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Abstract 

 

Hyperpartisan news publishers are far more likely to produce news articles containing 

falsehoods than neutral mainstream publishers.  The impact fake news can have on 

societies and democracies is huge, and since 2016 there has been much hype 

surrounding the issue, with companies and governments seeking to crack down on 

its emergence.    

 

The aim of this project is to create a machine learning classification system, that can 

successfully predict if a news article is hyperpartisan or not, and to see which features 

of news articles are most successful at differentiating between hyperpartisan and 

neutral news.  
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Introduction 

 

Since starting this project in January much in the world has changed; the way we all 

live our lives, for at least the apparent future will be highly unfamiliar. The way that 

many people accrue their news has changed, and although not a trend that started 

during the Coronavirus Pandemic (Ponsford 2019), in the UK at least, the restrictions 

on people’s ability to buy traditional print newspapers in shops have driven rises in 

reading news online (Sweney 2020). However, consuming news online, especially 

through social media sites like Facebook, can cause issue due to the prevalence of 

‘fake news’. As stated in (Bakir and McStay 2018), ‘fake news’ produces uninformed 

citizens, that remain uninformed due to the echo-chamber (only encountering 

opinions that coincide with your own) effect of social media. Research shows that 

hyperpartisan (very left-wing or very right-wing) news publishers have far higher 

numbers of falsehoods in their articles compared to neutral mainstream publishers 

(Silverman et al. 2016).  

 

This is the motivation behind this project’s aims; to create a machine learning 

classification system to detect hyperpartisan news. The creation of such a system 

could be very beneficial to many. Currently, immobilising fake news can rely on 

organisations or charities such as FullFact1 to manually fact-check claims in a news 

article to assess their trustworthiness. The process is lengthy, especially when 

compared to the rate at which articles will be published online, meaning that by the 

time a rebuttal can be produced, the damage of the ‘fake news’ has already been done. 

A system that can quickly predict if an article is hyperpartisan could be embedded 

into social media websites to provide users with a fast indication if the article they 

are reading is reliable or not.   

 
1 fullfact.org 
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Outcomes 

• Creation of system that can accept plain text files and convert them into 

Python objects in order to be classified     

• Creation of functionality that can transform a text piece into an array of the 

key features it contains 

o Features are custom made, and also come from libraries  

• Identification of which features best discern between hyperpartisan news 

articles and neutral news articles from established mainstream publishers 

• Creation of system that can accept text from a command line, analyses the 

features it contains and outputs if it is predicted to be hyperpartisan or not 
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Background 

 

The prevalence and effects of Hyperpartisan News 

As discussed in the introduction, ‘fake news’ proves a big problem for democracies 

and societies. (Bakir and McStay 2018) references Jürgen Habermas’ “democratic 

ideal”, where people in democracies rationally speak and listen to each others 

viewpoints before agreeing the best way forward.  They find that if people are 

“indoctrinated to disbelieve truthful facts” and rather believe falsehoods, then 

discontent with the democratic process and outcome is likely. The alarming end result 

that (Bakir and McStay 2018) predict says that societies will become highly polarised, 

with people who did not vote with the majority’s confidence in a governments 

legitimacy decreased.  

 

Just before the 2016 United States Presidential Election, investigators at Buzzfeed 

News published their research into hyperpartisan Facebook pages and the role they 

were playing in spreading false information (Silverman et al. 2016). Selecting pages 

with large followings from left-wing, right-wing and neutral mainstream 

organisations, they manually fact checked every post by these pages over a period of 

seven days, marking their content as ‘mostly true’, ‘mostly false’ or a mix of both .  

 

Publisher type 

(articles 

analysed) 

Mostly True Mostly False Mix Combined 

Scores – Mix 

and Mostly 

False 

Neutral (826) 97.6% 0% 0.969% 0.969% 

Left-wing 

(256) 

71.1% 5.86% 19.9% 25.8% 

Right-wing 

(545) 

50.6% 13.2% 8.07% 21.3% 

 

Figure 1- Summary of categorisation. Excludes articles with “no factual claim or content” (Silverman et al. 2016) 

 

Figure 1 shows the results, with the content of neutral mainstream publishers being 

categorised overwhelmingly as ‘mostly true’, whereas left-wing having just under 6% 

of articles being classed ‘mostly false’ and around a quarter being either ‘mostly false’ 

or a mixture of false and true. Right-wing publishers performed even more 
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unfavourably, with 13% of its articles being classed ‘mostly false’, and 21% either 

mostly false or mixed.  

 

Left- wing and right- wing articles containing higher proportions of falsehoods is 

significant as research by (Vosoughi et al. 2018) into the circulation of false news 

online, found that falsehoods spread online much faster than truths, with a falsehood 

reaching 1500 people online six times faster than a truth would. The research also 

found that false- political news spread even faster than other types of falsehoods. The 

emotional content of the replies to falsehoods online/ social media were more likely 

to be ‘disgust’, ‘anger’ or ‘surprise’ compared to the responses for truths, which were 

‘anticipation’, ‘joy’, ‘trust’ and ‘sadness’ (Vosoughi et al. 2018). Finally, the research 

also found that false news was also more likely to be spread by humans peer to peer, 

essentially going ‘viral’.  

