
1. Abstract
Paper documents are often shredded in an attempt to destroy the information they contain.

For forensic and investigative scientists, it is an important task to reconstruct documents

for use as evidence. This can be a very time consuming and laborious undertaking if

attempted by hand.

This project aims to develop an automated system for the reconstruction of shredded

paper documents to make the process faster and easier. The performance of this system

will be compared to existing solutions.

1

Shredded document
reconstruction

Final report

Joe Dinn 1724858

CM3203 One Semester Individual Project

Supervisor: Dr Richard Booth

Moderator: Víctor Gutierrez Basulto

2

Table of Contents

1. Abstract...1

2 Introduction...4

2.1 Aims...4

3 Background..5

3.1 Shredding techniques...5

3.2 Context...5

3.3 Existing work...9

3.4 Specialist Libraries...11

4 Specification and design..12

4.1 Requirements...12

4.2 Architecture..12

4.3 Design..12

4.4 Previous designs..15

5 Implementation..17

5.1 Input...17

5.2 Data structures and utility functions..18

5.3 Discrepancy function...19

5.4 Optimiser...21

5.5 Output..23

6 Evaluation..25

6.1 Dataset...25

6.1 Metric...25

6.3 Methodology..26

6.3 Results..26

6.3 Comparison with older designs..27

6.4 Comparison with existing designs...28

6.5 Discussion..28

7 Future work...29

8 Conclusion...31

9 Reflections...32

10 References...33

3

2 Introduction

Despite the increasing reliance on computers, paper documents still see widespread use.

The EPA states that the average U.S. office worker uses 10,000 sheets of copy(printer)

paper every year [3]. If a paper document contains sensitive information and is no longer

needed, it is common practice to destroy it using a shredder. Reconstructing documents

that have been shredded allows for the recovery of the information contained within them.

This could be to recover documents that were accidentally lost, or recover documents that

were intentionally destroyed. This second application is especially useful in forensic and

investigative sciences, as well as for intelligence agencies, for the acquisition of evidence.

Manual reconstruction of shredded documents is possible; shredded documents seized

from the American embassy during the Iranian hostage crisis were reconstructed by a

team of carpet weavers[1]. This task, however, is time consuming and difficult. The number

of different ways to arrange a collection of fragments grows exponentially with the size of

the collection. This means that even with only a fairly small number of pieces, there quickly

becomes a prohibitively large number of possibilities to try. An automatic document

reconstruction system would be desirable to reduce the time and effort required.

2.1 Aims
The primary aim of this project is to develop an automatic system to reconstruct a

document given a collection of fragments. These fragments will be taken as input in the

form of image files produced by a scanner. The output should be an arrangement of the

fragments which resembles the original document.

A number of assumptions are made about the problem to reduce the complexity, however

these may be relaxed as an extension to the project if it proves too simple. The

assumptions are:

• Vertical strip shredding. The fragments are created using a strip shredder (see

section 3.1) and are vertical.

• Text based documents. The content of the original document includes text.

• Latin alphabet. The documents are written in a language that uses the Latin

alphabet.

• Completeness. The collection of fragments is sufficient to complete the original

document and does not contain fragments belonging to another document.

In addition, It is desirable that the performance of the system be competitive with other

existing solutions. This will be assessed by measuring the effectiveness of this and other

systems on the same dataset and comparing the results.

4

3 Background
3.1 Shredding techniques
There are three most common methods of document shredding: manual, strip and cross-

cut. Manual shredding is tearing of documents by hand. This leads to irregular shapes

often with jagged boundaries. Strip and cross-cut shredding are both techniques

performed by a mechanical shredder. Strip shredders cut documents into thin vertical

ribbons. Cross cut shredders also make horizontal or diagonal cuts leading to smaller

fragments. These mechanical approaches produce more regularly shaped fragments.

3.2 Context
In this section a brief explanation of a few important concepts is provided as reference.

3.2.1 Combinatorial optimisation

Combinatorial optimisation is a branch of computer science that deals with finding the best

solution among a set of candidates[4]. The set of candidates is often prohibitively large to

search exhaustively, so heuristic based methods are used that aim to give a good, but not

necessarily optimal, solution.

Minimum-weight Hamiltonian path(MWHP) problem

Given a graph, a Hamiltonian path is one that goes through each node exactly once. This

is a common combinatorial optimisation problem. If the graph is weighted, this problem

can be extended to the MWHP problem, which finds the Hamiltonian path with the smallest

total weight. Similar to this is the travelling salesman problem which finds the minimum

weight tour[4].

Nearest neighbour algorithm

This greedy algorithm was designed to give good solutions for the travelling salesman

problem[4], but is trivially converted for the MWHP problem. The algorithm starts by

5

Figure 1: A scanned fragment from a strip shredder (rotated to fit the page). Strips are largely

rectangular but there is often some distortion.

