
Final Report

Identifying the best machine learning model for

web-based attack

Cardiff University School of Computer Science

and Informatics

Author: Alice Edwards

Supervisor: Amir Javed

Moderator: Liam Turner

One Semester Individual Project – 40 credits

CM3203

Abstract

This paper studies how to identify malicious network traffic from a

web application. This involves studying the common vulnerabilities

that web applications have and the way in which they can be abused

in order to compromise the applicationﾂs security.

To achieve this, I performed multiple attacks on vulnerable web

applications, and built a machine learning classifier to categorise

network traffic in order to identify attacks, so that a service

administrator may maintain their application.

My results identified Trees as the best method for classifying these

datasets, and in particular highlighted the J48 tree as effective.

This meant that my IDS (Intrusion Detection System) had a precision,

recall and f-measure of over a relatively high score of 0.8.

However, this may change with different datasets.

From a network administration perspective this study shows the

importance of maintaining web applications to minimise

vulnerabilities. This is built upon with the use of an IDS system to

watch traffic at all times, as not all vulnerabilities can be

purged.

Acknowledgements

I would like to thank my supervisor Amir Javed for his invaluable

help throughout this project.

I would also like to thank Eirini Anthi for taking on a secondary

supervisor role, and providing an expert view on penetration

testing, as well as advice when I got stuck.

Finally, I would like to thank Caitlin Burns for showing me their

Kaggle account and sharing some machine learning work they had

completed in the past in order to guide my own work.

Table of Contents
1. Introduction .. 6

1.1 Web Attacks .. 6

1.2 Penetration Testing .. 6

1.3 Machine Learning ... 6

1.4 Why I am building a classifier .. 6

1.5 The Project .. 7

2. Background .. 8

2.1 Similar Studies ... 8

2.1.1 SQL-IDS [7] ... 8

2.1.2 Extending Web Application IDS Interface: Visualising Intrusions

in Geographic and Web Space [8] ... 8

2.1.3 A Closer Look at Intrusion Detection Systems for Web

Applications [9] ... 8

2.1.4 Applying Blocking Measures Progressively to Malicious Network

Traffic [10] .. 9

2.1.5 Detecting Malicious Web Links and Identifying their Attack Type

[11] .. 9

2.1.6 Techniques for Identifying and Managing Potentially Harmful Web

Traffic [12] .. 9

2.1.7 Conclusion from Similar Studies ... 9

2.2 Training .. 10

3. Tools and methods ... 11

3.1 My Planned Approach .. 11

3.2 The Reality of my Approach ... 11

3.2.1 Penetration Testing .. 12

3.2.2 Machine Learning .. 13

4. Deliverables from selected approach ... 15

4.1 Background Objectives .. 15

4.2 Primary Aims ... 17

5. Design and Results of Experiments .. 18

5.1 Classifier Models .. 18

5.1.1 Bayes .. 19

5.1.2 Functions .. 20

5.1.3 Lazy ... 21

5.1.4 Meta ... 22

5.1.5 Miscellaneous ... 25

5.1.6 Rules .. 25

5.1.7 Trees .. 26

5.2 The Data .. 28

5.2.1 Comparing the training data set to the testing data set 28

5.2.2 Comparing Attributes.. 29

5.3 Results of Machine Learning... 42

5.3.1 KDD Dataset ... 42

5.3.2 UNSW Dataset ... 44

5.3.3 Comparison between Datasets .. 46

6. Conclusion and Future Work ... 49

6.1 Conclusion .. 49

6.2 Future Work .. 49

7. Reflection on Learning .. 51

7.1 What I have learnt .. 51

7.2 Challenges .. 52

7.3 Supervisor Meetings .. 53

Glossary ... 54

Table of Abbreviations .. 54

Appendices... 55

Appendix 1: Python Code .. 55

Appendix 2: Wireshark Packets ... 55

Appendix 3: KDD Model .. 55

Appendix 4: UNSW Model .. 55

Appendix 5: KDD Dataset .. 55

Appendix 6: UNSW Dataset .. 56

References... 56

Table of Figures

Figure 1: Gantt Chart from my Initial Plan .. 11

Figure 2: Time Management Review .. 12

Figure 3: Research on Attacks and Vulnerabilities ... 17

Figure 4: scikit-learn algorithm cheat-sheet ... 18

Figure 5: Comparing KDD Testing and Training Dataset Values 29

Figure Ü: KDD Magnitude of Pearsonﾂs Correlation ... 30

Figure 7: UNSW Magnitude of Pearsonﾂs Correlation for All Attacks 31

https://d.docs.live.net/e2e5f8104047b975/Documents/Year%203/Final%20Year%20Project/Final%20Report%2006.05.2020.docx#_Toc40186849

Figure ê: UNSW Maximum Magnitude of Pearsonﾂs Correlation for All Attacks
 .. 32

Figure î: UNSW Mean Magnitude of Pearsonﾂs Correlation for All Attacks 33

Figure Ü0: UNSW Magnitude of Pearsonﾂs Correlation for Analysis Attack 33

Figure ÜÜ: UNSW Magnitude of Pearsonﾂs Correlation for Backdoor Attack 34

Figure 12: UNSW Magnitude of Pearsonﾂs Correlation for DoS Attack 35

Figure Üë: UNSW Magnitude of Pearsonﾂs Correlation for Exploits Attack 36

Figure Üï: UNSW Magnitude of Pearsonﾂs Correlation for Fuzzers Attack 36

Figure Üö: UNSW Magnitude of Pearsonﾂs Correlation for Generic Attack 37

Figure ÜÜ: UNSW Magnitude of Pearsonﾂs Correlation for Normal Traffic 38

Figure 17: UNSW Magnitude of Pearsonﾂs Correlation for Reconnaissance
Attack ... 39

Figure Üê: UNSW Magnitude of Pearsonﾂs Correlation for Shellcode Attack ... 40

Figure Üî: UNSW Magnitude of Pearsonﾂs Correlation for Worms Attack 41

Figure ä0: UNSW Magnitude of Pearsonﾂs Correlation for Analysis, Backdoor,
Worms Attack .. 42

Figure 21: Classifier performance for KDD dataset ... 43

Figure 22: Classifier performance for UNSW dataset ... 45

Figure 23: Median Classifier Performance for both Datasets 46

Figure 24: Mean Classifier Performance for both Datasets 47

1. Introduction

1.1 Web Attacks
Web Applications often have vulnerabilities that mean users with

malicious intent can compromise the applicationﾂs security.
According to a recent study, 44% of web applications are

vulnerable to data leakage and security problems [1].

The five most common web attacks are XSS, SQL injection, DOS,

File Path Traversal and Command Injection [2]. These have been

around for years, and yet it is still common that they are not

fully protected against. Therefore, I will focus on these five

primarily in the project. However, this is not to say that there

are not many other attacks types; and new attacks are constantly

in development.

Aside from ensuring everything is up to date and patches are

regularly used, there are three types of protection [2]: 1)

Vulnerability scanning and security testing, 2) Web Application

Firewalls (WAFs), and 3) Secure Development Training (SDT).

This project focuses on vulnerability scanning in the form of a

network traffic classifier.

1.2 Penetration Testing
Penetration testing (pen testing) uses simulated cyber-attacks

against the computer system to check for exploitable

vulnerabilities [3]. Pen testing is commonly used in web

applications to augment a WAF.

In the context of this paper, penetration testing has been used

to carry out common attacks on vulnerable web applications. From

penetration testing I can gather the network traffic for

malicious activity (where an attacker is attempting to exploit a

vulnerability) and compare it to benign network traffic (the

expected traffic for this web application.)

1.3 Machine Learning
Machine Learning algorithms use statistics to find patterns in

vast amounts of data [4]. Machine learning has 3 categories:

supervised, unsupervised and reinforcement.

As I want my algorithm to identify attacks by name, I will use

labelled data, thus will be using supervised machine learning.

1.4 Why I am building a classifier
A classifier allows data to be grouped by a label (as opposed to

clustering in unsupervised learning) [5]. In this context of

finding attacks, this is useful to separate the traffic from what

are expected outputs and what are not, so that cybersecurity can

be used to patch vulnerabilities.

Using a classifier means that a cybersecurity system can analyse

patterns and use the learning from this to prevent similar

attacks in the future and respond to changing behaviour [6]. This

means that a cybersecurity team can be more proactive in

preventing attacks and respond to them in real time. If my

classifier is deployed to continuously monitor network traffic it

can identify a potential attack as it is taking place, and thus

allow a cybersecurity team to stop it.

This means an organisation can prioritise its time, thus making

cybersecurity less expensive and more effective.

I will primarily use a binary classifier to split traffic into

malicious or benign. From this I will then use a different

classifier to split data by attack category.

1.5 The Project
This project looks at what vulnerabilities can exist in web apps.

Then, understanding the ways vulnerabilities can be abused – to
culminate in using machine learning techniques to identify where

this abuse is taking place. My classifier can be deployed as an

IDS to catch attacks in progress and learn from them.

2. Background

2.1 Similar Studies
I began my background research by looking into what similar

studies already existed. To do this, I primarily used Google

Scholar to find research papers on similar projects. When this

well ran dry due to lack of similar content, I started looking

from a normal google search for any similar applications,

whether they had a research paper or not.

2.1.1 SQL-IDS [7]
One study I found was a SQL-IDS. This study focussed only on

identifying SQL-injection attacks, and instead of looking at

network traffic it studied the SQL requests to ensure they

matched the expected format. It uses a specification-based

methodology. They found it particularly effective as it meant

no changes to the web application or database schema. Instead

they just added a verification of the SQL statement, with

lexical analysis. Their future work suggests looking at other

types of injection attacks, such as XSS, suggesting that they

would look at the network traffic like in this study to

identify correct traffic.

2.1.2 Extending Web Application IDS Interface:

Visualising Intrusions in Geographic and Web Space

[8]
This study had little information available without paying to

view it. However, I was able to establish that it was looking

into making IDS information more comprehensible to those

responsible to stop attacks, rather than a normal text-based

approach. My assumption is that this would break down attacks

into their categories, in a similar way to the intended

secondary aim of my project. However, this study seems to be

more aesthetic than technical, and would likely use an already

existing IDS, only changing its output. As such, my project is

still very important, though in future iterations it may

benefit from a more graphical output as guided by this study.

2.1.3 A Closer Look at Intrusion Detection Systems

for Web Applications [9]
This paper talks about how IDS is a known methodology for

detecting attacks on network systems, but it is still

relatively immature in monitoring and detecting web-based

attacks. The general overview of this article pronounces the

need for IDS approaches specifically designed for web

applications, due to their difference to generic network

attacks. Thus, showing a need for my own project.

2.1.4 Applying Blocking Measures Progressively to

Malicious Network Traffic [10]
This study explores the idea of applying blocking measures

based on an application like mine detecting anomalies and

using a loop to test whether these measures get rid of the

anomaly. This shows ways in which my application could be used

aside from just notifying administrators of an attack,

allowing automated blocking in the future. In effect, this

would turn the IDS into an IPS (Intrusion Prevention System),

thereby proving multiple applications for this project, thus

making it worthwhile.

2.1.5 Detecting Malicious Web Links and Identifying

their Attack Type [11]
I found this paper that studies malicious URLs and detecting

them. This is similar to my study in that it attempts to

classify attacks. However, it looks specifically at attacks

orchestrated via URL links. They use machine learning to

detect and categorise attacks, which is the same as my

intended method. They performed two machine learning

algorithms: SVM (support vector machine), and RAkEL (random k-

labelsets ensemble algorithm) and ML-kNN (K-nearest neighbours

for multi-label data). This means using a combination of

generative and discriminative models, as SVM is Generative and

RAkEL and ML-kNN are discriminative. Using the combination of

these two is something I took into consideration for my own

development process.

2.1.6 Techniques for Identifying and Managing

Potentially Harmful Web Traffic [12]
This paper looks at a spectrum of techniques for identifying

attacks from web traffic. It aims to identify traffic in

coordination with passing traffic through a firewall. One of

the ways it suggests doing this is by parsing the traffic

request attributes and assigning it with a threat rating based

on threat profiles. This appears to fall under the same branch

of machine learning as my own work but assigns a rating rather

than detecting and labelling an attack. As such this would not

help identify ways in which to fix the attacks, and suggests

that they would be using unsupervised learning, rather than

labelled data. This would be less precise than my model but

allows for more future growth.

