
1

Callum Haine

CM3203: One semester individual project

Supervised by Jose Camacho Collados

Final

Report

‘Comparing machine learning techniques for analysing and tracking the

sentiment of Tweets’

2

1 Contents

2 Table of figures ... 4

3 Abstract ... 5

4 Acknowledgments .. 5

5 Introduction .. 5

6 Background ... 7

6.1 Twitter API .. 7

6.1.1 Twitter API overview .. 7

6.1.2 Tweepy ... 7

6.1.3 Other tools .. 8

6.2 Sentiment analysis ... 8

6.2.1 Sentiment analysis overview .. 8

6.2.2 Sentiment definition ... 8

6.2.3 Sentiment analysis goals .. 9

6.2.4 Applications of sentiment analysis .. 9

6.3 Machine learning ... 10

6.3.1 Machine learning overview.. 10

6.3.2 Supervised vs unsupervised approaches .. 10

6.3.3 Classification vs regression.. 10

6.3.4 Fitting ... 10

6.3.5 Features .. 11

3

6.3.6 Training, validation, and test sets .. 12

6.3.7 Cross validation ... 12

6.3.8 Evaluation measures .. 13

6.3.9 Logistic regression ... 14

6.3.10 Optimising logistic regression ... 15

6.3.11 Support Vector Machine .. 15

6.4 Pre-processing ... 16

6.4.1 Overview .. 16

6.4.2 Stemming and lemmatization .. 16

6.4.3 Standardisation ... 17

6.5 Additional python libraries.. 17

6.5.1 Scikit-learn ... 17

6.5.2 NLTK ... 17

6.5.3 matplotlib ... 18

6.5.4 Pickle.. 18

7 Data collection process ... 18

7.1 Identifying brands ... 18

7.2 Tweepy .. 19

7.3 Subjective vs objective Tweets ... 19

7.4 Method for annotating data ... 20

7.5 Criteria for annotating data ... 20

7.5.1 Positive sentiment .. 21

7.5.2 Negative sentiment... 21

7.5.3 Neutral sentiment ... 22

7.6 Increasing dataset size ... 23

8 Implementation ... 23

8.1 Pre-processing ... 23

4

8.2 Model selection ... 25

8.2.1 Classifier advantages and disadvantages ... 25

8.2.2 Model requirements ... 26

8.2.3 Methodology for testing model .. 26

8.2.4 Logistic regression model .. 28

8.2.5 SVM model .. 31

8.2.6 Logistic regression vs SVM ... 33

8.3 Full pipeline including live tracking ... 34

8.3.1 Methodology for final pipeline .. 34

8.3.2 Implementation of pipeline .. 35

9 Evaluation ... 39

9.1 Evaluation of pre-processing ... 39

9.2 Evaluation of fact/opinion classifier ... 39

9.3 Evaluation of different datasets ... 40

9.4 Evaluation of final classifier ... 40

9.5 Evaluation of full pipeline ... 40

10 Conclusion .. 41

11 Future expansion ... 42

11.1 Data collection... 43

11.2 Model testing and selection ... 43

11.3 Full pipeline... 43

12 Reflection .. 44

13 References ... 45

2 Table of figures

Figure 1, visual representation of the concept of fitting [9] .. 11

Figure 2, visual representation of k-fold cross validation .. 12

https://d.docs.live.net/7aa289b52e63d08f/Documents/Uni/Year%203/Final%20Year%20Project/Final_Report.docx#_Toc42261682

5

Figure 3, function used to pre-process tweets .. 25

Figure 4, a graph showing how the training set size affected accuracy of the model. 28

Figure 5, comparison of standard and custom pre-processing techniques 29

Figure 6, effect of using scaled and unscaled data... 29

Figure 7, flowchart of full pipeline .. 34

Figure 8, loading the subjectivity and sentiment classifiers .. 35

Figure 9, 'Sentiment' function used in final pipeline ... 36

Figure 10, 'Subjectivity' function used in final pipeline .. 36

Figure 11, conditional statement used to filter tweets in real time .. 36

Figure 12, log function used to save sentiment averages periodically 37

Figure 13, average sentiment towards the brand 'playstation' plotted at 5 minute intervals.... 38

3 Abstract

The social media platform ‘Twitter’ has been steadily growing in popularity since being

founded over a decade ago in 2006. With over 330 million active monthly users, and 500

million tweets being sent every day [1], it provides a constant stream of user generated data

which is openly available through the twitter API. Twitter is a platform on which users freely

share their opinions on everything, from newly released products to famous public figures. For

this project, I intend to analyse this data source as a means of gauging user’s sentiments on

different brands, and tracking how they change over time. This will be done by collecting,

hand-labelling, and pre-processing tweets before using them to train a range of logistic

regression and SVM machine learning algorithms. The most effective machine learning model

will then be utilized to build a program capable of recording and tracking twitter sentiment for

any brand in real time.

4 Acknowledgments

I would like to thank my supervisor Jose for his continued support and advice throughout the

project.

5 Introduction

The phrase ‘social media’ has become omnipresent in everyday life. More users than ever are

sharing their thoughts, opinions, and beliefs online, anywhere, and in a multitude of ways.

Statista predicts that there will be a steady increase in the number of social media users [2] for

https://d.docs.live.net/7aa289b52e63d08f/Documents/Uni/Year%203/Final%20Year%20Project/Final_Report.docx#_Toc42261683
https://d.docs.live.net/7aa289b52e63d08f/Documents/Uni/Year%203/Final%20Year%20Project/Final_Report.docx#_Toc42261684
https://d.docs.live.net/7aa289b52e63d08f/Documents/Uni/Year%203/Final%20Year%20Project/Final_Report.docx#_Toc42261687
https://d.docs.live.net/7aa289b52e63d08f/Documents/Uni/Year%203/Final%20Year%20Project/Final_Report.docx#_Toc42261688
https://d.docs.live.net/7aa289b52e63d08f/Documents/Uni/Year%203/Final%20Year%20Project/Final_Report.docx#_Toc42261689
https://d.docs.live.net/7aa289b52e63d08f/Documents/Uni/Year%203/Final%20Year%20Project/Final_Report.docx#_Toc42261690
https://d.docs.live.net/7aa289b52e63d08f/Documents/Uni/Year%203/Final%20Year%20Project/Final_Report.docx#_Toc42261691
https://d.docs.live.net/7aa289b52e63d08f/Documents/Uni/Year%203/Final%20Year%20Project/Final_Report.docx#_Toc42261692
https://d.docs.live.net/7aa289b52e63d08f/Documents/Uni/Year%203/Final%20Year%20Project/Final_Report.docx#_Toc42261693

6

many years to come. This makes social media presence a crucial aspect of brand awareness for

virtually every company in 2020.

Twitter is a unique social media platform, which incorporates the concept of ‘micro-blogging’.

Its users make short, frequent posts of no more than 280 characters in length. These posts are

commonly opinionated, and can be directed towards a certain user, or categorized with a

‘hashtag’. For this reason, there is a wealth of subjective data which is often conveniently

marked with keywords, and with a clear target, being uploaded to the site.

 If a company is getting mentioned, specifically mentioned in a positive light, this can have

great implications for the success of the brand. If the sentiment with which Twitter Users

mention a brand could be classified in an automated manner, then valuable information could

be extracted, which a company could use as a method of measuring reception to new product

releases, announcements, and decisions.

This leads to the question, how could the subjective opinions directed towards a company or

brand on twitter be collected and classified automatically? Further breakdown of the problem

leads to two sub problems. How can subjective tweets containing opinions be identified and

differentiated from those that don’t, and how can the sentiment of the subjective tweets then

be classified?

The solution proposed in this project is machine learning.

