

 2020

SYSTEM DEVELOPMENT FOR

PLACEMENT MODULES

(POST START OF PLACEMENT)

Final Report

Author: Matthew Trimby

Supervisor: Dr Martin Caminada

Moderator: Steven Arthur

Word count: 23,432

Module code: CM3203

Module Title: One Semester Individual Project

Student Number: C1525379

Abstract

Like many other university schools, the Cardiff School of Computer Science runs a one-year

placement module for its students to spend a year working in an external company. This

project delivers the implementation of a centralised web platform to monitor and track

students’ progress, and to facilitate collaboration between students, staff and employers

during the placement year.

Acknowledgements

I would like to express my gratitude to Dr Martin Caminada and Dr Catherine Teehan for

their continued support and guidance throughout this project. They have provided

invaluable advice and feedback throughout the process and supported me greatly through

difficult circumstances.

I’d also like to thank my family and close friends who have continually motivated me to

work hard, even when the going was tough.

Table of Contents

Abstract .. 1

Acknowledgements ... 2

Table of Contents .. 3

Table of Figures ... 5

1 Introduction ... 6

1.1 Project Aims .. 6

1.2 Personal Aims ... 6

1.3 Beneficiaries .. 7

1.4 Project Scope ... 7

1.5 Assumptions .. 7

1.6 Approach ... 8

1.7 Outcomes .. 8

2 Background .. 9

2.1 The Problem .. 9

2.2 Stakeholders ... 9

2.3 Additional Complexities .. 9

2.4 Existing Solutions .. 10
2.4.1 Current Solution ... 10
2.4.2 Related Existing Solutions .. 11

2.5 Methods and Tools ... 13
2.5.1 Potential Methods ... 13
2.5.2 Selected Method .. 14
2.5.3 Potential Tools ... 14
2.5.4 Selected Tools .. 17
2.5.5 Additional Tools Utilised .. 17

2.6 Constraints & Considerations .. 18

3 Specification ... 20

3.1 User Personas ... 20

3.2 Requirements .. 23
3.2.1 Functional Requirements ... 23
3.2.2 Non-functional Requirements .. 31

3.3 Use Cases .. 32

4 Design ... 39

4.1 User Interface Design .. 39
4.1.1 Wireframes .. 39
4.1.2 Colour Scheme ... 57
4.1.3 Visual Design Mock-up ... 58

5 Implementation .. 60

5.1 System Architecture .. 60

5.2 Database ... 61

5.3 Front-end .. 66
5.3.1 Coding principles .. 66
5.3.2 Page Flow ... 66
5.3.3 Log in .. 67
5.3.4 Dashboard .. 68
5.3.5 File Upload ... 71
5.3.6 View/Assign students ... 73

5.4 Back-end ... 77
5.4.1 Routes .. 77
5.4.2 Retrieving user data ... 77
5.4.3 Retrieving data for manage students table .. 78

5.5 Deployment ... 80

6 Results and Evaluation .. 81

6.1 Testing the system .. 81

6.2 Assessing application against requirements ... 82

7 Future Work .. 87

8 Conclusions ... 90

9 Reflection .. 91

10 Appendices ... 92

10.1 Appendix A - Test Cases .. 92

11 References .. 102

Table of Figures

Figure 1: Use Case Diagram .. 32

Figure 2: Wireframe - Log in screen ... 40

Figure 3: Wireframe - Student Dashboard ... 41

Figure 4: Wireframe - Student Dashboard - supervisor modal .. 42

Figure 5: Wireframe - Task - Upload file ... 43

Figure 6:Wireframe - View Submissions Page .. 44

Figure 7: Wireframe - Feedback Page .. 45

Figure 8: Wireframe - Supervisor Dashboard ... 46

Figure 9: Wireframe - Student Details - Details Tab ... 47

Figure 10: Wireframe - Student details - Submissions Tab ... 48

Figure 11: Wireframe - Student Details - Submissions - Mark Submission Modal 49

Figure 12: Wireframe - Student Details - Meetings Tab ... 50

Figure 13: Wireframes - Student Details - Documents Tab .. 51

Figure 14: Wireframe - Admin Dashboard ... 52

Figure 15: Wireframe - Manage Students .. 53

Figure 16: Wireframe - Manage Students - Assign Supervisor Modal 54

Figure 17: Wireframe - Manage Tasks Page ... 55

Figure 18: Wireframe - Create Task Page ... 56

Figure 19: Colour Scheme ... 57

Figure 20: Visual Design - Dashboard ... 59

Figure 21: System Architecture Diagram .. 60

Figure 22: Page Flow Diagram .. 66

Figure 23: Application Screenshot - Dashboard - Student View ... 68

Figure 24: Application Screenshot - Upload File ... 71

Figure 25: Application Screenshot - Manage Students .. 74

Figure 26: Application Screenshot - Assign Supervisor .. 75

1 Introduction

The Computer Science BSc/MSc with a Year In Industry degree programs at Cardiff

University allow students to spend a year of their degree working in an external

organisation in order to gain experience of applied computer science practices within a

professional environment. Having spent a year working in industry as part of this

programme, I have direct experience of the numerous benefits it can have on students

learning experience, as well as its shortcomings.

One such shortcoming, which this project aims to address, is that the processes for tracking

a placement year are inconsistent, split across different mediums, and heavily reliant on

students and staff acting on their own initiative. The application should provide users with a

single platform to handle all of the core administrative tasks they will need to undertake

throughout the year, whilst also providing the School of Computer Science Placement Team

with the ability to customise and adapt the process year on year.

1.1 Project Aims

The aim of this project is to design, develop, document and test an industry-standard,

bespoke web application to be used by the Cardiff University Placement Team. The

application should provide an interface for students and university staff to create, view and

complete tasks, upload assignments, and schedule meetings. The overall goal being to make

administrative processes easier and more intuitive for all stakeholders.

Further to this, the application should look and feel like it is part of the Cardiff University

‘ecosystem’ and should allow users to quickly and securely access data via their pre-existing

university credentials.

It is integral that the final system is well implemented, using good software

engineering practices in order to facilitate the future maintenance and possible expansion

of the software by the school in years to come.

1.2 Personal Aims

This project presents an opportunity for me to learn and develop by going through the

process of fully designing, implementing and deploying a full-stack web application. With

most of my current experience being in front-end development, it’s my aim to become

more familiar with the full web stack and learn about areas such as RESTful APIs and

database design and implementation.

1.3 Beneficiaries

The placement management system stands to benefit several groups once implemented:

• Students will be able to use the system to easily view and carry out tasks associated

with a placement year in an intuitive way, allowing them to focus on making the

most of their placement

• Supervisors will be able to track all of their students’ progress throughout their

placement year in one place, making it easier to organise and track students

alongside their other responsibilities as university staff

• Placement team staff will be able to use the system to centralise and automate tasks

that were previously time-consuming and labour intensive, decreasing their

workload

1.4 Project Scope

An important factor in determining the scope of the project was that my application would

make up part of a larger system covering the entire placement process - from looking for

and applying to placements to their return for their final year of university. The project

should cover the processes and procedures necessary to be undertaken during the year the

student is on placement whilst another project, with a different set of requirements, would

cover the ‘pre-placement’ part of the application. From the outset it was determined that

the two parts of the application would be developed independently, but with the

consideration that both parts would be eventually part of the same system. This affected

the requirements of the project and influenced some of the design choices made from the

beginning.

Due to the nature of the software development process, and uncontrollable external

circumstances, the scope of this project evolved during its duration. Whilst the overarching

goals of the project stayed largely aligned with those set out at the start, some of the more

specific aims and requirements were adjusted during the design and implementation

process. Throughout this report I will endeavour to highlight, explain and justify these

decisions.

1.5 Assumptions

One of the main assumptions of the project was that it is to be utilised by users that are

already part of the Cardiff University ‘ecosystem’, i.e. users would be existing students and

staff who already have a footprint within the various online university systems. The project

also assumes the University’s continued association with Office365, as the login and

authorisation are done via the user’s Cardiff University Office365 account – if the university

were to move away from its integration with Microsoft then changes would need to be

implemented to the application for its continued use.

Also, it is assumed that when the user is interacting with the system, their user data such as

their student number and placement provider is already stored in the database. The

assumption is made that the user has already been using the independently developed pre-

placement part of the system, and that the data collected in that part of the platform is

carried over to the during-placement section of the application.

1.6 Approach

During the initial stages of the project, research was carried out into existing solutions and

their potential strengths and shortcomings, as well as extensive discussions with members

of the School of Computer Science Placement Team to understand the details of the

problem. From this, an initial set of requirements was defined in order to detail how the

application should work upon completion, which influenced the technologies used to

implement the solution. These requirements also helped to influence initial interface

designs and use cases for different user types, which provided further detail as to how the

application should look and how users should interact with it.

Once the majority of the design work was done, implementation started. This began with

the core functionality, such as the user dashboard and integration with Microsoft’s

Office365 APIs, followed by further features such as document upload and supervisor

assignment.

Finally, the application was evaluated against the initial requirements and tested in

alignment with the cases outlined in the design stage in order to determine the

effectiveness of the implemented solution.

1.7 Outcomes

By the end of the project, a platform was created and deployed that fulfilled a large majority

of the requirements set out in its inception. With some further work and refinement, the

system will be able to be utilised by real students and staff in the Cardiff University School

of Computer Science. The implemented solution is written and documented in such a way

so as to make it as maintainable and extendable as possible, allowing for future work to

continue in order for the placement application to be fully realised as part of the Cardiff

University online ecosystem.

2 Background

2.1 The Problem

With an increasing number of students opting to take a ‘Year in Industry’ as part of their

degree, it’s become more and more difficult for the School of Computer Science to process

and track student data.

The aim of this project will be to create a fully operational, well-tested web-based platform

that allows students, supervisors and staff to carry out their tasks and track their progress

during the time that students are on placement. The goal is to create a bespoke,

purpose-driven system that is designed to make collaboration as easy as possible for all

stakeholders.

From this problem, the following research questions can be derived:

• How can we improve the experience for all stakeholders?

• What parts of the Placement Team’s work stack can be optimised by the

application?

• How can we track each student’s placement in a standardised, uniform way, whilst

customising the experience based on their unique parameters?

2.2 Stakeholders

Placement Team Staff

The team of staff within the School of Computer Science (henceforth in this report referred

to as the ‘Placement Team’) which, amongst their other duties, are responsible for

managing the placement year programme within the school. The Placement Team set out

the structure and schedule of tasks and assessments that will be completed by the student

throughout the year.

Academic Supervisors

Academic staff from within the School of Computer Science that monitor and assess

students on an individual basis. Supervisors will have several students assigned to them

each year and act as a point of contact between the student and the university, as well as

marking the academic work produced by the student during the year.

Students

The individuals that are undertaking the placement year. Students will have to complete

various administrative and academic tasks throughout the year in order to be assessed on

their placement by the School.

2.3 Additional Complexities

Having three distinct stakeholders in the problem increases the complexity of finding an

appropriate solution. The final application must balance the needs of all three groups in

order to improve the experience for all parties. An ideal solution would decrease the

workload for the Placement Team staff and academic supervisors, whilst also improving the

experience for students.

This task’s complexity is also compounded due to the variations in the schedule of students’

placement years. With each student working at a different external company (with varying

placement start dates), each student requires their own personalised timeline of due dates

and assessment deadlines.

The wider context also must be taken into account – as an academic institution the

University is expected to make sure that all practices are fair and don’t give any one student

an advantage over another. Naturally, the current processes that the school has in place

have been carefully put together in order to account for this. As such, the solution should

endeavour not to change the existing processes, but rather to facilitate them and optimise

them where possible.

Finally, the process of tracking a placement year is likely to evolve year on year – the

implemented solution should have the flexibility to handle these changes without requiring

any extensive changes to the code base.

2.4 Existing Solutions

2.4.1 Current Solution

The current solution used to monitor and track placement years is becoming less and less fit

for purpose. Currently, students’ placement data is manually entered and stored in a

Microsoft Excel Spreadsheet. Whenever this data is needed it must be manually accessed.

This method worked when the programme began, and there were only single-figure

numbers of students on placement, but is now inefficient and time consuming for the

Placement Team.

There is also no formal way for supervisors to track their students’ progress. Supervisors

must maintain their own records about the details of their students and keep updated on

their progress by emailing them on an individual basis.

The process for students managing and submitting work is also inefficient – at the beginning

of the year students are emailed a collection of documents containing details about the

placement processes and forms to be filled out and uploaded at various points during the

year. Students are expected to be individually responsible for working out when tasks are

due based on their unique start date, meaning there can be a lack of clarity about deadlines

for certain documents.

A viable solution should consequently improve on the current implementation by providing

a single platform where data is readily accessible for users who require it, and all placement

related tasks can be accessed and completed by students and supervisors.

2.4.2 Related Existing Solutions

Name: InPlace

Summary:

InPlace [1] is a placement management solution developed by QuantumIT for universities

to manage their entire placement programme, from creating connections with employers

to tracking students on placement. InPlace currently provides placement management to

over 100 academic organisations worldwide.

Positives:

• Flexible system for tracking placements of all types

• Separate views and functionality for students, supervisors and administrative staff

• Bulk notifications and email functionality

• Create and manage student schedules

• Functionality to flexibly assign supervisors

Drawbacks:

• Heavyweight – ships with a huge catalogue of functionality such as analytics,

report building, logbooks/timesheets and financial management - much of which

is outside the scope of this project

• Would require large amounts of student data to be stored by a 3rd party

• Only small subsection of software covers the actual functionality required by the

School of Computer Science

• Current school processes would likely have to be adjusted to fit the format of

assessment and tracking provided by InPlace

Conclusions:

InPlace is without a doubt the closest existing solution to the problem presented. It

provides a large library of features and functionality for placement management across

an entire organisation and would likely be a strong choice if Cardiff University was looking

to manage all university placements through a single centralised system. However, for the

needs of the School of Computer Science it is probably too heavyweight. My solution will

seek to implement the features covered by a sub-section of this software, in a way that is

directly catered to the needs of the Placement Team.

Name: Creatrix Campus

Summary:

Creatrix campus [2] is a cloud-based campus management system that seeks to help

higher education organisations organise and centralise their administrate processes. As

part of their services they facilitate ‘placement management’ for institutions.

