figure 5 - Articles from dataset. Lefthand side shows the unique article ID

13

The labels (if the article is hyperpartisan / neutral) for each article are stored in an
XML file where the attributes for each XML element are the unique article ID, the
URL to the original article, who performed the manual labelling and a Boolean value

based on if it is hyperpartisan or not.

version="1.0" 7>
>

< hyperpartisan="true" id="0000000" labeled-by="article"
url="https://www.opednews.com/articles/Kucinich-Reclaiming-the-m-b
y-Dennis-Kucinich-Banks_Debt_Funding_Money-170910-112.html" />
< hyperpartisan="true" id="0000001" labeled-by="article"
url="http://bipartisanreport.com/2017/10/12/trump—just-woke-up-vic
iously-attacked-puerto-ricans-on-twitter-1like-a-cruel-old-man/"/>
< hyperpartisan="true" id="0000002" labeled-by="article"
url="https://www.reviewjournal.com/opinion/letters/
liberals-wailing—about-gun-control-but-what-about-abortion/"/>
< hyperpartisan="true" id="0000003" labeled-by="article"
url="https://www.redcuprebellion.com/2017/9/24/16358776/laremy—tun
sil-national-anthem-kneeling-protest-donald-trump"/>
< hyperpartisan="false" id="0000004" labeled-by="article"
url="https://www.realclearpolitics.com/
articles/2017/10/12/its_1968_all_over_again_135238.html"/>
< hyperpartisan="true" id="0000005" labeled-by="article"
url="https://www.insidefutures.com/articles/out.php?a=2094272&
u=https%3A//www.sunshineprofits.com/gold-silver/gold-trading/
gold-price-december-2017/"/>

Figure 6- Extract from XML Label Document

14

The read XML function accepts the name of the XML file to process as string object, it
then uses the XML Element Tree API >from the Python library to parse the XML

document and create an Element Tree object. The program then iterates through the

element tree, and creates two list objects- one containing the IDs of all the
hyperpartisan articles and the other all the neutral articles.

XML Article
Labels File
1
1
1
readXML()
Input: .xml File

Figure 7 - Diagram detailing readXML() function

End of

A

Read Element

Document?

Add ID to Add ID
Hyperpartisan List[=~~~ 7777777777

Add ID to Neutral Add ID
Lst [T°TTTTTTTTTTTT

End of

Document?

List:
Hyperpartisan
Article IDs

List:
Neutral Article IDs

Y

A

Output :
Article ID Lists

A

A

> https://docs.python.org/3.8/library/xml.etree.elementtree.html

15

The readTXT function parses through the text file, from each line it reads the first 6

characters to identify the unique article ID. The line of text after the ID is then added

to a string object. When it reads the next line, if the article ID is the same as the line

before, it appends that line to the string object too. The process is repeated until it

reaches a new article ID, meaning that the previous article has ended. The string

object is added to the dictionary of articles, where the key is the article ID. The process

then repeats itself until the end of the text file is reached.

Read Line:

and Text

Extract Article ID

A

Y

Append

-

Append text to
String

Inital Line

Set Article ID !
Dictionary:
Articles[ID] = Int:
ArticleString Current Article ID
String: ‘
ArticleString Add . .
““““““““ ' | Set
1 1
AAppend e
1
1
1

Append text to

readTXT()
Input: .txt File
1
1
1

.txt File with

Articles

A Y

Read Next Line:
Extract Article ID
and Text

E——

A

String

End of
Document?

Yes

Output:
Articles Dictionary

New Article ID different
to current Article I1D?

Add Article string to
Dictionary, set new
current Article ID

Figure 8 - Diagram of readTXT() function

16

The readFiles function utilises both the readXML and readTXT methods, which return

two lists containing the article IDs for all the hyperpartisan/ neutral articles and a

dictionary with the articles referenced to it’s article ID. Two further lists are then

created, an allArticles list where the strings of every article can be contained and the

other list for the labels of each article called allLabels. The two lists are ordered, so the

first item of the allLabels list relates to the first string in the allArticles list. Starting

with the list of hyperpartisan article IDs, the list is iterated through so for each

hyperpartisan article added to the allArticles list, then the number ‘1’ (indicating the

article is hyperpartisan) is then added to the allLabels list. The same is then done with

the neutral articles ID list, adding a ‘0’ to the allLabels list to indicate that it is not

hyperpartisan.

readFiles()
Input: .txt File, .xml File

|

.txt File with XML Article
Articles Labels File

readXML(.xml File)

readTXT(.txt File)

\d

Output:
allArticles List, allLabels List

Output: Hyperpartian ID list, Neutral ID List » Output: Articles Dictonary
v v v
o Dictionary:
List: H L'St;‘t, Atrticles[ID] =
Neutral Article IDs frﬁ;?:ll;s:n AvrticleString
1
1 T
For each ID in Neutral ID List: For each ID in Hyperpartisan
- . ID List:
d(isc?itoﬂzurytr::msr;;?efrngO . Get hyperpartisan article from |
] N T~ - dictionary and append to -
aIIAmcIeﬁLlet, Iapretnd 0'to allArticles List, append '1' to
_ arabes e allLabels List
1 1 T T
1 1 1 1
1 1
! ' Append . 1
v S > Lst (peend | I
h allArticles 1
1
| |
1 1
1 1
1 1
! Append 0 !
l____Ep___.> List: - - - - - - —— - - '
allLabels Append 1

Figure 9 - Diagram showing how readFiles() function works

17

Transforming the dataset

The program has the textToFeatures function, which converts a list of news articles
into an array of features that they contain. As input, the function takes the list of
news articles, and Boolean arguments for each feature (essentially an on-off switch
for that feature).

Example
Using as an example a sentence from a news article classed as hyperpartisan :

“The left’s obsession with gun “control” is just that, control .”
The result of this sentence going through textToFeatures function with these features
would be:
e Feature 1: Contains the word ‘left’ once or more
e Feature 2: Uses one or more exclamation mark (!)

e Feature 3: Number words that are 4 characters or longer

The output vector would be as follows:

Feature 1 | Feature2 | Feature3 | Output
1 0 7 [1,0,7]

Figure 10 - Table showing textToFeature output

The vector for each news article from the textToFeatures function is then used by the
classifier later on to predict the class of the article. The following features can be

calculated using the textToFeatures function:

Feature x
Boolean

Feature 1
Boolean

Boolean Boolean

True

* Output:
| Feature x >\ Features 2d Array
:

:
iAppend

True

| Feature x-1

textToFeatures
Input: boolean values for
feature use

i i i
1 1 1
Append & Append. 1 Append
A PPy A

2d Array:
Features

Figure 11 - textToFeatures function

18

Features

CountVectorizer (Word vectorizer): Utilising SK-Learn’s Count Vectorizer feature,
the vectorizer analyses the most common words across all the news articles, then for

each article indicates if it contains each of the most common words or not.

TF-IDF Vectorizer: This vectorizer works in a similar way to the count vectorizer,
but rather than just returning the most common words, it calculates the term
frequency multiplied by the inverse document frequency.

Term Frequency (TF) — How many times a word appears in the news article

Inverse Document Frequency (IDF) — How common the word is across all the news

articles. If a word is very common and therefore appears across multiple article the

IDF will be close to 0, and conversely if it is very rare the IDF will be close to 1.