Machine learning describes a set of techniques in which a system can constantly learn and

improve given experience. The phrase covers a broad spectrum of techniques, from simple

mathematical models to fully fledged neural networks. For this project, two suitable algorithms

were identified and tested thoroughly, logistic regression and support vector machine, in order

to build the most capable model possible. Two models will be trained, one capable of

classifying the subjectivity of a tweet, and one which classifies sentiment.

Once capable models have been trained, their use will then be demonstrated by implementing

them into a system which is able to stream tweets directly from twitter, filter out subjective

tweets, and then classify them in real time.

Once this is achieved, a demonstration of the use of the results of this will be implemented, in

which average sentiment is plotted periodically on an animated graph.

7

The final implementation of this project intends to be one which would be invaluable to any

company that wishes to gain insight into customers perception towards them.

6 Background

6.1 Twitter API

6.1.1 Twitter API overview

The twitter API was used to build a raw dataset of tweets, which would then be labelled and

pre-processed for machine learning. In order to access the Twitter API, a Twitter ‘developer

account’ is required. Once an account is created, authentication credentials are generated which

can be used to stream data from Twitter without the need to manually access the website. The

4 credentials generated are:

- ‘Access token’

- ‘Access token secret’

- ‘Consumer key’

- ‘Consumer secret’

Using these, the API can be interacted with in a variety of different ways, with tools available

for both developers and non-developers. For the purpose of the project, it was important to

compare some of these options.

6.1.2 Tweepy

Tweepy is a python library designed to access the twitter API for simple automated tasks. It

can be used to establish a connection with Twitter, and stream data. Tweets gathered using

Tweepy are in JavaScript Object Notation, or ‘JSON’ format. JSON is a file format in which

data is represented in a human-readable object with attribute-value pairs and arrays. A Tweet

in Json format can have over 150 attributes, in addition to the text itself. Some of the attributes

a Tweet object may have include:

• “created_at”, which value will be the exact date and time the Tweet was posted.

• “id_str”, which value will be a string which contains a unique number which can be

used to identify the Tweet.

• “text”, which contains the actual contents of the tweet.

8

• “extended_tweet”, which contains additional attributes for tweets over 140 characters

in length.

These are just some examples of data included in a Tweet object. For the purpose of collecting

the dataset for the project, the fields of “text”, “created_at”, “extended tweet” are of greatest

importance.

6.1.3 Other tools

‘Tweepy’ is a simple developer-focussed tool for streaming Twitter data. In addition to

Tweepy, there are many other tools which can be used for the same purpose. These include:

• IFTT, ‘If this then that’. This is a platform which allows Twitter data to be streamed

with no technical knowledge, through a GUI. [2]

• ‘Zapier’. A platform which allows different webapps to be collected seamlessly,

without the need for technical knowledge. Using this platform Tweets can be easily

collected and collated. [3]

• ‘Tweet download’. This is a tool which allows brands or individuals to download all

the Tweets associated with their own account. [4]

Although these tools have the same functionality as ‘Tweepy’, they are more consumer-based,

and do not offer as simplistic a solution. It is for this reason that Tweepy was deemed the most

suitable for the task at hand.

6.2 Sentiment analysis

6.2.1 Sentiment analysis overview

Sentiment analysis is used to gain an understanding of emotions, opinions, and attitudes present

in a piece of text. The sentiment of text can be classified automatically using a range of

techniques, including machine learning algorithms and natural language processing.

6.2.2 Sentiment definition

A sentiment is a subjective expression which describes an individuals’ feelings towards a

particular subject or topic. For the purpose of this project, the expressions are tweets, the subject

being the brands or companies they represent. What differentiates sentiment from a simple

emotion is that sentiment is directed towards a specific target, whilst emotion describes a

physiological response. [5]

9

Sentiment polarity describes the orientation of sentiment for a piece of text. Sentiment polarity

can be either positive, negative, or neutral.

6.2.3 Sentiment analysis goals

The task of sentiment analysis can be broken down into two sub-tasks: subjectivity

classification and sentiment polarity classification.

Subjectivity classification allows opinions to be extracted from a larger dataset. A subjective

sentence is defined as being ‘based on or influenced by personal feelings, tastes, and opinions’

[6]. This makes subjective phrases valuable for sentiment classification. Alternatively,

objectivity is defined as ‘not influenced by personal feelings or opinions in representing facts’,

meaning they have no value for sentiment analysis.

Polarity classification refers to the classification of subjective opinions into either positive,

negative, or neutral sentiment.

6.2.4 Applications of sentiment analysis

Sentiment analysis has a wide range of use cases and can be invaluable to brands wanting to

gain insight into the views of their customers.

One application of sentiment analysis for brands is the analysis of the perception of customers

towards them. By parsing social media data, an idea can be gained of what customers are saying

in real time. This knowledge can be utilized to track responses to new product releases, brand

announcements, and the effectiveness of any advertising campaigns run by a brand. By

acknowledging the causes of negative sentiment, a brand can adapt its techniques and

marketing strategies to improve their status. This use case is most relevant to the current

project.

Another widely recognized application of sentiment analysis is in dealing with customer

complaints and enquiries. If queries can be passed and then classified by emotional tone, then

they can be addressed in order of urgency, instead of on a first-come-first-served basis. This

will lead to an improvement in overall customer satisfaction.

10

6.3 Machine learning

6.3.1 Machine learning overview

Machine learning is a variation of artificial intelligence that provides a system with the ability

to continually learn and improve given experience. Machine learning algorithms take input

data and use it to learn for themselves, without human intervention.

In classical programming, the user provides a set of rules and input data and will receive an

answer based on these. Machine learning systems differ from this because the rules are not

provided by the user. Instead, data is input alongside the expected answers, to generate a set of

rules which can then be applied to new data.

6.3.2 Supervised vs unsupervised approaches

In supervised machine learning, input data is already ‘labelled’. This means that items in the

dataset have been annotated with the correct answers. The data and annotations are then used

by the system to generate a predictive model which can label unseen data.

In unsupervised learning, the input data is unlabeled. The system separates the data into

categories based on its features without being taught by a human user. It is effective for finding

unknown patterns in data, and no manual annotation is required.

6.3.3 Classification vs regression

Classification and regression are two types of supervised machine learning system. They differ

in the way data is labelled.

 In classification, data is mapped to discrete labels. For example, for the task of sentiment

analysis, labels could be ‘positive’, ‘negative’, or ‘neutral’. In regression, labels are continuous.

As such, regression models are usually utilized when predicting quantities or dimensions. [7]

For the purpose of this project, only classification models are used.

6.3.4 Fitting

For a predictive model to be effective, it is important that it is neither overfitted nor underfitted.

‘Fitting’ refers to the degree of flexibility of the model.

When examining the fitting of a model, two properties should be considered: variance and bias.

Variance refers to how dependent a model is on the data it was trained with. If a model has low

variance, then it can be thought of as paying less attention to the training data compared to a

model with high variance. Bias refers to simplifying assumptions made by the model that make

11

the target function easier to learn. A model with high bias has made more assumptions about

the target function than one with low. [8]

Ideally, a model would have low variance and low bias. However, in practice, any predictive

model will have to have a tradeoff between these. If a model is overfitted, it is said to have low

bias and high variance. This means that it fits the training data very closely, and its performance

on unseen data may vary.

 In turn, an underfitted model has high bias and low variance. This means that it does not take

much account of the training data and is unlikely to be a good approximation of the target

function.

Figure 1, visual representation of the concept of fitting [9]

6.3.5 Features

In many cases, data cannot be fed into the model directly. It must first be transformed into a

feature vector, an n-dimensional vector which acts as numerical representation of the data.

‘Dimensionality’ is a phrase used to describe the number of features in a dataset. If the number

of features in a dataset becomes very large in comparison to the number of observations (high

dimensionality), then certain machine learning algorithms can suffer from the ‘curse of

dimensionality’. [10] This reduces the system’s ability to train an effective model.