Figure 2: A weighted graph with its

corresponding minimum weight Hamiltonian

path.

choosing an initial node. In contrast to the travelling salesman problem, the choice of the

initial node when constructing a MWHP has a large impact on the quality of the solution

found. The algorithm then iteratively adds the unvisited node with the lowest weight edge

joining it to the last added one. The algorithm runs in only O(n2) but does not guarantee an

optimal solution.

Local search

Local search is a simple heuristic for finding good solutions in a variety of combinatorial

optimisation problems[4]. The algorithm is initially provided with a single initial solution. A

collection of similar solutions is constructed called the solution’s neighbourhood. The best

solution in this neighbourhood is chosen to be the next solution. This process is repeated

until a solution is found which is the best in its own neighbourhood. This process often gets

stuck in local optima because it has no mechanism for exploring worse solutions.

6

Figure 4: The nearest neighbour algorithm constructing a solution for the graph in Figure 5. Here

node 3 was chosen as the start.

Figure 3: Pseudo code for the nearest neighbour algorithm.

Tabu search

Tabu search is a metaheuristic that extends upon local search[9]. Like local search, it

selects the best solution in the current neighbourhood at each iteration, however it is

allowed to select a worse solution if no better ones are available. To prevent the next

iteration from returning to the previous, better, solution a memory structure is maintained

which stores recent moves. Moves within this structure, called the Tabu list, are forbidden.

After a set number of iterations known as the Tabu tenure, the moves are removed. The

search ends when a stopping criterion is met. Many of the specifics of the implementation,

such as the neighbourhood and stopping criteria, are left to be customised for the specific

problem.

7

Figure 5: If the local search starts as

shown on the diagram, it will go to the

local minima.

Figure 6: Pseudo code for Tabu search

Assignment problem and Hungarian algorithm

The assignment problem is a common combinatorial optimisation problem. Given two sets

of equal size, each item in the first set must be matched with a unique one in the second.

Each possible pairing is given a weight. The aim is to find an assignment that minimises

the total weight.

The Hungarian algorithm is a technique that gives the global optima of an assignment

problem in polynomial time[12].

3.2.2 Computer vision

Computer vision is a branch of computer science that deals with manipulation and

extraction of information from digital images.

Otsu’s method

Otsu’s method is a technique for finding a threshold value for automatic thresholding. The

method starts by constructing a pixel intensity histogram of the target image. For each

possible threshold value, the histogram is divided into intensities above and below the

value. The inter-class variance between the divisions is then found. The threshold value

which creates the divisions which maximises the inter-class variance is chosen. The target

image is then thresholded with this value.

Floodfill

This is a technique for visiting every pixel in a connected component. The algorithm starts

with a seed coordinate and expands iteratively into each adjacent unvisited pixel in the

component. This can be used to find a bounding box of the component by storing values

for the left, right, top and bottommost pixels visited so far and updating them each time a

new pixel is reached.

8

Illustration 1: Otsu's method for finding a threshold value

Template matching

Template matching is a technique for finding one image, the template, within another, the

source[2]. A window is moved around the source image. At each point, the content in the

window is compared to the template to give a score. Various methods for comparison

exist, the simplest being the sum of absolute pixel differences. By taking the window

location that gives the best score, the most likely match within the image can be identified.

The value of the best score can also be used to give an indication whether the template

image is within the source image at all.

3.3 Existing work
A number of papers have been published investigating this problem. However none

demonstrate perfect accuracy. Related work often treats the problem of document

reconstruction as a combinatorial optimisation problem. This is is the approach that this

project also takes and is explained more thoroughly in section 4.3.1. This approach is

commonly divided into two subproblems:

• A method for scoring an arrangement of fragments. This is achieved by assessing

the compatibility between each pair of adjacent fragments in the arrangement.

9

Figure 8: Template matching.

Figure 7: Pseudo code for using floodfill to find a

bounding box.

• A method for finding the arrangement of the fragments which gives the optimal

evaluated score.

Compatibility measures

A variety of methods for evaluating the compatibility or discrepancy between strips have

been proposed:

Pimenta et al. [19] and Naiman et al. [14] both use measures that try to find the fragment

shapes that fit together best. They are mostly concerned with hand torn documents and

have little application to mechanically shredded documents because the shape of the

fragments is too regular.

Alhaj et al. [5] Use the absolute edge pixel difference. At each row, the absolute difference

is calculated between the pixel at the right edge of the left fragment and the pixel at the left

edge of the right fragment. The sum of these differences is the score, a high value

indicating a poor match and 0 representing a ‘perfect’ match i.e. identical edges. It is worth

noting that this paper uses coloured documents so the difference between two pixels is the

Euclidean distance between the RGB vectors.

