
1. Abstract
Paper documents are often shredded in an attempt to destroy the information they contain.

For forensic and investigative scientists, it is an important task to reconstruct documents 

for use as evidence. This can be a very time consuming and laborious undertaking if 

attempted by hand.

This project aims to develop an automated system for the reconstruction of shredded 

paper documents to make the process faster and easier. The performance of this system 

will be compared to existing solutions.
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2 Introduction

Despite the increasing reliance on computers, paper documents still see widespread use. 

The EPA states that the average U.S. office worker uses 10,000 sheets of copy(printer) 

paper every year [3]. If a paper document contains sensitive information and is no longer 

needed, it is common practice to destroy it using a shredder. Reconstructing documents 

that have been shredded allows for the recovery of the information contained within them. 

This could be to recover documents that were accidentally lost, or recover documents that 

were intentionally destroyed. This second application is especially useful in forensic and 

investigative sciences, as well as for intelligence agencies, for the acquisition of evidence.

Manual reconstruction of shredded documents is possible; shredded documents seized 

from the American embassy during the Iranian hostage crisis were reconstructed by a 

team of carpet weavers[1]. This task, however, is time consuming and difficult. The number

of different ways to arrange a collection of fragments grows exponentially with the size of 

the collection. This means that even with only a fairly small number of pieces, there quickly

becomes a prohibitively large number of possibilities to try. An automatic document 

reconstruction system would be desirable to reduce the time and effort required.

2.1 Aims
The primary aim of this project is to develop an automatic system to reconstruct a 

document given a collection of fragments. These fragments will be taken as input in the 

form of image files produced by a scanner. The output should be an arrangement of the 

fragments which resembles the original document.

A number of assumptions are made about the problem to reduce the complexity, however 

these may be relaxed as an extension to the project if it proves too simple. The 

assumptions are:

• Vertical strip shredding. The fragments are created using a strip shredder (see 

section 3.1) and are vertical.

• Text based documents. The content of the original document includes text.

• Latin alphabet. The documents are written in a language that uses the Latin 

alphabet.

• Completeness. The collection of fragments is sufficient to complete the original 

document and does not contain fragments belonging to another document.

In addition, It is desirable that the performance of the system be competitive with other 

existing solutions. This will be assessed by measuring the effectiveness of this and other 

systems on the same dataset and comparing the results.
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3 Background
3.1 Shredding techniques
There are three most common methods of document shredding: manual, strip and cross-

cut. Manual shredding is tearing of documents by hand. This leads to irregular shapes 

often with jagged boundaries. Strip and cross-cut shredding are both techniques 

performed by a mechanical shredder. Strip shredders cut documents into thin vertical 

ribbons. Cross cut shredders also make horizontal or diagonal cuts leading to smaller 

fragments. These mechanical approaches produce more regularly shaped fragments.

3.2 Context
In this section a brief explanation of a few important concepts is provided as reference.

3.2.1 Combinatorial optimisation

Combinatorial optimisation is a branch of computer science that deals with finding the best

solution among a set of candidates[4]. The set of candidates is often prohibitively large to 

search exhaustively, so heuristic based methods are used that aim to give a good, but not 

necessarily optimal, solution.

Minimum-weight Hamiltonian path(MWHP) problem 

Given a graph, a Hamiltonian path is one that goes through each node exactly once. This 

is a common combinatorial optimisation problem. If the graph is weighted, this problem 

can be extended to the MWHP problem, which finds the Hamiltonian path with the smallest

total weight. Similar to this is the travelling salesman problem which finds the minimum 

weight tour[4].

Nearest neighbour algorithm

This greedy algorithm was designed to give good solutions for the travelling salesman 

problem[4], but is trivially converted for the MWHP problem. The algorithm starts by 
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Figure 1: A scanned fragment from a strip shredder (rotated to fit the page). Strips are largely 

rectangular but there is often some distortion.

Figure 2: A weighted graph with its 

corresponding minimum weight Hamiltonian 

path.



choosing an initial node. In contrast to the travelling salesman problem, the choice of the 

initial node when constructing a MWHP has a large impact on the quality of the solution 

found. The algorithm then iteratively adds the unvisited node with the lowest weight edge 

joining it to the last added one. The algorithm runs in only O(n2) but does not guarantee an

optimal solution.