A higher TF-IDF score, means that the word is more relevant to the document.

Average Sentence Length: For each article, calculates the average number of
characters per sentence in the article. (Sentence is defined as words between bullet

points)

Word Lengths: For each article, calculates the percentage of words in the document

that are: 10 characters or longer, 11 characters or longer and 12 characters or longer.

Sentiment Analysis: Using a tool from the Natural Language Tool Kit, which
analyses the input news article for its sentiment (how emotional the words are). The
tool outputs four scores for the input news articles positive, negative and neutral
sentiment. It also releases a compound score, which summarises all three sentiment
scores

For example, the sentence “Donald Trump has done a very bad job!”, receives these

SCores:

Sentence: | “Donald Trump has done a very bad job!”

Negative Neutral Positive Compound

0.405 0.595 0.0 -0.623

¢ https://www.nltk.org/api/nltk.sentiment.html

19

Conversely, the sentence “Today, United States President visited Michigan for the

first time.”, measures as follows:

Sentence: | “Today, United States President visited Michigan for the first time.”
Negative Neutral Positive Compound
0.0 0.763 0.237 0.4215

Punctuation: Measures the percentage of characters in the news articles that are

exclamation points (!) and the percentage that are full stops (.).

Bias Words: This utilises a lexicon 654 of ‘bias-inducing’ words from researchers at
Stanford University (Recasens et al. 2013). For each word in the lexicon, the number

of times it appears in each news article is recorded.

Reduced Bias Words: When processing the occurrences of the above bias words in
the news articles, the processing time was very high due the high computational cost
of searching for 600 plus words across 600 news articles (the nested for loops have a
big-O7 notation of O(n?)). In order to reduce the number of words in the list, the
SKLearn Recursive Feature Elimination (RFE)® module was used. RFE ranked the
features based on their importance in a decision tree classifier. K-fold validation was
used to cross validate the classification, and the average importance of each feature
across each fold was taken. The average importance of each feature was then ranked
from best to worst, and the 100 most important bias words were extracted. Having a
shorter list of bias words also may prevent overfitting of the data, where the classifier

is too complex and starts trying to explain random errors in the dataset.

Total Bias Words: Using the same lexicon as above, for each article it returns the

total number of bias words in the text.

Spelling Mistakes: Using a spell checker module® , which returns a list of words it
doesn’t know (therefore may be spelled incorrectly). The feature returns the

percentage of words in the news article that are unknown.

7 https://en.wikipedia.org/wiki/Big_O_notation
8 https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
° https://pypi.org/project/pyspellchecker/

20

Classification

The returned news articles, now represented as a list of the features they contain, are
then entered into a classifier. The SK-Learn module offers many different classifiers
in its package, so various options were tried in an attempt to find the most accurate
results. The experiments carried out used three different classifiers from SKLearn;

e The firstis adecision tree classifier. At each stage of the tree, a feature is picked
which best splits the data so the Gini Impurity of the data either side is as low
as possible (Zhou 2019). The Gini Impurity in this context is the probability
of a random news article from the dataset being in the wrong category. Then
at each split created, a new feature is chosen to best split the data again so that
the Gini value is as low as possible. This process is repeated until the Gini
value is zero or the tree has reached a maximum depth (Géron 2017).

e The next classifier is Logistic Regression, which works by estimating the
probability that an news article is hyperpartisan or not (neutral), if the
probability is greater than 50%, the article is classified as hyperpartisan.

e The last classifier tested was a random forest classifier, which trains lots of
decision tree classifiers, each with a subset of features from the training data.
When making a prediction, the data is processed through each decision tree,
and the most common prediction from all the trees is returned as the
prediction (Kirk 2017).

The data is split, so that some can be used for training the classifier, and the rest can
be used to test the classifiers effectiveness. In order to ensure that any classifier is
not effective purely by chance, K-Fold Cross validation was implemented, where the
data is shuffled and split into k different folds (sets), where k can be any number (in
this case it was 5). Each fold is then used once as a testing set, while the others are
used as training data. The process is repeated, so each fold used as a testing set is
changed with each iteration. When the classifier has been tested across all k groups,

where an average can be taken from all the sets of results.

21

Fold 1 Fold 1 Fold 1 Fold 1
Fold 2 Fold 2 Fold 2 Fold 2
Fold 3 Fold 3 # Fold 3 # Fold 3 #
Fold 4 Fold 4 Fold 4 Fold 4
Fold 5 Fold 5 Fold 5 Fold 5

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Training set

Testing set

Figure 12 - K-fold cross validation (Data Driven Investor 2018)

classifyArticles() readFiles() > textToFeatures() | F----- > 2d Array:
Features

Y

List: allLabels List: allArticles

K-fold
Validation()

R

" Output Performance
c 0 > Scores

Figure 13 - Diagram of whole classification

Testing Features with Classifiers

In order to see which features were most effective with each classifier type, each
classifier was tested with every possible combination of features. Using Python’s
‘itertools’ module 1°, a list was created of dictionaries, each containing a unique
combination of feature booleans (True or False values), indicating if that feature
should be used or not. Initially, the feature dictionary was passed straight to the
TextToFeatures module to output a matrix with the feature information that could be
classified by the classifier, however this method meant that the features in each article
were being re-processed with each permutation, which was very time consuming
considering that the articles used to test the classifier were kept the same each time
so the TextToFeatures module was also outputting the same values every time. To
remove this redundancy, at the start of the program the TextToFeatures module
produces a ‘master dictionary’, where each key is the feature name and the value is

the array of feature information for each article. For each dictionary in the feature

10 https://docs.python.org/3/library/itertools.html

22

boolean list, the program makes a copy of the ‘master dictonary’, and deletes any
features that have a false value. The remaining values in the copy of the ‘master
dictionary’ are converted into a 2 -dimensional array, which can then be inputted into

the classification module.

List of dictionaries, each
containing a unique

combination of features f, .

Make copy of master dictonary and delete
features that are false (not being used)
f1: True,
f,: False, . .
fy: False, Combine remaining features

f,: [Array with feature detail for each article], into a matrix Input data into classifier

Il ?ue, f,: [Array with feature detail for each article], C f1 |
- > o True, > Classifier
f3: False, £ PArray-with feature-detail- h-article]; C f2]

f1: True,
fo: True,
f3: True,

fi: False,
fp: True,
fa: False,

Record performance and features

Repeat process with all
dictionaries

used

Figure 14 - Diagram showing process of iterating through different feature combinations

The classification module splits the articles with k-fold cross validation, using the
module from SKLearn!'. In order to make sure each permutation of features is tested
fairly, before the articles are split into folds, they are shuffled in the same way every
time by fixing the random state, meaning that the same articles are submitted for
training and testing for each permutation.

When testing different combinations of articles with the random forest classifier, the
processing time to classify each combination was taking around 15-20 seconds, which
repeated over 500 or so combinations would mean that the total time to test that
classifier would total around 10,000 seconds or just under 3 hours. In order to try
and improve the processing time for this classifier, multiprocessing was
implemented. Multiprocessing makes use of the multiple processors built into most
computers, splitting the processing operations are done in parallel on each processor
rather than one by one (serial operation), meaning that overall the processing can be
done quicker. Utilising Python’s multiprocessing'?> module, the processing average

processing time for each combination of features was reduced by 70% to around 6

1 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
12 https://docs.python.org/3/library/multiprocessing.html

23

seconds. This meant the overall processing time was around 45 minutes. The results
of each combination of features with each classifier was then saved to a CSV file, so

that they could be analysed in Microsoft Excel.