Chen et al. [7] Also use the edge difference but with some modification. Each entire edge

column is treated as a vector and the Euclidean distance between the fragments’

corresponding edges is taken. The paper also introduces a penalty coefficient which is

inversely proportional to the combined total sum of the edge pixel values. This is intended

to reduce the impact of loss of data which might cause a pair of fragments to appear more

similar than they should be.

Ukovich et al. [21] investigated the use of a variety of MPEG-7 content descriptors. An

example is “colour layout” - the average colour of each 8×8 image block, encoded with a

DCT.

A variety of deep learning methods have been applied to this or similar problems Paixão et

al. [17] use a fully-convolutional neural network and Pirrone et al. [20] use a Siamese

network. Both of these papers use a programmatic method for fragmenting the documents

for the training set due to the difficulty and time consuming nature of generating a large

enough collection of physically fragmented ones.

A number of papers use techniques based on OCR. Paixão et al. [18] assess the shapes

of boundary characters that are created when two strips are joined together. This is done

by taking the smallest Hausdorff distance each boundary character has from a set of

characters selected from the interior. Liang et al. [13] use a multi-level similarity measure.

First potential matches are found with low level pixel difference. These are refined with first

character level and then word level OCR confidence scores which are generated by the

OCR tool Tesseract (see section 3.4).

10

Optimisation methods

The optimisation technique depends upon what combinatorial optimisation problem the

original problem is interpreted to.

Much of the existing work interprets the problem as either the travelling salesman problem

or the nearly identical minimum-weight Hamiltonian path problem (see section 3.2.1). A

large amount of literature has been written on efficient algorithms for solving this problem.

The techniques that have been applied to reassembling shredded documents in particular,

include ant-colony optimisation[7] and greedy composition[13].

Another common interpretation is as an assignment problem, which can be solved

efficiently by the Hungarian algorithm. This is used by Alhaj et al. [5] and Chen et al. [8]

among others.

3.4 Specialist Libraries

Tesseract

Tesseract is an open-source Optical character recognition engine. Tesseract has an API

allowing it to be integrated with C++.

OpenCV

OpenCV is an open-source computer vision library with APIs in a variety of languages,

including C++. OpenCV has a wide variety of inbuilt image processing utilities useful to the

project.

11

4 Specification and design

4.1 Requirements

The functional requirements for this project are simple:

• The user must be able to input a set of fragments (that meet the constraints outlined

in section 2.1)

• The application must order these fragments to best resemble a document

• The application must provide output indicating the new order of the fragments

4.2 Architecture

The application can be modelled using the basic IPO (input-process-output) model.

The objective of the project is not concerned with the nature of the input and output so

discussion of these is limited to implementation (section 5). Discussion of the design will

focus on the core problem of arranging the fragments.

4.3 Design

4.3.1 Problem definition

Under the constraints of vertical, strip-shredded fragments, the collection of fragments can

be described as a sequence (fragment 1, fragment 2,…, fragment n) arranged from left to

right. Any permutation of this sequence gives one of the n! potential arrangements of

fragments, or solutions. To reconstruct the document, it is necessary to find the solution

that most resembles a complete document. Instead of assessing the quality of the entire

document, this can be evaluated by how discrepant1* each fragment in the solution is with

the adjacent fragments.

1 The choice of compatibility vs discrepancy is arbitrary. Discrepancy was chosen to be more consistent with the

usual phrasing of the minimum-weight Hamiltonian path problem (see 3.2.1)

12

Figure 9: Flow chart of the overall application

A value quantifying the discrepancy can be assigned to each pair within the solution. The

best solution is the one with the lowest total discrepancy.

4.3.2 Approach

The process can therefore be divided into two parts: the discrepancy function, which

scores a pair of fragments, and the optimiser which attempts to find the solution that

minimises the total discrepancy.

4.3.3 Discrepancy function

A range of different approaches to measuring discrepancy or compatibility have been

proposed (see section 3.3). One of the constraints outlined in section 2.1 is that the

fragments should belong to a document with textual content. The high frequency changes

in intensity in text documents makes them poorly suited to pixel difference based

measures such as the method used by Alhaj et al. [5] which rely on high correlation

between neighbours. This guarantee of text content, however, makes OCR viable so this is

the approach I used. The proposed technique is largely inspired by Paixão et al. [18].

The proposed score is based upon the observation that shredding frequently results in

characters being divided over two fragments2. If the characters formed when combining

two strips appear valid, then the strips are likely compatible. Conversely, if joining the

strips produces shapes that are not valid characters, then the strips are likely incompatible.

2 Note that this assumption fails if the strips are too thin, so that one character can be divided over more than two

fragments

13

Figure 10: Two possible arrangements of

three strips. In the example on the left

the strips are arranged so that they are

compatible with each other. In the

example on the right the strips are

arranged to be discrepant.

