1. Abstract

Paper documents are often shredded in an attempt to destroy the information they contain.
For forensic and investigative scientists, it is an important task to reconstruct documents
for use as evidence. This can be a very time consuming and laborious undertaking if
attempted by hand.

This project aims to develop an automated system for the reconstruction of shredded
paper documents to make the process faster and easier. The performance of this system
will be compared to existing solutions.
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2 Introduction

Despite the increasing reliance on computers, paper documents still see widespread use.
The EPA states that the average U.S. office worker uses 10,000 sheets of copy(printer)
paper every year [3]. If a paper document contains sensitive information and is no longer
needed, it is common practice to destroy it using a shredder. Reconstructing documents
that have been shredded allows for the recovery of the information contained within them.
This could be to recover documents that were accidentally lost, or recover documents that
were intentionally destroyed. This second application is especially useful in forensic and
investigative sciences, as well as for intelligence agencies, for the acquisition of evidence.

Manual reconstruction of shredded documents is possible; shredded documents seized
from the American embassy during the Iranian hostage crisis were reconstructed by a
team of carpet weavers[1]. This task, however, is time consuming and difficult. The number
of different ways to arrange a collection of fragments grows exponentially with the size of
the collection. This means that even with only a fairly small number of pieces, there quickly
becomes a prohibitively large number of possibilities to try. An automatic document
reconstruction system would be desirable to reduce the time and effort required.

2.1 Aims

The primary aim of this project is to develop an automatic system to reconstruct a
document given a collection of fragments. These fragments will be taken as input in the
form of image files produced by a scanner. The output should be an arrangement of the
fragments which resembles the original document.
A number of assumptions are made about the problem to reduce the complexity, however
these may be relaxed as an extension to the project if it proves too simple. The
assumptions are:
» Vertical strip shredding. The fragments are created using a strip shredder (see
section 3.1) and are vertical.
+ Text based documents. The content of the original document includes text.
* Latin alphabet. The documents are written in a language that uses the Latin
alphabet.
+ Completeness. The collection of fragments is sufficient to complete the original
document and does not contain fragments belonging to another document.

In addition, It is desirable that the performance of the system be competitive with other
existing solutions. This will be assessed by measuring the effectiveness of this and other
systems on the same dataset and comparing the results.



3 Background
3.1 Shredding techniques

There are three most common methods of document shredding: manual, strip and cross-
cut. Manual shredding is tearing of documents by hand. This leads to irregular shapes
often with jagged boundaries. Strip and cross-cut shredding are both techniques
performed by a mechanical shredder. Strip shredders cut documents into thin vertical
ribbons. Cross cut shredders also make horizontal or diagonal cuts leading to smaller
fragments. These mechanical approaches produce more regularly shaped fragments.

Figure 1: A scanned fragment from a strip shredder (rotated to fit the page). Strips are largely
rectangular but there is often some distortion.

3.2 Context

In this section a brief explanation of a few important concepts is provided as reference.

3.2.1 Combinatorial optimisation

Combinatorial optimisation is a branch of computer science that deals with finding the best
solution among a set of candidates[4]. The set of candidates is often prohibitively large to
search exhaustively, so heuristic based methods are used that aim to give a good, but not
necessarily optimal, solution.

Minimum-weight Hamiltonian path(MWHP) problem

Given a graph, a Hamiltonian path is one that goes through each node exactly once. This
is a common combinatorial optimisation problem. If the graph is weighted, this problem
can be extended to the MWHP problem, which finds the Hamiltonian path with the smallest
total weight. Similar to this is the travelling salesman problem which finds the minimum
weight tour[4].

Figure 2: A weighted graph with its
corresponding minimum weight Hamiltonian
path.

Nearest neighbour algorithm
This greedy algorithm was designed to give good solutions for the travelling salesman
problem[4], but is trivially converted for the MWHP problem. The algorithm starts by



choosing an initial node. In contrast to the travelling salesman problem, the choice of the
initial node when constructing a MWHP has a large impact on the quality of the solution
found. The algorithm then iteratively adds the unvisited node with the lowest weight edge
joining it to the last added one. The algorithm runs in only O(n?) but does not guarantee an
optimal solution.

Input: Weighted graph
Output: minimum weight Hamiltonian path

candidate nodes = all of the nodes in the graph

path = empty list

select initial node

add initial node to path

remove initial node from candidate nodes

while (length(candidate nodes) > @)
next node = candidate node with smallest weight edge to last node in path
add next node to path
remove next node from candidate nodes

Figure 3: Pseudo code for the nearest neighbour algorithm.

Figure 4: The nearest neighbour algorithm constructing a solution for the graph in Figure 5. Here
node 3 was chosen as the start.