There are two methods for reducing the dimensionality of data: feature selection and feature

extraction. The aim of both techniques is to reduce the number of features per observation or

label.

12

Feature selection is the process of selecting a subset of significant features from the entire pool.

By only selecting certain features, the system can train a model more quickly and with fewer

resources. Selecting features is also beneficial because it reduces overfitting for the model. [11]

A variance threshold is used as a filter to disregard features for which there is little change

between observations. It is a method of feature selection for reducing the dimensionality of a

dataset without risking losing meaning. Variance thresholds need to be set manually, meaning

they rely on human intuition and there is the possibility for error. It is also unlikely to reduce

the dimensionality to a sufficient level by itself. [10]

Feature extraction is a similar concept to feature selection, however instead of choosing from

existing features, it creates new ones.

6.3.6 Training, validation, and test sets

Before it can be used to build a predictive model, a dataset must first be split into training,

validation, and test sets. The way the whole dataset is split between these subsets varies, but

generally the training set will be the largest.

The training set contains the data and labels used to train the model itself, whilst the validation

set is used to change the parameters of the model. The test set is then used to evaluate

performance.

6.3.7 Cross validation

Cross validation is a technique for evaluating machine learning models. In cross validation, a

series of models are trained on different subsets of the data, then tested using the

complementary set. These models are then compared to test for overfitting of the data.

k-fold cross validation is a technique in which k subsets of the dataset are taken. These subsets

are referred to as folds. The model is then trained on k-1 of the subsets, with the final subset

used for evaluation. This occurs k times, with a different subset being used as a test set each

iteration. [12]

Figure 2, visual representation of k-fold cross validation

13

The final result for cross-validation is the average performance of all of the folds. Cross-

validation is particularly effective when working with small datasets, or when the distribution

of the dataset is skewed.

6.3.8 Evaluation measures

There are several different measures used to evaluate the effectiveness of models generated

through machine learning. When effectiveness is measured, it is always against a set of already

labelled data, often referred to as the gold standard.

Accuracy is a measure of evaluation which describes the number of correctly classified answers

compared to the gold standard.

A confusion matrix can be utilized to visualize how a binary classification model performs. In

a confusion matrix, expected values can be compared to predicted values:

Table 1, an example of a confusion matrix for a simple pos/neg classifier

N=235 Predicted

pos

Predicted

neg

Actual

pos

100 34

Actual

neg

22 79

A confusion matrix displays the number of ‘true positive’, ‘false positive’, ‘true negative’, and

‘false negative’ predictions made by a classifier. These are all measures which together provide

insight into the effectiveness of a model:

• A ‘true positive’ (TP) describes when a classifier predicts a positive, and it was correct

in its classification.

• A ‘false positive’ (FP) describes when a classifier incorrectly predicts a positive.

• A ‘true negative’ (TN) describes when a classifier predicts a negative result correctly.

• A ‘false negative’ (FN) describes when a classifier incorrectly predicts a negative.

This can be applied to any binary classification problem. Using these, other measures of

evaluation can be derived:

݊݋�ݏ��݁ݎ� = ܶ�ܶ� + ��

14

Precision describes the percentage of positive predictions which the model classifies

correctly.

ܴ݁��݈݈ = ܶ�ܶ� + ��

Recall describes the percentage of positive predictions that are predicted as positive.

�ݐ���݂��݁݌ܵ = ܶ�ܶ� + ��

Specificity describes the percentage of negative cases that are predicted as negative.

Using precision and recall, an ‘F1 score’ can be calculated. The F1 score describes the

harmonic mean between precision and recall. [11] If precision and recall are perfect, the F1

score will be equal to 1. It is defined as:

�ଵ = ʹ ∗ ݊݋�ݏ��݁ݎ݌ ∗ ݊݋�ݏ��݁ݎ݌݈݈��݁ݎ + ݈݈��݁ݎ
For the purposes of this project, classification is not binary. Evaluation measures for multi-

class classifiers take the same concepts as binary classification but then calculate either a

micro-average, or a macro-average.

To take a macro-average, the metric is computed independently for each class before an

average score is taken. In this way, all classes are treated equally. A micro-average is taken by

aggregating the contributions of all classes together before calculating a metric.

6.3.9 Logistic regression

Logistic regression is a statistical technique used in machine learning, which is highly effective

for binary classification.

Logistic regression gets its name for the function that it centres around, the logistic function.

This is a function which takes any real number and maps it to a number between 0 and 1. It is

given by the equation:

� = ͳͳ + ݁−�

When plotted, this equation forms an S shaped curve. Logistic regression uses an equation

based on the logistic function, in which the input value is combined linearly with different

coefficient values to produce an output:

15

y = eb଴ + bଵ∗xሺͳ + ݁�଴ + �ଵ∗�ሻ

Where y is the output value, b0 is the intercept term (the point at which the regression line

meets the vertical axis), b1 is a coefficient, and x is the input value. Logistic regression

produces a binary output, e.g. Y = 0 or 1. [13] When the function is used in a computational

environment, the b values (or coefficients) are stored to save the model.

Directly, the logistic regression function returns a probability value for the answer, given the

input. For example, when considering sentiment analysis of a string, logistic regression

provides an estimate that the probability will be positive: �ሺܵ݁݊ݐ݊݁݉�ݐ = (݃݊�ݎݐܵ|݁��ݐ�ݏ݋�

This probability can then be used to classify a string, e.g. if P > 0.5 then string has positive

sentiment, and if p < 0.5 then it is classed as negative.

It is clear that the output of the logistic regression function is dependent on the beta (b) values.

These values are estimated from the training data. Often, the ‘Maximum likelihood estimation’

algorithm is used to determine this.

6.3.10 Optimising logistic regression

When creating a model using logistic regression, there are optimisations to the data which can

be made to improve performance. These include:

• Noise reduction. Logistic regression assumes that all labels in the training set are

without error. Before using the dataset, this should be checked. If there is noise in the

dataset, the model will fit to this.

• Removal of correlated inputs. If there is a large number of very similar data inputs, then

there is a risk that the model will be overfitted.

• Binary classification. Logistic regression works when there are only two possible

output variables.

6.3.11 Support Vector Machine

The Support Vector Machine (SVM) is another machine learning algorithm. Although it can

be used for regression, generally it is used for classification. SVM is a favourable algorithm to

many because it provides significant accuracy for less computational power.

16

The objective of a support vector machine is to find a hyperplane in N-dimensional space,

where N is the number of features, that distinctly classifies all data points.

Separating data points can usually be done with an assortment of different hyperplanes. To

maximise the effectiveness of classification, the hyperplane with the greatest margin should be

picked. The margin describes distance between data points of different classes.

Hyperplanes can be viewed like a barrier between two groups of datapoints. Either side of this

barrier will be the two classes. The dimension of the hyperplane will always be one dimension

greater than the number of features in the dataset. When the classes are not linearly separable,

SVM uses external functions to map the original data to a new feature space where the data

becomes separable. [14]

A support vector is a datapoint which lies close to the hyperplane, and has an influence over

its orientation and position. The support vectors can therefore be utilised to maximise the

margin of the classifier. [15]

Despite its popularity, SVM has been criticised for underperforming on raw data, and requiring

an expert level of feature extraction to classify effectively.

6.4 Pre-processing

6.4.1 Overview

Pre-processing describes transformations applied to data before it is fed into a machine-

learning algorithm. It involves a collection of techniques which convert raw data into a clean

and optimised dataset useable by a machine learning system. [16]

6.4.2 Stemming and lemmatization

Stemming and lemmatization are two techniques for pre-processing text. It is a common feature

of many written languages to have words which are derived from other words. A language in

which words that are derived from others are used differently depending on their context is

known as inflected language. [17]Different languages have different levels of inflection.

