Musical Harmonisation via Machine
Learning

CM2303 - One Semester Individual Project - 40 Credits

CARDIFF

UNIVERSITY

PRIFYSGOL

(AFRDY[Y

Cardiff University School of Computer Science and Informatics

Author: Brendan Rhys Lamb (C1610560)
Supervisor: David Marshall

Moderator: Matthias Treder

Abstract

The renowned American composer Leonard Bernstein once put forward the idea
that music could be conceptualized linguistically through the analogy of syntax. This
project seeks to investigate the validity of this claim by applying deep learning
techniques and technologies commonly found within the field of natural language
processing, such as language modelers and recurrent neural networks to the task of
musical harmonisation. This project investigates the effectiveness of these techniques
via comparison and evaluates their validity in their application in the field of music. The
results of this study suggest that while certain techniques have limited practicality in this
field, in particular the use of word2vec word embeddings and the use of long short-term
memory neural networks show great potential for use in deep learning music
processing.

Acknowledgements

| wish to give my sincerest thanks to David Marshall, my supervisor for this project, for
remaining encouraging throughout the entirety of the project, even amidst a pandemic,
and for keeping both my interest inspired and self-belief alive throughout the semester.

| would also like to thank my loving partner Alex, who has observed and assisted
through many a late night of data crunching and report writing. Their support has been
invaluable and irreplaceable.

Finally, | would like to thank my dearest friend Freya, with whom | have bonded over
these three years. Many a story about the thrills and stresses of our respective projects
has kept up my resolve.

Table of Contents

1 - Introduction 7
2 - Background 10
2.1 - Musical Theory and Harmony 10
2.2 - Leonard Bernstein and Music as a Language 13
2.3 - Natural Language Processing 15
2.4 - Dataset Utilized 16
2.5 - Music21 18
2.6 - PyTorch 19
3 - Solution Overview 20
3.1 - Core Objectives and Models Produced 20
3.2 - Data Preparation and Feature Extraction 23
3.3 - The RNN Method: Predicting Harmony Based on Melodic Context 28
3.4 - The LSTM Method: Predicting Harmony Based on Harmonic Context 32
3.5 - The Improved LSTM Method: Predicting Harmony Based on a Combination of
Melodic and Harmonic Context 35
4 - Results and Evaluation 37
4.1 - Results Overview 37
4.2 - Comparison of Methods One, Two and Three 39
4.3 - Comparison of word2vec Architectures in Methods Two and Three 47
4.3 - Comparative Effects of Changing Embedding Dimensions on Models 50
4.4 - Comparative Effects of Extending Window Size on Continuous Bag-Of-Words
Models 54
5 - Conclusions 58
6 - Future Work 59
7 - Reflection and Learning 60
8 - Glossary 61
9 - Bibliography 62

Table of Figures

Figure 1 - A short musical excerpt demonstrating the use of four-part harmony 10
Figure 2 - A short musical excerpt demonstrating the four-part harmony shown in figure one, condensed
into chords 12
Figure 3 - A screenshot depicting the disused segment of code for the function streaminput, once

utilized for feature extraction early into the project’s lifespan 23

Figure 4 - A screenshot depicting the disused segment of code for the function streaminput, once
utilized for feature extraction early into the project’s lifespan 25

Figure 5 - A screenshot depicting the segment of code containing the updated version of streaminput

26

Figure 6 - A short except of music along with its representation in scale degrees and chords after being

processed by the updated streaminput function 27
Figure 7 - A short excerpt of code depicting the getScaleDegrees function 29
Figure 8 - A short excerpt of code depicting the scanChords function 29
Figure 9 - A short yet jazzy bar fragment of melody represented as a series of scale degrees depicted
alongside a predicted bar of harmony to accompany it 31
Figure 10 - The melody and predicted harmony depicted in Figure 9, but written using standard musical
notation 31
Figure 11 - A short excerpt of music consisting of three chords 33
Figure 12 - An excerpt of code depicting the scanChordsByNumeral function which is utilized by the
LSTM Method 32
Figure 13 - Line Graph depicting change of accuracy over the training duration of the produced RNN
model during the RNN method 40
Figure 14 - Line Graph depicting change of loss over the training duration of the produced RNN model
during the RNN method 40
Figure 15 - A short melody depicted alongside a predicted harmony and its associated ground truth
harmony 41
Figure 16 - Line Graph depicting adjusted change of accuracy over the training duration of the
produced RNN model during the RNN method 41
Figure 17 - Line Graph depicting change of accuracy over the training duration of the produced LSTM
word2vec model during the LSTM Method 42
Figure 18 - Line Graph depicting change of loss over the training duration of the produced LSTM
word2vec model during the LSTM Method 43
Figure 19 - Line Graph depicting change of accuracy over the training duration of the produced LSTM
word2vec model during the Improved LSTM Method 44
Figure 20 - Line Graph depicting change of accuracy over the training duration of the produced LSTM
word2vec model during the Improved LSTM Method 44

Figure 21 - Line Graph depicting a comparison in change of accuracy over the training duration
between the control model for each method 45
Figure 22 - Line Graph depicting a comparison in change of accuracy over the training duration
between the control model for each method 45

Figure 23 - Line Graph depicting a comparison in change of loss over the training duration between the
n-gram models produced in the LSTM Method and Improved LSTM Method, and the bidirectional-context
models produced in the LSTM Method and Improved LSTM Method 48

Figure 24 - Line Graph depicting a comparison in change of accuracy over the training duration
between the n-gram models produced in the LSTM Method and Improved LSTM Method, and the

bidirectional-context models produced in the LSTM Method and Improved LSTM Method 48
Figure 25 - Line Graph depicting a comparison in change of accuracy over the training duration
between the n-grams produced during the LSTM Method, with differing embedding dimensions 50

Figure 26 - Line Graph depicting a comparison in change of accuracy over the training duration
between the bidirectional-context models produced during the LSTM Method, with differing embedding
dimensions 51
Figure 27 - Line Graph depicting a comparison in change of loss over the training duration between the
n-gram models produced during the LSTM Method, with differing embedding dimensions 51

Figure 28 - Line Graph depicting a comparison in change of loss over the training duration between the
bidirectional-context models produced during the LSTM Method, with differing embedding dimensions 52

Figure 29 - Line Graph depicting a comparison in change of accuracy over the training duration
between the n-gram models produced during the LSTM Method, with differing context sizes 55

Figure 30 - Line Graph depicting a comparison in change of accuracy over the training duration
between the bidirectional-context models produced during the LSTM Method, with differing context sizes

55

Figure 31 - Line Graph depicting a comparison in change of loss over the training duration between the
n-gram models produced during the LSTM Method, with differing context sizes 56

Figure 32 - Line Graph depicting a comparison in change of loss over the training duration between the
bidirectional-context models produced during the LSTM Method, with differing context sizes 56

1 - Introduction

Machine-written music has been a concept that might have seemed to be
science-fiction a number of years ago, but today we have many examples of such
music, many of which have been generated using machine learning systems. Perhaps
part of the reason why music is such an interesting problem for machine learning to
tackle is because of the inherent mathematical nature of harmony. For those reading
who have no musical literacy, a short description of the musical knowledge required for
understanding the concepts in this project will be provided in section 2.1, within the
background section of this report.

Many of these machine-written pieces lack understanding or consideration for long-term
structure of music, resulting in harmony that doesn’t sound as natural as human-written
music. Leonard Bernstein states in his 1973 series of lectures The Unanswered
Question that music can be conceptualized through the lens of linguistics. In his own
words: “It is in the nature of music to be ongoing”.[10][11]

A field greatly benefiting from developments in deep learning is that of natural language
processing, which exists at the intersection of computer science and linguistics. Natural
language processing is an area of research that seeks to allow machines to understand
and process human language.[19] Deep learning has allowed for the creation of new
approaches to machine learning, such as word2vec, which was developed by Google in
2013. These approaches have found a home in the field of natural language processing
and have allowed for the field to experience rapid development in recent years.
Prominent technologies such as text classifiers and language modelers have made
extensive application of such approaches.

The understanding of this project is that if Bernstein’s thesis is true, this means that
language and syntax is an effective proxy to allow us to understand how humans
conceptualize music. In this case then using deep learning approaches commonly
utilized in the field of natural language processing must also have practical application
within the context of machine-written music.

The aim of this project was to investigate ways that music can be understood and
processed by machines via the use of deep learning by utilizing aforementioned
techniques and approaches found in natural language processing. This project will be

using harmonisation as a measure to assess how well each technique has successfully
processed an understanding of music.

There are two primary reasons for harmonisation being selected as a metric of success
for each technique. Firsty, correctness of harmonisation can explicitly be measured.
Like a fluent English speaker can identify an incorrect placement of a verb in a sentence
like “we together danced” or “l lunch bought®’, a trained musician can point out an
incorrect or non-functional chord within harmony.

The second reason is because well written harmonisations consider both melody and
the context of the harmony itself. To use another language analogy, this is similar to an
English speaker using context to complete sentences. A fluent speaker, when asked to
complete a sentence fragment like “Yesterday, | ate ", would likely fill in that blank
with an item of food. For a human musician, this ability requires a good understanding
of music, and so the same can be assumed of a non-human musician. This project
seeks to understand how effective the use of melodic context is when compared to
harmonic context, and in addition how effective the use of either of these are when
compared to a combination of the two.

In order to test natural language processing techniques, this project constructed three
groups of machine learning models. Each of these groups utilizes a different technique
or approach to achieve the goal of completing a harmonisation.

The first group of approaches seek to measure the accuracy of solely using melodic
context by making use of a recurrent neural network to implement a character-based
language model to predict which chords will be present in a bar of harmony when given
a bar of melody. This model predicts chords based purely on melodic data, without the
context of surrounding chords. The second group of models seek to measure the
accuracy of using solely harmonic context by utilizing a long short-term memory neural
network to train a continuous bag-of-words model that will predict chords purely given
the surrounding chord context. The final group of models have the goal of utilizing a
combination of harmonic and melodic context. This group of models used the same long
short-term memory neural network as the previous group of models, however, this
group utilized a different form of data preparation that allowed melodic data to be input
into the model. Each group of models features a number of experimental differences
that have been compared to determine what parameters or data preparations best suit a
model or technique.

The intended application of the knowledge gained from this project is to assist
musicians within the context of composing music and completing their own
harmonisations. A large part of musical training focuses on developing the ability for a
musician to understand the function behind harmony. Because of this, practical
application for the knowledge discovered from this investigation can be found in a tool
that gives a user a recommended chord in a given point of their progression, or perhaps
even substitutions that can be made for that chord in order to help the musician make
their progression more interesting. Such a tool might provide the ability for less trained
musicians to learn about more complex harmonies. In addition, this knowledge would
contribute to the existing knowledge base of the applications of machine learning in
music. Future developers might have an easier time with additional data backing up the
accuracy of certain techniques.

