
 1

Abusive Language Detection Against

Immigrants and Women

 2

1. Introduction ... 4

1.1 Project Aims ... 4

1.2 Intended Audience ... 4

1.3 Project Scope ... 4

1.4 Approach ... 4

1.5 Ethical Considerations .. 5

1.6 Summary of Outcomes ... 5

2. Background ... 6

2.1 Project Context .. 6

2.2 Identified Problem ... 6

2.3 Likely Stakeholders .. 7

2.4 Theory Associated with Problem Area .. 7

2.5 Constraints on Approach .. 9

2.6 Existing Solutions ... 9

2.7 Methods and Tools .. 10

3. Specification and Design .. 12

3.1 Approach to Solving the Problem .. 12

3.2 Metrics Used ... 13

4 Implementation .. 15

4.1 Data Handling ... 15

4.2 Feature Extraction ... 16
4.2.1 Count Vectorizer .. 16
4.2.2 Word2Vec Word Embeddings ... 17
4.2.3 TF/IDF .. 19

4.3 Classifier Model Selection ... 20
4.3.1 Decision Tree ... 20
4.3.2 Random Forest .. 21
4.3.3 Logistic Regression .. 22
4.3.4 SVC ... 22

4.4 Single Tweet Program V1 .. 23

4.5 Single Tweet Program V2 .. 24

5. Results and Evaluation ... 27

5.1 Experiment Results ... 27

5.2 Word2Vec Nearest Word Analysis ... 34

5.4 Results from Single Tweet Program ... 35

5.6 Evaluation of Project Management ... 37

6. Future Work .. 39

6.1 Improved Accuracy Results .. 39

 3

6.2 Implementation as a REST API ... 41

7. Conclusions .. 43

7.1 Summary of Aims and Results ... 43

8. Reflections ... 44

8.1 Key Learnings .. 44

9. References ... 45

 4

1. Introduction

1.1 Project Aims
 The aim of this project is to design an effective system for detection of abusive

language towards immigrants and women. The project is based on a similar project run

online,1, and as such I will be comparing my work and results to the results of other

participants of the competition. As a result of there being others working with the same

data set that I have used for this project, a suitable goal of the project was to achieve the

highest accuracy possible and to compare this accuracy to other participants of the

competition. This would be done through a thorough understanding of natural language

processing and experimentation with different forms of classifiers.

1.2 Intended Audience
 The intended audience of this project is anyone interested in natural language

processing, but also anyone interested in the practical application of offensive speech

detection online. This is especially beneficial in the current world, given the rise of hate

speech online on popular platforms such as Twitter.2 While this project was developed and

tested on a specific set of tweets, with some modification it could be used to classify tweets

in real time. I would argue, therefore, that the techniques and models explored in this

project would be beneficial to anyone intending to implement an automated hate speech

detector into their website. Equally, this project would be beneficial to law enforcement

agencies and governments looking to curb the rise in online hate speech.

1.3 Project Scope
The scope of this project adapted over time, due to the fact that at the start of the

project the libraries and concepts I was going to be working with were largely unknown to

me. As a result of this, it was difficult to estimate the amount of time it would take to

complete pieces of work.

1.4 Approach
The way that I approached carrying out the project was through regular meetings

with my supervisor, coupled with a Kanban approach to working. This meant that I was

focused on small sections of deliverable work that I could then discuss with my supervisor

and plan out what to work on next. This also meant that the scope was able to remain

flexible throughout the project, and I was able to pivot quickly in the event that

circumstances changed, which they did at some parts of the project.

The way in which I ran the experiments that lead to my outcomes changed

throughout my project as the data available to me changed, and as such can be split into

two methods. Initially, I did not have access to the test set that others who attempted this

problem had, and as such I combined the two data sets I did have (train set and dev set),

1 https://competitions.codalab.org/competitions/20011

2 Banks, J., 2010. Regulating hate speech online. International Review of Law, Computers &

Technology, 24(3), pp.233-239.

 5

and then split this one set into multiple splits using a method known as K-Fold Cross

Validation. Once I was able to get access to the third data set during my project, I

approached the project in the following way, which is considered best practice:

• Implement a method of converting the corpus into features.

• Select a classifier model.

• Provide the model with the train set and features.

• Predict whether the tweets in the dev set were offensive or not.

• Compare these predictions to actual results.

• Record results.

• Experiment with the classifier parameters and features.

• Repeat

Once I had done this to a point where I was happy with each of the different

methods I had implemented, I then generated predictions for the test set and compared

these predictions to the actual results. These scores were then used for my final results.

1.5 Ethical Considerations
 It is important to mention the ethical considerations that come with a project like

this. Although this project makes use of large amounts of user generated content in the

form of data sets used to train classifier models and generate features, all of this data was

published alongside peer reviewed publications, and thus any ethical issues when compiling

and distributing this data is left to the authors of the original publications.

 There are also a number of expletives used throughout this paper which the reader

will encounter, which are absolutely necessary due to the strict academic need to show the

kind of data that has been worked with during this project.

1.6 Summary of Outcomes
 There were a number of key outcomes that came out of this project, and they are as

follows:

• Contrary to initial predictions, selection of feature extraction method plays a far

larger role in the accuracy of results returned than the selection of classifier model.

• The combination of Term Frequency–Inverse Document Frequency (TF/IDF) as the

method of feature extraction and a Support Vector Classification (SVC) classifier

model provided the most accurate predictions, as measured by specific metrics that

are discussed later in this report.

• Although the combination of TF/IDF feature extraction and SVC as the classifier

model yielded the most accurate results, this combination also had the longest

program run time by far.

• The combination of Word2Vec word embeddings as features and SVC as the

classifier model was the best balance between shorter program run time and

accuracy of results.

• Although a combination of feature extraction and classifier model was implemented

that was highly accurate in its predictions, when compared to others working with

the same data sets the most successful combination was not as accurate as teams

using Neural Networks in their systems.

 6

2. Background

2.1 Project Context
 The wider context of the problem of detection of abusive language towards women

and immigrants is clear, as the rise of social media platforms and the anonymity that they

provide has precipitated an increasing amount of online abuse, with one survey suggesting

18% of teenagers experienced abusive language while communicating online.3 Given the

frequency of abusive language use online, I would argue that there is a clear need for

accurate automated detection methods of said language.

 The main aim of this project is focused around research and analysis into how best

to approach the design and implementation of a program for detection of abusive language

towards women and immigrants. I have chosen these two groups specifically due to the

large amount of abuse they receive online.4 In particular, immigrants have faced a rise in

hate speech in part due to the refugee crisis,5 and women have historically always suffered

from hate speech.6 The main project focus of detection of abusive language splits into a

multitude of sub problems, but the main three are feature extraction, model selection, and

experiment setup. It is through working through these three problems that I was able to

produce a varying different sets of results with varying accuracy.

 Another aim is to produce a piece of software that, when given a tweet via the

command line, will be able to accurately predict if the tweet is offensive or not towards the

target groups. This was successfully developed using the research outcomes I found from

the main aim of the project.

2.2 Identified Problem
As identified in my initial plan, the pervasive nature of abuse towards women and

immigrants online shows that this is a problem that needs solving. Although the focus of this

project was experimentation and analysis, the outcomes and findings are useful in

determining the best approach in developing an accurate automated method for detection

of abuse towards women and immigrants. Using the findings of the project, I was able to

implement a script that takes a single tweet as an input and returns a JSON blob containing

3 Kawate, S. and Patil, K., 2017. Analysis of foul language usage in social media text

conversation. International Journal of Social Media and Interactive Learning Environments, 5(3),
pp.227-251.

4 Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Pardo, F.M.R., Rosso, P. and Sanguinetti, M.,

2019, June. Semeval-2019 task 5: Multilingual detection of hate speech against immigrants and
women in twitter. In Proceedings of the 13th International Workshop on Semantic Evaluation (pp. 54-
63).

5 Bosco, C., Patti, V., Bogetti, M., Conoscenti, M., Ruffo, G.F., Schifanella, R. and Stranisci, M., 2017.

Tools and resources for detecting hate and prejudice against immigrants in social media.
In SYMPOSIUM III. SOCIAL INTERACTIONS IN COMPLEX INTELLIGENT SYSTEMS (SICIS) at
AISB 2017 (pp. 79-84). AISB.

6 Cresti, M., Martino, V. and Rosola, M., Kate Manne. Down Girl. The Logic of Misogyny, Oxford

University Press, 2017, pp. XXIV, 338. APhEx.

 7

an offensive/not offensive prediction for the tweet. This could be quickly added to an online

platform to aid in hate speech detection.

2.3 Likely Stakeholders
 In terms of likely stakeholders in the problem area, those that would benefit from

developing and implementing an automated system for the detection of abuse language

would be social media sites and law enforcement agencies. There is a vested interest among

social media site owners to stop and remove abusive language on their platforms in order to

make their platform more welcoming and more pleasant to use, as end users will likely stop

using the site if they are receiving abuse. Equally, some of the abusive language that could

be posted online could constitute as hate speech, which is a crime in the United Kingdom7

as well as many other nations, and therefore it would be beneficial to law enforcement

agencies if they could automatically detect this abusive language.

This project would improve the first two steps in the hate crime prosecution process,

namely reporting and investigation of said crime. By automatically detecting hate speech,

platforms would be able to report the comments, police would be able to investigate said

comments and report them to the Crown Prosecution Service as necessary. Prosecution

could then take place as normal but the previous two steps would be enacted faster and

with less manual intervention, for example in the form of human moderators.