Local search

Local search is a simple heuristic for finding good solutions in a variety of combinatorial 

optimisation problems[4]. The algorithm is initially provided with a single initial solution. A 

collection of similar solutions is constructed called the solution’s neighbourhood. The best 

solution in this neighbourhood is chosen to be the next solution. This process is repeated 

until a solution is found which is the best in its own neighbourhood. This process often gets

stuck in local optima because it has no mechanism for exploring worse solutions.
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Figure 4: The nearest neighbour algorithm constructing a solution for the graph in Figure 5. Here 

node 3 was chosen as the start.

Figure 3: Pseudo code for the nearest neighbour algorithm.



Tabu search

Tabu search is a metaheuristic that extends upon local search[9]. Like local search, it 

selects the best solution in the current neighbourhood at each iteration, however it is 

allowed to select a worse solution if no better ones are available. To prevent the next 

iteration from returning to the previous, better, solution a memory structure is maintained 

which stores recent moves. Moves within this structure, called the Tabu list, are forbidden. 

After a set number of iterations known as the Tabu tenure, the moves are removed. The 

search ends when a stopping criterion is met. Many of the specifics of the implementation, 

such as the neighbourhood and stopping criteria, are left to be customised for the specific 

problem.
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Figure 5: If the local search starts as 

shown on the diagram, it will go to the 

local minima.

Figure 6: Pseudo code for Tabu search



Assignment problem and Hungarian algorithm

The assignment problem is a common combinatorial optimisation problem. Given two sets 

of equal size, each item in the first set must be matched with a unique one in the second. 

Each possible pairing is given a weight. The aim is to find an assignment that minimises 

the total weight.

The Hungarian algorithm is a technique that gives the global optima of an assignment 

problem in polynomial time[12]. 

3.2.2 Computer vision

Computer vision is a branch of computer science that deals with manipulation and 

extraction of information from digital images.

Otsu’s method

Otsu’s method is a technique for finding a threshold value for automatic thresholding. The 

method starts by constructing a pixel intensity histogram of the target image. For each 

possible threshold value, the histogram is divided into intensities above and below the 

value. The inter-class variance between the divisions is then found. The threshold value 

which creates the divisions which maximises the inter-class variance is chosen. The target

image is then thresholded with this value.

Floodfill

This is a technique for visiting every pixel in a connected component. The algorithm starts 

with a seed coordinate and expands iteratively into each adjacent unvisited pixel in the 

component. This can be used to find a bounding box of the component by storing values 

for the left, right, top and bottommost pixels visited so far and updating them each time a 

new pixel is reached.
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Illustration 1: Otsu's method for finding a threshold value



Template matching

Template matching is a technique for finding one image, the template, within another, the 

source[2]. A window is moved around the source image. At each point, the content in the 

window is compared to the template to give a score. Various methods for comparison 

exist, the simplest being the sum of absolute pixel differences. By taking the window 

location that gives the best score, the most likely match within the image can be identified. 

The value of the best score can also be used to give an indication whether the template 

image is within the source image at all.

3.3 Existing work
A number of papers have been published investigating this problem. However none 

demonstrate perfect accuracy. Related work often treats the problem of document 

reconstruction as a combinatorial optimisation problem. This is is the approach that this 

project also takes and is explained more thoroughly in section 4.3.1. This approach is 

commonly divided into two subproblems: 

• A method for scoring an arrangement of fragments. This is achieved by assessing 

the compatibility between each pair of adjacent fragments in the arrangement. 

9

Figure 8: Template matching.

Figure 7: Pseudo code for using floodfill to find a 

bounding box.



• A method for finding the arrangement of the fragments which gives the optimal 

evaluated score.

Compatibility measures

A variety of methods for evaluating the compatibility or discrepancy between strips have 

been proposed:

Pimenta et al. [19] and Naiman et al. [14] both use measures that try to find the fragment 

shapes that fit together best. They are mostly concerned with hand torn documents and 

have little application to mechanically shredded documents because the shape of the 

fragments is too regular.

Alhaj et al. [5] Use the absolute edge pixel difference. At each row, the absolute difference 

is calculated between the pixel at the right edge of the left fragment and the pixel at the left

edge of the right fragment. The sum of these differences is the score, a high value 

indicating a poor match and 0 representing a ‘perfect’ match i.e. identical edges. It is worth

noting that this paper uses coloured documents so the difference between two pixels is the

Euclidean distance between the RGB vectors.