Positives:

• Mobile integration

• Create and manage student accounts

• Synchronisation with events and calendar

• Enables student sign-in through third party services such as Google and LinkedIn

Drawbacks:

• Within the placement management aspect of the service, the main focus is on

matching students with placements rather than tracking their placements once

they start

• Limited functionality – allows admins to view student and employer data but there

is no functionality for tracking and assessing students on placement

• Possible conflict/overlap with systems the university currently has in place to

organise administrative work

Conclusions:

Creatrix campus’ placement management service provides some interesting ideas for

mobile device support, and integration with other login systems. However, as it is part of

a larger higher education administration package it lacks the depth of features required

by the School of Computer Science.

Name: Sonia

Summary:

Sonia [3] is a placement management software solution package that helps institutions to

manage students who are seeking and enrolled on placements. Sonia provides bespoke

instances of its software, tailored to the institution’s requirements.

Positives:

• Built in integration with existing student record management systems

• Package built around institutions requirements

• Customise documents and reports upload

• Mobile app

• Automated email workflows

Drawbacks:

• Mainly targeted for health/social-care/education placements

• Does not ship ready out of the box

Conclusions:

Because the features of Sonia are implemented based on requirements of the institution

it is somewhat difficult to judge its overall effectiveness at solving the presented problem.

The main points to take away are that certain features such as student login,

document/form upload and ability to view student data are the core concepts that

placement management applications are built around.

2.5 Methods and Tools

2.5.1 Potential Methods

Traditional Software Development Lifecycle (Waterfall Method)

The waterfall method involves breaking the project down into stages (requirements, design,

implementation, verification and maintenance) and following these steps through linearly.

The advantages of the waterfall method are that through the requirements and design

stages there is a strongly defined goal state for the application, making progress

measurable.

However, the waterfall method is inflexible (does not allow for evolving requirements) and

produces a practical implementation late in the development cycle. For this project it would

be more useful to be able to develop incrementally, receiving feedback from the intended

users and shaping the application to suit their needs as it is developed.

Incremental Method

The incremental method involves developing new software features in small chunks – doing

requirements, design, implementation and testing for each new increment. The advantages

of this method are that it produces a working implementation early on in the development

process, allowing for flexibility.

Iterative Method

The iterative method of software development promotes iteratively performing a scaled

down version of the traditional Software Development lifecycle. This model involves

repeated prototyping and review of the software product, then using this as the starting

point for the next increment if it is accepted.

The idea of iterative prototyping would be useful in this context as it would allow for

continuous reviewing of requirements as the software is developed. However, this method

can be problematic as not all requirements are gathered upfront.

Agile Method

Agile [4] is an incremental development methodology that involves designing,

implementing/testing and reviewing new features incrementally as they are required – it

arguably combines the strengths of both the iterative and incremental models.

The incremental nature of agile makes it an attractive method for this project, as it would

allow for regular changes of requirements. However, it also involves less view of the final

goal state of the project when beginning its implementation. Because this is a short project,

with firmly set requirements with many overlapping dependencies, the lack of vision of the

final goal state could cause issues.

The agile method also requires a large amount of collaboration with the ‘client (in this case

the Placement Team) in the form of regular reviews of progress and new features. If this

kind of regular contact with the client is not available, then requirements can become

misaligned with the needs of the customer.

2.5.2 Selected Method

For this project I have decided to follow the Agile method, with some small adaptations for

the project’s unique factors. Incremental prototyping and review by the client will be key to

this, and the placement team agreed to a schedule of weekly review meetings. This will

allow for continuous review of the product against the client’s requirements, meaning the

final solution should be suited to the client’s real-world needs.

Because this is a relatively small project, to be completed in a short time frame, there are

some areas where I will slightly deviate from the ‘standard’ Agile method. For example, I will

be outlining the majority of the requirements for the application as a whole before

beginning any implementation. This will allow me to work towards a desired goal state

within the allotted time, without drifting from core requirements that are essential to the

platform’s viability. Additionally, I will be laying out a design for the system architecture

before any development begins, this will save time during implementation of individual

features as there will already be a view of how they fit into the overall architecture.

2.5.3 Potential Tools

2.5.3.1 Frontend

JavaScript

JavaScript is the obvious choice for creating modern, dynamic web applications. As of

January 2019, it is the most popular programming language by GitHub pull requests [5] and

is a staple in web development.

As this project is to develop a web application, the choice was made early on to use

JavaScript as the base for the front-end – it was also logical to then look into JavaScript

frameworks that facilitate the functionality required for the project.

ReactJS

ReactJS [6] is a lightweight JavaScript framework for user interface (UI) development,

created and managed by Facebook.

The advantages of ReactJS are that it is lightweight, easy to learn, and uses a Virtual

Document Object Model (DOM) in order to reduce the load on the browser. As it is created

and managed by Facebook, React is an up-to-date, industry standard framework with a

strong community of developers.

Disadvantages of React include that because its primary purpose is for UI development, it

only provides the ‘View’ layer and requires a multitude of additional libraries in order to

build a fully-fledged web application. There is also no in-built application structure, so this

must be designed before development begins which can mean that the initial stages of

getting the application up and running take longer.

Angular

Angular [7] is an open source JavaScript framework, created and managed by Google, for

building mobile and web applications. It is TypeScript (a type-safe superset of JavaScript)

based and provides functionality such as data binding, routing and dependency injection

without the need for any additional libraries.

An additional advantage of Angular is the Angular Command Line Interface (CLI), allowing

the developer to easily create angular applications, generate components, and build

projects ready for deployment. Angular projects created through the CLI are also

automatically set up for unit testing using the Jasmine testing framework and Karma test-

runner.

The disadvantage of Angular is the steep learning curve, due to its deep built-in functionality

there is a lot to learn and it can take longer to get to grips with than more lightweight

frameworks such as React.

2.5.3.2 Backend

Due to the functionality required for the application (such as displaying and updating data

from a database, uploading documents, and user authentication) the system requires a

server-side client to process and return data.

The decision was taken to implement a RESTful API1 to serve JSON data to the front-end

client.

Java Spring Boot

Java Spring Boot [8] is an open-source Java framework for creating RESTful microservices.

Spring Boot, being Java-based, provides type safety and support for multi-threading – it’s a

powerful framework that can handle large amounts of computing at scale. However, Spring

Boot applications are heavy: they include a large quantity of dependencies that may go

unused in a small API and contain a large amount of boilerplate code which can make

debugging difficult.

1 REST(Representational State Transfer) Application Programming Interfaces (APIs) are web services that

follow a defined set of constraints to provide interoperability between components on the internet via a

request system

Node.js (+ Express)

Node.js [9] is an event-driven JavaScript runtime environment for building and running

server-side network applications. Express is a framework for Node.js specifically intended

for creating web applications and APIs. Express [10] is a commonly used framework for

developing efficient, light-weight RESTful APIs in JavaScript.

Advantages of Node.js Express are that it lightweight, has low memory utilization and gives

the developer access to a constantly growing library of additional frameworks through the

node package manager (npm). Express is designed to make creating robust APIs quick and

easy.

The disadvantage of building RESTful APIs in Node.js is that because it is single-threaded,

performance can suffer if performing very heavy-duty computational tasks at scale – but for

this project this should not be of great consequence.

2.5.3.3 Database

MongoDB

MongoDB [11] is a schema-less document-based database that stores and returns data in

JSON. As the application would be using JavaScript, and the backend API would be returning

JSON data MongoDB became a clear choice for storing the applications data as it would

store the data in a format close to how it was being used. For this reason, MongoDB was

preferred over an SQL-based database.

2.5.3.4 Other tools considered

Microsoft PowerApps

One potential tool that could be used for the implementation of the system is Microsoft

PowerApps [12]– a tool developed by Microsoft for rapid, low-code cloud application

development tied in with the Microsoft 365 suite.

This tool would allow rapid development of a placement management interface that

students could use via their Cardiff University Office365 subscription. One of the biggest

advantages of this tool is that all user authentication and data security would be handled by

Microsoft, all the developer needs to do is build the interface through the provided tool.

Through this, a solution could be developed that allowed form uploads/submission and

some of the other core requirements of the project. However, because the apps must be

built from the pre-existing building blocks that the tool provides there is not much flexibility

to implement the more bespoke, complex features required. Another disadvantage is that

the application developed would be entirely dependent on the University’s subscription to

Microsoft’s software packages – if the University were to move away from the Microsoft

ecosystem, the application and all its functionality would be lost.

With this being the case, it was decided that in order to implement an application that

satisfied the full user requirements, the tools provided by Microsoft Power Apps weren’t

powerful enough.

2.5.4 Selected Tools

After researching and comparing the various choices of potential tools, I opted to

implement the application using the MEAN (MongoDB, Express, Angular, Node.js) stack: a

widely used solution stack for development of web applications.

One of the largest advantages of using this combination of technologies is that all of the

components are based in JavaScript. For a project with a relatively short timescale such as

this one, this is attractive; it decreases the time overhead spent learning new languages for

each part of the stack. Added to this, because this is a fairly commonly used solution stack,

there are a variety of middleware packages that are already built to help integrate the

components. There is also a wealth of resources on the internet that would help to guide

me through the implementation steps.

2.5.5 Additional Tools Utilised

Amazon Elastic Compute Cloud (AWS EC2)

Amazon EC2 [13] is a web service that provides secure cloud computing resource as part of

the Amazon Web Services (AWS) ecosystem. In this project EC2 is used to deploy the web

application on a virtual Linux Ubuntu machine in the cloud, allowing it to be accessed from

anywhere.

Amazon Route 53

Amazon Route 53 [14] is a cloud Domain Name System (DNS) web service that facilitates the

routing of users to internet applications. In this project Route 53 is used to connect user

requests to the application, deployed on an Amazon EC2 instance.

Figma

Figma is a design tool for creating application prototypes/designs. In this project Figma was

used to create visual design mock-ups of the system.

GitLab (Git)

GitLab is a CI/CD (Continuous Integration/Continuous Deployment) tool for managing

software development projects using Git. In this project GitLab is primarily used for version

control, facilitating incremental development methodologies.

Mongoose

Mongoose [15] is an open source MongoDB object modelling tool for NodeJS. It allows the

user to easily write schemas and queries for interacting with MongoDB databases in an

asynchronous environment.

Microsoft Graph REST API

The Microsoft Graph API [16] provides a single endpoint for access to a wide variety of data

associated with the Microsoft 365 ecosystem. In this project the API was used to access data

stored about the user in their Office365 account, such as their ‘job title’ and display picture.

Microsoft Identity Platform

The Microsoft Identity Platform [17] is a platform that allows developers to build

applications that use Microsoft identities for sign-in, authorisation, and the calling of

Microsoft APIs. This application uses the Microsoft Authentication Library (MSAL) [18], an

open source library for acquiring and caching authorisation tokens, in order to facilitate

sign-in and data access with the user’s Cardiff University linked Microsoft Office 365

account.

Postman

Postman [19] is a software package designed to aid API development. In this project

Postman was used to quickly create and send Create, Read, Update, Delete (CRUD) requests

to the backend API for design and testing purposes.

Wireframe.cc

Wireframe.cc is an online wireframing tool for creating interactive application wireframes.

This tool was used to create all the wireframes for this project.

Additional Third-party Packages

Third party Angular packages used will be discussed in the implementation section of this

report.

2.6 Constraints & Considerations

There are several factors that need to be considered in this project that may affect the

outcomes.

Firstly, the nature and scale of this project is not one that I have previously undertaken. It is

therefore reasonable to assume that I may experience problems such as unexpected delays

due to unforeseen circumstances or problems. Added to this, although I have some web

development experience, I have no prior experience with the Angular or NodeJS

frameworks, so time will have to be taken out of the project in order to learn these

frameworks as I progress through the implementation.

Additionally, there is a strict time constraint on the project, impacting the scale and range of

features I will be able to implement. For this reason, it was decided not to implement the

platform for mobile users: given the activities that will be undertaken within the application

it is likely that most users will be using the system from a desktop computer. Taking this into

account it was decided that having to implement and test all features for mobile as well as

for desktop would take up a large amount of time compared to the benefit delivered.

3 Specification

This section will endeavour to lay out the requirements and specification of the project in

greater detail, breaking down and analysing the problem in order to identify the key

features of an implemented solution. These requirements and use cases will also serve as a

framework to evaluate the final software implementation against in test cases.

3.1 User Personas

In order gain an understanding of the potential user base and identify specific requirements,

user personas were created. These personas were developed based on conversations with

students, supervisors and Placement Team staff, research conducted into existing solutions,

and personal experience of the placement year process.

The users this application is designed for can be broken down into 3 categories:

1. Computer Science students

2. Placement Team staff

3. Supervisors

As all three groups are part of the School of Computer Science, it can be assumed that the

large majority of the userbase will have at least moderate technical experience: using the

internet and basic software packages on a regular basis. In some ways, this makes things

easier as the design will not have to cater as much to complete novices. However, regular

internet/software users will also expect the application to behave in a manner that they are

used to, so it becomes more important to design an application that adheres to best

practices.

Persona 1

Name: Jessica Bradbury

User Group: 1 - Student

Quote: “I want to focus on learning as much as

possible from my placement and impressing my

employer”

Description:

Jessica is a Computer Science student that has recently secured a lucrative placement at

IBM. She knows that students that perform well on the placement year are often invited

back to the graduate scheme, so she wants to focus her efforts on impressing her employer.

image source:

https://www.pexels.com/photo/woman-

wearing-black-eyeglasses-1239291/

Goals:

• Quickly and easily view outstanding administrative tasks to be completed, and the

dates they are due

• Easily find the contact information of her supervisor

• Be alerted when due dates are coming up

• Be able to upload her work as and when she completes it

Technical Knowledge: Strong

Persona 2

Name: James Anderson

User Group: 2 – Placement Team

Quote: “I want an application that will help me

make sure every student is on track to get the

most out of their placement year”

Description:

James is a member of the Cardiff Computer Science Placement Team, but this is just one of

his many administrative roles within the school. He wants to make sure every student is on

track and feels connected to the school during their placement, but is also flooded with

work, meaning sometimes there just aren’t enough hours in the day. If he could spend less

time doing boring administrative tasks, he could spend more time helping students.