2.4 Theory Associated with Problem Area
 The focus of this project is around machine learning, of which the three main areas

are models, features, and experiment setup. The majority of the work on this project

involved experimenting with these three areas in different formats and combinations to try

and achieve the best accuracy results possible.

Model selection involves making use of different classifier models for more accurate

hate speech detection. There are two main differences in the models that I used, prediction

accuracy and program run time. I made use of four different classifiers that I chose for

varying reasons that I will elaborate on below.

• The first model I used was a Decision Tree.8 This model works by looking for a

common word in the corpus that can split the data into offensive/not offensive

tweets, and then repeating this step again with a new word. It is possible to set a

maximum number of leaves for the tree which will improve run time but potentially

lower the accuracy of the model. I chose this model to begin with as it was a simple

model to understand and implement as it requires minimal data preparation to

implement correctly.

• The second model that I implemented was the Random Forest model.9 This model is

“a meta estimator that fits a number of decision tree classifiers on various sub-

7 https://www.cps.gov.uk/hate-crime

8 https://scikit-learn.org/stable/modules/tree.html

9 https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

 8

samples of the dataset and uses averaging to improve the predictive accuracy and

control over-fitting”. This was a logical follow on from using the Decision Tree

classifier due to the similarity in the way that they work.

• The third model I implemented was Logistic Regression.10 This model involves using a

Logistic Function11 in order to model probability and generate a prediction. I chose

this model due to the belief that it would be a good balance between slightly longer

run time and improved prediction accuracy.

• The fourth and final model that I implemented was Support Vector Classification.12

This model works by plotting a line through the corpus matrix in order to make its

classifications. This model was chosen in the belief that it would provide the best

accuracy, albeit in exchange for the longest run time.

Feature extraction encompasses the tokenisation of the corpus and the subsequent

extraction of features that will be used to train the selected model. I ended up using three

forms of feature extraction, a Count Vectorizer13, TF/IDF extraction14, and a Word2Vec15

model.

• The Count Vectorizer was by far the least effective form of feature extraction as it

went through the corpus and selected the 50 most common words excluding English

“stop words”, such as “and, if, it, to” for example. Although this was not very

effective in terms of accuracy, it was a quick and simple form of feature extraction to

implement and was a good starting point for the project.

• The Word2Vec model is a more effective method of feature extraction that involves

grouping similar words together to produce word embeddings, that can then be

tokenized and used as features to train a classifier model. I was given access to a

Word2Vec model that was trained on a large corpus that produced a very effective

set of word embeddings that I then tokenized and used to produce highly accurate

results.

• Term frequency–inverse document frequency or TF/IDF is the final form of feature

extraction I implemented. This vectorizer works by putting weightings on features to

determine how important they are to documents in the corpus. I made use of

parameters such as “n grams” to specifically point the vectorizer to look for common

phrases as well as words based on characters.

10 https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

11 https://en.wikipedia.org/wiki/Logistic_function

12 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

13 https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

14 https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

15 https://radimrehurek.com/gensim/models/word2vec.html

 9

In terms of experiment setup, I went through varying setups involving differing forms

of feature extraction and models together, with varying parameters. I made sure to record

and export all of these results during the course of my work in order to catalogue the

variation in results.

• One of the major changes in experimental setup throughout my work on this project

was the change from using k-fold cross validation16, to the best practice

train/dev/test split. The best practice for work on machine learning algorithms

involves training your model on the train data set and then testing it on the dev data

set, before implementing changes to the model or feature extraction to improve

results. Only once you are satisfied with your model and feature extraction should

you perform the final test on the test data set to produce your final results.

Unfortunately, I did not have access to the test data set until halfway through the

project, so I combined the train and dev data sets and implemented k-fold cross

validation. This performed the train/dev/test splits and I then combined the results

to create an average.

2.5 Constraints on Approach
 As stated in my introduction, I was originally constrained from approaching the

project in, what is considered as, the best practice method for developing a model to

classify offensive tweets due to not having access to the test data set that is used to

generate final results, and ultimately compare these results to other teams who have

worked on the same problem. This constraint was solved halfway through the project and I

was able to work in the best practice approach for the remainder of the project.

 Due to this constraint, I had to adopt an alternative approach for the initial period of

my work on this project, involving using k-fold cross validation splits to alleviate the issue

created by not having a test set. This proved to be a viable approach to the project as the

results and outcomes generated during this period of the project were essentially similar to

when I approached the project with best practice in mind. The trends methods I found to

get the best results were the same and could be adopted when I was given access to the

test set.

2.6 Existing Solutions
 There were a large number of varying methods and research presented by others

participating in the competition this project is based on. They range from machine learning

methods, similar to the work that I have to done, to deep learning. For example, there was

use of Support Vector Machines similar to what I have used. Although there was use of both

machine learning and deep learning techniques, deep learning was by far the most popular

method of approaching the problem with 70% of teams making use of deep learning.17

16 https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html

17 Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. and Kumar, R., 2019. Semeval-2019

task 6: Identifying and categorizing offensive language in social media (offenseval). arXiv preprint
arXiv:1903.08983.

 10

Further to this, the most successful teams to participate made use of deep learning, with

the highest ranked team to not use deep learning placing 6th.

As well as use of varying models and feature extraction, there was also a wide range

of different methods of data pre-processing used. These methods ranged from making use

of additional training material such as Word2Vec models and/or external data sets, to using

sentiment analysis models for prediction, or even using offensive word lists.18 Some teams

used twitter specific tokenizers, for example NTLK TweetTokenizer. Teams also made efforts

to normalise URL’s, hashtags, and elongated words to improve results. There were also

teams that converted emojis to text to be able to analyse them effectively.

2.7 Methods and Tools
 My project was developed using Python 3.7.6,19 and in particular I made use of 3

specific libraries to complete the project: Sci-Kit Learn, Gensim, and Numpy. In terms of the

structure of my program, each of my models is made up of a form of classifier (For example,

a decision tree of Logistic Regression), and a form of feature extraction that helps to train

the model with features that are deemed as important markers for if a tweet is offensive or

not.

 Sci-Kit Learn20 is a library that I used to give me access to a wide number of different

classifier models that I could train my corpus on and use to generate predictions for if a

tweet is offensive or not. As well as this, at one stage I also used this library to extract

features from the corpus as a further method of training the classifier model.

 Gensim21 is a library that allowed me to implement a form of neural networks into

the project, using a model of feature extraction called Word2Vec. Word2Vec works by

creating word embeddings for each word in the corpus and then looking at what words are

“near” that word in order to determine links. I implemented two forms of feature extraction

in my project, with one Word2Vec model that was trained on my data set, and another

Word2Vec model that was trained on a much larger data set of tweets. Both of these

models were used in my work and both produced varying results. I also used Word2Vec to

analyse what words were “nearest” to certain words to enable me to see what words are

commonly used alongside what could typically be considered as abusive language.

 NumPy22 is a library that extends the operations that Python can perform on data

structures, particularly arrays and matrices. This is useful for my project given that Sci-Kit

Learn makes extensive use of sparse matrices to represent the predictions output by the

classifier models, and by using NumPy it is much easier to record these results.

18 Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. and Kumar, R., 2019. Semeval-2019

task 6: Identifying and categorizing offensive language in social media (offenseval). arXiv preprint
arXiv:1903.08983.

19 https://www.python.org/

20 https://scikit-learn.org/

21 https://radimrehurek.com/gensim/

22 https://numpy.org/

 11

 Joblib23 is a library that allows you save models that have been trained by Sci-kit

learn as Joblib files for later use. This is extremely useful as often the bulk of the time spent

by a function generating predictions is spent training the model. By being able to save and

load classifier models that are pre-trained, you only have to train the model once and can

simply load the pre-trained model each time you want to use it. This is significantly faster

and a useful method of cutting down on runtime.

23 https://joblib.readthedocs.io/en/latest/

 12

3. Specification and Design

3.1 Approach to Solving the Problem
 The exploratory nature of this project meant that my approach to the project

changed over the duration of the work. As mentioned previously, there were changes in the

experiment setup, methods of feature extraction, and classifier models. I have illustrated

the way in which the program works in a flow chart that can be found below.

The reasoning behind why there was so much of an evolution in all areas of the

project over the duration is due to my limited experience with the tooling and concepts

used in the project prior to beginning work. As a result of this, many of the concepts and

tooling I initially used were not best practice, specifically the use of k-fold cross validation to

substitute a train/dev/test split in data sets, or they did not provide very accurate

predictions. The final iteration of the project, as shown in the diagram above, implements all

of the concepts and tooling that I found to produce the most accurate predictions, as

measured by precision, recall, and f-1 score.

 As I have shown in the diagram above, the data flow of the program is relatively

simple and remains the same despite variations in experimental setup, feature extraction,

and model selection. The diagram does, however, abstract a lot of the workings going on

underneath the simple step descriptions I have included. For example, the step “Tweets are

loaded into the program” abstracts the need to load the tweets and their corresponding

labels into feature vectors in such a way that Sci-Kit Learn can make use of the corpus.

 Another flaw in the diagram is that it does not show the evolution that this project

went through over the course of my work on it. For example, although I was always

comparing the predictions to the actual labels to determine the accuracy of the system, the

Figure 1

 13

way in which I calculated this accuracy did vary. In the final iteration of the program I had

one set of predictions to compare to the actual tweet labels, but in earlier iterations I had 5

different sets of predictions. This was due to my use of k-fold cross validation - the use of

which and its use case I have previously explained. As a result of this, I had to average these

5 results together to get an overall result thus complicating the step of result generation.