The dataset used for this project is a collection of Johann Sebastian Bach’s music,
which can be found as part of a group of available corpuses natively within the library
music21 which was utilized heavily within this project. This dataset was used as the
simplicity of Bach’s music is often a factor as to why Bach is taught to students. It was
this project’s hypothesis that this simplicity would allow for any deep learning algorithm
to have less difficulty in the task of locating patterns within the dataset. This project
does make the assumption that the dataset chosen is large enough to allow such a
group of deep learning models to thoroughly process and understand musical data. This
work could be vastly improved by the optimization of the dataset.

This project’s scope is restricted to the creation of and gathering of data from these
machine learning models. A discussion about knowledge learned from the creation of
the models will take place during this report, as well as a discussion about what
understanding can be gained about the implication of the application of natural
language processing techniques within the field of music. However, the development of
an application or graphical user interface to make use of these models lies outside the
scope of this project. This project seeks to lay some level of foundation for such work
and it should be considered either further research or an application of the knowledge
gained.

The conclusion of this work is that the best approach out of the ones studied is that of
an LSTM-based model that combines the use of melodic and harmonic context when
predicting chords, as it leads to a model accuracy that far exceeds those found in the
other two model groups, likely due to an LSTMs increased ability to retain information
over a longer sequence of data compared to ordinary RNN.

2 - Background
2.1 - Musical Theory and Harmony

Understanding of this project and its goals will likely require at least a basic
understanding of western tonal harmony. For the non-musically inclined, some basic
concepts of harmony will be explained here, along with a brief description of their
significance to the project.

In music, harmony is defined as the combination of simultaneous tones. We can
combine notes from a melody with a number of other tones to create chords. This
harmonises the melody. Below is an example of more than one instrument being used
to create harmony in the key of F minor.

e
|| ——— oo -.—t o2 T
7 Y F
W T x 17 ol
e
0 ob o = Y =
¥ I 1 [, il
‘G L] =
d s
ﬁHL,L ri = W=t _"l\
e - el
| | [=
e ¢ o5 °
Y | O | Fi -\.l' TF"'I t
lo d_i =
& ‘
e —" e —

Figure 1: A short musical excerpt demonstrating the use of four-part harmony.

In some pieces, such as the one above, harmony is constructed by a number of
individual instruments, or voices playing one note each at a time. In other examples,
each of these notes might be played by the same instrument, as chords. Below is the
same excerpt of music, but represented as chords, instead.

10

&
LY
Ll

Cfg%;:
T .:kc;T E
i

%

i)

T,

\ LT
i
o

\

e
Q]
'E 1

Q
.
Ll

3
o
my

1

!

LE]& Dl': |

Qll
o«

Figure 2: A short musical excerpt demonstrating the four-part harmony shown in figure one,
condensed into chords

Typically, the foremost way to create harmony is by taking a look at what key we are in.
A key is simply a group of pitches that a piece can use, somewhat analogous to a color
palette. The key of D maijor for instance, uses the notes D, E, F#, G, A, B, and C#.

Each key typically has seven associated triad chords, one for each note in the key.
Triads are an integral part of harmony, and in simple terms are a chord of three specific
notes played simultaneously. The first note in constructing a triad is named the root.
The root is the lowest note in the chord, and the note that lends the chord its name. The
second note is named the third of the triad, and lends the triad its tonality, either major
or minor. This is dependent on the number of notes, or semitones between the root and
the third. If the third is four semitones higher than the root, it is a major third, and if it is
three semitones higher than the root, it is a minor third. The last note in a triad is named
the perfect fifth and it lies seven semitones above the root. For example, a D Major
triad, would contain the notes D, F# and A. F#, the major third lies four semitones above
D, and A, the perfect fifth lies seven semitones above D.

A simple way to construct triads is to look at what notes are available in a key. We will
use the prior example of D major: D, E , F#, G, A, B, and C#. To construct a triad in any
chord, we simply take our root, skip the next note in order, take our third, skip the next
note in order, and then take our fifth. For example, we could take E, G, and B to create
an E minor triad.

The seven triads of a key are often represented by roman numerals, | through vii. If the
numeral is capitalized, the chord is major, else it is minor. For instance, A major is
represented as chord V of the key of D major, as A is the fifth note in the D major key,
and it is a major chord. E minor is represented as chord ii of the key, as E is the second
note in the D major key, and it is a minor chord.

11

Given this brief description of triad chords and keys, it is now possible to harmonise a
melody. To harmonise a melody, we need to select a section of melody to harmonise. In
this example, we’ll stay the key of D major. Our chosen section of melody contains the
notes G, B, C# and D. To select a chord, the chosen chord should ideally contain notes
from the melody within. In this example, we know that G major is a chord found in our
key, D major, and the three out of four notes in our section of melody are also found in
the chord G major. As such, this would be a good chord to use. A musician can then do
this for other sections of their melody until the entire piece of music has been
harmonised.

With that brief explanation of harmonisation, it should be noted that this is one small
part of what a musician might choose to consider when harmonising their melody.
Another aspect to consider is that of chord progressions. Each chord possesses some
level of ‘tension’, as described by musicians. A chord with high tension is able to be
resolved by following the chord with a related chord that releases said tension. Chord V
in any key possesses a lot of tension, which is often released by following it with Chord
I, which releases tension and creates resolution.

This understanding of tension and release has led to certain cycles, or progressions of
chords being present throughout a lot of music, as tried and tested ways of manipulating
tension. Some examples of common chord progressions are | - VI - V - | in classical
music, the | - vi - IV - V progression in pop music, or the ii - V - | turnaround, in jazz.
These are important to note, as an ability to predict some of these chord progressions
provide an excellent insight into the effectiveness of the machine-learning model
produced by this project.

This knowledge is of importance to this project, as this provides insight into how data
will be prepared for model training.

12

2.2 - Prior Research into Deep Learning Music

Using a basic understanding of Western harmony as provided in section 2.1 to
provide accompaniment to a melody, we could create something that sounds correct,
but there is more to music than harmony and melody simply sounding correct. As
mentioned, prior chords often play a part in chord choice, not dissimilar to a written
story. Functional sentences, whilst correct, do not mean anything on their own. Leonard
Bernstein noted in his 1973 series of lectures The Unanswered Question that similar
ideas could be applied to music. Much like in poetry or prose, can give a chord new
meaning depending on its context. Bernstein states in the same series of lectures, “It is
in the nature of music to be ongoing”. As stated in my Initial Plan, these lectures by
Bernstein serve as my primary motivator for this project. Bernstein puts forward the idea
that music could be conceptualized as a language. Bernstein notes that ideas such as
semantics and syntax can be applied to music.[10][11]

Bernstein himself was a renowned conductor and composer, and his ideas were
controversial in the musical sphere at the time. Given age, however, these ideas have
been the subject of research for musicians, neuroscientists and psycholinguists. Since
Bernstein delivered these lectures, a number of papers in these fields have been
published, delving into music with this approach.[3]

It is because of these ideas that this project seeks to understand how machine learning
can be used in harmonisation in this manner. Techniques for language processing are
abundant within the realm of machine learning already.[4] Taking into account the ideas
of Leonard Bernstein, this project sought to understand the effectiveness of these
pre-existing language modelling techniques towards solving the problem at hand.

Magenta is a project by Google that has looked into similar approaches before.
According to Google, Magenta is an open source project that seeks to research more
about using machine learning as a creative tool.[5] Through the use of Magenta, Google
has published a number of papers in regards to the effectiveness of certain approaches
in regards to music generation via machine-learning.[1][5] Analysis of these approaches
in regards to music generation allowed this project to determine which approaches
might be applicable to harmonisation.

In the publication Approachable Music Composition with Machine Learning at Scale,
researchers designed an application that inputs a melody, and outputs a harmonisation

13

for that melody. This was achieved using Coconet, a predictive machine learning model
which was trained on Bach Chorales. Coconet was trained through the process of
randomly erasing notes from these chorales, and then asking the model to fill back in
the chorales using the context of prior and previous notes.[8][9]

While the work done by Google focuses on harmonisation of a melody, along with
generation of music, this paper demonstrates that a similar approach was applicable to
the training of the models developed in this project. Coconet uses one-hot encoding to
encode pitches, and then uses those encodings to build a predictive model.[5] Approach
A and Approach B in this project however use one-hot encoding on chord objects.
Arrays of encoded chord objects then used to represent the entire piece of music.

Long short-term memory neural networks are a very common feature of these projects,
and for good reason. Ordinary recurrent neural networks struggle due to their inability to
retain information over long sequences of information. This can cause issues in
applications such as natural language processing or music processing, due to the
inherent sequential nature of the data used. The answer to this problem is the LSTM
neural network.

This long-term memory can be highlighted in the practical examples of LSTM neural
networks. In their 2002 publication Learning the Long-Term Structure of the Blues,
Douglas Eck and Jurgen Schmidhuber noted the lack of musical structure in music
composed by the use of RNNs.[1] In an attempt to create a neural network that could
create machine-written music that possessed such structure, their experimentation
noted that the use of LSTM layers in their network instead of basic RNNs allowed for
the production of melodies and structures that possessed some level of musical
competency.

14

2.3 - Natural Language Processing

Natural language processing is an area of research that seeks to allow machines to
understand and process human language.[19] A considerable amount of data
preparation goes into deep learning algorithms used for natural language processing.
Some of these data preparation techniques will be used within this project.

Tokenization is the process of breaking down an input text, or corpus into individual
words. Certain characters are removed as necessary in an effort to make the text
machine-readable.[19] A translation to music can be assumed if we consider a piece of
music as “text”. It would be possible to tokenize this music into its constituent parts such
as chord or notes in order to make this music machine readabile.

Word embeddings are a way in which words are encoded to make them machine
readable. A common approach to encoding words in this manner is word2vec.
Word2vec was patented by Google in 2013 and allows for words to be encoded as
n-dimensional vectors. This allows for the words to be mapped within dimensional
space. Similarities between words may be interpreted as their close proximity within one
or more of these dimensions [6][14][23]. This too may be translated to music. If we
consider that any chord might imply another chord is to follow it, these chords can
conceivably be mapped using word2vec.