 

(Vargo et al. 2018) studied the online media landscape between 2014 and 2016, 

found that the subject matter of fake news spread online would then influence the 

agendas of traditional partisan news outlets - perhaps with the justification for an 

issue being reported in a traditional outlet originating from the high levels of 

discussion happening online, that caused by dissemination of fake news. The impact 

of fake news setting the agenda for other, more traditional, media settings is 

significant, as it shows that fake news can be used to make certain issues a talking 

point.This may also explain the left- wing and right- wing news websites having still 

having significant levels of content classified as ‘mostly true’ in Figure 1. These 

outlets may be able to utilise the rapid spread of fake news to generate interest in a 

certain topic, which then can be used as basis for increased truth based reporting on 

a particular issue. 

 

The high levels of falsehoods contained in news articles from right- wing and left- 

wing publishers, combined with the effects that false news can cause, indicate the 

need for a tool that can identify articles that originate from these sources.  
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Associated Theory 

 

(Potthast et al. 2020)’s research into hyperpartisan news sought to establish if 

hyperpartisan news articles can be distinguished from neutral mainstream articles 

using it’s stylistic features. Using the technique ‘Unmasking’ proposed by (Koppel et 

al. 2007), where in order to predict the author of a given text the most distinguishing 

features are recursively removed. With each recursion, the text with less 

distinguishing features is classified and the cross-validation accuracy  is measured; 

the faster the accuracy degrades, the more likely the text was written by that author. 

When plotted on a graph, the gradient of the curve produced provides an indication 

of the similarity (steeper curve = more similar).  

 

 
Figure 2- The steeper curve indicates the document is more similar to the previous ones by the author. (Koppel et al. 2007) 

  

Potthast et al. applied the same principle to hyperpartisan and neutral mainstream 

news articles, unmasking left-wing and right-wing articles against neutral ones. Their 

results in Figure 2 show that when left-wing and right-wing articles are unmasked 

against each other their curve decreases considerably more rapidly than when 

compared unmasking against neutral mainstream ones. This means that left-wing 

articles are similar in style to right-wing ones (and vice versa), which is crucial as it 

means that we can simply classify between hyperpartisan and neutral articles rather 

than a three-way classification of  left-wing, right-wing and neutral. 
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Figure 3- The steep blue curve shows that left-wing articles are similar in style to right-wing ones (Potthast et al.) 

 

The 13th International Workshop on Semantic Evaluation in 2019 (SemEval – 2019), 

an “ongoing series of evaluations” of semantic evaluation systems to improve the 

state of semantic analysis (Association for Computational Linguistics 2019). Part of 

SemEval – 2019 included a task where teams were invited to create and submit a 

classification system to detect hyperpartisan news articles (Kiesel et al. 2019). All 

teams were given the same  dataset of news articles to train their classification system 

with, which were manually classified as neutral or hyperpartisan. After the 

competition was completed, the entries were ranked by their accuracy and the results 

were published for the workshop.   

 

 
Figure 4 - Results of submissions to competition 
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The teams submissions were analysed and the competition organisers collated which 

methods worked effectively for the teams , which can be useful for this project, giving 

a head start on what makes an effective system.   

 

Potential Stakeholders  

 

Much of the hyperpartisan news is spread on social media websites, particularly in 

the 2016 presidential election, on Facebook (Potthast et al. 2020). Given this, the 

ability to be able to detect hyperpartisan news could be of potential interest to social 

media platforms looking to remove such content from their websites. This is 

especially credible following statements made by Facebook in the wake of the 2016 

US Presidential election, where the company stated it’s aim to fight the spread of false 

news on their platforms (Mosseri 2017).  

 

Other potential stakeholders could include national governments around the world 

seeking to limit the damaging effect false news can have on democracies (Bakir and 

McStay 2018). For example in 2019, the UK Government stated it’s aim to fight fake 

news and inroduced an £18 million package to that end (Foreign & Commonwealth 

Office 2019).  
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Potential tools to solve the problem 

 

Scikit- learn (SK-Learn)2, is Python library specifically designed for machine learning 

created by (Pedregosa et al. 2011). The library contains many tools for formatting and 

processing data in order to be classified, and also classifiers themselves that can learn 

from data inputted and make predictions.  

 

The ‘Sentiment Intensity Analyser’ module from the Natural Language Toolkit3  (Bird 

et al. 2009), provides a tool to analyse the sentiment intensity of a piece of text. 

Created by (Hutto and Gilbert 2014), the ‘VADER’ tool utilises a sentiment lexicon 

created from ‘micro-blog’ continent such as Twitter and Facebook and generic rules 

to return a prediction of the sentiment that the text is inputted. The tool was designed 

to be ‘computationally economical’, while also not sacrificing its accuracy.  