 The way in which I recorded my results was to include a function that first noted

down the parameters of the experiment to the results file and then copied down the

classification report containing metrics, such as precision, recall, and f-1 score of the

experiment. All of this information was recorded in a CSV for two main reasons. First,

because Python has a built in module for handling CSV files, and secondly because CSV files

can store large amounts of data in a tabulated format that can be printed to the command

line or displayed in a spreadsheet program such as Excel, making them a versatile method of

displaying the results collected. As a result of recording my results automatically, every time

an experiment was run, I had an extensive catalogue of results that I have been able to

examine and analyse, allowing me to accurately present a summary of outcomes as to what

the most effective methods for detection of abusive language are.

 Another key step that is abstracted in program flow chart under the “tweets are

loaded into the program” step is data pre-processing. This step involves normalising the

tweets so to improve the overall accuracy of the results produced by the experiment. I

performed varying levels of data pre-processing throughout the project as I learned more

about natural language processing. In the final state of the project, the most effective form

of pre-processing I used was to allow for the use of “n grams” to specifically look for

common phrases instead of words. This vastly improved the accuracy of my results.

 I have previously touched on the variations in feature extraction and model

selection, and I will go into depth about how exactly I implemented these varying methods

that make up the core of the experimental setup.

3.2 Metrics Used
Precision, Recall, and F-1 score are the key metrics by which the accuracy of

predictions made by the system are made - an explanation of each metric and the formula

to calculate it will be provided now.

Precision is defined as the number of True Positives divided by the sum of True

Positives and False Positives.24 What this metric measures is the number of predicted

positive cases (in this case, offensive tweets), compared to the number of those predictions

that were actually offensive.

24 https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9

Figure 2

 14

Recall is defined as the number of True Positives divided by the sum of True Positives

and False Negatives.25 What this metric measures is the number of offensive tweets the

model is labelling correctly as a True Positive by including the cases that the model is

incorrectly predicting as offensive in the formula.

F1-Score is the final and perhaps most important metric that will be used in this

paper to determine the accuracy of predictions made by the models used. F-1 Score is

defined as Precision multiplied by Recall, divided by the sum of Precision and Recall,

multiplied by 226. The F-1 Score is necessary as it strikes a balance between Precision and

Recall thus showing a good overall measure of the way a model is performing.

25 https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9

26 https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9

Figure 3

Figure 4

 15

4 Implementation

4.1 Data Handling
 The first part of the project that I worked on was the handling of the data sets as the

libraries that I utilised required data to be formatted in a specific way before you can make

use of the corpus to train the classifier models or extract features from them. To do this in

Python, I made use of the OS27 library as my method of file handling to load the tweets from

the text files I had them stored in. I used this library due to the fact that it is built into

Python and so did not require another dependency to get the program running.

 Once the text files have been loaded, the next problem I had to solve was the

splitting of the training data (in this case, the train data set) into separate offensive and not

offensive text files, based on their labels within the original train set text file. The reason this

had to be done was to facilitate the creation of a Python list of tweets with corresponding

labels that Sci-Kit Learn can use to train a classifier model, as well as compare predictions to

actual tweet labels to determine the accuracy of said model. The screenshot below shows

the function that I wrote to perform this task, along with comments explaining what the

loading lines do. The step of splitting the tweets into their separate offensive/not offensive

text file only needs to be done once, as the files are saved.

27 https://docs.python.org/3/library/os.html

Figure 5

 16

Following on from splitting the tweets out, I needed to load the separate

offensive/not offensive files into the program. The way in which I did this essentially

involved recycling the loading code shown in the “split_off_not” function shown above as

they essentially need to perform the same role of loading the tweets into a list, and because

of this I will not show the “load_file” function that performs this task.

The final form of data handling that needed to be implemented was ensuring that all

results were automatically recorded for later analysis. It was important to record this

information in some form of permanent storage otherwise results would be lost any time

the terminal was closed. Another requirement was the need for this function to be modular

and separate from the “main” function due to the amount of times that this function would

need to be run.

As can be seen in the code excerpt above, the “write_to_csv” function is a small and

modular function that is parsed the classifier used, as well as a Pandas data frame

containing the results from the classifier predictions. It then opens the “results.csv” file to

amend it first with the experimental setup, namely the classifier used and its parameters,

followed by a new line in order to make the structure of the results file clearer. Following on

from this, the function makes use of the “to_csv” function from the NumPy library that

writes a Pandas data frame directly to a CSV file. The result of running this function is the

results file is updated with the experiment setup as well as the results of the experiment,

and they are ready for further examination and analysis at a later date.

4.2 Feature Extraction

4.2.1 Count Vectorizer

 The first form of feature extraction that I implemented was a Count Vectorizer. The

way in which I implemented this was by using a method built into the Sci-kit Learn library.

The way in which this method works is by collecting a list of the most common words in the

corpus it is provided with and use those as the features with which train the model you have

selected. In my case, I limited the vectorizer to 50 words but also made use of the

“stop_words=English” parameter to skip over common linking words, for example “and, or,

if”. I experimented with including more features but the trade off in run time did not yield

Figure 6

 17

any significant improvement in the accuracy of the predictions made when using a Count

Vectorizer.

As can be seen in Figure 7, this code excerpt shows that the train data set and the

dev data set are loaded into the program. Once this is done, the vectorizer is initialised with

the parameters desired, and then the train set corpus is parsed to the vectorizer which will

produce a list of features for use by the classifier models, shown on Line 97. For verbosity,

the list of features that is generated by the vectorizer is printed to the console. Although the

Count Vectorizer was the simplest form of feature extraction that was implemented, it was

the worst performing in terms of accuracy of predictions.

4.2.2 Word2Vec Word Embeddings

Following on from the Count Vectorizer, the next step for feature extraction was

exploring Word2Vec models as a way of getting a better set of features to train classifier

models with. Word2Vec28 works by creating word embeddings for each word in the corpus

and then looking at what words are “near” that word in order to determine links between

words. The use of Word2Vec in this project occurred in two stages. Initially the corpus that

was provided as part of this project was used to train a Word2Vec model, and the

subsequent word embeddings were used as features to train classifier models.

 As shown in the code excerpt above, the “create_word2vec” function takes a corpus

of tweets and formats it in such a way that Gensim can create the word embeddings. Once

this is done, a Word2Vec model is initialised with parameters. In this instance, the

parameters are a size of 20 embeddings, where a word has to be used twice to be

considered, and the number of times to iterate through the corpus is set to 10. The corpus

28 https://radimrehurek.com/gensim/models/word2vec.html

Figure 7

Figure 8

 18

of tweets is then provided to the Word2Vec model, finishing the process of model creation.

For verbosity and to ensure the model has been created correctly, the model is tested by

printing out the most similar words to “bitch”, as well as the distance between our test

word and the words most similar to it. Although the initial use of Word2Vec was an

improvement on the previous use of a Count Vectorizer, it did not provide the improvement

desired. Following research into how to improve the usefulness of Word2Vec models, the

author determined that the small corpus size was impacting the usefulness of the word

embeddings produced by this Word2Vec model.

 The second iteration of the use of Word2Vec in this project was an attempt to try

and improve the quality of the word embeddings produced by Word2Vec. As the main issue

was the size of the corpus being used to train the model was too small, the solution that the

author implemented was to use a pre-trained Word2Vec model.29 This Word2Vec model

was trained on a much larger corpus and, as such, its word embeddings were more accurate

than the embeddings produced by the model trained on the smaller corpus. The use of this

second model did require an adjustment in the codebase to make use of the model.

 The function “load_word2vec” loads the pre-trained model, which is stored as a

“w2v” file in the root of the repository. Once again for verbosity, the model is tested and the

most similar words to “bitch” are printed out to test that the model has been loaded

correctly. In order to use the word embeddings as features for classifier models, they need

to be formatted into NumPy in a sparse matrix, otherwise Sci-kit Learn will not be able to

read them. This process is handled using a class found online,30 although I did have to make

a number of changes to update the code from Python2 to Python3. Line 236 collects the

index value of the word embeddings and returns them formatted so that when

“MeanEmbeddingVectorizer” is called as part of the classifier functions, it can take all of the

29 Camacho Collados, J., Doval, Y., Martínez-Cámara, E., Espinosa-Anke, L., Barbieri, F. and

Schockaert, S., 2020. Learning cross-lingual word embeddings from Twitter via distant
supervision. ICWSM.

30 http://nadbordrozd.github.io/blog/2016/05/20/text-classification-with-word2vec/

Figure 9

 19

embedding index values and format them into a NumPy matrix, which is returned and used

as features to train the classifier model. The use of this form of Word2Vec model did

produce the results that were originally hoped for with the use of Word2Vec and did vastly

improve the accuracy of the predictions produced by the classifier models.

4.2.3 TF/IDF

The final form of feature extraction that was implemented in this project was the use

of “Term frequency–inverse document frequency” or TF/IDF. This form of feature extraction

was implemented as a result of continued research into alternative means of feature

extraction, and the intended effect when combined with any classifier was to be a

significant improvement in results. This form of feature extraction works by putting

weightings on words depending on how frequent and important they are to the corpus and

determining its list of features from these weightings.