Creating a command line tool

After the most effective classifier — feature combination was found, the classifer can
be retrained with all the available data, without the cross validation. The Pickle!3
module from the Python library was used to save a copy of the most effective
classifier. The other feature that required initial ‘fitting’ to the data was the TFIDF
vectorizer, therefore a copy of the vectorizer was stored using Pickle too. This allowed
for a program to be created that could accept a news article in the form of a string
object as input from the command line terminal. The classifier and vectorizer that
was previously fit could be loaded into the program; the vectorizer used to identify
the presence of certain key words and the classifier used to make a prediction of the
news article’s partisanship. The program then outputs this information to the

command line, along with the percentage certainty of the prediction.

'
'
'
K
))) TF-IDF
trainClassifier() 0 > textToFeatures) | |----- > 2d Array: VEE T
Features Object
I

v v i)

]
i
i
i
!
i
i
- - —-| | Classifier) | fa---------coo---- 1 ,
!
!
!
i
i
i
i
i

Y

Classifier
Object

commandLineTool() .
Input: List of Strings from textToFeatures() > Classifier() » Prediction of class and
certainty
command line

- > 2dArray: feemma
Features

Figure 15 - Diagram of command line tool

13 https://docs.python.org/3/library/pickle.html

24

Patricks-MacBook-Pro-2:Final Year Project patrick$ python3 classifyArticleCmdLine.py "Hours before his top medical adviser is expected to contr

adict his assurances that it's safe to reopen America, President Donald Trump is on a Twitter tear amplifying conspiracy theories and covering

up for his own racially-tinged rhetoric to distract from his failures during the pandemic.

> Trump is making unfounded charges against his predecessor Barack Obama and wading into the row over his treatment of an Asian American journa
list ahead of an appearance before a Senate committee by Dr. Anthony Fauci, the government's top infectious disease specialist, and oral argume

nts before the Supreme Court about Trump's attempt to keep his financial information and tax returns from Congress and New York prosecutors.

> In a preview of his likely testimony, Fauci told The New York Times in an email on Monday night: ‘If we skip over the checkpoints in the guid

elines to: 'Open America Again,' then we risk the danger of multiple outbreaks throughout the country.’‘This will not only result in needless s
uffering and death, but would actually set us back on our quest to return to normal,’ Fauci continued.

> Trump on Monday accused Democratic-led states of deliberately slowing openings of their economies to hurt him politically in an election year
and is ignoring warnings of global health experts that reopening societies will spark new spikes in infections without the massive testing and
tracing program that he has failed to put in place."

Mainstream
Certainty : 62.0%

Figure 16 - Screenshot showing ouput of command line terminal, when tested with article from CNN

Feature Significance

One of the benefits of using a decision tree classifier, is the ability to view the tree
structure of the classifier to understand the decision process of the classifier. Using
the GraphViz!* module from SK-Learn, the decision tree can be automatically
generated. In order to investigate which features were the best at dividing the data by
partisanship, a tutorial'® from SK-Learn’s user guide , which was designed to output
the decision tree structure in a text based way. The program was updated to calculate
the difference in the Gini Impurity(the probability a random article in the set would
be incorrectly classified) between each parent and child node in the decision tree.
The change in Gini impurity is then divided by how many nodes are behind the child
node in the tree, as a feature lower down in the decision tree will have less impact on
the split of the data. The data is then exported in a CSV file format, so that the results

could be easily viewed in another program (Microsoft Excel).

14 https://scikit-learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html
15 https://scikit-learn.org/stable/auto_examples/tree/plot_unveil tree_structure.html#sphx-glr-auto-
examples-tree-plot-unveil-tree-structure-py

25

Results and Evaluation

Classifier Results

The initial focus of the experiments carried out was to produce a classifier with the
highest possible accuracy score for differentiating between hyperpartisan and neutral
news articles. Experiments were carried out using three different classifier types from
SKLearn’s machine learning library, a Decision Tree Classifier'¢, Logistic Regression
Classifier'” and a Random Forest Classifier's. The data for the system’s training/
testing was a collection of 645 news articles and their corresponding labels, given to
participants of the 2019 International Workshop on Semantic Evaluation
competition. Different features were inputted into each classifier type, in order to see
which features were optimal for each type of classifier. Iteratively, all possible
combinations of the nine features were tested, and if the classifier returned a higher
accuracy score with those features than the features tested before, this was stored as

the current best combination.

The most effective classifier was the Random Forest Classifier, which achieved a

maximum accuracy score of 79.5% using these features:

e Average Sentence Length of Article e Reduced bias words list
e Average Word Length

e Sentiment Analysis

e TFIDF Vectorizer

An accuracy score of 79.5% signifies that 513 news articles out of the total 645 were
classified correctly and 132 were classified incorrectly. The best accuracy score

achieved by the decision tree classifier was 68.9%, using the features:

e Average Sentence Length of Article e Percentage of all words in article
e Average Word Length classified as ‘bias’
e Sentiment Analysis e Percentage of words with possible
e TFIDF Vectorizer spelling mistakes

16 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.htmlr
17 https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html
18 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

26

The logistic regression classifier, positioned in the middle of the other two classifiers,

reaching a best accuracy score of 75.0% using the following features:

e Sentiment Analysis
e TFIDF Vectorizer

e Full bias words list

Features

Best Accuracy Score by Classifier Type
. Average Sentance Length

- with Features Used

0.8 79.53% . Sentiment Analyser

0.78 TFIDF Vectorizer

0.76 .
75.04% . Reduced Bias Words Present

o
N
N

. Percentage of words with
Speling Mistakes

S
N
N

. Percentage of words that are
biased

68.84%

0.68

Best Accuracy Score
=3
N

‘ . Percentage of punctation in text
0.66 ‘ ‘ (Exclaimation Marks/ Full Stops)
0.64 . . . ‘ Average Word Length
0.62 . ‘ . Full Bias Words List Present
0.6
Decision Tree Logistic Regesssion Random Forest

Figure 17 - Best accuracy score of each classifier type, with the features used to achieve the score

The precision of a classifier measures the percentage of positive results that were
predicted correctly, compared to the amount of positives results that were predicated.
A low precision score for the hyperpartisan class would mean that the classifier was
predicating a high number of neutral articles as hyperpartisan incorrectly. The recall
score of a classifier measures the percentage of positive results that were predicted
correctly compared to the total of actual positive results. A low recall score for the
hyperpartisan class would mean that the classifier was classing a lot of hyperpartisan

articles as neutral ones.

27

The best random forest classifier 77.7% precise at classifying neutral articles, and
85.8% precise at classifying hyperpartisan ones, meaning the classifier was rarely
classifying hyperpartisan articles as neutral ones, and vice versa. The recall for neutral
news articles was 94.8%, and the recall for hyperpartisan articles was 53.4%; neutral
articles were extremely unlikely to be predicted incorrectly, but hyperpartisan articles

were predicted incorrectly around 47% of the time.