2.1.7 Conclusion from Similar Studies
These studies show that there is little focus from Intrusion

Detection Systems on web apps, even though they are one of the

most attacked areas of computing. Therefore, demonstrating the

need for my project in filling this gap in the market. They

also demonstrate ways in which the system can be used in the

future.

These studies range from being developed in 2003 until 2020,

showing a sparse timeline of developments in this area. In

particular the study demonstrating the immaturity of this area

(A closer look at intrusion detection systems for web

applications) was published as recently as 2018 [9],

highlighting the fact that there is still a lack of work in

this area.

84% of all cyber-attacks are happening on the application

layer [13], as said in 2015. My classifier address this by

focusing on attacks of the application layer, allowing for

more precision in detecting them than a generic classifier for

all possible cyber-attacks.

As such, my study is relevant today, and up to date. There is

still a need to help identify issues in web applications in

order to ensure a safer, more private, web.

2.2 Training
To begin my project, I first had to learn how to do

penetration testing. I did this primarily by using OWASPﾂs
WebGoat [14], and Security Shepard [15] training program, from

the OWASP virtual machine. These applications gave me lessons

that introduced me to the world of attacks on web

applications. Some of the exercises were harder than others

where I had to look up walkthrough videos on YouTube to help

me understand what I needed to do. I particularly used Jim Jet

Weeﾂs YouTube channel as he had a series of instructional
videos on WebGoat [16].

3. Tools and methods

3.1 My Planned Approach
My initial plan was to develop my own vulnerable web app,

using OWASPﾂs top Ü0 web app vulnerabilities [17]. From this I
was to perform penetration testing on my web app and capture

the network traffic. Ideally, I would have collected data for

the five most common attacks, and normal network traffic, in

large enough volumes to classify the results. I was going to

use Python to build a classifier.

Figure 1: Gantt Chart from my Initial Plan

I did not follow the initial time plan, or set objectives as

closely as originally intended, and the project was given a

one-week extension for the final deadline due to the outbreak

of Covid-19.

3.2 The Reality of my Approach
In the end my time management approach looked more like this:

Week Task Subtask
1 27/01 – 02/02

Initial Plan
Writing Initial

Plan
2 03/02 – 09/02

Research
Look at similar

studies and
different attacks

3 10/02 – 16/02

Penetration
Testing

Set up virtual
machine & training

program
4 17/02 -23/02 Start Penetration

Testing
5 24/02 – 01/03 Collate network

traffic

6 02/03 – 08/03
7 09/03 – 15/03

Machine
Learning

Learn machine
learning on Kaggle
& try and use my

network traffic to
fit to model

8 16/03 – 22/03 Covid-19
starts

9 23/03 – 29/03
Find new data sets
& test different
machine learning

models

officially
effecting
everyday

life

Easter 1 28/03
– 03/04
Easter 2 04/04
– 10/04
Easter 3 11/04
– 17/04

Report
Writing

Draft 1
10 18/04 –
24/04
11 25/04 –
01/05

Draft 2
12 02/05 –
08/05
13 09/05 –
13/05

 Final Report

Figure 2: Time Management Review

As you can see, I took a waterfall model approach with completing

each section before going on to the next.

3.2.1 Penetration Testing
In order to perform my penetration testing I had to run web

applications from a virtual machine so as to not expose these

deliberately vulnerable web apps to the outside world [18]. To

do this I installed Virtual Box [19] to run my virtual

machine.

I used OWASPﾂs Broken Web Applications Virtual Machine [20]
instead of creating my own vulnerable web application. This

was with the mindset that it came with a training program to

allow me to learn how to best conduct different attacks and

more web apps were included rather than just one, which should

have provided me with more network traffic for my machine

learning.

I also opted to use ZAP (Zed Attack Proxy by OWASP) [21] as it

is a free alternative to the BURP suite [18]. I used this

primarily for its HUD (heads-up display) and the ease of use

in being able to intercept traffic and alter it in order to

perform attacks. Furthermore, it had lots of documentation,

including a web series showing how to use its features [22].

In order to record traffic, I used Wireshark [23], configured

to record any traffic on my virtual machine. I opted to use

Wireshark due to my previous experience with the application

in other university modules and I am competent using its

interface to capture traffic.

3.2.2 Machine Learning
With machine learning I was not sure where to start, and so

following some advice I completed an introductory course on

Kaggle [24]. This taught me how to build a machine learning

model in Python using scikit-learn [25] and pandas [26]. From

this I built a basic random forests classifier in Python

[appendix 1] and used the network traffic I had gathered from

my penetration testing.

However, with this approach I was unable to find any

significant data patterns, and so on the advice of my

supervisor I then downloaded Weka [27]. Weka was great at

quickly comparing the different types of classifiers in order

to find the best model for my dataset. However, with the data

from my pen testing I later found there was just not enough

data and had to take a different approach.

My secondary supervisor advised due to time constraints that

instead of trying to build a drastically bigger dataset I

should try to use existing datasets available online.

Initially it was hard to find a dataset that was only about

Web Applications.

I looked at around 20 different datasets. This included some

datasets that looked promising such as the HTTP CSIC Torpeda

2012 dataset (which is referenced in appendix 1, as I used it

with my python implementation). This dataset had the labels I

was looking for with the majority of the attacks I performed

on WebGoat, missing only DoS attacks. However, its data was

unusable – the attributes included were not useful at all in
classifying the data. Other datasets had similar problems. I

took about five days of valuable time trying to find an

optimal dataset. In the end I selected two to use.

Eventually I decided to use the NSL-KDD dataset [28] and the

UNSW-NB15 dataset [29]. The KDD dataset had labelled data to

distinguish between malicious and benign network traffic,

whereas the UNSW dataset distinguished between attack types.

I was searching for a dataset that would have labelled data

for the five most common attacks, especially XSS. However, I

could not find a dataset with the relevant information. I

needed to build a classifier that also featured these attacks

as labels.

For the final part of my project I had intended to use the KDD

dataset to train and create my model and my UNSW dataset to

test it (changing its labels to show whether it was malicious

or benign rather than the breakdown of attacks). However, they

only had five attributes in common, and thus there was not

enough compatibility between the datasets to perform this.

4. Deliverables from selected approach

4.1 Background Objectives
My first background objective was to establish an

understanding of the different types of attacks on network

traffic. To demonstrate this, I produced a list of possible

attack vectors and how they work (this list is not

exhaustive):

Attack Description Vulnerability
abused

1. XSS – Cross-site
Scripting

A client-side
injection attack.
Allows a user to
run JavaScript on
the page [30].

Where a webpage
uses unsanitized
user input in
its output.

2. SQL Injection Attacks data driven
applications –
using object that
allow user input to
alter a SQL query,
to alter the
purpose of the
query [31].

Typically, where
the user input
allows string
literal escape
characters.

3. DOS – Denial of
Service

The perpetrator
seeks to make a
machine or network
resource
unavailable to its
intended users.
Floods the targeted
machine/resource to
overload the
systems with
superfluous
requests [32].

No specific
vulnerability
other than lack
of Intrusion
Prevention
Systems (IPS)
and firewalls to
deny traffic
coming from same
ports or IP
addresses.

4. Broken
Authentication

Attackers can use
automated tools
with password lists
and dictionary
attacks [33]

Lack of
automated threat
or credential
stuffing
protections.
Not using multi-
factor
authentication.
Application
timeouts are not
set properly.

5. XXE – XML External
Entities

An attacker uses
the ability to

If an
application

upload XML to
extract data,
execute a remote
request from the
server, scan
internal systems,
perform a denial-
of-service attack
and more [34].

accepts XML
directly, or XML
uploads, or
instances into
XML documents
which is when
parsed by an XML
processor, it is
vulnerable.

6. Sensitive Data
Exposure

Executing Man-in-
the-middle attacks
or stealing clear
text off a server
in transit [35].

Any data
transmitted in
clear text, old
/weak
cryptographic
algorithms, weak
crypto keys no
encryption and
lack of
verifying server
certificates are
all
vulnerabilities
that can allow
these attacks.

7. Broken Access
Control

Users use
privileged
functions they
should not have
access to [36].

Vulnerabilities
are where the
users can
elevate their
privilege.

8. Insecure
Deserialization

Leads to remote
execution attacks.
2 types of attacks:
Object / data
structure related
attacks and data
tampering attacks
[37]

Applications are
vulnerable if
they deserialize
hostile or
tampered objects
supplied by an
attacker

9. Vulnerable
Components

Components
typically run with
the same privileges
as the application
itself, so can be
used as a backdoor
attack. Works
particularly in IoT
devices [38].

All components
and software
need to be kept
up to date to
avoid
vulnerabilities.

10. CSRF – Cross Site
Request Forgery

An attacker makes
users perform
actions they do not

Sessions are
handled only by
cookies. Can be

intend to perform
[39].

stopped by using
CSRF tokens.

Figure 3: Research on Attacks and Vulnerabilities

My second background objective was to understand the

vulnerabilities a web application can have, and why it makes

them insecure. This is included in the table above.

4.2 Primary Aims
My first primary aim was to build a web application with

vulnerabilities. I decided not to do this because I felt I

could be more effective with the main focuses of the project –
penetration testing and machine learning. In theory, by using

different web application rather than just one, I could create

a more effective machine classifier, and learn more about web

attacks.

My second primary aim was to record and document attacks on

the web app. I did perform and record attacks that I ran on

the virtual machine web apps rather than one I had developed

[appendix 2]. However, I only recorded XSS attacks, as I was

trying to get my machine classifier to work with these attacks

before recording any others. But I have completed all the

attacks in the lessons on WebGoat, and SecurityShephard.

The third primary aim was to code a network classifier, which

I achieved in Python [appendix 1], although it was not

particularly successful due to the data, I provided it with.

Therefore, for my fourth aim of categorising benign and

malicious data I used Weka, to experiment with many models and

find my ideal one [appendix 3].

4.3 Secondary Aim

I fulfilled my secondary aim of identifying what kind of

attack is taking place via a different dataset with different

attributes, and labels. However, I used the same methodology

as I did previously when discriminating between malicious and

benign. [appendix 4]

5. Design and Results of Experiments

5.1 Classifier Models
My experiments consisted of using Weka to find the best learning

technique for my classifier to sort the different network traffic.

To do this I tested 38 different classifier models, these divided

into seven subcategories.

Initially I did some research into what classifier model would best

suit my project. To do this I looked at three different websites.

This research suggested that Naïve Bayes would not be suitable as it

is typically used for binary classification [40].

Contrastingly I found research suggesting that CART would be

particularly apt for my application [41]. However, CART

(classification and regression trees) was not an option on Weka.

Another site [42] came with the following flowchart:

This suggests that since I have more than 100,000 samples, with

labelled data, that an SGD classifier would be most appropriate, or

failing this kernel approximation.

After using this research to understand the different classifier

models, I decided to experiment with Wekaﾂs classification. The top
five algorithms for classification in Weka are meant to be logistic

regression, Naïve Bayes, decision tress, k-nearest neighbours, and

support vector machines [43]. These also come in the top six common

classification algorithms on another site [44]. With this in mind I

looked first at the suggested and named classifiers, and then

decided to test every classifier Weka would allow me to.

Figure 4: scikit-learn algorithm cheat-sheet

5.1.1 Bayes
A Bayesian classifier is built on the idea that the job of a

class is to predict the values of features for members of that

class [45]. As such Bayesﾂ rule can be used to predict classes
given some of the values that are features of the class.

Therefore Bayesian classifiers are generative models.

Bayes rule states that: �岫畦|稽岻 = �岫稽|畦岻�岫畦岻�岫稽岻

5.1.1.1 Naïve Bayes

Naïve Bayes methods are a set of methods based on applying

Bayesﾂ theorem with the assumption of conditional independence
between every pair of features given the value of the class

variable [46]. There are three main types of naïve Bayes

varying by the assumptions they make regarding the

distribution of P(xi|y):

• Gaussian Naïve Bayes – the likelihood of features is

assumed to be Gaussian: �岫捲� |検岻 = 怠√態���2 exp 岫 − (��− ��)2態��2 岻
• Multinomial Naïve Bayes – used for multinomially

distributed data

• Complement Naïve Bayes – an adaption of the standard
multinomial naïve Bayes algorithm that is particularly

suited for imbalanced data sets.