 Above is an example of a function making use of an SVC classifier with a TF/IDF

vectorizer. In this function, the feature extraction is built into a pipeline block of code along

with the classifier model, in this case SVC. The pipeline is a feature of Sci-kit Learn which

simplifies and shortens the code required. This can be compared to the code required to get

the Count Vectorizer working. As such, all of the work done in the latter stages of the

project made extensive use of the pipeline as a method of saving time and space.

 On the first use of the TF/IDF vectorizer, all of the parameters were set to default to

see what impact this would have on results. Initially this did not improve results, which

came as a surprise to the author as the expectation was an improvement. Upon further

research into how this vectorizer worked, it was determined that the vectorizer was

attempting to only tokenize words which was stopping the vectorizer from picking up on key

phrases in the corpus. This problem was solved by first setting the analyser parameter to

“char”, and second the parameter “n_gram_range” was used to look for common groupings

of characters between 1 to 15 characters long. The combination of these two parameters

meant that the vectorizer could now pick up on key phrases in the corpus instead of just

words as tokens. Due to these changes, there was a significant improvement in the accuracy

of predictions made.

 Despite this improvement in results, it is important to mention now that the

combination of the TF/IDF vectorizer with the SVC classifier resulted in a huge increase in

the run time of the program. The average run time of all other vectorizers and models was

around 1 minute, but the run time with these particular parameters increased to over 20

minutes.

Figure 10

 20

4.3 Classifier Model Selection

4.3.1 Decision Tree

 Selecting classifier models to implement is the next key section of the project

implementation to discuss. As mentioned previously in this report, 4 forms of classifier

model were selected and implemented throughout the duration of this project. First, I will

discuss the first model that was implemented during the project, the Decision Tree. It must

be now said that due to the changes in experimental setup that was undergone throughout

the project, the way that this classifier was implemented did undergo significant changes

which I will now highlight.

 The code excerpt above shows the first complete implementation of the Decision

Tree classifier. This initial version of the function made use of k-fold cross validation and as

such is structured differently to the later versions of the classifier models that were

implemented. It is also important to highlight the use of Stratified K-Fold here, which is a

variant of k-fold cross validation that keeps the same proportion of labels across the splits in

each section of data used. What this means is that if there is a 45/55 split overall between

the two labels in the corpus, the splits will echo this and have a 45/55 split in labels. The

function is parsed the data to train the model along with a set of labels. The labels have to

be converted to a NumPy array in order to be in the correct format for use with k-fold cross

validation. Once this is done, the data and labels are split into however many splits are

desired for this particular run of the experiment - in this case, 3 is chosen. A for loop is run

for the number of splits with the results of each run of the experiment being appended to

the “score_array”, from which an average of the results will be calculated once all of the

splits have concluded. The model is retrained every time a split is run with new data as with

each new split the section of the corpus used for training has changed. The average of all

the results is then printed to the command line for verbosity. Next, the results are

formatted in preparation to be written to the results.csv file by converting the results into a

Pandas data frame. Finally, the “write_to_csv” function is called with the classifier used and

its parameters and the results of the experiment.

 As stated previously this implementation of the Decision Tree classifier, although

effective in providing useful results at the beginning of the project, was updated once the

setup of the experiments changed upon gaining access to the “test” data set. The final

iteration of the Decision Tree classifier phased out the use of k-fold cross validation as it was

no longer necessary.

Figure 11

 21

The excerpt above is the final iteration of the Decision Tree classifier. As shown

previously in this report, this implementation of the classifier makes use of the Pipeline

feature from the Sci-kit Learn library. As well as this, this function makes use of the

Word2Vec vectorizer. The function is parsed the train docs and labels required to train the

classifier model, as well as the dev docs and labels required to make predictions and grade

how accurate those predictions were. Next, the Word2Vec model is loaded using the

function “load_word2vec” that I have shown previously. Following on from this, the model

is trained and predictions are made, which are printed out in the form of the “classification

report” which is a method from the Sci-kit Learn library that returns values such as

precision, recall, and f-1 score for the predictions made. Line 128 collects the classification

report in the form of a dictionary, using the “output_dict=true” flag to achieve this. Using

two different formats for the classification report was necessary due to the fact that the

dictionary format is needed to write the results to a CSV file, but if you print this format out

to the console it is very difficult to read, thus resulting in the use of two different formats.

Finally, the classification report is converted to a Pandas data frame as we have seen

already, before being parsed to the “write_to_csv” function along with the classifier

parameters which are called from the Pipeline object.

4.3.2 Random Forest

 The next form of classifier that was implemented was an upgraded version of the

Decision Tree, the Random Forest classifier. Similar to the Decision Tree, the way that this

classifier was implemented changed over the course of the project for the same reasons

stated previously. Due to the almost exact similarity between the implementations of the

two outdated functions, the outdated version of the Random Forest classifier function will

not be shown in this paper.

Figure 12

Figure 13

 22

 As can be seen in the code excerpt above, the Random Forest and Decision Tree

functions are broadly similar in the way that they are implemented. This is mainly due to

two reasons. First, the way in which these two classifiers work is broadly the same, with the

Random Forest classifier just being a grouping of a number of Decision Trees together.

Second, with the use of the Pipeline feature from Sci-kit Learn, the process of implementing

different classifier models is greatly simplified and largely consists of changing single lines of

code usually. The function flows the same way as the Decision Tree function as the two data

sets and their labels are parsed to the function. Next, the Word2Vec model is loaded to use

as the form of feature extraction for this particular experiment. The model is trained and

two different formats of classification report are generated for the same reasons as

previously discussed. Finally, this information is formatted for recording in the results file

and the “write_to_csv” function is called. Line 137 and Line 142 are the main differences in-

between this and the Decision Tree function, where Random Forest is used in place of the

Decision Tree.

4.3.3 Logistic Regression

 The third classifier that was implemented as a part of this project was Logistic

Regression. This classifier was implemented during the latter stages of the project so was

never implemented making use of k-fold cross validation, so the implementation shown is

the first and final iteration of the Logistic Regression function. Once again, I made use of the

Sci-kit Learn Pipeline feature31 to structure the function, and as such the majority of the

code is similar to functions that have already been shown in this report.

 Above is the code excerpt showing the implementation for the Logistic Regression

classifier. As stated previously, it is broadly similar to the Decision Tree and Random Forest

functions and follows the same flow with the same requirements and outputs. The only

major changes in this function are on Line 162 and Line 167, which both contain the code

specific to the Logistic Regression implementation.

4.3.4 SVC

 The final classifier model that was implemented was the Support Vector Machine

classifier. Similar to the Logistic Regression function, SVC was implemented in the latter

stages of the project thus was never implemented using k-fold cross validation.

Furthermore, SVC was implemented in two different formats: one format making use of the

31 https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

Figure 14

 23

Word2Vec form of feature extraction and one format making use of “Term frequency–

inverse document frequency” or TF/IDF. The implantation of SVC using TF/IDF has already

been discussed earlier in this paper therefore I will focus on the implementation of SVC

making use of the Word2Vec form of feature extraction.

 Again, this implementation is broadly similar to others that have been discussed

already in this paper. The only changes in this block of code to others are on Line 148 and

Line 153 which contain specific references to the classifier used.

4.4 Single Tweet Program V1
 Once the experiments had been run and the best methods to make the most

accurate predictions regarding whether a tweet was offensive or not became clear, a

decision was made by the author to implement a program that took a single tweet as an

input and returned a prediction for that tweet. The reason for this is that making predictions

for large data sets often has little use in terms of real-world application; what is much more

likely is the need for a single tweet to be examined for offensive content. This program

would be much more readily adaptable into a REST API that would be of much greater use

to any interested parties. The single tweet program recycles a large amount of code from

the main code used to perform the experiments mentioned previously. Most of the recycled

code is data handling or copying of the Word2Vec feature extraction methods. There are

some differences in those functions however, for example a new function had to be written

to load and format a file with a single tweet in as opposed to a file with a substantial

number of tweets in. It must be said now that although the SVC classifier combined with

TF/IDF feature extraction provided the most accurate prediction, the trade off in vastly

increased run time did not make sense for this particular program. With the idea of making

this readily adaptable for a REST API, a 20-minute run time to return a single prediction

didn’t seem sensible. As a result, I have decided to use the second-best combination of the

Figure 15

 24

SVC classifier combined with the Word2Vec feature extraction, which returns a result in 1

minute with only slightly worse accuracy.

 The code excerpt above shows the main variations in the single tweet program in

comparison to the main program. The training data is still loaded using the same function,

but the next line loads a single tweet that will be used to make a prediction on. Next, the

classifier function is called with the training data and the tweet to be categorised as

offensive/not offensive. Once the model is trained and a prediction is made, instead of

generating a classification report, the prediction is printed for verbosity and then returned

along with the model. The prediction takes the form of “1” or “0”, and as based on the

prediction a dictionary is created for either offensive/not offensive. This model is then

returned as a JSON blob, which is the output expected if this were to be used as a REST API.

4.5 Single Tweet Program V2
 In the first version of the single tweet program it was highlighted that, due to run

time constraints, the combination of SVC and TF/IDF feature extraction could not be used

despite the fact this combination provided the most accurate results. Later in the project, a

Figure 16

 25

solution was found to this problem that involved saving a pre-trained model and exporting it

into a file. By doing this and loading the subsequent pre-trained model in the single tweet

program, the run time was drastically cut down therefore the use of SVC with TF/IDF was

much more practical.