 

A ‘Spelling Corrector’ from the Python Package Index4 , which is designed to be used 

as a tool to return predictions for the correct spelling of a word that is incorrectly 

spelt. The tool uses a dataset of the words in the English language, and the frequency 

of their common usage. The tool can return words that are not on this frequency list, 

so therefore are likely to be misspelled.   

 

 
2 scikit-learn.org 
3 www.nltk.org 
4 www.pypi.org/project/pyspellchecker/ 
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Approach and Implementation  

 

Loading files into the system 

The system accepts its training and testing data from plaintext files that the Python 

program converts into python objects that the classifier can process. Each line from 

an article is stored as a line in a text file, where the first 6 characters are a unique 

article ID and the rest of the line is the text from the article. 

 

 
Figure 5 - Articles from dataset. Lefthand side shows the unique article ID 
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The labels (if the article is hyperpartisan / neutral) for each article are stored in an 

XML file  where the attributes for each XML element are the unique article ID, the 

URL to the original article, who performed the manual labelling and a Boolean value 

based on if it is hyperpartisan or not.  

 

 
Figure 6- Extract from XML Label Document 
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The readXML function accepts the name of the XML file to process as string object, it 

then uses the XML Element Tree API 5from the Python library to parse the XML 

document and create an Element Tree object. The program then iterates through the 

element tree, and creates two list objects- one containing the IDs of all the 

hyperpartisan articles and the other all the neutral articles.  

 

 
Figure 7 - Diagram detailing readXML() function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5 https://docs.python.org/3.8/library/xml.etree.elementtree.html 
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The readTXT function parses through the text file, from each line it reads the first 6 

characters to identify the unique article ID. The line of text after the ID is then added 

to a string object. When it reads the next line, if the article ID is the same as the line 

before, it appends that line to the string object too. The process is repeated until it 

reaches a new article ID, meaning that the previous article has ended. The string 

object is added to the dictionary of articles, where the key is the article ID. The process 

then repeats itself until the end of the text file is reached.  

 
Figure 8 - Diagram of readTXT() function 
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The readFiles function utilises both the readXML and readTXT methods, which return 

two lists containing the article IDs for all the hyperpartisan/ neutral articles and a 

dictionary with the articles referenced to it’s article ID.  Two further lists are then 

created, an allArticles list where the strings of every article can be contained and the 

other list for the labels of each article called allLabels. The two lists are ordered, so the 

first item of the allLabels list relates to the first string in the allArticles list. Starting 

with the list of hyperpartisan article IDs, the list is iterated through so for each 

hyperpartisan article added to the allArticles list, then the number ‘1’ (indicating the 

article is hyperpartisan) is then added to the allLabels list. The same is then done with 

the neutral articles ID list, adding a ‘0’ to the allLabels list to indicate that it is not 

hyperpartisan. 

 
Figure 9 - Diagram showing how readFiles() function works 
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Transforming the dataset 

The program has the textToFeatures function, which converts a list of news articles 

into an array of features that they contain. As input, the function takes the list of 

news articles, and Boolean arguments for each feature (essentially an on-off switch 

for that feature).  

 

Example 

Using as an example a sentence from a news article classed as hyperpartisan : 

“ The left’s obsession with gun “control” is just that , control .” 

The result of this sentence going through textToFeatures function with these features 

would be: 

• Feature 1: Contains the word ‘left’ once or more 

• Feature 2: Uses one or more exclamation mark (!) 

• Feature 3: Number words that are 4 characters or longer 

 

The output vector would be as follows: 

Feature 1 Feature 2 Feature 3 Output 

1 0 7 [1,0,7] 

Figure 10 - Table showing textToFeature output 

The vector for each news article from the textToFeatures function is then used by the 

classifier later on to predict the class of the article. The following features can be 

calculated using the textToFeatures function: 

 

 

Figure 11 - textToFeatures function 
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Features 

 

CountVectorizer (Word vectorizer): Utilising SK-Learn’s Count Vectorizer feature, 

the vectorizer analyses the most common words across all the news articles, then for 

each article indicates if it contains each of the most common words or not. 

 

TF-IDF Vectorizer: This vectorizer works in a similar way to the count vectorizer, 

but rather than just returning the most common words, it calculates the term 

frequency multiplied by the inverse document frequency. 

Term Frequency (TF) – How many times a word appears in the news article 

Inverse Document Frequency (IDF) – How common the word is across all the news 

articles. If a word is very common and therefore appears across multiple article the 

IDF will be close to 0, and conversely if it is very rare the IDF will be close to 1.  

 

A higher TF-IDF score, means that the word is more relevant to the document.  

 

Average Sentence Length: For each article, calculates the average number of 

characters per sentence in the article. (Sentence is defined as words between bullet 

points) 

 

Word Lengths: For each article, calculates the percentage of words in the document 

that are: 10 characters or longer, 11 characters or longer and 12 characters or longer. 

 

Sentiment Analysis: Using a tool from the Natural Language Tool Kit6, which 

analyses the input news article for its sentiment (how emotional the words are). The 

tool outputs four scores for the input news articles positive, negative and neutral 

sentiment. It also releases a compound score, which summarises all three sentiment 

scores  

For example, the sentence “Donald Trump has done a very bad job!”, receives these 

scores:  

 
6 https://www.nltk.org/api/nltk.sentiment.html 

Sentence: “Donald Trump has done a very bad job!” 