Two fundamentally distinctive word2vec architectures exist. That of the continuous
bag-of-words model, and that of the continuous skip-gram model. Both of these
approaches are utilized in the development of language modelers, but possess differing
functions. A continuous bag-of-words model will attempt to predict a target word when
given surrounding context words, whereas a continuous skip-gram model will suggest
context words when given a target word. [14]

Long short-term memory neural networks are also utilized heavily within the field of

NLP. LSTM networks are an innovation built on the foundations of Recurrent Neural
Networks, and are explained in more detail in section 2.2 of this report.

15

2.4 - Dataset Utilized

This project, as with all machine learning based projects, needed to make use of a
suitable dataset that could be used to both train and evaluate trained models. Most
musical data is available in audio formats such as .mp3 or .wav, but while these formats
are perfectly acceptable to a listener, they do not contain any sort of musical information
about the musical pieces they contain. One could not open up a mp3 file of their
favourite song, and learn what notes are being played, for instance.

This was an issue that had to be overcome. As stated, this project sought to
conceptualize music and harmony as a language, and so training a model on audio data
would be equivalent to training a language classifier based on audio. Potentially useful,
but something that would result in a complexity that is out of the scope of this project.

In order to make the goals of this project achievable, some format that allows for raw
musical information to be accessed was necessary. One such file format was
immediately obvious, MIDI. The .mid file format is used to save MIDI sequences, usually
for the purpose of saving composed music tracks, or for writing scores. MIDI saves note
values in sequence. One can open up a .mid file, and at any point in the duration of the
file learn which notes are currently playing. This allows for music to be analysed in a
much more machine-friendly manner.

In addition, a second file format was also under consideration, MusicXML or .mxl.
MusicXML is a form of XML that was specialized for the use of music scoring
applications such as MuseScore and Sibelius. MusicXML also possesses capabilities
for representing chords as their own object, as opposed to MIDI. This means that using
MusicXML allows for the extraction of chord data without having to construct those
chords from individual notes, as if we were using MIDI data.

Initially this project chose to make use of a .mid dataset consisting of many jazz pieces.
However, there were a number of problems found with this dataset. Firstly, some of the
files contained data for percussion tracks. Percussion tracks in midi utilize different note
values to represent different percussive sounds. The note A4 might represent a snare
drum for instance. This would obviously lead to erroneous output if used to train a
model. In addition, a lot of the midi data used in the dataset was captured from live
piano performance, which meant rather than notes being quantized being neatly they
instead fell at the exact moment the pianist pressed each key.

16

These reasons are why the project eventually made use of an MusicXML. MusicXML
files are available in large quantities as scores, which allow music to be quantized in a
much better manner.

The musical dataset that ended up being selected for use within this project was a
dataset found native to Music21, a musical toolkit library for Python which is discussed
in section 2.5 of this report. This dataset is that of a corpus of Johann Sebastian Bach’s
chorales. The reason for this is that Bach’s music is famously mathematical, and so this
project hypothesizes that Bach’s use of mathematical patterns in his work will allow a
machine learning algorithm to have an easier time recognizing patterns within the
music.[25].

17

2.5 - Music21

Extraction of musical data from MusicXML or MIDI isn’'t a feature that comes
native to Python. In order to make use of the dataset, some form of toolkit is necessary.
There isn’t too much competition in this regard, and Music21 stands out clearly as a
contender for the standard of musical feature extraction.

Music21 is a library for Python developed by MIT. It includes a number of features
essential to this project. It is able to use several file types as input, including MusicXML,
and represent them as a Stream object. A Stream is somewhat analogous to a score,
and consists of elements such as notes, chords, key signatures, bars. These features
are then able to be used in code.[27]

Each of these elements is able to be extracted. Note objects and chord objects saw the
most frequent use within this project, understandably. Where possible however, these
features were encoded into a more machine-readable format, and as such these
elements were only ever directly used within the data preparation section of model
development.

Music21 allows these features to be of use in the Python program. As mentioned earlier
in the Harmony section of this chapter, there are a number of things we are interested
in. Namely, we can use this tool to identify the melody of the piece, and the harmony of
the piece. An exact description as to how this feature extraction is achieved is available
in section 3.2 of this report.

18

2.6 - PyTorch

As opposed to the search for a musical extraction tool, the pool of machine
learning libraries to select from offers much more choice. The largest two contenders
were between PyTorch and Keras.

Keras is a machine learning API that is built on top of TensorFlow, which is another
machine learning API. While TensorFlow is quite low-level in terms of abstraction, Keras
offers a higher-level approach than its PyTorch alternative, and according to some is
easier to use when trying to get short-term projects started. However, this simplicity can
make working with Keras inflexible at times.[2]

PyTorch however offers a midrange approach in terms of abstraction between using
TensorFlow and Keras, both being user-friendly and flexible to some degree at the
same time.[2] Documentation for PyTorch appeared to be more plentiful too, which
seemed to be something that would aid the project greatly if it ran into any problems. In
addition to these points, PyTorch has better training speeds and performance than
Keras. As this project would make use of my home computer and its graphics card, this
seemed like a very justifiable reason to select Pytorch over Keras.

As such, the combined flexibility, relative ease of use compared to other lower-level

APls and its strong performance are all factors which led to this project's use of
PyTorch.

19

3 - Solution Overview
3.1 - Core Objectives and Models Produced

This section will discuss how the task was broken down into smaller objectives to
shape the task into something more achievable.

After initially considering the background research for this project, three core objectives
were laid out during the initial report for this project. Originally, the purpose of these
three core objectives were to provide some structure towards the development of a
neural network, but over the course of the project this purpose had shifted slightly. The
original three core objectives are listed below.

Core Objective 1: Basic Chord Prediction

“The first core objective is that of a basic neural network, and for that
neural network to be capable of basic chord prediction. To achieve this
milestone, the system should be able to take a melody as an input, and output
harmonically functional chords to accompany the melody as an output. Via
training, the neural network should be able to achieve a level of functionality that
will allow it to suggest chords per bar.”

Core Objective 2: Looking at Structure

“The second core objective will be achieved when the neural network is
able to analyse the overarching structure of the music. In order to do this, the
neural network will need to be modified to become an LSTM neural network. Via
an approach such as word2vec, which has shown promise in analysing musical
data, the neural network should possess the tools it needs to analyse the music.
A success on this milestone will result in a neural network that uses information
from other bars in the music to make choices about chords. Use of cadences in
correct positions would be a sign that this has been achieved.”

20

Core Objective 3: Improving Structure

“The third core objective will be achieved when the neural network makes
use of motif in its choice of chords. The neural network will be required to search
the given melody for patterns. These patterns represent a motif in the melody. If
a motif occurs once at the start of a passage, and then again at the end of the
passage with a slight alteration, the network’s choice of harmony should reflect
this.”

These three core objectives, while a good start for this project, were incredibly broad in
terms of what this project would be trying to investigate and learn. Instead, these three
core objectives were used as a starting point to lay out three distinctive methods for
harmonising music via machine learning, each featuring a contrasting approach to the
problem of harmonisation. These models are being used to compare the effectiveness
of these methods after the conclusion of experimentation.

Before delving into how data was prepared for each method, and how each group of
models was constructed, it would be greatly beneficial to elucidate the aims of each
method, how these relate back to the aims of the project as a whole, and can be
learned from a comparison of these models. While the overall goal of these three
models are the same: to predict chords given some level of information, the way in
which they utilize their given data is what differentiates them.

The first method was that of the RNN Method. This was based on the prior Core
Objective 1 and utilized perhaps the most straightforward approach out of the three
models. It sought to tackle the problem of harmonisation solely by making use of
melodic data in its predictions. Because the RNN Method does not make use of any sort
of context chords or harmonic context, this is an excellent control measure when
comparing it to methods Two and Three, when trying to determine how effective the use
of harmonic context is in relation to harmonisation, as both later models utilize such
harmonic contexts. The goal of the RNN Method was to produce a model that when
given a series of melodic notes,will predict the most harmonically appropriate chord to
harmonise those notes. The solution for this method consisted of a recurrent neural
network, or RNN, that predicts a complete bar of harmony for a given bar of melody.

The second method, which this project has labelled as the LSTM Method, was adapted

from Core Objective 2’s premise of utilizing word2vec and LSTM layers in a deep
learning model. The LSTM Method’s intention was to understand the structure of music

21

by basing harmonisation solely on the context of existing harmony. The idea behind this
method was for the produced model to predict a target chord based on the chords
surrounding it. Contrary to the RNN Method, this model utilizes no melodic context
whatsoever, which allows for an adequate comparison in the effectiveness between the
use of harmonic context and melodic context when harmonising via the use of machine
learning. In The LSTM Method, chords are represented as a roman numerals. This
allows for simplification of the data being processed for input into the model, allowing for
faster training times. It also allows the model to utilize data from any musical key in a
useful way.

The third method, which has been designated as the Improved LSTM Method, in part
utilized the sentiment from Core Objective 3, that for a model to demonstrate strong
musical ability, it should prove that it understands some conceptualization of motif.
Whilst this Core Objective may have sounded feasible to the novice to Machine
Learning that | was at the time of writing, determining what does or does not count as
motivic data was incredibly difficult to define. Failing to find an explicit answer for this
question, it was decided that a combination of rhythmic and harmonic data seemed to
be a good approximation of motif.

As such, the Improved LSTM Method sought to combine the previous two methods by
making use of both melodic and harmonic contexts. The Improved LSTM Method had
the aim of predicting target chords, given a combination of melodic context and
harmonic context. The way this was achieved was through the use of a specific function
that will be discussed in a later section of the report, that allowed melodic and harmonic
context to be combined into the same data object. This allows for some level of melodic
shape to be preserved in the training for the neural network. Unlike the LSTM Method,
chords are not represented as roman numerals, but are instead represented as a string
consisting of the chord’s pitch classes.

To simplify, in order to conduct this investigation, three groups of models have been
constructed. Each group utilizes a unique common technique found in the field of
natural language processing, and makes use of different types of musical data, to
determine their importance when considering harmonisation via machine learning. The
RNN Method makes use of melodic context in order to create harmonisations, the
LSTM Method makes use of harmonic data in order to predict harmonisations, and the
Improved LSTM Method makes use of a combination of both melodic and harmonic
data to predict harmonisations.

22

3.2 - Data Preparation and Feature Extraction

By an exceedingly large margin, preparation of the dataset was the part of this
project that required the most work. Extraction of features from musical data found
within the datasets formed the backbone of this project. Discussion about the choice of
dataset, as well as problems and solutions found with said datasets, are discussed in
the background section of this report, at subsection 2.3.