Neutral Precision: Hyperpartisan Precision:
77.7% 85.8%
0000 0® x x % % % x%xxxx 0000
¥ X X X X 21 Neutral Predicted
Q0O O® » % % % %
0000909 % % x & x R R R R
000909009 % % % % x X X X %X
0009 % % X X X X X
111 Hyperpartisan 127 Hyperpartisan
. Predicted Incorrect Predicted Correct
o000 @®
o000 @
o000 0®
00000
o000 0®
00000
o000 @®
00000
00000
o0
386 Neutral . =~ 5 Neutral News Articles R = 5 Hyperpartisan News Articles
Predicted Correct
Neutral Recall: Hyperpartisan Recall:
94.8% 53.4%
o000 0 ® % X X N
o000 0@ ®* % X X N
. X X X X X 127 Hyperpartisan
Predicted Ci t
. x x x x x redictes orreci
o000 0 ® % X X ¢
o000 0
00000 ..l x xx %%
o000 0 R R
. x x x x x 111 Hyperpartisan
Predicted Incorrect
00000 % X X % X
X XXX % ®
o000 0
o000 0@
o000 0
o000 0@
()
. ‘ . ‘ PredZiZtI:;lIl:cﬂrrect ‘ = 5 Neutral News Articles . = 5 Hyperpartisan News Articles

Figure 18 - Diagram showing precision and recall of the best random forest classifier

28

Feature Analysis

Next focus was on finding which features were the best for discerning hyperpartisan
news articles. The first investigation was to test each feature individually on its own
with each classifier type, to identify how well they were at categorising hyperpartisan
news by themselves. The graphs below show each feature’s accuracy score for each

type of classifier.

Features Individually with Different Classifiers

Average Sentence Length Decision Tree 56.3%

Random Forest 58.4%

Average Word Length Decision Tree 62.5%

Random Forest 62.8%

Full Bias Words List Decision Tree 63.3%

Random Forest 75.8%

Percentage of exclamation marks/full stops * Decision Tree 59.4%

Random Forest 61.6%

Percentage of words classified as ‘biased’ | Decision Tree 61.9%

Random Forest 63.1%

Feature Names

Percentage of words with spelling mistakes |DeciSion Tree 55:8%

Random Forest 53.6%

Presence of selected ‘bias words’ Decision Tree 64.8%

Random Forest 73.3%

Sentiment Analysis Decision Tree 57.7%

Random Forest 65.4%

TFIDF Vectorizer | Degision Tree 64.7%

Random Forest 76.7%

Word Vectorizer Decision Tree 63.3%

Random Forest 75.3%

50% 55% 60% 65% 70% 75%
Accuracy Score

Figure 19 - Results of each feature tested on it's own with each classifier type

As the results show the TF-IDF vectorizer , on average, worked the best at splitting
hyperpartisan news articles from neutral ones. The features which involved words
from the bias lexicon performed particularly well with the random forest classifier,
achieving close to 76% accuracy on its own. Another interesting performance is the
feature that identifies the percentage of words with potential spelling mistakes, which
performed around 10% better with the logistic regression classifier compared to the
others. Given the nature of how random forest classifiers work (creating lots of trees

from a subset of features), it is not unsurprising that features that only returned one

29

m Logistic Regression
Decision Tree
m Random Forest

80%

data point (i.e average sentence length) did not perform as well for this classifier, as

there was not enough data to divide into subsets.

As the TFIDF vectorizer had the most effective performance, and highest average
accuracy score across all the features, to reduce the number of iterations required in
the next experiment, the tests were carried out using the TFIDF vectorizer as a base

level to identify which features could work with it to improve the accuracy score.

Different classifiers utilised different features for their optimal results. In order to see
which features contributed the most to achieving a high accuracy score, the amount
of times they were used in a classifiers best and worst results were calculated. If a
feature is consistently used in the best results for a classifier and conversely never

used in its worst, then the feature must be contributing to its high accuracy score.

The decision tree classifier used the sentiment analysis and the average sentence
length features most commonly in its best performing accuracy scores, with
sentiment analysis appearing in 81% of its best scores and average sentence length
appearing in 62%. The same features only were used in 4% (sentiment analysis) and
15% (average sentence length) of the worst results for the feature.

When testing a logistic regression classifier, only the sentiment analysis feature
worked extremely well to contribute to a high accuracy score along side the TFIDF
vectorizer, being utilised in 100% of the best results for the classifier and 0% of the
classifiers worst accuracy scores. The pared-back list of words from the bias lexicon
also appeared in 100% of the random forest classifier’s best scores and 38% of the
classifiers worst. The average sentence length appeared in 69% of the classifiers best
results and, similarly, appeared in 38% of the worst accuracy scores. Sentiment
analysis generally also appeared to benefit the random forest classifier, with a net

difference of 19% between the best and worst accuracy scores where it was used.

30

Decision Tree Classifier

Usage of Feature in Best and Worst Results for Decision Tree Classifier
100%
100% m Usage in Best 10%
81% .
80% m Usage in Worst 10% 73%
62% 62%
60%
46%
38% 38%
40%
23%
20% l
0% —
-4%
0% -15%
-40%
-60% -50% -50%
-54% -54% 580
-80%
-81%
-100% P
Average Average Word Sentiment TFIDF Percentage of ~ Full Bias Percentage of Presence of Percentage of
Sentence Length Analysis Vectorizer exclamation ~Words List words selected ‘bias words with
Length marks/full classified as words’ spelling
stops ‘biased’ mistakes
Net Usage of Feature in Best and Worst Results for Decision Tree Classifier
100%
80% 77%
60%
46%
40%
23%
20% 12% l
0%
o H = |
.
-20% o 15%
R -19%
-40%
-60%
-58%
-80%
Average Average Word Sentiment TFIDF Percentage of ~ Full Bias Percentage of Presence of Percentage of
Sentence Length Analysis Vectorizer — exclamation Words List words selected ‘bias words with
Length marks/full classified as words’ spelling
stops ‘biased’ mistakes

Figure 20 - Usage of feature in decision tree classifier’s best and worst results. The TF-IDF vectorizer was used in every result, so
is therefore in 100% of the worst and best results.

31

Logistic Regression Classifier

100%

80%

60%

40%

20%

0%

-20%

-40%

-60%

-80%

-100%

Usage of Featulr(')% (yin Best ar}glog\y?\/orst Results for Logistic Regression Classifier
0 0

m Usage in Best 10%

85%
m Usage in Worst 10%
50% 54% 54%
35%
27%
15% l
-15%
-38%
-46% -46%
-54% -54%
-81%
Average Sentence Average Word Sentiment TFIDF Vectorizer ~ Percentage of Full Bias Words Percentage of Presence of Percentage of
Length Length Analysis exclamation List words classified as selected ‘bias words with
marks/full stops ‘biased’ words’ spelling mistakes

100%

80%

60%

40%

20%

0%

-20%

-40%

Net Usage of Feature in Best and Worst Results for Logistic Regression Classifier
100%

12%

% 8% 8%
0
] — m =
|
-4%
-19%
-23%

Average Average Word Sentiment TFIDF Percentage of ~ FullBias Percentage of Presence of Percentage of
Sentence Length Analysis Vectorizer exclamation =~ Words List words selected ‘bias words with
Length marks/full classified as words’ spelling

stops ‘biased’ mistakes

Figure 21 Usage of feature in logistic regression classifier’s best and worst results. The TF-IDF vectorizer was used in every result,
so is therefore in 100% of the worst and best results.