As you can see in the code excerpt above, the final version of this program is

significantly smaller due to the removal of any need to train a classifier model. As such, the

code is short enough that it can be shown in one screenshot. Anything that was needed to

load training files has been removed as well as any code that was used to load the pre-

trained Word2Vec model. As well as this, any lines actually training a Sci-kit learn model

Figure 17

 26

ready to make predictions have been removed. All that is left is the above, showing the

loading of the tweet from a text file and formatted slightly to allow for Sci-kit learn to load

the tweet and read it. Finally, the pre-trained model using SVC and TF/IDF is loaded and

used to form the prediction. This prediction is then collected and formatted into a dictionary

before being converted to JSON and outputted to the command line for verbosity.

In the screenshot below, you can see how the program is run from the command line

with the program being called, followed by location of the text file containing the tweet that

will be analysed, and a prediction be made as to whether the tweet is offensive or not

offensive.

This is a significant improvement to the single tweet program which allows it to

make use of the more accurate combination of SVC and TF/IDF feature extraction with a

much faster runtime of 1 minute, instead of the 20-30 minutes the run takes when including

model training time. This improvement in the system was made possible due to the

inclusion of the Joblib model that allows for saving and loading of Sci-kit learn models once

they have been trained.

Figure 18

 27

5. Results and Evaluation

5.1 Experiment Results
 In this section the results that were collected throughout the duration of the project

will be presented and analysed and summary outcomes will be drawn. All of the following

results are collected by training the classifier model using the train data set and predictions

are then made on the test data set. These tests were run at the end of the project and only

run once so to preserve the best practice of the experimental setup. Each model

implemented was run with each form of feature extraction. It should also be mentioned

now that in all of the following results “0” means “Not Offensive” and “1” means

“Offensive”. As well as this, the test data set that we are making predictions on is made up

of 1252 offensive tweets and 1720 not offensive tweets.

 The first form of feature extraction implemented was the Count Vectorizer and

although this was the simplest form of feature extraction that was implemented, it also

produced the least accurate results across all of the four classifier models that were

implemented. The first model to be examined is the Decision Tree which was also the first

model to be implemented.

 As can be seen in the results above, the Decision Tree combined with a Count

Vectorizer as the form of feature extraction does not perform well, with an overall F-1 Score

of 0.46. This shows that over half of the predictions made by this model were incorrect. If

we examine the results further, we can see that this particular setup scores very highly in

Precision when classifying tweets as offensive, with a score of 0.80, but the model also

scores very poorly in terms of Precision when classifying not offensive tweets, with a score

of 0.22. We can infer from these results that this particular combination of model and

classifier does not form a particularly effective form of classifier. The extremely low

Precision score when classifying not offensive tweets combined with the low number of

tweets actually classified as not offensive suggests that, even when the model does classify

a tweet as not offensive, it is actually a false positive and should be offensive. If we examine

the way this model classifies offensive tweets, the high rate of Precision combined with an

average Recall scores suggests that this model does not return a large number of results

when classifying offensive tweets, but the majority of the predictions it makes on this group

are correct. The key takeaway from this model is that it performs better when classifying

offensive tweets, as shown by the comparison in F-1 Scores between not offensive and

Figure 19

 28

offensive of 0.32 and 0.55 respectively. This improvement when classifying offensive tweets

is caused by the rates of return between not offensive and offensive, with not offensive

having a much higher Recall score and thus returning more results, but also having a much

lower Precision score which suggests that the model is getting a large number of these

predictions incorrect.

 The next classifier that will be examined when combined with a Count Vectorizer is

the Random Forest. This classifier performed almost exactly the same as the Decision Tree

overall in terms of F-1 Score but had some interesting differences in Precision and Recall

scores, due to the difference in the way the classifiers function.

 As we can see, the overall F-1 Score is exactly the same as the Decision Tree with

0.46. Again, this model had largely similar Recall and Precision scores for not offensive

tweets, suggesting that the model is returning a large number of results for not offensive

but is getting these predictions almost entirely wrong due to the large number of false

positives in the predictions that it has made. The converse is true when it comes to

offensive tweets, with a lower Recall score of 0.43 and a much higher Precision score of

0.83, suggesting that the model is returning a smaller proportion of offensive tweets but the

predictions for these tweets are much more accurate, with a low number of false positives

in the predictions. Despite this, the results are broadly similar to the Decision Tree classifier

and mostly show little improvement despite the expectation that this classifier would

improve results. These metrics combine to provide the predictable results of the Random

Forest having a worse F-1 Score when it comes to classifying not offensive tweets with a

score of 0.2 but an improved F-1 Score when it comes to classifying offensive tweets with a

score of 0.56. Overall, the Random Forest classifier when combined with a Count Vectorizer

has an F-1 Score of 0.46 which is not as accurate as could be hoped.

 The third classifier that will be examined is Logistic Regression. The results for this

classifier when combined with a Count Vectorizer can be seen below.

Figure 20

 29

 As can be seen in Figure 21, this classifier had nearly identical results to the Random

Forest classifier in essentially every field. The only differences between the two are for

Precision when classifying not offensive tweets and Recall when classifying not offensive

tweets. In both of these cases, Logistic Regression performed slightly poorer than the

Random Forest with scores of 0.17 and 0.57 respectively. This led to a worse F-1 Score when

predicting not offensive tweets, suggesting that this model is the worst so far at classifying

not offensive tweets when compared to the other two classifiers that have been examined

previously. Equally, Logistic Regression has the weakest overall F-1 Score of any classifier so

far when combined with a Count Vectorizer.

 The final classifier to be examined when combined with a Count Vectorizer is the SVC

classifier. The results of this experiment can be seen below.

 These results are essentially identical to the results for Logistic Regression, and as

such further analysis is not required. All that can be said for this experiment is that the same

conclusions drawn for Logistic Regression apply for SVC as well.

 In conclusion, all 4 of the different classifier models that were implemented

throughout the duration of this project performed very similarly when combined with the

count vectorizer as the form of feature extraction used. All of the results collected from

these experiments are relatively poor, with quite a low degree of accuracy overall in the

predictions made by these models. In particular, all of the models above suffered from a

combination of high recall/low precision when it came to classifying not offensive tweets. As

mentioned previously, this is due to the fact that the models are returning too many results

when looking for not offensive tweets, and any predictions of not offensive are

overwhelmingly false positive. The conclusion to draw from these results is that the Count

Vectorizer is not an effective method of feature extraction and cannot be relied upon to

generate accurate results. It must be said that this could be owing to the parameters used

for the Count Vectorizer; that of a maximum of 50 features and only including basic stop

Figure 21

Figure 22

 30

words, but based on the research done it seemed that the Count Vectorizer was a basic

form of feature extraction and a large amount of time spent changing parameters would

only yield a small improvement in accuracy scores and as such was not worth it.

 The next form of feature extraction that was implemented was using Word2Vec to

create word embeddings, that would then be used as the features for models to use as part

of training. It has been discussed previously that Word2Vec word embeddings were created

in two different ways throughout the project so I must mention now that all of the following

results are making use of the larger pre-trained Word2Vec model, due to the poor quality of

results provided by the Word2Vec model trained on the training corpus. Following the same

pattern as with the Count Vectorizer, I will analyse how this form of feature extraction

impacted the results of each different classifier model, starting with the Decision Tree.

 Instantly it can be seen that there has been a huge improvement in results across

Precision, Recall, and F-1 Score for both not offensive and offensive tweets due to the use of

the Word2Vec word embeddings as features. When classifying not offensive tweets, there is

a clear increase in both Recall and Precision. The Precision score for not offensive tweets is

0.50, which is still only an average score, but coupled with the higher Recall score of 0.78 it

suggests that this model is better at correctly classifying not offensive tweets and has less

false positives in its predictions, although half of its predictions are still false positives. There

is also a minor improvement in Precision and Recall for offensive tweets, suggesting a slight

improvement in returning more results for offensive tweets but also that these results

returned are mostly correct predictions with few false positives. Overall, there is a

significant improvement in the accuracy of the model when compared to the same model

with a Count Vectorizer as its form of feature extraction, with the averaged F-1 Score of not

offensive and offensive tweets reaching 0.63.

Figure 23

 31

The next classifier that will be examined is the Random Forest classifier. Following a

similar pattern to the Decision Tree, when combined with Word2Vec feature extraction

there was an improvement in the accuracy of predictions.

Again, there is a significant improvement in all fields when compared to the same

model using the Count Vectorizer as its form of feature extraction. This particular model has

a high recall for not offensive tweets, but a low precision. As has been previously discussed,

this combination of high recall/low precision suggests that while this model returns a large

number of results for not offensive tweets, the Precision of these results is poor with a score

of 0.48, suggesting the majority are false positives. The converse is true when it comes to

offensive tweets, where a much lower rate of Recall at 0.55 is balanced with a very high

Precision score of 0.89. This suggests that while this model is good at returning not offensive

tweets, usually the tweets it has returned and classed as not offensive are false positive and

are actually offensive tweets. It also means that while this model is excellent at not

classifying not offensive tweets as offensive, it does miss a large number of offensive

tweets, which is represented by the low Recall score. Overall, it is clear that the Random

Forest classifier when combined with Word2Vec feature extraction still performs slightly

better at classifying offensive tweets than the same model when combined with a Count

Vectorizer, with an F-1 Score of 0.68 compared to 0.61 for not offensive tweets. When

averaged, these two scores form the overall accuracy score as 0.65, which is a significant

improvement from the 0.46 score when this classifier was used with a Count Vectorizer.

The next classifier that will be examined is Logistic Regression. It would be

reasonable to expect, based on the last two sets of results when using Word2Vec as the

method of feature extraction, that there will be an improvement in results for this classifier.