Goals:

• Easily be able to view all students enrolled in the placement programme

• Be able to assign students to their supervisors

• Be able to set up tasks for students to complete according to their personal

placement year schedule

Technical Knowledge: Moderate

Persona 3

https://www.pexels.com/photo/man-wearing-

black-zip-up-jacket-near-beach-smiling-at-the-

photo-736716/ image source:

Name: Karen Stone

User Group: 3 – Supervisor

Quote: “I need an organised way to stay up to

dates with my students progress”

Description:

Karen, amongst her other responsibilities of researching and teaching, is an academic

supervisor for placement students. Each year she supervises 5 students in various locations

and wants a way to make sure they’re all on track. Often she’s assigned students she hasn’t

yet met so she’d like a way to find out a bit more about them. She has a lot going on, so she

finds herself having to often dig back into her email archive to find past communications

with her students to remind herself what they’ve done so far. Karen is also a technical

expert; she finds herself frustrated when she uses websites that behave in unexpected

ways.

Goals:

• View relevant information about the students she is supervising

• Easily see and download the work her students have submitted

• Mark her students’ submissions and give them feedback

Technical Knowledge: Expert

Conclusions

Based on the personas, it was inferred that most users will want quick and easy access to

the information they need, when they need it. For the majority of users, this system will

facilitate work that diverts their time away from their primary interests - because of this,

design decisions should be made so that the user does not have to spend a lot of time

looking for the functionality they require. The application should have some sort of

dashboard page where the user is provided with the information that is most useful to

them. Based on this we can conclude that each user group should see slightly different

information and have different access to resources based on what they are using the

application for.

image source:

https://www.pexels.com/photo/adult-african-

american-afro-black-female-1181519/

3.2 Requirements

This section contains a detailed rundown of the requirements set out for this project.

3.2.1 Functional Requirements

3.2.1.1 Must Have

FR-1: User must be able to log in to the application

Justification: This will allow users to see personalised information relating to them

Acceptance Criteria:

• User will enter some credentials

• Application will assess these credentials, and if legitimate allow the user to use the

application

FR-2: Student must be able to view list of tasks to complete

Justification: This will allow student to see the tasks they need to complete throughout

the year

Acceptance Criteria:

• When user is logged in as a student they should be presented with ‘My tasks’

section containing a list of tasks they need to complete

FR-3: Student must be able to see deadline of tasks they are to complete

Justification: This will allow students to find out when certain work is required to be

carried out by

Acceptance Criteria:

• When user is logged in as a student, they will see the tasks they need to complete

• When the task is clicked, a task details screen will be shown which includes a

deadline date

FR-4: Students must be able to upload files for tasks

Justification: This will allow the user to submit work pertaining to a particular task

Acceptance Criteria:

• When user is logged in as a student and they click on an upload task they should

be taken to the file upload page

• The file upload page should allow the user to select a file from their computer and

upload it

FR-5: Students must be able to see a mark for a piece of work they have submitted

Justification: This will allow students to find out their mark for pieces of work

Acceptance Criteria:

• When a user is logged in as a student, they should be able to see a link to a

feedback page

• When a student clicks this link, they should be taken to a page that shows them

any feedback they have received on work they have uploaded

FR-6: Supervisors must be able to see a list of students they are supervising

Justification: This allows supervisors to easily find out which students they are supervising

Acceptance Criteria:

• When a user is logged in as a supervisor, they should see a list of ‘my students’

which contains a list of the students they are supervising

FR-7: Supervisors must be able to see and download students file submissions for a task

Justification: This will allow supervisors to have access to the work of the students they

are supervising which will allow them to assess the student on their placement year

Acceptance Criteria:

• When user is logged in as a supervisor, they should be able to click on the name of

a student they are supervising and be taken to a page with details about that

student

• The student details page should contain a list of the work a student has submitted

• The supervisor should be able to click on a submission to view it and should have

the option to download it to their device

FR-8: Supervisor must be able to submit a mark for students work

Justification: This will allow the supervisor to mark work through the system

Acceptance Criteria:

• When logged in as a supervisor, user can see the work a student they are

supervising has submitted

• User should have an option to submit a mark that allows them to assign a mark to

that piece of work

FR-9: Placement Team staff must be able to view all students enrolled in the placement

program

Justification: This will allow the Placement Team staff to have an overview of all the

current students on placement years

Acceptance Criteria:

• When logged in as an admin, the user should see a link to view students

• This should take the user to a page containing a table of all the students currently

enrolled in the program

FR-10: Placement Team staff must be able to assign a student to a supervisor

Justification: This allows admin staff to be able to assign a supervisor to a particular

student in order to track and assess them

Acceptance Criteria:

• When logged in as an admin and viewing all students the user should have the

option to assign a supervisor

• The user should be able to select a supervisor from the list and assign this to the

student

• The student should now have this supervisor assigned to them

FR-11: Placement Team Staff must be able to view tasks set for students to complete

Justification: This allows admins to keep track of the tasks they are asking students to

complete

Acceptance Criteria:

• When the user is logged in as an admin, they should see an option to view tasks

• On the view tasks page, they should be able to see a list of tasks names that shows

the tasks that students are asked to complete

FR-12: Placement Team staff must be able to create new tasks

Justification: This will allow the placement team staff to set up tasks for the student users

to complete during their placement year

Acceptance Criteria:

• When logged in as an admin and on the view tasks page, the user should have an

option to create a new task

• The user should then be presented with a form to fill out task details

• On submission of this form, the new task should be created and viewable by

students

FR-13: Placement team staff must be able to delete a task

Justification: This ensures that if a task is created incorrectly, or is no longer part of the

required process it can be deleted

Acceptance Criteria:

• When user is logged in as an admin and on the view tasks page they should have

the option to delete a task

• The system should ask them to confirm they want to delete the task to prevent

errors

• Once deletion is confirmed, the task should no longer be show in the list of tasks

3.2.1.2 Should Have

FR-14: User should be able to log out of the application

Justification: This will allow the user to make sure their account is secure when they are

finished using the application on a device used by more than one person

Acceptance Criteria:

• The user should have an option to log out when on a page

• When the log out process is completed, when the user tries to use the application,

they should be re-directed back to the log in page

• Once the user is logged out they will have to log in again to use the application

FR-15: Students should be able to view their previous submissions for a particular task

Justification: This will allow the user to see the work they have already submitted for a

task to verify they have submitted correctly

Acceptance Criteria:

• When user is logged in as a student, tasks they have completed should still be

displayed in the list of tasks

• When the user clicks on a task that they have already completed they will be taken

to a page where they can see their previous submissions

• User should be able to preview the submitted document

FR-16: Student should be able to see information about their assigned supervisor

Justification: This will allow the student to be able to contact the supervisor if needed

Acceptance Criteria:

• When logged in as a student, the user should be able to see the supervisor they

have been assigned

• User should have the option to view contact information for the supervisor

• When this option is clicked, a pop-up modal should appear with the information

about the student’s assigned supervisor

FR-17: Student should be able to arrange a meeting with their supervisor

Justification: This will allow for students to organise a meeting within the application

instead of by email

Acceptance Criteria:

• When logged in as a student, the user should see tasks for arranging the required

supervisor meetings in their list of tasks

• When the user clicks on the task they should be taken to a page where they can

submit a prospective meeting time and date for the task

• When this is submitted the supervisor should be able to see this prospective

meeting when they log in

FR-18: Students should be able to view profile information about themselves

Justification: This allows the student to validate that any information stored within the

system about them is correct

Acceptance Criteria:

• When the user is logged in as a student, they should see a summary of their

information including name, picture, supervisor, placement provider and start

date

FR-19: Student should be able to distinguish tasks they have already completed from

those they have not

Justification: This allows the student to keep track of which tasks they have completed

and which they are yet to complete

Acceptance Criteria:

• When logged in as a student, the user should see a list of tasks

• In the list of tasks, if the task has already been completed the task should be

coloured/formatted differently to indicate it has been previously completed

FR-20: Tasks should be marked as done once they have been completed

Justification: This allows the system to automatically mark tasks as completed without

the user having to keep track manually

Acceptance Criteria:

• When the user is logged in and they complete the process for a task this task

should be marked as done by the system

• When the user navigates back to the list of tasks, that task should be formatted

differently to indicate that it has been completed

FR-21: Supervisors should optionally be able to submit feedback comments alongside a

mark for a student submission

Justification: This allows the supervisors to give the student feedback on their work

through the placement management system

Acceptance Criteria:

• When logged in as a supervisor, the user should be able to see a list of

submissions for a given student and have the option to submit a mark

• When submitting a mark, the user should be given the option to add feedback

comments if they desire

• When the user submits the mark and comments, this feedback should then be

available to the student

FR-22: Supervisors should be able to upload documents relating to a student they are

supervising

Justification: This allows the supervisor to upload supporting documents related to the

student as evidence of their progress

Acceptance Criteria:

• When logged in as a supervisor and viewing details about a student, the user

should have an option to upload supporting documents

• The user should be able to select a document to upload and submit it

• When the document is submitted, it should now appear in a list of supporting

documents for the student

FR-23: Supervisors should be able to view relevant details about students they are

supervising

Justification: This will allow the supervisor to see information about the student which

will allow them find out details about the student’s placement or to contact the student

Acceptance Criteria:

• When logged in as a supervisor, user should see a list of students they are

supervising

• When clicking on one of the students, the supervisor should be taken to a page

presenting a summary of information about the student

• The students id, name, email and placement provider should be displayed

FR-24: Placement Staff should be able to edit the details of current tasks

Justification: This will allow admins to change details such as the description or deadline

date of a task without having to delete the task and create a new one

Acceptance Criteria:

• When logged in as an admin and on the view tasks page, the user should be

presented with an option to edit a task

• When this is clicked, a form should appear with the task’s details filled in, the user

should then be able to change these details and submit the form

• When this has been submitted, if the user clicks the edit task button again the new

details should be displayed

FR-25: Placement Team staff should be able to change student details

Justification: This will mean that if any of the students’ data is incorrect, it can be edited

by an admin through the application

Acceptance Criteria:

• When the user is logged in as a supervisor and on the view students page, they

should have an option to edit student’s details

• When this is clicked the user should be presented with a screen that shows the

students details in a form

• The details can be changed and then the form submitted

• When the for is submitted, the user’s details are updated and the new values are

visible in the table

FR-26: Placement Team staff should also be able to see students they are supervising

Justification: Some members of the placement team will also act as supervisors, so they

should also be able to see the details etc of the students they are supervising in the same

way was any other supervisor

Acceptance Criteria:

• When logged in as an admin the user should be able to see a list of students they

are supervising, if they are assigned to supervise students

FR-27: Placement Team staff should be able to sort the list of students by field

Justification: This will allow staff to more quickly find the students they are looking for in

the view students page

Acceptance Criteria:

• When logged in as an admin, user should be able to see a table of all students

enrolled in the placement program

• Next to some table headings there should be a button for sorting

• When this button is clicked, the table should be re-organised in descending order

according to the field the button was clicked on

• When clicked a second time, the table should be sorted in descending order

according to that field

FR-28: Placement Team staff should be able to search for students by key identifiers

Justification: This will mean that if the staff need to see details about a particular student

that they already know some information about they can find them quickly

Acceptance Criteria:

• When logged in as an admin and on the view students page, user should see a

search box

• When a word is typed in the search box, data entries in the table of students

should be filtered by students whose name, id or supervisor match that string

• Only students matching the string should now be displayed in the table

FR-29: Placement Team Staff should be able to give tasks deadlines

Justification: This will mean that tasks will be able to have an associated deadline for the

students to complete them by

Acceptance Criteria:

• When logged in as a supervisor and on the create task page the user should have

the option to set a deadline date and time for the task

• When this is set and the task is submitted, this deadline should appear to this and

other users in the task details

3.2.1.3 Could Have

FR-30: System could get and display data about users from the Microsoft Office365 API

Justification: Some useful data about users is already stored by Microsoft as part of the

University’s Office365 subscription, this would allow this data to be used in the

application

Acceptance Criteria:

• When user is logged in, they can see data about themselves

• Some of this data should have come from the Microsoft365 API

FR-31: Student could receive an email when a deadline is approaching

Justification: Allows the student to be reminded about upcoming deadlines so they are

less likely to miss them and be penalised

Acceptance Criteria:

• When the user is a given time away from a particular deadline, they should receive

an email at the address associated with their account

• This email should contain the name of the task the deadline is for and encourage

the user to log in and complete it

FR-32: Student could be able to edit their own profile information

Justification: This would allow students to edit any information stored by the system

about it if they knew it to be wrong without having to contact an admin

Acceptance Criteria:

• When logged in as a student, the user should see an option to edit their profile

information

• When clicked, the user should then be presented with a editable form containing

their current information

• On submission this data should be updated to the new values from the form for all

users

FR-33: Students could see a progress bar which shows them the percentage of tasks they

have completed

Justification: This allows the student to, at a glance, get an idea of how far they have

progressed through the tasks they need to complete

Acceptance Criteria:

• When logged in as a student, the user should be able to see a list of the tasks they

need to complete

• Above this list there should be a progress bar that is filled to a certain level

dependent on how many tasks they have completed

• The level the bar is filtered to should be relative to the number of tasks completed

divided by the total number of tasks

FR-34: Placement Team Staff could create scheduled emails to send to all students at

certain points during their placement

Justification: This would allow admins to send automated emails to students throughout

the year

Acceptance Criteria:

• When logged in as an admin, user should see an option to create a scheduled

email

• User should be able to enter a subject, body and date relative to start date

• User should be able to submit this and then see it in a list of scheduled emails

FR-35: Placement Team Staff could be able to save a task as a draft rather than publish it

to students

Justification: This would allow admins to create tasks and then decide when they wanted

to publish them – this might mean that throughout the year staff could add new tasks for

next year’s placement students and then only publish them when needed

Acceptance Criteria:

• When logged in as an admin and creating or editing a task, the user is given the

option to publish the task or save it as a draft

• If the user opts to save as a draft, the task data should be saved but it should

appear in a list of draft tasks

• Draft tasks should not be visible to students

3.2.2 Non-functional Requirements

NFR-1: System should work on all main browsers

Justification: This will allow users to use the system from whichever browser they prefer

Acceptance Criteria:

• Site pages should be correctly displayed for IE, Chrome, Firefox and Safari

NFR-2: System should load user data within a reasonable amount of time

Justification: So that the user does not have to wait a long time while the app is loading

data

Acceptance Criteria:

• When on pages such as the dashboard that load data from the API, data should

take no longer than 5 seconds to appear

NFR-3: System should be intuitive and easy to use

Justification: This will allow users to have a good experience using the system

Acceptance Criteria:

• System should be reviewed against Nielsen’s usability heuristics

NFR-4: System should not allow users to change other user’s data without correct

permissions

Justification: This is to decrease risk of malicious users changing data

Acceptance Criteria:

• When logged in as a student or supervisor, user should not have access to pages

that allow them to change data

NFR-5: System should update data in database on action

Justification: All changes should be updated in the database when an action is made, not

just in the UI – this means changes are always saved in the event of page refresh

Acceptance Criteria:

• When action is performed such as ‘create task’, the data should be pushed and

saved to database

3.3 Use Cases

The following section outlines the main use cases for the application, based on the

requirements. The diagram in figure 1 gives an overview of the use cases in relation to each

type of user.