Chen et al. [7] Also use the edge difference but with some modification. Each entire edge 

column is treated as a vector and the Euclidean distance between the fragments’ 

corresponding edges is taken. The paper also introduces a penalty coefficient which is 

inversely proportional to the combined total sum of the edge pixel values. This is intended 

to reduce the impact of loss of data which might cause a pair of fragments to appear more 

similar than they should be.

Ukovich et al. [21] investigated the use of a variety of MPEG-7 content descriptors. An 

example is “colour layout” - the average colour of each 8×8 image block, encoded with a 

DCT.

A variety of deep learning methods have been applied to this or similar problems Paixão et

al. [17] use a fully-convolutional neural network and Pirrone et al. [20] use a Siamese 

network. Both of these papers use a programmatic method for fragmenting the documents 

for the training set due to the difficulty and time consuming nature of generating a large 

enough collection of physically fragmented ones.

A number of papers use techniques based on OCR. Paixão et al. [18] assess the shapes 

of boundary characters that are created when two strips are joined together. This is done 

by taking the smallest Hausdorff distance each boundary character has from a set of 

characters selected from the interior. Liang et al. [13] use a multi-level similarity measure. 

First potential matches are found with low level pixel difference. These are refined with first

character level and then word level OCR confidence scores which are generated by the 

OCR tool Tesseract (see section 3.4).
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Optimisation methods

The optimisation technique depends upon what combinatorial optimisation problem the 

original problem is interpreted to.

Much of the existing work interprets the problem as either the travelling salesman problem 

or the nearly identical minimum-weight Hamiltonian path problem (see section 3.2.1). A 

large amount of literature has been written on efficient algorithms for solving this problem. 

The techniques that have been applied to reassembling shredded documents in particular, 

include ant-colony optimisation[7] and greedy composition[13].

Another common interpretation is as an assignment problem, which can be solved 

efficiently by the Hungarian algorithm. This is used by Alhaj et al. [5] and Chen et al. [8] 

among others.

3.4 Specialist Libraries

Tesseract

Tesseract is an open-source Optical character recognition engine. Tesseract has an API 

allowing it to be integrated with C++.

OpenCV

OpenCV is an open-source computer vision library with APIs in a variety of languages, 

including C++. OpenCV has a wide variety of inbuilt image processing utilities useful to the

project.
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4 Specification and design

4.1 Requirements

The functional requirements for this project are simple:

• The user must be able to input a set of fragments (that meet the constraints outlined

in section 2.1)

• The application must order these fragments to best resemble a document

• The application must provide output indicating the new order of the fragments

4.2 Architecture

The application can be modelled using the basic IPO (input-process-output) model.

The objective of the project is not concerned with the nature of the input and output so 

discussion of these is limited to implementation (section 5). Discussion of the design will 

focus on the core problem of arranging the fragments.

4.3 Design

4.3.1 Problem definition

Under the constraints of vertical, strip-shredded fragments, the collection of fragments can 

be described as a sequence (fragment 1, fragment 2,…, fragment n) arranged from left to 

right. Any permutation of this sequence gives one of the n! potential arrangements of 

fragments, or solutions. To reconstruct the document, it is necessary to find the solution 

that most resembles a complete document. Instead of assessing the quality of the entire 

document, this can be evaluated by how discrepant1* each fragment in the solution is with 

the adjacent fragments.

1 The choice of compatibility vs discrepancy is arbitrary. Discrepancy was chosen to be more consistent with the 

usual phrasing of the minimum-weight Hamiltonian path problem (see 3.2.1)
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Figure 9: Flow chart of the overall application



A value quantifying the discrepancy can be assigned to each pair within the solution. The 

best solution is the one with the lowest total discrepancy.

4.3.2 Approach

The process can therefore be divided into two parts: the discrepancy function, which 

scores a pair of fragments, and the optimiser which attempts to find the solution that 

minimises the total discrepancy.