Inflected words will have a ‘root form’. The normalisation of text describes mapping inflected

words to their root forms, e.g.:

Saying, says, said ➔ Say

Trying, tried, tries ➔Try

17

Stemming and lemmatization are two methods of normalising words to their root form.

Algorithms for stemming and lemmatization have been developed in computer science since

the 1960s. What differentiates stemming from lemmatization is that the root word extracted

when stemming, the ‘stem’, may not be a real word, whilst the ‘lemma’ extracted using

lemmatization will always be.

Lemmatization is more suitable for this project, as using this word are normalised properly to

their actual root. Lemmatization is useful as it reduces the vocabulary of the model, making it

more streamlined and efficient.

6.4.3 Standardisation

Standardisation is a common requirement for many machine learning classifiers. If vectorized

are not close to standard normally distributed data (Gaussian with zero mean and unit variance)

then it can have a negative impact on the classifier. To account for this, ‘sklearn’ has a built-in

‘standardize’ function.

6.5 Additional python libraries

6.5.1 Scikit-learn

Also referred to as ‘sklearn’, this is a python library which contains a range of out-of-the-box

machine learning tools.

It contains implementations of both SVM and Logistic Regression machine learning

algorithms, alongside pre-processing and vectorisation functions. Vectorization functions in

sklearn are used to transform raw text into a format useable by a machine learning classifier.

In this project, two sklearn vectorizer will be used, ‘Tfidf’ and ‘Count’.

Vectorization in Sklearn is done in a number of steps. One notable step is pre-processing. This

can be manually overwritten with a customised function, as will be done later in the project.

The tools in sklearn are simple efficient, and easily accessible. It is based on the NumPy, SciPy,

and matplotlib python libraries. It is also open source and entirely free to use. [18]

6.5.2 NLTK

NLTK is another python library, which contains a range of useful tools for the computational

processing of human-language data. It provides access to over 50 corpora and lexical resources

such as wordnet, alongside several text-processing libraries for tasks such as stemming and

lemmatization.

18

For the project, the main function of NLTK which will be utilised is wordnet’s ‘lemmatizer’.

This is a function which takes an input string, and reduces it to its lemmatized root form. [19]

6.5.3 matplotlib

Matplotlib is a commonly used python library for creating data visualisations in python. The

library includes tools for both static and dynamic visualisations.

In regard to the project, the ability to produce animated graphs with matplotlib makes it

invaluable when visualising sentiment data in real time

6.5.4 Pickle

Pickle is a python module which can be utilised to serialise and de-serialise objects. When an

object hierarchy is ‘pickled’, it is converted into a byte stream which can then be ‘unpickled’

to inverse the operation and return the object.

Pickle can be used to serialise and deserialize machine-learning models, so they can be easily

saved and then implemented elsewhere.

7 Data collection process

7.1 Identifying brands

The aim of the project is to build a classifier able to determine consumer’s opinions on brands,

based on tweets directed towards them. When collecting data, it was important that Tweets

were therefore directed at a brand. For training and testing of the model, tweets from a sample

of five brands were chosen. These brands were:

• Playstation (@Playstation)

• Netflix (@Netflix)

• Android (@Android)

• SpaceX (@SpaceX)

• Starbucks(@Starbucks)

This was because these brands represent the five of the most followed companies on the

platform. It was important that the brands chosen for training had a large presence on twitter,

so that a large enough volume of data could be collected. It is important to emphasize that

although these brands were chosen for training purposes, the final model would still be

generalised to fit any brand, due to specific pre-processing steps carried out later on in the

project.

19

7.2 Tweepy

After identifying the five initial brands which would be used, a sample of over 300 Tweets

were collected for each.

The Python library ‘Tweepy’ was used to stream Tweets which contain each of the chosen

keywords and save them to a CSV file. ‘Tweepy’ is a commonly used library which allows the

Twitter streaming API to be accessed given valid credentials. When streaming data with

Tweepy, parameters can be set to stream specific tweets. The filters set when collecting Tweets

for the brands were:

• A keyword filter, which allowed only Tweets associated with the brand to be collected.

Multiple keywords could be applied at the same time in an array. For each brand, the

keyword would be equivalent to the brand name.

• A filter which excludes any tweets with links. This was done by discarding any Tweets

containing the characters ‘http’. This was used because link-containing Tweets are

unlikely to contain useful sentiment.

• A filter which excludes Tweets with too many ‘@s’ ‘hashtags’ or ‘retweets’. This was

useful as Tweets with an excessive number of these are more likely to be produced

automated bots, therefore unimportant for analysing sentiment.

7.3 Subjective vs objective Tweets

On first observation of the gathered tweets, it became clear that many contained no explicit

sentiment. This was due to the objective nature of many of the tweets. After collection of the

first sample of tweets, over 30% were found to be objective in nature, and therefore of little

use for the task of sentiment analysis.

Because of this, before further collection of data, a method for classifying subjective and

objective text was implemented.

To implement this, a machine learning approach was taken. The goal was to create a classifier

capable of differentiating objective sentences from subjective ones. To achieve this goal, a

suitable dataset was first required.

The most effective pre-existing dataset for this task easily available was a dataset consisting of

short snippets of both movie reviews, and movie plot synopses. Naturally, the phrases extracted

from movie reviews were entirely subjective, whilst those taken from plot synopses were

objective.

20

The data was used to train a machine learning model which utilises Logistic Regression.

Objective sentences were given the classification label ‘O’, whilst subjective sentences ‘S’.

The text was left intact without removing stop words in pre-processing, because when

classifying subjectivity, the presence of common stop words, such as ‘I’ or ‘They’, can provide

valuable information.

Once trained, the model was used to read the CSV containing all the streamed tweets, and write

any subjective tweets to a new file. When written to the new file, all extra attributes included

in the original file, such as ‘created_at’, were also recorded.

7.4 Method for annotating data

After collecting tweets and filtering out opinions, the remaining tweets could be hand-labelled

to build a dataset useful for machine learning. When labelling the tweets, three labels were

used: ‘pos’, ‘neg’, and ‘neu’. These represented tweets with a positive sentiment, tweets with

negative sentiment, and tweets with a neutral sentiment, respectively.

To label the tweets, an interactive python script, ‘read_CSV.py’ was written. The script

functioned as follows:

1) Read in CSV containing unlabelled tweets, producing a 2-dimensional array of tweets.

2) For each tweet in array, display tweet.

3) After displaying the tweet, wait for user input.

4) Check user input, if it is a valid sentiment (string of either ‘pos’, ‘neg’, or ‘neu’), then

append to the tweet

5) When the end of the tweets is reached, or the user enters ‘stop’, save the array of

annotated tweets to a new CSV file.

The annotation process was repeated for each of the five CSV files, containing the tweets for

each brand respectively.

7.5 Criteria for annotating data

In text, sentiment can be both explicit and implicit. Explicit sentiment describes instances in

which opinion is expressed directly, while implicit describes when an opinion is simply

Figure 3, interface produced by 'Read_CSV.py', through which tweets were annotated

21

implied. When labelling the dataset, tweets with explicit sentiment generally more

straightforward to classify, whilst those in which sentiment was implicit more challenging.

When labelling sentiment, it was important that a clear set of guidelines was followed, to ensure

consistency in the final labelled dataset. The following guidelines were referenced when hand-

labelling. All example tweets have been taken from the final dataset used.

7.5.1 Positive sentiment

The following points were considered when classifying a tweet as being positive in sentiment.