Figure 1: Use Case Diagram

Detailed below are some of the main use cases for each user

Use Case 1

Name: View Supervisor

User: Student

Preconditions:

• User account exists

• User type is student

• User has been assigned a supervisor

Main Flow:

1. User presented with login page

2. User enters credentials

3. Credentials verified by backend

4. User presented with dashboard page - In profile card on dashboard page,

supervisor’s name is displayed as a link

5. User clicks link

6. User presented with pop-up modal containing contact information about their

supervisor

Alternative Flow:

1A. User navigates to system and is already logged in, user taken straight to

dashboard page

Use Case 2

Name: Uploading a document

User: Student

Preconditions:

• User is logged in

• User type is student

• Tasks are available to students

Main Flow:

1. User is presented with dashboard page, containing list of links to tasks to be

completed

2. User clicks on link to upload file for uncompleted task

3. User taken to task page

4. System retrieves task details from database

5. User presented with list of task details and a form

6. User clicks to add file

7. User selects file from file browser

8. System validates file is correct type

9. (Optional) User can choose to add a comment to upload

10. User clicks button to submit file

11. System displays loading spinner while file upload attempted

12. On successful file upload user is taken to review submissions screen where all

submissions for that task are shown

Alternative Flow:

1A. 1. User clicks on link for upload task they have already completed

1A. 2. User taken to review submissions page and presented with list of previous files

uploaded for this task

1A. 3. User clicks on link to upload another file for this task

4A. User drags and drops file into file area from open file browser window

10A. File upload fails, user is presented with an error message

Use Case 3

Name: View Marks

User: Student

Preconditions:

• User is logged in

• User is of type student

Main Flow:

1. User is presented with dashboard page

2. User clicks link to view marks

3. User taken to feedback page

4. System retrieves user feedback from database and displays list of tasks the user

has received feedback for

5. User clicks task they would like to view feedback for

6. Mark and comments for the feedback for this task are displayed on screen

Alternative Flow:

4A1. User does not have any feedback available

4A2. Page displays message informing the student they do not have any feedback to

view yet

Use Case 4

Name: Arrange a meeting

User: Student

Preconditions:

• User is logged in

• User type is student

• Task of type meeting is available to students

Main Flow:

1. User is presented with dashboard page, including list of tasks to be completed

2. User clicks link to task of type meeting

3. User is taken to a schedule meeting page

4. Details about task are loaded from the database and displayed on page along with

a form

5. Student inputs date and time to form

6. Student clicks submit

7. System attempts to add meeting to database

8. On success, message is shown to user saying their proposed meeting time has

been submitted

Alternative Flow:

 8A1. Attempt to add meeting to database fails

 8A2. User presented with an error message describing the failure

Use Case 5

Name: View Assigned students and details about student

User: Supervisor

Preconditions:

• User is logged in

• User is of type supervisor

• User has been assigned at least one student to supervise

Main Flow:

1. User is presented with dashboard page

2. List of students assigned to supervisor is retrieved from database and displayed on

page

3. User clicks on the name of a student they are supervising

4. User taken to student details page

5. System retrieves details for this student from database, if successful information

about the student is displayed on page

Alternative Flow:

 5A. Student details cannot be loaded from database; error message is displayed

Use Case 6

Name: View/Download students work

User: Supervisor

Preconditions:

• User is logged in

• User type is Supervisor

• User has followed steps from Use Case 5 to get to student details page

Main Flow:

1. User selects submissions tab

2. List of tasks student has completed is shown

3. User clicks on a task

4. Page directed to view submissions page

5. Submissions for this student for this task are loaded from the database

6. List of submissions displayed

7. (Optional) user clicks a submission to view a preview

8. (Optional) user clicks download button to download submission

Alternative Flow:

 N/A

Related Use Cases: Use Case 5

Use Case 7

Name: Mark Assignment

User: Supervisor

Preconditions:

• User is logged in

• User type is Supervisor

• User has followed steps from Use Case 5 to get to student details page

Main Flow:

1. User selects submissions tab

2. List of tasks the student has completed is shown

3. User clicks button to mark work

4. Form displayed

5. User inputs mark

6. (Optional) User inputs feedback comments

7. User clicks submit

8. Feedback is uploaded to database

9. On success, list of tasks is displayed again with success notification

Alternative Flow:

3A1. Student has not uploaded any work

3A2. In place of list, message is displayed indicating the user has not submitted any

work for marking

Related Use Cases: Use Case 5

Use Case 8

Name: View Tasks

User: Admin

Preconditions:

• User is logged in

• User type is admin

Main Flow:

1. User presented with dashboard page

2. User clicks view tasks link

3. Redirect to view tasks page

4. Tasks are loaded from database and displayed in list

Alternative Flow:

 4A1. No tasks have been created yet

 4A2. Message is displayed informing user no tasks have been created yet

Use Case 9

Name: Create new task

User: Admin

Preconditions:

• User is logged in

• User type is Admin

• User has followed steps from Use Case 8 and is on view tasks page

Main Flow:

1. User clicks button to create new task

2. Redirect to create task page

3. User presented with form

a. User inputs task name

b. User inputs task deadline date

c. User inputs task deadline time

d. User inputs task description

4. User clicks button to submit form

5. Task is uploaded to database

6. On success user is redirected to view tasks page

Alternative Flow:

 5A1. Task upload fails

 5A2. User presented with error message informing them of task creation failure

Related Use Cases: Use Case 9

Use Case 10

Name: Edit task

User: Admin

Preconditions:

• User is logged in

• User type is Admin

• User has followed steps from Use Case 8 and is on view tasks page

• There is at least one task already created

Main Flow:

1. User clicks edit button for one of the displayed tasks

2. User is taken to edit task page

3. Task details are loaded from database

4. Task details are loaded into form inputs

5. (Optional) User edits form fields

6. User clicks submit button

7. Task update uploaded to database

8. Redirect back to view tasks page

9. Notification displayed confirming task successfully edited

Alternative Flow:

 7A1. Task update fails

 7A2. Display notification of error

Use Case 11

Name: View All Students

User: Admin

Preconditions:

• User is logged in

• User type is Admin

Main Flow:

1. User presented with dashboard page

2. User clicks link to view all students

3. Redirect to view students page

4. System retrieves account data about all student accounts from database

5. Display table of students with some details such as name, student ID and

placement company + start date

Alternative Flow:

4A1. No student accounts present in database

4A2. Display message informing user there are currently no students in system

Use Case 12

Name: Assign supervisor to student

User: Admin

Preconditions:

• User is logged in

• User type is admin

• User has followed steps from Use Case 11 and is on view students page

Main Flow:

1. User clicks button to assign selected student a supervisor

2. List of currently available supervisors retrieved from database

3. Display list of available supervisors

4. User clicks on a supervisor to select

5. User clicks button to submit

6. Data updated in database

7. On success, notification displayed informing user supervisor has been assigned

Alternative Flow:

 1A. (Optional) User filters list of students by string to find student, then clicks button

to assign this student a supervisor

 3A. Use already has supervisor selected; this supervisor is selected in list by default

4 Design

This section of the report details the design of the application. Due to the nature of the Agile

implementation method, this design was done incrementally – all design work done

throughout the process is documented in this section.

4.1 User Interface Design

The design of the application’s UI is centred around being able to quickly and easily carry

out tasks with minimal errors. The design should give high visibility of key features, allowing

the user to easily navigate to desired resources, and should provide visual confirmation of

actions performed in order to increase clarity.

4.1.1 Wireframes

Wireframes are schematics designed to communicate the structure and functionality of an

application. As such, they do not necessarily incorporate detailed visual design, but are

focused more on layout and flow of the application.

These wireframes are designed based on the requirements and use cases.

The look of the application will vary based on the whether the user is a student, supervisor

or admin, thus the wireframes are divided by user type.

All Users

Some screens will look the same for all users.

Login Screen

Figure 2: Wireframe - Log in screen

Features

Feature Description/Justification

Image Cardiff University logo – this makes it immediately clear to the

user that this application is under the wider umbrella of

Cardiff University web resources

Username/Password

input boxes

Due to the standard structure of the form, the functionality of

these input boxes should be obvious to the user. However, to

make it explicit the boxes will be filled with ‘placeholder’

values ‘username’ and ‘password’

Log In Button This button is clicked to submit the log in details. The words

‘log in’ make the button’s function clear to the user. The

button will also be coloured to draw user’s attention.

Forgotten Password link This button will take the user to the Cardiff University

password reset page

Student View

Wireframes for the application from the student view.

Dashboard

Figure 3: Wireframe - Student Dashboard

Feature Description/Justification

Navigation Bar Present on all pages.

• Contains Cardiff University to visually tie the

application into the university’s other web

resources.

• ‘Placement Manager’ title text describes the

application and also serves as a link back to the

home/dashboard page from anywhere else in the

application.

• ‘Log out’ link allows user to log out quickly and

easily from anywhere in the application.

Profile Card • User avatar/picture – provides visual confirmation

that user is logged in to their account

• Profile text – will show information such as name,

Student ID and placement provider, giving user

quick overview of data stored about them in the

system

• Supervisor name – shows supervisor if assigned.

Name is a link that can be clicked to display a modal

giving user quick overview of details about their

supervisor

Tools card Gives user quick access to links to useful features of the

application. Allows for fast navigation of the system if the

user knows what they want to do.

Tasks Card Gives user immediate overview of tasks they have

completed and tasks they need to complete throughout

the year

• Progress bar – gives user quick visual representation

of the percentage of tasks they have completed at

the current time

• Current tasks – list of tasks the user needs to

complete, displayed as clickable links that will take

user directly to page where they can complete that

task

• Completed tasks – list of tasks the user has already

completed, clicking these links will take the user to

the page where they can view their past

submissions

Supervisor Details Modal

This modal appears over the top of the dashboard page when the user clicks on the

supervisor name in the profile card.

Figure 4: Wireframe - Student Dashboard - supervisor modal

Feature Description/Justification

Supervisor picture Shows picture of supervisor – this feature allows user to

visually recognise supervisor, creating familiarity and

strengthening relationship

Contact details section Contains various contact details for the supervisor,

allows user to quickly find a way to communicate with

their supervisor if they need to.

Email link will open new email composition page in users

default email client.

File Upload Page

User will be taken to this page when they click a task on the dashboard of type ‘upload’. This

page is designed to facilitate easy upload of assessments and supporting documents

throughout the placement year.

Figure 5: Wireframe - Task - Upload file

Feature Description/Justification

Page heading Display task name at the top of the page so user knows

where they are in the application and has confirmation

they are uploading the correct file.

Details boxes Sets out key information about task to user

Preview window Allows user to see a preview of the file they select for

upload; this means user can visually confirm they have

selected the correct file.

File box Can be clicked to open default file explorer, or file can

be dragged and dropped. File will be validated on add.

Upload button Button will be disabled until a valid file had been

selected to prevent accidental submission errors. Button

will be coloured to highlight it to user.

View Submissions

This page will allow user to view documents they have previously submitted for an upload

task.

Figure 6:Wireframe - View Submissions Page

Feature Description/Justification

Title Display’s task name to inform user which task they are

viewing submissions for

File list side panel User can see all the files uploaded for this task in a

single list – list should be ordered chronologically, with

the most recent upload at the top. Clicking the name

of the task should display this file in the preview

window.

Preview window Allows user to see a preview of the file – if user has

navigated from upload page, the file they just

uploaded should be previewed by default

Feedback Page

This page allows user to view marks/feedback they have received for each upload task when

their supervisor has marked it.

Figure 7: Wireframe - Feedback Page

Feature Description/Justification

Task list side panel User can see a list of all the tasks they have received

feedback for. These tasks should be displayed in

chronological order with the most recent feedback

first.

Clicking the task name will display the feedback for

that task in the feedback section, allowing user to

easily navigate between feedback tasks.

Feedback section Contains feedback details for task

• Task name – informs user which task they are

viewing feedback for

• Mark – Large font size because this is important

to user

Preview window Allows user to see a preview of the file – if user has

navigated from upload page, the file they just

uploaded should be previewed by default

Supervisor View

Wireframes detailing layout and functionality for pages from the supervisor view. Any

shared features are explained in student view wireframes.

Supervisor Dashboard

The dashboard page for supervisors is largely the same as it is for students. However, rather

than having user’s tasks in the right-hand column, the user is instead presented with a list of

students they are supervising/moderating.

Figure 8: Wireframe - Supervisor Dashboard

Feature Description/Justification

My Students card Displays students that the user is

supervising/moderating.

• To distinguish between students the user is

supervising and moderating, the lists are

separated into two

• Clicking the name of a student in this list will

take user to details page for that student

Student Details

The student details page will have 4 distinct sections which will be shown depending on the

tab selected in the left-hand panel. This allows the user to choose which specific

information they would like to be displayed, rather than cluttering the UI trying to fit all of

the information into a single view.

Student details - Details tab

This is the default tab if navigating from the dashboard page as it provides a generic

overview of potentially useful information about the student.

Figure 9: Wireframe - Student Details - Details Tab

Feature Description/Justification

Student Picture Student’s display picture is shown in the top left of the

card, providing the user with visual recognition of the

Student. This can help user to personify student rather

than just seeing data.