The validity of a merged character is assessed by comparing it with a collection of

template characters using template matching (see section 3.2.2). The best template match

score over all of the templates is the final validity score. This indicates how similar the

merged character is to its most similar template character. To reduce the impact of

documents with uncommon fonts, The template characters are sourced from within the

fragments.

The overall discrepancy score is calculated from the average character validity.

4.3.4 Optimisation

With a compatibility score defined, an optimisation meta-heuristic can be employed to find

the arrangement of the fragments that minimises the overall score. The proposed system

first uses the nearest neighbour algorithm (see section 3.2.1) to quickly get an initial

solution. This requires an initial leftmost fragment which is chosen using a heuristic that

looks for the largest margin on the left side.

If the discrepancy was perfect and the leftmost fragment was always chosen, this would

guarantee a perfect reconstruction. This is often not the case however, so further

refinement to the solution is needed. This is achieved using Tabu search (see section

3.2.1).

14

Figure 11: On the left, a section of a compatible pair of strips on the left,

showing characters that are split over the two strips. On the right is a

discrepant pair of strips.

Figure 12: On the left, the merged 'C' from the first pair in

figure []. On the right, an example whole 'C' from within the

same document. It can be seen that the two are not identical due

to noise produced during the shredding and scanning.

4.4 Previous designs

4.4.1 Discrepancy functions

The accuracy of the discrepancy function is critical to the success of the overall approach,

so this section required the most attention. A variety of techniques were experimented

with, however the limited time frame available necessitated that those which did not seem

initially promising were quickly rejected. One such approach used a linear regression

model, trained on a dataset of shredded documents (see evaluation). For the input

variables I tried both Haralick texture descriptors [10] and local binary patterns[15], but

neither produced encouraging results.

The following methods showed greater promise so were developed enough to warrant

mention in the results (section 6):

Edge difference

This simple method of finding total absolute difference between adjacent edge pixels

initially seemed the most promising. Similar approaches were taken by Alhaj et al. [5] and

Chen et al. [7]. To account for variation in height between strips, the difference was

calculated with a range of offsets to the starting position of one of the strips and the best

result was used. A further refinement replaced the total absolute difference with the

normalised correlation value which mitigates the impact of different lighting when scanning

the strips. This is achieved by normalising the difference with respect to the mean intensity.

15

Figure 14: Expressions for absolute difference (left) and normalised

correlation (right). At height y, R(y) is the leftmost pixel in the right

strip and L(y) is the rightmost pixel in the left strip.

Figure 13: Overall flow of the 'Process' section.

The main issue with this approach is that text based document have frequent intensity

changes from white to black, leading to lower correlation between pixels than would be

expected in a more gradually changing document such as an image. This meant that the

edge difference could be quite high even if the strips were compatible.

Tesseract

This largely followed the same steps of the final solution, however the validity of a

character was determined using the confidence levels Tesseract gave when classifying it.

This is similar to the character level metric used by Liag et al. [13]. This gave fairly poor

results, unfortunately, because Tesseract is designed to assume that the input is supposed

to be valid. This meant that the confidence scores often appeared unrealistically high for

nonsense character shapes. Despite this, Tesseract still finds use in the system for

selecting template characters as these are assumed to be valid (see section 5.3).

4.4.2 Optimisers

Simulated annealing

Simulated annealing is an approach based on the real world annealing process. Like Tabu

search, this is based on local search however the next solution is chosen randomly, with

probability proportional its score. The results this gave were negligibly different to those

achieved with Tabu search so choosing between the two was simply preference.

Hungarian

A number of papers such as Alhaj et al.[5] utilise a method known as the Hungarian

method. This is designed to solve the assignment problem (see section 3.2.1). To

reformulate this problem to the assignment problem, the fragments are split into their right

and left sides. The problem is then to assign a right hand side for each left hand side. This

approach encounters problems however because it is possible for closed loops to be

formed in the assignment, leading to multiple separate documents being created. I was

unable to discover how this problem was solved in papers that used the Hungarian

algorithm so I was forced to abandon the approach.

16

Figure 15: An assignment which causes closed loops.

5 Implementation

The Application was developed in C++, making use of the various standard libraries, as

well as specialist libraries OpenCV and Tesseract (see section 3.4). Discussion of the

implementation is divided into input, data structures and utility functions, the discrepancy

function, the optimiser and output.

5.1 Input

Interface

To make the development easier the application is called from a command line. User

interaction is limited to arguments passed in calling the executable. The arguments

available are:

• The path of the top level directory (see input format)

• The name of the text file of fragment names

• The full name of the output file (optional – see section 5.5)

There are also two flags. If these are included the relevant functionality is applied. These

are:

• Shuffle the fragments before reconstructing

• Combine the fragments together for output (see section 5.5)

There is little input sanitisation done so inputs must be exact. They must also not include

spaces or backslashes.