Local search

Local search is a simple heuristic for finding good solutions in a variety of combinatorial
optimisation problems[4]. The algorithm is initially provided with a single initial solution. A
collection of similar solutions is constructed called the solution’s neighbourhood. The best
solution in this neighbourhood is chosen to be the next solution. This process is repeated
until a solution is found which is the best in its own neighbourhood. This process often gets
stuck in local optima because it has no mechanism for exploring worse solutions.
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Figure 5: If the local search starts as
shown on the diagram, it will go to the
local minima.

Tabu search

Tabu search is a metaheuristic that extends upon local search[9]. Like local search, it
selects the best solution in the current neighbourhood at each iteration, however it is
allowed to select a worse solution if no better ones are available. To prevent the next
iteration from returning to the previous, better, solution a memory structure is maintained
which stores recent moves. Moves within this structure, called the Tabu list, are forbidden.
After a set number of iterations known as the Tabu tenure, the moves are removed. The
search ends when a stopping criterion is met. Many of the specifics of the implementation,
such as the neighbourhood and stopping criteria, are left to be customised for the specific
problem.

Input: initial solution
Output: best solution found

best solution = initial solution
current solution = initial solution
tabu list = []
while(stopping criteria not met)
current neighbourhood = neighbourhood(current solution)
best neighbour = best solution in current neighbourhood and not in tabu list
current solution = best neighbour
if (best neighbour is better than best solution):
best solution = best neighbour
push best neighbour to tabu list
if length (tabu list) > tabu tenure
remove first item from tabu list
return best solution

Figure 6: Pseudo code for Tabu search



Assignment problem and Hungarian algorithm

The assignment problem is a common combinatorial optimisation problem. Given two sets
of equal size, each item in the first set must be matched with a unique one in the second.
Each possible pairing is given a weight. The aim is to find an assignment that minimises
the total weight.

The Hungarian algorithm is a technique that gives the global optima of an assignment
problem in polynomial time[12].

3.2.2 Computer vision

Computer vision is a branch of computer science that deals with manipulation and
extraction of information from digital images.

Otsu’s method

Otsu’s method is a technique for finding a threshold value for automatic thresholding. The
method starts by constructing a pixel intensity histogram of the target image. For each
possible threshold value, the histogram is divided into intensities above and below the
value. The inter-class variance between the divisions is then found. The threshold value
which creates the divisions which maximises the inter-class variance is chosen. The target
image is then thresholded with this value.

Input: Image to be threshold
Output: Best intensity to threshold at

build intensity histogram
iterate through all possible thresholds

compute inter-class variance

update current best inter-class variance
return threshold that gives best inter-class variance

Illustration 1: Otsu's method for finding a threshold value

Floodfill

This is a technique for visiting every pixel in a connected component. The algorithm starts
with a seed coordinate and expands iteratively into each adjacent unvisited pixel in the
component. This can be used to find a bounding box of the component by storing values
for the left, right, top and bottommost pixels visited so far and updating them each time a
new pixel is reached.



Input: seed location inside component
output: bounding box of component

initialise leftmost, rightmost, topmost, bottommost = seed location
Q = empty queue
enqueue seed location to Q.
while Q is not empty:
set (x,y) equal to the first element of Q
dequeue first element from Q.
if (x,y) in component and unvisited:
mark (x,y) as visited
update leftmost, rightmost, topmost, bottommost
enqueue (x+1,y) to Q
enqueue (x-1,y) to Q
enqueue (x,y+1) to Q
enqueue (x,y-1) to Q
return leftmost, rightmost, topmost, bottommost

Figure 7: Pseudo code for using floodfill to find a
bounding box.

Template matching

Template matching is a technique for finding one image, the template, within another, the
source[2]. A window is moved around the source image. At each point, the content in the
window is compared to the template to give a score. Various methods for comparison
exist, the simplest being the sum of absolute pixel differences. By taking the window
location that gives the best score, the most likely match within the image can be identified.
The value of the best score can also be used to give an indication whether the template
image is within the source image at all.

Template

Window

Figure 8: Template matching.

3.3 Existing work
A number of papers have been published investigating this problem. However none
demonstrate perfect accuracy. Related work often treats the problem of document
reconstruction as a combinatorial optimisation problem. This is is the approach that this
project also takes and is explained more thoroughly in section 4.3.1. This approach is
commonly divided into two subproblems:
* A method for scoring an arrangement of fragments. This is achieved by assessing
the compatibility between each pair of adjacent fragments in the arrangement.



* A method for finding the arrangement of the fragments which gives the optimal
evaluated score.