Figure 24

Figure 25

 32

As expected, there is an improvement in results when compared to the use of

Logistic Regression combined with a Count Vectorizer. There is a significant improvement in

the overall classification of not offensive tweets, with both Precision and Recall improving

with regard to these tweets. Conversely, while Recall for offensive tweets did improve,

there was a significant drop in Precision when classifying offensive tweets. What is

interesting about the results for this classifier when combined with Word2Vec, is the

balance between Precision and Recall for both not offensive and offensive tweets. For not

offensive tweets, there is still a higher Recall score than for offensive tweets, with 0.67

compared to 0.55 respectively. There is a significantly improved Precision score, however, of

0.67. This suggests that this model is now returning a smaller number of not offensive

tweets and the predictions that are made by the model, with regard to not offensive tweets,

are mostly accurate. If we examine offensive tweets, we can see that there has been a

significant drop in Precision, suggesting a large increase in the number of false positive

predictions being made when classifying offensive tweets. This drop in Precision is balanced

out by an increase in Recall, suggesting that this model has improved at returning more

results for offensive tweets, which is balanced with more of the predictions being

inaccurate. All of these results combine to create an overall increase in accuracy of the

predictions being made, with an F-1 Score of 0.62.

The final classifier to be examined when using Word2Vec is the SVC classifier. The

expectation for this experiment is a significant improvement in the accuracy of predictions

made by this model.

As can be seen by the results, the expectations for this experiment were met and

there was a significant improvement in results, with the overall accuracy being the best

results seen so far in this project. If we examine the results for not offensive tweets, we can

see a huge improvement in Recall with a score of 0.90. This high Recall score, combined with

a much lower Precision score of 0.57, further suggests that this model is returning a large

number of tweets as not offensive, but a large portion of the results returned are false

positives and have been classified incorrectly. Similar to the classifiers that we have

examined previously when using Word2Vec as the method of feature extraction, this

classifier is much better at classifying offensive tweets. The SVC model still has a high

precision/low recall trade off when classifying offensive tweets, but it has much better

scores than other models. The Recall score of 0.61 suggests that it is returning a larger

number of offensive tweets than other models and this combined with the very high

Precision score of 0.91 suggests that those results returned are correct to a near perfect

degree, with a very low number of false positive predictions made. These results combine to

have an overall accuracy F-1 Score of 0.72, which is the strongest score seen throughout this

project so far.

Figure 26

 33

In conclusion, using a Word2Vec model trained on a large corpus to create word

embeddings, and using those word embeddings as features for the classifier models, is a

much more effective form of feature extraction than a Count Vectorizer. Across all four of

the classifiers implemented as part of this project, there were significant improvements in

the overall accuracy of predictions made. There is a common drawback, however, to using

Word2Vec word embeddings as features that appears to be difficulty when classifying not

offensive tweets. All four classifiers, to varying degrees, had high recall/low precision

problems when classifying not offensive tweets. As well as this, all four classifiers had the

converse problem of low recall/high precision when classifying offensive tweets. This

suggests that when using Word2Vec word embeddings as features, this particular

Word2Vec model provides features that lead classifier models to overclassify tweets as not

offensive, resulting in large numbers of false positives. That being said, this form of feature

extraction is still a significant improvement over the Count Vectorizer, and when combined

with the SVC classifier provided the best results seen so far in this project.

 The last form of feature extraction that was implemented as part of the project was

TF/IDF. This form of feature extraction was implemented near the end of the project and as

such a decision was made to only implement it for the most successful classifier model so

far, in an attempt to achieve the strongest results possible. As a result of this, the only

classifier model TF/IDF was implemented with was the SVC classifier.

 As can be seen in the above results, the combination of TF/IDF and the SVC classifier

provided the best results in the project. If we examine the results for not offensive tweets,

we can see a score of 0.996 which is the highest score we have seen. The results also show a

Precision score of 0.63 for not offensive tweets. These two scores combined suggest that

this model is returning the largest proportion of not offensive tweets yet. Despite this, the

low precision score suggests that the model is still suffering from a large number of false

positives being returned. This means that a large number of offensive tweets are being

incorrectly classified as not offensive, which is an obvious issue. When it comes to classifying

offensive tweets, this model has both an improved Recall and Precision score when

compared to the same model using Word2Vec word embeddings as features. With a Recall

score of 0.66, the model is better at returning results for offensive tweets but is still missing

a large number. The Precision score of 0.996, however, suggests that when a tweet is

returned and predicted as offensive, it is essentially guaranteed to be a correct prediction.

What this means is that this model very rarely gets a prediction of an offensive tweet wrong,

showing that you can trust its detections of offensive tweets, if not its detections of not

offensive tweets.

Figure 27

 34

 In conclusion, the most accurate predictions achieved by any model were found in

the combination of the SVC classifier and TF/IDF feature extraction. What I should mention

is the major drawback that comes with this combination; that being the extreme increase in

program run time when using this combination, from an average run time of 1 minute up to

an average of 20 minutes. This trade-off is definitely worth it in this experimental setting

where speed of results is not an issue, but this combination would not be an effective choice

in a situation where you may want real-time feedback. One such situation that this could

occur would be if you wanted to implement an automated offensive tweet detection system

thus using SVC with TF/IDF feature extraction would not be an effective choice, due to

having to wait 20 minutes for each tweet to be analysed and a prediction returned.

Therefore, while SVC and TF/IDF is the most effective combination, it is highly situational

and its use should be carefully considered based on the requirements of the system being

designed.

5.2 Word2Vec Nearest Word Analysis
 In the previous section I mentioned that two Word2Vec models were used in this

project, one trained on the training sets provided as part of the project and one trained on a

much larger corpus of tweets. In this section of the report, I will explore why a second

Word2Vec model was required, by utilising the “most similar”32 feature of the Word2Vec

library. What this feature does is show the word embeddings that are “nearest” to a

provided word, as well as to what degree they are near to the word that has been provided.

Both Word2Vec models will be provided with the same word, in this case “bitch”, to see

what word embeddings are considered nearest in the two Word2Vec models.

 The first model that will be examined is the model trained on the training set of data

provided as part of this project, which consists of 3783 offensive tweets and 5218 not

offensive tweets.

 As you can see above, the word embeddings that are most similar to “bitch” in this

model often have no relevance to words that could be considered offensive. For example,

the third nearest word to “bitch” in this model is “employment”. What this means is that

based on these features, a classifier model would be highly likely to consider the word

“employment” as an offensive word and would be more likely to classify a tweet as

offensive if it contained this word. This is obviously not correct as the word employment is

not deemed as offensive. As a result, the word embeddings and features generated by this

Word2Vec model are, unfortunately, not particularly useful to us. This is most likely due to

the small corpus size that the model was trained on as Word2Vec models function much

better and provide better embeddings when trained on hundreds of thousands of tweets, as

32

https://tedboy.github.io/nlps/generated/generated/gensim.models.Word2Vec.most_simila

r.html

Figure 28

 35

opposed to 9001 in this case. This resulted in the subsequent use of a second Word2Vec

model that was trained on a much larger corpus.

In order to improve the word embeddings provided by the original model, I found

and made use of a pre-trained Word2Vec model.33 As stated above, the second Word2Vec

model was trained on a much larger corpus, and as a result the new model provided much

more useful word embeddings. This is the main reason why this second Word2Vec model

was used as the method of feature extraction for the classifier models, and not the original

model trained on the smaller corpus.

As can be seen in the above screenshot, the words that are nearest to “bitch” in the

second Word2Vec model make a lot more sense. Not only are the words “nearer” to our

provided word, but they could all be considered offensive. In fact, the vast majority of the

most similar words to “bitch” in this model are either misspellings of “bitch” or are

deliberate attempts to avoid getting caught by an abusive language detector by changing

letters, for example “bxtch”. As well as this, another misogynistic term “hoe” is considered

very similar to “bitch” in this model, suggesting that the two words are used together

regularly in the corpus of tweets used to train this model. This screenshot is a perfect

example of why this second Word2Vec model had to be used, as it provided word

embeddings that were much more suitable as features and thus provided a significant boost

in the accuracy of results.

5.4 Results from Single Tweet Program
 Following on from the overall results of the experiments run as part of this project, it

is important to show how the outcomes from the project can be adapted and implemented

into something more useful to parties interested in the outcomes of the project. This takes

the form of a program that takes in a single tweet and returns a prediction of offensive/not

offensive for the tweet, instead of an analysis of accuracy which is returned from all of the

other functions shown so far. It has been discussed already how this program was designed

and implemented - with constant thought as to how to make the outcomes of the project

useful and adaptable into a system that could be implemented by a social media platform

like Twitter for example.

 In the first version of this program, a decision was made to make use of the second

most accurate classifier model/feature extraction combination, due to the fact that using

SVC with TF/IDF feature extraction would have made the system impractical due to run

time. As a result, the first version of the program implemented SVC with Word2Vec word

embeddings as features. As such, the system took in a tweet and returned a prediction as to

if the tweet was offensive or not. Based on the results discussed previously, there is a

danger with using this particular model that the prediction will not be correct, with this

33 Camacho Collados, J., Doval, Y., Martínez-Cámara, E., Espinosa-Anke, L., Barbieri, F. and

Schockaert, S., 2020. Learning cross-lingual word embeddings from Twitter via distant
supervision. ICWSM.