Tab selection panel This side panel allows user to select the information

they wish to display for the user

Student details Displays details relating to the student in key-value

pairs, such as: name, student id, email, supervisor

name – allows user to quickly find information

necessary to contact student

Placement details Displays key-value list of placement-specific details

such as: workplace supervisor, placement provider,

location, start date

Student details – submissions tab

This tab allows supervisor to view and mark the files that the student has submitted.

Figure 10: Wireframe - Student details - Submissions Tab

Feature Description/Justification

Completed tasks list Shows list of tasks the user has submitted work for

• If task name is clicked, then user is taken to

submissions page for that task for the student

(as shown in figure 6) – allows fast access to

students work

• Mark button – when button is clicked a modal

is displayed for the supervisor to input a mark

and comments – this button will only be

displayed if the task upload type is ‘assessment’

as supporting documents do not require

marking

Student Details – submissions tab – mark modal

Figure 11: Wireframe - Student Details - Submissions - Mark Submission Modal

Feature Description/Justification

Task name Confirmation for user that they are submitting marks

for the correct task

Mark Allows user to input the mark for the task. Displays

maximum mark available for task as reminder to user

Comments Text box to allow for additional feedback comments,

use textarea input to encourage longer comments for

more constructive student feedback.

Submit button Coloured to attract user attention

Student details - Meetings

Page displaying details about any meetings the user has scheduled with this student

Figure 12: Wireframe - Student Details - Meetings Tab

Feature Description/Justification

Scheduled meetings Displays list of meetings currently scheduled with

student.

• Displays meeting name, date and time for quick

access to information relating to meeting

• Cancel button – allows user to cancel the

meeting, this is not a primary action for the

user on this page so secondary ‘outline’ button

is used

Pending approval List of meetings that need to be approved by

supervisor.

• Meetings must be approved by supervisor

before being scheduled as this confirms that

both student and supervisor are aware of

meeting and confirmed they are available.

• Approve button is primary action for this page

so is coloured to attract user attention

Student Details – Documents

This tab allows the supervisor to view and upload documents from placement visits and any

other material they want to upload related to this student.

Figure 13: Wireframes - Student Details - Documents Tab

Feature Description/Justification

Add documents ‘+’ symbol • ‘+’ symbol is widely used across the web, so we

can assume users will understand they can click

this symbol to add documents

• takes user to document upload page (as in

figure 5)

Supporting documents list List of documents uploaded related to this student.

• Clicking on the document page will take user to

document preview page similar to that in figure

6.

• Delete button – allows user to delete

document, this button should trigger a pop up

window asking for confirmation that user wants

to delete the document to prevent accidental

deletion

Admin View

Wireframes for pages as viewed by a user with admin privileges – any shared features with

other user types are detailed in previous wireframes.

Admin Dashboard

The admin dashboard is purposefully very similar to the supervisor dashboard, this is for

two reasons:

1. Placement Staff can also supervise students, so they need the same supervisor

features

2. Users who are admins should not have to learn a whole new site layout to use

administrative features

Figure 14: Wireframe - Admin Dashboard

Feature Description/Justification

Tools Admin view contains additional links to tools for

managing tasks and users that are only available to

users with admin privileges. Clinking the link to these

tools takes the user to the page.

Manage Students

This page will be where admin users can view and manage students registered within the

system. The primary goal of this page is for Placement Team staff to be able to find

individual students easily and to assign students a supervisor.

Figure 15: Wireframe - Manage Students

Feature Description/Justification

Search box This allows user to input a string to filter students by.

Filter should be applied to key data such as Id, Name,

supervisor name, or placement provider

Table • Table should contain key data that helps to

identify student – any non-essential data can

be found on student details page

• Clicking on the row containing a student will

take user to student details page for that

student – this means more data about the

student is available to the user if they desire it

Header row • Any sortable table columns will contain a

symbol in the header that can be clicked to sort

the table by this row – allowing the user to

organise the data in order to help them find a

particular student

Action buttons • Assign supervisor – ‘primary’ button, coloured

to draw user attention as this is the primary

functionality for this page – pressing this button

opens the supervisor selection modal

• Re-assign supervisor – ‘secondary’ button, can

be used to re-assign a student that already has

a supervisor

Manage Students – supervisor selection modal

This is the pop-up modal shown when the user clicks ‘assign supervisor’ button. A modal

was chosen as this doesn’t navigate away from the page, meaning the user can quickly

assign students one at a time without going from page to page.

Figure 16: Wireframe - Manage Students - Assign Supervisor Modal

Feature Description/Justification

Subheading Provides confirmation to user that they are assigning

supervisor for the named student

Supervisor list List of selectable supervisors to assign to the student.

• When clicked, the supervisor will be highlighted

in a different colour to show selection to make

system status clear to user

• If student already has a supervisor, this

supervisor should already be selected by

default

Assign button • Button text makes functionality clear to user

• ‘Primary’ button using colour to draw user’s

attention

• Should be disabled until a selection is made

Manage Tasks

This page allows users with admin privileges to manage the tasks for students to complete.

Figure 17: Wireframe - Manage Tasks Page

Feature Description/Justification

Plus icon Clicking this icon will take the user to page to create a

new task – this is a commonly used symbol so purpose

should be clear to user, but on-hover tooltip will also

be used in order to make function obvious

Tasks • Number on far left indicated the position of this

task in the order – the idea is that students will

complete the tasks in order

• Edit button takes user to page where they can

edit the details of the task – this means users

will not have to make a new task if one or two

details need to be changed

• Delete button – allows user to delete task,

should trigger a modal that asks for

confirmation to prevent accidental deletion

• Drag dots – these dots can be clicked to drag

and drop tasks into desired order – this should

be much more intuitive to user than having to

adjust the order index manually

Save changes button • Should be disabled until a change is made

• ‘primary’ button colours used

Create Task

This page is designed for the admin to be able to create new tasks for students to be able to

complete.

Figure 18: Wireframe - Create Task Page

Feature Description/Justification

Task Name Text input, should be a required field for the form

Task Id Id will be displayed but should be auto-assigned by the

system and not editable by the user to maintain

uniqueness

Task type Select box to for user to choose between ‘upload’ and

‘meeting’ task types – should be empty by default and

should be required field

File Type Select box input – should be disabled unless task type

is specified as ‘upload’ as file type is not relevant for

meeting tasks

Marks available Number input – should be disabled unless task type is

‘upload’ and file type is ‘assessment’ as otherwise this

field is not relevant to task

Deadline date Should allow user to type date for deadline or select

from calendar date picker for more intuitive date

selection – also user should not be able to select dates

in the past

Deadline time Time input – should allow user to type time in 24h

clock

Create task button ‘primary’ button to attract user attention. Button text

makes functionality clear to user.

4.1.2 Colour Scheme

Colour is an important tool in being able to improve user experience. The colour scheme

used is designed to create a pleasing experience for the user, visually link the system to

other Cardiff University Web Resources, and most importantly to maintain a good

accessibility standard.

In order to ensure a professional look at feel, the colour design is modelled from the

Material Design colour system principles [20] produced by Google. The scheme is centred

around a primary and secondary colour and several harmonious variants.

Figure 19: Colour Scheme

To visually tie the application in to the Cardiff University ecosystem, the primary colour

(#2b354c) was pulled from the navbar of the Cardiff University Intranet site. This colour is

used for the application’s primary navigation bar, as well as to accentuate certain features

such as tables. Similarly, the secondary colour (#d4374a) is pulled from the Cardiff

University intranet’s buttons and headings, which is in turn modelled from the Cardiff

University logo. Within the system this colour is used to draw the user’s attention to

actionable elements such as buttons, as well as being used to highlight ‘active’ members of

lists etc.

The exceptions to this colour scheme will be for:

• Links – will be default blue colour as is widely standardised across the internet, this

makes links clear and obvious to the user

• Confirmation notifications, symbols and progress bars will be green to indicate

success – industry standard across may web applications

• Warning notifications and symbols will be yellow – industry standard across many

web applications

• Error notifications/symbols and dangerous actions such as ‘delete’ will be coloured

in red – universal error/danger colour, industry standard across many web

applications

Accessibility

The Material colour tool also provides insight into the text colour/opacity required for all

the colour variants in order to maintain accessibility. These standards will be abided by

throughout the application and are available here:

https://material.io/resources/color/#!/?view.left=1&view.right=1&primary.color=2c354c&s

econdary.color= d4374a

4.1.3 Visual Design Mock-up

Visual Designs are mock-ups designed to demonstrate what the app will actually look like to

the user by including accurate fonts, copy, colours and structure. These designs are time-

consuming to produce, so due to the time constraints of the project a small selection of

visual designs were created to be used as a style guide when creating pages.

Dashboard Visual Design

Figure 20: Visual Design - Dashboard

Notable Features

Feature Description/Justification

Cards Cards are based off default Bootstrap 4 cards – clean,

rounded, minimal colour to distract from functionality

Display picture Rounded, compliments rounded borders of cards and

is pleasing to the eye

Tasks The format of tasks changed slightly from original

wireframes: the tasks are displayed in their order

rather than being separated into ‘to do’ and

‘completed’. Tasks are also separated by horizontal

rules so each task is more distinct.

• Completed tasks – muted text colour as they

are less important, green checkmark to visually

reinforce completed status

• Tasks to be done – default blue url colour to

indicate user will be taken to page to complete

task

5 Implementation

This section of the report details the process and code involved in implementing particularly

key or interesting features of the application - as such, much of the code is not covered in

detail.

5.1 System Architecture

Figure 21: System Architecture Diagram

Figure 21 describes the system architecture and technologies used in the final

implementation of the solution. The user interacts with the front-end angular client, the

client then makes requests to the back-end REST API. The API (built with NodeJS Express)

then makes appropriate requests to the MongoDB database and/or the Microsoft Graph

API, it then does any necessary data processing with the JSON data returned and then

passes data back to the client in a JSON response. The front-end client will then present this

data to the user.

The majority of the data manipulation should be done in the back-end. Any display logic can

be done in the front-end, but the back-end should pass data to the client ready to use and

data that needs processing from the client should be passed to the API.

Back-end REST API

(NodeJS Express)

Database

(MongoDB)

Microsoft Graph API
Front-End Client

(Angular)

JSON

HTTP Request

Request JSON

HTTPS Request

JSON

User

Request

5.2 Database

It was decided that the database for the application should contain 4 collections in order to

store the different types of data required to implement the requirements:

• Users – store data relating to the system users

• Tasks – store data about the tasks created and managed within the system

• Files – store files uploaded by users of the system

• Meetings – store data relating to any meetings organised by the users

Complications arose when thinking about how these different types of document should

relate to each other. The information relating to a task must be available globally to all

users, however each user also needs to be able to have data that relates to their own

‘instance’ of the task, such as whether they have completed that task or not, and their mark

for that task.

At first, it was conceived that each task document could contain an array of nested

documents describing user submissions/data relating to that task. However, if there were a

large number of users then the task documents would become too large and this may affect

retrieval time.

In the end, it was decided that each user document would contain an array of id’s

associated with the tasks they have completed. If further information about the task was

required by the client, it could then be retrieved based on this task id. Similarly, files and

meetings will have an associated task Id, meaning that they can be retrieved based on the

task they are associated with.

It could also be argued that meetings and files documents should be embedded in the user

document, as they are closely tied to the user – meaning all the documents and meetings

related to a user would be sent when the user’s data was requested. This would mean that

a separate request would not have to be made to the API in order to retrieve a user’s

documents/meetings when they wanted to view them. This was decided against, as if the

functionality was to be added to view all the files or meetings currently stored by the

system then it would require a laborious process of querying each student record

individually to retrieve their meetings and documents.

The three user types are implemented through the userType and accessLevel fields of the

user documents. As the Placement Team should be able to act as supervisors, it was decided

that Placement Team staff would use supervisor accounts with a set of extended privileges.

To implement this there are two values for userType: ‘student’ and ‘supervisor’ – Placement

Team staff accounts are those of userType ‘supervisor’ where accessLevel.isAdmin has the

value true.

The schemas for each collection are managed by the Mongoose object data modelling tool

in the back-end API. By defining the schemas in mongoose, it means that the schemas are

formatted in a way that reflects the JavaScript objects that will be used by the front-end

client when displaying the data.

Collection users

Schema

Example

Collection tasks

Schema

Example

Collection Files

Schema

Example

Collection Meetings

Schema

Example

5.3 Front-end

5.3.1 Coding principles

As the project is intended to be used by the School of Computer Science, it was important to

ensure good coding standards are maintained throughout the code for the purpose of

extendibility and maintainability.

The project was generated using the Angular CLI, meaning the file structure of the code

conforms to Angular standard practice. Added to this, wherever possible, the code

endeavours to conform to the Angular Style Guide [21], a set of coding principles created by

the Google Angular team.

Added to this, within the IDE used to build this application I opted to install TSLint, a third-

party linter intended to help maintain standard coding style in TypeScript. Further, I have

endeavoured to include comments in the code in particularly hard to understand areas, and

use intuitive variable names for readability.

Finally, all code endeavours to conform to the Single Responsibility Principle (SRP) [22] in

order to maintain code modularity for easier extendibility and maintainability by myself and

other developers.

5.3.2 Page Flow

Figure 22: Page Flow Diagram

Log In

Dashboard

Student

Manage Tasks

Create Task

Manage Students Schedule Meeting Feedback

Meetings Details Submissions

Upload File

Assign Supervisor

View Submission

Mark Submission

View Supervisor

All Users

Students

Supervisors

Admins

Figure 22 shows an overview of how the user will interact with various pages and features

of the application. Paths shown in orange represent paths that only users with admin

privileges will be able to access such as managing tasks and students. Green lines show the

page flow for Student users, where they can view and complete the required tasks. Blue

lines indicate paths taken by Supervisor users that do not require admin privileges, and red

lines indicate paths in the application available to all users. It should also be noted that on

pages such as the student details page, students will be able to view data but not able to

perform some supervisor/admin actions such as marking submissions or approving

meetings.

This page flow is designed to try and create a user experience that is similar for all user

types, and where some functionality can be shared by all users to reduce code duplication.

5.3.3 Log in

In the original requirements and designs, it was assumed the user would sign in using their

designated Cardiff University credentials (username/password). After conferring with the IT

department in the School, it was decided that this would not be possible for the project for

security reasons.