Compatibility measures
A variety of methods for evaluating the compatibility or discrepancy between strips have
been proposed:

Pimenta et al. [19] and Naiman et al. [14] both use measures that try to find the fragment
shapes that fit together best. They are mostly concerned with hand torn documents and
have little application to mechanically shredded documents because the shape of the
fragments is too regular.

Alhaj et al. [5] Use the absolute edge pixel difference. At each row, the absolute difference
is calculated between the pixel at the right edge of the left fragment and the pixel at the left
edge of the right fragment. The sum of these differences is the score, a high value
indicating a poor match and 0 representing a ‘perfect’ match i.e. identical edges. It is worth
noting that this paper uses coloured documents so the difference between two pixels is the
Euclidean distance between the RGB vectors.

Chen et al. [7] Also use the edge difference but with some modification. Each entire edge
column is treated as a vector and the Euclidean distance between the fragments’
corresponding edges is taken. The paper also introduces a penalty coefficient which is
inversely proportional to the combined total sum of the edge pixel values. This is intended
to reduce the impact of loss of data which might cause a pair of fragments to appear more
similar than they should be.

Ukovich et al. [21] investigated the use of a variety of MPEG-7 content descriptors. An
example is “colour layout” - the average colour of each 8x8 image block, encoded with a
DCT.

A variety of deep learning methods have been applied to this or similar problems Paixao et
al. [17] use a fully-convolutional neural network and Pirrone et al. [20] use a Siamese
network. Both of these papers use a programmatic method for fragmenting the documents
for the training set due to the difficulty and time consuming nature of generating a large
enough collection of physically fragmented ones.

A number of papers use techniques based on OCR. Paixao et al. [18] assess the shapes
of boundary characters that are created when two strips are joined together. This is done
by taking the smallest Hausdorff distance each boundary character has from a set of
characters selected from the interior. Liang et al. [13] use a multi-level similarity measure.
First potential matches are found with low level pixel difference. These are refined with first
character level and then word level OCR confidence scores which are generated by the
OCR tool Tesseract (see section 3.4).

10



Optimisation methods

The optimisation technique depends upon what combinatorial optimisation problem the
original problem is interpreted to.

Much of the existing work interprets the problem as either the travelling salesman problem
or the nearly identical minimum-weight Hamiltonian path problem (see section 3.2.1). A
large amount of literature has been written on efficient algorithms for solving this problem.
The techniques that have been applied to reassembling shredded documents in particular,
include ant-colony optimisation[7] and greedy composition[13].

Another common interpretation is as an assignment problem, which can be solved
efficiently by the Hungarian algorithm. This is used by Alhaj et al. [5] and Chen et al. [8]
among others.

3.4 Specialist Libraries

Tesseract
Tesseract is an open-source Optical character recognition engine. Tesseract has an API
allowing it to be integrated with C++.

OpenCV

OpenCV is an open-source computer vision library with APIs in a variety of languages,
including C++. OpenCV has a wide variety of inbuilt image processing utilities useful to the
project.

11



4 Specification and design

4.1 Requirements

The functional requirements for this project are simple:
» The user must be able to input a set of fragments (that meet the constraints outlined
in section 2.1)
* The application must order these fragments to best resemble a document
» The application must provide output indicating the new order of the fragments

4.2 Architecture

The application can be modelled using the basic IPO (input-process-output) model.

y
4 y

Input: Collection Process: Arrange to recreate > y Output: New arrangement of y
of fragments document y fragments

4 y
y y

Figure 9: Flow chart of the overall application

The objective of the project is not concerned with the nature of the input and output so
discussion of these is limited to implementation (section 5). Discussion of the design will
focus on the core problem of arranging the fragments.

4.3 Design
4.3.1 Problem definition

Under the constraints of vertical, strip-shredded fragments, the collection of fragments can
be described as a sequence (fragment 1, fragment 2,..., fragment n) arranged from left to
right. Any permutation of this sequence gives one of the n! potential arrangements of
fragments, or solutions. To reconstruct the document, it is necessary to find the solution
that most resembles a complete document. Instead of assessing the quality of the entire
document, this can be evaluated by how discrepant'™ each fragment in the solution is with
the adjacent fragments.

1 The choice of compatibility vs discrepancy is arbitrary. Discrepancy was chosen to be more consistent with the
usual phrasing of the minimum-weight Hamiltonian path problem (see 3.2.1)

12
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Figure 10: Two possible arrangements of
three strips. In the example on the left

the strips are arranged so that they are
compatible with each other. In the
example on the right the strips are
arranged to be discrepant.

A value quantifying the discrepancy can be assigned to each pair within the solution. The
best solution is the one with the lowest total discrepancy.