32

Random Forest Classifier

Usage of Feature in Best and Worst Results for Random Forest Classifier
100% 100%
100% m Usage in Best 10%
W Usage in Worst 10%
80% 69%
60% 54% 8% 54%
46%
40% 38%
20%
0%
0%
20%
-40%
-38% -38% 129 -38% 9%
-60%
-58% -54% -58%
-80%
-100%
Average Sentence Average Word Sentiment TFIDF Vectorizer ~ Percentage of ~ Full Bias Words Percentage of Presence of Percentage of
Length Length Analysis exclamation List words classified as selected ‘bias words with
marks/full stops ‘biased’ words’ spelling mistakes
Net Usage of Feature in Best and Worst Results for Random Forest Classifier
80%
62%
60%
40% 31%
19%
20% 12%
4%
i - : O
0% | | — | |
'4% .
-20% -15%
-40%
-60%
-58%
-80%
Average Average Word Sentiment TFIDF Percentage of ~ FullBias Percentage of Presence of Percentage of
Sentence Length Analysis Vectorizer exclamation =~ Words List words selected ‘bias words with
Length marks/full classified as words’ spelling
stops ‘biased’ mistakes

Figure 22 - Usage of feature in random forest classifier’s best and worst results. The TF-IDF vectorizer was used in every result,
so is therefore in 100% of the worst and best results.

33

Feature Importance in Random Forest

When generating a random forest classifier, the SK Learn library enables the data
output of an importance score for each feature, signifying the usefulness of the feature
to the overall classification. The importance scores were then ranked to see which

features were the most useful to the random forest classifier.

34

Feature Importance for Random Forest Classifier

0.03

WSDIWS-NUE :pIOM SBIq JO duereadc
wnpeomn prom seq Jo souereaddy
uorsndxo :piom seiq Jo dueEaddy
SNOINSESIP pIom Seiq Jo duereaddy
S1IRIRYD + [T Sprom 21d
| rewes ;piom seq Jo soueseaddy
| uorteuTOUSp :p1oM SEIq JO 20U IERdC
4 [ed1[qIq :pIom serq jo aduereaddy
! SuoisIawIod ;pIom seiq Jo aoueeaddy
_, 9IN29X2 :pIom seiq Jo duereaddy
= 191y8y :piom seiq jo duereaddy
2 aasnqe ;prom seiq jo adwereaddy
= doysiq :p1om seiq jo souereaddy
= yungep :pIom seiq jo aouemaddy
3 wLngye piom serq jo aduereaddy

H,ns_u_vhokmnﬁwomu:ﬂwu&f,
= 9A1nONISIP :pIom seiq Jo duereaddy
= arnsu :piom seiq Jo adueraddy
= [enuasss :piom seiq Jo uereaddy
= uBisop :paom seiq jo oouewaddy
= xadwos :prom seiq Jo duereaddy
—— wsmr

= owewns? :piom seq Jo duereaddy
= ysnuq :piom seq Jo dueEaddy
— 1s12sej :piom seiq Jo duereaddy
—— 1judpuodsauiod :pI1om serq jo adueread
= reoq :prom seiq jo aduereaddy

Z=— Suiquioq :p1om seiq Jo souereaddy

1291J9 :pIom seIq Jo aduereaddy
|,Ew:m_Euﬁ_o\SmmE%owurﬁE@mm,\

= 4s1n0nuod :pom seq jo duereaddy
= fwre ;prom seiq Jo souereaddy
= D :pIom seIq Jo aouereaddy
—— S8uaqep :piom seiq Jo e addy
Z—— 11955 :pIom seiq Jo duereaddy
——— Auop :piom seiq jo sduereaddy
. oueApE :piom seiq Jo aouereaddy
—— uwepuo> :piom seiq jo duewaddy

=—— wnwnsaaur

. Aunwwod prom seiq Jo duereaddy

 101eyRq :pIom seiq Jo douereaddy
- Arrep

——— 1591100 :pIom seiq Jo duereaddy
——— onfw :piom swiq jo dweraddy

" 550d%o :p1om sTq JO e rEaddy
= 5w ;piom seq jo dueraddy
T/ ssoursnq :piom seiq Jo aduereaddy

- Aqurey

———— U2z :pIom seiq Jo Duereaddy
! 911dsap :prom seiq jo duereaddy
=——— owm :piom seiq Jo duemaddy

. 143y :prom seiq jo sduereaddy
= 50w :piom seiq Jo souereaddy

H dpnre
. 9a18e :pIom seiq Jo aduereaddy
s1910BIRYD +0T SpIoM d1d

snowrey :piom seq Jo adueeaddy

. oopiA

———— feme:piomsuq jo duereaddy

—
= s

=—————— urease :piom seq Jo duesaddy

T juawwod :piom seiq Jo duereaddy

— yunr

— 0

L 1anIm)

. aa1j0d

——————— >nenowap :piom seiq Jo dueseaddy
. TeMm

. paqed

——————— wawuedsp
—— 1uom :pIom suiq Jo Uy

——
—————— ourq:pomseqjo uereaddy
. 110ddns

. Peq :piom seiq jo duereaddy
= peae :promsuq jo dueraddy
- Uy

! Aes

. Jeaiq :piom seiq jo duereaddy

. Surpione

' Juos

 pood

. oAarpq :piom seiq Jo souereaddy

L sSury

uorurp

— U O M
e ———————————1t 11

£nuno :pom seiq Jo 2ouereaddy.

, Anunod

———————————— o :piomseq Jo oueraddy

Mau

sop

pasn

JudwUIRA03

Ul

ewRqo

usprsard

uedLIWE

Ay

1481

WAWNUIS 9ANETIN

fep :piom swq Jo aueeaddy

WIWHUIS [eNNIN

0.025

0.02

0.015

0.01

o

0.005

Figure 23- Feature importance for random forest classifier

35

Given there were around 300 individual features used in the best random forest
classifier, there is some quite significant differences in the importance of all the
features. On average, the top 30 features were 5 times more important than the next
278.

Top 30 Feature Importances for Random Forest Classifier

0.025

0.015

0.005

Figure 24 — Top 30 feature importancse for random forest classifier

The most important feature to the random forest classifier was the percentage of
neutral sentiment the news article contained. All the sentiment analysis features
(positive sentiment, negative sentiment, neutral sentiment and compound
sentiment) ranked in the top 20 features for the classifier. The average sentence
length of an article was the second most important feature to the classifier. When
analysing features that looked at the pervasiveness of certain words, features with
some variation on the word America (‘America’/ ‘Americans’/ ‘American’), again all
performed well, with the use of the word America being the third ranking feature in
the classifier. This perhaps reflects the nature of the 2016 Presidential Election, with
Republican candidate Donald Trump pushing for a more isolationist foreign policy to
his predecessors (Schneider 2019). The name- checking of political figures relevant
to the election also seemed to be an effective indicator for the classifier, with words

such as “Trump’, ‘Hillary’, and ‘Obama’ all featuring near the top of the ranking.