Instead, the application uses the Microsoft Identity Platform to sign in and authenticate

users via their Cardiff University Office365 account. After some research, I discovered the

Microsoft Authentication Library (MSAL)– a library allowing client-side applications to easily

authenticate Microsoft work and school accounts. Fortunately, Microsoft maintain a MSAL

package for Angular, and I was able to use this to set up authentication in the application.

By setting up and configuring the application in Microsoft Azure and installing this package,

a service called MsalService is made available to the application, which exposes methods for

log in and log out tasks among other things. The component login.component.ts contains

the logic for calling these methods.

Code Snippet 1: login.component.ts

When the log in button is clicked by the user, the login method is called. This method then

calls the appropriate methods in the MsalService, which either redirects the page or brings

up a pop-up window where the user can log in with their Microsoft Office 365 account. If

this authentication is successful, then the application will go to the dashboard page.

5.3.4 Dashboard

Figure 23: Application Screenshot - Dashboard - Student View

The dashboard component is rendered slightly differently based on the user, to handle this

behaviour the dashboard is made up of other custom Angular components which are

displayed or hidden based on the user type.

Code Snippet 2: dashboard.component.html

If user.userType is student then tasks will be displayed, if user.userType is supervisor then

the my-students card will be displayed.

As the dashboard screen is the home page for the application, it is here we handle retrieving

and saving the current users data. This functionality is handled in dashboard.component.ts.

As some of the data we retrieve will be coming from the Microsoft Graph API, we use the

MSAL service again (see log in), this time to get an authentication token we can use to call

the Microsoft API.

Code Snippet 3: dashboard.component.ts

The getUserToken method is called on the initialisation of the dashboard component. This

method calls the MsalService to acquire an authorization token in the background. When

the token has been retrieved, the getCurrentUser method is called which calls the

userService – if data is successfully returned then the user object is set. This data object can

be passed to the other components in the dashboard to be used.

This method worked well for my own student account, as my account set up the Microsoft

API integration through the Cardiff University Azure AD platform. However, when I tested

log in for other users, an error occurred as their access tokens did not have the correct

permissions. To solve this issue, if this error is encountered then the aquireTokenPopup

method of the msalService is called – this method uses a pop-up window to ask for the

user’s consent for the application to read their Microsoft data, and acquires a token with

the correct permissions. These permissions are stored in the users Microsoft Office365

account, so the user will only have to grant permissions once.

When the userService.getCurrentUser method is called by the dashboard, the user’s data is

retrieved using a get request to the backend.

Code Snippet 4: user.service.ts - getCurrentUser()

The getCurrentUser method in user.service.ts performs a get request to the backend API’s

URL + ‘/users/me’ – how this request is handled by the backend is detailed in the Back-end

section of the implementation. This method sets the user’s token as the authorization

header and saves the JSON data response to local storage for quick access from other parts

of the application while the user is logged in. This is cleared when the user logs out.

5.3.5 File Upload

Figure 24: Application Screenshot - Upload File

One of the most key requirements of the project is to be able to facilitate file upload. As file

upload is such a key feature, I wanted it to feel slick and intuitive, so instead of using the

default HTML file input I opted to use the filepond npm package. This package allows the

user to drag and drop files, has sleek animations while the file is processed, and facilitates

file validation.

The filepond component has built in lifecycle hooks that can be used to call methods in the

parent component (in this case the file upload component) on events such as when the

filepond element is initialised and when files are added or removed from the pond.

Code Snippet 5: file-upload.component.ts – on add file

When a file is added to the pond, the buildFileObject method is called that builds a file

object which can be later posted to the database. The actual file data is encoded into a base

64 string and stored along with the other data such as the filename and id – this allows the

files to be easily stored in the MongoDB database. If the file is a pdf, then the file data is set

to the pdfData variable in the component, this variable is then read by the pdf previewer

component to show the user. For now, the preview window only shows a preview for pdf

files, as browsers don’t natively support preview for docx files.

Code Snippet 6: file-upload.component.ts - on upload

When the user clicks the upload button, the onFileUpload method is called. This method

calls the filesService which executes a simple post request with the file object data to the

back-end API which then stores it in the database.

If this is successful, then then the markTaskCompleted method is called which calls the

markTaskCompletedForUser method in the userService. This method sends an UPDATE

request to the backend, which then appends the taskId to the array of completed tasks for

this user in the databsae.

The application then navigates to the submissions page so the user can view their

submissions for this task. The file’s id is passed as a query parameter, this will be used by

the preview page to automatically preview the file just submitted by the user.

5.3.6 View/Assign students

Figure 25: Application Screenshot - Manage Students

Features of the manage students table include being able to sort by header, filter by search

string and display a desired number of data entries per page (pagination). Added to this,

rows are highlighted when hovered over, and the action button to assign/re-assign

supervisor is only shown when hovering over the row in order decrease the likelihood of

accidentally assigning a supervisor to the wrong student.

The implementation of the table utilises the MatTable and MatDataSource components

provided in the Angular Material [23] package, an open source library of UI elements

created and maintained by Google’s Angular development team. This simplified the process

of creating a table with complex functionality such as server-side pagination and filtering to

enhance the user experience, as these libraries are well documented.

This table, and much of the other code within the front-end utilises RxJS [24], an open-

source library for implementing asynchronous behaviour in JavaScript. RxJS observables

work similarly to JavaScript promises, in that a function returns an observable which will

then emit the desired object once some asynchronous behaviour has been performed.

The table subscribes to an RxJS Observable exposed by the MatDataSource, this data source

acts as an interface between the table and the services that compile the data. The

Observable emits the ordered list of student data objects as it changes based on user

behaviour, and the table displays it.

Code Snippet 7: student-table.component.ts

For filtering, sorting, and pagination the table listens for user input on the filter box, sort

buttons and paginator – when something changes, the loadStudents method of the

dataSource is called, which in turn calls the back-end API with query parameters filter,

pageIndex, pageSize, sortBy, sortOrder and userType. These parameters are processed by

the API and an ordered list of students is returned. Details of the API processing are

documented in the Back-end section of the implementation.

Assigning a supervisor

Figure 26: Application Screenshot - Assign Supervisor

Assigning a supervisor is facilitated through a pop-up modal. The modal itself is built using

the ngBoostrap modal component. ngBootstrap [25] is a library of Angular UI components

designed and built by Bootstrap for Angular.

Code Snippet 8: student-table.component.ts - assignSupervisor

When the assign/re-assign button is clicked, the modalService (provided by ngBootstrap) is

called and the modal is initialised. The necessary data is then passed to the modal from the

parent StudentTableComponent based on the student selected and the available

supervisors retrieved from the userService. Once the supervisor is selected and the assign

button is clicked, the supervisor name and id are set for the student, and this data is posted

to the database via the userService.

5.4 Back-end

The back-end of the application is a fairly standard REST API – its main function is to

facilitate the Create, Read, Update Delete (CRUD) operations on the MongoDB database

through the POST, GET, UPDATE, DELETE and PUT HTTP request methods.

5.4.1 Routes

The four main routes of the API reflect the 4 collections in the database:

• ‘/users’

• ‘/tasks’

• ‘/files’

• ‘/meetings’

Each route encapsulates the CRUD functionality for its respective collection, i.e. the ‘users’

collection is only queried by the endpoints in the ‘/users’ route. This works well for a fairly

basic API such as the one in this project as it clearly sets out where collections can be

queried from – for an API with higher complexity it may not be possible to modularise in this

way.

To keep things clean, all the endpoints for each route are contained within a file dedicated

to that route. Additionally, controllers are used to execute the actual JavaScript functions

related to the route – the route files endpoints simply receive a request and call the

required function in the controller. This means each endpoint points to a self-descriptive

method name, making it much easier for the developer to see an overview of the endpoints

and their behaviour.

5.4.2 Retrieving user data

When the user logs in to the application and is taken to the dashboard, the endpoint for

getting current user data is called. This endpoint calls the getUserFromToken method of the

usersController.

Code Snippet 9: usersController.js - getUserFromToken

This method uses the authorisation token received from the Microsoft Authentication

Library in the front end to retrieve the data stored about the user in Microsoft’s Graph API.

If the authorisation token is invalid this is usually because the user hasn’t granted

permissions to the placement application yet. The API will return a 401 not authorised error

which will then be processed by the client to take the necessary steps to get the user’s

permissions.

If the request to Microsoft Graph is successful, the email address from this data is then used

to find the matching user in the placement application’s MongoDB database using

Mongoose. If the email matches a record in the database, then this data will be combined

with the data from MS Graph in the buildUserObject function and then returned as JSON to

the front-end client.

If the email does not match a record in the database then the API will return a 404 not

found error, this will be processed by the front-end to inform the user no record exists for

their account.

5.4.3 Retrieving data for manage students table

The API facilitates server-side filtering, sorting and pagination for the ‘Manage Students’

table in the front-end client in an attempt to move as much processing as possible away

from the front-end. When the table in the client requires a page of data, it sends a request

to an endpoint in the API which calls the searchUsersAndReturnPage method.

Code Snippet 10: usersController.js - searchUsersAndReturnPage

This method takes the query parameters set in the request by the front-end client and uses

them to query the database. If there is a filter string, the database is queried for user

records which have a universityId, name, supervisorName or placementProvider that match

the string using Mongoose – if not, all records matching the user type are returned.

From there, the records are then sorted by the field name from the sortBy parameter in

either ascending or descending order according to the sortOrder. The data can then be

sliced according to the page index and size from the table’s paginator to return the desired

page to the front-end client which then displays the data.

5.5 Deployment

As a proof of concept, it was decided that the application should be deployed on a web

server in order to test the application would function when deployed by the university.

The applications front-end and back-end code were deployed on a Linux Ubuntu virtual

machine, using NGINX on an Amazon EC2 instance (following an online guide2). After some

time experimenting with configuring the server, the code was able to be accessed via the IP

of the EC2 instance. However, it was discovered that once deployed on the cloud rather

than running on a localhost server, the authentication using the Microsoft Identity Platform

was no longer working.

After troubleshooting I worked out that this was because the URL for the EC2 instance was

not whitelisted for the application in the Cardiff University Azure application configuration.

This presented a further problem, in order to be whitelisted, a URL must be using HTTPS

rather than HTTP (for security reasons).

In order to navigate this issue, I needed to obtain a security certificate for the URL in order

to use HTTPS. Because security certificates can only be registered to domain names, I opted

to use my personal domain and routed it to the EC2 instance through the Amazon Route 53

Domain Name Service. I then set up Certbot [26] on the server in order to automatically

manage the HTTPS certificate for the domain.

Once this was done, I could then whitelist my personal URL in the Microsoft Azure

configurations and the application could be accessed via the domain. It’s worth noting that

many of the issues encountered here would probably be avoided if the application is

deployed on the university servers as they are already set up to use HTTPS.

The deployment of the application proved that the system would be able to be deployed

and used by the university. However, the application has not been fully tested whilst

deployed on the server – this should be done in order to make sure none of the

functionality is adversely affected.

2 Available at: https://jasonwatmore.com/post/2019/12/02/angular-nodejs-on-aws-how-to-

deploy-a-mean-stack-app-to-amazon-ec2

6 Results and Evaluation

6.1 Testing the system

Throughout the implementation process, the system has been consistently tested whilst

running on a local host, using mocked data that aimed to closely mimic the real data that

would populate the system.

One challenge presented in terms of testing was the ability to be able to test a system that

requires action from multiple users in order to represent a real-world scenario. Users can

only log in to the system using real Cardiff University Microsoft Office 365 credentials and

consequently the only test account available to me was my own.

To be able to test functionality for all user types, the data stored in MongoDB associated

with my University email address was changed:

• Student user – userType: ‘student’, accessLevel.isAdmin: false

• Supervisor – userType: ‘supervisor’, accessLevel.isAdmin: false

• Placement team staff (admin) – userType: ‘supervisor’, accessLevel.isAdmin: true

This allowed the mocking of the user experience for each type of user. As the system

requires interaction with other user data in order for testing, the MongoDB database was

also populated with a set of mock users for the primary account to be able to interact with.

Mock data such as tasks, meetings and feedback were also inserted into the database for

testing purposes – meaning that functionality such as creating and deleting tasks and files

and approving and deleting meetings could be tested.

The main limitation of this testing is that each user’s functionality had to be tested

independently with mock data on a single account. This means that if and when the

application is used by real users, bugs may appear that would not appear during testing with

a single user account.

See Appendix A for test cases.

As shown in appendix A, the majority of test cases passed with the application behaving as

expected for most scenarios. Further tests should be carried out in order to test a greater

range of scenarios and data input.

Initially it was the intention for the project to have a fully functioning suite of automated

unit tests. However, due to the time constraints of the project there was not time to fully

implement this.

6.2 Assessing application against requirements

Requirement Requirement

Met (Y/N)

Justification/Comments

Must Have

FR-1: User must be

able to log in to the

application

Yes User is able to log in to the system through their

Microsoft Office 365 credentials

FR-2: Student must

be able to view list

of tasks to complete

Yes List of published tasks for students to complete is

displayed on dashboard page to student users

FR-3: Student must

be able to see

deadline of tasks

they are to complete

Yes When user clicks on a upload/meeting task they

are taken to upload file/schedule meeting page

that displays the deadline date of task

FR-4: Students must

be able to upload

files for tasks

Yes Students can upload pdf and docx files for a task

via the file upload page

FR-5: Students must

be able to see a

mark for a piece of

work they have

submitted

Yes Students can view marks for assessment tasks via

the ‘feedback’ page linked from the dashboard

FR-6: Supervisors

must be able to see

a list of students

they are supervising

Yes Dashboard displays a list of students in the ‘My

Students’ card on the dashboard for supervisor

users

FR-7: Supervisors

must be able to see

and download

students file

submissions for a

task

Yes Supervisors can see students’ submissions for

tasks by going to the submissions tab for the

‘student details’ page for a student they are

supervising.