4.3.2 Approach

The process can therefore be divided into two parts: the discrepancy function, which
scores a pair of fragments, and the optimiser which attempts to find the solution that
minimises the total discrepancy.

4.3.3 Discrepancy function

A range of different approaches to measuring discrepancy or compatibility have been
proposed (see section 3.3). One of the constraints outlined in section 2.1 is that the
fragments should belong to a document with textual content. The high frequency changes
in intensity in text documents makes them poorly suited to pixel difference based
measures such as the method used by Alhaj et al. [5] which rely on high correlation
between neighbours. This guarantee of text content, however, makes OCR viable so this is
the approach | used. The proposed technique is largely inspired by Paixao et al. [18].

The proposed score is based upon the observation that shredding frequently results in
characters being divided over two fragments?. If the characters formed when combining
two strips appear valid, then the strips are likely compatible. Conversely, if joining the
strips produces shapes that are not valid characters, then the strips are likely incompatible.

2 Note that this assumption fails if the strips are too thin, so that one character can be divided over more than two
fragments

13
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Figure 11: On the left, a section of a compatible pair of strips on the left,
showing characters that are split over the two strips. On the right is a
discrepant pair of strips.

The validity of a merged character is assessed by comparing it with a collection of
template characters using template matching (see section 3.2.2). The best template match
score over all of the templates is the final validity score. This indicates how similar the
merged character is to its most similar template character. To reduce the impact of
documents with uncommon fonts, The template characters are sourced from within the
fragments.

%! 74
" E i 1‘5""‘

Figure 12: On the left, the merged 'C' from the first pair in
figure []. On the right, an example whole 'C' from within the

same document. It can be seen that the two are not identical due
to noise produced during the shredding and scanning.

The overall discrepancy score is calculated from the average character validity.

4.3.4 Optimisation

With a compatibility score defined, an optimisation meta-heuristic can be employed to find
the arrangement of the fragments that minimises the overall score. The proposed system
first uses the nearest neighbour algorithm (see section 3.2.1) to quickly get an initial
solution. This requires an initial leftmost fragment which is chosen using a heuristic that
looks for the largest margin on the left side.

If the discrepancy was perfect and the leftmost fragment was always chosen, this would
guarantee a perfect reconstruction. This is often not the case however, so further
refinement to the solution is needed. This is achieved using Tabu search (see section
3.2.1).

14



Figure 13: Overall flow of the 'Process’ section.

4.4 Previous designs

4.4.1 Discrepancy functions

The accuracy of the discrepancy function is critical to the success of the overall approach,
so this section required the most attention. A variety of techniques were experimented
with, however the limited time frame available necessitated that those which did not seem
initially promising were quickly rejected. One such approach used a linear regression
model, trained on a dataset of shredded documents (see evaluation). For the input
variables | tried both Haralick texture descriptors [10] and local binary patterns[15], but
neither produced encouraging results.

The following methods showed greater promise so were developed enough to warrant
mention in the results (section 6):

Edge difference

This simple method of finding total absolute difference between adjacent edge pixels
initially seemed the most promising. Similar approaches were taken by Alhaj et al. [5] and
Chen et al. [7]. To account for variation in height between strips, the difference was
calculated with a range of offsets to the starting position of one of the strips and the best
result was used. A further refinement replaced the total absolute difference with the
normalised correlation value which mitigates the impact of different lighting when scanning
the strips. This is achieved by normalising the difference with respect to the mean intensity.

Y (Ry) -R)(Ly) -L)

\/ 2Ry -R)* X (L) -L)’

> IRy)-Ly)

Figure 14: Expressions for absolute difference (left) and normalised
correlation (right). At height y, R(y) is the leftmost pixel in the right
strip and L(y) is the rightmost pixel in the left strip.
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The main issue with this approach is that text based document have frequent intensity
changes from white to black, leading to lower correlation between pixels than would be
expected in a more gradually changing document such as an image. This meant that the
edge difference could be quite high even if the strips were compatible.

Tesseract

This largely followed the same steps of the final solution, however the validity of a
character was determined using the confidence levels Tesseract gave when classifying it.
This is similar to the character level metric used by Liag et al. [13]. This gave fairly poor
results, unfortunately, because Tesseract is designed to assume that the input is supposed
to be valid. This meant that the confidence scores often appeared unrealistically high for
nonsense character shapes. Despite this, Tesseract still finds use in the system for
selecting template characters as these are assumed to be valid (see section 5.3).

4.4.2 Optimisers

Simulated annealing

Simulated annealing is an approach based on the real world annealing process. Like Tabu
search, this is based on local search however the next solution is chosen randomly, with
probability proportional its score. The results this gave were negligibly different to those
achieved with Tabu search so choosing between the two was simply preference.