Fragment input format

To simplify development I specified a restricted input format. First there is a top level

directory. In this directory is a text file specifying the number of fragments, and the name of

each one. The top level directory also contains a directory called strips containing the

fragment images. Optionally, the top level directory can contain a directory called masks

containing binary images that identify the background and the strip for each image. These

masks should share the same name with their corresponding strip. All images (strips or

masks) should be png files.

17

Figure 16: Calling from the command line

5.2 Data structures and utility functions

Representing fragments

The process of shredding and scanning often leads to fragments that are not perfectly

rectangular. This means that the images often contain background as well as the fragment

itself. The background can be identified using the masks provided (If no mask is present it

is assumed that the whole image is strip). The index of the first and last non-background

pixel in each row is stored so that iteration over the strip can be performed easily.

Representing solutions

Solutions are simply ordered containers of fragments. The container only stores pointers

which makes operations like swapping positions and copying solutions quicker.

Tresholding

Otsu’s method (see section 3.2.2) is provided by OpenCV, however it thresholds the entire

image including the background. This would impact the quality of the threshold, so I had to

implement the algorithm myself so that it would only take a histogram of the pixels in the

strip. The thresholded version of each fragment is required a number of times during the

process. To avoid needing to threshold repeatedly, a thresholded copy is stored within the

fragment data structure.

18

Figure 17: The input format. In this example

masks are included.

Figure 18: A scanned strip. The background has been coloured pink.

5.3 Discrepancy function

The discrepancy function described in section 4.3.3 can be split into four main subtasks:

1.(prerequisite) Select representative character templates

2. Merge the strips

3. Segment the boundary characters

4. Validate each character

1. Selecting representative character templates

This step is performed once, before the optimisation stages. Each fragment is passed to

Tesseract, which provides functionality for iterating over the individual characters it detects

within the image. Tesseract identifies each and assigns a confidence confidence. The

image of each character, as well as its confidence, is added to a data structure containing

all the other characters of the same type. The characters that stray too far from the mean

(+ or – ½ of the height or width) are then removed. The character in each container with

the highest confidence is chosen as a representative of that symbol and the rest are

discarded. Storing all of the images in order to reject those that are outliers in size is not

efficient but improves the quality of the selected templates.

2. Strip merging

This is the first step of the function proper. The strips need to be correctly aligned before

they can be merged so that corresponding lines of text are matched at the same height.

This is achieved with the following algorithm which finds the offset minimising the

difference in average row intensities between the strips:

Once the offset is calculated, the two strips can be merged with it applied. Naive

concatenation would often result in a column of background down the centre. To prevent

this the rows are combined individually, up to the last pixel in the left strip and starting from

the first pixel in the right (see representing fragments).

19

Figure 19: Pseudo code for finding the best offset to merge at.

3. Boundary character segmentation

Bounding boxes for the characters are found using the following algorithm on a

thresholded copy of the image. These bounding boxes are then used to copy rectangular

patches from the same position in the original image to be assessed.

The bounding boxes that are too large are rejected because they normally enclose

graphics or characters that have become connected due to imperfect thresholding.

Too large is defined in the implementation as greater than 11/2 times the width or height of

the largest template character.

There are a couple of reasons that Tesseract was not used for this step. Firstly, calls to the

Tesseract API are fairly expensive and this step needs to be done for every possible pair

whereas only one call per fragment is needed in for choosing the template characters.

Secondly, Tesseract is designed to locate valid characters and may miss invalid ones.

These invalid characters are important for assessing the quality of the match.

20

Figure 22: Visualisation of bounding boxes found in a pair of strips. Boxes in green are selected for

validity assessment, whereas boxes in red are rejected. The cyan line is the boundary.

Figure 20: Top: combined strips. Bottom: concatenated strips.

Figure 21: Pseudo code for finding bounding boxes.

4. Assessing validity

Characters that are too small (less than 1/2 the smallest template width or 3/4 the height)

are given a score of 0.

Characters that don’t cross the boundary at any point are also given a score of 0 as this

means that a character has not been merged.

The rest of the characters are passed to the template matcher and the score of the best

match is found. The characters are padded with a border of white pixels to ensure enough

window freedom to move. OpenCV provides inbuilt template matching with a variety of

included comparison methods. Normalised cross correlation was determined empirically to

be the best method.

This gives a value between 0 and 1, with 0 being entirely dissimilar and 1 showing they are

identical. The optimisation implementation is designed to find the minimum score so the

negation of the best template match value is returned by the function.

Once these tasks are complete, the final discrepancy is determined by taking the mean

validity score (or 0 if no characters are present). This value ranges from -1: all merged

characters are identical to the templates, to 0: no valid characters.