Figure 29

 36

combination only achieving an accuracy score of 0.72. The greatest flaw in this particular

combination is its tendency to classify tweets as not offensive when they are actually

offensive - a false positive prediction.

 The issue with long run times was solved in the second version of the program by

using Joblib to save and load pre-trained Sci-kit Learn models, thus vastly cutting down on

the program run time and making it practical to implement SVC with TF/IDF feature

extraction. This gave a significant improvement to the accuracy of the prediction provided

by the program. Although there is still a danger that tweets classed as not offensive are false

positives and are actually offensive, the danger of this occurring is reduced when compared

to using SVC with Word2Vec word embeddings, as evidenced by the improved Precision

score when classifying offensive tweets. As well as this, due to the extremely high Precision

score when classifying offensive tweets, the program is almost guaranteed to have correctly

predicted the contents of a tweet when that tweet is predicted as offensive. Overall, the

inclusion of loading a pre-trained model has greatly improved the functionality of this single

tweet implementation.

Included above is a screenshot of the command line output of the program showing

the tweet that is being analysed and a prediction being made on, followed by a JSON object

with relevant information contained. The JSON object has a status code of 200, showing that

the request was processed successfully. It has a prediction which will always be either 0 for

not offensive or 1 for offensive, and finally a label that includes a human readable output of

what the prediction is. The system could easily be expanded to also include the tweet that

was analysed in the JSON object returned if so desired.

This final iteration of the single tweet program is a much-improved iteration on the

original version, but still has some drawbacks. For example, although the accuracy of the

model used is much better than SVC with Word2Vec word embeddings as features, it is still

not perfect and does have a tendency to classify offensive tweets as not offensive

mistakenly, although not in the same number as other models. As a result, this program acts

more of a “proof of concept” than anything, in showing how an automated offensive tweet

detection system might be designed, implemented, and function. In its current state, this

system could not be implemented straight away into a large social media platform or be

used by law enforcement simply due to the error margin involved, and the large number of

tweets that would be mistakenly classified as not offensive. However, with some

adaptation, this program could be improved either through implementing better feature

extraction or classifier models to improve the overall accuracy. As well as this, the program

would need some kind of “wrapper” around it to provide the infrastructure necessary to use

the code with a REST API.

Figure 30

 37

5.6 Evaluation of Project Management
 In terms of project management, I decided work in the style of the Agile

Methodology.34 Agile involves splitting up the work to be completed into small sections of

work that can be completed in a shorter period of time rather than large sections of work.

For example, instead of planning to simply “implement the classifier models I have chosen”,

I planned to implement one at a time. This allowed me to complete a piece of work and gain

feedback on it before moving forward, allowing me to pivot in another direction if

necessary. The use of Agile was especially useful to me given my limited experience with

natural language processing – I could not estimate the complexity of a large number of the

implementation tasks due to my need to learn how to use the libraries and tooling I would

be using as part of this project. Therefore, being able to see clearly the tasks that needed to

be completed helped me to know if I was failing to complete tasks quickly enough.

Specifically, I adopted the Kanban35 style of Agile as my method of organising my

work. I chose this style of working due to its focus on fast feedback loops and small

deliverable sections of work. By having a Kanban board, I was able to split the work up into

smaller sections and make these tasks visible by displaying them on a virtual board. This

meant that I could immediately see where I was in the project by glancing on the Kanban

board. This also had the effect of focusing my attention onto tasks that needed to be

completed to allow the project to move forward. The tooling used to create and maintain

the Kanban board was Trello,36 an online tool for creating Kanban boards. Below is a

screenshot showing the Kanban board that was used throughout the project.

34 https://agilemanifesto.org/

35 https://www.atlassian.com/agile/kanban

36 https://trello.com/

Figure 31

 38

 As you can see in the screenshot above, the overall work of the project is broken

down into smaller sections that allowed me to focus on what tasks needed to be completed

in what order. For example, the implementation tasks needed to be completed before the

implantation and evaluation sections could be written. This focus on smaller sections of

work was reinforced by weekly meetings with my dissertation supervisor. By meeting once a

week, I was able to present solutions to problems and get feedback on the work done,

creating a fast feedback loop that allowed me to act on feedback and pivot away from work

that was not going in the right direction. This flexibility meant that throughout the duration

of the project I was always on track and felt that I was working well. Conversely, if I ran into

problems or was in danger of not meeting a deadline for a piece of work, there were regular

and frequent opportunities for me to express this to be supervisor and gain help and

guidance to solve the issue. This greatly aided my work on the project and allowed me to

ensure that all sections of work were completed on time and to a high standard.

 Overall, this method of working was successful due to the fact that the project was

completed on time and to a high standard, with all of the original aims of the project being

met. The focus on fast feedback loops meant that anytime I met complications or was not

heading in the right direction I was able to correct the problem without having wasted too

much time on work that was not moving the project forward. One change that could be

made to improve the management of the project, however, would be the use of a physical

Kanban board as opposed to a virtual one. This is due to the fact that at times keeping the

virtual board up to date became a secondary priority and therefore was not completely up

to date. As a physical board is much more prominent than a virtual one, by using a physical

board this problem would likely not occur as often.

 In order to keep the code base organised and stored somewhere safely, I opted to

store the code base in a Github repository. The first benefit this provided was this

guaranteed that the code was backed up somewhere online so that, in the event my local

copy was destroyed, I would not have lost my work and I would be able to continue working

on the project with little difficulty. The second benefit this provided was it allowed me to

store multiple versions of the project through different commits being stored online. This

meant that in the event I needed to access an old version of the code, it was stored on

Github for me. This would have been useful if I needed to restore to an older working

version of the code, but it was also useful while I was writing this report as it allowed me to

examine old versions of the code to refresh my memory. The final benefit that storing the

code in Github provides is that going forward, if someone wants to collaborate on this

repository and expand the project, then the code is online and available for collaboration.

 39

6. Future Work

6.1 Improved Accuracy Results
 The main thrust of any future work on this project should have the aim of improving

the accuracy of the models used. Although the models and methods of feature extraction

used in this project so far did have some success at classifying offensive tweets, I do not

believe that any are accurate enough for implementation in the real world. As such, the

focus of any further work needs to be finding ways to improve the accuracy of results

provided by the models used. There are a number of ways that this could be accomplished,

for example different methods of feature extraction could be implemented, or new classifier

models could be implemented to try and improve the accuracy of results. Alternatively,

another way of achieving better accuracy could be through exploring neural networks.

 In terms of different forms of feature extraction that could be implemented, one

option to implement in the future could be a Hashing Vectorizer.37 This vectorizer has a

number of advantages over others that have been used as part of this project but the main

advantage is the extremely low memory use of this vectorizer. This would be particularly

useful for the single tweet program as this would speed up the loading time of the pre-

trained model used to make predictions. It is possible that, when combined with parameters

making use of “n_grams” and tokenizing by characters instead of words, that this vectorizer

could produce an improvement in the accuracy of results. If this was combined with faster

loading times when using Joblib, this vectorizer could provide a significant improvement to

the overall functionality of the single tweet program and make it faster at returning results

with little loss in accuracy of those results.

 As well as implementing completely new forms of feature extraction, there is an

argument to be made for improving the methods of feature extraction currently used in the

project. For example, an idea for future work could be improvement of the data that is used

to select features from in the current iteration of the project. Currently, features for training

the classifier models are either selected from the corpus of training data provided to me as

part of the project, or from the pre-trained Word2Vec model that is trained on hundreds of

thousands of tweets collected. It could be argued that the Count Vectorizer, Word2Vec

word embeddings, and TF/IDF vectorizer could produce better features to train the classifier

models on if they had access to larger and more carefully constructed data to select

features from. This work could involve anything from more extensive normalising of the

data to using completely new data sets to select features from.

 There is a large scope for future work on this project involving the implementation of

new classifier models. The four models that were implemented as part of this project were

all chosen for specific reasons, but there are a large number of classifier models that have

been unexplored as a result of this. Although I will examine some of the possible classifier

models that could be implemented in the future, this is by no means an exhaustive list. One

37 https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.htm

l

 40

potential classifier model that could be implemented is the Naïve Bayes algorithm.38 There

are a number of variations of this algorithm that could be explored to discover which

provided the best results, including Gaussian Naïve Bayes and Complement Naïve Bayes.

Another potential classifier model that could be implemented is the AdaBoost classifier.39

This classifier works by first fitting a classifier over the data set and then fitting additional

classifiers over that, while simultaneously adjusting the weights of incorrectly classified

cases. This has the effect of focussing subsequent classifiers on the more difficult cases to

classify. Either of these classifier models could provide a boost to results or, alternatively,

other classifier models would also potentially provide an increase in the accuracy of results.

The key takeaway is that, if I had had more time on the project, I would have explored a

much wider range of classifier models. This is not to say that I believe I did not cover enough

classifier models as I selected the models that I felt would provide the best results, but it

does mean that in the pursuit of better accuracy new classifier models is a valid endeavour

for future work.

It has already been discussed that the most successful teams participating in solving

this problem online made use neural networks as their preferred method of making

predictions.40 Therefore, the next logical step for this project would be to incorporate neural

networks as the method of classifying tweets as offensive/not offensive. If I had more time

to complete this project, the starting point for expanding this project to use neural networks

would be TensorFlow.41 I would choose this starting point due to the fact that TensorFlow is

a machine learning neural network library for Python, meaning that you could build on top

of the existing code base and would not have to start the project again in another

programming language. I believe that by using neural networks to make predictions on the

data set, you would likely see a significant improvement in the accuracy of results returned,

due to the strong performance of teams utilising neural networks when interacting with the

same data sets used as part of this project.