Hungarian

A number of papers such as Alhaj et al.[5] utilise a method known as the Hungarian
method. This is designed to solve the assignment problem (see section 3.2.1). To
reformulate this problem to the assignment problem, the fragments are split into their right
and left sides. The problem is then to assign a right hand side for each left hand side. This
approach encounters problems however because it is possible for closed loops to be
formed in the assignment, leading to multiple separate documents being created. | was
unable to discover how this problem was solved in papers that used the Hungarian
algorithm so | was forced to abandon the approach.

Strip Right edge Left edge

3
A

Figure 15: An assignment which causes closed loops.

1
> &8 s
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5 Implementation

The Application was developed in C++, making use of the various standard libraries, as
well as specialist libraries OpenCV and Tesseract (see section 3.4). Discussion of the
implementation is divided into input, data structures and utility functions, the discrepancy
function, the optimiser and output.

5.1 Input

Interface
To make the development easier the application is called from a command line. User
interaction is limited to arguments passed in calling the executable. The arguments
available are:

» The path of the top level directory (see input format)

« The name of the text file of fragment names

» The full name of the output file (optional — see section 5.5)
There are also two flags. If these are included the relevant functionality is applied. These
are:

» Shuffle the fragments before reconstructing

* Combine the fragments together for output (see section 5.5)

root_dir  -n=fragment_names.txt

Figure 16: Calling from the command line
There is little input sanitisation done so inputs must be exact. They must also not include
spaces or backslashes.

Fragment input format

To simplify development | specified a restricted input format. First there is a top level
directory. In this directory is a text file specifying the number of fragments, and the name of
each one. The top level directory also contains a directory called strips containing the
fragment images. Optionally, the top level directory can contain a directory called masks
containing binary images that identify the background and the strip for each image. These
masks should share the same name with their corresponding strip. All images (strips or
masks) should be png files.

17



root_dir

masks
_@' fragment_1.png - O *
_@ fragment_2.png File Edit Format
—|@' fragment_3.png View Help
-4 fragment_4.png 4
fragment_1.png
[ strips fragment_2.png

——f& fragment_1.png fragment_3.png
——E4 fragment_2.png ‘Fr‘agment_ﬂ-.png{
_@' fragment_3.png
—@' fragment_4.png

—=| fragment_names.txt

Wine UTF-8

Figure 17: The input format. In this example
masks are included.

5.2 Data structures and utility functions

Representing fragments

The process of shredding and scanning often leads to fragments that are not perfectly
rectangular. This means that the images often contain background as well as the fragment
itself. The background can be identified using the masks provided (If no mask is present it
is assumed that the whole image is strip). The index of the first and last non-background
pixel in each row is stored so that iteration over the strip can be performed easily.

= i B 5 =

o9 S

Figure 18: A scanned strip. The background has been coloured pink.

Representing solutions

Solutions are simply ordered containers of fragments. The container only stores pointers
which makes operations like swapping positions and copying solutions quicker.

Tresholding

Otsu’s method (see section 3.2.2) is provided by OpenCV, however it thresholds the entire
image including the background. This would impact the quality of the threshold, so | had to
implement the algorithm myself so that it would only take a histogram of the pixels in the
strip. The thresholded version of each fragment is required a number of times during the
process. To avoid needing to threshold repeatedly, a thresholded copy is stored within the
fragment data structure.

18



5.3 Discrepancy function

The discrepancy function described in section 4.3.3 can be split into four main subtasks:
1.(prerequisite) Select representative character templates

2. Merge the strips

3. Segment the boundary characters

4. Validate each character

1. Selecting representative character templates

This step is performed once, before the optimisation stages. Each fragment is passed to
Tesseract, which provides functionality for iterating over the individual characters it detects
within the image. Tesseract identifies each and assigns a confidence confidence. The
image of each character, as well as its confidence, is added to a data structure containing
all the other characters of the same type. The characters that stray too far from the mean
(+ or — V2 of the height or width) are then removed. The character in each container with
the highest confidence is chosen as a representative of that symbol and the rest are
discarded. Storing all of the images in order to reject those that are outliers in size is not
efficient but improves the quality of the selected templates.

2. Strip merging

This is the first step of the function proper. The strips need to be correctly aligned before
they can be merged so that corresponding lines of text are matched at the same height.
This is achieved with the following algorithm which finds the offset minimising the
difference in average row intensities between the strips:

Input: left and right fragments
Output: best offset to merge text lines

max offset = height(left fragment)/4
for offset in range (-max offset:max offset):
total = @
for each row in left fragment:
1 = average intensity in left fragment row
r = average intensity in corresponding right fragment row with offset
total += |1l-r|
average difference = total/number of rows
return offset with the lowest average difference

Figure 19: Pseudo code for finding the best offset to merge at.