5.4 Optimiser

5.4.1 Finding an initial strip

To begin the nearest neighbour algorithm, an initial strip must be chosen. The heuristic

used is based on the assumption that the left most fragment will have an empty white

margin on the left hand side. The strip with the thickest margin is assumed to be the first

one. This is calculated by finding the average proportion of each row that is left of the first

black pixel, on the thresholded fragment. This gives a value between 0 and 1 for each row,

0 meaning that the first pixel is black and 1 meaning they are all white. The rows which are

entirely white are discarded as these give no indication of the size of the margin. The strip

with the largest margin will give the highest average value.

21

Figure 23: Normalised cross correlation at point x,y. T is the template image and I is the

source image

5.4.2 Tabu search

The Tabu meta-heuristic leaves a number of design decisions to be adapted for each

specific use.

Tenure

The Tabu tenure is the number of iterations before an item in the Tabu list is removed. A

value of 60 was chosen empirically.

Stopping criterion

The stopping criterion the condition under which the search should end. For this I chose to

set a number of maximum iterations since an improvement to the overall solution was

found. A value of 100000 was determined as a compromise between efficacy and time

taken.

Neighbourhood

The neighbourhood used is important to the success of the search. If it is too large, too

many solutions need to be checked each iteration, making it expensive. If it is too small,

not enough solutions will be explored and it becomes more likely to converge on a local

minima. A good neighbourhood should also allow calculation of a new solution by a simple

modification of the old one. The neighbourhood used is any solution which can be reached

by swapping the position of two fragments. This means that each new solution’s cost can

be calculated from the previous one by subtracting the discrepancy cost between the pairs

of fragments that are no longer adjacent and adding the discrepancy cost of those that

have just become adjacent.

22

Figure 24: Pseudo code for finding margin size in a

fragment.

Tabu list

For each move to a new solution, the Tabu list stores a pair of identifiers describing which

fragments were swapped at that move. The identifier used is the filename of the fragment.

To make the Tabu list insensitive to the order of the pair of identifiers, they are stored and

queried in lexicographic order. More advanced memory structures exist which differentiate

between short, medium and long term memory to promote diversification, for exploring

more solutions, and intensification, for narrowing in on promising areas of solutions

However, these were not implemented.

5.5 Output

The default behaviour of the output is to concatenate the fragments in the order of the

solution and then show the resulting image.

If an output file is specified, then the final image is saved to that file.

If the combine flag is included, then the fragments are combined without background

instead of concatenating. This uses the same method that is used to merge two fragments

in the discrepancy function (see section 5.3). Using this method over a large number of

strips causes the noise to accumulate, leading to distortion increasing towards the right

side of the document.

23

Figure 25: The neighbourhood of (A,B,C,D)

24

Figure 26: Output showing the difference between concatenating and combining. Note that the

characters become increasingly distorted in the combined strips.

6 Evaluation

The primary aim of the project is to accurately reconstruct documents. This can be

assessed by comparing documents recreated by the system with a known ground truth. To

assess how competitive the proposed system is with existing solutions, the accuracy of

this system can be compared to the accuracy of others on the same data. I chose to

compare the performance with Paixão et al. [18] because it provided easy access to the

dataset used.

6.1 Dataset

Paixão et al. provided two datasets of shredded documents along with ground truths for

comparison. The datasets contain documents in English and Spanish. Some documents

also contain varying sizes of graphical elements. The two datasets, D1 And D2, are further

divided into mechanical and artificial. These contain the same documents that have been

shredded with a different technique. The mechanical shredded examples are documents

that have been printed, shredded and then scanned. The artificial examples are

“shredded” algorithmically. I decided to ignore the D1 mechanical dataset as it is not

possible to distinguish between the background and the strips, which makes the proposed

system completely ineffective in many cases because it cannot join the edge characters

together. D1 contains 60 original documents and D2 contains 20.

6.1 Metric

In order to compare my results with those of Paixão et al. on the dataset, I adopted the

same comparison metric. Given a solution π of length n, Paixão et al. define a metric they

call accuracy:

A group is defined as a maximal correctly ordered subsequence. This is calculated by:

25

Figure 27: Formula for accuracy. π is the solution being measured

and n is the length of solution π.

 A perfect solution will have one group containing all of the fragments and a completely

incorrect one n groups containing one fragment.

6.3 Methodology

Each collection of fragments is input in the correct order and the ground truth recorded.
The fragments are then shuffled and then reconstructed by the system. Finally the
rearranged fragments are compared to the ground truth using the metric above.

6.3 Results

26

Figure 28: Formula for number of groups. pi(i+1) represents the next fragment in the

solution and pi(i)+1 represents the correct next fragment in the ground truth.

Figure 29: Results for the proposed system. The green triangle points to the mean value and the

orange line is on the median value.