• There is description of a positive emotion, e.g. ‘love’, ‘enjoy’, ‘like’ targeted at the

brand or product associated with the brand. An example from the dataset:

"My former boss got me hooked onto Selling Sunset on @netflix ! Love the outfits,

drama, and luxe properties! "

• The tweet describes a positive experience with the brand, or a product associated with

the brand. E.g. ‘customer service was helpful’. An example tweet from the dataset

would be:

“to the woman at my drive thru in starbucks u made my day by being so sweet to me”

• The tweet describes a user engaging positively with a product or service provided by

the brand. An example from the dataset if this:

“I got my @Starbucks color changing reusable cold cups ”

7.5.2 Negative sentiment

The points considered when classifying a tweet as negative were as follows:

• There is a clear negative emotion directed towards the brand or product associated with

the brand. For example:

“Lol.. Nd yet android is trash. Smh”

22

• The tweet describes a negative experience or fault with a product/service provided by

the brand, e.g.:

“my twitter for android is broken so i'm using my pc))s”

• The tweet describes a lack of engagement with a brand or product. This means they are

stating they do not use a brand, or would not purchase a product or service from them.

An example of a tweet for which this applies would be:

“You have a PlayStation? Oop-"

7.5.3 Neutral sentiment

Finally, a tweet was labelled as neutral if it could not be defined as either positive or negative.

The following points were considered when labelling a tweet as neutral.

• Objective tweets have a neutral sentiment. In some cases, this would be a result of the

inaccuracy of the subjectivity filter, resulting in an objective phrase being in the dataset.

An example of an objective tweet in the final dataset, with a neutral sentiment:

“The Tesla and SpaceX boss has repeatedly warned that AI will soon become just as smart as

humans and said that when it does we should all be scared as humanity's very existence is at

stake”

• In other cases, sentiment was marked as neutral if there was a combination of positive

and negative sentiment in the tweet, with no clear polarity either way. For example:

“This is really good but I would get annoyed so fast online after the 2nd time ”

• Finally, there were cases in which the tweet simply represented a question directed

towards the brand or about the brand, with no discernible sentiment. These were

classified as neutral. An example:

"@lrocket Hey Tom, you got any spacex stock you want to sell or know of anyone that

is will to sell?

23

7.6 Increasing dataset size

After collection and annotation of data, a total of 1245 tweets existed in the dataset. Out of

these:

• 529 were labelled positive.

• 243 labelled negative.

• 373 labelled neutral.

When training a classifier, it is beneficial to have a larger dataset. Furthermore, it is important

that classes in a dataset are well balanced. Imbalanced datasets can lead to models appearing

to perform excellently, with high accuracy, when in actual fact this is simply the result of an

imbalanced class distribution. This is known as the accuracy paradox. [20]

In order to avoid this, the hand-labelled dataset was combined with another dataset of tweets

before training.

The dataset used was the ‘sentiment140’ dataset. [21] This dataset consists of over 10,000

tweets with labelled sentiment. Sentiment is labelled either, ‘4’ for positive, ‘2’ for neutral, or

‘0’ for negative.

In addition to the hand labelled tweets, 1071 positive, 1227 neutral, and 1257 negative tweets

from the sentiment 140 dataset were included in the final dataset. This brought the total number

of tweets to:

• 1,600 positive

• 1,600 neutral

• 1,600 negative

The overall dataset now consisted of 4,800 labelled tweets.

8 Implementation

8.1 Pre-processing

Before training the classifiers using the annotated dataset of tweets, it was first important to

implement a method with which raw text could be pre-processed. A customized pre processing

function was written, which would then be compared to the built in preprocessing available in

sklearn.

Several steps were taken to pre-process tweets. These were:

24

1) Removal of line breaks, paragraph breaks, and extra whitespace between words in the

tweet. This was removed as it has little to no impact on the sentiment of the tweet but

increases the length and may lead to problems extracting features further along in the

process.

2) Removal of all punctuation and non-standard characters. Once again, punctuation does

not provide any information relating to a tweet’s sentiment.

3) Removal of any specific mentions of the brand, any of these were replaced simply with

the word ‘brand’. This improves the generalization of the model. If specific brands are

mentioned in the training data, there is a risk the model becomes overfitted to these.

Replacing brand names with a generic word will reduce this overfitting. This also

reduces the vocabulary of the model, streamlining it.

4) Lemmatization of all words, using NLTK and wordnet’s lemmatize function. The

intention of this is to reduce the vocabulary for the model, and improve generalization.

The aim with all of the above pre-processing steps is to improve the generalizability of the final

model. Data in real-world scenarios is often imperfect, and can contain missing values, useless

values, and other unnecessary data. By removing this noise, the accuracy of the final model

will improve. A custom function was designed mainly because of step 3, in which brand

mentions are removed. This is something that the standard preprocessor would not do, which

had the potential to negatively effect the generalizability of the model.

The function used to pre-process data was written in python and takes a string as an argument.

It returns a new string which has been preprocessed.

25

8.2 Model selection

8.2.1 Classifier advantages and disadvantages

‘Sklearn’ provides a toolkit over 10 machine learning algorithms which could have been used

for the current project. After comparing these models, the two which were tested further are

logistic regression and support vector machine.

Firstly, logistic regression was selected based on the following strengths :

• It is known to be very resource-efficient

• Does not require scaling of data

• Requires little to no tuning

• Can be regularized easily

These advantages, amongst other, make logistic regression algorithms widely used for simple

classification problems. Although it is generally used for binary classification, it can be

expanded to work on multi-class classification problems, such as the one at-hand.

The support vector machine algorithm was chosen because:

Figure 4, function used to pre-process tweets

26

• Known to work well on unstructured or semi-structured data

• Scales well for large datasets

• Good generalization, low risk of overfitting

Both models also have the advantage of having simple implementation in ‘Sklearn’. It was

next important to consider any potential disadvantages of the two models. Potential drawbacks

of logistic regression algorithms include:

• Inability to solve non-linear problems

Disadvantages of SVM algorithms include:

• Potential for long training time with larger datasets

• Has the potential to be computationally intensive

8.2.2 Model requirements

Before testing different classifiers, a list of requirements was set. These requirements describe

the accuracy that were required from the model in order for classifications to be meaningful,

and the model used further along the pipeline. These requirements were:

• Must have a test set accuracy score of over 0.50. A score of 0.50 or over shows the

model has at least some ability to classify sentiment with an accuracy greater than if

classified at random. If labels were randomly classified, the expected accuracy would

be 0.33.

• Should have a test set accuracy of over 0.6. This would represent a 81% improvement

on random classification and yield meaningful results.

8.2.3 Methodology for testing model

To build the most accurate classifier possible, a range of model configurations were trained,

their performance measured, and then compared. All models were trained using the ‘sklearn’

python library, using the data collected and annotated previously. Two different machine

learning models were tested for each configuration: logistic regression and SVM.

The models were tested, and performance recorded for the following configurations:

• A variety of train/test splits, ranging from 50/50, to 90/10.

• With standard preprocessing.

27

• With customized preprocessing.

• With and without scaling features.

• With both Tfidf and count vectorizers.

Once tested, the best performing model would then be used in the full pipeline. To test each

configuration, a script was used which would take the parameters as input, train the specified

model, and output a saved version of the model alongside a ‘.txt’ file which included:

• Accuracy

• Precision

• Recall

• F1 score

As this is a multi-class classifier, the micro, macro, and weighted measures were all recorded

for precision, recall, and F1 scores. Although not considered for every configuration, these

would be taken into consideration when comparing the most effective logistic regression and

SVM models.

In order to make experimentation and data collection as seamless as possible, a python script

was written, ‘test.py’ in which a series of variables could be edited in order to build classifiers

of different types and with different configurations.

These variables consisted of:

• model_type, which could be set to ‘SVM’ in order to train a Support Vector Machine

model

• trainsize, which was used to set the training/test split for the dataset.

• preprocess, which could be set to ‘p’ to train the model using the aforementioned pre-

processing function, or ‘np’ in order to train using sklearn’s built-in preprocessing.