4.3.3 Discrepancy function

A range of different approaches to measuring discrepancy or compatibility have been 

proposed (see section 3.3). One of the constraints outlined in section 2.1 is that the 

fragments should belong to a document with textual content. The high frequency changes 

in intensity in text documents makes them poorly suited to pixel difference based 

measures such as the method used by Alhaj et al. [5] which rely on high correlation 

between neighbours. This guarantee of text content, however, makes OCR viable so this is

the approach I used. The proposed technique is largely inspired by Paixão et al. [18].

The proposed score is based upon the observation that shredding frequently results in 

characters being divided over two fragments2. If the characters formed when combining 

two strips appear valid, then the strips are likely compatible. Conversely, if joining the 

strips produces shapes that are not valid characters, then the strips are likely incompatible.

2 Note that this assumption fails if the strips are too thin, so that one character can be divided over more than two 

fragments
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Figure 10: Two possible arrangements of

three strips. In the example on the left 

the strips are arranged so that they are 

compatible with each other. In the 

example on the right the strips are 

arranged to be discrepant.



The validity of a merged character is assessed by comparing it with a collection of 

template characters using template matching (see section 3.2.2). The best template match

score over all of the templates is the final validity score. This indicates how similar the 

merged character is to its most similar template character. To reduce the impact of 

documents with uncommon fonts, The template characters are sourced from within the 

fragments.

The overall discrepancy score is calculated from the average character validity.

4.3.4 Optimisation

With a compatibility score defined, an optimisation meta-heuristic can be employed to find 

the arrangement of the fragments that minimises the overall score. The proposed system 

first uses the nearest neighbour algorithm (see section 3.2.1) to quickly get an initial 

solution. This requires an initial leftmost fragment which is chosen using a heuristic that 

looks for the largest margin on the left side.

If the discrepancy was perfect and the leftmost fragment was always chosen, this would 

guarantee a perfect reconstruction. This is often not the case however, so further 

refinement to the solution is needed. This is achieved using Tabu search (see section 

3.2.1).
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Figure 11: On the left, a section of a compatible pair of strips on the left, 

showing characters that are split over the two strips. On the right is a 

discrepant pair of strips. 

Figure 12: On the left, the merged 'C' from the first pair in 

figure []. On the right, an example whole 'C' from within the 

same document. It can be seen that the two are not identical due

to noise produced during the shredding and scanning.



4.4 Previous designs

4.4.1 Discrepancy functions

The accuracy of the discrepancy function is critical to the success of the overall approach, 

so this section required the most attention. A variety of techniques were experimented 

with, however the limited time frame available necessitated that those which did not seem 

initially promising were quickly rejected. One such approach used a linear regression 

model, trained on a dataset of shredded documents (see evaluation). For the input 

variables I tried both Haralick texture descriptors [10] and local binary patterns[15], but 

neither produced encouraging results.

The following methods showed greater promise so were developed enough to warrant 

mention in the results (section 6):

Edge difference

This simple method of finding total absolute difference between adjacent edge pixels 

initially seemed the most promising. Similar approaches were taken by Alhaj et al. [5] and 

Chen et al. [7]. To account for variation in height between strips, the difference was 

calculated with a range of offsets to the starting position of one of the strips and the best 

result was used. A further refinement replaced the total absolute difference with the 

normalised correlation value which mitigates the impact of different lighting when scanning

the strips. This is achieved by normalising the difference with respect to the mean intensity.
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Figure 14: Expressions for absolute difference (left) and normalised 

correlation (right). At height y, R(y) is the leftmost pixel in the right 

strip and L(y) is the rightmost pixel in the left strip.

Figure 13: Overall flow of the 'Process' section.



The main issue with this approach is that text based document have frequent intensity 

changes from white to black, leading to lower correlation between pixels than would be 

expected in a more gradually changing document such as an image. This meant that the 

edge difference could be quite high even if the strips were compatible.

Tesseract

This largely followed the same steps of the final solution, however the validity of a 

character was determined using the confidence levels Tesseract gave when classifying it. 

This is similar to the character level metric used by Liag et al. [13]. This gave fairly poor 

results, unfortunately, because Tesseract is designed to assume that the input is supposed

to be valid. This meant that the confidence scores often appeared unrealistically high for 

nonsense character shapes. Despite this, Tesseract still finds use in the system for 

selecting template characters as these are assumed to be valid (see section 5.3).