The system performed best on the artificial D1 dataset where in the median case the

document was reconstructed perfectly. There were, however a few significant outliers. D2

artificial performed slightly worse with a median of 0.88. It is unsurprising that D2

mechanical had the slightly worse performance with a median of 0.87, because the

process of shredding and scanning the documents was likely to create noise, however the

fact that the difference is small suggests that the technique translates to real world

problems fairly well.

6.3 Comparison with older designs

These disused designs were developed during the project and are explained in section

4.4.1. These give some indication of the progress that was made.

27

Illustration 2: Left: results for the Tesseract based system. Right: results for the edge difference based system.

6.4 Comparison with existing designs

The results from Paixão et al. show higher median scores across all datasets except D1

artificial which was 1 for both. The results also have a smaller interquartile range. These

results show that the proposed system did not perform as well as Paixão et al. In order to

be considered competitive with contemporary solutions, further refinements to the system

would need to be made. Possible improvements are discussed in section 7.

6.5 Discussion

Investigation into the documents that were constructed well and those that were

constructed poorly reveals clear patterns. Many of those that were recreated inaccurately

had sparse amounts of text content. The worst performing document, which was from the

artificial D1 dataset and scored 0.142857, had a large proportion of strips with very few

lines of text. It also has a fairly even split between two sizes of text. Some of the poorest

results also contained large graphics. Another common issue is documents with text that is

very close together. This often results in characters becoming joined during thresholding.

Characters that were joined were rejected as graphical elements because they became

too large.

28

Figure 30: Results from [et al.].

The plot has been edited to

remove results that are irrelevant

to the comparison.

Documents that gave good results usually had dense text content, with mostly regular text

sizes and fonts and few if any graphics.

7 Future work
Future improvements fall into two main categories: improvements to the performance and

improvements to the scope of the system.

Performance

Various limiting factors to the performance are mentioned in section 6.5.

One of these problems is the inclusion of graphical elements in many documents. An

improvement to the system could detect which areas are graphical and which are text and

use a different technique for determining compatibility for each. This could also

accommodate documents that only consist of graphical elements.

Another problem often encountered was adjacent characters becoming merged during

thresholding. A local thresholding approach may improve this but was not investigated due

to time constraints.

A solution that may help to improve the results for documents with limited text elements

could be to use a natural language processing feature. An approach similar to [] could be

adopted where a low level method chooses potential solutions and a higher level one finds

the best one of this reduced pool.

Finally, modifying the character segmentation to be less sensitive to noise would help

reduce false positives when searching for merged characters.

Scope

The project included a few constraints on the problem with the intention that some or all

could be relaxed if the progress was quick enough. An obvious further development would

be to extend the system to remove these constraints.

• Strip shredded documents

29

Figure 31: Some common problems. From left: large graphics, sparse text and characters merging when

thresholding.

Accommodating hand torn documents could allow the shape of the fragments to

become a useful feature for matching. Cross-cut documents would likely be harder

although solutions have been proposed such as Chen et al. [7] which clusters

fragments together based on the location of the textlines to give rows of fragments.

These rows can then be treated as a strip shredded document.

• Documents that include text.

A method for handling documents without text is mentioned above in the

performance section.

• Latin alphabet

Scripts which use a different character set to Latin but are otherwise similar would

likely be fairly easy to accommodate. Writing systems such as Chinese, with

thousands of characters, would likely be impractical using the current methodology

as they would require a prohibitive number of template characters.

30

8 Conclusion
The primary objective of the project was to develop a system with high accuracy recreating

shredded documents. Section 6.3 showed that the proposed system is reasonably

successful in this aim. However, the success is conditional on certain attributes of the

documents. As an extension it was proposed that some of the constraints on the system

could be relaxed to better represent the real-world problem. This was not achieved so is

suggested as possible future work.

The secondary objective of the project was for the system to be competitive with other

existing solutions. Section 6.4 showed that further work would be needed to achieve this

aim.

31

9 Reflections
I chose this project because I was interested in gaining some level of insight into the

nature of academic computer science. The project necessitated digesting a number of

research papers in order to assess existing solutions to the problem. This was challenging

initially as I found many of them difficult to read. [sparsity] in particular I found so

incomprehensible that I left it out of the existing works section as I felt unable to explain its

method. I did find that with practice this became easier however, largely due to better

understanding of some of the underlying techniques used.

While there have been many projects during my degree, none have allowed so much

freedom as this one in terms of the approach to the problem. This seemed fairly

overwhelming at first. Discussion with my supervisor was invaluable for identifying what

ideas were worth exploring.

One aspect of the project that I came to appreciate better was how precise the problem

definition should be. At the start the project was fairly vague with no specification on what

shape of fragments would be used or what sort of content the documents might have.

Applying constraints to the problem gave me much more direction in how I was to solve it.