Weka describes Naïve Bayes by stating ﾁnumeric estimator
precision values are chosen based on analysis of the training

data. For this reason, the classifier is not an updatable

classifier.ﾂ. Its capabilities are binary class, missing class
values and nominal class. In this case I will be using it for

nominal classes.

5.1.1.2 Bayes Net

A Bayes Net or Bayesian Network classifier is one which

assumes strong (naïve) independence assumptions based on

Bayesﾂ Theorem [ï7].

It assumes that a feature being present in a class is

unrelated to any other features being present. It assigns a

probability to every event of interest.

5.1.1.3 Naïve Bayes Updatable

This classifier works similarly to naïve Bayes, but it can be

updated, with training data changing as more data becomes

available making it a more dynamic model.

5.1.2 Functions
These classifier models all depend on one key function.

Machine learning functions let you work with your data set in

different stages of the data analysis process [48].

 5.1.2.1 SGD

SGD (stochastic gradient descent) is an estimator that

implements linear models with SGD learning: the gradient of

the loss is estimated, each sample at a time, and the model is

updated along the way with a decreasing strength schedule /

learning rate [49].

The model parameters are shrunk towards the zero-vector using

the squared Euclidean norm L2, the absolute norm L1 or a

combination of both (elastic net).

 5.1.2.2 Logistic

Logistic Regression is a classifier that uses statistics. It

uses a linear regression equation to produce discrete binary

outputs [50].

The activation function for logistic regression is: ℎ岫捲岻 = �岫∑ 拳�捲�岻��=待

Where wi = weights/coefficients, h = hypothesis set that

selected classifier brings and θ = sigmoid/logistic function.

As I will be using it in a supervised classifier, it helps to

converge uncertain posterior values with a differentiable

decision function.

 5.1.2.3 SGD Text

SGD Text implements stochastic gradient descent for machine

learning, but operates directly, and only on string

attributes. Other types of input are accepted but ignored for

training and classification [51]. This helps with some fields

of my datasets but completely disregards others and so it will

be interesting to see how accurate it is. I believe it would

be more suited for classifying documents in the semantic web,

taking where words are commonly used and sorting them into

what they relate to. However, I wish to see how it affects my

data.

 5.1.2.4 Simple Logistic

The simple logistic regression classifiers use simple

regression functions as base learners. These are used with

LogitBoost to iterate through multiple times to find an

optimal classification. The optimal number of iterations to

perform is cross validated, leading to automatic attribute

selection [52].

 5.1.2.5 SMO

SMO uses John Plattﾂs sequential minimal optimisation
algorithm to train a support vector classifier. It globally

replaces all missing values and transforms nominal attributes

into binary ones. It also normalises all attributes [53].

As this is a multi-class problem it solves it using pairwise-

classification.

 5.1.2.6 Voted Perceptron

Voted Perceptron as a classifier is an implementation of the

voted perceptron algorithm by Freund and Schapire [54]. It

globally replaces any missing values (of which I have a few)

and transforms nominal attributes (of which I have roughly

three in each dataset), into binary ones.

The algorithm itself takes advantage of data that are linearly

separable with large margins [55]. It is comparable to SVM and

is said to have a similar accuracy but is simpler and more

efficient.

5.1.3 Lazy
Lazy learning is a where generalising training data waits

until a query is made. This means that data set can be

continuously updated with new entries [56] that stop training

data from being rendered obsolete.

5.1.3.1 IbK

Ib stands for instance based, and the K shows that the number

can be adjusted. This is really a k-nearest neighboursﾂ
algorithm, where K > 1 [57]. In this context it selects the

value of K based on cross validation [58].

5.1.3.2 Kstar

K* is an instance-based classifier. The class of a test

instance is based upon the class of similar training instances

as determined by some similarity function. It differs from

other instance-based learners like IbK as it uses an entropy-

based distance function to calculate similarity [59].

5.1.3.3 LWL

Locally weighted learning uses an instance-based algorithm to

assign instance weights. When used for classification it often

used Naïve Bayes to classify the data [61].

5.1.4 Meta
In meta-learning automated learning algorithms are applied on

metadata about machine learning experiments [61]. The main

goal is to use metadata to understand how automatic learning

can become flexible and thus improve the performance of

existing algorithms. As such these classifiers tend to take

longer, as they can iterate through classifying multiple

times.

 5.1.4.1 Ada Boost M1

AdaBoost is designed to boost a nominal classifier. It often

drastically improves performance but can only be used on

nominal problems and can overfit [62]. It is short for

adaptive boosting and is most effective using weak learners.

The final equation for classification can be represented as:

�岫捲岻 = ��訣�岫 ∑ ��血�岫捲岻岻�
�=怠

Where fm stands for the mθ weak classifier and θm is the
corresponding weight. It is the weighted combination of M weak

classifiers.

 5.1.4.2 Attribute Selected Classifier

The dimensionality of both training and test data is reduced

by attribute selection before being passed on to a classifier

[63].

 5.1.4.3 Classification Via Regression

Classes are binarized and one regression model is used for

each class value [64].

 5.1.4.4 Filtered Classifier

This is a class for running a classifier on data that has been

passed through a filter. The classifier and filter alike have

their structure based exclusively on the training data. Test

instances will be processed by the filter without changing

their structure. Therefore, it only functions where weights /

attribute weights are equal. As such, when unequal weights are

present the instances and / or attributes are resampled with

replacements based on the weights before they are passed to

the filter or classifier as appropriate [65].

 5.1.4.5 Iterative Classifier Optimizer

The iterative classifier optimiser chooses the best number of

iterations for an iterative classifier – such as LogitBoost
(as seen below) – using cross-validation or a percentage split
evaluation. This produces a choice that is the optimal number

of iterations [66].

 5.1.4.6 Logit Boost

Logit Boost is a class for performing additive logistic

regression. It performs classification using a regression

scheme as a base learner and can handle multi-class problems

[67].

 5.1.4.7 Multi Class Classifier

This is a metaclassifier for handling multi-class datasets

with 2-class classifiers. This classifier is also capable of

applying error correcting output codes for increased accuracy.

If the base classifier cannot handle instance weights, and

they are not uniform, the data will be resampled with

replacements based on the weights before being passed to the

base classifier, similarly to the filtered classifier [68].

 5.1.4.8 Multi Scheme

This class is used to select a classifier from among several

using cross validation or the performance on the training data

[69].

 5.1.4.9 Random Committee

Random Committee is a class for building an ensemble of base

classifiers. Each base classifier is built using a different

random number of seed based on the same data. The final

prediction is an average of the predictions generated by each

individual base classifier [70].

 5.1.4.10 Randomizable Filtered Classifier

Randomizable filtered classifier is a class for running any

classifier on data that has been passed through any filter.

The structure is based solely on the training data for both

the classifier and the filter, and the test instances will be

processed without changing their structure [71]. This is

similar to the filtered classifier but allows for randomising.

 5.1.4.11 Random Sub space

Random subspace constructs a decision tree-based classifier

that maintains the highest accuracy on the training data and

improves on generalisation accuracy as it grows in complexity.

The classifier consists of multiple trees constructed

systematically by pseudo-randomly selecting subsets of

components of the feature vector, that is, trees constructed

in randomly chosen subspaces [72].

 5.1.4.12 Stacking

Stacking combines several classifiers [73]. The base level

models are trained based on a complete training set, then the

meta-model is trained on the outputs of the base level model.

The base level often consists of different leaning algorithms

making it heterogenous more often than not [74].

 5.1.4.13 Vote

The voting classifier works as a wrapper for a set of

different classifiers that are trained and evaluated in

parallel, in order to exploit the different peculiarities of

each algorithm [75]. Data sets are trained using different

algorithms and then ensembled to predict the final output.

This is based on majority voting, using one of two strategies:

• Hard voting/ majority voting: the class that received the

highest number of votes will be chosen

• Soft voting: the probability vector for each predicted

class for every classifier are summed up and averaged.

The winning class is the one corresponding to the highest

value. This only works if the classifiers are well

calibrated, and thus I will not be using this method.

 5.1.4.14 Weighted Instances Handler Wrapper

This method utilises a generic wrapper around any classifier

to enable weighted instances support. It uses resampling with

weights if the base classifier is not implementing the

provided interface, and there are instance weights other than

1.0 present. By default, the training data is passed through

to the base classifier if it can handle the instance weights.

However, it is possible to force the use of resampling with

weights as well [76].

5.1.5 Miscellaneous
Miscellaneous is a very small section of classifiers on Weka.

These are the classifiers that are not rule, tree, function or

meta – based. Nor are they to do with Bayesﾂ theorem.

 5.1.5.1 Input Mapped Classifier

In general, all classifiers take an input and map it to a

class. The input mapped classifier is a wrapper classifier

that deals with training and testing data that are

incompatible by building a mapping between the training data

that a classifier has been built with and the test dataﾂs
structure. Attributes in the model that are not found in the

incoming instances receive missing values, as do incoming

nominal attribute values that the classifier has not seen

before [77].

This would be relevant if I managed to build a model with one

of my two datasets and test it with the other. However, this

was not possible as there just was not enough compatible

attributes. I tested it on my other datasets regardless as

they allowed it.

5.1.6 Rules
Rule-based machine learning identifies, learns, or evolves

rules [78]. This makes these models discriminative.

 5.1.6.1 PART

PART uses partial trees to generate a decision list that is

shown in the output. This is the set of rules that

classification is then based on [79]. It is a separate and

conquer method where it makes a rule, removes the instances

covered by the rule and continues making rules for the

remaining instances. Rules are made via building partial trees

and reading off the rule for the largest leaf.

Due to it being called PART I initially assumed it was related

to CART, which was recommended for my style of machine

learning, but was not available on Weka. As I could not find

any documentation on what PART stands for – unless it is just
for partial tree – I can neither prove nor disprove this
assumption. However, it does not seem to mention regression in

any of its documentation and so it is probably not connected.

 5.1.6.2 Decision Table

Decision Table in Weka is a class for building and using a

simple decision table majority classifier [80].

 5.1.6.3 Jrip

Jrip is also known as Ripper. It implements a propositional

rule learner: Repeated Incremental Pruning to Produce Error

Reduction.

It consists of 2 main stages: building stage and optimizing

stage. The building stage can be broken down into a growing

phase and a prune phase, used in repletion until the

description length of the ruleset and example is significantly

larger than any previous description length, or there are no

positive examples, or the error rate >= 50% [81].

 5.1.6.4 OneR

OneR is short for one rule. It generates one rule for each

predictor in the data, then selects the rule with the smallest

total error as its ﾁone ruleﾂ. To create a rule for a
predictor a frequency table for each predictor against the

target is generated [82]. Described by Weka as using the

minimum error attribute for prediction, discretising numeric

attributes [83].

5.1.7 Trees
Tree-based machine learning is similar to rule based, as it

divides data into classes based on how it fits into certain

rules. This means it is also discriminative in its models.

 5.1.7.1 Random Forest

Random forest is an extension of bagging; it creates a forest

of random trees [84]. It is a meta estimator that fits a

number of decision tree classifiers on various sub samples

from the dataset and uses averaging to improve predictive

accuracy and control overfitting [85]. It has a good

reputation as being one of the more accurate models and

therefore was one of the first models I looked at.

 5.1.7.2 Decision Stump

A decision stump is a decision tree which uses a single

attribute for splitting. For discrete attributes this

generally means that the tree is constructed of only an

interior node. If the attribute is numerical the tree may be

more complex [86]. My data consists mainly of numerical data

and so this may slow the algorithm down, but it is a good

model to avoid overfitting. It is usually used as a weak

learner in conjunction with a boosting algorithm, so I do not

expect much from it by itself.

 5.1.7.3 Hoeffding Tree

This model is an incremental, anytime decision tree induction

algorithm that can learn from massive data streams – assuming
that the distribution, generating examples, does not change

overtime. This would be particularly useful for my model if I

can generate some code to automatically format the network

traffic for the model and thus categorise the traffic in real-

time.