Once the offset is calculated, the two strips can be merged with it applied. Naive
concatenation would often result in a column of background down the centre. To prevent
this the rows are combined individually, up to the last pixel in the left strip and starting from
the first pixel in the right (see representing fragments).
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Figure 20: Top: combined strips. Bottom: concatenated strips.

3. Boundary character segmentation

Bounding boxes for the characters are found using the following algorithm on a
thresholded copy of the image. These bounding boxes are then used to copy rectangular
patches from the same position in the original image to be assessed.

The bounding boxes that are too large are rejected because they normally enclose
graphics or characters that have become connected due to imperfect thresholding.

Input: thresholded fragment
Output: bounding boxes of characters along the boundary

initialise empty list
for each row in the fragment:
if there is an unvisited black pixel touching the boundary
use flood fill to get the component’s bounding box
if the box is not too big:
if the box overlaps with previous one in the list:
combined box = box + previous box
if new box is also not too big:
overwrite previous box with combined box
else:
add box to the end of the list

Figure 21: Pseudo code for finding bounding boxes.

Too large is defined in the implementation as greater than 1'/,times the width or height of
the largest template character.

There are a couple of reasons that Tesseract was not used for this step. Firstly, calls to the
Tesseract API are fairly expensive and this step needs to be done for every possible pair
whereas only one call per fragment is needed in for choosing the template characters.
Secondly, Tesseract is designed to locate valid characters and may miss invalid ones.
These invalid characters are important for assessing the quality of the match.

Figure 22: Visualisation of bounding boxes found in a pair of strips. Boxes in green are selected for
validity assessment, whereas boxes in red are rejected. The cyan line is the boundary.
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4. Assessing validity

Characters that are too small (less than 1/2 the smallest template width or 3/4 the height)
are given a score of 0.

Characters that don’t cross the boundary at any point are also given a score of 0 as this
means that a character has not been merged.

The rest of the characters are passed to the template matcher and the score of the best
match is found. The characters are padded with a border of white pixels to ensure enough
window freedom to move. OpenCV provides inbuilt template matching with a variety of
included comparison methods. Normalised cross correlation was determined empirically to
be the best method.

quyf[Tj[xja y')-TU'(x+x'yy+y'))
R[x,y] o
\/Z""""J:.l"—'[_Jl[}':'}’1'1]}];i ' Z?.'J_..I' Ij[x + xjay ‘I‘yj]l

Ty =T,y ) = 1/(w-h) - 3 T y")
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Figure 23: Normalised cross correlation at point x,y. T is the template image and I is the
source image

This gives a value between 0 and 1, with 0 being entirely dissimilar and 1 showing they are
identical. The optimisation implementation is designed to find the minimum score so the
negation of the best template match value is returned by the function.

Once these tasks are complete, the final discrepancy is determined by taking the mean
validity score (or O if no characters are present). This value ranges from -1: all merged
characters are identical to the templates, to 0: no valid characters.

5.4 Optimiser

5.4.1 Finding an initial strip

To begin the nearest neighbour algorithm, an initial strip must be chosen. The heuristic
used is based on the assumption that the left most fragment will have an empty white
margin on the left hand side. The strip with the thickest margin is assumed to be the first
one. This is calculated by finding the average proportion of each row that is left of the first
black pixel, on the thresholded fragment. This gives a value between 0 and 1 for each row,
0 meaning that the first pixel is black and 1 meaning they are all white. The rows which are
entirely white are discarded as these give no indication of the size of the margin. The strip
with the largest margin will give the highest average value.
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Input: thresholded fragment
Output: Average size of row margin

total = ©
rows_counted =@
For each row in fragment:
f = index of first non-background pixel
1 = index after last non-background pixel
row_length = 1-f
If the row contains a black pixel:
i = index of first black pixel
rows_counted++
total += (i-f)/row_length
return total/rows_counted

Figure 24: Pseudo code for finding margin size in a
fragment.

5.4.2 Tabu search

The Tabu meta-heuristic leaves a number of design decisions to be adapted for each
specific use.

Tenure

The Tabu tenure is the number of iterations before an item in the Tabu list is removed. A
value of 60 was chosen empirically.

Stopping criterion

The stopping criterion the condition under which the search should end. For this | chose to
set a number of maximum iterations since an improvement to the overall solution was
found. A value of 100000 was determined as a compromise between efficacy and time
taken.