4.4.2 Optimisers

Simulated annealing

Simulated annealing is an approach based on the real world annealing process. Like Tabu 

search, this is based on local search however the next solution is chosen randomly, with 

probability proportional its score. The results this gave were negligibly different to those 

achieved with Tabu search so choosing between the two was simply preference.

Hungarian

A number of papers such as Alhaj et al.[5] utilise a method known as the Hungarian 

method. This is designed to solve the assignment problem (see section 3.2.1). To 

reformulate this problem to the assignment problem, the fragments are split into their right 

and left sides. The problem is then to assign a right hand side for each left hand side. This 

approach encounters problems however because it is possible for closed loops to be 

formed in the assignment, leading to multiple separate documents being created. I was 

unable to discover how this problem was solved in papers that used the Hungarian 

algorithm so I was forced to abandon the approach.
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Figure 15: An assignment which causes closed loops.



5 Implementation

The Application was developed in C++, making use of the various standard libraries, as 

well as specialist libraries OpenCV and Tesseract (see section 3.4). Discussion of the 

implementation is divided into input, data structures and utility functions, the discrepancy 

function, the optimiser and output.

5.1 Input

Interface

To make the development easier the application is called from a command line. User 

interaction is limited to arguments passed in calling the executable. The arguments 

available are:

• The path of the top level directory (see input format)

• The name of the text file of fragment names

• The full name of the output file (optional – see section 5.5)

There are also two flags. If these are included the relevant functionality is applied. These 

are:

• Shuffle the fragments before reconstructing

• Combine the fragments together for output (see section 5.5)

There is little input sanitisation done so inputs must be exact. They must also not include 

spaces or backslashes.

Fragment input format

To simplify development I specified a restricted input format. First there is a top level 

directory. In this directory is a text file specifying the number of fragments, and the name of

each one. The top level directory also contains a directory called strips containing the 

fragment images. Optionally, the top level directory can contain a directory called masks 

containing binary images that identify the background and the strip for each image. These 

masks should share the same name with their corresponding strip. All images (strips or 

masks) should be png files.

17

Figure 16: Calling from the command line



5.2 Data structures and utility functions

Representing fragments

The process of shredding and scanning often leads to fragments that are not perfectly 

rectangular. This means that the images often contain background as well as the fragment 

itself. The background can be identified using the masks provided (If no mask is present it 

is assumed that the whole image is strip). The index of the first and last non-background 

pixel in each row is stored so that iteration over the strip can be performed easily.

Representing solutions

Solutions are simply ordered containers of fragments. The container only stores pointers 

which makes operations like swapping positions and copying solutions quicker.

Tresholding

Otsu’s method (see section 3.2.2) is provided by OpenCV, however it thresholds the entire 

image including the background. This would impact the quality of the threshold, so I had to

implement the algorithm myself so that it would only take a histogram of the pixels in the 

strip. The thresholded version of each fragment is required a number of times during the 

process. To avoid needing to threshold repeatedly, a thresholded copy is stored within the 

fragment data structure.
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Figure 17: The input format. In this example 

masks are included.

Figure 18: A scanned strip. The background has been coloured pink.



5.3 Discrepancy function

The discrepancy function described in section 4.3.3 can be split into four main subtasks:

1.(prerequisite) Select representative character templates

2. Merge the strips

3. Segment the boundary characters

4. Validate each character

1. Selecting representative character templates

This step is performed once, before the optimisation stages. Each fragment is passed to 

Tesseract, which provides functionality for iterating over the individual characters it detects 

within the image. Tesseract identifies each and assigns a confidence confidence. The 

image of each character, as well as its confidence, is added to a data structure containing 

all the other characters of the same type. The characters that stray too far from the mean 

(+ or – ½ of the height or width) are then removed. The character in each container with 

the highest confidence is chosen as a representative of that symbol and the rest are 

discarded. Storing all of the images in order to reject those that are outliers in size is not 

efficient but improves the quality of the selected templates.

2. Strip merging

This is the first step of the function proper. The strips need to be correctly aligned before 

they can be merged so that corresponding lines of text are matched at the same height. 