FR-8: Supervisor

must be able to

submit a mark for

students work

Yes Supervisors can submit a mark for assessment

type upload tasks via the same page described in

FR-8

FR-9: Placement

Team staff must be

able to view all

students enrolled in

the placement

program

Yes Any user with admin privileges can see all students

registered with the system via the table in the

manage students page

FR-10: Placement

Team staff must be

able to assign a

Yes Users with admin privileges can assign a

supervisor to any student via the manage students

page

student to a

supervisor

FR-11: Placement

Team Staff must be

able to view tasks

set for students to

complete

Yes Users with admin privileges can view tasks via the

manage tasks page

FR-12: Placement

Team staff must be

able to create new

tasks

Yes Users with admin privileges can create new

upload/meeting tasks via the create task form

accessed through the manage tasks page

FR-13: Placement

team staff must be

able to delete a task

Yes Users with admin privileges can delete tasks via

the delete button for each task on the manage

tasks page

Should Have

FR-14: User should

be able to log out of

the application

Yes Users can log out of the application from any page

via the ‘log out’ button on the navbar

FR-15: Students

should be able to

view their previous

submissions for a

particular task

Yes When a student has submitted a submission for an

upload task, if they click on the task from the ‘My

Tasks’ panel in the dashboard they will be taken to

the submissions page to view their previous

submissions for that task

FR-16: Student

should be able to

see information

about their assigned

supervisor

Yes Students can see information about their

supervisor on by clicking their supervisors name in

the ‘profile’ section of the dashboard to bring up

the supervisor information modal

FR-17: Student

should be able to

arrange a meeting

with their supervisor

Yes Students can schedule a meeting with their

supervisor for a particular time/location by clicking

on any meeting tasks

FR-18: Students

should be able to

view profile

information about

themselves

Yes Students can view details about themselves via the

student details page by clicking on the ‘view

profile’ link on the dashboard

FR-19: Student

should be able to

distinguish tasks

they have already

completed from

those they have not

Yes Tasks already completed on the dashboard are

greyed out and a green checkmark is displayed

next to them on the dashboard

FR-20: Tasks should

be marked as done

once they have been

completed

Yes When a meeting is scheduled or a file is uploaded,

the system automatically adds the task id to the

list of array of completed tasks for that student in

the database

FR-21: Supervisors

should optionally be

able to submit

feedback comments

alongside a mark for

a student

submission

Yes This functionality is available via the same page as

described in FR-8/9 – supervisor can submit

textual comments which will be displayed with the

mark on the feedback page for students

FR-23: Supervisors

should be able to

view relevant details

about students they

are supervising

Yes Information about students can be viewed on the

student details page by clicking on the students

name in the ‘my students’ card on the dashboard.

FR-24: Placement

Staff should be able

to edit the details of

current tasks

Yes Users with admin privileges can edit details of a

task by clicking the edit icon for the task on the

manage tasks page

FR-25: Placement

Team staff should be

able to change

student details

No Due to time constraints, this functionality is not

currently available within the application – the

only way to edit student data is through an API

request or in the database

FR-26: Placement

Team staff should

also be able to see

students they are

supervising

Yes Placement team staff accounts are supervisor

accounts with extended admin privileges, so they

have access to the same features as supervisors

FR-27: Placement

Team staff should be

able to sort the list

of students by field

Yes Users with admin privileges will can sort the table

by header on the manage students page

FR-28: Placement

Team staff should be

able to search for

students by key

identifiers

Yes Users with admin privileges can search using the

table filter box on the manage students page

FR-29: Placement

Team Staff should

be able to give tasks

deadlines

Yes A deadline is added for a task when created on the

create task page

Could Have

FR-30: System could

get and display data

about users from

the Microsoft

Office365 API

Yes The getCurrentUser method of the API retrieves

data about the student from the Microsoft Graph

API and combines it with data about the student in

from MongoDB database

FR-31: Student could

receive an email

No Due to time constraints, automated email

functionality was not implemented

when a deadline is

approaching

FR-32: Student could

be able to edit their

own profile

information

No Same as FR-25

FR-33: Students

could see a progress

bar which shows

them the

percentage of tasks

they have

completed

Yes Progress bar is shown in the ‘My tasks’ card on the

dashboard for student users

FR-34: Placement

Team Staff could

create scheduled

emails to send to all

students at certain

points during their

placement

No Same as FR-31

FR-35: Placement

Team Staff could be

able to save a task

as a draft rather

than publish it to

students

Yes Users with admin privileges can drag and drop

tasks between the ‘published’ and ‘drafts’ groups

on the manage tasks page

NFR-1: System

should work on all

main browsers

Yes System has been tested on Chrome, Firefox, Edge

NFR-2: System

should load user

data within a

reasonable amount

of time

Yes Assuming the user has a reasonable internet,

connection speed data is loaded within a

reasonable amount of time

NFR-3: System

should be intuitive

and easy to use

Partial System was designed in line with Nielsen’s

usability heuristics, but has not been user tested

to conform user experience

NFR-4: System

should not allow

users to change

other user’s data

without correct

permissions

Partial Users without admin privileges do not have access

to pages that allow them to edit user data – but

the API could feasibly be called by an unauthorised

user

NFR-5: System

should update data

in database on

action

Yes Data is always posted to the database, not stored

locally in browser

As shown in the figure above, the project successfully implemented 85% of the

requirements set out at the beginning, fulfilling 100% of the ‘must have’ requirements and

93% of the ‘should have’ requirements. In this way, the project can very much be

considered successful.

Only half of the ‘could have’ features were fully realised in the final system, but this is

acceptable as these requirements were not key to the applications functionality and it could

be argued that aiming to achieve all requirements to a high quality was over-ambitious.

7 Future Work

Automated Emails

It was the original intention of the project to incorporate an automated email function into

the application – however, due to time constraints this was not accomplished. Automated

emails would be sent as deadline reminders, submission verification, and notifications about

student activity for supervisors prompting action.

One method of implementing this within the system would be through the Nodemailer [27]

package for NodeJS. This package facilitates the automated sending of emails in NodeJS web

applications, allowing the system to send emails when certain endpoints are called. Further

to this, Nodemailer could be integrated with the Node Cron [28] in order to facilitate the

automated sending of scheduled emails based on date/time.

Extrapolating from this, the system could allow Placement Team staff to write custom email

templates in the application and set schedules to send them according to variables such as

the users start date or task deadline dates. This feature would undoubtedly save the

Placement Team staff copious amounts of time, as well as improving the user experience for

students and supervisors.

Moderators and 3-tier marking

In its current state the application allows Supervisors and Admins to submit marks and

feedback for students work. However, during the course of the project the desire was

expressed for it to facilitate the full marking process for final reports: marks are submitted

by the supervisor, moderator and then verified and confirmed by a final user.

The current system goes some way to facilitate the moderating of students – the supervisor

dashboard already contains a section for users to view the students they are moderating,

and the moderator name and id are already written into the User schema for the database.

To fully implement the moderation process, much of the experience can be the same as for

supervising, and marks could also be stored in the database in the same way. The main work

to be done would be to enable the 3-tier marking system by enabling an admin to confirm a

final mark, which would ideally require a new component. This component could perhaps

be displayed to admin users on the dashboard in a new ‘Confirm Marks’ which would show

a list of students that had received marks from both their supervisor and moderator and

were awaiting confirmation.

Migrating the system to university servers

If the application is to be used by the School of Computer Science, then it should ideally be

hosted on the school’s web servers. In theory this should be a fairly simple task; the

application is currently deployed on Amazon EC2 on a simple Linux virtual machine (VM), so

the school should be able to easily deploy a similar VM on their own servers to host the

application. The only thing that would need to be changed in the front and back-end code

would be the URLs for HTTPS requests.

The application would also need to be linked to the Schools MongoDB instance rather than

my personal MongoDB Atlas cluster. This migration should be simple because I have not

used any real data, so no data needs to be migrated, the back-end API should simply be

pointed to the schools MongoDB instance which would then be populated with the real

data.

One further consideration for migrating the system could be the applications dependencies

on third-party packages. There are potential security risks of using third-party packages in a

system that handles sensitive student data, and these would need to be assessed and the

code possibly adapted.

Better error handling

Some error handling is already implemented within the system, but it could be much more

robust. Future work in this regard would be updating the API to send more meaningful HTTP

statuses on error, and for the front-end client to handle and interpret these to give the user

meaningful error messages.

Security

Some security measures are already in place within the application – a user cannot access

any of the front-end client pages without a valid authorisation token from signing into their

Microsoft account. However, there is currently little barrier to stop unauthorised requests

to the API, other than only accepting responses from whitelisted URLs. In theory this could

be circumvented by malicious users.

In order to increase the security of the API, authorization for all requests could be

implemented using JSON Web Tokens (JWT) [29], an open source, industry-standard

method of authorised communication between web applications. Implementing this

authorisation technique would mean that only users who had been issued a token by the

API were able to make requests and change data.

Added to this, currently the API endpoints that should only be available to admins (such as

POSTing tasks) are not limited based on user credentials. JWT tokens allow user-based

validation, meaning tokens with different levels of permissions could be given out based on

the user.

Comprehensive Unit Testing

In its current state, unit test coverage of the application is much poorer than intended at the

project’s outset. More comprehensive unit tests would substantially increase the

maintainability of the application by future developers, and undoubtedly uncover and fix

unforeseen bugs that currently exist within the system.

Ideally, every function in every file should be tested in order to ensure it behaves as

expected, and to ensure that any breaking changes are acknowledged by the developer.

Welsh Language Translation

As a Welsh institution, Cardiff University requires all of its resources to be available in welsh

as well as English. In order to facilitate a fairly painless translation process, I opted to use

localisation to store the majority of text displayed to the user as key-value pairs in the

locale-en.json file within the application’s front-end client.

This means that all that needs to be done to facilitate Welsh translation is for a matching file

to be created with Welsh language value alternatives for each key. An option would then

need to be added for the user to select which translation they would like to see.

Employer Data

A useful future piece of functionality that may benefit users would be storing data about

employers within the system. Many employers take students from the university every year,

and if documents and data such as risk assessments could be stored for each employer then

it may mean less repetition of administrative processes for the Placement Team staff.

Database optimisation

The database currently has no problems returning data whilst populated with only a small

amount of test data. However, as the application scales it is feasible to imagine that

database performance will decrease. In order to combat this, indexes could be added to the

database for regularly queried fields, and the database architecture may need to be

reviewed.

Batch mark release

Another feature that could be useful for the Placement Team would be the ability to release

all marks for a certain assessment at the same time. In theory this should not be difficult to

do, perhaps including a ‘released’ Boolean with each piece of feedback which is initially false

until the user chooses to release all marks.

Document Download/Task Attachments

In order to further add to the usefulness of the application for students, the capability could

be added to the system to add attached documents to tasks. This would mean that the

Placement Team could attach a document to be filled in, the student would then be able to

view and download this document from the task page to be filled in and uploaded.

8 Conclusions

The end result of the project is a modern, interactive full-stack user application, which

allows users of different types to fulfil the required tasks. During the design and

implementation phases of the project, effort was made to produce a high standard of code

quality that will allow future developers to easily maintain and extend the project.

However, some of the objectives set out at the beginning of the project were not achieved.

Unit test coverage and error handling in the application is not to the standard initially

desired, meaning the application will be more prone to unforeseen bugs if deployed and

used by the school.

Added to this, due to time constraints exacerbated by the COVID-19 pandemic peak during

implementation, it has not been possible to user test the application. It would be desirable

to have a period of user testing and improvement before the system was used.

Overall, I would consider this a successful project, only requiring a small amount of future

work in order to be deployed as a functioning asset for the School of Computer Science. This

project will be combined with the work of two other projects in order to create a system

that can be used by students and supervisors encompassing the full placement journey -

from the first day of searching, to the last day of work.

9 Reflection

I have learned an incredible amount from this project. The challenge of building a fully

functioning application from scratch has tested my abilities as a software engineer. From

initially having never created a full-stack web application, or worked with any of the

technologies, I now feel confident in my ability to create further, better web applications.

From this project I have learned that it may be preferable to implement a narrower range of

features and focus on highest code standard possible. In future projects I would focus more

time at the beginning of the project on learning and put a heavier emphasis on testing (both

user and automated). I believe this would have resulted in an application with fewer

features, but I would have more confidence in its robustness and the reliability of the

system going forwards.

Further, it would have been preferable to collaborate more with students developing the

other aspects of the placement management system, perhaps more closely aligning our

choice of technologies in order to save time and effort for developers further down the line.

I have learned not to lose track of the context of the project, and will try and think about

this more in future projects.

Additionally, I feel the design process should have been more structured and in line with

more defined design principles. Although I am happy with the end look and feel of the

application, some of the design was done on what ‘felt right’ to me. Whilst instinct can be a

great indicator in UX/UI design, I should have used more formal processes during a software

development process of this scale.

Finally, in future projects I would spend a larger proportion of the time doing research,

putting together requirements and gathering and evaluating results. The majority of the

time I dedicated to this project was during the design and implementation stages, because

this is the part of the process I enjoy the most. Because of this, I managed to implement a

lot of features, but perhaps neglected other parts of the software development process.

Overall this project has given me many practical skills I can take forwards, as well as

teaching me many valuable lessons about the challenges of implementing a software

development project.

10 Appendices

10.1 Appendix A - Test Cases

Test case number:

1

Related Use Case:

UC1 – View Supervisor

User Type:

Student

Success Criteria:

Student is able to view supervisor details

Preconditions

• User account exists

• Student has been assigned a supervisor

Step Action Response Pass/fail

1 User logs in Dashboard page presented,

supervisor name present in

‘profile’ card

Pass

2 User clicks supervisor name Pop-up modal appears displaying

supervisor name and available

details

Pass

Comments:

Behaves as expected.