Neighbourhood

The neighbourhood used is important to the success of the search. If it is too large, too
many solutions need to be checked each iteration, making it expensive. If it is too small,
not enough solutions will be explored and it becomes more likely to converge on a local
minima. A good neighbourhood should also allow calculation of a new solution by a simple
modification of the old one. The neighbourhood used is any solution which can be reached
by swapping the position of two fragments. This means that each new solution’s cost can
be calculated from the previous one by subtracting the discrepancy cost between the pairs
of fragments that are no longer adjacent and adding the discrepancy cost of those that
have just become adjacent.
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Figure 25: The neighbourhood of (A,B,C,D)

Tabu list

For each move to a new solution, the Tabu list stores a pair of identifiers describing which
fragments were swapped at that move. The identifier used is the filename of the fragment.
To make the Tabu list insensitive to the order of the pair of identifiers, they are stored and
queried in lexicographic order. More advanced memory structures exist which differentiate
between short, medium and long term memory to promote diversification, for exploring
more solutions, and intensification, for narrowing in on promising areas of solutions
However, these were not implemented.

5.5 Output

The default behaviour of the output is to concatenate the fragments in the order of the
solution and then show the resulting image.

If an output file is specified, then the final image is saved to that file.

If the combine flag is included, then the fragments are combined without background
instead of concatenating. This uses the same method that is used to merge two fragments
in the discrepancy function (see section 5.3). Using this method over a large number of
strips causes the noise to accumulate, leading to distortion increasing towards the right
side of the document.
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Figure 26: Output showing the difference between concatenating and combining. Note that the
characters become increasingly distorted in the combined strips.
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6 Evaluation

The primary aim of the project is to accurately reconstruct documents. This can be
assessed by comparing documents recreated by the system with a known ground truth. To
assess how competitive the proposed system is with existing solutions, the accuracy of
this system can be compared to the accuracy of others on the same data. | chose to
compare the performance with Paixao et al. [18] because it provided easy access to the
dataset used.

6.1 Dataset

Paix&o et al. provided two datasets of shredded documents along with ground truths for
comparison. The datasets contain documents in English and Spanish. Some documents
also contain varying sizes of graphical elements. The two datasets, D1 And D2, are further
divided into mechanical and artificial. These contain the same documents that have been
shredded with a different technique. The mechanical shredded examples are documents
that have been printed, shredded and then scanned. The artificial examples are
“shredded” algorithmically. | decided to ignore the D1 mechanical dataset as it is not
possible to distinguish between the background and the strips, which makes the proposed
system completely ineffective in many cases because it cannot join the edge characters
together. D1 contains 60 original documents and D2 contains 20.

6.1 Metric

In order to compare my results with those of Paixao et al. on the dataset, | adopted the
same comparison metric. Given a solution 11 of length n, Paix&o et al. define a metric they
call accuracy:

accuracy(r) = n —ngroups(m)

n—1

Figure 27: Formula for accuracy. t is the solution being measured
and n is the length of solution .

A group is defined as a maximal correctly ordered subsequence. This is calculated by:
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n—1
ngroups(m) =n — Zl[rz;+| =m; + 1},
i=l
Figure 28: Formula for number of groups. pi(i+1) represents the next fragment in the
solution and pi(i)+1 represents the correct next fragment in the ground truth.

A perfect solution will have one group containing all of the fragments and a completely
incorrect one n groups containing one fragment.

6.3 Methodology

Each collection of fragments is input in the correct order and the ground truth recorded.

The fragments are then shuffled and then reconstructed by the system. Finally the
rearranged fragments are compared to the ground truth using the metric above.

6.3 Results

Results for proposed system
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Figure 29: Results for the proposed system. The green triangle points to the mean value and the
orange line is on the median value.

26



The system performed best on the artificial D1 dataset where in the median case the
document was reconstructed perfectly. There were, however a few significant outliers. D2
artificial performed slightly worse with a median of 0.88. It is unsurprising that D2
mechanical had the slightly worse performance with a median of 0.87, because the
process of shredding and scanning the documents was likely to create noise, however the
fact that the difference is small suggests that the technique translates to real world
problems fairly well.

6.3 Comparison with older designs

These disused designs were developed during the project and are explained in section
4.4.1. These give some indication of the progress that was made.

Results for Tesseract system Results for edge difference system
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Illustration 2: Left: results for the Tesseract based system. Right: results for the edge difference based system.
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6.4 Comparison with existing designs
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Figure 30: Results from [et al.].
The plot has been edited to
remove results that are irrelevant
to the comparison.