An area I feel could definitely have been improved is planning and structuring the project

timeline better. The plan I made for the initial report was fairly vague because I wasn’t sure

how long certain tasks would take or even exactly what tasks would be needed. In

particular I underestimated how long it would take to get a basic initial solution working.

This left less time to further improve the design. I had also hoped to be able to extend the

problem possibly by accommodating strip shredded documents. Unfortunately I did not get

the implementation for the initial problem to a high enough accuracy to justify further

developments. I feel this project has given me better perspective on which aspects of the

process take more or less time. In addition to poor planning, I did not use a particularly

structured approach to the code development. Fortunately this did not present any major

difficulties but it is still something that should be addressed for future projects.

32

10 References
Other

[1] Bowden. 2006. Guests of the Ayatollah

[2] Brunelli. 2009. Template Matching Techniques in Computer Vision: Theory and Practice

[3] EPA

https://www.epa.gov/sites/production/files/2013-09/documents/fec_automatic_duplexing.pd

f

[4] Skiena. 2008. The Algorithm Design Manual Second Edition.

Papers

[5] Alhaj, Sharieh and Sleit. 2019. Reconstructing Colored Strip-Shredded Documents

based on the Hungarians Algorithm. 1-6. 10.1109/ICTCS.2019.8923048.

[6] Bose and Soltanalian. 2017. Non-convex shredded signal reconstruction via sparsity

enhancement. ICASSP, New Orleans, LA, 2017, pp. 4691-4695.

[7] Chen, Tian, Qi, Wang, Liu. 2019. A solution to reconstruct cross-cut shredded text

documents based on constrained seed K-means algorithm and ant colony algorithm.

Expert Systems with Applications, volume 127, 2019, Pages 35-46.

[8] Chen, Wu, Jia and Zhang. 2017. A pipeline for reconstructing cross-shredded English

document. ICIVC, Chengdu, 2017, pp. 1034-1039.

[9] Glover. 1989. ORSA Journal on Computing Vol. 1, No. 3 Pages 135-206

[10] Haralick. 1979. Statistical and structural approaches to texture. Proc. IEEE, vol. 67,

no. 5, pp. 786-804.

[11] Kirkpatrick, Gelatt Jr and Vecchi. 1983.Optimization by Simulated Annealing. Science.

220 (4598): 671–680

[12] Kuhn. 1955. The Hungarian Method for the assignment problem. Naval Research

Logistics Quarterly, 2: 83–97

[13] Liang and Li 2020. Reassembling Shredded Document Stripes Using Word-Path

Metric and Greedy Composition Optimal Matching Solver. IEEE Transactions on

Multimedia, vol. 22, no. 5, pp. 1168-1181.

[14] Naiman, Farber and Stein. 2019. Physical Match. Informatica 43(2019) 243–252.

33

https://www.epa.gov/sites/production/files/2013-09/documents/fec_automatic_duplexing.pdf
https://www.epa.gov/sites/production/files/2013-09/documents/fec_automatic_duplexing.pdf

[15] Ojala, Pietikäinen, and Harwood. 1994. Performance evaluation of texture measures

with classification based on Kullback discrimination of distributions. Proceedings of the

12th IAPR International Conference on Pattern Recognition (ICPR 1994), vol. 1, pp. 582 -

585.

[16] Otsu. 1979. A threshold selection method from gray-level histograms. IEEE Trans.

Sys. Man. Cyber. 9 (1): 62–66

[17] Paixão, Berriel, Boeres, Badue, De Souza and Oliveira-Santos 2018. A Deep

Learning-Based Compatibility Score for Reconstruction of Strip-Shredded Text

Documents. 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images

(SIBGRAPI), Parana, 2018, pp. 87-94.

[18] Paixão, Boeres, Freitas and Oliveira-Santos. 2019. Exploring Character Shapes for

Unsupervised Reconstruction of Strip-Shredded Text Documents. IEEE Transactions on

Information Forensics and Security, vol. 14, no. 7, pp. 1744-1754.

[19] Pimenta, Justino, Oliveira and Sabourin. 2009. Document reconstruction using

dynamic programming. IEEE International Conference on Acoustics, Speech and Signal

Processing, Taipei, 2009, pp. 1393-1396.

[20] Pirrone, Aimar and Journet. 2019. Papy-S-Net: A Siamese Network to match papyrus

fragments. Proceedings of the 5th International Workshop on Historical Document Imaging

and Processing 2019 Sep 20 (pp. 78-83).

[21] Ukovich, Ramponi, Doulaverakis, Kompatsiaris and Strintzis. 2004. Shredded

document reconstruction using MPEG-7 standard descriptors. Proceedings of the Fourth

IEEE International Symposium on Signal Processing and Information Technology, 2004.,

Rome, 2004, pp. 334-337.

34