36

Decision Tree Visualisation
The decision tree classifier brings the benefit that the classifier can be extracted and

visualised as a flow chart showing how the decisions for a classification are made.

The decision tree for classifier with the highest accuracy score is shown below.

37

Highest accuracy scoring decision tree

Figure 25 - Entire decision tree, top portion of tree shown on next page

38

node #0
america <0.034
gini =0.472
samples = 516
value =319, 197]
class = mainstream,

did <0.025
gini =0.494.
samples = 18
value = [10, 8]

Figure 26 - Top portion of decision tree

39

The tree shows that the best feature at splitting the entire dataset of news articles
was the commonality of the word ‘America’, with articles with a higher TF-IDF value
for the word ‘America’ more likely to be hyperpartisan. Node #1 checks for the TF-
IDF value for the word ‘make’, with articles with higher values more likely to be
hyperpartisan. This appears to be checking if the article for the phrase ‘Make America
Great Again’, especially due to the next node checking for positive sentiment, possibly
as this would be boosted by the word ‘great’.

Ranking change in Gini Impurity

A similar ranking to the random forest classifiers feature importance was extracted
from the decision tree classifier, however extracting this information from the
decision tree has the added benefit that you can see how each feature benefits the
classification towards hyper-partisanship or not. In order to investigate this, the GINI
impurity (probability a randomly picked article is wrongly classified) change in from
a parent node to a child was measured, and then divided by how far down the tree
the child node was. The metric calculated balanced the fact that nodes higher up the
tree have less features splitting them, so therefore any change in impurity is more

dependent on that specific feature.

40

from parent to child node, relative to depth of node

ini impurity

Change in G

m Neutral

0.2

m Hyperpartisan

T$CZQ0Q UEL 2J0W , UONI[R , & ¢/, 9PON
—ZO0CERIn SS9, 23U oo ueIuas a8eIdA. | 7T 9PON
—APB6-HR) 2I0W |, 9BW | © | 9PON]

ZLoSHFAHRY) 210U, SUBDLIOUWE , © ¢ 9PON

—£6T90°0 UeY1210W , 2A3A]2q , * 001 9PON

=SEEQC0 Uey) 2rour | ATe[[IY, : 1 9PON

89767 0 ueyl 2Jow , Juauniedsp , : G 9poN
—=65065°0 uey) 210w, dwnn | : /] 9poN

ZCT$0°0 UBY) SSOT , IUDWINIUDS QAIIESON] , : 96 9PON

« 9109°0 Uey SSI] , YO¥Iq , : 1T 9PON

| $££88°0 UBY) SSI], NI, : 6T SPON

1 LS8LY°0 UBYASSI[,UOP , : 9 SPON

| GFS6°0 UBY1SSI], BUIRQO , : HT SPON

1 90€S7°0 ueYI SSI[, :seIq 2Tk 1Byl spIom 21d | 1 7T 9pON
1 216970 ueyl SS9[, AepO1 , : § IPON

‘UBL 2I0W , UMO W UN 1. 1By} Sp1om d1ad | : 9 SpoN
89,670 Ul SS9, Judwiedap | : G 9poN

£9560°0 UBY) SSJ[, USWOM , : 0T SPON

7°0 UBY] 2I0W , A, : TH T 9PON

TT90¥% 0 Uy ST, £1038 1 TH1 9PON

750990 UBY) 2I0UI , S2I€IS | : 70T 9PON

L

L

G8/F 0 UBL} 2I0W ,UOP , : 9T IPON

0SH1°0 UBY) SSJ[, SUBDLIOWE | : € 9PON

£69€T°0 UBY SS9, ABp , : €6 9PON

G¥S6°0 UBYI 2I0W , BUEQO |, :] 9PON

6S1TC°0 ueyd ss9] , Aduoul , : 16 SPON

I1106°0 Ue 210w 1q3, : ¢T 9pON

TT90%°0 eyt a1ow , L101s |, : 11 9PON

90€S "0 UBY) 2I0W | :Seiq 1k Iey) sprom d1d , 1 7T 9poN
055070 Ued SSI[, 9[LIe & ¢ 9PON

L80% 1'0 UBY1 SS[, P[0, * €T 9PON

1160070 e 10U, MU, = 7/ SpON

6667 1°45¢ ueyd ss3, p8ua] 2o ueuas a3eIaAe | & /8 9PON
CIE01°0 teya a1our, pasn = LT 9PON

8%560°0 Uyl 2J0W paaun , - ¢ 9pON

[¥Ep1°0 uey ssaf, apdoad, : G opoN

L€20°0 uey s3], [eontod, : 7 spoN
‘UBY) SS9, umMoW{unN e Jey) sprom d1d | : 09 S9poN
LL0P1°0 UeLy3 210U J9[, 9T 9pON

68%9% 0 uey 210w , uedr[qndar, : g 9poN

LT1ST0°0 Ueyd SS9[, PIP , * 6L 9PON

€71°0 UBY) SS9, 1USWNUIS dAIIESIN |, : G 9PON

€60°0 UB3 SS9, JUIWIUSS 9ANISO , : 6T 9PON
‘UBY) 9JOW , UMO W UN dIB Y] SpIom 21ad | : 7¢ 9pON
98610 ueyd 2Jow , WYSU, : § 9PON

£€100°0 UBY) SS[, UMO{UN 218 1By SpIom 212d | : 9 SpON
CTTOT"0 UBYl SS9, 9WOD = 0§ SPON

611%0°0 UBY} SSI[, SI0P , * 6G 9PON

£G9T¢°0 U3 210U, udW , : 6¢T 9PON

STHP0 0 UBY) SS9, JoeNE , : $9 9PON

90Z1°0 uey ssof , udredured , : /71 9pON

9%$20°0 Uey SS9], SWIPIOIIE , : 97T 9PON

$€780°0 Uey1ss9[, pasn , = LOT 9PON

PYTCT0 Ueyl SSO[, UONPP , : 68 2PON

£8920°0 ury 10w, ATe[[Iy , } L6 9PON

05S0°0 Ueyl 210w , 9[21IE , & ¢ IPON

G¢/0°0 UBY) 9JOW ,1USWNUIS dA1BSON |, : 1T 9PON
8C9€0°0 Uey 210w, 3uo[, : 90T SPON

€€66¢°0 uey 210w, ed010d , : 08 SPON

8FFE0°0 UBYD SSI[, BOLIOWE , () 9PON

PTLEO 0 uey SSOT, L10T * CTET °PON

££690°0 uey s, 3snl | : GG 9pON

7°9¢¥ uep a10w |, PSU] D UBIUIS 3FBIANAE | : HZT SPON
€5S10°0 uey 210w, Aem | : GTT 9PON

6920°0 uey) 210w, dwnn | : G¢T 9pON

6L1¥0°0 UBY} 2I0W | S0P, = 65 9PON

/%0700 Ut ss9 ,210ddns | : 69 9poN

16%20°0 ue azowr , 97doad | : 67T 9poN

L1GC0°0 Ueyl aIoW , pIp , * 6L SPON

$1¥50°0 uey 210w, uedrqndar, : g 9poN

11690°0 uey sso1, uSredures, : G/ 3poN

€L11T°0 uey sso[, Bu1od , : 07T 9PON

€078°0- Uyl Ss9[, Judumuag punodwo) , : /9 9pON

GTG0'0 UBTR SSI[, JUDWIIUIG SARISOT , * 68 IPON

0.15

0.1

0.05

wn

0

—

e S

= 7
:

Figure 27 - Graph of change in Gini impurity, relative to the depth of the node

41

m Neutral
m Hyperpartisan

Largest 30 changes in Gini impurity from parent to child node, relative to depth of node

0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0
N N
S FEF XL FTEFFE s EEF LTI ELTE S TS EEFTISTIFES
: & 2 ©) N W S < (or) Q @ A3 s
S &§ < 8§ 5 5 8 ¢ ¢ g 8§ g v g g &g TS EeS s EIFIT SIS S EQE SR
v 5 5 g g I~ g S 5 =4 S I~ it I~ S g 4 I~ fs S S S g i) S I~4 g g S
§ & § 3 S § § § 8 § § & S & § 5§ § & s 5§ &
Ff F § § £ S §FF S s S5 F S s F 5 S s f g § § S FE 5 FF
2) 4 1) 3) « K] o 1) I & I L @ @] & N @ 1 & Q I 3 o @) £ o)
A - T A A A - 5
& g g g - IS g g g - & g R g Q, N IS < IS < N
IS - 5 - % = - - o ~ - a & - N 5 - - - ~ . o
g ¢ & ¢ £ » £ 5 5 & 3 T 2 & §F & 5§ &5 & 05 &5 3 §Fos 5 5 F
5 g 5 = g S 1< % ¥ T) 3 I & S < 5 S &g £ S) 5 = i S S &
5 s 28 & £ F B g & & 5 & 5§ < 7 P R S 5
) - & o - S g o . IS IS S 3 s -) - ~ & o o = - &
. & 5 . R < - . R
IR R & §F &2 & & g S A § L 0§ 5 g 8 8 o &
&g I 3 IS . i o s QD o o QL e 0 o g I O A
5) I 5 ° A A 2 b7 ~ S & @ o9 o) o 3 g o S s ¢ 5 ¥ @ 2 ° &
F 5 & £ 5 ¢ o &g 2 f oy Fog g o 5 F v g F LSS < g F v F g
< = EQ = T g o S S & S S b7 < = S S = & < = S = S
; 9 S | S S £ E
w“ S < £ S &
S B £ &
) N .
I .
s © 3
< & <
S v
2 s
<

Figure 28 - Top 30 changes in Gini impurity, relative to the depth

The greatest change in Gini, relative to the depth of the node, is the amount of
positive sentiment in node #85, again possible due to the phrase ‘Make America Great
Again’ being a good indicator of the article being hyperpartisan. Generally, the
sentiment performed well in splitting the articles, appearing twice in the top three
changes. Many of the jumps appear twice on the graph, such as node #135 for the TF-
IDF value of the word ‘trump’. This is because the node splits into two leaf nodes,

and therefore the difference in Gini change between is identical as the Gini impurity
for leaf nodes is zero. Node #135 shows that a higher TF-IDF value for the word

‘trump’ causes a hyperpartisan prediction, and #75 shows a higher value for the word

‘campaign’ will cause a neutral prediction. The data in this chart is useful in
identifying some interesting splits, however due to the relatively small amount of
articles, some high changes in Gini impurity are just due to some chance

characteristics in the data.
42

Summary

Overall, the system works moderately effectively for classifying news articles,
although there are some caveats to it’s performance. The best accuracy score the
system was able to accomplish was 79.5%, so can effectively detect 4 out of every 5
articles correctly. When compared to teams who completed the Semantic Evaluation
Workshop (SemEval) challenge in 2019, this system compares favourably- out of the
42 submissions this system would have ranked 6% for the accuracy score that it
achieved. The highest accuracy score achieved in the competition was 82.2%, so this
system is 2.7% less accurate than the best submission. Similarly, the precision of the
classifier at detecting hyperpartisan news articles performs comfortably compared to
the other submissions with a performance of 85.8%, with the best score from the
competition being 88.3%. The classifier has a low recall score however, meaning that
there were too many false negative results for hyperpartisan news articles. Again,
comparing to other teams in the SemEval - 2019 challenge, it seemed a common

among high accuracy scoring entries to struggle with lower recall values.

The original accuracy of the random forest classifier with just the TF-IDF vectorizer
was 76.7%, so the custom features that were created for the classifier were effective
in boosting the score by around 3%, which is satisfactory given the trickiness in
increasing accuracy scores for classifier the closer to 100% accuracy they get.
Furthermore, compared to the initial version of the system which used a decision tree
classifier and word vectorizer its only feature (which was 63.3% accurate), the

development has been successful.

Across all the classifiers, sentiment analysis worked the best in combination with a
TF-IDF vectorizer. The net usage of the feature in the classifiers best scores were 77%
for the decision tree classifier, 100% for the logistic regression classifier, and 19% for
the random forest classifier, meaning that the feature consistently helped the
classifiers reach the best accuracy scores. Furthermore, neutral sentiment ranked as
the most important feature in the random forest classifier’s feature importance, with

all four sentiment analysis features ranking in the top 20 features for the classifier.

43

Future Work

If given more time to further develop the system, the initial step to take would be to
source more news articles that can be included to further train and test the system in
order to improve its performance. The current 645 news articles that were used to
test/ train the current system were provided to competitors in the SemEval 2019, and
were all manually labelled as ‘hyperpartisan’ or ‘mainstream’ (neutral) by
factcheckers (Kiesel et al. 2019). To enhance the dataset for the classifier, a task could
be undertaken to further manually label news articles using similar labelling criteria
to those in the SemEval set. Another option would be to use a by-publisher dataset,
where instead of manually checking each news article, you label an entire publisher
as hyperpartisan or neutral by checking a subsection of their publications.
Organizations such as Buzzfeed News have already compiled lists'® of hyperpartisan
news outlets that could be utilised. Once a publisher has been identified, you can
then as suggested by (Kiesel et al. 2019) , use an automated program to trawl through
the publishers output to gather news articles to train the classifier with. Manually
labelling each news article would be a very time consuming task, however the data
produced would be high quality and the labelling guaranteed to be accurate. In
contrast, using by publisher data would be much faster, however there is no guarantee
that every news article published by a hyperpartisan publisher is hyperpartisan, as
shown in the table of Figure 1. Therefore there is some risk that the classifier will be
confused by classifying incorrectly labelled articles. Increasing the number of
hyperpartisan news articles to train with would be especially useful, as there were
about 70% more articles from neutral mainstream publishers to train the classifier

with than from hyperpartisan publishers.

Another component that could be added to improve the system would be to create an
application programming interface (API), which would allow another service to send
news articles to the system and receive in return a classification for the articles and
the probability of the classification. Given that a tool for a command line input has
already been created, the API could be an extension of this programming. Creating
this API system would allow publishers of news articles, such as social media
companies, almost instantaneously receive prediction for any new news article that
was published to their website, meaning that audiences could receive a warning that

the article may be hyperpartisan as soon as it is published, and before it was read and

19 https://github.com/BuzzFeedNews/2017-08-partisan-sites-and-facebook-pages

44

shared to others. Another benefit of creating an API would be that the system would
receive a lot of new articles that could be used to train the classifier. A procedure
could be implemented where articles coming into the API could be manually labelled,
perhaps by some crowdsourcing method where the people could submit their verdict
on the articles partisanship and the majority vote would be applied. (Raykar and Yu
2012) suggests a method for collecting data labels by crowdsourcing, while avoiding

spammers that could degrade the data quality.