A brief discussion of the function that was originally used to extract features from the
musical data that was used for the majority of the project is necessary. After a period of
use, it was eventually found out to be strongly limited, and an alternative feature
extraction function had to be devised. This original function should be criticised to
highlight the benefits of the new improved feature extraction function.

Figure 3: A screenshot depicting the disused segment of code for the function streaminput, once
utilized for feature extraction early into the project’s lifespan

23

Above is the original function that was originally used to extract features from musical
data, lovingly labelled streaminput. This feature extraction function prompted for a list of
.mx| files as its input argument. If no files were given, the function defaulted to Johann
Sebasian Bach’s chorales as a dataset. This data was then split into individual pieces of
music or works. Each piece of music was then broken down into measures.

Before anything was done to the music, it was required to separate the music into two
distinctive groups: melody, and harmony. Irritatingly, as with a lot of more basic musical
concepts, there exists no explicit definition as to what a melody is, so an assumption
was made that the melody being played in a piece of music was the highest-pitched
voice or instrument. The music of this highest-pitched instrument was isolated and
defined as the melody.

Within the Music21 toolkit exists a function that allows a function to condense all notes
occurring during the same moment in time into a single chord. This was used in order to
grab all non-melody notes and condense them into chords, if they were not already.
This allows every piece of music to have an explicit harmony section.

The music at this point was evenly divided into a melody section and a harmony
section. What was required now was to loop through each bar and extract the required
elements from each section. In each measure of both the melody and harmony, a
number of features were extracted from the music. Every chord in the measure was
stored in a list labelled harmony, and every melody note in that measure was stored in a
separate list labelled melody.

Then, these lists were stored in two separate lists respectively containing every
measure in each work. These were labelled harmonyBars and melodyBars. A key
signature for each work was saved in a third list labelled keys. Finally, the list of all
measures of harmony and melody were added to further respective lists, representing
each work. This was so that we can use the syntax melodyWorks[2][3] to get the third
bar from the second available work in the list.

This method for processing data input resulted in the data still requiring more
preparation later down the line, but left it in a format that allowed it to be easier to work
with. Rhythm doesn’t play much part in harmonisation, so at the time this was not seen
as a necessary feature to extract, an assumption that caused a lot of problems when
trying to design a suitable feature extraction function. Using this feature extraction
function, outputs were three lists, one of which contained every chord in the sequence

24

in which they appear within the music, the second containing every melodic note in the
sequence in which they appear in the music, and finally the third which contained a key
for each piece of music.

So what caused streaminput to stop being useful? While this feature extraction function
would have been useful for certain potential applications, it was missing a crucial ability
to tell how long each chord or note was being played. To show why this would have
been a large complication, the problem tackled in the RNN Method will be considered.
In the RNN Method, the goal was to create an RNN that could predict chords for a given
section of melody. We wish to train the model to predict harmony using this musical
input as an example:

Slf

)

_

Figure 4: A short except of music along with its representation in scale degrees and chords after
being processed by the original streaminput function

After processing, the output would offer little information to distinguish which sections of
the melody were playing over which sections of the harmony. In this example of
prediction, this would have been extremely problematic. How would we have any idea
which chords were supposed to be playing to accompany scale degree 3 for example.
As such, a different feature extraction function was required.

25

Figure 5: A screenshot depicting the segment of code containing the updated version of
streaminput

In the above figure is the improved version of streaminput, rewritten from scratch.
Rather than extracting each musical element in sequence, this version of data
processing was a little bit more robust. Instead of the previous approach, which
outputted each melody and harmony element in sequence, this approach takes into
account the durations of each note and chord.

For each bar, this algorithm scans the bar over in eight-note increments, taking note of

what note and chord was played most recently. In addition, this results in a consistent
amount of elements in each bar. If we consider the same bar of music from before.

26

Figure 6: A short except of music along with its representation in scale degrees and chords after
being processed by the updated streaminput function

This feature extraction function is used for both the RNN Method and the LSTM Method,
however, the features extracted from the data were processed slightly differently in each

method. The Improved LSTM Method made use of a different input function for reasons
that will be discussed in its section.

27

3.3 - The RNN Method: Predicting Harmony Based on Melodic
Context

As mentioned before, the goal of the RNN Method was to create an RNN based
model that took a section of melody as input, and to produce an appropriate section of
harmony to accompany said section of melody. This would result in a simplistic
approach of harmonisation to compare methods two and three with later down the line.

There are a number of approaches that exist that may have allowed this project to
achieve a solution to this problem, but none seemed to be better suited than seg2seq.
Seq2seq is a group of similar approaches used in natural language processing that are
utilized to convert one sequence of values into another sequence of values via the use
of an RNN.[11] Ordinarily, the seg2seq approach is used frequently within the fields of
machine translation and conversational models such as chatbots, but it possesses
some properties that are applicable to the problem at hand.

As previously stated in the data processing in section 3.2 of this report, musical data
has been formatted into sequences of melodic notes and harmonic chords. This means
that the input data would be perfectly suited to this seq2seq approach, as a model could
be trained simply using these sequences as training data without too much alteration.

The approach that was ultimately utilized was an approach similar to that found in
character-level language models. This follows the premise of using its model to take
one sequence of data, in this case the melody, encode it into a machine-readable
format, and then use that to predict a different sequence of data, in this case the
harmony.

Upon beginning to tackle this problem, however, a problem is immediately obvious. If
we trained a neural network on a dataset consisting entirely of music in A major, the
network would have difficulty working with other musical keys, despite relationships
between notes in those keys being the same as in other keys. Likewise Music21 also
keeps track of which octave each note belongs to, and this information could prevent
the network from recognizing patterns in the data.

28

Figure 8: A short excerpt of code depicting the scanChords function

29

The solution to this issue is somewhat straightforward, but it shouldn’t be understated
because it is an important issue to solve. As mentioned before in the music theory
section of this report, in section 2.1, the seven triads of any key can be represented
using roman numerals. These seven triads, regardless of whatever key they may be
part of, will always possess the same relationship to every other chord. By representing
data this way, any patterns the model learns to recognise by data in one key will be
applicable to data in every key. The same can be done by representing melodic notes
as scale degrees rather than as pitches. The functions written to reach this solution are
shown in figures above.

In addition to this, the data needed to be encoded into a machine-readable format.
According to a 2017 paper: A Comparative Study of Categorical Variable Encoding
Techniques for Neural Network Classifiers [16], the encoding techniques of Sum Coding
and Backward Difference Coding are the most accurate encoding techniques available,
performing at 95% accuracy in their study. However, it is also noted in the study that
One-Hot encoding is the most popular form of encoding, and it possessed a respectable
90% accuracy rating according to their own metrics.

One-Hot encoding is used specifically to make categorical data readable by machine
learning models. It is primarily used in classification problems, much like this project.
One-Hot allows the input for the model to be represented as vectors. Using these
one-hot vectors, data can be fed into the model.

The model constructed for the RNN Method is a two-layer RNN followed by a dense
layer. This model utilizes the dropout technique to address overfitting. The dropout
technique randomly selects individual neurons during an epoch training and deactivates
them for that epoch. In a 2014 publication, it was found that the dropout technique to be
extremely effective at reducing overfitting on all neural networks of any size, with the
downside of the dropout technique increasing training time.[20]

The loss function selected for this approach was cross entropy loss. Cross entropy loss
is well suited to classification models, of which this model is one. With this loss function,
the loss increases as the probability of predicting the true label decreases.[21] This
results in the model being much more likely to create a correct prediction as it minimizes
loss. The optimization function used was adaptive moment estimation, or adam. This is
because after attempting to make use of SGD as per the other two methods, the
program would crash.

30

To summarize, this model was trained via a rather simple process. First was separating
the harmony bars from melody bars into separate lists. Each of these lists was then
processed so that the melody could be expressed in scale degrees, and the harmony
could be expressed as roman numerals. The melodic data was fed into the neural
network as an input, whereas the harmonic data was used as labels to compare the
model’s prediction to.

Figure 9: A short yet jazzy bar fragment of melody represented as a series of scale degrees
depicted alongside a predicted bar of harmony to accompany it

As we can see in the figure above, each output of this model is a list, representing a bar
of harmony, consisting of chords, each a duration of an eighth note or a quaver, to
make up the duration of the bar. Larger criticism of the results of this model will take
place in the Results and Evaluation section of this report, but something to immediately
note is that each note in a bar will only ever be harmonised by one chord. Every scale
degree of 2 is harmonised by “-VII’, every instance of chord 3 is harmonised by ‘vi’. This
shows, as to be expected, a limited amount of understanding for the context of
harmony. Ordinarily, we might expect chord choice to differ in order to create more
colourful music. For the sake of a more diverse visualization of this output data Figure
10 depicts a representation of the above output in written music. This music can be
listened to in the output_example.mid file found in the deliverables for this project.

;!; . II —
kw!i [o '
o) & J

LIN]

J "{

” . P

e EE . FE
[

Figure 10: The melody and predicted harmony depicted in Figure 8, but written using standard
musical notation

L]

31

3.4 - The LSTM Method: Predicting Harmony Based on Harmonic
Context

The goal of the LSTM Method was to implement LSTM layers into a model and
compare the effectiveness of the use of purely harmonic context when training a deep
learning model to process music with natural language processing techniques.

LSTM models excel at making use of context in sequential data. In this instance, we
wish to ignore any form of melodic data as was used in the last method, and instead
purely make use of harmonic data.

This project’s investigation into LSTM utilizes two different kinds of word2vec
approaches for chord prediction. In the LSTM Method, two distinctive models were
created for each of these approaches, both of which utilize some form of a continuous
bag-of-words model. In the field of Natural Language Processing, as mentioned in
section 2.3, a continuous bag-of-words model attempts to predict a word given the
context of surrounding words.

The first model is a simple language modeler that utilizes n-grams, which take n chords
prior to the target as an input. These n-grams are associated with a target chord. The
second model is that of a birdectional-context language modeler, which was
hypothesized to be a much more robust model, is one that takes in n chords prior to the
target and n chords post to the target as an input. A sub-goal of the LSTM Method was
to compare the effectiveness of these approaches. As might be expected, the primary
difference between these two approaches was the way that data was prepared for their
input. Both of these types of models are frequently used within the field of natural
language processing as language modelers, particularly within the area of sentiment
analysis.

To highlight, first language model, that of the n-gram language modeler, utilizes prior
context context chord to predict the next chord, where the bidirectional-context
language modeler utilizes prior and subsequent chord contexts to make predictions.

Given that two slightly differing models were being produced, we can summarize that
the LSTM Method’s approach was to create a group of models that predict a target
chord based on surrounding context chords, making use of a word2vec approach and
utilizing both an embedding layer and LSTM layers.