Hoeffding trees exploit the fact that a small sample can often

be enough to choose an optimal splitting attribute. This is

based on the Hoeffding bound which quantifies the number of

operations needed to estimate some statistic within a

prescribed precision. One key benefit of this model is that it

has sound guarantees of performance [87].

 5.1.7.3 J48

J48 is a Java implementation of the C4.5 algorithm. It
produces a decision tree based on information theory. This
assumes the best attribute to split on is the attribute with
the greatest information gain [88]. It is said to be one of
the best machine learning algorithms to examine data
categorically and continuously [89], which should make it
ideal if I can deploy my model in real-time to categorise
network traffic.

 5.1.7.4 LMT

LMT is a classifier for building Logistic Model Trees, which

are classification trees with logistic regression functions at

their leaves. The algorithm can deal with binary and

multiclass-target variables [90]. Here I will be using it for

both, depending on the dataset that I use, making it ideal. It

can also deal with numeric and nominal attributes, of which I

have both.

 5.1.7.5 Random Tree

This model constructs a tree that considers K randomly chosen

attributes at each node and performs no pruning. It has an

option to allow estimation of class probabilities based on a

hold-out set (backfitting) [91]. However, I did not look at

this stage into any of the options other than Wekaﾂs default
settings.

 5.1.7.6 REP Tree

REP is a fast decision tree learner. It builds a decision tree

using information gain and prunes it using reduced-error

pruning with backfitting. It only soft values for numeric

attributes once [92], which seeing as I have many numeric

attributes may not be ideal.

5.2 The Data

5.2.1 Comparing the training data set to the testing

data set
With the KDD dataset I had a separate testing and training

file. Therefore, I have compared the two files to see how

similar they are by checking the mean and standard deviation

of each of the numerical attributes.

Testing
set

averages

Testing
Set

standard
devn.

Training
set

averages

Training
Set

standard
devn.

Diff.
between
averages

Diff.
between
standard
devns.

duration 218.8591 1407.177 287.1447 2604.515 68.28557 1197.339

src_bytes 10395.45 472786.4 45566.74 5870331 35171.29 5397545

dst_bytes 2056.019 21219.3 19779.11 4021269 17723.1 4000050

land 0.000311 0.017619 0.000198 0.014086 0.000112 0.003533

wrong_fragment 0.008428 0.142599 0.022687 0.25353 0.014259 0.110931

urgent 0.00071 0.036473 0.000111 0.014366 0.000599 0.022107

hot 0.105394 0.928428 0.204409 2.149968 0.099015 1.22154

num_failed_logins 0.021647 0.150328 0.001222 0.045239 0.020424 0.105089

logged_in 0.442202 0.496659 0.395736 0.48901 0.046466 0.007649

num_compromised 0.119899 7.269597 0.27925 23.94204 0.159351 16.67245

root_shell 0.00244 0.049334 0.001342 0.036603 0.001098 0.012731

su_attempted 0.000266 0.02106 0.001103 0.045154 0.000837 0.024094

num_root 0.114665 8.041614 0.302192 24.39962 0.187527 16.358

num_file_creations 0.008738 0.676842 0.012669 0.483935 0.003931 0.192907

num_shells 0.001153 0.048014 0.000413 0.022181 0.000741 0.025833

num_access_files 0.003549 0.067829 0.004096 0.09937 0.000547 0.03154

num_outbound_cmds 0 0 0 0 0 0

is_host_login 0.000488 0.022084 7.94E-06 0.002817 0.00048 0.019267

is_guest_login 0.028433 0.166211 0.009423 0.096612 0.019011 0.069599

count 79.02834 128.5392 84.10755 114.5086 5.07921 14.03064

srv_count 31.12438 89.06253 27.73789 72.63584 3.386491 16.42669

serror_rate 0.102924 0.295367 0.284485 0.446456 0.181561 0.151089

srv_serror_rate 0.103635 0.298332 0.282485 0.447022 0.17885 0.148691

rerror_rate 0.238463 0.416118 0.119958 0.320436 0.118505 0.095682

srv_rerror_rate 0.235179 0.416215 0.121183 0.323647 0.113995 0.092568

same_srv_rate 0.740345 0.412496 0.660928 0.439623 0.079417 0.027127

diff_srv_rate 0.094074 0.259138 0.063053 0.180314 0.031021 0.078823

srv_diff_host_rate 0.09811 0.253545 0.097322 0.25983 0.000789 0.006285

dst_host_count 193.8694 94.03566 182.1489 99.20621 11.72047 5.17055

dst_host_srv_count 140.7505 111.784 115.653 110.7027 25.09753 1.081231

dst_host_same_srv_
rate 0.608722 0.435688 0.521242 0.448949 0.08748 0.013261
dst_host_diff_srv_
rate 0.09054 0.220717 0.082951 0.188922 0.007589 0.031795
dst_host_same_src_
port_rate 0.132261 0.306268 0.148379 0.308997 0.016118 0.002729
dst_host_srv_diff_
host_rate 0.019638 0.085394 0.032542 0.112564 0.012904 0.02717
dst_host_serror_ra
te 0.097814 0.273139 0.284452 0.444784 0.186639 0.171645
dst_host_srv_serro
r_rate 0.099426 0.281866 0.278485 0.445669 0.179059 0.163803
dst_host_rerror_ra
te 0.233385 0.387229 0.118832 0.306557 0.114553 0.080671
dst_host_srv_rerro
r_rate 0.226683 0.400875 0.12024 0.319459 0.106443 0.081415

AVERAGE 345.239 13048.93 1738.082 260385.8 1394.998 247338.5

STDEV 1707.502 76672.15 7974.424 1139642 6318.537 1075642
Figure 5: Comparing KDD Testing and Training Dataset Values

It was only through this that I noticed that num_outbound_cmds

was, in this dataset, a pointless attribute as in neither

testing nor training did it have any values. This might change

with other data if it is used in the future, but without

adding data to the training set this will do nothing to

classify the traffic.

I was unable to do this with the UNSW dataset as I was having

to use Wekaﾂs splitting function on one file and so was unable
to compare the mean and standard deviations as I do not know

what values would be sorted into each purpose.

5.2.2 Comparing Attributes
I then compared the attributes of the datasets using Pearsonﾂs
Correlation Coefficient. The issue with this was that

Pearsonﾂs only works on numerical data, but the labels for my
data were only nominal.

5.2.2.1 KDD Dataset

Therefore, for the KDD dataset I made the labels binary, 1 for

anomalous data, and 0 for normal data. For the three other

nominal attributes I found their most common values and used

those as binary values for comparison in Pearsonﾂs. While this
does not show the impact of the attribute as whole it gives a

guidance on how important the attribute is.

To directly compare the different coefficient values (to find

the most important attributes for classification) I found the

absolute values of the coefficients, as whether it is a

negative or positive correlation does not matter in this

context – only the magnitude does.

In order to interpret the results, I used Deborah J. Rumseyﾂs
guidelines [93]. These state that around 0.5 is a moderate

relationship, around 0.3 is a weak relationship, around 0.7 is

a strong relationship, 1 is absolute, and 0 demonstrates no

relation between the arrays. I have indicated these

interpretations using colours in the chart below:

Figure 6: KDD Magnitude of Pearson’s Correlation

This indicates that the SF flag has a strong correlation to

whether the data is benign or malicious, along with the values

of logged_in, serror_rate, srv_rerror_rate, same_srv_rate,

dst_host_srv_count, dst_host_same_srv_rate,

dst_host_serror_rate, dst_host_srv_serror_rate.

Therefore, I would presume the flag attribute, and the others

mentioned above are the essential attributes for the machine

learning program to discriminate between malicious and benign

network traffic.

 5.2.2.2 UNSW Dataset

The issue with the UNSW dataset is that the label attribute

was both nominal and had ten different values. I could not

assign them numerical values of 0 to 9 as this would suggest

that some values were closer to another than to others and

bias the results. Instead I looked at each type of attack

individually: using binary values to show for each record

whether it is a selected type of attack. This meant finding

ten Pearson Correlation Coefficient values for each other

attribute.

On top of this I had another 3 nominal attributes. For these I

took the binary value of whether or not they were roughly the

modal attribute or not. For the protocol attribute around 46%

of the records were TCP, and around 36% were UDP. As such, I

looked at these two values individually. For the service

attribute the majority of the records (54%) had a null value,

and therefore I tested how much of an impact a value there had

on its classification. Finally, the state attribute was

composed of 47% INT and 43% FIN values, and so I tested the

presence of these as binary variables.

These results were rather interesting as it was astonishing

how low the correlation was for all attributes for some of the

attack types. This is shown below:

Figure 7: UNSW Magnitude of Pearson’s Correlation for All Attacks

This shows that only normal and generic had any attributes

that had a strong correlation to their label. It therefore

shows that it is the combination of attributes together that

leads to them being labelled by the machine learning

techniques rather than a particular attribute.

Figure 8: UNSW Maximum Magnitude of Pearson’s Correlation for All Attacks

Therefore, I looked at the maximum correlation each attribute

has to any attack, noting the attributes that are particularly

low are the duration, source packets, destination packets,

source bytes, destination bytes, source loss, destination

loss, etcs.

One thing to note is that the way in which I have used

Pearsonﾂs takes a similar approach to Naïve Bayes, as clearly
some of these attributes will be related to each other, but I

have disregarded this fact for finding only how they relate to

the labels. Furthermore, one reason for the scores being so

low may be because of the relation to a single attack rather

than a group of them. The nominal data makes this dataset

particularly hard to model using Pearsonﾂs.

This is most clearly demonstrated when I take the mean value

from the attacks for all attributes:

Figure 9: UNSW Mean Magnitude of Pearson’s Correlation for All Attacks

This shows a very weak correlation with all attributes, with

only one attribute just making it closer to being fairly weak

(ct_dst_sport_Itm – the number of rows of the same destination
ip address and source port number in 100 rows) rather than

very weak.

However, it is still interesting to look at which attribute

has the strongest correlation to each attack on an individual

basis, even though most of these correlations are very weak.

Figure 10: UNSW Magnitude of Pearson’s Correlation for Analysis Attack

An analysis attack uses active reconnaissance, scanning a

network in some manner but not exploiting vulnerabilities.

This consists of attacks such as port scans, vulnerability

scans, spam files and footprinting [94].

For the Analysis attack the ct_flw_http_mthd (number of

methods such as Get and Post in http service) attribute stands

out significantly from the rest of the attributes, and though

it is still a weak correlation, the difference from the rest

of the attributes is noteworthy. This will be because in

attacks such as port scans the system will send GET requests

to find port numbers of various machines.

Figure 11: UNSW Magnitude of Pearson’s Correlation for Backdoor Attack

A backdoor attack utilizes a technique where attackers use a

legitimate system portal to gain illicit access. Backdoors use

malicious software to install themselves in a computer system

and provide remote access to attackers as part of an exploit

[94].

With the backdoor attack every Pearson value is less than

0.09, which is very weak, and could mean that the attributes

have nothing to do with the classification. However, there are

still some clear differences from one attribute to the next;

with the absence of a service specified topping the charts.

Perhaps suggesting if I tried some of the variations of

attacks this would have a higher correlation, but there are

very few occurrences of these and so at the time this seemed

unimportant.

Figure 12: UNSW Magnitude of Pearson’s Correlation for DoS Attack

DoS attacks are described earlier in my attack portfolio. They

compromise a machine with several illegitimate connection

requests to make the network resources unavailable to its

intended users [94]. These a particularly hard to detect and

prevent but they can be stopped when in progress and thus

particularly important for this system to detect.

DoS still had a very weak correlation for each attribute, but

the magnitude of its correlation did prevail over the Backdoor

attack; with the highest attribute scoring a magnitude of 0.19

for UDP being the protocol. Again, this is a nominal attribute

where I did not test all values and thus may be something to

look into.

Figure 13: UNSW Magnitude of Pearson’s Correlation for Exploits Attack

Exploit attacks are generally achieved by targeting and

compromising known vulnerabilities which exist in operating

systems [94].