45

Conclusion

The project successfully met the aim of creating a classification system for predicting
the probability that a news article is hyperpartisan or neutral. The classifier created
was just under 80% accurate, which was very competitive compared to other similar
solutions created by teams at International Workshop on Semantic Evaluation 2019.
The low recall score of the classifier is a slight obstruction to the total success of this
aim, however given more time and more information to train with, the same system

would likely improve in its effectiveness.

There was also the ambition to investigate which features performed most effectively
in the classification of hyperpartisan news, which was accomplished with sentiment

analysis showing as a key feature that worked across all the classifiers tested.

Furthermore, the creation of functionality to predict the classification of a string
object from the command line, opens up the possibility for the system to be used in
an API or as part of some other software package that would require hyperpartisan

news detection.

Reflection on Learning

Doing this project has developed my understanding of machine learning and the
theory behind. Coming into this project, I had little experience using a library like
SK-Learn to program a machine learning system, so being able to actually implement
a system has meant that my understanding of how the theory behind machine
learning works has developed too. Having to deal with some of the convoluted tasks
that are involved in creating real life systems, such as processing data from a text file,
has given me more solid understanding of the time requirements for developing

systems, often the most menial task can take the longest.

Analysing the performance of different combinations of classifiers and features has
improved my ability to perform statistical analysis of data, as a fair amount of the
project was spent exporting data from the machine learning models to Microsoft

Excel to produce graphs and try and identify and understand trends.

46

Given the different variables in the classification system that can be experimented
with, I spent a lot of time trying out different approaches trying to find more optimal
results. However, the nature of the classifier is that there will not ever be one optimal
solution and therefore it is possible to experiment with the system perpetually. With
hindsight, I should have focused on only allowing experimenting within the time

frames allowed in the initial Gantt chart created at the beginning of the project.

47

References

Association for Computational Linguistics 2019. SemEval 2020: Call For Participating In
SemEval 2020 Tasks | ACL Member Portal. Available at:
https://www.aclweb.org/portal/content/semeval-2020-call-participating-semeval-2020-tasks
[Accessed: 14 May 2020].

Bakir, V. and McStay, A. [no date][a]. Fake News and the Economy of Emotion. Available at:
https://research.bangor.ac.uk/portal/files/19296816/2017 Fake news.pdf.

Bakir, V. and McStay, A. [no date][b]. Fake News and The Economy of Emotions., pp. 154-175.
doi: DOI: 10.1080/21670811.2017.1345645.

Bird, S. et al. 2009. Natural Language Processing with Python. O’Reilly Media Inc.

Data Driven Investor 2018. K-Fold Cross Validation. Available at:
https://medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833 [Accessed: 14
May 2020].

FAQs - Full Fact. [no date]. Full Fact . Available at: https://fullfact.org/about/frequently-asked-
questions/.

Foreign & Commonwealth Office 2019. UK Steps Up Fight Against Fake News. Available at:
https://www.gov.uk/government/news/uk-steps-up-fight-against-fake-news [Accessed: 14 May
2020].

Géron, A. 2017. Hands-On Machine Learning with Scikit-Learn and TensorFlow., p. 169.
Hutto, C. and Gilbert, E. 2014. VADER: A Parsimonious Rule-Based Model for Sentiment

Analysis of Social Media Text.

Kiesel, J. et al. 2019. SemEval-2019 Task 4: Hyperpartisan News Detection. Available at:
10.18653/v1/s19-2145 [Accessed: 14 May 2020].

Kirk, M. 2017. Thoughtful Machine Learning with Python., p. 75.

Koppel, M. et al. 2007. Measuring Differentiability: Unmasking Pseudonymous Authors. Journal
of Machine Learning Research 8, pp. 1261-1276.

Mosseri, A. 2017. Working To Stop Misinformation And False News. Available at:

https://www.facebook.com/facebookmedia/blog/working-to-stop-misinformation-and-false-

news.

48

Pedregosa, F. et al. 2011. Scikit-learn: Machine Learning In Python. Available at:
http://jmlr.csail.mit.edu/papers/v12/pedregosal 1a.html [Accessed: 14 May 2020].

Ponsford, D. 2019. UK Newspaper And Website Readership 2018: Latest Pamco Figures. Press

Gazette . Available at: https://www.pressgazette.co.uk/uk-newspaper-and-website-readership-

2018-pamco/.

Potthast, M. et al. 2020. A Stylometric Inquiry into Hyperpartisan and Fake News. Available at:
10.18653/v1/p18-1022.

Proceedings, B. [no date]. of the 51st Annual Meeting. In: of the Association for Computational

Linguistics (Volume 1: Long Papers)

Raykar, V.C. and Yu, S. 2012. Eliminating Spammers and Ranking Annotators for
Crowdsourced Labeling Tasks. 13, pp. 491-51. Available at:
http://jmlr.org/papers/v13/raykar12a.html [Accessed: 14 May 2020].

Recasens, M. et al. 2013. Linguistic Models for Analyzing and Detecting Biased Language.
Available at: https://www.aclweb.org/anthology/P13-1162/.

Schneider, B. 2019. Isolationism Creeps Back Over America, As The President Looks Out For
Himself. Available at: https://thehill.com/opinion/international/468690-isolationism-creeps-
back-over-america [Accessed: 14 May 2020].

Silverman, C. et al. 2016. Hyperpartisan Facebook Pages Are Publishing False And Misleading
Information At An Alarming Rate. BuzzFeed News . Available at:

https://www.buzzfeednews.com/article/craigsilverman/partisan-fb-pages-analysis.

Silverman, C. and al., et [no date]. Hyperpartisan Facebook Pages Are Publishing False And
Misleading Information At An Alarming Rate. fb-pages-analysis: Buzzfeed News. Available at:

https://www.buzzfeednews.com/article/craigsilverman/partisan-.

Sweney, M. 2020. Newspapers To Lose £50m In Online Ads As Firms Use Coronavirus
‘blacklist’. The Guardian . Available at:
https://www.theguardian.com/media/2020/apr/01/newspapers-to-lose-50m-in-online-ads-as-

firms-use-coronavirus-blacklist.

Vargo, CJ. et al. 2018. The agenda-setting power of fake news: A big data analysis of the online
media landscape from 2014 to 2016. New Media & Society 20(5), pp. 2028-2049. Available at:
10.1177/1461444817712086 [Accessed: 14 May 2020].

49

Vosoughi, S. et al. 2018. The spread of true and false news online. Science 359(6380), pp. 1146-
1151. Available at: 10.1126/science.aap9559 [Accessed: 14 May 2020].

Zhou, V. 2019. A Simple Explanation Of Gini Impurity - Victorzhou.com. Available at:
https://victorzhou.com/blog/gini-impurity/ [Accessed: 14 May 2020].

50