32

Upon originally completing the first implementation of this solution, it was observed that
the accuracy of the model was extremely low, and the model would keep predicting the
most numerous chord that occurred in the context. The issue was bar-long sequences
of harmony being used as an input. Consider the following input.

FI===

Figure 11: A short excerpt of music consisting of three chords

After feature extraction, this would be represented in the following list: [I, I, I, I, IV, IV, V,
V]. This was this issue with the early version of this model. An n-gram such as [I, I] with
the target chord [I] doesn’t actually tell us a lot about the music. As such, it seemed that
the important thing to extract from the music was the change in harmony, rather than
the harmony itself. The same passage of music listed in the above figure would instead
be represented by the following list: [l, IV, V]. This allows the model to learn a much
greater amount about how the harmony functions and resulted in much higher accuracy
than the previous method.

Figure 12: An excerpt of code depicting the scanChordsByNumeral function utilized by the LSTM
method

In the above figure is the function used to prepare data for the LSTM Method’s models.
Functionally, this function is not dissimilar from the one used in the RNN Method.
However, as mentioned above, rather than bar-long sequences, this function returns a

33

list of every chord as it appears in the harmony in sequence. A new chord is only added
to the list when it differs from the previous one. This results in noise entering the
network being reduced.

A vocabulary of chords is then constructed and indexed. This assigns a unique integer
to each chord, so that this data can be represented in a manner that is a little bit more
machine-readable. These are used to create word embeddings in the embedding layer
of the model that we will be feeding this into.[14][23]

It is at this point the data is formatted to correctly suit either the n-gram model or the
full-context model. Data is converted into lists of context-target pairs. The size of the
context is variable, and several different models have been created in order to measure
the effect of using different context sizes on models. To give an insight as to how this
works, using the n-gram format with a window size of 2 as an example, the sequence [l,
IV, V, I, V, 1] would result in the following list of context-target pairs: [[[l, IV], V], [[VI, V],
I, IV, 11, VI, I, VI, 1].

An encoded version of this data split into test and training data via a k-fold function.
K-fold cross validation is a technique used to evaluate machine learning models. The
k-fold technique involves splitting a dataset into k distinctive groups. One of these
groups are then used as a training dataset, whereas the others are used as a testing
dataset. This allows a project utilizing a relatively small dataset to find extra mileage out
of a limited supply of data. In the case of all models created, each has made use of a k
value of 10, resulting in a test dataset 1/10th the size of the training dataset.

The models produced via this method consist of an embedding layer, two LSTM layers,
and finally a linear, or dense layer. The input is fed into the embedding layer, which
completes the word2vec process by allowing word embeddings to be used in the neural
network. The LSTM layers are used to complete the word2vec process by recognizing
patterns within the data in order to output a vector representing embeddings in n
dimensional space.

The embedding dimensions used differ depending on the model within the group, but
the control models use an embedding dimension size of 256. For each type of model,
there also exists a version where the embedding dimensions have been set to a smaller
size of 128, and another version where the embedding dimensions have been set to a
larger size of 512. While the loss function used for this model is the same as the
previous model, this model makes use of the SGD optimizer.

34

To describe the LSTM Method in summary, extracted features were processed to create
a sequential list of chord changes. This was used to create a group of models. The
differences between these models was the way in which this data was formatted. The
group of models was trained by asking it to predict missing target chords from the
aforementioned context-target pairs. The result is a group of models that can predict
chords solely based on the musical harmonic context, without any melodic context.

3.5 - The Improved LSTM Method: Predicting Harmony Based on
a Combination of Melodic and Harmonic Context

The goal of approach three was to find a way to combine the use of melody and
harmony when predicting chords. The way this was accomplished was by taking the
structure of the group of models in the LSTM Method and finding a way of incorporating
melodic data into the context-target pairs utilized by that method. As such, the Improved
LSTM Method can be accurately described as a derivative or improvement of the LSTM
Method. Very little about the model structure or training differs in this approach from the
LSTM Method, but there is a large amount of difference within the data preparation of
this approach. As such, if a detail has been failed to be mentioned in this method’s
description, it can safely be assumed to mimic that of the LSTM Method.

There were several aspects of the LSTM Method that needed to be addressed or
scrapped in order to make the Improved LSTM Method’s aims possible. In order to
express harmonic data and melodic data in the same object, the representation of
harmony as roman numerals would need to be scrapped. Instead, an entirely different
approach was used. Each chord was instead represented as a string of ordered Pitch
Classes.

Pitch classes are a representation of notes as integers, similar to scale degrees. [24]
Instead of roman numerals, which represent chords relative to the key they exist in, we
can represent chords as strings of pitch classes. For example, we can represent the
chord C major as <047>. Using this system, if all music is transposed to the key of C,
we have an accurate data point for every chord, that includes information about what
melodic note is being played in that chord.

In order to achieve this, the Improved LSTM Method did however make use of a unique

feature extraction function compared to methods two and three, as it was required for all
pieces of music to be transposed before features were extracted.

35

Each of these chords, represented as pitch classes, was then allocated into one list,
which represents the music as a combination of both melody and harmony. This list was
then converted into a vocabulary and indexed via the same process as in the LSTM
Method. However, due to the larger amount of possibilities of chord representations, the
size of this dictionary is dramatically larger. This results in an incredibly inflated size of
the vocabulary in the Improved LSTM Method, as opposed to the one found in the
LSTM Method.

This indexed data is then formatted into context-value pairs, and fed into the same
model structure as found in the LSTM Method, however, due to this Method making use
of both melodic and harmonic context, the Improved LSTM Method results in a much
higher accuracy than that found in the LSTM Method.

36

4 - Results and Evaluation

4.1 - Results Overview

As this project was primarily investigative in intention, a large number of models
were produced. These models are able to be categorized by the method which
produced them, and within these categories can be subcategorized by the type of model
that was produced for each method. Because the LSTM Method and the Improved
LSTM Method made use of the word2vec approach during their data preparation
stages, a comparison between different word2vec architectures has been included.
Within each of these subcategories, models have also been produced by tweaking
parameters with these models, to determine the best approach for the situation at hand.
Below is a short list containing every model produced by this project. A filename for
each model has been provided so that these can be located within the deliverables for
this project.

Models Produced Via the RNN Method

e RNN Control (approach1melodyRNNE256.pt)

This model is a basic recurrent neural network that receives a
sequence, or bar, of melody as an input, and outputs a sequence, or bar,
of harmony. Its hidden dimensions are 256. This model was constructed
as a control model to be used in comparison to other models developed
using the LSTM and Improved LSTM methods.

e RNN with Smaller Hidden Dimensions (approach1melodyRNNE128.pt)
This model is identical to that of the Control model produced by the
RNN method, with the key difference that the hidden dimensions are

smaller, instead set to 128. This model was predicted to have a much
lower accuracy overall when compared to the RNN control model.

37

e RNN with Larger Hidden Dimensions (approach1melodyRNNE512.pt)

This model is identical to that of the Control model produced by the
RNN method, with the key difference that the hidden dimensions are
larger, instead set to 512. This model was expected to have a somewhat
higher accuracy overall when compared to the RNN control model, but
with a moderate plateau in accuracy after a decent amount of training
time.

Models Produced via the The LSTM Method

e N-gram Language Modeler - Control (approach2NGramC3E256.pt)

This model utilizes n-gram context-pairs in its approach to achieve
word embeddings. It features an embedding layer, two LSTM layers, the
former of which utilizes the dropout technique, and finally a linear layer.
This model predicts a target chord represented as a roman numeral from
a context of three prior chords.

e Bidirectional-Context Language Modeler Control - (approach2CBOWC2E256.pt)

This model utilizes context-pairs where the context consists of
chords both preceding and following the target chord in its approach to
achieve word embeddings. Similar to the n-gram language modeler, It
features an embedding layer, two LSTM layers, the former of which
utilizes the dropout technique, and finally a linear layer. This model
predicts a target chord represented as a roman numeral from a context of
three prior chords. Due to the additional direction in which this language
modeler is able to consider context, it is predicted that this modeler will
result in a higher accuracy than the accuracy found in the ordinary n-gram
language modeler.

e Language Modelers with Larger Dimensions (approach2NGramC3E512.pt +
approach2CBOWC2ES512.pt)

These two models are identical to that of the n-gram control model,
and the directional-context control model produced by the LSTM method,
with the key difference that their embedding dimensions are both larger,

38

instead set to 512. These models were expected to have a slightly higher
accuracy when compared to their control model counterparts. This was
expected because with each new embedding dimension, each chord
possesses an additional metric to be compared to other chords with,
which theoretically should allow for more refined comparison of chords.

e Language Modelers with Smaller Dimensions (approach2NGramC3E128.pt +
approach2CBOWC2E128.pt)

These two models are identical to that of the n-gram control model,
and the directional-context control model produced by the LSTM method,
with the key difference that their embedding dimensions are smaller,
instead set to 128. These models were expected to have the inverse
outcome of the models possessing larger dimensions, whereby
decreasing the size of embedding dimensions reduces the metrics
available to compare chords with. This is predicted to result in much less
accuracy overall when compared with other methods.

e Language Modelers with Smaller Context Windows (approach2NGramC2E256.pt
+ approach2CBOWC1E256.pt)

These two models are identical to that of the n-gram control model,
and the directional-context control model produced by the LSTM method,
with the key difference between them and their control counterparts being
that these models possess smaller context sizes. This was expected to
negatively impact the overall accuracy of both of these models, as they
would possess less information overall to utilize.

e Language Modelers with Smaller Context Windows (approach2NGramC4E256.pt
+ approach2CBOWC3E256.pt)

These two models are identical to that of the n-gram control model,
and the directional-context control model produced by the LSTM method,
with the key difference between them and their control counterparts being
that these models possess larger context sizes. This was actually
expected to negatively impact the overall accuracy of both of these
models, as an increased context size within the context-target pair results

39

in fewer context-value pairs overall, thus effectively reducing the size of
the training dataset.