Negative Neutral Positive Compound 

0.405 0.595 0.0 -0.623 
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Conversely, the sentence “Today, United States President visited Michigan for the 

first time.”, measures as follows: 

 

Punctuation: Measures the percentage of characters in the news articles that are 

exclamation points (!) and the percentage that are full stops (.). 

 

Bias Words: This utilises a lexicon 654 of ‘bias-inducing’ words from researchers at 

Stanford University (Recasens et al. 2013). For each word in the lexicon, the number 

of times it appears in each news article is recorded.  

 

Reduced Bias Words: When processing the occurrences of the above bias words in 

the news articles, the processing time was very high due the high computational cost 

of searching for 600 plus words across 600 news articles (the nested for loops have a 

big-O7 notation of O(n2) ). In order to reduce the number of words in the list, the 

SKLearn Recursive Feature Elimination (RFE)8 module was used. RFE ranked the 

features based on their importance in a decision tree classifier. K-fold validation was 

used to cross validate the classification, and the average importance of each feature 

across each fold was taken. The average importance of each feature was then ranked 

from best to worst, and the 100 most important bias words were extracted. Having a 

shorter list of bias words also may prevent overfitting of the data, where the classifier 

is too complex and starts trying to explain random errors in the dataset. 

 

Total Bias Words: Using the same lexicon as above, for each article it returns the 

total number of bias words in the text. 

 

Spelling Mistakes: Using a spell checker module9 , which returns a list of words it 

doesn’t know (therefore may be spelled incorrectly). The feature returns the 

percentage of words in the news article that are unknown. 

 

 
7 https://en.wikipedia.org/wiki/Big_O_notation 
8 https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html 
9 https://pypi.org/project/pyspellchecker/ 

Sentence: “Today, United States President visited Michigan for the first time.” 

Negative Neutral Positive Compound 

0.0 0.763 0.237 0.4215 
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Classification  

The returned news articles, now represented as a list of the features they contain, are 

then entered into a classifier. The SK-Learn module offers many different classifiers 

in its package, so various options were tried in an attempt to find the most accurate 

results. The experiments carried out used three different classifiers from SKLearn; 

• The first is a decision tree classifier. At each stage of the tree, a feature is picked 

which best splits the data so the Gini Impurity of the data either side is as low 

as possible (Zhou 2019). The Gini Impurity in this context is the probability 

of a random news article from the dataset being in the wrong category. Then 

at each split created, a new feature is chosen to best split the data again so that 

the Gini value is as low as possible. This process is repeated until the Gini 

value is zero or the tree has reached a maximum depth (Géron 2017).  

• The next classifier is Logistic Regression, which works by estimating the 

probability that an news article is hyperpartisan or not (neutral), if the 

probability is greater than 50%, the article is classified as hyperpartisan.  

• The last classifier tested was a random forest classifier, which trains lots of 

decision tree classifiers, each with a subset of features from the training data. 

When making a prediction, the data is processed through each decision tree, 

and the most common prediction from all the trees is returned as the 

prediction (Kirk 2017).   

 

The data is split, so that some can be used for training the classifier, and the rest can 

be used to test the classifiers effectiveness. In order to ensure that any classifier is 

not effective purely by chance, K-Fold Cross validation was implemented, where the 

data is shuffled and split into k different  folds (sets), where k can be any number (in 

this case it was 5). Each fold is then used once as a testing set, while the others are 

used as training data. The process is repeated, so each fold used as a testing set is 

changed with each iteration. When the classifier has been tested across all k groups, 

where an average can be taken from all the sets of results.   
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Figure 12 - K-fold cross validation (Data Driven Investor 2018) 

 

 
Figure 13 - Diagram of whole classification 

 

Testing Features with Classifiers 

In order to see which features were most effective with each classifier type, each 

classifier was tested with every possible combination of features. Using Python’s 

‘itertools’ module 10, a list was created of dictionaries, each containing a unique 

combination of feature booleans (True or False values), indicating if that feature 

should be used or not. Initially, the feature dictionary was passed straight to the 

TextToFeatures module to output a matrix with the feature information that could be 

classified by the classifier, however this method meant that the features in each article 

were being re-processed with each permutation, which was very time consuming 

considering that the articles used to test the classifier were kept the same each time 

so the TextToFeatures module was also outputting the same values every time. To 

remove this redundancy, at the start of the program the TextToFeatures module 

produces a ‘master dictionary’, where each key is the feature name and the value is 

the array of feature information for each article. For each dictionary in the feature 

 
10 https://docs.python.org/3/library/itertools.html 
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boolean list, the program makes a copy of the ‘master dictonary’, and deletes any 

features that have a false value. The remaining values in the copy of the ‘master 

dictionary’ are converted into a 2 -dimensional array, which can then be inputted into 

the classification module.  