This is achieved with the following algorithm which finds the offset minimising the 

difference in average row intensities between the strips:

Once the offset is calculated, the two strips can be merged with it applied. Naive 

concatenation would often result in a column of background down the centre. To prevent 

this the rows are combined individually, up to the last pixel in the left strip and starting from

the first pixel in the right (see representing fragments).
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Figure 19: Pseudo code for finding the best offset to merge at.



3. Boundary character segmentation

Bounding boxes for the characters are found using the following algorithm on a 

thresholded copy of the image. These bounding boxes are then used to copy rectangular 

patches from the same position in the original image to be assessed.

The bounding boxes that are too large are rejected because they normally enclose

graphics or characters that have become connected due to imperfect thresholding.

Too large is defined in the implementation as greater than 11/2 times the width or height of 

the largest template character.

There are a couple of reasons that Tesseract was not used for this step. Firstly, calls to the

Tesseract API are fairly expensive and this step needs to be done for every possible pair 

whereas only one call per fragment is needed in for choosing the template characters. 

Secondly, Tesseract is designed to locate valid characters and may miss invalid ones. 

These invalid characters are important for assessing the quality of the match.
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Figure 22: Visualisation of bounding boxes found in a pair of strips. Boxes in green are selected for

validity assessment, whereas boxes in red are rejected. The cyan line is the boundary.

Figure 20: Top: combined strips. Bottom: concatenated strips.

Figure 21: Pseudo code for finding bounding boxes.



4. Assessing validity

Characters that are too small (less than 1/2 the smallest template width or 3/4 the height) 

are given a score of 0. 

Characters that don’t cross the boundary at any point are also given a score of 0 as this 

means that a character has not been merged.

The rest of the characters are passed to the template matcher and the score of the best 

match is found. The characters are padded with a border of white pixels to ensure enough 

window freedom to move. OpenCV provides inbuilt template matching with a variety of 

included comparison methods. Normalised cross correlation was determined empirically to

be the best method.

This gives a value between 0 and 1, with 0 being entirely dissimilar and 1 showing they are

identical. The optimisation implementation is designed to find the minimum score so the 

negation of the best template match value is returned by the function.

Once these tasks are complete, the final discrepancy is determined by taking the mean 

validity score (or 0 if no characters are present). This value ranges from -1: all merged 

characters are identical to the templates, to 0: no valid characters.

5.4 Optimiser

5.4.1 Finding an initial strip

To begin the nearest neighbour algorithm, an initial strip must be chosen. The heuristic 

used is based on the assumption that the left most fragment will have an empty white 

margin on the left hand side. The strip with the thickest margin is assumed to be the first 

one. This is calculated by finding the average proportion of each row that is left of the first 

black pixel, on the thresholded fragment. This gives a value between 0 and 1 for each row,

0 meaning that the first pixel is black and 1 meaning they are all white. The rows which are

entirely white are discarded as these give no indication of the size of the margin. The strip 

with the largest margin will give the highest average value.
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Figure 23: Normalised cross correlation at point x,y. T is the template image and I is the 

source image



5.4.2 Tabu search 

The Tabu meta-heuristic leaves a number of design decisions to be adapted for each 

specific use. 

Tenure

The Tabu tenure is the number of iterations before an item in the Tabu list is removed. A 

value of 60 was chosen empirically.

Stopping criterion

The stopping criterion the condition under which the search should end. For this I chose to 

set a number of maximum iterations since an improvement to the overall solution was 

found. A value of 100000 was determined as a compromise between efficacy and time 

taken.

Neighbourhood

The neighbourhood used is important to the success of the search. If it is too large, too 

many solutions need to be checked each iteration, making it expensive. If it is too small, 

not enough solutions will be explored and it becomes more likely to converge on a local 

minima. A good neighbourhood should also allow calculation of a new solution by a simple 

modification of the old one. The neighbourhood used is any solution which can be reached

by swapping the position of two fragments. This means that each new solution’s cost can 

be calculated from the previous one by subtracting the discrepancy cost between the pairs

of fragments that are no longer adjacent and adding the discrepancy cost of those that 

have just become adjacent.
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Figure 24: Pseudo code for finding margin size in a 

fragment.



Tabu list

For each move to a new solution, the Tabu list stores a pair of identifiers describing which 

fragments were swapped at that move. The identifier used is the filename of the fragment. 