Exploits has some moderately weak results rather than just

very weak. The highest result once more coming from the

protocol attribute with the value UDP. This makes me very

curious about these nominal values. There were also another 8

attributes that had a value closer to 0.3 than 0.

Figure 14: UNSW Magnitude of Pearson’s Correlation for Fuzzers Attack

Using Fuzzers is an attack that uses massive amounts of

randomised data (fuzz) to trigger a failure of a network or

make an attempt to crash important servers on a network [94].

The Fuzzers attack luckily had some values that were not in

the very weak category. Despite the correlation still being

weak this gave some hope to the interpretation of the data. Of

the six attributes that had a value above 0.2 again one of

them was a nominal attribute: the value of the service. But

the largest correlation was from dttl (destination to source

time live). I cannot fathom how the ﾁfuzzﾂ would impact this
and so it is interesting to note.

Figure 15: UNSW Magnitude of Pearson’s Correlation for Generic Attack

Generic attacks are based on cyphers, essentially performing a

collision attack on the secret key generated by the

cryptographic principles. This can be applied to block,

stream, and message authentication code (MAC) cyphers [94].

These attacks were one of the only results that showed

positive results with some of the attributes having a very

strong correlation. The very strong correlation attributes

were ct_srv_dst, ct_dst_src_ltm, ct_dst_sport_ltm,

ct_src_dport_ltm, and ct_srv_src – all numeric attributes that
are all counts of rows that had something in common within 100

rows [94]. This is likely to the brute-force nature of the

attack in attempting to find the secret key.

But another value that was reasonably high in correlation that

I want to note is once again the nominal attribute of

protocol, with whether it has the value of UDP or not. If I

had a way to evaluate the nominal values without altering them

to binary, I may find some stronger correlations.

However, it is interesting to note that Generic is the only

actual attack that shows strong correlations to attributes,

the only other label showing a strong correlation is the

benign data (normal). Thus, generic clearly stands out against

other attacks types.

Figure 16: UNSW Magnitude of Pearson’s Correlation for Normal Traffic

The normal/ benign data has one strong correlation from sttl,

(the source to destination time to live). It has only 2

moderately strong attribute to label correlations: the state

being INT or not, and ct_state_ttl (the number of each state

according to values of sttl and dttl). These 3 are all clearly

related.

This shows the importance of at least one of these attributes

in identifying normal data from malicious data in this

dataset. Unfortunately, this does not compare to any

attributes in the KDD dataset that I can identify, and so I

cannot check for similarities.

Figure 17: UNSW Magnitude of Pearson’s Correlation for Reconnaissance Attack

Reconnaissance attacks in this context are passive

reconnaissance (analysis attacks are not included; they are

active reconnaissance). They collect preliminary information

about any public network or target host and use exploit

techniques to penetrate by leveraging the gathered information

[94].

Unfortunately this is another attack with only very weak

correlations, which means they probably do not signify

anything, but I do note that once again one of the peaks comes

from a nominal attribute – service – suggesting that maybe the
inclusion of all the values of this might make a difference.

Figure 18: UNSW Magnitude of Pearson’s Correlation for Shellcode Attack

Shellcode attacks are a subset of the exploit attacks and thus

we would expect similar patterns between the two. It utilises

a small piece of code as a payload of an attack. The malicious

code is injected into an active application and compromises /

gains access to a victimﾂs computer. Typically, this starts a
command shell to control the compromised machine [94].

In terms of correlation, the shellcode attack is similar to

reconnaissance, with the data having a very weak correlations

to the attack, but again the service type is a clear peak in

this data. This may mean nothing, as it is a very weak

correlation, but once again leads me to question whether other

values of the nominal attribute might make a bigger

difference. It varies from exploit attacks in correlation –
despite being a subset – showing why it is classified
separately from other exploit attacks as its correlations are

much weaker.

Figure 19: UNSW Magnitude of Pearson’s Correlation for Worms Attack

A Worm is a malicious attack which spreads through network

propagation and infects a larger network than other attacks,

typically much quicker. It can also infect computers and turn

them into zombies or bots to do the attackers bidding –
normally to perform distributed attacks through the formation

of botnets [94].

The worms attack has probably the weakest correlation of all

the attack types, comparable only to analysis and backdoor

attacks in how weak it is. As such, there is very little I can

say about it. However, this does highlight that it does stand

out against normal traffic, and so even if it is hard to

classify itself, we can tell that it is malicious to detect it

and stop it from propagating further.

Figure 20: UNSW Magnitude of Pearson’s Correlation for Analysis, Backdoor, Worms Attack

I decided to compare the three attacks types with overall

weakest correlations to visualise just how insignificant the

majority of their correlations are.

5.3 Results of Machine Learning
When I ran the 38 different classifier models, I took note of their

precision, recall f-measure, and time to build in order to find the

best classifier for my data.

5.3.1 KDD Dataset
With the KDD dataset this was easy enough, using the training

set to train the model and the testing set to test it. These

are the results I got:

Classifier
Name

Time to
build
model Precision Recall F-measure

Time to
test
model

function SGD 68.96 0.805 0.759 0.758 1.22

tree Random Forest 133.28 0.805 0.759 0.758 2.58

bayes Naïve Bayes 1.57 0.809 0.761 0.759 1.65

meta AdaBoost M1 41.41 0.834 0.784 0.783 0.49

rules PART 87.67 0.856 0.813 0.812 0.69

bayes Bayes Net 9.52 0.822 0.744 0.739 1.32

bayes
Naïve Bayes
Updatable 1.84 0.809 0.761 0.759 2.52

function Logistic 114.84 0.804 0.756 0.754 0.46

function SGD Text 12.58 ? 0.431 ? 0.28

function
Simple
Logistic 140.37 0.798 0.746 0.743 0.44

function SMO 1658.74 0.802 0.754 0.752 0.4

function
Voted
Perceptron 25.45 0.286 0.412 0.335 69.39

lazy Ibk 0.05 0.841 0.794 0.792 280.9

lazy Kstar 0.02 0.837 0.777 0.774 18722.21

0

0.05

0.1

0.15

0.2

0.25
d

u
r

p
ro

to
:

T
C

P

p
ro

to
:

U
D

P

se
rv

ic
e

:
-

st
a

te
:

IN
T

st
a

te
:

F
IN

sp
k
ts

d
p

k
ts

sb
y
te

s

d
b

y
te

s

ra
te

st
tl

d
tt

l

sl
o

a
d

d
lo

a
d

sl
o

ss

d
lo

ss

si
n

p
k
t

d
in

p
k

t

sj
it

d
ji

t

sw
in

st
cp

b

d
tc

p
b

d
w

in

tc
p

rt
t

sy
n

a
ck

a
ck

d
a

t

sm
e

a
n

d
m

e
a

n

tr
a

n
s_

d
e

p
th

re
sp
on

se
_b

od
y_
l…

ct
_

sr
v

_
sr

c

ct
_

st
a

te
_

tt
l

ct
_

d
st

_
lt

m

ct
_

sr
c_

d
p

o
rt

_
lt

m

ct
_

d
st

_
sp

o
rt

_
lt

m

ct
_

d
st

_
sr

c_
lt

m

is
_

ft
p

_
lo

g
in

ct
_

ft
p

_
c
m

d

ct
_

fl
w

_
h

tt
p

_
m

th
d

ct
_

sr
c_

lt
m

ct
_

sr
v

_
d

st

is
_

sm
_

ip
s_

p
o

rt
s

Analysis vs Backdoor vs Worms Attacks

Analysis Backdoor Worms

lazy LWL 0.08 timeout timeout timeout timeout

meta

Attribute
Selected
Classifier 15.19 0.826 0.762 0.758 0.3

meta

Classificatio
n via
Regression 67.37 0.808 0.77 0.769 0.72

meta
Filtered
Classifier 8.38 0.826 0.762 0.758 0.48

meta

Iterative
Classifier
Optimizer 177.03 0.797 0.747 0.745 1.13

meta Logit Boost 20.17 0.797 0.747 0.745 0.48

meta
Multi-Class
Classifier 84.73 0.804 0.756 0.754 0.43

meta Multi-Scheme 0.19 ? 0.431 ? 0.25

meta
Random
Committee 12.55 0.849 0.8 0.798 0.4

meta

Randomizable
Filtered
Classifier 0.54 0.775 0.72 0.716 91.84

meta
Random Sub
Space 34.32 0.816 0.779 0.778 0.37

meta Stacking 0.49 ? 0.431 ? 0.17

meta Vote 0.02 ? 0.431 ? 0.14

meta

Weighted
Instances
Handler
Wrapper 0.02 ? 0.431 ? 0.11

misc
Input Mapped
Classifier 0.02 ? 0.431 ? 0.43

rules
Decision
Table 119.32 0.814 0.726 0.718 0.27

rules Jrip 176.82 0.836 0.774 0.771 0.24

rules OneR 1 0.851 0.814 0.814 0.16

tree
Decision
Stump 1.98 0.841 0.8 0.799 0.16

tree
Hoeffding
Tree 3.55 0.812 0.772 0.771 0.37

tree J48 25.01 0.858 0.815 0.815 0.2

tree LMT 698.69 0.86 0.823 0.823 0.49

tree Random Tree 1.7 0.837 0.814 0.814 0.63

tree REP Tree 7.62 0.835 0.815 0.816 0.36
Figure 21: Classifier performance for KDD dataset

This has the values colour coded on a scale from green for the

best values to red for the worst values.

It is clear that the best model for precision, recall and f-

measure is the LMT tree, closely followed by the J48 tree.

However, the LMT tree is significantly slower than the J48

tree, taking a lot longer to build and to test the model.

As their values for precision, recall and f-measure are so

close, and both give good results, I would suggest that the

best model for this data is the J48 model. This allows the

model to be rolled out and potentially analyse traffic as it

happens, to allow quick response by a cyber forensics team /

first responder.

With this issue, speed is particularly important to be able to

detect malicious traffic as early as possible before it causes

too much trouble. However, its precision is also vital to

ensure as few false positives as possible – as to not waste a
cyber forensics teamﾂs time when they could be focused on
other aspects – and to minimise false negatives as to not
allow malicious traffic to break through the system.

I also find it interesting that the majority of the best

results come from tree models – with some exceptions. This
shows the way the attributes work together to best build a

model.

5.3.2 UNSW Dataset
The UNSW dataset had some issues with compatibility between

the provided training and testing set. It also was too large

for Weka to handle on my laptop. As such I used just the

testing dataset provided, as it was the larger of the two, and

used Wekaﾂs split function to split the data 66% to 34%. These
are the results I got:

Classifier
Name

Time to
build
model Precision Recall F-measure

Time to
test
model

function SGD n/a n/a n/a n/a n/a

tree Random Forest 108.99 0.868 0.873 0.868 2.88

bayes Naïve Bayes 2.81 0.722 0.517 0.567 17.93

meta AdaBoost M1 12.89 ? 0.533 ? 0.43

rules PART 8455.4 0.816 0.82 0.811 3.05

bayes Bayes Net 17.34 0.831 0.721 0.752 2.46

bayes
Naïve Bayes
Updatable 4.41 0.722 0.517 0.567 11.66

function Logistic timeout timeout timeout timeout timeout

function SGD Text n/a n/a n/a n/a n/a

function
Simple
Logistic timeout timeout timeout timeout timeout

function SMO timeout timeout timeout timeout timeout

function
Voted
Perceptron timeout timeout timeout timeout timeout

lazy Ibk 0.08 0.753 0.765 0.755 1097.98

lazy Kstar 0.56 timeout timeout timeout timeout

lazy LWL 0.03 timeout timeout timeout timeout

meta

Attribute
Selected
Classifier 41.78 0.822 0.822 0.799 0.2

meta

Classificatio
n via
Regression n/a n/a n/a n/a n/a

meta
Filtered
Classifier 15.11 0.833 0.828 0.804 0.62

meta

Iterative
Classifier
Optimizer timeout timeout timeout timeout timeout

meta Logit Boost 248.54 ? 0.785 ? 0.39

meta
Multi-Class
Classifier 2905.69 0.778 0.775 0.759 2.93

meta Multi-Scheme 0.73 ? 0.319 ? 0.51

meta
Random
Committee 33.56 0.817 0.823 0.812 2.16

meta

Randomizable
Filtered
Classifier 1.74 0.659 0.668 0.66 373.29

meta
Random Sub
Space NEM NEM NEM NEM NEM

meta Stacking 1.54 ? 0.319 ? 0.9

meta Vote 0.05 ? 0.319 ? 0.48

meta

Weighted
Instances
Handler
Wrapper 0.02 ? 0.319 ? 0.28

misc
Input Mapped
Classifier 0.02 ? 0.319 ? 0.49

rules
Decision
Table 318.09 0.795 0.806 0.782 1.19

rules Jrip NEM NEM NEM NEM NEM

rules OneR 3.68 ? 0.767 ? 0.22

tree
Decision
Stump 4.7 ? 0.533 ? 0.27

tree
Hoeffding
Tree 18.37 ? 0.687 ? 4.83

tree J48 116.79 0.831 0.832 0.811 0.99

tree LMT NEM NEM NEM NEM NEM

tree Random Tree 4.85 0.793 0.799 0.791 1

tree REP Tree 26.97 0.816 0.824 0.806 0.5
Figure 22: Classifier performance for UNSW dataset

As you can see a lot of the models did not work on this

dataset. NEM cells represent where the heap ran out of memory

due to the limit on the amount I could allocate on my laptop,

and many of the models outputted a ﾁ?ﾂ as the values, being
unable to calculate them. As such the choices for models for

this data set were more limited.