 
Figure 14 - Diagram showing process of iterating through different feature combinations 

 

The classification module splits the articles  with k-fold cross validation, using the 

module from SKLearn11. In order to make sure each permutation of features is tested 

fairly, before the articles are split into folds, they are shuffled in the same way every 

time by fixing the random state, meaning that the same articles are submitted for 

training and testing for each permutation.  

 

When testing different combinations of articles with the random forest classifier, the 

processing time to classify each combination was taking around 15-20 seconds, which 

repeated over 500 or so combinations would mean that the total time to test that 

classifier would total around 10,000 seconds or just under 3 hours. In order to try 

and improve the processing time for this classifier, multiprocessing was 

implemented. Multiprocessing makes use of the multiple processors built into most 

computers, splitting the processing operations are done in parallel on each processor 

rather than one by one (serial operation), meaning that overall the processing can be 

done quicker. Utilising Python’s multiprocessing12 module, the processing average 

processing time for each combination of features was reduced by 70% to around 6 

 
11 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html 
12 https://docs.python.org/3/library/multiprocessing.html 
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seconds. This meant the overall processing time was around 45 minutes. The results 

of each combination of features with each classifier was then saved to a CSV file, so 

that they could be analysed in Microsoft Excel.   

 

Creating a command line tool 

 

After the most effective classifier – feature combination was found, the classifer can 

be retrained with all the available data, without the cross validation. The Pickle13 

module from the Python library was used to save a copy of the most effective 

classifier. The other feature that required initial ‘fitting’ to the data was the TFIDF 

vectorizer, therefore a copy of the vectorizer was stored using Pickle too. This allowed 

for a program to be created that could accept a news article in the form of a string 

object as input from the command line terminal. The classifier and vectorizer that 

was previously fit could be loaded into the program; the vectorizer used to identify 

the presence of certain key words and the classifier used to make a prediction of the 

news article’s partisanship. The program then outputs this information to the 

command line, along with the percentage certainty of the prediction.  

 

 
Figure 15 - Diagram of command line tool 

 
13 https://docs.python.org/3/library/pickle.html 
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Figure 16 - Screenshot showing ouput of command line terminal, when tested with article from CNN 

 

Feature Significance 

One of the benefits of using a decision tree classifier, is the ability to view the tree 

structure of the classifier to understand the decision process of the classifier. Using 

the GraphViz14 module from SK-Learn, the decision tree can be automatically 

generated. In order to investigate which features were the best at dividing the data by 

partisanship, a tutorial15 from SK-Learn’s user guide , which was designed to output 

the decision tree structure in a text based way. The program was updated to calculate 

the difference in the Gini Impurity(the probability a random article in the set would 

be incorrectly classified) between each parent and child  node in the decision tree. 

The change in Gini impurity is then divided by how many nodes are behind the child 

node in the tree, as a feature lower down in the decision tree will have less impact on 

the split of the data. The data is then exported in a CSV file format, so that the results 

could be easily viewed in another program (Microsoft Excel).  

 
14 https://scikit-learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html 
15 https://scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html#sphx-glr-auto-

examples-tree-plot-unveil-tree-structure-py 
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• Average Sentence Length of Article 

• Average Word Length 

• Sentiment Analysis 

• TFIDF Vectorizer 

• Reduced bias words list 

 

 

 

 

• Average Sentence Length of Article 

• Average Word Length 

• Sentiment Analysis 

• TFIDF Vectorizer 

• Percentage of all words in article 

classified as ‘bias’ 

• Percentage of words with possible 

spelling mistakes 

 

Results and Evaluation 

 

Classifier Results 

The initial focus of the experiments carried out was to produce a classifier with the 

highest possible accuracy score for differentiating between hyperpartisan and neutral 

news articles. Experiments were carried out using three different classifier types from 

SKLearn’s machine learning library, a Decision Tree Classifier16, Logistic Regression 

Classifier17 and a Random Forest Classifier18. The data for the system’s training/ 

testing was a collection of 645 news articles and their corresponding labels, given to 

participants of the 2019 International Workshop on Semantic Evaluation 

competition. Different features were inputted into each classifier type, in order to see 

which features were optimal for each type of classifier. Iteratively, all possible 

combinations of the nine features were tested, and if the classifier returned a higher 

accuracy score with those features than the features tested before, this was stored as 

the current best combination.  

 

The most effective classifier was the Random Forest Classifier, which achieved a 

maximum accuracy score of 79.5% using these features:  

 

  

 

 

 

 

An accuracy score of 79.5% signifies that 513 news articles out of the total 645 were 

classified correctly and 132 were classified incorrectly. The best accuracy score 

achieved by the decision tree classifier was 68.9%, using the features:  

 

 

 

 

 

 

 
16 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.htmlr 
17 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html 
18 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
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• Sentiment Analysis 

• TFIDF Vectorizer 

• Full bias words list  

 

 

 

 

 

 

 

The logistic regression classifier, positioned in the middle of the other two classifiers, 

reaching a best accuracy score of 75.0% using the following features:  

 

 

 

 

 
Figure 17 - Best accuracy score of each classifier type, with the features used to achieve the score 

 

The precision of a classifier measures the percentage of positive results that were 

predicted correctly, compared to the amount of positives results that were predicated. 