In conclusion, although all of the original aims of the project have been met there is

a large scope to continue working on this project in terms of just improving the accuracy of

results that are returned from the predictions made by classifier models. The benefit of

improving the accuracy of results returned is clear in ensuring that any system implemented

that makes use of the outcomes of this project, for example a single tweet analyser, would

be more accurate and make less mistakes. This is key if a large social media platform or a

law enforcement agency were attempting to implement an automated abusive language

detection system as a large number of false positive classifications would undermine the

usefulness of the system.

38 https://scikit-learn.org/stable/modules/naive_bayes.html

39 https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

40 Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. and Kumar, R., 2019. Semeval-2019

task 6: Identifying and categorizing offensive language in social media (offenseval). arXiv preprint
arXiv:1903.08983.
41 https://www.tensorflow.org/

 41

6.2 Implementation as a REST API
 Alongside improving the accuracy of the results returned by the classifier models

used as part of this project, another idea for future work on this project would be to take

the single tweet program proof of concept and fully develop it as an automated abusive

language detection system. I believe the best way to expand on the single tweet program

would be to adapt it for use as a REST API. The single tweet proof of concept already returns

a JSON object but the code would need to be modified to be parsed the tweet that it is

classifying.

If I had more time and was going to begin this piece of work, the way that I would go

about implementing this change would be to design the program for a fully serverless

environment. This could take place on any of the major cloud providers but I have the most

experience with AWS therefore this would be the platform that I would use. The solution I

would implement would involve hosting the code in AWS Lambda and connecting AWS API

Gateway to it to allow for the code to function as a REST API properly. This solution would

provide a number of benefits. For example, by implementing this solution you would

essentially guarantee that the API would always be available and functioning. Another

benefit is you would not have to worry about hosting and maintaining the API yourself,

which would cut down on the up-front cost of purchasing something to host the API on. The

final benefit of this implementation would be the ability to set up a deployment pipeline for

changes made to the code. By hosting the code on AWS, it would make it easy to deploy

code pushed to the master branch in Github into AWS automatically, as this is a widely done

practice that has been implemented in the industry.

In order to implement the solution suggested above, the code base would need to

undergo some adaptation. For example, currently the program loads the tweet from a text

file from local memory. This would have to be changed to take a tweet from a request to the

REST API. Depending on how you wanted to use the system, this could be triggered by a

manual API request or by a webhook that is pushed to the API. As well as this, there would

need to be some solution that handles the loading of the pre-trained model used for

generating the prediction for the tweet being analysed as in the proof of concept I designed,

this model is loaded from local memory as well. Perhaps the most important change that

would have to be implemented, however, is the addition of robust security to the program.

There is no security implemented in the current version of the program due to the fact that

the program is run locally and not hosted anywhere online that could be accessed by

anyone. If this program were to be adapted into a REST API, you would need to include

robust security to ensure that only verified users could make use of the API, otherwise you

would potentially leave the API open to misuse. There are a number of ways that you could

go about implementing this security. One option would be using JSON Web Tokens (JWT) as

a method of allowing a user to remain authenticated for multiple uses of the API during a

certain time frame. Another option would be to use an API key that could be given to

verified users and would allow them to authenticate with the API Gateway instance.

By implementing the solution described above in combination with the outcomes

described as part of this project, you would have a reasonably accurate automated abusive

language detection system. This system could be utilised as a third-party system for abusive

language detection that could be utilised to analyse tweets for offensive content. Equally,

the system could be further adapted by websites with large amounts of user generated

content to automatically flag abusive language, particularly towards women and

immigrants. Equally, law enforcement could use this system as a method of flagging abusive

 42

language. It must be said now, however, that due to the large number of false positive

classifications of not offensive tweets, this system could not exist on its own as the only

method of abusive language detection. There will still need to be some level of human

intervention before any final judgement can be made. For example, social media platforms

could still rely on users reporting offensive content to catch cases where content had been

mistakenly labelled as not offensive. There would also need to be some level of human

intervention for examining tweets that have been potentially mistakenly been labelled as

offensive, even though the results suggest that false positive predictions for offensive

tweets are very rare.

 43

7. Conclusions

7.1 Summary of Aims and Results
 The main aim of this project, as stated at beginning of this report, was “to design an

effective system for detection of abusive language towards immigrants and women”. I

would argue that this aim has been met, as I have demonstrated throughout this report that

I have designed a system that can effectively classify abusive language towards immigrants

and women. Although this was the main aim of the project, this aim can be split down into a

number of smaller sub-aims for the project. For example, a sub-aim that fed into the main

aim of the project was the need to implement a number of classifier models in order to

ascertain which produced the most accurate results. To complete both of these aims, a

strong knowledge of natural language process was required, and I had to learn this as the

duration of the project went on. All of these aims were met throughout the course of the

project.

 As has been discussed in the body of this report, the work that has been completed

as part of this project is not perfect, and as such the systems that were designed and

explored as part of this project were also not perfect. There were varying degrees of success

with some models suffering from very low accuracy of predictions compared to other

models that were largely accurate in their predictions of tweets. The most accurate classifier

model used was the SVC classifier, and the least accurate classifier model used was the

Decision Tree classifier. Although the classifier model used did impact results, the model

selected did not have as much of an effect as the method of feature extraction that was

used. Classifier models that were combined with the Count Vectorizer as its method of

feature extraction always performed the worst, often providing results that were wrong

over half of the time. The most successful combination of classifier model and method of

feature extraction was the SVC classifier combined with TF/IDF feature extraction. This

provided results that suggested that this combination would almost always be correct if it

had predicted a tweet as offensive but was significantly worse when predicting tweets as

not offensive, with significantly more false positives for these classifications. This

exploration of classifier models and feature extraction methods led to a number of designs

of systems for the detection of abusive language towards women and immigrants that could

all be considered effective, to varying degrees.

 Following on from the classifier models and methods of feature extraction that were

explored as part of this project, a further aim was added of developing a proof of concept

program to show how the outcomes of the experiments run as part of this project would be

implemented into something more applicable to the real world. The result of this aim was

the development of a program that takes in a single tweet and returns a prediction as to

whether that tweet is offensive or not. This proof of concept program went through a

number of versions before its final iteration was completed. Initially the program was using

a sub-par classifier model and feature extraction combination, which did reduce the

usefulness of the program to a potential interested party. A solution to an issue with

program run time was found, however, and in the final iteration of the program, the aim of

having an effective proof of concept program as met.

 44

8. Reflections

8.1 Key Learnings
 Due to my lack of knowledge regarding natural language processing prior to

beginning this project, all of the work done as part of this project was essentially new

learnings for me. What I have gained throughout this project is a deep understanding of

machine learning and natural language processing. There were a few key learnings,

however, that I feel are necessary to point out here.

 Firstly, I learned that although classifier model selection is important, the selection

of method feature extraction has a far greater impact on the accuracy of results. This was

shown quite conclusively through my results, with different classifiers using the same

feature extraction method often having very similar results. This was a surprise to me as

prior to performing these experiments and analysing the results, I had expected the

classifier model selection to play a far greater role in determining the accuracy of results

produced. This revelation led to me putting a greater focus on researching potential

different forms of feature extraction, and as such is a key learning for anyone working on

natural language processing.

 Another key learning that I gained by working on this project was the need to save

and load pre-trained classifier models. As I worked on the single tweet program, I was

initially limited from using the most accurate classifier model and feature extraction

combination due to it having a 20-minute program run time. In order to solve this issue, I

had to research and find a method of saving a pre-trained classifier model as this was what

was taking up the bulk of the program run time. By solving this problem, I was able to vastly

improve the accuracy of predictions made by the single tweet program and therefore make

the proof of concept much more useful to an interested party. This was a key learning for

anyone working with natural language processing and machine learning.

 45

9. References
1. Banks, J., 2010. Regulating hate speech online. International Review of Law, Computers &

Technology, 24(3), pp.233-239.

2. Kawate, S. and Patil, K., 2017. Analysis of foul language usage in social media text

conversation. International Journal of Social Media and Interactive Learning

Environments, 5(3), pp.227-251.

3. Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Pardo, F.M.R., Rosso, P. and

Sanguinetti, M., 2019, June. Semeval-2019 task 5: Multilingual detection of hate speech

against immigrants and women in twitter. In Proceedings of the 13th International

Workshop on Semantic Evaluation (pp. 54-63).

4. Bosco, C., Patti, V., Bogetti, M., Conoscenti, M., Ruffo, G.F., Schifanella, R. and Stranisci,

M., 2017. Tools and resources for detecting hate and prejudice against immigrants in social

media. In SYMPOSIUM III. SOCIAL INTERACTIONS IN COMPLEX INTELLIGENT SYSTEMS (SICIS)

at AISB 2017 (pp. 79-84). AISB.

5. Cresti, M., Martino, V. and Rosola, M., Kate Manne. Down Girl. The Logic of Misogyny,

Oxford University Press, 2017, pp. XXIV, 338. APhEx.

6. Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. and Kumar, R., 2019.

Semeval-2019 task 6: Identifying and categorizing offensive language in social media

(offenseval). arXiv preprint arXiv:1903.08983.

7. Camacho Collados, J., Doval, Y., Martínez-Cámara, E., Espinosa-Anke, L., Barbieri, F. and

Schockaert, S., 2020. Learning cross-lingual word embeddings from Twitter via distant

supervision. ICWSM.