To make the Tabu list insensitive to the order of the pair of identifiers, they are stored and 

queried in lexicographic order. More advanced memory structures exist which differentiate 

between short, medium and long term memory to promote diversification, for exploring 

more solutions, and intensification, for narrowing in on promising areas of solutions 

However, these were not implemented.

5.5 Output

The default behaviour of the output is to concatenate the fragments in the order of the 

solution and then show the resulting image.

If an output file is specified, then the final image is saved to that file.

If the combine flag is included, then the fragments are combined without background 

instead of concatenating. This uses the same method that is used to merge two fragments 

in the discrepancy function (see section 5.3). Using this method over a large number of 

strips causes the noise to accumulate, leading to distortion increasing towards the right 

side of the document.
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Figure 25: The neighbourhood of (A,B,C,D)



24

Figure 26: Output showing the difference between concatenating and combining. Note that the 

characters become increasingly distorted in the combined strips.



6 Evaluation

The primary aim of the project is to accurately reconstruct documents. This can be 

assessed by comparing documents recreated by the system with a known ground truth. To

assess how competitive the proposed system is with existing solutions, the accuracy of 

this system can be compared to the accuracy of others on the same data. I chose to 

compare the performance with Paixão et al. [18] because it provided easy access to the 

dataset used.

6.1 Dataset

Paixão et al. provided two datasets of shredded documents along with ground truths for 

comparison. The datasets contain documents in English and Spanish. Some documents 

also contain varying sizes of graphical elements. The two datasets, D1 And D2, are further

divided into mechanical and artificial. These contain the same documents that have been 

shredded with a different technique. The mechanical shredded examples are documents 

that have been printed, shredded and then scanned. The artificial examples are 

“shredded” algorithmically. I decided to ignore the D1 mechanical dataset as it is not 

possible to distinguish between the background and the strips, which makes the proposed 

system completely ineffective in many cases because it cannot join the edge characters 

together. D1 contains 60 original documents and D2 contains 20.

6.1 Metric

In order to compare my results with those of Paixão et al. on the dataset, I adopted the 

same comparison metric. Given a solution π of length n, Paixão et al. define a metric they 

call accuracy:

A group is defined as a maximal correctly ordered subsequence. This is calculated by:
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Figure 27: Formula for accuracy. π is the solution being measured

and n is the length of solution π.



 A perfect solution will have one group containing all of the fragments and a completely 

incorrect one n groups containing one fragment.

6.3 Methodology

Each collection of fragments is input in the correct order and the ground truth recorded. 
The fragments are then shuffled and then reconstructed by the system. Finally the 
rearranged fragments are compared to the ground truth using the metric above.

6.3 Results
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Figure 28: Formula for number of groups. pi(i+1) represents the next fragment in the 

solution and pi(i)+1 represents the correct next fragment in the ground truth.

Figure 29: Results for the proposed system. The green triangle points to the mean value and the 

orange line is on the median value.



The system performed best on the artificial D1 dataset where in the median case the 

document was reconstructed perfectly. There were, however a few significant outliers. D2 

artificial performed slightly worse with a median of 0.88. It is unsurprising that D2 

mechanical had the slightly worse performance with a median of 0.87, because the 

process of shredding and scanning the documents was likely to create noise, however the 

fact that the difference is small suggests that the technique translates to real world 

problems fairly well.

6.3 Comparison with older designs

These disused designs were developed during the project and are explained in section 

4.4.1. These give some indication of the progress that was made.
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Illustration 2: Left: results for the Tesseract based system. Right: results for the edge difference based system.



6.4 Comparison with existing designs

The results from Paixão et al. show higher median scores across all datasets except D1 

artificial which was 1 for both. The results also have a smaller interquartile range. These 

results show that the proposed system did not perform as well as Paixão et al. In order to 

be considered competitive with contemporary solutions, further refinements to the system 

would need to be made. Possible improvements are discussed in section 7.

6.5 Discussion

Investigation into the documents that were constructed well and those that were 

constructed poorly reveals clear patterns. Many of those that were recreated inaccurately 

had sparse amounts of text content. The worst performing document, which was from the 

artificial D1 dataset and scored 0.142857, had a large proportion of strips with very few 

lines of text. It also has a fairly even split between two sizes of text. Some of the poorest 

results also contained large graphics. Another common issue is documents with text that is

very close together. This often results in characters becoming joined during thresholding. 