Models Produced Via the Improved LSTM Method

e N-gram Language Modeler - Control (approach3NGramC3EZ256.pt)

This model utilizes n-gram context-pairs in its approach to achieve
word embeddings. It features an embedding layer, two LSTM layers, the
former of which utilizes the dropout technique, and finally a linear layer.
The primary difference between this model and the model found in the
LSTM method is that this model utilizes melodic data in order to make
chord predictions. This model predicts a target chord represented as a
roman numeral from a context of three prior chords.

e Bidirectional-Context Language Modeler - Control (approach3CBOWCZ2E256.pt)

This model utilizes context-pairs consisting of both prior and
subsequent chords in its approach to achieve word embeddings. This
additional data presented to the model should allow it to make more
accurate predictions. However, it is hypothesized that this will require
slightly more training to achieve than the simpler n-gram language
modeler. It features an embedding layer, two LSTM layers, the former of
which utilizes the dropout technique, and finally a linear layer. The primary
difference between this model and the model found in the LSTM method is
that this model utilizes melodic data in order to make chord predictions.
This model predicts a target chord represented as a roman numeral from
a context of three prior chords.

40

4.2 - Comparison of Methods One, Two and Three

The RNN Method, as mentioned previously in the Solution Overview section of
this report, was a model built in order to approximate more traditional harmonisation
techniques without the use of harmonic context or consideration for chord progression.
The RNN Method’s function within this investigation is to serve as a control for the other
two methods compared against, allowing this project to draw a conclusion about their
effectiveness. Below are figures depicting the average loss and the accuracy of the
model over 100 epochs of training.

Change in Accuracy During Training in RNN Method's Control
Model

100

75

Accuracy(%)
[$2]
o

25

20 40 60 80 100

Epoch

Figure 13: Line Graph depicting change of accuracy over the training duration of the produced
RNN model during the RNN method

Change in Loss During Training in RNN Method's Control
Model

Loss

20 40 60 80 100

Epoch

41

Figure 14: Line Graph depicting change of loss over the training duration of the produced RNN
model during the RNN method

The visualization of the data seen above does not paint a particularly promising picture
for the RNN Method. As the accuracy plateaus at approximately 20 percent, it seems as
though this model isn’t tremendously accurate, despite the fact that the model’'s loss
decreased dramatically over the course of the training time. This would be an inaccurate
final assessment of this model however, and the reason for this is because the
traditional measure of accuracy used in machine learning accounts for the number of
identical predictions the model makes to the labels in the dataset. The musical nature of
the problem is what complicates these accuracy readings.

Figure 15: A short melody depicted alongside a predicted harmony and its associated ground
truth harmony

By comparing some predictions made by the model with their ground truth counterparts,
a musical eye might point out that while a number of chord choices for this bar might be
a bit abrupt, they are entirely functional within the musical context in which they exist.
For example, the scale degree 3 is able to be used in many chords. An appropriate
chord choice for this scale degree might be chord iii, chord | or chord vi. As such, it is
hard to describe all of this model's chord choices inaccurate, as it wouldn’t be strictly
incorrect to use the majority of these chord choices, even though they differ from the
ground truth. As such, an alternative formula for accuracy has been used in the
following graph. In this formula, a prediction has been considered accurate if a scale
degree belongs to the predicted chord.

42

Change in Accuracy During Training in Character-Level a RNN Language Modeler
Adjusted for Harmonically Correct Chord Choices

100

75

50

Accuracy (%)

25

20 40 60 80 100

Epochs

Figure 16: Line Graph depicting adjusted change of accuracy over the training duration of the
produced RNN model during the RNN method

Upon observation of this new data, we can see that a reasonably large percentage of
the RNNs predictions are musically valid, if not identically accurate to the associated
ground truth. This figure depicts a much more reasonable accuracy for this Method.
However, it is still clearly visible from this visualization that the graph begins to plateau
at about epoch 30, and so there is probably not going to be a large increase in accuracy
without a change in the way data is processed before being fed into this network.

Overall, as predicted, this method seems to give us usable harmonic choices even if
they are reasonably fixed. As expected, the lack of chord context is something that can
really hurt the chord choice, however.

The LSTM Method sought to contrast itself with the RNN Method by strictly making use
of harmonic context. It was anticipated that this method would not suffice on its own to
be an effective means of harmonisation, and that the combination of melodic and
harmonic data would be required in order to make harmonic data effective. However, to
some surprise a reasonable level of accuracy was able to be achieved from this
approach.

The LSTM Method made use of two different types of model with differing architectures.
The results of the comparison between different model architectures is discussed later
in section 4.3, however. For the sake of this comparison, this section will be comparing
the LSTM Method’s continuous bag-of-words control model, as that was the most
accurate out of the control models produced by the LSTM Method.

43

Change in Accuracy During Training in LSTM Method
Bidrectional-Context Control

100

74.444
68.518

75

Accuracy (%)

20 40 60 80 100

Epoch

Figure 17: Line Graph depicting change of accuracy over the training duration of the produced
LSTM word2vec model during the LSTM Method

Change in Loss During Training in LSTM Method Bidrectional-
Context Control

339 G
: 1.971

1.836
2 L 1:462 =
1.076 0.88
1

20 40 60 80 100

Loss

Epoch

Figure 18: Line Graph depicting change of loss over the training duration of the produced LSTM
word2vec model during the LSTM Method

Over the course of 100 epochs of training, the LSTM Method’s model reached a
respectable 74.4% accuracy, whilst minimizing loss at a steady rate. We can observe
the accuracy engaged in a steady upward trend, which by the end of the 100 epochs of
training, do not show a clear sign of plateauing, which indicates that with additional
training epochs, this model still has the opportunity to increase in accuracy.

This result is slightly surprising, as it was not hypothesized for this method to be as
accurate as it ended up being. What makes these results interesting is the implication

44

that chord patterns without any melodic assistance have some form of semantic
meaning that can be understood on their own.

Change in Accuracy During Training in Improved LSTM Method
Bidrectional-Context Control

100

85.681

~
[$)]

Accuracy(%)
[4)]
o

23.336

20 40 60 80 100

Epoch

Figure 19: Line Graph depicting change of accuracy over the training duration of the produced
LSTM word2vec model during the Improved LSTM Method

Change in Loss During Training in Improved LSTM Method
Bidrectional-Context Control

Loss

20 40 60 80 100

Epoch

Figure 20: Line Graph depicting change of accuracy over the training duration of the produced
LSTM word2vec model during the Improved LSTM Method

The approach of using Pitch Class representation to allow for voice leading seems to
have worked well for this model, as it has the highest accuracy of all produced models.
We can see a strong upward trend, even continuing at later epochs, signifying that with

45

additional training, the accuracy of the model may yet increase. The loss steadily
decreases over each training epoch.

However, starting accuracy seems much lower than that of the previous LSTM-based
method, perhaps signifying that the increased vocabulary-size means that the model
has a harder time accurately predicting a target chord without much training.

Comparison in Change in Loss During Training in an RNN
Method Control Model, LSTM Method Bidrectional-Context

100

78.985
74.444
68.402 68.518

75 67 386
56347 55695
—

49.732

4591094 43.878
A 31055 54938 33.974
28.086 i 26.202

~20.524— |
25.336/

20 40 60 80 100

Epoch

Figure 21: Line Graph depicting a comparison in change of accuracy over the training duration
between the control model for each method

Comparison in Change in Loss During Training in an RNN Method Control Model, LSTM
Method Bidrectional-Context Control , and Improved LSTM Method Bidrectional-Context
Control

20 40 60 80 100

Epoch

Figure 22: Line Graph depicting a comparison in change of accuracy over the training duration
between the control model for each method

When each of the three approaches are overlaid onto the same graph, we can very
clearly see that only after about 50 epochs does the additional data available to the

46

Improved LSTM Method’s improved LSTM model begin to outweigh its increased
complexity and vocabulary size. Before this point the LSTM Method’s simplicity allows it
to maintain a higher level of accuracy than its counterparts.

While the RNN Method’s accuracy maintains a low plateau for most of the training
duration, its loss increases dramatically over time. We can see the influence that this
has on the Improved LSTM Method’s loss when compared to both the RNN Method and
the LSTM Method. The smooth downwards curve allows for the Improved LSTM
Method and the RNN Method to maintain a much greater rate of loss than the LSTM
Method, and this is likely because of the melodic context being utilized by both of these
models.

In addition, the data suggests that the combination of melodic context and harmonic
context is indeed the best strategy to aim for when processing music via machine
learning. This highlights the utility of LSTM neural networks as an extremely versatile
tool for this area, and it is the belief of this investigation that LSTM neural networks
possess far more use in the field of music processing than their more standard RNN
counterparts.

However, the generally positive results of the models produced by this investigation

seem to suggest that natural language processing techniques do have a place within
music processing via deep learning.

47

4.3 - Comparison of word2vec Architectures in Methods Two and
Three

The LSTM Method and the Improved LSTM Method made use of a model
architecture based upon the word2vec approach. Word2vec, when utilized within its
more familiar application of natural language processing, operates by receiving an input
of text. This text would ordinarily be referred to as a corpus. This corpus is then
systematically broken down, or tokenized into constituent parts. Within the
aforementioned context of natural language processing, these constituent parts are
usually words, but can also be characters or morphemes. The output of this approach is
a series of vectors, representing each of these individual words or tokens.

An explanation of the natural language processing application of this approach has
been used to provide an analogue to the musical application in this project, as there is
little difference in the techniques used between these two applications, and for those not
particularly well versed in music theory, this analogue might provide better
understanding of the approach used in this project when read in conjunction with the
short description of musical theory concepts in section 2.1 of this report.

In order to experiment with how effectively word2vec could be utilized, this project
produced two contrasting models in both methods two and three utilizing the word2vec
approach in a different way. In each method, both a simple n-gram model was
produced, alongside a counterpart continuous-bag-of-words model. The primary
differences between these models are the context chords that are required for
prediction. The produced n-gram models require the context of n prior chords to predict
a target chord, whereas the produced continuous-bag-of-words models require the
context of n prior chords and n post chords.

48

Comparison of Average Loss During Training Between CBOW
Language Modelers

== Method Two: N-Gram Control == Method Three: N-Gram Control
== Method Two: Bidirectional-Context Control == Method Three: Bidirectional-Context Control

4

Average Loss

e

20 40 60 80 100

Epochs

Figure 23: Line Graph depicting a comparison in change of loss over the training duration
between the n-gram models produced in the LSTM Method and Improved LSTM Method, and the
bidirectional-context models produced in the LSTM Method and Improved LSTM Method

Comparison of Accuracy During Training Between CBOW
Language Modelers

== Method Two: N-Gram Control == Method Three: N-Gram Control
== |ethod Two: Bidirectional-Context Control == Method Three: Bidirectional-Context Control

100

75

(%))
o

Accuracy (%)

i

o

20 40 60 80 100

Epochs

Figure 24: Line Graph depicting a comparison in change of accuracy over the training duration
between the n-gram models produced in the LSTM Method and Improved LSTM Method, and the
bidirectional-context models produced in the LSTM Method and Improved LSTM Method

Before experimentation, the assumed outcome was that the models utilizing the
continuous-bag-of-words structure would be more effective. As can be seen in the
visualization above, this does indeed seem to be the case. After completing one
hundred epochs of training, the accuracy of both models utilizing a bidirectional-context
language model surpassed the accuracy of their n-gram language model counterparts,
and also outperformed the n-gram models in terms of minimizing loss. This is very likely
due to the fact that the bidirectional-context language models are making use of a larger

49

context-size in total, despite the length of each window being shorter than the
context-size of the n-gram models. The increase in context-size allows for more data to
be utilized in prediction, which should increase accuracy. In addition, the
bidirectional-context language model has an innate advantage over the n-gram
language models due to its ability to utilize chords following the target chord. In terms of
a musical conceptualization of the problem, this would allow the model to develop a
better understanding of the semantic meaning of the harmony, allowing for concepts
such as voice leading or chord progressions to potentially be understood better.