• Scaling, which when set to ‘s’ will scale the data with sklearn’s standard scaler

• Vectorizer_type, which can be set to ‘cv’ to implement a count vectorizer, or ‘tfid’ to

implement a Tfidf vectorizer.

The script would use these variables to build the desired model, before using pickle to serialize

and save it, alongside the results.

28

8.2.4 Logistic regression model

The first type of model tested was a logistic regression classifier. To begin testing the model,

accuracy scores were taken with standard pre-processing, scaling, using a count vectorizer.

Accuracy scores were taken for training/test splits ranging from 50/50 to 90/10. The purpose

of this was to observe how the training/test split affects accuracy.

It is evident from this that the accuracy of the logistic regression classifier reaches its maximum

at a training size of 0.6. When a training set of larger than 0.7 is used, a decrease in accuracy

is observed.

Next, the customized pre-processing function described earlier was compared to the built-in

pre-processor implemented by sklearn vectorizers. The results of this can be seen below:

0.52

0.525

0.53

0.535

0.54

0.545

0.55

0.555

0.56

0.565

0.57

0.575

0.5 0.6 0.7 0.8 0.9

A
cc

u
ra

cy
 s

co
re

Training set size

Performance

Figure 5, a graph showing how the training set size affected accuracy

of the model.

29

Figure 6, comparison of standard and custom pre-processing techniques

It is evident from these results that the model performs most effectively when sklearn’s built-

in preprocessing is used. Although it can be noted that the model trained with an 80/20 train

test split had an equal accuracy compared to the built-in function.

The next parameter of the model to be tested was the effect of scaling the dataset. Once again

this was tested with training/test splits ranging from 0.5 to 0.9.

Figure 7, effect of using scaled and unscaled data

The results showed a distinct increase in accuracy when data was left unscaled. This was true

for every model trained, from 50/50 train test split, up to 90/10.

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.5 0.6 0.7 0.8 0.9

Comparison of preprocessing techniques

Standard Preprocessing Custom preprocessing

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.5 0.6 0.7 0.8 0.9

Effect of scaling

Scaling No scaling

30

The next aspect of the model to be considered was the vectorizer used. The two vectorizers

tested with the logistic regression model were ‘TFidf’, and ‘Count’ vectorizers. The results can

be observed below:

The outcome of these tests was mixed. Although the count vectorizer appears to yield a more

accurate model at 70/30 splits and below, above this Tfidf appears more effective. This

indicates that Tfidf performs better when more training data is used.

Out of 35 models trained, the Logistic regression classifier with the greatest accuracy had the

following configuration:

• 90/10 train test split

• Non-customized pre-processing

• No scaling of data

• ‘Tfidf ‘vectorizer

This classifier has an accuracy of 0.61, rounded to 2 decimal places. This accuracy score met

the requirements set out before testing began and would therefore be considered further.

0.575

0.58

0.585

0.59

0.595

0.6

0.605

0.61

0.615

0.5 0.6 0.7 0.8 0.9

Impact of vectorizer on accuracy

Tfidf Count

31

8.2.5 SVM model

After completing testing of the Logistic regression classifier, the same configurations were then

tested on a Support Vector Machine.

Interestingly, as opposed to Logistic Regression, the SVM’s accuracy appears to increase as

the size of the training set is increased, and the size of the test set is reduced.

 Following on from this observation, the two preprocessing techniques were once more

compared.

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.5 0.6 0.7 0.8 0.9

Effect of train/test split on SVM classifier

SVM

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.5 0.6 0.7 0.8 0.9

Comparison of preprocessing techniques for SVM

Standard pre-processing Custom pre-processing

32

Once again, sklearn’s built in preprocessing function outperformed the custom function. In

every test case, for each classifier, the model performed more accurately when this function

was not used.

For all SVM models trained, when data is left unscaled, the classifier predicts with greater

accuracy.

Finally, the effect of each vectorizer was compared.

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.5 0.6 0.7 0.8 0.9

Comparing Tfidf and Count vectorizers

Tfidf Count

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.6 0.7 0.8 0.9

Comparison of scaling vs no scaling for SVM

Scaled Not scaled

33

The results of the comparison show that the ‘Tfidf’ vectorizer outperforms the count vectorizer

for every model with which it is trained. This means that once again, the most effective SVM

model would utilize ‘Tfidf’ over count Vectorizer.

The highest accuracy achieved with SVM was 0.61 The configuration which achieved this was:

• 50/50 train test split

• ‘Tfidf’ vectorizer

• Standard preprocessing

• Unscaled data

8.2.6 Logistic regression vs SVM

After collecting results for a range of different models, the two most accurate models for SVM

and Logistic regression, identified in the previous section, were examined further.

Firstly, the other evaluation scores were considered:

 Logistic Regression Support Vector Machine

Accuracy 0.61 0.61

Precision (weighted) 0.60 0.62

Recall (weighted) 0.61 0.57

F1 Score (weighted) 0.58 0.54

Although both models had an equal accuracy, SVM boasted marginally higher precision, while

Logistic Regression had better Recall and F1 scores.

As it had proved to be the more effective classifier given the dataset, the logistic regression

model was chosen to be implemented into the full pipeline.

34

8.3 Full pipeline including live tracking

8.3.1 Methodology for final pipeline

After acquiring a final model which maximized performance, it could now be used to collect

and visualize sentiment data. A full sentiment analysis pipeline was implemented, beginning

with streaming and filtering of twitter data, and producing a live-plotted graph of average

sentiment periodically.

Before the pipeline was implemented, as set of requirements was also formulated, so that it

could be evaluated in the final stages of the project. These requirements which must be met

were as follows:

Figure 8, flowchart of full pipeline

35

• The implementation of the pipeline must be generalized for any brand. The keyword

used to filter tweets should be changeable without having any effect on the result.

• The implementation must be flexible and be capable of using any of the classifiers

trained and tested previously. This is important as by having this flexibility, the pipeline

can be improved easily if a more effective model is built in the future.

• The implementation must store a record of average sentiment, as well as the timestamp

at which the average is calculated, in such as way this can be plotted using matplotlib.

• The implementation must filter and annotate tweets in real time, or close to real time.

• The implementation must produce a animated line graph, with a Y axis indicating

sentiment, and an X axis indicating time.

The requirements that should be met, but are not compulsory were:

• The graph produced by the implementation should be well designed, with labelled axis

and appropriate ranges for the X and Y axis

• Every single tweet which meet the keyword criteria set should be analyzed.

• The brand for which tweets are to be analyzed should be easily specified in a user-

friendly manner.

8.3.2 Implementation of pipeline

The final classifier model, ‘LR_0.9_np_ns_c_tfid_’ was first exported using pickle, along with

the subjectivity classifier ‘SubjObj.sav’. The vectorizers used to process strings were also

exported. These classifiers were then loaded into a new script, ‘getTweets.py’.

After loading the classifiers, the functions ‘Subjectivity’ and ‘Sentiment’ were written. These

functions take a string argument and use the classifiers to return a predicted label for the string

given by the classifier. For example, assuming no error in classification:

• Sentiment(‘I love this!’) would return the string ‘pos’

• Subjectivity(‘He walked to the shop’) would return the string ‘o’

Figure 9, loading the subjectivity and sentiment classifiers

36

After defining these functions, a fucntion was defined which would stream twitter data, with a

filter added so that only subjective tweets were returned. This was done using a modified

version of the script used to save tweets used in the original dataset. To filter the stream of

tweets in real-time, the following conditional statemtent was used.

Note the addition of the statement “Subjectivity(tweet) == ‘o’”, allowing the system to ignore

subjective tweets. This statement also filtered out any ‘retweets’, tweets with too many

mentions and tweets with too many hashtags, for reasons described previously.