However, despite the loose correlation seen for this data set

I did get some reasonable results. Most notably from the

Random Forest Tree. It was not as quick as I would have

preferred, but it computed in what was still a reasonable

amount of time for its precision of 0.868, recall of 0.873 and

f-measure of 0.868.

With more heap space I might have been able to find a better

model, but this dataset had 10 different labels to classify

to, and thus needed more memory to separate the records.

5.3.3 Comparison between Datasets
The J48 tree that prevailed for the KDD dataset was not as

strong for the UNSW dataset, and the LMT tree would not even

compute in the allocated memory space. Comparatively, the

Random Forest Tree does not stand out initially in the KDD

dataset. Therefore, to find the best model for the combination

of the two datasets (even though the current attributes make

them incompatible), I took the average for each measure

between the two models for the models that had values for both

datasets:

 Classifier Name

Time to
Build
model Precision Recall F-measure

Time to
Test
Model

tree Random Forest 121.135 0.8365 0.816 0.813 2.73

bayes Naïve Bayes 2.19 0.7655 0.639 0.663 9.79

rules PART 4271.535 0.836 0.8165 0.8115 1.87

bayes Bayes Net 13.43 0.8265 0.7325 0.7455 1.89

bayes
Naïve Bayes
Updatable 3.125 0.7655 0.639 0.663 7.09

lazy Ibk 0.065 0.797 0.7795 0.7735 689.44

meta

Attribute
Selected
Classifier 28.485 0.824 0.792 0.7785 0.25

meta
Filtered
Classifier 11.745 0.8295 0.795 0.781 0.55

meta
Multi-Class
Classifier 1495.21 0.791 0.7655 0.7565 1.68

meta Random Committee 23.055 0.833 0.8115 0.805 1.28

meta

Randomizable
Filtered
Classifier 1.14 0.717 0.694 0.688 232.565

tree J48 70.9 0.8445 0.8235 0.813 0.595

tree Random Tree 3.275 0.815 0.8065 0.8025 0.815

tree REP Tree 17.295 0.8255 0.8195 0.811 0.43
Figure 23: Median Classifier Performance for both Datasets

This shows J48 and Random Forest, along with PART as the three

best classifiers for the average of the datasets in terms of

precision, recall and f-measure. But unfortunately, PART has a

significantly longer time to build the model, making it non-

optimal for the implementation.

OF Random Forest and J48, J48 has the best times, and just

about better scores for precision, recall and f-measure as

well. Indicating it might be the best model for both (based on

a median measure of average).

Looking instead at a mean average between the two datasets I

get these results:

 Classifier Name

Time to
Build
model Precision Recall F-measure

Time to
Test
Model

Tree Random Forest 120.5246 0.835907 0.814007 0.811137 2.725876

Bayes Naïve Bayes 2.100405 0.764263 0.627246 0.656013 5.439164

Rules PART 860.979 0.835761 0.816492 0.8115 1.450689

Bayes Bayes Net 12.84822 0.826488 0.73241 0.745472 1.801999

Bayes
Naïve Bayes
Updatable 2.848579 0.764263 0.627246 0.656013 5.420627

Lazy Ibk 0.063246 0.795785 0.779365 0.773279 555.3581

Meta

Attribute
Selected
Classifier 25.19203 0.823998 0.791432 0.77823 0.244949

Meta
Filtered
Classifier 11.25264 0.829493 0.794315 0.780661 0.545527

Meta
MultiClassClassif
ier 496.1846 0.790893 0.765441 0.756496 1.122453

Meta RandomCommittee 20.52262 0.832846 0.811419 0.80497 0.929516

Meta
RandomizableFilte
redClassifer 0.96933 0.71465 0.693513 0.68743 185.1566

Tree J48 54.04552 0.844392 0.823456 0.812998 0.444972

Tree RandomTree 2.871411 0.814703 0.806465 0.802418 0.793725

Tree REP Tree 14.33567 0.825445 0.819488 0.810985 0.424264
Figure 24: Mean Classifier Performance for both Datasets

This supports the findings from the median average, thus

indicating that J48 would be the best choice in future work

for combining the two datasets, if there is a way to find more

compatible attributes.

Another interesting thing to note is while the KDD dataset has

good precision, recall and f-measure values for a large

proportion of models, which is a sharp contrast from the UNSW

mode, its best results are reasonably lower than that of the

UNSW model. This is particularly interesting seeing as the

Pearson Correlation indicated that it might be difficult to

classify the data for the UNSW dataset as so many of the

coefficients were so low. Therefore, there was definitely more

to the data than comparing one attribute at a time to the

individual label indicated.

6. Conclusion and Future Work

6.1 Conclusion
Overall, this project was a lot more complicated than I initially

considered due to a number of reasons, a main one being the vast

volume of data that machine learning requires. Many times, during

the project my laptop struggled with the requirements it needed,

sometimes even smelling of burning. Despite this I was able to run

the majority of the classifiers.

This study indicates that J48 trees are the best at classifying

network traffic overall – particularly for whether it is benign or
malicious. It also demonstrates that the source to destination time

to live is an important attribute, that should be present if you

wish to classify this data. Along with: logged_in, serror_rate,

srv_rerror_rate, same_srv_rate, dst_host_srv_count,

dst_host_same_srv_rate, dst_host_serror_rate and

dst_host_srv_serror_rate. Although the relation between some of

these attributes must be considered also.

The penetration testing part of the project went the smoothest. It

was very interesting bypassing different safety measures a site had

in place, where they had not got complete security but had clearly

considered it. I should have learnt how to make a script to perform

the attacks for me; instead, I manually attacked each web app

myself. Whilst this meant I did not have enough data for building my

machine learning model it did allow more in depth learning of each

attack and for me to see different ways a web app may respond to

allow malicious activity to take place.

My machine learning model works reasonably well but the different

attributes between datasets unfortunately led to compatibility

issues. This signifies the issues of using external datasets rather

than collating my own. It also means I do not have the know how to

collate these attributes from recorded traffic. It would clearly

need another script due to the vast volume of data. However, using

these datasets meant I had more than enough data to build an

accurate model – despite the UNSW correlation measures.

Despite the challenges I faced, I was still able to achieve the

majority of my objectives in some capacity, the only exception was

building my own web app as I deemed this of less significance.

6.2 Future Work
To improve my classifier, I would build a script to perform my own

attacks and translate the network data into a format for the

classifier. This would allow me to run it on live network data,

having a script to feed the data into the classifier, and therefore,

identifying ongoing attacks, and being able to deploy first

responders to stop them.

Furthermore, to allow my classifier to work for unknown attacks or

be future proof, it would have to be unsupervised (thus work through

clustering, not classifying). This would mean that the attacks would

not be labelled but would spot new activity that did not fit in any

of the pre-existing classes. The issue with this would be that a

security team would then have to identify the attack type

themselves, losing valuable time in stopping the ongoing attack.

Therefore, in future work I would like to make this classifier semi

supervised. This would mean that in training, it would take both

labelled and unlabelled data [95]. Hopefully, from this the machine

would label test data where it can, but where this is not possible,

sort it into an appropriate cluster. This would mean that known

attacks would be identified for response, and new, unidentified

attacks would still be flagged rather than falling through the gaps.

Another aspect I would like to do with implementing my data is to

first classify it into malicious or benign and then take the

malicious data and classify it into attack types. This would act

similarly to the semi-supervised approach. The classifier was in

general quicker for classifying between the two labels – normal or
anomalous – than the ten attack labels. Therefore, this would
guarantee a more efficient classification to identify malicious

traffic and reduce the amount of data for the slower attack type

classifier to sort through.

This layered approach would not only be more efficient but also

should be easier to display the results in a graphical way. This is

because normal data is filtered out allowing a clean breakdown of

actual attacks. Seeing this breakdown would allow security teams to

see where they might have a vulnerability.

Finally, in future iterations of this project I would like to

implement the attacks names to be the attacks like XSS that I have

studied, rather than the nine labels provided in the UNSW dataset.

This is particularly useful for exploit attacks, where known

vulnerabilities are used, as more detailed attack labels will allow

for easier identification of the vulnerabilities.

7. Reflection on Learning

7.1 What I have learnt
During the progression of this project I have learnt lots of

abstract skills such as how to do a large project, how to deal

with adverse circumstances (as described below) and developed

my time management, to keep on schedule even when things do

not go to plan, or plans change.

Through this, I have learnt how to look at the bigger picture

despite focusing on individual tasks at a time, to ensure that

despite my perfectionist tendencies, I did not take too long

on any one aspect of the project.

I think I initially spent too long on my penetration testing,

trying to explore as much as possible, but only looked at the

manual aspects of this. I then took too long to ask for

additional guidance when I came to the machine learning part

of the project, as I was not aware just how much data I needed

until many weeks into working on this – making time management
extremely difficult. Therefore, I have learnt to ask for help

as soon as possible when it is needed, and to ensure I

understand what I need to achieve before I begin undertaking a

project.

On a more technical note, I have learnt about penetration

testing, machine learning and web applications. As I am

particularly interested in penetration testing, I found this a

very interesting subject to study.

I am now very adept at performing XSS attacks in particular,

along with various other attacks on web apps. This has taught

me both about the attacks themselves, and vulnerabilities –
allowing me to now (with some ease) identify vulnerabilities

that can be exploited by an attacker. This skill will help

with many aspects of my future career, whether it be in

forensics – identifying attacks after the fact and stopping
them in progress – or security – preventing them from
happening in the first place.

Furthermore, I have a much more thorough understanding of

machine learning. I was a complete novice in this area at the

beginning of this project – having only studied the theory of
artificial intelligence previously. Now I have run 38

different models of machine classifiers – and I understand
each of them to at least a basic level.

Another topic which was rather new to me was statistical

analysis – particularly the use of Pearsonﾂs Correlation

Coefficient. I can now apply this to a large volume of data as

seen in my results.

There is still lots of room for me to learn more, but this

project has clearly been very educational in many aspects.

7.2 Challenges
Throughout the process I faced multiple challenges.

One of the biggest challenges was the fact that I could not

collect enough data from my own manual penetration testing,

nor could I work out how to get it in the right form to best

use its data. I had not realised that it would have been

better to use a script rather than manually performing each

attack individually. I now know this would have been a better

approach, but this realisation came too late in the process. I

overcame this by using the penetration testing to learn about

the attacks and how to perform them and then using online

datasets to actually build my classifier.

Another challenge was the outbreak of Covid-19. This meant I

had to run everything from my laptop as other resources, like

the universityﾂs labs and libraries were closed. This was
particularly hard in building the machine classifier as my

laptop has limited processing power, and it also struggled

with heap size. Despite this, by leaving my laptop running

overnight on a few occasions, I was able to test most

classifier models. The heap memory was still however an issue

in some cases (as seen in the results table labelled as

ﾁNEMﾂ). I did increase my heap size as much as I could in
environment variables, but it was more than my laptop could

handle.