A low precision score for the hyperpartisan class would mean that the classifier was 

predicating a high number of neutral articles as hyperpartisan incorrectly. The recall 

score of a classifier measures the percentage of positive results that were predicted 

correctly compared to the total of actual positive results. A low recall score for the 

hyperpartisan class would mean that the classifier was classing a lot of hyperpartisan 

articles as neutral ones.  
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The best random forest classifier 77.7% precise at classifying neutral articles, and 

85.8% precise at classifying hyperpartisan ones, meaning the classifier was rarely 

classifying hyperpartisan articles as neutral ones, and vice versa. The recall for neutral 

news articles was 94.8%, and the recall for hyperpartisan articles was 53.4%; neutral 

articles were extremely unlikely to be predicted incorrectly, but hyperpartisan articles 

were predicted incorrectly around 47% of the time.    

 

 
Figure 18 - Diagram showing precision and recall of the best random forest classifier 
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Predicted Correct

Neutral Precision: 

77.7%

111 Hyperpartisan
Predicted Incorrect
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Predicted Correct
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≈ 5 Neutral News Articles ≈ 5 Hyperpartisan News Articles

386 Neutral
Predicted Correct

21 Neutral
Predicted Incorrect

127 Hyperpartisan
Predicted Correct

111 Hyperpartisan
Predicted Incorrect

Neutral Recall: 

94.8%

Hyperpartisan Recall: 

53.4%

≈ 5 Neutral News Articles ≈ 5 Hyperpartisan News Articles
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Feature Analysis 

Next focus was on finding which features were the best for discerning hyperpartisan 

news articles. The first investigation was to test each feature individually on its own 

with each classifier type, to identify how well they were at categorising hyperpartisan 

news by themselves. The graphs below show each feature’s accuracy score for each 

type of classifier.  

 

 
Figure 19 - Results of each feature tested on it's own with each classifier type 

 

As the results show the TF-IDF vectorizer , on average, worked the best at splitting  

hyperpartisan news articles from neutral ones. The features which involved words 

from the bias lexicon  performed particularly well with the random forest classifier, 

achieving close to 76% accuracy on its own. Another interesting performance is the 

feature that identifies the percentage of words with potential spelling mistakes, which 

performed around 10% better with the logistic regression classifier compared to the 

others. Given the nature of how random forest classifiers work (creating lots of trees 

from a subset of features), it is not unsurprising that features that only returned one 
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data point (i.e average sentence length) did not perform as well for this classifier, as 

there was not enough data to divide into subsets. 

 

As the TFIDF vectorizer had the most effective performance, and highest average 

accuracy score across all the features, to reduce the number of iterations required in 

the next experiment, the tests were carried out using the TFIDF vectorizer as a base 

level to identify which features could work with it to improve the accuracy score.  

 

Different classifiers utilised different features for their optimal results. In order to see 

which features contributed the most to achieving a high accuracy score, the amount 

of times they were used in a classifiers best and worst results were calculated. If a 

feature is consistently used in the best results for a classifier and conversely never 

used in its worst, then the feature must be contributing to its high accuracy score.  

 

The decision tree classifier used the sentiment analysis and the average sentence 

length features most commonly in its best performing accuracy scores, with 

sentiment analysis appearing in 81% of its best scores and average sentence length 

appearing in 62%. The same features only were used in 4% (sentiment analysis) and 

15% (average sentence length) of the worst results for the feature. 

When testing a logistic regression classifier, only the sentiment analysis feature 

worked extremely well to contribute to a high accuracy score along side the TFIDF 

vectorizer, being utilised in 100% of the best results for the classifier and 0% of the 

classifiers worst accuracy scores. The pared-back list of words from the bias lexicon 

also appeared in 100% of the random forest classifier’s best scores and 38% of the 

classifiers worst. The average sentence length appeared in 69% of the classifiers best 

results and, similarly, appeared in 38% of the worst accuracy scores. Sentiment 

analysis generally also appeared to benefit the random forest classifier, with a net 

difference of 19% between the best and worst accuracy scores where it was used.  
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Decision Tree Classifier

 

 
Figure 20 - Usage of feature in decision tree classifier’s best and worst results. The TF-IDF vectorizer was used in every result, so 

is therefore in 100% of the worst and best results. 
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Logistic Regression Classifier 

 

 
Figure 21 Usage of feature in logistic regression  classifier’s best and worst results. The TF-IDF vectorizer was used in every result, 

so is therefore in 100% of the worst and best results. 
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Random Forest Classifier 

 

 
Figure 22 -  Usage of feature in random forest  classifier’s best and worst results. The TF-IDF vectorizer was used in every result, 

so is therefore in 100% of the worst and best results. 
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Feature Importance in Random Forest  

When generating a random forest classifier, the SK Learn library enables the data 

output of an importance score for each feature, signifying the usefulness of the feature 

to the overall classification. The importance scores were then ranked to see which 

features were the most useful to the random forest classifier.  
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Figure 23- Feature importance for random forest classifier 



 36 

Given there were around 300 individual features used in the best random forest 

classifier, there is some quite significant differences in the importance of all the 

features. On average, the top 30 features were 5 times more important than the next 

278.  