Streamed tweets were then saved to a CSV file, with an additional attribute for each tweet

describing its sentiment polarity, as classified by the classifier loaded previously. The structure

of each line of the CSV was as follows:

[Tweet, sentiment, keyword matched, date of tweet]

Although the keyword matches were not used in the final build of the pipeline, they were still

recorded as they would potentially be useful if the implementation was expanded in the

future, to track multiple sentiments simultaneously.

Figure 12, 'Subjectivity' function used in final pipeline

Figure 10, 'Sentiment' function used in final pipeline

Figure 13, conditional statement used to filter tweets in real time

Figure 11, 'Subjectivity' function used in full pipeline

37

In addition to producing a CSV file with annotated tweets, a second CSV was also produced

named ‘brandname_log.csv’. This file would be written to periodically, and would contain two

collums. The first variable of each row of the file contained a floating point number which

describes the average sentiment for all tweets gathered in the time period. This number was

calculated by assigning each of the three possible sentiment polarities a value. Positive

sentiment was equal to 1, neutral 0, and negative -1. The sum of the sentiment was calculated,

before being divided by the number of tweets gathered in the time period in order to calculate

average sentiment. The structure of the log file can be seen below:

[average sentiment, datetime calculated]

This was implemented with a function called ‘log’. Using the ‘timer’ function found in

Python’s threading module, the ‘log’ would execute periodically. For the purpose of testing,

the time period for which average sentiment was logged was set to 5 minutes, so that a large

number of points could be tested when plotting the graph.

Next, a second python script, ‘track.py’ was made. This would read the log produced by

‘getTweets.py’, and use ‘matplotlib’ to produce an animated line graph of the data. This was

achieved by creating the following ‘animate’ function:

Figure 14, log function used to save sentiment averages periodically

38

By plotting average sentiment against time, the sentiment towards the brand can be visualised

as it changes. Finally, in order to begin gathering and plotting data, the scripts ‘gettweets.py’

and ‘track.py’ must be placed in the same directory, and run. The result of this is an animated

graph such as the one below.

Figure 15, average sentiment towards the brand 'playstation' plotted at 5 minute intervals

39

9 Evaluation

9.1 Evaluation of pre-processing

Whilst testing model configurations, it became evident that the customized pre-processing

function written was ineffective in comparison to sklearn’s built-in function. Evidence of this

can be seen in sections 7.2.1 and 7.2.2.

This could have been caused by one of several decisions taken when designing the function.

For one, the decision to leave stop words within the tweet may have led to a decrease in

accuracy, as the inclusion of these words leads to the classifier having a larger vocabulary, with

less focus on words which define the sentiment explicitly. In sklearn’s built in preprocessor,

stop words are removed by default.

Although using the customized preprocessor reduced accuracy, there is a chance this is a result

of the enhanced generalization it provides. Generalization of the model may be increased

because of the preprocessor replacing every instance of a brand name in the dataset with the

string ‘brand’. Doing so makes the model applicable to any tweet which mentions a brand, so

long as the brand name is also transformed from the unseen tweet before it is classified.

Due to project time constraints, this was not explored and tested further, however the

assumption that this was true was made then deciding to implement the custom preprocessor

in the full pipeline and when training the final model.

9.2 Evaluation of fact/opinion classifier

The fact/opinion classifier trained and implemented into the final pipeline had an accuracy

score of 0.87. It must be noted that this was when tested using the dataset of movie reviews

and plot synopses aforementioned, and how well this accuracy would generalize to classifying

tweets is difficult to determine without further testing, which was not permitted due to time

constraints.

The fact opinion classifier was implemented in the final pipeline despite this because of the

fact that even if some tweets were classified as subjective incorrectly, so long as more were

classified correctly than incorrectly (over 50%), then the model has been at least somewhat

effective in reducing the number of objective tweets that reach the sentiment classifier.

40

9.3 Evaluation of different datasets

When over 1000 tweets are annotated by-hand, there is always the risk of human error.

Although utmost care was taken to mitigate this risk, upon evaluation some tweets have been

found to have been classified incorrectly. An example of one such tweet can be seen below:

‘That ""Dastardly"" trophy though ’

Although this tweet has been annotated as positive, it is arguably of negative sentiment, as it

appears to fit the criteria of:

“The tweet describes a negative experience or fault with a product/service provided by the

brand”

Set out in the guidelines for annotation.

Although some human error is inevitable when annotating such as large volume of tweets, I

do believe that it was kept to an acceptable level. This is evidenced by the effectiveness of the

final classifier trained. If a significant number of tweets were annotated incorrectly, the final

model would not have produced an accuracy score of 0.61.

Another aspect of the dataset which was not considered was the risk of producing an

overfitted model. Due to time constraints, the data which was hand-labelled contained tweets

from only five brands. This meant there was a risk that the model trained would be overfitted,

and only accurate for the brands considered. This risk was mitigated when the dataset was

combined with the ‘sentiment 140’ dataset, as the tweets contained in these were not brand

specific.

9.4 Evaluation of final classifier

The comparisons of SVM and Logistic regression models made indicated that performance

was similar between them. The highest accuracy score achieved for each was 0.61.

This accuracy met the requirements set; however, it is by no means perfect. Given a larger

dataset, or more effective preprocessing, the model could undoubtably have been improved

further.

9.5 Evaluation of full pipeline

Comparing the full pipeline to the set of requirements listed before implementation, the

following was noted:

41

• The implementation was generalized for any brand, as changing the keywords in the

keyword list at the top of the script would result in all instances of these in the tweet

being replaced with the word ‘brand’, as done when training the model. Requirement

met

• The implementation was flexible, and different models could be used by simply

dropping them into the same directory as ‘getTweets.py’ and changing the file name

that is unpickled at the beginning of the code. Requirement met

• The implementation calculated and stored average sentiment periodically, as planned.

Requirement met

• All tweets were classified by both the sentiment and subjectivity classifiers in real time.

Requirement met

• A live line graph providing up-to-date visualization of this data was produced.

Requirement met

From this, the final pipeline appears to meet all the minimum requirements set out. This does

not mean, however, that this implantation was perfect with no room for improvement. Some of

the non-compulsory requirements were unfortunately not met:

• The graph produced was not labelled, and the scale for the Y axis was fitted to the

highest and lowest sentiment values, e.g. if the lowest average sentiment recorded was

-0.2 then the axis would begin at this. In order to improve this, the Y axis should have

been between -1 and 1, as this would accommodate all possible average sentiments and

improve visualization.

• Due to the limitations of Twitter’s search API, there is no guarantee that every single

tweet which meets the keyword criteria is streamed into the pipeline. To overcome this,

an alternative API such as ‘firehose’ API could be utilized instead.

• Although the target brand could be changed, it was only through modifying the

keyword list in the code itself. This is not especially user friendly. To improve this,

keywords could be entered through command the line or a GUI instead.

10 Conclusion

The goals of the project were to:

• Collect and label a dataset of tweets which could be used for training a sentiment

analysis machine learning model.

42

• Implement a Logistic Regression classifier capable of differentiating subjective and

objective tweets.

• Test a wide range of machine learning classifiers and obtain a model with maximum

performance.

• Use this model, alongside the subjectivity classifier, to build a full sentiment analysis

pipeline and visualize results.

The first of these goals was achieved. Tweets were gathered using the twitter stream API and

saved to a csv, and then labelled using a simple python script. Tweets were labelled using a

carefully laid out set of guidelines, and I believe that few were labelled incorrectly. The

annotated tweets were used to build an effective model.

The second of these goals was also achieved. The subjectivity classifier had an accuracy score

of 0.87 when tested on the dataset of movie reviews and synopses, which is more than

acceptable.

The third of these goals was achieved to an acceptable degree. Many different configurations

of SVM and Logistic regression models were tested, and yielded accuracy scores ranging from

0.45 up to 0.61. The results of these tests were visualized, and the effects of changing certain

aspects of the model understood. Although not perfect, the performance of the model was good

enough as to be used in a real application.