A related issue I found was that the UNSW dataset was too

large for my laptop to deal with in Weka, and thus instead of

using the training and testing set as appropriate, I used the

testing set, and used Weka to split it 66% to 34%. This could

have affected the accuracy, but there was enough data, and the

split meant that the data used for training was not used for

testing.

Another challenge was the large size of the datasets. This

meant that when performing analysis on the data on Excel it

crashed a few times. This was particularly the case for using

graphs, and so I had to copy the data I needed to create a

graph onto a separate spreadsheet to all Excel to process the

volume of data. On one occasion Excel deleted a dayﾂs work –

despite having saved it throughout – due to the excessive
amount of data, and so this was an import problem to overcome.

7.3 Supervisor Meetings
I had intended to have seven meetings with my supervisor in

the development stage of the project, as specified in my

initial report. As things transpired, I only had 6 meetings.

This was also over a longer period of time than intended as

the development of the machine learning took longer than

allowed for in my initial Gantt chart (figure 1).

One of the issues I did experience with my supervisor meetings

was that only two of them, during the development of the

project, were face to face, with the rest conducted over

Skype. Whilst this still allowed for communication, it was not

quite to the same standard as face to face, and some of the

issues with the project were not picked up on until later than

intended. This could not be avoided due to my supervisor

travelling at the start of term time, and then the outbreak of

Covid-19 and the national lockdown.

Glossary
Heap A Heap is a specialised tree-based data

structure – composed of a complete binary tree.
A heapﾂs memory is allocated dynamically at
runtime, and typically holds program data.

Parsing Parsing is seen as syntactic analysis of input
code, separating it into its component parts.

Credential
stuffing

Credential stuffing is a cyber-attack that uses
automated injection of breached
username/password pairs (often from a data
breach) in order to fraudulently gain access to
user accounts.

Man-in-the-middle
attacks

A Man-in-the-middle attack is where an attacker
intercepts communication between two parties
and relies the data, possibly altering it.

Kernel
approximation

A kernel is the central part of an operating
system, a kernel approximation uses functions
to approximate the feature mappings that
correspond to certain kernels.

Semantic web The semantic web is an extension of the World
Wide Web in which data in web pages is
structures and tagged in a way that can be read
directly by computers.

Table of Abbreviations
IDS Intrusion Detection System
XSS Cross-Site Scripting
SQL Search Query Language
DOS Denial of Service
WAFs Web Application Firewalls
SDT Secure Development Training
Pen Testing Penetration Testing
Web App Web Application
ZAP Zed Attack Proxy
HUD Heads-up Display
IoT Internet of Things
IPS Intrusion Prevention System
CART Classification and Regression Trees
SGD Stochastic Gradient Descent
LWL Locally Weighted Learning
RIPPER Repeated Incremental Pruning to Produce Error

Reduction
ML-kNN Multi-label k-Nearest Neighbour
RAkEL Random k-labelsets Ensemble

Appendices

Appendix 1: Python Code
#Dataset ref: CSIC 2010 HTTP Dataset in CSV Format (for Weka Analysis)

CSIC 2010 HTTP Dataset in CSV Format (for Weka Analysis) (2018). Available
at: https://petescully.co.uk/research/csic-2010-http-dataset-in-csv-format-for-Weka-

analysis/ (Accessed: 5 May 2020).

#imports needed

import pandas as pd
from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

Path of the file to read

data_file_path = r'C:\Users\Alice\OneDrive\Documents\Year 3\Final Year

Project\Datasets\HTTP CSIC Torpeda 2012 dataset\combined.csv'

testData = pd.read_csv(data_file_path)

Create target object and call it y

y = testData.type

Create X

features = ['method', 'protocol', 'path', 'headers', 'query', 'body']
train_x = pd.get_dummies(testData[features])

Split into validation and training data

train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1)

Specify Model

from sklearn.ensemble import RandomForestClassifier

clf_rf = RandomForestClassifier(n_estimators=50)

#fit model

clf_rf.fit(train_x, train_y)

RandomForestClassifier()

Make validation predictions

val_predictions = xlf_rf.predict(val_X)

#check accuracy of predictions
correct = 0

j = 0

for i in val_predictions:

 if i == val_y.get(j):
 correct +=1

 print(j)

 j += 1

print(str(correct) + '/' + str(j))

Appendix 2: Wireshark Packets
See Wireshark packets folder

Appendix 3: KDD Model

KDD model and result buffer stored separately, see files

Appendix 4: UNSW Model

UNSW model and result buffer stored separately, see files

Appendix 5: KDD Dataset

Can be found in Dataset folder.

Raw dataset available at: https://www.unb.ca/cic/datasets/nsl.html

Appendix 6: UNSW Dataset

Can be found in dataset folder.

Raw dataset available at: https://www.unsw.adfa.edu.au/unsw-

canberra-cyber/cybersecurity/ADFA-NB15-Datasets/

References
[1] Your Web Applications Are More Vulnerable Than You Think

Your Web Applications Are More Vulnerable Than You Think (2018).
Available at: https://securityintelligence.com/your-web-applications-are-
more-vulnerable-than-you-think/ (Accessed: 18 April 2020).

[2] 5 Most Common Web Application Attacks (And 3 Security Recommendations) –
MSSP Alert
5 Most Common Web Application Attacks (And 3 Security Recommendations) –
MSSP Alert (2018). Available at: https://www.msspalert.com/cybersecurity-
breaches-and-attacks/5-most-common-web-application-attacks/ (Accessed: 18
April 2020).

[3] What is Penetration Testing | Step-By-Step Process & Methods | Imperva
What is Penetration Testing | Step-By-Step Process & Methods |
Imperva (2020). Available at: https://www.imperva.com/learn/application-
security/penetration-testing/ (Accessed: 18 April 2020).

[4] What is machine learning?
What is machine learning? (2020). Available at:
https://www.technologyreview.com/2018/11/17/103781/what-is-machine-
learning-we-drew-you-another-flowchart/ (Accessed: 19 April 2020).

[5] Machine Learning for Cybersecurity 101
Machine Learning for Cybersecurity 101 (2019). Available at:
https://towardsdatascience.com/machine-learning-for-cybersecurity-101-
7822b802790b (Accessed: 19 April 2020).

[6] Perlman, A. and Perkowski, M.
Perlman, A. and Perkowski, M. (2019) The Growing Role of Machine Learning
in Cybersecurity – SecurityRoundTable.org, SecurityRoundTable.org.
Available at: https://www.securityroundtable.org/the-growing-role-of-
machine-learning-in-cybersecurity/ (Accessed: 19 April 2020).

[7] SQL-IDS | Proceedings of the 2008 ACM symposium on Applied computing
SQL-IDS | Proceedings of the 2008 ACM symposium on Applied
computing (2020). Available at:
https://dl.acm.org/doi/abs/10.1145/1363686.1364201 (Accessed: 25 April
2020).

[8] T. T. Dang and T. K. Dang
T. T. Dang and T. K. Dang (2015) ﾃExtending Web Application IDS
Interface: Visualizing Intrusions in Geographic and Web Space,ﾄ 2015
International Conference on Advanced Computing and Applications (ACOMP),
Ho Chi Minh City, 2015, pp. 28-34.

[9] Agarwal, N. and Hussain, S. Z.
Agarwal, N. and Hussain, S. (2018) ﾃA Closer Look at Intrusion Detection
System for Web Applicationsﾄ, Security and Communication Networks, 2018,
pp. 1-27. Doi: 10.1155/2018/9601357.

[10] US7308716B2 – Applying blocking measures progressively to malicious
network traffic – Google Patents
US7308716B2 – Applying blocking measures progressively to malicious
network traffic – Google Patents (2003). Available at:
https://patents.google.com/patent/US7308716B2/en (Accessed: 26 April
2020).

[11] Hyunsang Choi Korea, Bin B. Zhu, Heejo Lee

(2020) Gauss.ececs.uc.edu. Hyunsang Choi Korea, Heejo Lee
Korea University, Bin B. Zhu Microsoft Research Asia, Available at:
http://gauss.ececs.uc.edu/Courses/c5155/pdf/webapps.pdf (Accessed: 26
April 2020).

[12] materials, M., methods, A. and application, C.
materials, m., methods, a. and application, c. (2006) US20070186282A1 –
Techniques for identifying and managing potentially harmful web traffic –
Google Patents, Patents.google.com. Available at:
https://patents.google.com/patent/US20070186282A1/en (Accessed: 26 April
2020).

[13] Clark, T.
Clark, T. (2020) SAP BrandVoice: Most Cyber Attacks Occur From This
Common Vulnerability, Forbes. Available at:
https://www.forbes.com/sites/sap/2015/03/10/most-cyber-attacks-occur-
from-this-common-vulnerability/#57dfaeeb7454 (Accessed: 12 May 2020).

[14] OWASP WebGoat
OWASP WebGoat (2020). Available at: https://owasp.org/www-project-
webgoat/ (Accessed: 20 April 2020).

[15] OWASP Security Shepherd
OWASP Security Shepherd (2020). Available at: https://owasp.org/www-
project-security-shepherd/ (Accessed: 20 April 2020).

[16] Lim Jet Wee
Lim Jet Wee (2020). Available at: https://www.youtube.com/user/limjetwee
(Accessed: 25 April 2020).

[17] OWASP Top Ten
OWASP Top Ten (2020). Available at: https://owasp.org/www-project-top-
ten/ (Accessed: 22 April 2020).

[18] Porup, J.
Porup, J. (2020) Learn to play defense by hacking these broken web
apps, CSO Online. Available at:
https://www.csoonline.com/article/3319521/learn-to-play-defense-by-
hacking-these-broken-web-apps.html (Accessed: 20 April 2020).

[19] Oracle VM VirtualBox
Oracle VM VirtualBox (2020). Available at: https://www.virtualbox.org/
(Accessed: 20 April 2020).

[21] OWASP Broken Web Applications Project
OWASP Broken Web Applications Project (2020). Available at:
https://sourceforge.net/projects/owaspbwa/ (Accessed: 20 April 2020)

[22] OWASP ZAP
OWASP ZAP (2020). Available at: https://owasp.org/www-project-zap/
(Accessed: 20 April 2020).

[23] Inc., S.
Inc., S. (2020) ZAP in Ten, Alldaydevops.com. Available at:
https://www.alldaydevops.com/zap-in-ten (Accessed: 20 April 2020).

[24] Wireshark · Download
Wireshark · Download (2020). Available at:
https://www.wireshark.org/download.html (Accessed: 20 April 2020).

[25] Learn Intro to Machine Learning Tutorials
Learn Intro to Machine Learning Tutorials (2020). Available at:
https://www.kaggle.com/learn/intro-to-machine-learning (Accessed: 20
April 2020).

[26] scikit-learn: machine learning in Python — scikit-learn 0.22.2
documentation
scikit-learn: machine learning in Python — scikit-learn 0.22.2
documentation (2020). Available at: https://scikit-learn.org/stable/
(Accessed: 20 April 2020).

[27] pandas – Python Data Analysis Library

pandas – Python Data Analysis Library (2020). Available at:
https://pandas.pydata.org/ (Accessed: 20 April 2020).

[28] Weka
Weka (2020). Available at: https://sourceforge.net/projects/Weka/
(Accessed: 20 April 2020).

[29] NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity |
UNB
NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity |
UNB (2020). Available at: https://www.unb.ca/cic/datasets/nsl.html
(Accessed: 20 April 2020).

[30] The UNSW-NB15 data set description
The UNSW-NB15 data set description (2018). Available at:
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-
Datasets/ (Accessed: 20 April 2020)

[31] What is Cross-site Scripting and How Can You Fix it?
What is Cross-site Scripting and How Can You Fix it? (2020). Available
at: https://www.acunetix.com/websitesecurity/cross-site-scripting/
(Accessed: 23 April 2020).

[32] SQL injection
SQL injection (2020). Available at:
https://en.wikipedia.org/wiki/SQL_injection (Accessed: 23 April 2020)

[33] DOS
DOS (2020). Available at: https://en.wikipedia.org/wiki/DOS (Accessed: 23
April 2020).