However, this doesn’t mean that the bidirectional-context language models are strictly
better in every regard. When limited training time is available, such as between epoch 0
and epoch 30, the n-gram models outperform the bidirectional-context language models
in terms of accuracy. There are also use-cases where a bidirectional-context language
model might not be suitable. A more sophisticated neural network tasked with the
composition of music may not have access to harmony that follows a target chord due
to a lack of music existing past the target chord, for instance. In such cases of such a
model being tasked with composition, the use of a more simple n-gram model could be
used to generate a basic structure of music that could then be refined via the use of a
bidirectional-context language model which ensures each chord in the harmony is
correct.

One prominent word2vec architecture that has not been measured is that of the
continuous skip-gram architecture. A skip-gram model, when given an input of a word,
will try to predict several context words. This is functionally the inverse of the continuous
bag-of-words models that have been produced. The skip-gram architecture has not
been investigated due to the fact that while this type of architecture might possess
useful traits for musical composition, it is harder to find as significant a use for this type
of model in harmonisation when compared to the continuous bag-of-words architecture,
and the time-constraints of this have limited this project’s scope in terms of the number
of architectures that can be investigated. This will be discussed further in section 6 of
this report.

50

4.3 - Comparative Effects of Changing Embedding Dimensions on
Models

As each model in the LSTM Method was produced, a number of tweaks were
made in an attempt to determine what settings were most effective during model
training. This section of the report seeks to document a comparison of different
embedding dimensions, or E, during the word2vec process. Three settings were used.
First, a control setting where E = 256, a setting with larger embedding dimensions
where = 512, and a setting with smaller embedding dimensions where E = 128. In all
other models, E = 256 was used. It was this project’s hypothesis that generally, larger
embedding dimensions would allow for a greater accuracy, with diminishing returns as
the embedding dimensions increased

Comparison of Accuracy During Training Between Different Embedding
Dimensions in the LSTM Method's n-gram Language Modeler

= E=206 == E=512 E =128

100
75

A

25

Accuracy (%)

20 40 60 80 100

Epoch

Figure 25: Line Graph depicting a comparison in change of accuracy over the training duration
between the n-grams produced during the LSTM Method, with differing embedding dimensions

51

Comparison of Accuracy During Training Between Different Embedding
Dimensions in the LSTM Method's Bidirectional-Context Language Modeler

= E=256 wm E=512 E =128

100

75

Acurracy (%)
4]
o

N
(4]

20 40 60 80 100

Epoch

Figure 26: Line Graph depicting a comparison in change of accuracy over the training duration
between the bidirectional-context models produced during the LSTM Method, with differing
embedding dimensions

Comparison of Loss During Training Between Different Embedding
Dimensions in the LSTM Method's n-gram Language Modeler

= E=256 wm E=512 E =128

/

20 40 60 80 100

Epoch
Figure 27: Line Graph depicting a comparison in change of loss over the training duration

between the n-gram models produced during the LSTM Method, with differing embedding
dimensions

52

Comparison of Loss During Training Between Different Embedding
Dimensions in the LSTM Method's Bidirectional-Context Language Modeler

= E=256 wm E=512 E =128

Loss
- N

20 40 60 80 100

Epoch

Figure 28: Line Graph depicting a comparison in change of loss over the training duration
between the bidirectional-context models produced during the LSTM Method, with differing
embedding dimensions

Considering the data in the four figures above, we observe that in all cases, the models
with E = 128 dimensions have a slower rate of increase in accuracy per epoch when
compared to the other models of E = 512 and E = 256. In addition, this model
possesses a slower rate of decrease in loss per epoch. This data would suggest that
generally a use of smaller embedding dimensions results in a model performing poorly
when compared to the control model of E = 256. In addition, these models appear to
plateau in terms of accuracy near the end of the training cycle, which suggests that
even with additional training, there wouldn’t be much increase in accuracy. This
suggests that E = 128 is limited in terms of maximum potential accuracy when
compared to its counterparts with more embedding dimensions.

By contrast, we can see that a model with E = 512 tends to possess a larger rate of
increase in accuracy per epoch, and a faster rate of decrease in loss per epoch when
compared to the other models. This on the surface would imply that larger embedding
dimensions are strictly better than the control model. However, towards the end of the
training cycle, it can be observed that the rate of increase in accuracy starts to decline,
where comparatively the control model of E = 256 does not show any slowing in rate of
increase of accuracy. This suggests that over additional training epochs, larger
embedding dimensions might be a limiting factor towards total accuracy of model.

It can potentially be assumed from this data that there exists a ‘sweet spot’ of
embedding dimensions to aim for. Using too low a setting of embedding dimensions can

53

hamper a model’s rate increase of accuracy, and decrease of loss over a training
period, but too large a setting of embedding dimensions can limit a model’s potential
maximum accuracy.

54

4.4 - Comparative Effects of Extending Window Size on
Continuous Bag-Of-Words Models

Another interesting point of optimization is that of the context or window size
used in the continuous bag-of-words models produced during the LSTM Method. As
mentioned before, the window size refers to the size of context within context-target
pairs. Within the context of the n-gram language modeler, a window size of 2 might look
like [[0,0],1], whereas a window size of 4 might look like [[0,0,1,2],3].

It was this project’'s hypothesis that as was observed in the experiment involving
embedding dimensions, too small of a context size would hamper the learning rate of
the model. However, too large of a context size would limit the learning rate much more
harshly due to the fact that a lot of the likelihood of encountering a set of context chords
would logically decrease as the length of that set increases.

Something to consider is that in the n-gram language models, a context size of 2 will
construct a context of two chords prior to the target, whereas in the bidirectional-context
language model, a context size of 2 will construct a context of two chords prior to the
target and two chords subsequent to the target, resulting in a total of four chords
utilized. Because of this, smaller context sizes for the bidirectional-context language
model have been used to allow for a fairer comparison.

Three settings were used for each type of model. In the n-gram models, a control
setting of C = 3 was used, along with a larger setting of C = 4, and a smaller setting of C
= 2. In the bidirectional-context language model a control setting of C = 2 was used,
along with a larger setting of C = 3 and a smaller setting of C = 1.

95

Comparison of Accuracy During Training Between Different Context Window Sizes in the
LSTM Method's n-gram Language Modeler

= C=3 == C=2 c=4
100
75
)
3 50
© e
5 —/////
Q
Q
<
25
0
20 40 60 80 100

Epoch

Figure 29: Line Graph depicting a comparison in change of accuracy over the training duration
between the n-gram models produced during the LSTM Method, with differing context sizes

Comparison of Accuracy During Training Between Different Context Window Sizes in the
LSTM Method's Bidirectional-Context Language Modeler

= C=2 == C=1 Cc=3

100

75

[S2]
o

Accuracy (%)

|

25 g

20 40 60 80 100

Epoch
Figure 30: Line Graph depicting a comparison in change of accuracy over the training duration

between the bidirectional-context models produced during the LSTM Method, with differing
context sizes

56

Comparison of Loss During Training Between Different Context Window Sizes in the
LSTM Method's n-gram Language Modeler

= C=3 == C=2 c=4

Loss

20 40 60 80 100

Epoch

Figure 31: Line Graph depicting a comparison in change of loss over the training duration
between the n-gram models produced during the LSTM Method, with differing context sizes

Comparison of Loss During Training Between Different Context Window Sizes in the
LSTM Method's Bidirectional-Context Language Modeler

= C=2 == C=1 Cc=3

Loss
N

20 40 60 80 100

Epoch

Figure 32: Line Graph depicting a comparison in change of loss over the training duration
between the bidirectional-context models produced during the LSTM Method, with differing
context sizes

The above results did not prove the hypothesis proposed, but the data suggests some
interesting trends nonetheless. As expected, a smaller context size of C = 2 in the
n-gram model, and C = 1 in the bidirectional-context language model resulted in a far
reduced rate of increase in accuracy per epoch in both models, and a far reduced rate
of decrease in loss per epoch in both models. Like is likely due to the reasons
hypothesized earlier. The data suggest that there is limited practical usage for such
small context sizes, and generally larger ones are to be preferable for a use-case such
as this one.

57

The interesting section of the data would be that of the larger context sizes of C = 4 in
the n-gram model and C = 3 in the bidirectional-context language model. For the first
fifty epochs, the rate of increase in accuracy and rate of decrease in loss appear to be
approximately equivalent to the rates observed within the control models of C =3 and C
= 2. However, the latter fifty epochs seem to constitute a rapid increase rate of increase
in accuracy and a slightly increased rate of decrease in loss. This boosts the
bidirectional-context language model to a near 99% accuracy by the end of the training
epoch.

It seems that the above data would suggest that larger context sizes are strictly better

than smaller ones, but it seems doubtful that this is the case and further
experimentation will need to be done in order to confirm this.

58

5 - Conclusions

The inspiration of this project was to consider the ideas of Leonard Bernstein’s
thesis. This project aimed to investigate the validity of conceptualizing music via the
lens of linguistics by using a deep learning model utilizing techniques from the field of
natural language processing to harmonise music.

The least effective natural language processing technique was that of the RNN Method,
which possessed a maximum accuracy result of 20.7%. This method utilized a
character-level language model to predict sequences of harmony for given sequences
of melody. It is expected that this low accuracy was due to a common problem
mentioned in section 2.2 of this report, that RNNs possess a limited capability for
retaining data over longer sequences.

The Improved LSTM Method, which utilized an LSTM neural network and word2vec
word embeddings achieved a greater level of accuracy, making use of both melodic and
harmonic contexts. The LSTM Method even possessed a decent level of accuracy when
simply utilizing harmonic context to make predictions. Given the observations made
from the data collected, the data suggests that LSTM neural networks provide a far
superior ability to allow for the processing of music with some consideration for musical
structure.