Finally, a pipeline which implemented the aforementioned models was built. This pipeline took

data from twitter in real time, processed it, and saved a copy of each annotated tweet, as well

as a calculation of average sentiment. This average sentiment was then used to plot an animated

graph in matplotlib. Although the implementation used 5-minute intervals for proof-of -

concept, far larger intervals could be utilized in order to visualize meaningful sentiment

changes over time.

This project has proven the ability of machine learning models for classifying the subjectivity

and sentiment of tweets, and given an example of a real-world application for these classifiers.

11 Future expansion

Although the result of this project is somewhat effective classifier and a working, live sentiment

tracker, there is significant room for this to be built upon and improved. Every point from data

collection to model training and testing to the final pipeline has limitations which could be

43

overcome with further work. In some cases, code was written specifically so that if

improvements are made to an aspect of the system, they can be implemented with ease.

11.1 Data collection

Although the dataset collected and annotated was capable of training a classifier, it was not

perfect. Many machine learning models benefit from a larger dataset, and by increasing the

number of tweets collected and annotated, the models produced further along in the project

could have been more effective.

As evidenced in the dataset evaluation, there was also cases of human error in the annotation

of tweets. To reduce this error, future annotations could be checked by another independent

party, and only kept in the final dataset if both parties are in agreement.

11.2 Model testing and selection

Although Logistic Regression and SVM models were covered in this project, for reasons

mentioned previously in section 5.2.1, there are a multitude of other classifiers which could

have been utilized. These include Naïve Bayes, Decision trees, Bayesian regression, and neural

networks amongst others.

It is likely that given enough time, an alternative machine learning algorithm could be found

which would be capable of classifying sentiment more effectively. In recent years, neural

networks have become an area of interest, and have begun to overtake more traditional

techniques. It is not unlikely that a well selected, trained, and tuned neural network would

perform more effectively than the final model used. If this were the case, it could be

implemented into the full pipeline easily, and produce more meaningful results.

11.3 Full pipeline

The script which allows the live-plotting of sentiment worked on a basic level, however there

are many tweaks and improvements that could be made.

Firstly, the method used to stream tweets could be improved. The current build utilizes the

twitter streaming API. The slow rate with which tweets matching the stream criteria are

received means that often in a given time period, the average sentiment is based only on a

handful of tweets. To bypass this limitation, the twitter ‘firehose’ API could instead be used.

This is an API similar to Twitter’s streaming API, the key difference being that firehose

guarantees delivery of every single tweet which matches a given criteria. This means that a

larger volume of tweets can be collected and analyzed.

44

Although the time period for each calculation of average sentiment was 5 minutes, due to time

and technical constraints, by increasing the time period to once per hour or once per day, more

meaningful changes in sentiment could potentially be observed.

The live tracking feature implemented in the final pipeline could be used for several purposes

in a number of ways. One use case for live sentiment tracking is for brands to monitor customer

reactions to a new product release, advertising campaign, or update. If sentiment is seen to dip

soon after a product is unveiled, it is an indicator of a negative consumer reaction. The inverse

is also true. If sentiment was plotted on a daily basis instead of in a period of minutes, this

change would become more easily visible.

Furthermore, the animated graphs could be embedded into webpages, alongside a method for

filtering by keyword, in order to make sentiment data easily accessible, and understandable to

anyone.

In addition to this, further information could also be extracted from the tweets and displayed

to the user. For example, the most positive and most negative tweets could be found by

recording the confidence of each classification. The tweets which the classifier has the highest

confidence in predicting could be displayed to the user to provide further insight.

12 Reflection

From start to finish, this project presented a considerable challenge. It required me to become

familiar with a topic I was previously unfamiliar with in a short space of time, to the point

where my knowledge could be used to implement a full, working system.

I feel that by dividing the project into sub tasks, e.g. collecting dataset, testing models,

implementing most accurate model, I was able to work more effectively. At times I had to

consider if I was spending too much time on one aspect of the project, and as such there was

room left for further improvements throughout.

I also believe I mismanaged the time taken for working on the actual code and model testing,

and so did not leave long enough to write a report with as much detail as I would have liked.

Having said this, I am not unhappy with the report, I just think that more supplementary content

would have improved it.

The most satisfying part of the project was implementing the full pipeline, and watching actual

data be processed and visualized in real time. I was unsure if I would be able to do this in the

45

time given, and although the output was more of a proof of concept, I believe it could have

valuable real-world applications.

13 References

[

1

]

“oberlo.co.uk,” Oberlo, 30th November 2019. [Online]. Available:

https://www.oberlo.co.uk/blog/twitter-statistics.

[

2

]

IFTT, “Stream tweets with IFTT,” [Online]. Available: https://ifttt.com/twitter.

[

3

]

Zapier, “How it works,” [Online]. Available: https://zapier.com/how-it-works.

[

4

]

Tweet download, “Tweet download,” [Online]. Available:

https://www.tweetdownload.net/.

[

5

]

lionbridge, “essential guide to sentiment analysis,” [Online]. Available:

https://lionbridge.ai/articles/the-essential-guide-to-sentiment-analysis/.

[

6

]

O. languages, “Oxford Languages definition of subjectivity,” [Online]. Available:

https://www.lexico.com/en/definition/subjective.

[

7

]

“Regression vs classification,” medium.com, 11 August 2018. [Online]. Available:

https://medium.com/quick-code/regression-versus-classification-machine-learning-whats-

the-difference-345c56dd15f7.

[

8

]

J. Brownlee, “Machine learning mastery,” 18 March 2016. [Online]. Available:

https://machinelearningmastery.com/gentle-introduction-to-the-bias-variance-trade-off-in-

machine-learning/.

46

[

9

]

A. Bhande, “What is underfitting and overfitting in machine learning and how to deal with

it.,” medium, 18 March 2018. [Online]. Available: https://medium.com/greyatom/what-is-

underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76.

[

1

0

]

“Dimensionality and reduction algorithms,” elite data science, [Online]. Available:

https://elitedatascience.com/dimensionality-reduction-algorithms.

[

1

1

]

J. C. Collados, “Applied Machine Learning Slides”.

[

1

2

]

Amazon, “cross-validation,” Amazon AWS, [Online]. Available:

https://docs.aws.amazon.com/machine-learning/latest/dg/cross-validation.html.

[

1

3

]

“logistic regression,” Machine learning mastery, 12 August 2019. [Online]. Available:

https://machinelearningmastery.com/logistic-regression-for-machine-learning/.

[

1

4

]

W. H. P. A. M. Sandra Vieira, “Science direct,” 4 Jan 2017. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0149763416305176.

[

1

5

]

“Support vector Machines,” Towards data science, [Online]. Available:

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-

learning-algorithms-934a444fca47.

[

1

g. f. geeks, “data preprocsseing python,” [Online]. Available:

https://www.geeksforgeeks.org/data-preprocessing-machine-learning-python/.

47

6

]

[

1

7

]

H. Jabeen, “Stemming and Lematization in python,” 23 Oct 2018. [Online]. Available:

https://www.datacamp.com/community/tutorials/stemming-lemmatization-

python?utm_source=adwords_ppc&utm_campaignid=9942305733&utm_adgroupid=1001

89364546&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_a

dpostion=&utm_creative=255798340456&utm_tar.

[

1

8

]

Scikit-learn, “Scikit-learn,” [Online]. Available: https://scikit-learn.org/stable/.

[

1

9

]

N. l. toolkit, “NLTK,” [Online]. Available: https://www.nltk.org/.

[

2

0

]

M. l. mastery, “Accuracy paradox,” [Online]. Available:

https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-

machine-learning-dataset/.

[

2

1

]

Sentiment140, “Sentiment 140 dataset,” [Online]. Available:

http://help.sentiment140.com/for-students.