 
Figure 24 – Top 30 feature importancse for random forest classifier 

 

The most important feature to the random forest classifier was the percentage of 

neutral sentiment the news article contained. All the sentiment analysis features 

(positive sentiment, negative sentiment, neutral sentiment and compound 

sentiment) ranked in the top 20 features for the classifier. The average sentence 

length of an article was the second most important feature to the classifier. When 

analysing features that looked at the pervasiveness of certain words, features with 

some variation on the word America (‘America’/ ‘Americans’/ ‘American’), again all 

performed well, with the use of the word America being the third ranking feature in 

the classifier. This perhaps reflects the nature of the 2016 Presidential Election, with 

Republican candidate Donald Trump pushing for a more isolationist foreign policy to 

his predecessors (Schneider 2019). The name- checking of political figures relevant 

to the election also seemed to be an effective indicator for the classifier, with words 

such as ‘Trump’, ‘Hillary’, and ‘Obama’ all featuring near the top of the ranking.  
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Decision Tree Visualisation 

The decision tree classifier brings the benefit that the classifier can be extracted and 

visualised as a flow chart showing how the decisions for a classification are made. 

The decision tree for classifier with the highest accuracy score is shown below.
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Highest accuracy scoring decision tree 

Figure 25 - Entire decision tree, top portion of tree shown on next page 
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Figure 26 - Top portion of decision tree 



 40 

The tree shows that the best feature at splitting the entire dataset of news articles 

was the commonality of the word ‘America’, with articles with a higher TF-IDF value 

for the word ‘America’ more likely to be hyperpartisan. Node #1 checks for the TF-

IDF value for the word ‘make’, with articles with higher values more likely to be 

hyperpartisan.  This appears to be checking if the article for the phrase ‘Make America 

Great Again’, especially due to the next node checking for positive sentiment, possibly 

as this would be boosted by the word ‘great’.   

 

Ranking change in Gini Impurity 

A similar ranking to the random forest classifiers feature importance was extracted 

from the decision tree classifier, however extracting this information from the 

decision tree has the added benefit that you can see how each feature benefits the 

classification towards hyper-partisanship or not.  In order to investigate this, the GINI 

impurity (probability a randomly picked article is wrongly classified) change in from 

a parent node to a child was measured, and then divided by how far down the tree 

the child node was. The metric calculated balanced the fact that nodes higher up the 

tree have less features splitting them, so therefore any change in impurity is more 

dependent on that specific feature.  
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Figure 27 - Graph of change in Gini impurity, relative to the depth of the node 
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Figure 28 - Top 30 changes in Gini impurity, relative to the depth 

 

The greatest change in Gini, relative to the depth of the node, is the amount of 

positive sentiment in node #85, again possible due to the phrase ‘Make America Great 

Again’ being a good indicator of the article being hyperpartisan. Generally, the 

sentiment performed well in splitting the articles, appearing twice in the top three 

changes. Many of the jumps appear twice on the graph, such as node #135 for the TF-

IDF value of the word ‘trump’. This is because the node splits into two leaf nodes, 

and therefore the difference in Gini change between is identical as the Gini impurity 

for leaf nodes is zero. Node #135 shows that a higher TF-IDF value for the word 

‘trump’ causes a hyperpartisan prediction, and #75 shows a higher value for the word 

‘campaign’ will cause a neutral prediction. The data in this chart is useful in 

identifying some interesting splits, however due to the relatively small amount of 

articles, some high changes in Gini impurity are just due to some chance 

characteristics in the data.  
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Summary 

Overall, the system works moderately effectively for classifying news articles, 

although there are some caveats to it’s performance. The best accuracy score the 

system was able to accomplish was 79.5%, so can effectively detect 4 out of every 5 

articles correctly. When compared to teams who completed the Semantic Evaluation 

Workshop (SemEval) challenge in 2019, this system compares favourably- out of the 

42 submissions this system would have ranked 6th for the accuracy score that it 

achieved. The highest accuracy score achieved in the competition was 82.2%, so this 

system is 2.7% less accurate than the best submission. Similarly, the precision of the 

classifier at detecting hyperpartisan news articles performs comfortably compared to 

the other submissions with a performance of 85.8%, with the best score from the 

competition being 88.3%. The classifier has a low recall score however, meaning that 

there were too many false negative results for hyperpartisan news articles. Again, 

comparing to other teams in the SemEval - 2019 challenge, it seemed a common 

among high accuracy scoring entries to struggle with lower recall values.  

 

The original accuracy of the random forest classifier with just the TF-IDF vectorizer 

was 76.7%, so the custom features that were created for the classifier were effective 

in boosting the score by around 3%, which is satisfactory given the trickiness in 

increasing accuracy scores for classifier the closer to 100% accuracy they get. 

Furthermore, compared to the initial version of the system which used a decision tree 

classifier and word vectorizer its only feature (which was 63.3% accurate), the 

development has been successful. 