Test case number:

2

Related Use Case:

UC1 – View Supervisor

User Type:

Student

Success Criteria:

Student with no supervisor assigned should not see supervisor details

Preconditions

• User account exists

• Student has not been assigned supervisor

Step Action Response Pass/fail

1 User logs in Dashboard page presented,

supervisor name field not present

in profile card

Pass

Comments:

Behaves as expected

Test case number:

3

Related Use Case:

UC2 – Upload Document

User Type:

Student

Success Criteria:

Student should be able to upload PDF/DOCX document for task

Preconditions

• User account exists

• File upload task available to student

• Student on file upload page

Step Action Response Pass/fail

1 User selects pdf document File accepted and preview shown,

Upload button enabled

Pass

2 User selects docx document File accepted, message shown in

preview window ‘preview only

available for pdf files’, upload

button enabled

Pass

3 Upload file button clicked Redirect to submissions screen,

document appears in list

Pass

Comments:

Test case number:

4

Related Use Case:

UC2 – Upload file

User Type:

Student

Success Criteria:

Student should be not be able to upload documents of type other than pdf/docx

Preconditions

• User account exists

• File upload task available to student

• Student on file upload page

Step Action Response Pass/fail

1 User selects jpeg image Image rejected, upload button

remains disabled

Pass

Comments:

Test case number:

5

Related Use Case:

UC3 – View Marks

User Type:

Student

Success Criteria:

Student should be able to view feedback about a task that has been marked

Preconditions

• User account exists

• User has been given feedback by supervisor

• User is on feedback page

Step Action Response Pass/fail

1 User navigated to feedback

page

List of tasks with feedback

displayed

Pass

2 User clicks on a task Feedback for task is shown in

right hand panel

Pass

Comments:

Test case number:

6

Related Use Case:

UC3 – View Marks

User Type:

Student

Success Criteria:

If no feedback has been given, should not cause an error

Preconditions

• User account exists

• User has not been given any feedback

• User is on feedback page

Step Action Response Pass/fail

1 User navigated to feedback

page

Message displayed telling user

they have not received any

feedback yet

Pass

Comments:

Test case number:

7

Related Use Case:

UC4 – Arrange a meeting

User Type:

Student

Success Criteria:

Student should be able to schedule a meeting for a time and location

Preconditions

• User account exists

• User is on schedule meeting page

Step Action Response Pass/fail

1 User enters name, picks

date, adds time

Upload button enabled Pass

2 User clicks upload button Page redirected to student

details, meetings tab. Meeting

displayed in list of proposed

meetings

Pass

Comments:

Test case number:

8

Related Use Case:

UC4 – Arrange a meeting

User Type:

Student

Success Criteria:

Student should not be able to submit a meeting without name, time and

Preconditions

• User account exists

• User is on schedule meeting page

Step Action Response Pass/fail

1 User inputs name and date

but not time

Submit button disabled Pass

2 User inputs date and time

but no name

Submit button disabled Pass

3 User inputs name and time

but no date

Submit button disabled Pass

Comments:

Test case number:

9

Related Use Case:

UC5 – View assigned student

and details about student

User Type:

Supervisor

Success Criteria:

Supervisor should be able to see a list of students they are supervising

Preconditions

• User account exists

• User should be assigned at least one student to supervise

Step Action Response Pass/fail

1 User navigated to

dashboard page

List of students user is supervising

appears in ‘my students’ card

Pass

Comments:

Test case number:

10

Related Use Case:

UC5 – View assigned student

and details about student

User Type:

Supervisor

Success Criteria:

If user is not supervising any students should not cause error

Preconditions

• User account exists

• User should not have any students assigned to them

Step Action Response Pass/fail

1 User navigated to

dashboard page

Message displayed in ‘my

students’ card informing user

they have not been assigned any

students

Pass

Comments:

Test case number:

11

Related Use Case:

UC5 – View assigned student

and details about student

User Type:

Supervisor

Success Criteria:

User should be able to view details about student they are supervising

Preconditions

• User account exists

• User is assigned at least one student to supervise

Step Action Response Pass/fail

1 User clicks on name of

student from list in ‘my

students’

Application navigates to student

details page for the student

Pass

Comments:

Test case number: Related Use Case: User Type:

12 UC6 - View/Download

students work

Supervisor

Success Criteria:

Supervisor should be able to view and download students work

Preconditions

• User account exists

• User should be assigned at least one student to supervise

• Student should have submitted at least one file

• User is on student details page

Step Action Response Pass/fail

1 Click on the ‘submissions’

tab

Upload tasks for which the

student has submitted work are

listed on right

Pass

2 Click on a task name to view

submissions

Application redirects to

submissions page for this task for

this student, download button is

shown if a preview of the file is

available

Fail

Comments:

Supervisor can download documents via the browser pdf view window – however, as

docx preview is not supported, any docx documents cannot be downloaded – manual

download button should be added for all documents

Test case number:

13

Related Use Case:

UC7 – Mark assignment

User Type:

Supervisor

Success Criteria:

Supervisor should be able to submit a comment and/or mark about students work for a

task

Preconditions

• User account exists

• User is assigned a student that has completed at least one assessment upload task

• User is on student details page, submissions tab

Step Action Response Pass/fail

1 User clicks the mark icon Mark assignment modal opens

for the task

Pass

2 User fills in mark and

comment, clicks submit

button

Feedback is submitted, green

notification appears on screen

informing user feedback has been

submitted

Pass

Comments:

Test case number:

14

Related Use Case:

UC7 – Mark assignment

User Type:

Supervisor

Success Criteria:

Supervisor should not be able to submit feedback if mark field is blank

Preconditions

• User account exists

• User is assigned a student that has completed at least one assessment upload task

• User is on student details page, submissions tab

Step Action Response Pass/fail

1 User clicks the mark icon Mark assignment modal opens

for the task

Pass

2 User inputs a comment but

leaves mark field blank

Submit task button is disabled Pass

Comments:

Test case number:

13

Related Use Case:

UC8 - View Tasks

User Type:

Admin

Success Criteria:

User should be able to see a list of tasks

Preconditions

• User account exists

• At least one task exists

Step Action Response Pass/fail

1 User navigated to manage

tasks page

List of tasks stored within the

system is displayed

Pass

Comments:

Test case number:

14

Related Use Case:

UC8 – View Tasks

User Type:

Admin

Success Criteria:

Should not error if no tasks have been created yet.

Preconditions

• User account exists

• No tasks have been created

Step Action Response Pass/fail

1 User navigated to manage

tasks page

Task is displayed with empty

‘published’ and ‘drafts’ section

but no explanation

Fail

Comments:

It is hard to tell what has happened here from the user perspective, should instead

display a message informing the user no tasks have been created yet.

Test case number:

15

Related Use Case:

UC9 – Create new task

User Type:

Admin

Success Criteria:

User should be able to create a task with a name, type, description, deadline

Preconditions

• User account exists

• User is on manage tasks page

Step Action Response Pass/fail

1 Click plus in top right corner Application redirects to create

task page

Pass

2 Fill in form and click submit Application redirects back to

manage tasks page, new task is

visible at bottom of list of

published tasks

Pass

Comments:

Test case number:

16

Related Use Case:

UC9 – Create new task

User Type:

Admin

Success Criteria:

User should not be able to submit a task if any fields invalid

Preconditions

• User account exists

• User is on create task page

Step Action Response Pass/fail

1 Fill in all fields except name Submit button disabled Pass

2 Fill in all fields excluding

type

Submit button disabled Pass

3 Fill in all fields excluding

date

Submit button disabled Pass

4 Fill in all fields excluding

time

Submit button disabled Pass

5 Fill in all fields excluding

description

Submit button disabled Pass

Comments:

Test case number:

17

Related Use Case:

UC10 – Edit tasks

User Type:

Admin

Success Criteria:

User should be able to edit the details of an existing task

Preconditions

• User account exists

• User on manage tasks page

Step Action Response Pass/fail

1 User clicks edit icon of a

task

Application redirects to edit task

page, displaying details about the

current task

Pass

2 User edits some of the

details and clicks submit

button

Application redirects back to

manage tasks page

Pass

Comments:

Test case number:

18

Related Use Case:

UC10 – Edit tasks

User Type:

Admin

Success Criteria:

User should not be able to submit an edit invalidates task

Preconditions

• User account exists

• User on edit task page

Step Action Response Pass/fail

1 Delete name field Submit button is disabled Pass

2 Delete date field Submit button is disabled Pass

3 Delete time field Submit button is disabled Pass

Comments:

Test case number:

19

Related Use Case:

UC11 – View all students

User Type:

Admin

Success Criteria:

User should be able to view list of all students

Preconditions

• User account exists

• User on manage students page

• There are student accounts in the system

Step Action Response Pass/fail

1 User navigated to manage

students page

Table of students is displayed pass

Comments:

Test case number:

20

Related Use Case:

UC11 – View all students

User Type:

Admin

Success Criteria:

User should be able to sort the table by heading

Preconditions

• User account exists

• User on manage students page

• There are student accounts in the system

Step Action Response Pass/fail

1 User clicks id header Table displayed sorted by Id Pass

2 User clicks name header Table displayed sorted by name Pass

3 User clicks supervisor

header

Table displayed sorted by

supervisor

Pass

 User clicks placement

provider header

Table displayed sorted by

placement provider

Pass

Comments:

Test case number:

21

Related Use Case:

UC12 – Assign supervisor to

student

User Type:

Admin

Success Criteria:

User should be able to assign a supervisor to a student

Preconditions

• User account exists

• User is on manage students page, and table is populated

Step Action Response Pass/fail

1 User clicks ‘assign

supervisor’ button for a

student

Assign supervisor modal appears

with no supervisor selected,

assign button is disabled

Pass

2 User clicks a supervisor

name to select it

Supervisor name changes colour

and assign button is enabled

Pass

3 User clicks assign button Supervisor is assigned to student,

modal closes and supervisor

appears in supervisor column for

that student

Pass

Comments:

Test case number:

22

Related Use Case:

UC12 – Assign supervisor for

student

User Type:

Supervisor

Success Criteria:

User should be able to re-assign a student that already has a supervisor

Preconditions

• User account exists

• User is on manage students page, and table is populated

Step Action Response Pass/fail

1 User clicks ‘re-assign

supervisor button for a

student’

Assign supervisor modal appears

with student’s current supervisor

selected

Pass

2 User clicks a different

supervisor name to select it

Highlighted supervisor name

changes from previous supervisor

to new one

Pass

3 User clicks re-assign button Modal closes, new supervisor

name appears in supervisor

column next to student

Pass

Comments:

This test case passes, but user can click assign button even if supervisor hasn’t changed,

this could be changed for better usability

11 References

[1] QuantumIT, “InPlace - Smart Placement Solutions,” 2020. [Online]. Available:

https://www.inplacesoftware.com/. [Accessed 1 May 2020].

[2] Creatrix, “Creatrix Campus - Placement Management,” 2020. [Online]. Available:

https://www.creatrixcampus.com/placement-management-software. [Accessed 1

May 2020].

[3] QSR International, “Sonia Student Management,” 2020. [Online]. Available:

https://www.qsrinternational.com/sonia-student-management-software/about/sonia.

[Accessed 1 May 2020].

[4] Atlassian, “What is Agile?,” 2020. [Online]. Available: https://www.atlassian.com/agile.

[Accessed 2 May 2020].

[5] Redmonk, “The RedMonk Programming Language Rankings: January 2019,” 2019.

[Online]. Available: https://redmonk.com/sogrady/2019/03/20/language-rankings-1-

19/. [Accessed 2 May 2020].

[6] Facebook Inc., “ReactJS,” 2020. [Online]. Available: https://reactjs.org/. [Accessed 2

May 2020].

[7] Google, “Angular,” 2020. [Online]. Available: https://angular.io/. [Accessed 2 May

2020].

[8] VMware inc., “Spring Boot,” 2020. [Online]. Available:

https://spring.io/projects/spring-boot. [Accessed 2 May 2020].

[9] OpenJS Foundation, “Node.js,” 2020. [Online]. Available:

https://nodejs.org/en/about/. [Accessed 2 May 2020].

[10] OpenJS Foundation, “Express,” 2020. [Online]. Available: https://expressjs.com/.

[Accessed 2 May 2020].

[11] MongoDB, inc., “What is MongoDB?,” 2020. [Online]. Available:

https://www.mongodb.com/what-is-mongodb. [Accessed 2 May 2020].

[12] Microsoft, “Microsoft Power Apps,” 2020. [Online]. Available:

https://powerapps.microsoft.com/en-us/. [Accessed 2 May 2020].

[13] Amazon Web Services, “Amazon EC2,” Amazon, 2020. [Online]. Available:

https://aws.amazon.com/ec2/. [Accessed 3 May 2020].

[14] Amazon Web Services, “Amazon Route 53,” Amazon, 2020. [Online]. Available:

https://aws.amazon.com/route53/. [Accessed 3 May 2020].

[15] LearnBoost, “Mongoose,” 2020. [Online]. Available: https://mongoosejs.com/.

[Accessed 2 May 2020].

[16] Microsoft, “Overview of Microsoft Graph,” 2020. [Online]. Available:

https://docs.microsoft.com/en-us/graph/overview. [Accessed 3 May 2020].

[17] Microsoft, “Microsoft Identity Platform Documentation,” 2020. [Online]. Available:

https://docs.microsoft.com/en-us/azure/active-directory/develop/. [Accessed 2 May

2020].

[18] Microsoft, “Overview of Microsoft Authentication Library (MSAL),” 2020. [Online].

Available: https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-

overview. [Accessed 3 May 2020].

[19] Postman, “Postman,” 2020. [Online]. Available: https://www.postman.com/.

[Accessed 3 May 2020].

[20] Google, “Material Design - The Colour System,” [Online]. Available:

https://material.io/design/color/the-color-system.html. [Accessed 4 May 2020].

[21] Google, “Angular coding style guide,” 2020. [Online]. Available:

https://angular.io/guide/styleguide. [Accessed 8 May 2020].

[22] R. C. Martin, Agile software development: principles, patterns, and practices., Prentice

Hall, 2002.

[23] Google, “Angular Material,” 2020. [Online]. Available: https://material.angular.io/.

[Accessed 10 May 2020].

[24] RxJS, “RxJS Overview,” 2020. [Online]. Available: https://rxjs-

dev.firebaseapp.com/guide/overview. [Accessed 8 May 2020].

[25] Bootstrap, “ng Bootstrap,” 2020. [Online]. Available: https://ng-

bootstrap.github.io/#/home. [Accessed 8 May 2020].

[26] Electronic Fronteir Foundation, “Certbot,” 2020. [Online]. Available:

https://certbot.eff.org/. [Accessed 15 May 2020].

[27] A. Reinman, “Nodemailer,” 2020. [Online]. Available: https://nodemailer.com/about/.

[Accessed 10 May 2020].

[28] L. Merencia, “Node Cron - npm,” 2020. [Online]. Available:

https://www.npmjs.com/package/node-cron. [Accessed 10 May 2020].

[29] Auth0, “JSON Web Tokens,” 2020. [Online]. Available: https://jwt.io/. [Accessed 10

May 2020].