[34] A2:2017-Broken Authentication | OWASP
A2:2017-Broken Authentication | OWASP (2020). Available at:
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A2-
Broken_Authentication (Accessed: 23 April 2020).

[35] A4:2017-XML External Entities (XXE) | OWASP
A4:2017-XML External Entities (XXE) | OWASP (2020). Available at:
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A4-
XML_External_Entities_(XXE) (Accessed: 23 April 2020).

[36] A3:2017-Sensitive Data Exposure | OWASP
A3:2017-Sensitive Data Exposure | OWASP (2020). Available at:
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A3-
Sensitive_Data_Exposure (Accessed: 23 April 2020).

[37] A5:2017-Broken Access Control | OWASP
A5:2017-Broken Access Control | OWASP (2020). Available at:
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A5-
Broken_Access_Control (Accessed: 23 April 2020).

[38] A8:2017-Insecure Deserialization | OWASP
A8:2017-Insecure Deserialization | OWASP (2020). Available at:
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A8-
Insecure_Deserialization (Accessed: 23 April 2020).

[39] A9:2017-Using Components with Known Vulnerabilities | OWASP
A9:2017-Using Components with Known Vulnerabilities | OWASP (2020).
Available at: https://owasp.org/www-project-top-
ten/OWASP_Top_Ten_2017/Top_10-2017_A9-
Using_Components_with_Known_Vulnerabilities (Accessed: 23 April 2020).

[40] Academy, W.
Academy, W. (2020) What is CSRF (Cross-site request forgery)? Tutorial &
Examples | Web Security Academy, Portswigger.net. Available at:
https://portswigger.net/web-security/csrf (Accessed: 23 April 2020).

[41] The Top 10 Machine Learning Algorithms for ML Beginners
The Top 10 Machine Learning Algorithms for ML Beginners (2019). Available
at: https://www.dataquest.io/blog/top-10-machine-learning-algorithms-for-
beginners/ (Accessed: 27 April 2020).

[42] How to choose machine learning algorithms?

How to choose machine learning algorithms? (2018). Available at:
https://medium.com/@aravanshad/how-to-choose-machine-learning-algorithms-
9a92a448e0df (Accessed: 27 April 2020).

[43] Brownlee, J.
Brownlee, J. (2016) How To Use Classification Machine Learning Algorithms
in Weka, Machine Learning Mastery. Available at:
https://machinelearningmastery.com/use-classification-machine-learning-
algorithms-Weka/?trackid=sp-006 (Accessed: 27 April 2020).

[44] Types of Machine Learning Algorithms You Should Know
Types of Machine Learning Algorithms You Should Know (2017). Available
at: https://towardsdatascience.com/types-of-machine-learning-algorithms-
you-should-know-953a08248861 (Accessed: 27 April 2020).

[45] Artificial Intelligence – foundations of computational agents – 7.3.3
Bayesian Classifiers
Artificial Intelligence – foundations of computational agents – 7.3.3
Bayesian Classifiers (2020). Available at:
https://artint.info/html/ArtInt_181.html (Accessed: 27 April 2020).

[46] 1.9. Naïve Bayes — scikit-learn 0.22.2 documentation
1.9. Naïve Bayes — scikit-learn 0.22.2 documentation (2020). Available
at: https://scikit-learn.org/stable/modules/naive_bayes.html (Accessed:
28 April 2020).

[47] What is Bayesian Network Classifier?
What is Bayesian Network Classifier? (2018). Available at:
https://medium.com/@analyttica/what-is-bayesian-network-classifier-
4d2771f91f63 (Accessed: 28 April 2020).

[48] Machine Learning Functions
Machine Learning Functions (2020). Available at:
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/SQLReferenceMan
ual/Functions/MachineLearning/_MLFunctions.htm (Accessed: 27 April 2020).

[49] sklearn.linear_model.SGDClassifier — scikit-learn 0.22.2 documentation
sklearn.linear_model.SGDClassifier — scikit-learn 0.22.2
documentation (2020). Available at: https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.htm
l (Accessed: 28 April 2020).

[50] LOGISTIC REGRESSION CLASSIFIER
LOGISTIC REGRESSION CLASSIFIER (2019). Available at:
https://towardsdatascience.com/logistic-regression-classifier-8583e0c3cf9
(Accessed: 28 April 2020).

[51] SGDText
SGDText (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/functions/SGDText.ht
ml (Accessed: 28 April 2020).

[52] SimpleLogistic
SimpleLogistic (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/functions/SimpleLogi
stic.html (Accessed: 28 April 2020).

[53] SMO
SMO (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/functions/SMO.html
(Accessed: 28 April 2020).

[54] VotedPerceptron
VotedPerceptron (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/functions/VotedPerce
ptron.html (Accessed: 28 April 2020).

[55] Voted Perceptron – Cohen Courses
Voted Perceptron – Cohen Courses (2020). Available at:
http://curtis.ml.cmu.edu/w/courses/index.php/Voted_Perceptron (Accessed:
28 April 2020).

[56] Lazy learning
Lazy learning (2020). Available at:
https://en.wikipedia.org/wiki/Lazy_learning (Accessed: 27 April 2020)

[57] Aha, D.W, Kibler, D. and Albert, M.K
Aha, D.W, Kibler, D. and Albert, M.K, 1991. Instance-Based Learning
Algorithms. Machine Learning. Boston: Kluwer Academic Publishers.

[58] IBk
Ibk (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/lazy/IBk.html
(Accessed: 28 April 2020).

[59] Kstar
Kstar (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/lazy/KStar.html
(Accessed: 28 April 2020).

[60] LWL
LWL (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/lazy/LWL.html
(Accessed: 28 April 2020).

[61] Meta learning (computer science)
Meta learning (computer science) (2010). Available at:
https://en.wikipedia.org/wiki/Meta_learning_(computer_science) (Accessed:
27 April 2020).

[62] AdaBoostM1
AdaBoostM1 (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/meta/AdaBoostM1.html
(Accessed: 28 April 2020).

[63] AttributeSelectedClassifier
AttributeSelectedClassifier (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/meta/AttributeSelect
edClassifier.html (Accessed: 28 April 2020).

[64] ClassificationViaRegression
ClassificationViaRegression (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/meta/ClassificationV
iaRegression.html (Accessed: 28 April 2020).

[65] FilteredClassifier
FilteredClassifier (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/meta/FilteredClassif
ier.html (Accessed: 28 April 2020).

[66] IterativeClassifierOptimizer
IterativeClassifierOptimizer (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/meta/IterativeClassi
fierOptimizer.html (Accessed: 28 April 2020).

[67] LogitBoost
LogitBoost (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/meta/LogitBoost.html
(Accessed: 28 April 2020).

[68] MultiClassClassifier
MultiClassClassifier (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/meta/MultiClassClass
ifier.html (Accessed: 28 April 2020).

[69] MultiScheme
MultiScheme (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/meta/MultiScheme.htm
l (Accessed: 29 April 2020).

[70] RandomCommittee
RandomCommittee (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/meta/RandomCommittee
.html (Accessed: 29 April 2020).

[71] RandomizableFilteredClassifier
RandomizableFilteredClassifier (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/meta/RandomizableFil
teredClassifier.html (Accessed: 29 April 2020).

[72] RandomSubSpace
RandomSubSpace (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/meta/RandomSubSpace.
html (Accessed: 29 April 2020).

[73] Stacking
Stacking (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/meta/Stacking.html
(Accessed: 29 April 2020).

[74] Ensemble Learning to Improve Machine Learning Results
Ensemble Learning to Improve Machine Learning Results (2019). Available
at: https://blog.statsbot.co/ensemble-learning-d1dcd548e936 (Accessed: 29
April 2020).

[75] Voting Classifier
Voting Classifier (2019). Available at:
https://medium.com/@sanchitamangale12/voting-classifier-1be10db6d7a5
(Accessed: 29 April 2020).

[76] WeightedInstancesHandlerWrapper
WeightedInstancesHandlerWrapper (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/meta/WeightedInstanc
esHandlerWrapper.html (Accessed: 29 April 2020).

[77] InputMappedClassifier
InputMappedClassifier (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/misc/InputMappedClas
sifier.html (Accessed: 29 April 2020).

[78] Rule-based machine learning
Rule-based machine learning (2020). Available at:
https://en.wikipedia.org/wiki/Rule-based_machine_learning (Accessed: 27
April 2020).

[79] Generating good decision rules – More Data Mining with Weka
Generating good decision rules – More Data Mining with Weka (2020).
Available at: https://www.futurelearn.com/courses/more-data-mining-with-
Weka/0/steps/29123 (Accessed: 29 April 2020).

[80] DecisionTable
DecisionTable (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/rules/DecisionTable.
html (Accessed: 29 April 2020).

[81] Jrip
Jrip (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/rules/JRip.html
(Accessed: 29 April 2020).

[82] OneR
OneR (2020). Available at: https://www.saedsayad.com/oner.htm (Accessed:
29 April 2020).

[83] OneR
OneR (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/rules/OneR.html
(Accessed: 29 April 2020).

[84] RandomForest
RandomForest (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/trees/RandomForest.h
tml (Accessed: 29 April 2020).

[85] 3.2.4.3.1. sklearn.ensemble.RandomForestClassifier — scikit-learn 0.22.2
documentation

3.2.4.3.1. sklearn.ensemble.RandomForestClassifier — scikit-learn 0.22.2
documentation (2020). Available at: https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifie
r.html (Accessed: 29 April 2020).

[86] Webb, G. I., Fürnkranz, J., Fürnkranz, J., Fürnkranz, J., Hinton, G.,
Sammut, C., Sander, J., Vlachos, M., The, Y. W., Yang, Y., Mladeni, D.,
Brank, J., Grobelnik, M., Zhao, Y., Karypis, G., Craw, S., Puterman, M.
L. and Patrick, J.
Webb, G. et al. (2011) ﾃDecision Stumpﾄ, Encyclopedia of Machine
Learning, pp. 262-263. Doi: 10.1007/978-0-387-30164-8_202.

[87] HoeffdingTree
HoeffdingTree (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/trees/HoeffdingTree.
html (Accessed: 29 April 2020).

[88] Machine Learning – (C4.5|J48) algorithm [Gerardnico – The Data Blog]
Machine Learning – (C4.5|J48) algorithm [Gerardnico – The Data
Blog] (2020). Available at: https://gerardnico.com/data_mining/c4.5
(Accessed: 29 April 2020).

[89] Saravanan N, Gayathri V
Saravanan N, et al. ﾙä0Ü8ﾚ ﾃPerformance and Classification Evaluation of
Jï8 Algorithm and Kendall’s Based Jï8 Algorithm ﾙKNJï8ﾚﾄ, International
Journal of Computational Intelligence and Informatics, Vol. 7: No. 4. Pp
1. Available at:
https://www.periyaruniversity.ac.in/ijcii/issue/marnew/2_mar_18.pdf
(Accessed: 29 April 2020).

[90] LMT
LMT (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/trees/LMT.html
(Accessed: 29 April 2020).

[91] RandomTree
RandomTree (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/trees/RandomTree.htm
l (Accessed: 29 April 2020).

[92] REPTree
REPTree (2020). Available at:
https://Weka.sourceforge.io/doc.dev/Weka/classifiers/trees/REPTree.html
(Accessed: 29 April 2020).

[93] How to Interpret a Correlation Coefficient r – dummies
How to Interpret a Correlation Coefficient r – Deborah J. Rumsey (2020).
Available at: https://www.dummies.com/education/math/statistics/how-to-
interpret-a-correlation-coefficient-r/ (Accessed: 3 May 2020).

[94] Bagui, S., Kalaimannan, E., Bagui, S., Nandi, D. and Pinto, A.
Bagui, S. et al. (2019) "Using machine learning techniques to identify
rare cyber‐attacks on the UNSW‐NBÜö dataset", Security and Privacy, 2(6).
doi: 10.1002/spy2.91.

[95] Semi-supervised learning
Semi-supervised learning (2020). Available at:
https://en.wikipedia.org/wiki/Semi-supervised_learning (Accessed: 20
April 2020).