Characters that were joined were rejected as graphical elements because they became 

too large.
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Figure 30: Results from [et al.]. 

The plot has been edited to 

remove results that are irrelevant 

to the comparison.



Documents that gave good results usually had dense text content, with mostly regular text 

sizes and fonts and few if any graphics.

7 Future work
Future improvements fall into two main categories: improvements to the performance and 

improvements to the scope of the system.

Performance

Various limiting factors to the performance are mentioned in section 6.5.

One of these problems is the inclusion of graphical elements in many documents. An 

improvement to the system could detect which areas are graphical and which are text and 

use a different technique for determining compatibility for each. This could also 

accommodate documents that only consist of graphical elements.

Another problem often encountered was adjacent characters becoming merged during 

thresholding. A local thresholding approach may improve this but was not investigated due 

to time constraints.

A solution that may help to improve the results for documents with limited text elements 

could be to use a natural language processing feature. An approach similar to [] could be 

adopted where a low level method chooses potential solutions and a higher level one finds

the best one of this reduced pool.

Finally, modifying the character segmentation to be less sensitive to noise would help 

reduce false positives when searching for merged characters.

Scope

The project included a few constraints on the problem with the intention that some or all 

could be relaxed if the progress was quick enough. An obvious further development would 

be to extend the system to remove these constraints.

• Strip shredded documents
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Figure 31: Some common problems. From left: large graphics, sparse text and characters merging when

thresholding.



Accommodating hand torn documents could allow the shape of the fragments to 

become a useful feature for matching. Cross-cut documents would likely be harder 

although solutions have been proposed such as Chen et al. [7] which clusters 

fragments together based on the location of the textlines to give rows of fragments. 

These rows can then be treated as a strip shredded document.

• Documents that include text. 

A method for handling documents without text is mentioned above in the 

performance section.

• Latin alphabet

Scripts which use a different character set to Latin but are otherwise similar would 

likely be fairly easy to accommodate. Writing systems such as Chinese, with 

thousands of characters, would likely be impractical using the current methodology 

as they would require a prohibitive number of template characters.
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8 Conclusion
The primary objective of the project was to develop a system with high accuracy recreating

shredded documents. Section 6.3 showed that the proposed system is reasonably 

successful in this aim. However, the success is conditional on certain attributes of the 

documents. As an extension it was proposed that some of the constraints on the system 

could be relaxed to better represent the real-world problem. This was not achieved so is 

suggested as possible future work.

The secondary objective of the project was for the system to be competitive with other 

existing solutions. Section 6.4 showed that further work would be needed to achieve this 

aim.
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9 Reflections
I chose this project because I was interested in gaining some level of insight into the 

nature of academic computer science. The project necessitated digesting a number of 

research papers in order to assess existing solutions to the problem. This was challenging 

initially as I found many of them difficult to read. [sparsity] in particular I found so 

incomprehensible that I left it out of the existing works section as I felt unable to explain its 

method. I did find that with practice this became easier however, largely due to better 

understanding of some of the underlying techniques used.

While there have been many projects during my degree, none have allowed so much 

freedom as this one in terms of the approach to the problem. This seemed fairly 

overwhelming at first. Discussion with my supervisor was invaluable for identifying what 

ideas were worth exploring.

One aspect of the project that I came to appreciate better was how precise the problem 

definition should be. At the start the project was fairly vague with no specification on what 

shape of fragments would be used or what sort of content the documents might have. 

Applying constraints to the problem gave me much more direction in how I was to solve it.

An area I feel could definitely have been improved is planning and structuring the project 

timeline better. The plan I made for the initial report was fairly vague because I wasn’t sure

how long certain tasks would take or even exactly what tasks would be needed. In 

particular I underestimated how long it would take to get a basic initial solution working. 

This left less time to further improve the design. I had also hoped to be able to extend the 

problem possibly by accommodating strip shredded documents. Unfortunately I did not get

the implementation for the initial problem to a high enough accuracy to justify further 

developments. I feel this project has given me better perspective on which aspects of the 

process take more or less time. In addition to poor planning, I did not use a particularly 

structured approach to the code development. Fortunately this did not present any major 

difficulties but it is still something that should be addressed for future projects.
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