The results from Paixao et al. show higher median scores across all datasets except D1
artificial which was 1 for both. The results also have a smaller interquartile range. These
results show that the proposed system did not perform as well as Paixao et al. In order to
be considered competitive with contemporary solutions, further refinements to the system
would need to be made. Possible improvements are discussed in section 7.

6.5 Discussion

Investigation into the documents that were constructed well and those that were
constructed poorly reveals clear patterns. Many of those that were recreated inaccurately
had sparse amounts of text content. The worst performing document, which was from the
artificial D1 dataset and scored 0.142857, had a large proportion of strips with very few
lines of text. It also has a fairly even split between two sizes of text. Some of the poorest
results also contained large graphics. Another common issue is documents with text that is
very close together. This often results in characters becoming joined during thresholding.
Characters that were joined were rejected as graphical elements because they became
too large.
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Figure 31: Some common problems. From left: large graphics, sparse text and characters merging when
thresholding.

Documents that gave good results usually had dense text content, with mostly regular text
sizes and fonts and few if any graphics.

7 Future work

Future improvements fall into two main categories: improvements to the performance and
improvements to the scope of the system.

Performance

Various limiting factors to the performance are mentioned in section 6.5.

One of these problems is the inclusion of graphical elements in many documents. An
improvement to the system could detect which areas are graphical and which are text and
use a different technique for determining compatibility for each. This could also
accommodate documents that only consist of graphical elements.

Another problem often encountered was adjacent characters becoming merged during
thresholding. A local thresholding approach may improve this but was not investigated due
to time constraints.

A solution that may help to improve the results for documents with limited text elements
could be to use a natural language processing feature. An approach similar to [] could be
adopted where a low level method chooses potential solutions and a higher level one finds
the best one of this reduced pool.

Finally, modifying the character segmentation to be less sensitive to noise would help
reduce false positives when searching for merged characters.

Scope
The project included a few constraints on the problem with the intention that some or all
could be relaxed if the progress was quick enough. An obvious further development would
be to extend the system to remove these constraints.

» Strip shredded documents
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Accommodating hand torn documents could allow the shape of the fragments to
become a useful feature for matching. Cross-cut documents would likely be harder
although solutions have been proposed such as Chen et al. [7] which clusters
fragments together based on the location of the textlines to give rows of fragments.
These rows can then be treated as a strip shredded document.

Documents that include text.

A method for handling documents without text is mentioned above in the
performance section.

Latin alphabet

Scripts which use a different character set to Latin but are otherwise similar would
likely be fairly easy to accommodate. Writing systems such as Chinese, with
thousands of characters, would likely be impractical using the current methodology
as they would require a prohibitive number of template characters.
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8 Conclusion

The primary objective of the project was to develop a system with high accuracy recreating

shredded documents. Section 6.3 showed that the proposed system is reasonably
successful in this aim. However, the success is conditional on certain attributes of the
documents. As an extension it was proposed that some of the constraints on the system
could be relaxed to better represent the real-world problem. This was not achieved so is
suggested as possible future work.

The secondary objective of the project was for the system to be competitive with other
existing solutions. Section 6.4 showed that further work would be needed to achieve this
aim.
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9 Reflections

| chose this project because | was interested in gaining some level of insight into the
nature of academic computer science. The project necessitated digesting a number of
research papers in order to assess existing solutions to the problem. This was challenging
initially as | found many of them difficult to read. [sparsity] in particular | found so
incomprehensible that | left it out of the existing works section as | felt unable to explain its
method. | did find that with practice this became easier however, largely due to better
understanding of some of the underlying techniques used.

While there have been many projects during my degree, none have allowed so much
freedom as this one in terms of the approach to the problem. This seemed fairly
overwhelming at first. Discussion with my supervisor was invaluable for identifying what
ideas were worth exploring.

One aspect of the project that | came to appreciate better was how precise the problem
definition should be. At the start the project was fairly vague with no specification on what
shape of fragments would be used or what sort of content the documents might have.
Applying constraints to the problem gave me much more direction in how | was to solve it.

An area | feel could definitely have been improved is planning and structuring the project
timeline better. The plan | made for the initial report was fairly vague because | wasn’t sure
how long certain tasks would take or even exactly what tasks would be needed. In
particular | underestimated how long it would take to get a basic initial solution working.
This left less time to further improve the design. | had also hoped to be able to extend the
problem possibly by accommodating strip shredded documents. Unfortunately | did not get
the implementation for the initial problem to a high enough accuracy to justify further
developments. | feel this project has given me better perspective on which aspects of the
process take more or less time. In addition to poor planning, | did not use a particularly
structured approach to the code development. Fortunately this did not present any major
difficulties but it is still something that should be addressed for future projects.
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