 

Across all the classifiers, sentiment analysis worked the best in combination with a 

TF-IDF vectorizer. The net usage of the feature in the classifiers best scores were 77% 

for the decision tree classifier, 100% for the logistic regression classifier, and 19% for 

the random forest classifier, meaning that the feature consistently helped the 

classifiers reach the best accuracy scores. Furthermore, neutral sentiment ranked as 

the most important feature in the random forest classifier’s feature importance, with 

all four sentiment analysis features ranking in the top 20 features for the classifier.  
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Future Work 

 

If given more time to further develop the system, the initial step to take would be to 

source more news articles that can be included to further train and test the system in 

order to improve its performance. The current 645 news articles that were used to 

test/ train the current system were provided to competitors in the SemEval 2019, and 

were all manually labelled as ‘hyperpartisan’ or ‘mainstream’ (neutral) by 

factcheckers (Kiesel et al. 2019). To enhance the dataset for the classifier, a task could 

be undertaken to further manually label news articles using similar labelling criteria 

to those in the SemEval set. Another option would be to use a by-publisher dataset, 

where instead of manually checking each news article, you label an entire publisher 

as hyperpartisan or neutral by checking a subsection of their publications. 

Organizations such as Buzzfeed News have already compiled lists19 of hyperpartisan 

news outlets that could be utilised. Once a publisher has been identified, you can 

then as suggested by (Kiesel et al. 2019) , use an automated program to trawl through 

the publishers output to gather news articles to train the classifier with. Manually 

labelling each news article would be a very time consuming task, however the data 

produced would be high quality and the labelling guaranteed to be accurate. In 

contrast, using by publisher data would be much faster, however there is no guarantee 

that every news article published by a hyperpartisan publisher is hyperpartisan, as 

shown in the table of Figure 1. Therefore there is some risk that the classifier will be 

confused by classifying incorrectly labelled articles. Increasing the number of 

hyperpartisan news articles to train with would be especially useful, as there were 

about 70% more articles from neutral mainstream publishers to train the classifier 

with than from hyperpartisan publishers.  

 

Another component that could be added to improve the system would be to create an 

application programming interface (API), which would allow another service to send 

news articles to the system and receive in return a classification for the articles and 

the probability of the classification. Given that a tool for a command line input has 

already been created, the API could be an extension of this programming. Creating 

this API system would allow publishers of news articles, such as social media 

companies, almost instantaneously receive prediction for any new news article that 

was published to their website, meaning that audiences could receive a warning that 

the article may be hyperpartisan as soon as it is published, and before it was read and 

 
19 https://github.com/BuzzFeedNews/2017-08-partisan-sites-and-facebook-pages 
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shared to others. Another benefit of creating an API would be that the system would 

receive a lot of new articles that could be used to train the classifier. A procedure 

could be implemented where articles coming into the API could be manually labelled, 

perhaps by some crowdsourcing method where the people could submit their verdict 

on the articles partisanship and the majority vote would be applied. (Raykar and Yu 

2012) suggests a method for collecting data labels by crowdsourcing, while avoiding 

spammers that could degrade the data quality.  
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Conclusion 

 

The project successfully met the aim of creating a classification system for predicting 

the probability that a news article is hyperpartisan or neutral. The classifier created 

was just under 80% accurate, which was very competitive compared to other similar 

solutions created by teams at International Workshop on Semantic Evaluation 2019. 

The low recall score of the classifier is a slight obstruction to the total success of this 

aim, however given more time and more information to train with, the same system 

would likely improve in its effectiveness.  

 

There was also the ambition to investigate which features performed most effectively 

in the classification of hyperpartisan news, which was accomplished with sentiment 

analysis showing as a key feature that worked across all the classifiers tested.  

 

Furthermore, the creation of functionality to predict the classification of a string 

object from the command line, opens up the possibility for the system to be used in 

an API or as part of some other software package that would require hyperpartisan 

news detection. 

 

Reflection on Learning 

 

Doing this project has developed my understanding of machine learning and the 

theory behind. Coming into this project, I had little experience using a library like 

SK-Learn to program a machine learning system, so being able to actually implement 

a system has meant that my understanding of how the theory behind machine 

learning works has developed too. Having to deal with some of the convoluted tasks 

that are involved in creating real life systems, such as processing data from a text file, 

has given me more solid understanding of the time requirements for developing 

systems, often the most menial task can take the longest.  

 

Analysing the performance of different combinations of classifiers and features has 

improved my ability to perform statistical analysis of data, as a fair amount of the 

project was spent exporting data from the machine learning models to Microsoft 

Excel to produce graphs and try and identify and understand trends. 
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Given the different variables in the classification system that can be experimented 

with, I spent a lot of time trying out different approaches trying to find more optimal 

results. However, the nature of the classifier is that there will not ever be one optimal 

solution and therefore it is possible to experiment with the system perpetually. With 

hindsight, I should have focused on only allowing experimenting within the time 

frames allowed in the initial Gantt chart created at the beginning of the project.  
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