In a comparison of data preparation approaches, the bidirectional-context language
modeler was found to be more effective after a full cycle of training than its n-gram
language modeler counterparts. Both approaches however, seemed to demonstrate
competency for processing of musical data in the context of machine learning.

It is the conclusion of this project that to a reasonable degree the use of deep learning
natural language processing techniques are applicable to the field of music with a level

of effectiveness that seems to support the thesis put forward by Bernstein.

Within the deliverables for this project exist a folder of every model produced, as well as
the .ipynb file used to create each of these models.

59

60

6 - Future Work

There have been a number of points mentioned throughout this report that
indicate further work in this field would be worth investigating. Primarily it would seem
that a wider array of techniques also found in the field of natural language processing
would need to be investigated. Some of these techniques were briefly mentioned in this
report but were not investigated in the study due to time and scope restraints.

The use of sentiment analysis techniques would be an incredibly promising area to
explore. Considering that music as an art form is used to convey emotional sentiment in
order to elicit an affective response from a listener, an understanding as to how
machine learning can process such emotional sentiments would be invaluable in aiding
machine-driven composition.

Within areas that were investigated during this report, there could potentially be more
depth reached with additional study. One could foresee value in documenting the
effectiveness of other innovations on basic recurrent neural networks like long
short-term memory networks, such as gated recurrent units, in regard to their use in the
area of music processing. In addition, more work could be done on word2vec’s
potential. One type of word2vec architecture that was mentioned in the wordvec
comparison that was not investigated was of a skip-gram model. Such a model would
be able to predict context from a given chord. Potential value could be envisioned in a
generative model.

Which leads into what is perhaps the most imaginatively appealing area of further
research, the development of a generative model for the creation of music using the
techniques and approaches documented within this report. Developing such a model
would allow the developer to build upon techniques discussed in the report and allow for
these techniques to be demonstrated in a more practical setting.

Such a project would be able to make use of the groundwork laid out here. For proof of

concept, a short midi file using the output of a model produced via the RNN method has
been provided in the deliverables to demonstrate the possibility of this.

61

[- Reflection and Learning

Upon reflection of this project, there are a small number of changes that would
be made if it were to be repeated, as | feel like a handful of differences could be
implemented in order to expedite progress on development, and to make general
management of this progress much simpler.

Perhaps the largest road bump that repeatedly presented itself was the lack of
experience that | had with machine learning at the start of this project. The amount of
necessary reading in order to begin making progress with the project would decrease
dramatically if this project was undertaken by an individual with more starting
experience. While | began to understand enough about its usage after an amount of
practice with PyTorch to begin developing models, | believe in retrospect Keras would
have been a better machine learning library to choose for a beginner. Observing a peer
who incidentally was a fellow machine-learning novice develop models quickly and with
relative ease began causing doubt with PyTorch as a library. Additional time saved on
learning is more time that can be spent on experimentation.

The lack of experience in this area was a factor hanging over me from day one and
found itself to be incredibly hampering throughout the course of the project, as
whenever progress was made, such as with the streamInput functions mentioned in
section 3.2, something would inevitably break, and this started to get disheartening.
Through perseverance knowledge was gained, and solutions to problems were found,
but asking for additional help where necessary would definitely be advice | would give to
myself before starting this project again.

More time spent on experimentation is a theme echoed in the next change | would
make to this project: investigating more techniques for musical harmonisation in total. |
believe if time was saved by spending slightly less time conducting background
research, perhaps a few extra techniques could have been investigated, leading to a
slightly more well-rounded analysis of techniques. If this project wants to truly maintain
Leonard Bernstein’s thesis that language can be understood through the lens of
linguistics, further confirmation may be necessary than this report was able to provide.

One large improvement that could be made to the project is the use of additional

datasets. The project since its inception, right through until the final month intended to
make use of both a Johann Sebastian Bach dataset and a dataset of Jazz standards.

62

However, a free-to-use Jazz standard repository stored in MusicXML format was almost
impossible to find. Several partial datasets were found, but each of them had many
problems with noise that stemmed from issues such as lack of quantization. More time
in future needs to be spent on finding an optimal dataset to use.

63

8 - Bibliography

[1] Eck D., Schmidhuber J. (2002) Learning the Long-Term Structure of the Blues. In:
Dorronsoro J.R. (eds) Artificial Neural Networks — ICANN 2002. ICANN 2002. Lecture
Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg

[2] Migdal, P. and Jakubanis, R., 2020. Keras Or Pytorch As Your First Deep Learning
Framework - Deepsense.Ai. [online] deepsense.ai. Available at:
<https://deepsense.ai/keras-or-pytorch/> [Accessed 12 May 2020].

[3] Jancke, L., 2012. The relationship between music and language. Frontiers in
psychology, 3, p.123.

[4] Nabi, J., 2020. Machine Learning — Text Classification, Language Modelling Using
Fast.Ai. [online] Towards Data Science. Available at:
<https://towardsdatascience.com/machine-learning-text-classification-language-modellin
g-using-fast-ai-b1b334f2872d?gi=df13419227cf> [Accessed 12 May 2020].

[5] Magenta. 2020. Coconet: The ML Model Behind Today’S Bach Doodle. [online]
Available at: <https://magenta.tensorflow.org/coconet> [Accessed 12 May 2020].

[6] Faria, W. (2018). MIDI Music Data Extraction using Music21 and Word2Vec on
Kaggle. [online] Towards Data Science. Available at:
https://towardsdatascience.com/midi-music-data-extraction-using-music21-and-word2ve
c-on-kaggle-cb383261cd4e [Accessed 25 Jan. 2020].

[7] Skuli, S. (2017). How to Generate Music using a LSTM Neural Network in Keras.
[online] Towards Data Science. Available at:
https://towardsdatascience.com/how-to-generate-music-using-a-Istm-neural-network-in-
keras-68786834d4c5 [Accessed 29 Jan. 2020].

[8] Huang, C.Z.A., Vaswani, A., Uszkoreit, J., Simon, |., Hawthorne, C., Shazeer, N.,
Dai, A.M., Hoffman, M.D., Dinculescu, M. and Eck, D., 2018. Music transformer:

Generating music with long-term structure.

[9] Roberts, A., Huang, A., Hawthorne, C., Howcroft, J., Wexler, J., Hong, L. and
Dinculescu, M., 2019. Approachable music composition with machine learning at scale.

64

[10] Bernstein, L. (1973). The Unanswered Question: Lecture 2, "Musical Syntax".
[11] Bernstein, L. (1973). The Unanswered Question: Lecture 3, "Musical Semantics".

[12] Wadhwa, M., 2020. Seq2seq Model In Machine Learning - Geeksforgeeks. [online]
GeeksforGeeks. Available at:
<https://www.geeksforgeeks.org/seq2seq-model-in-machine-learning/> [Accessed 30
May 2020].

[13] Ruder, S., 2020. An Overview Of Gradient Descent Optimization Algorithms.
[online] ruder.io. Available at: <https://ruder.io/optimizing-gradient-descent/> [Accessed
31 May 2020].

[14] Nicholson, C., 2020. A Beginner's Guide To Word2vec And Neural Word
Embeddings. - Pathmind. [online] Available at: <https://pathmind.com/wiki/word2vec>
[Accessed 31 May 2020].

[15] Sarkar, D., 2018. Implementing Deep Learning Methods And Feature Engineering
For Text Data: The Skip-Gram Model - Kdnuggets. [online] KDnuggets. Available at:
<https://www.kdnuggets.com/2018/04/implementing-deep-learning-methods-feature-eng
ineering-text-data-skip-gram.htm|> [Accessed 1 June 2020].

[16] Potdar, Kedar & Pardawala, Taher & Pai, Chinmay. (2017). A Comparative Study of
Categorical Variable Encoding Techniques for Neural Network Classifiers. International
Journal of Computer Applications. 175. 7-9. 10.5120/ijca2017915495.

[17] Vasudev, R., 2017. What Is One Hot Encoding? Why And When Do You Have To
Use It? | Hacker Noon. [online] Hackernoon.com. Available at:
<https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-i
t-e3c6186d008f> [Accessed 1 June 2020].

[18] FloydHub Blog. 2019. Beginner’S Guide On Recurrent Neural Networks With
Pytorch. [online] Available at:
<https://blog.floydhub.com/a-beginners-guide-on-recurrent-neural-networks-with-pytorch
/> [Accessed 30 May 2020].

[19] Lopez Yse, D., 2019. Your Guide To Natural Language Processing (NLP). [online]
Towards Data Science. Available at:

65

<https://towardsdatascience.com/your-guide-to-natural-language-processing-nlp-48ea2
511f6e1> [Accessed 2 June 2020].

[20] Srivastava, N., Hinton, G., Sutskever, I. and Salakhutdinov, R., 2014. Dropout: A
Simple Way To Prevent Neural Networks From overfitting. [online] JmIr.org. Available
at: <http://jmIir.org/papers/volume15/srivastavai4a/srivastaval4a.pdf> [Accessed 2
June 2020].

[21] Parmar, R., 2018. Common Loss Functions In Machine Learning. [online] Towards
Data Science. Available at:
<https://towardsdatascience.com/common-loss-functions-in-machine-learning-46afOffc4
d23> [Accessed 3 June 2020].

[22] Zhang, L., Wang, S. and Liu, B., 2018. Deep learning for sentiment analysis: A
survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4),
p.e1253.

[23] Karani, D., 2018. Introduction To Word Embedding And Word2vec. [online]
Towards Data Science. Available at:
<https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0
c2060fa> [Accessed 3 June 2020].

[24] Open Music Theory. 2020. Pitch (Class) — Open Music Theory. [online] Available
at: <http://openmusictheory.com/pitch(Class).htmI> [Accessed 4 June 2020].

[25] Keller, H., 1978. Was Bach A Mathematician ?. [online] Harpsichord.org.uk.
Available at:
<http://www.harpsichord.org.uk/wp-content/uploads/2015/04/bachmath.pdf> [Accessed
4 June 2020].

[26] Phi, M., 2018. lllustrated Guide To LSTM’S And GRU'’S: A Step By Step
Explanation. [online] Towards Data Science. Available at:
<https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-ex
planation-44e9eb85bf21> [Accessed 4 June 2020].

[27] Web.mit.edu. 2020. Music21: A Toolkit For Computer-Aided Musicology. [online]
Available at: <http://web.mit.edu/music21/> [Accessed 5 June 2020].

66

